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Abstract   

Spectral histopathology (SHP) using glass slides is a promising method for cancer 

detection. In order to achieve clinical application, it is very important to find the effect 

of glass type on detection results. The project has studied the influence of glass type on 

infrared spectra, tissue histopathological classification and cancer detection by two 

experimental methods. The backgrounds of experiment 1 and 2 were selected tissue-

free areas (blank glass, glue & coverslip) and blank glass, respectively. In addition, glue 

removal by Matlab is an essential data process due to the existence of glue and coverslip 

in the H&E stained tissue sample. Therefore, finding the most suitable experimental 

method and glue removal method are also the project's important aims. 

 

Due to the partly opaque, the infrared transmission window for glass slides is 2000-

3800 cm⁻¹. Only hydroxyl and its related groups are shown in the infrared spectra of 

the blank glass slide. The comparison of spectra on 12 blank glass slides indicates that 

most glass slides cannot be discriminated by infrared spectra except for glass D. 

 

A series of prostate tissue sections from the same BPH patient are mound on the 12 

different glass slides. Stroma and epithelium are used for studying tissue classification 

because they are important compositions and have a high proportion of prostate tissue. 

The results show that the tissue classification on the same glass slide has very high 

accuracy (above 98.40%) for both experiments. In addition, tissue classification 

accuracies for most classifiers tested on different glass slides are above 90.57%. Good 

performance means that the type of glass slide has a minor influence on tissue 

classification before removing the glue. 

 

 

Only 6 glass slides are commonly used for tissue work in 12 glass slides. A series of 

adjacent tissue slices are mounted on the 6 glass slides, which are from 4 patients (2 

BPH & 2 CaP). The accuracies of cancer detection on the same glass slide for 
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experiments 1 and 2 are 97.00% and 92.00%, respectively. However, the worse result 

on different glass slides indicates that the type of glass slide has an impact on cancer 

detection.  

 

The purpose of glue removal is correct the bands in 3400-3450 cm⁻¹ and 3400-3600 

cm⁻¹, which are related to glue and coverslip, respectively. However, after removing 

the glue, tissue classification and cancer detection accuracy on the same glass slides are 

reduced. It means that glue has a contribution to tissue classification and cancer 

detection.  

 

Experiment 1 always had higher accuracy than experiment 2. The type of glass slide 

has a slight influence on tissue classification but has a huge effect on cancer detection. 

Therefore, the type of glass slide must be consistent during cancer detection by SHP, 

and experiment 1 is the most suitable method.    

 

Keywords: Infrared spectral histopathology (SHP), glass slides, cancer detection, 

tissue classification, glue removal 
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1.1 Prostate Cancer   

Nowadays, cancer is a significant disease threatening human life worldwide. According 

to the GLOBOCAN data, there were 19.3 million new cancer cases and 10.0 million 

deaths worldwide in 2020, with breast, lung, colorectal, and prostate cancer being the 

most common cancer types diagnosed. By 2040, it is estimated that there will be 28.4 

million new cancer cancers each year[1]. A critical point for successful cancer treatment 

and prognosis is early diagnosis[2]. Therefore, in certain case, cancer screening has 

been an effective way to control cancer[2][3]. 

 

Prostate cancer (CaP) is the second most frequent malignant tumour in men, especially 

in Europe and America[1][4]. At present, prostate cancer screening modalities include 

prostate-specific antigen (PSA) detection, digital rectal exam (DRE), magnetic 

resonance imaging (MRI) and transrectal ultrasound-guided puncture biopsy[3][5]. The 

biopsy result is a "gold standard" for prostate cancer detection.   

 

The diagnosis results are from pathologists' judgment, which is subjective and time-

consuming. According to the information on the NHS website, it usually takes a few 

days to get diagnosis results after the biopsy[6]. The speed of diagnosis is slow, in part 

caused by the massive workload of pathologists. Automated pre-screening sample is a 

potential method of reducing the pathologists' workload.  

 

1.2 Infrared Spectral Histopathology  

Infrared spectral histopathology (SHP) is a promising diagnostic tool for various cancer 

detection. SHP interprets tissue characterisation and classification based on infrared 

chemical images and computer data processing. In recent years, many studies have 

shown that SHP could distinguish many types of cancer with high sensitivity and 

specificity, such as lung cancer[7][8][9], colon cancer[10][11][12], breast 
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SHP is based on spectral measurement, which depends on the biochemical information 

of tissue. In comparison, the pathological examination is based on tissue morphology 

and architecture [18]. In addition, SHP is also a label-free and non-destructive 

processing. Therefore, SHP can 

cancer[13][14][15], and prostate cancer[16] [17]. 

give a diagnostic interpretation for a histopathological 

sample and could be applied in pre-screening processing  

 

in clinical applications. 

1.3 Clinical application of SHP  

Suppose SHP is applied as a pre-screening process in clinical applications. In that case, 

SHP could be used to detect the normal samples, which do not contain cancer, and the 

diagnostic result will be given quickly to the patient. In contrast, the rest of the 

suspicious and cancerous samples diagnosed by SHP would be given to the pathologists 

for expert examination and reporting of the final diagnosis. This idea reduces the 

pathologist's workload, increases the detection speed, and ensures the accuracy of 

cancer detection.  

 

 

 

 

 

 

Not disturbing the current pathological process is very important to achieve the clinical 

application of SHP. Therefore, it is better for SHP to use the same preserved tissue 

samples which are used for pathological examination. The tissue block is preserved in 

formalin and processed by additional solutions to prepare the permanent tissue samples. 

Then the tissue is placed in paraffin wax and cut into thin slices (4-8µm) after the wax 

has hardened. The thin tissue sections are stained with dyes and then mounted on 

glass slides with glue and coverslip. Haematoxylin and Eosin (H&E) are the most 

common dyes in clinical applications [19]. 
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1.4 Glass substrate for SHP 

It is essential for SHP clinical application to keep the existing pathological process. 

Therefore, the sample preparation process is not disturbed, and the same permanent 

tissue sample would be used for pre-screening by SHP. Thus, the glass slides would be 

used as a substrate.  

 

Infrared chemical images used for SHP are measured by Fourier transform infrared 

spectroscopy (FTIR). Due to the high transparency across a wide infrared range, the 

conventional substrates for FTIR are calcium fluoride (CaF2 ) and barium fluoride 

(BaF2), which are used in most of the studies of SHP. However, there are many reasons 

why CaF2 and BaF2 are not particularly suitable for clinical application. First, a new 

sample preparation step needs to be added if using these substrates, and the traditional 

sample preparation process would be disturbed. Second, automated equipment 

normally required for tissue preparation cannot be used because CaF2  and BaF2  are 

fragile [17]. Manual operation is time-consuming. In addition, the price of CaF2 and 

BaF2 are very high, which is around £60 per slide. It would be uneconomic for clinical 

practice.  

  

Given these significant limitations, is it feasible to use glass as the substrate? Compared 

with CaF2  and BaF2 , glass is more robust and significantly cheaper (about £0.7 per 

slide). However, the glass substrate also has some disadvantages. The glass's thickness 

and composition affect the fingerprint range's spectral data[20]. For example, the 

thickness of the coverslip is only around 0.13-0.17mm. Some studies have compared 

the spectra on the different types of coverslips. The results indicated that according to 

the spectral data from the fingerprint and lipid range, the cancerous and non-cancerous 

cell lines could be separated[21][22].  

 

But the glass slides used in this project is histopathology glass slide, and the thickness 

is around 1mm. The spectral data from fingerprint region cannot be obtained for 
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histopathology glass slides due to the partly opaque in the infrared region. Thus, the 

infrared window for the glass slide is in the high wavenumber range (2500-3800 cm−1 ) 

[23].  

 

Therefore, most of the critical biological peaks used for further data processing are 

obscured, and the only useful peak observed is the amide A band (3298 cm−1). Despite 

this, previous studies have shown that SHP could distinguish prostate cancerous tissue 

from benign tissue on glass substrates with high sensitivity and accuracy [17][24]. Thus, 

SHP could discriminate between cancerous and normal tissue on the glass slides. 

 

Because cancer detection in clinical pathological examination depends on the tissue 

morphological detail, the type of glass slides does not affect detection results. However, 

the glass substrate would be measured during SHP, and at present, there is a wide range 

of types of glass slides used in clinical practice. Therefore, it is vital for the clinical 

application of SHP to study whether the different types of glass could affect the 

detection result.  

 

1.5 Objective of the project 

This project is a fundamental study for the clinical application of SHP, and the aim is 

to find the impact of glass types on cancer detection. In the project, non-cancerous and 

cancerous tissue are from benign prostatic hyperplasia (BPH) and CaP patients, 

respectively. There are 12 different brands of glass slides in total, and only six of them 

are more suitable for tissue work. In addition, there are two experimental methods for 

measuring the tissue by FTIR. So it is meaningful to find the best experimental method 

for SHP.  

 

The project is divided into three main studies presented in chapter 4, chapter 6, chapter 7

. In addition, chapter 5 compared the different methods of glue removal and found the 
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most suitable way for tissue classification and cancer detection in chapters 6 and 7. 

 

Chapter 4 studies the spectral difference for 12 blank glass slides by comparing the 

infrared spectra of 12 blank glass slides. Therefore, this part's purpose is to study the 

effect of the type of glass slide on infrared spectra. 

 

In general, prostate tissue is made of epithelium, stroma, blood and secretion[18]. The 

prostate secretion is a watery liquid. Cancer detection by SHP can be based on the 

spectra of different kinds of tissue, and the accuracy is slightly different[17]. The stroma 

and epithelium are used for further cancer detection because they are important 

compositions for prostate tissue and are always used in many SHP studies. Thus, before 

studying cancer detection, it is necessary for chapter 6 to study the effect of glass types 

on tissue classification. Samples in this part are a series of adjacent tissue sections from 

the same benign prostatic hyperplasia (BPH) patient mounted on the 12 glass slides.  

 

Chapter 7 studies the effect of glass slide type on cancer detection. Samples in this 

chapter are a series of adjacent tissue sections from 4 patients (2 BPH & 2 CaP) 

individually mounted on the 6 glass slides. In addition, four tissue sections in paraffin 

and without H&E stained are mounted on CaF2 and regarded as a control set.  

 

In addition, all tissue sections are mounted on the glass slides with glue and coverslip. 

Therefore, the glue has a specific influence on the spectra, and it is necessary to remove 

the effect of glue from the spectra. Chapter 5 compares the different methods and fit 

ranges of glue removal and finds the most suitable glue removal method applied in the 

spectra in chapters 6 and 7.  

  



30 

 

1.6 Reference 

[1] H. Sung et al., ‘Global Cancer Statistics 2020: GLOBOCAN Estimates of 

Incidence and Mortality Worldwide for 36 Cancers in 185 Countries’, CA. 

Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021. 

[2] R. C. Wender, O. W. Brawley, S. A. Fedewa, T. Gansler, and R. A. Smith, ‘A 

blueprint for cancer screening and early detection: Advancing screening’s 

contribution to cancer control’, CA. Cancer J. Clin., vol. 69, no. 1, pp. 50–79, 

Jan. 2019. 

[3] R. A. Smith et al., ‘Cancer screening in the United States, 2018: A review of 

current American Cancer Society guidelines and current issues in cancer 

screening’, CA. Cancer J. Clin., vol. 68, no. 4, pp. 297–316, Jul. 2018. 

[4] G. Gandaglia et al., ‘Epidemiology and Prevention of Prostate Cancer’, Eur. 

Urol. Oncol., vol. 4, no. 6, pp. 877–892, Dec. 2021. 

[5] R. W. Stewart, S. Lizama, K. Peairs, H. F. Sateia, and Y. Choi, ‘Screening for 

prostate cancer’, Seminars in Oncology. 2017. 

[6] ‘Biopsy - NHS’. [Online]. Available: https://www.nhs.uk/conditions/biopsy/. 

[Accessed: 02-Jan-2022]. 

[7] X. Mu et al., ‘Statistical analysis of a lung cancer spectral histopathology 

(SHP) data set’, Analyst, vol. 140, no. 7, pp. 2449–2464, 2015. 

[8] A. Akalin et al., ‘Classification of malignant and benign tumors of the lung by 

infrared spectral histopathology (SHP).’, Lab. Invest., vol. 95, no. 4, pp. 406–

21, 2015. 

[9] F. Großerueschkamp et al., ‘Marker-free automated histopathological 

annotation of lung tumour subtypes by FTIR imaging’, Analyst, vol. 140, no. 7, 

pp. 2114–2120, 2015. 

[10] C. Kuepper, F. Großerueschkamp, A. Kallenbach-Thieltges, A. Mosig, A. 

Tannapfel, and K. Gerwert, ‘Label-free classification of colon cancer grading 

using infrared spectral histopathology’, Faraday Discuss., vol. 187, pp. 105–

118, 2016. 



31 

 

[11] J. Nallala et al., ‘Infrared spectral histopathology for cancer diagnosis: a novel 

approach for automated pattern recognition of colon adenocarcinoma.’, 

Analyst, vol. 139, no. 16, pp. 4005–4015, 2014. 

[12] A. Kallenbach-Thieltges, F. Gro??er??schkamp, A. Mosig, M. Diem, A. 

Tannapfel, and K. Gerwert, ‘Immunohistochemistry, histopathology and 

infrared spectral histopathology of colon cancer tissue sections’, J. 

Biophotonics, vol. 6, no. 1, pp. 88–100, 2013. 

[13] M. W. Kissin, G. Q. Della Rovere, D. Easton, and G. Westbury, ‘Risk of 

lymphoedema following the treatment of breast cancer’, Br. J. Surg., vol. 73, 

no. 7, pp. 580–584, 1986. 

[14] B. Bird, K. Bedrossian, N. Laver, M. Miljković, M. J. Romeo, and M. Diem, 

‘Detection of breast micro-metastases in axillary lymph nodes by infrared 

micro-spectral imaging.’, Analyst, vol. 134, no. 6, pp. 1067–76, 2009. 

[15] M. J. Pilling, A. Henderson, and P. Gardner, ‘Quantum Cascade Laser Spectral 

Histopathology: Breast Cancer Diagnostics Using High Throughput Chemical 

Imaging’, Anal. Chem., vol. 89, no. 14, pp. 7348–7355, 2017. 

[16] E. Gazi et al., ‘Applications of Fourier transform infrared microspectroscopy in 

studies of benign prostate and prostate cancer. A pilot study’, J. Pathol., vol. 

201, no. 1, pp. 99–108, 2003. 

[17] M. J. Pilling, A. Henderson, J. H. Shanks, M. D. Brown, N. W. Clarke, and P. 

Gardner, ‘Infrared spectral histopathology using haematoxylin and eosin 

(H&amp;E) stained glass slides: a major step forward towards clinical 

translation’, Analyst, vol. 142, no. 8, pp. 1258–1268, 2017. 

[18] M. Pilling and P. Gardner, ‘Fundamental developments in infrared 

spectroscopic imaging for biomedical applications’, Chem. Soc. Rev., vol. 45, 

no. 7, pp. 1935–1957, 2016. 

[19] M. Slaoui and L. Fiette, ‘Histopathology Procedures: From Tissue Sampling to 

Histopathological Evaluation’, 2010. 

[20] M. Kansiz, L. M. Dowling, I. Yousef, O. Guaitella, F. Borondics, and J. Sulé-

Suso, ‘Optical Photothermal Infrared Microspectroscopy Discriminates for the 



32 

 

First Time Different Types of Lung Cells on Histopathology Glass Slides’, 

Anal. Chem., vol. 93, no. 32, pp. 11081–11088, 2021. 

[21] A. V. Rutter, J. Crees, H. Wright, D. G. Van Pittius, I. Yousef, and J. Sulé-Suso, 

‘Fourier transform infrared spectra of cells on glass coverslips. A further step in 

spectral pathology’, Analyst, vol. 143, no. 23, pp. 5711–5717, 2018. 

[22] A. V. Rutter et al., ‘Identification of a Glass Substrate to Study Cells Using 

Fourier Transform Infrared Spectroscopy: Are We Closer to Spectral 

Pathology?’, Appl. Spectrosc., vol. 74, no. 2, pp. 178–186, 2020. 

[23] R. a Shaw, H. H. Eysel, K. Z. Liu, and H. H. Mantsch, ‘Infrared spectroscopic 

analysis of biomedical specimens using glass substrates.’, Anal. Biochem., vol. 

259, no. 2, pp. 181–6, 1998. 

[24] P. Bassan, J. Mellor, J. Shapiro, K. J. Williams, M. P. Lisanti, and P. Gardner, 

‘Transmission FT-IR chemical imaging on glass substrates: Applications in 

infrared spectral histopathology’, Anal. Chem., vol. 86, no. 3, pp. 1648–1653, 

2014. 

 

 

 

 

 

 

 



33 

 

 

 

 

Chapter 2 

Literature Review 



34 

 

2.1 Cancer  

Cancer is one of the prevalent life-threatening diseases. According to the World Health 

Organization (WHO) data in 2020, about 10 million people died from cancer. 

Furthermore, there were approximately 19.3 million new cancer cases [1]. 

 

The most frequently diagnosed cancers in the world include breast cancer, lung cancer, 

prostate cancer, nonmelanoma of skin and colon cancer[1][2]. At present, the incidence 

and mortality of several common cancers worldwide are still increasing[3]. However, 

treatments for many late-stage cancers are still poor or relatively ineffective. Therefore, 

it is crucial for patients' treatment to develop and improve the early diagnosis methods 

of various kinds of cancer so that treatments can be started earlier. Currently, the main 

techniques of clinical cancer diagnosis include endoscopy, medical imaging methods[4], 

such as magnetic resonance imaging (MRI), computed tomography (CT), B-ultrasound, 

X-ray imaging, mammography, various biochemical tests and histopathology based on 

microscope observation of tissue morphology[5][6]. 

 

The combination of histopathology and imaging methods is still the most critical 

standard cancer diagnostic method. However, the pathological diagnosis operation 

process is non-quantitative, time-consuming and subjective[7]. Although the diagnostic 

accuracy of CT and MRI is improved, the price is higher. Fourier transforms infrared 

spectrometer (FTIR) is a simple analytical method with high accuracy compared with 

other methods. 

 

2.2 Application of Infrared Spectroscopic Imaging 

Infrared spectroscopy and microscopic imaging are powerful tools for studying the 

chemical composition and spatial distribution of complex substances. The development 

of infrared spectroscopic imaging includes three broad areas: data recording, 
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interpretation of recorded data, and information extraction[8]. Hence, due to the 

development of theory consisting of many approaches, higher performing 

instrumentation, and better algorithms and computation [8], many applications have 

been widely used in analytical chemistry, materials science[9][10], forensic 

science[11][12], food industry[13] and biomedicine[7][14]. In particular, biomedical 

diagnostics and analysis have been extensively studied in the biomedical 

field[7][15][16]. 

 

Fourier transform infrared (FTIR) microscopy is a higher-performing commercial 

instrumentation. Its application has been extended from the chemical field to the 

biomedical field and from studying the structure of nucleic acid, proteins, and other 

biological macromolecules to investigating the composition of more complex tissues 

and cells[8][17]. In principle, FTIR spectroscopy can give information regarding the 

structure and chemical properties of the samples at the molecular level. However, in 

complex cells and tissues, the overall spectrum is the superposition of the spectra of the 

constituent molecules. Spectral differences, however, can reveal the biochemical 

changes of pathological tissues and cells in the process of carcinogenesis[6]. At present, 

FTIR has been widely used in the study of cancerous tissues and cells[18][19][20].  

 

The cell is the basic unit of structure and function of the organism, and its elemental 

chemical compositions are carbohydrates, lipids, protein, nucleic acid and other 

biological macromolecules. The cancerisation of cells or tissues is always accompanied 

by changes in the conformation, relative content and surrounding environment of the 

above biological macromolecules[18]. The infrared spectrum of the cells or tissue is 

composed of the vibrational spectra of these biological macromolecules[21]. The 

infrared spectral characteristics of the biological macromolecules are shown in Table 

2.1. 
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Table2. 1 The main bands of the biological macromolecules in the infrared range  

Wavenumber (cm−1) Mode of vibration 

3300 The amide A and OH 

~3075 The amide B 

~2959 Asymmetric stretching of C-H in CH3 

~2925 Asymmetric stretching of C-H in CH2 

~2872 Symmetric stretching of C-H in CH3 

~2852 Symmetric stretching of C-H in CH2 

~1741 Symmetric stretching of CO in lipids 

~1650 Amide Ⅰ 

~1550 Amide Ⅱ 

~1467 Scissoring C-H bending (CH2) 

~1396 Scissoring C-H bending (CH3) 

1310-1240 Amide Ⅲ 

1250-1220 Asymmetric P=O stretching in PO2 

~1085 Symmetric P=O stretching in PO2 

 

Therefore, according to the infrared spectrum of tissue or cells, information about the 

structure of biological macromolecules that make up tissue or cells can be obtained, 

and then the normal and cancerous tissue or cell can be identified by using the 

difference of the spectral information, which provides the potential for the diagnosis of 

cancer at the molecular level. Many researchers have used FTIR to study cells or tissues 

of prostate cancer[16], [22]–[25], breast cancer[26]–[28], lung cancer[29][30], colon 

cancer[19][31][32], renal cancer[33], brain cancer[34], and so on. The results of these 

studies have a good performance on cancer detection and indicated that the application 

of  FTIR is a potential method for cancer detection.  

 

 

2.2.1 Application in Prostate Cancer Detection 

Prostate cancer is one of the most common cancers that endanger men's health. Prostate 

cancer ranks second in the world in cancer morbidity and fifth in mortality[1]. Early 

detection and treatment can significantly improve patients' survival rate and life quality. 

Therefore, it is very important to find a method for the early diagnosis of prostate cancer. 

Currently, the main diagnostic procedures for prostate cancer are digital rectal 

examination (DRE) and the use of prostate specific antigen (PSA) as an indicator for 

biopsy. Although the prostate biopsy guided by transrectal ultrasonography (TRUS-b) 
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is a gold standard for prostate cancer diagnosis, there is the possibility of misdiagnosis 

according to the indicator of PSA. Furthermore, the biopsy is an invasive examination 

that may lead to overdiagnosis of prostate cancer[35]. Therefore, finding an early 

detection method for prostate cancer is still a critical problem in prostate cancer 

treatment.  

 

Gleason grading is used to assess the mortality risk and predict prostate cancer's 

outcome [36]. From 1966 to 1974, Donald Gleason modified and developed the 

Gleason grading system[37]. There are five histologic patterns, which are from pattern 

1 to pattern 5. The grading score is calculated by adding the most and second most 

common patterns. Therefore, the range of grading scores is from 2 to 10[38]. Commonly, 

the higher scores, the higher malignancy [5][36].  

 

In 2005, the Gleason score was codified by the international society of urological 

pathology (ISUP) and became the recommended prostate cancer grading system[39]. 

In 2014, the ISUP Gleason grading conference defined a new grading system. Gleason 

grading scores are divided into five grade groups, and the lowest score is 6. The five 

grade groups in the new grading system are shown in table 2.2 [38][40]. The latest 

modification for pathologic grading guidelines was in 2019. It recommended the 

approaches to report Gleason patterns quantities and minor Gleason patterns and 

summarised the challenge with the development of multiparametric magnetic 

resonance imaging (mpMRI)-targeted biopsies[41][42]. 

 

In recent years, there have been many studies to detect prostate cancer by infrared 

spectroscopy. According to the results of Gazi's et al. study[23], FTIR 

microspectroscopy could be a promising method to diagnose prostate cancer. The study 

used FTIR microspectroscopy to compare the spectra of prostate cancer cell lines 

derived from different metastatic sites and tissue from benign and malignant prostate. 

The spectra can be used to discriminate the benign and malignant prostate cells 

depending on the ratio of peak intensities at 1030 cm−1and 1080 cm−1, corresponding 
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to the glycogen and phosphate vibrations, respectively. Furthermore, on the basis of the 

ratio, the malignant content can also be estimated. Based on cell metabolic activities, 

the paper gave reasonable explanations for the different levels of glycogen and zinc 

between the normal and cancerous prostate cells. The explanations also proved that it 

is reliable to distinguish benign and malignant cells according to the peak area ratio of 

1030 cm−1and 1080 cm−1. 

 

 

Table2. 2 International society of urological pathology 2014 grade 

Grade group Gleason score 

1 6 (3+3) 

2 7 (3+4) 

3 7 (4+3) 

4 8 (4+4 or 3+5 or 5+3) 

5 9 – 10   

 

The results of data processing in this paper showed that the principal component 

analysis (PCA) could successfully separate the spectra of prostate cancer cell lines from 

different metastatic sites. In addition, there was a good separation for benign and 

malignant glands of different Gleason grades tissue by directly entering the spectral 

intensities into the linear discriminate algorithm (LDA). Moreover, it proved that the 

LDA-FTIR could be a potential method for cancer detection [23].  

 

However, this study also had some limitations. Firstly, the study just proved that it was 

possible to discriminate the benign and malignant prostate cells by imaging FTIR 

microspectroscopy. There was no specific quantification evidence to show the 

separation results. Secondly, the number of benign and cancerous samples were only 2 

and 3, respectively. The small-scale study meant that it might not be statistically 

significant. Therefore, further studies were conducted using FTIR imaging.  

 

In 2006, an additional study was performed by E Gazi[43]. In this study, serial sections 

of prostate cancer tissue were diagnosed by the clinical pathologist and FTIR-LDA, 

respectively. Furthermore, according to the Gleason score and FTIR-LDA scored 
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system, the detection results were compared. However, the correlation of the two 

methods was low (20%) by using the stringent-rule criteria because the Gleason grading 

and FTIR-LDA grading were based on tissue architecture and biochemical composition, 

respectively. The results showed that the FTIR-LDA scores were always higher than 

the Gleason scores, which indicated that the malignant cell had developed more 

aggressive phenotypes before the architecture of the tissue changed. While the 

correlation of the two methods was greater by using the three-band Gleason criteria 

(Gleason scores <7, =7, >7), in which the sensitivity and specificity for FTIR-LDA 

score were ≥ 70% and >81%. Similarly, when using the cut-off point of ≥ 8, the 

sensitivity and specificity are71% and 67%, respectively. Although compared with the 

results of Gleason scores, the sensitivity was lower by 14% for the FTIR-LDA score. 

The specificity was higher than 4%. The result indicated that the incorrect prediction 

for prostate cancer metastatic behaviour was lower by using the FTIR-LDA score 

system. This would be more important for the FTIR-LDA score system as a 

complementary method to be applied in the clinic in the future. According to the similar 

performance in tumour metastatic behaviour prediction by two grading methods, FTIR-

LDA was a viable method to classify malignant prostatic tumours.  

 

The sample number in Gazi's further study was 40, which was higher than the study in 

2003. However, it still needs to build an extensive data set for further testing. The low 

sensitivity and specificity may also be caused by the small number of samples section 

of the same tumour. However, the clinical detection results are from the overall 

performances of several sections of the same tumour[43].  

 

In 2009, Baker also achieved prostate cancer grading by another data analysis method. 

Principal Component Discriminant Function Analysis (PC-DFA) was used to 

differentiate the spectra. The results of this study showed that prostate cancer could be 

graded with high sensitivity and specificity by FTIR microspectroscopy combined with 

PC-DFA. Similarly to the  Gazi study in 2006 [43], this study also used the three-band 

Gleason criteria (Gleason scores <7, =7, >7), but the sensitivity and specificity 
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increased to 83.6% and 86%, respectively. It indicated that the FTIR PC-DFA 

diagnostic model was better than FTIR-LDA. The spectra in Amide, C–H, CH2  and 

CH3 regions are different for tissues with different Gleason scores. In this study, amide 

and lipid regions were also used to discriminate low-grade cancer from high-grade 

cancer [44]. The biochemical components had changed before the tissue structure 

changed. It leads to the cancer grading by the conventional pathological method being 

usually lower than that by the spectroscopic grading method [43]. Therefore, this study 

achieved the separation between locally confined and locally invasive prostate cancer 

by an observer independent criterion. It is very important for the diagnosis, 

prognostication and treatment planning in different stages of prostate cancer.  

 

However, this study also contained some limitations. The major limitation was that the 

novel spectral grading system was still based on the observer dependent Gleason 

grading system. This means that problems in the Gleason grading system may still exist 

in the new grading system. Secondly, the scale of the study was still small, so it was 

important for further work to increase the number and type of the sample. Thirdly, the 

detector of FTIR microspectroscopy used in this study was a single point detector. 

Compared with the linear array and focal plane array detectors, single point detectors 

have the disadvantages of being time-consuming to use, and mapping produces low 

imaging quality.      

 

To instead the manual judgment of biopsy, Kwak et al. studied automated recognition 

of prostate cancer tissue [45][46]. To pre-define prostate tissue, they developed 

computer information and management and decision-support system. The database in 

this system contained tissue images, clinical information and more measurement data 

(e.g. IR chemical imaging). According to computing tissue morphologic similarity 

(TMS) score and morphological features, the retrieval system could be trained. This 

system could define prostate cancer tissue automatedly with high accuracy (around 

80%)[46]. In 2014, Bassan also studied rapid automated cell-type recognition by 

random forest classifier based on infrared imaging[47].  
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Both  Gazi [23], [43]and Baker [44] studies used paraffin-embedded formalin-fixed 

prostate cancer tissues. In order to achieve high throughput, a tissue microarray system 

has also s been used. Prostate tissue microarrays were used in Fernandez's study in 

2005[48]. The prostate tissue consists of normal epithelium, fibrous stroma, mixed 

stroma, muscle, nerve, lymphocytes, stone, ganglion, endothelium and blood. The 

different histology classes have different chemical compositions, which leads to the 

spectra of different histology classes being also different[48]. In this study, each pixel 

of prostate tissue imaging was assigned histopathologic recognition. In addition, the 

tissue segmentation was automated by Metric classification. Furthermore, according to 

the epithelial pixel spectra, the benign and malignant cells can be differentiated because 

prostate cancer is derived from the epithelial cell. In addition, compared with the 

conventional immunohistochemical approach, the samples used in the vibrational 

spectroscopic approach did not need to be stained, which could eliminate the influence 

of dye or molecular probe. Although the study has achieved the accurate segmentation 

of prostate tissue and separation between the malignant and the benign epithelial cell, 

cancer grading for prostate microarray tissue by FTIR was not validated in this study, 

which would be researched in further study.  

 

The samples (tissue specimen and tissue microarray) used in the abovementioned 

studies are paraffin-embedded formalin-fixed prostate cancer tissue. Because of the 

infrared absorption of paraffin, the paraffin could affect the spectra. The 

deparaffinisation of the tissue for spectroscopic evaluation is very important. Therefore, 

it is necessary to build a standard protocol to remove the paraffin and assess whether 

paraffin removal can affect spectral pathology. And depending on the results of 

Hughes's study in 2014 [49], although the paraffin removal could lead to leached out 

unbound tissue lipid, the locked lipid that was mainly in the membranes could still be 

detected, and these lipid signals were useful for spectral pathology. Paraffin-related 

peaks at 1426, 2846, 2954 cm−1  and the evidence of paraffin removal is that the 

methylene vibrations are at a stable baseline[49]. The study compared the spectral 
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information of methylene vibration when the tissue is washed by different solvents 

(hexane and xylene) with different immersion times. The results showed that there was 

a steady state after the tissue was immersed for 10 min and no major difference between 

the use of hexane and the xylene. However, hexane is more flammable than xylene[49]. 

Therefore, the suggestion of deparaffinisation for paraffin-embedded formalin-fixed 

prostate cancer tissue is dewaxed by xylene for 5 – 10 min.  

 

Characterisation of normal and malignant prostate tissue by FTIR microspectroscopy 

imaging was also studied on snap frozen tissue[50]. According to the FTIR 

spectroscopy, Pezzei et al. investigated the process of cancer in detail by identifying the 

change in the molecular components and histopathological morphology. Compared 

with the paraffin-embedded formalin-fixed tissue, snap frozen prostate tissue could 

maintain the topographic integrity of the tissue and avoid time-

consuming extraction, purification and separation steps.  

 

2.2.2 Application in Breast Cancer Detection 

Breast cancer is one of the primary malignant tumours in women, and its morbidity and 

mortality are increasing [1]. Breast exam, mammogram images, breast ultrasound, 

histopathological examination of biopsy samples, and breast magnetic 

resonance imaging have been widely used in the diagnosis of benign and malignant 

breast tissue[5][51]. However, such techniques have different inaccuracies in detection. 

Therefore, new methods for breast cancer diagnosis are helpful for increasing detection 

accuracy.  

 

In 1995, Marc et al. compared the FTIR spectra of breast cancer and normal tissue 

biopsies. Their study has found an increase in phosphodiester groups, Amide I and 

Amide II bands for cancerous tissues[52]. In 1999, Ci et al. investigated the spectral 

difference among normal, benign (hyperplasia, fibroadenoma) and cancerous frozen 

breast tissue samples[53]. The spectral differences among the four types of breast are 

https://www.sciencedirect.com/topics/physics-and-astronomy/magnetic-resonance
https://www.sciencedirect.com/topics/physics-and-astronomy/magnetic-resonance
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mainly expressed in the peak at 970 cm⁻¹, and the ratio of absorbance of the peak at 

1459 cm⁻¹ and 1239 cm⁻¹. It indicated the content of nucleic acids and collagen has 

significate implications for different types of breast tissue.  

 

The main path of metastasis of breast cancer is via the lymph nodes [54]. Surgery has 

always been the primary treatment for breast cancer [55]. Surgery for breast cancer 

includes the management of the primary site of cancer and axillary dissection. Axillary 

lymph node dissection is always the main treatment of breast cancer surgery [56]. It 

provides accurate axillary lymph node staging, removes potential metastatic lymph 

nodes and achieves better regional control. However, there are serious side effects after 

an operation, such as arm lymphedema and shoulder dysfunction.[56]. With the 

development of imaging technology, more and more breast cancers at the early stages 

are being detected. For these early-diagnosed cancers, only a small number of patients 

have axillary lymph node metastases. Therefore, axillary lymph node dissection does 

not bring any benefit to those patients without axillary lymph node metastases. 

 

Sentinel lymph nodes are the first lymph nodes to contact the primary site of cancer and 

are the first lymph node to receive cancer metastasis[57]. In theory, if the sentinel lymph 

nodes do not have free metastatic breast cancer cells, the probability of breast metastasis 

of other lymph nodes is tiny. Sentinel lymph node biopsy can avoid the routine axillary 

lymph node dissection for early breast cancer stage patients without axillary lymph 

node metastases, and reduce the complications of operation and improve the life quality 

of the patients. 

 

However, the sentinel lymph node biopsy depends on the pathologists' experience. 

Many misdiagnoses remain in routine histopathology. Therefore, it is very important to 

find an alternative method to find micro-metastases accurately and effectively. Bird et 

al. [58] reproduced the structure of axillary lymph nodes and diagnosed free metastatic 

breast cancer cells by infrared micro-spectral imaging combined with multivariate 

statistical analysis in 2009. Using hierarchical cluster analysis (HCA), the tissue image 



44 

 

was classified into different cluster images. Pathologists could compare the cluster 

images with H&E images obtained from the same tissue to give the best morphological 

interpretations. This study also demonstrated that SHP was a promising method for 

deparaffinised tissue to classify tissue and identify abnormal cells. 

 

The study by Bird [58] also compared the classification results of paraffined and 

deparaffinised tissues. The paraffin had a very strong contribution at the C-H stretching 

(3000 - 2800 cm−1) and (1490 - 1350 cm−1 ). Therefore, spectral ranges of paraffined 

tissue in data analysis were 1800 - 1496  cm−1and 1350 - 900 cm−1. While the spectral 

range of deparaffinised tissue was 1800 - 900 cm−1. The results showed that for T-

lymphocyte and breast cancer, there were large differences between deparaffinised and 

paraffined spectra, which was caused by the change of secondary structure of the 

protein and hydration of the tissue during the deparaffinisation process. There was a 

better classification result by analysing the paraffined spectral data because spectra of 

deparaffinised tissue were contaminated by dispersive artefacts. There were different 

results between this study and that by Hughes et al.[49], which was caused by different 

infrared operation modes. Transflection was used in this study, while Hughes et al. used 

transmission.  

 

The study by Bird [58] also met the challenge of detecting micro-metastatic cancer cells. 

Because the size of a cancer cell is only ~25 μm and only a few cancer cells are present 

in micro-metastases, to differentiate the cancer cell correctly, it requires the pixel 

resolution of the FTIR microscope to be of the order of only 5-10 μm. In addition, 

chemical structural details of cancers and biological molecules could be understood 

precisely and accurately by combining spectroscopy and Artificial Intelligence (AI)[59]. 

This study was improved by the application of Artificial Neural Nets (ANN), and the 

results demonstrated that ANN could classify spectral data and consume less time than 

HCA[58]. 

 

Maria et al. compared the spectral difference of Non-malignant (MCF10A), malignant 
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non-metastatic MCF7 and metastatic  MDA breast cell lines[51]. For MCF7 cell line, 

there were a blue shift of amide I and II bands and higher intensity of nucleic acid bands. 

In addition, these three types of cell lines could be separated by the ratiometric analysis 

of peaks' areas. The study indicated FTIR micro-spectroscopy could be a potential 

method to diagnose breast cancer at the cytological level. 

 

Many studies have proven that the SHP could achieve structural classification and 

cancerous detection for breast tissue. In order to be a complementary method for 

clinical application in the future, SHP not only needs to have high accuracy in cancer 

detection but also needs to have high speed and high throughput for detection. 

Compared with the FTIR system, the development of quantum cascade laser (QCL) 

infrared imaging systems means that tissue imaging can be achieved with high speed 

and high throughput [60]. In 2017, using QCL coupled with a machine learning 

approach, Pilling et al. accurately separated the breast tissue microarrays into four 

histological classes and diagnosed malignant from the non-malignant tissue by stroma 

spectra with high sensitivity and specificity[28].  

 

The breast tissue core was composed of epithelium, stroma, blood and necrosis[28]. In 

addition, the mean spectra of each histological class were significantly different. All of 

the tissue cores were separated into training and test set randomly. The same number 

of spectra of each class were used to train the random forest classifier, and the 

acceptance threshold was 0.6. Then the classifier was used to classify all pixels in 

chemical images of the test set. Compared with brightfield images of H&E stained 

tissue cores, the chemical images have a good agreement for each class.  

 

All pixels of the other class in each tissue core was removed by the random forest 

classifier, and the stromal spectra were isolated. The study using fivefold cross-

validation, trained a new classifier to detect malignant and non-malignant stroma. 

According to the result of the ROC curve, there was a good separation between 

malignant and non-malignant stromal spectra. In addition, there was high accuracy 

https://www.sciencedirect.com/topics/physics-and-astronomy/ratiometric
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regarding the differentiation of non-malignant and malignant stroma using the 

acceptance threshold of 0.6. Moreover, the cancerous sample could be detected 

according to the proportion of the malignant stroma, which is commonly close to 1. 

This study indicated that stroma is a good indicator of breast cancer [28]. 

 

In the study by Pilling[28], the spectra were obtained by a QCL coupled with an FPA 

detector. However, due to the coherence effect between the sample and coherent light, 

the signal to noise ratio of the spectra was poor. Although the single point acquisition 

could reduce the interference effect and improve the spectral quality, it could reduce 

the throughput and detection speed. Compared with the clinical classification results, 

the coherence effects only had minimal impact on classification accuracy. In addition, 

this study indicated that FPA-based QCL imaging using the continuous frequency 

spectra had high accuracy in differentiating malignant and non-malignant stroma, and 

it also proved that it could be viable to use discrete frequency spectra for cancer 

diagnosis, which would improve the throughput and detection speed [28].  

 

2.2.3 Application in other cancer Detection 

The SHP is also applied to other types of cancer diagnosis in recent years, such as lung 

cancer[29], [30], [61], colon cancer[19], [20], [31], [32], renal tumours [33] and brain 

cancer[62].  

 

There are also some developments in lung cancer detection. CT, chest radiography (X-

ray), sputum cytology, and MRI scan are the main clinical techniques for the diagnosis 

of lung cancer[6]. Lung cancer is divided into small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC). The major types of NSCLC are adenocarcinoma 

(ADC) and squamous cell carcinoma (SqCC) [61]. There are also some different 

subtypes for ADC, such as lepidic, acinar, papillary, micropapillary and solid 

predominant ADC[63]. Because of the different prognoses of the subtypes, 

discrimination of subtypes is very important in lung cancer detection. However, it is the 
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main challenge for pathologists due to the histological heterogeneity in the 

subtypes[29]. Therefore, finding a complementary method to improve the detection 

accuracy is necessary.  

 

SHP has been applied to lung cancer diagnosis in many studies. Mu et al. [30] used 

different multivariate statistical methods to process the infrared spectral dataset, which 

composes of 3880 samples from 374 patients. The results showed that there was 95% 

accuracy in distinct normal, necrotic and cancerous tissue, while 90% accuracy in 

classifying SCLC, SqCC and ADC. The study reported by Groberueschkamp et al. [29] 

using FTIR image analysed using a random forest classifier not only achieved the lung 

cancer classification but also, for the first time, identified subtypes of ADC in the 

marker-free fresh-frozen tissue slides.  

 

The sputum spectra could also be biomarkers for detecting lung cancer with high 

accuracy. Paul et al. collected the spectra of sputum from 1800 – 950 cm⁻¹. The spectral 

difference between cancer and normal sputum may be from changes in protein, nucleic 

acid and glycogen levels in tumours, and the peaks at 964 cm⁻¹, 1024 cm⁻¹, 1411 cm⁻¹, 

1577 cm⁻¹and 1656 cm⁻¹[64].  

 

Many types of research about different kinds of cancer use the infrared technique. 

Bergner et al. collected FTIR imaging from 22 brain metastasis tissue sections with 

H&E stained. The correct classification rates by support vector machines (SVMs) for 

brain tissue, necrosis and carcinoma are 98.8%, 98.4% and 94.4%, respectively [47]. In 

2013, Uckermann et al. discriminated the FTIR spectral difference between 

glioblastoma cells with high and low content of CD133 (cluster of differentiation 133)-

positive cells by unsupervised cluster analysis [65]. A method for automatically 

identifying colon tissue types and areas of colon adenocarcinoma was explored by 

Kallenbach et al. in 2013 [32]. Ukkonen et al. used FTIR imaging to study the 

relationship between cancer progression and the tumour microenvironment (TME) of 

invading melanoma and oral carcinoma cells[66]. Wald et al. identified the main cell 
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types in melanoma cancer with high accuracy (above 90%) by FTIR imaging combined 

with a supervised partial least squares discriminant analysis (PLS-DA) model [67].  

 

2.2.4 Application in Cancer Detection on Glass Substrate  

Many studies have proven that the SHP is a promising method to detect cancer. Further 

work is exploring the most suitable protocol and achieving clinical application. The 

substrate of most SHP studies using transmission mode operation is an infrared 

transparent substrate, such as calcium fluoride ( CaF2 ) or barium fluoride ( BaF2) [7]. 

However, these transmission substrates are expensive and fragile, which could 

contribute to high costs and make them unsuitable for use in automated tissue 

preparation equipment [68]. Manual tissue preparation would lead to reduced 

throughput and detection speed and eliminate many advantages of the SHP. Thus, to 

achieve the clinical application of infrared SHP and become a complementary 

diagnostic tool, a major step is making infrared chemical imaging fit into a current 

cancer diagnosis workflow. Currently, tissue biopsy and analysis by a pathologist is the 

gold standard of cancer detection. Glass substrates are used for tissue biopsy because 

they are cheap and robust. However, the vital drawback of glass is its opacity in most 

of the useful mid-infrared spectral regions.  

 

In 1998, a study researched by Anthony Shaw [69] demonstrated that it was possible to 

carry out clinical analyses and diagnostic spectral classification using the glass substrate 

in spite of limited transparency in the mid-IR region. However, the samples in this study 

were dried serum, amniotic fluid and synovial fluid films rather than tissue specimens 

and tissue microarrays. In addition, the study was for the determination of fetal lung 

maturity and differential diagnosis of arthritis rather than cancer detection. The results 

showed that there were enough features to diagnose different kinds of arthritis only 

using the absorption above 2000 cm−1. The analytical and diagnostic accuracy of the 

IR spectral classification method was similar for films dried on a glass slide and  CaF2  

slides. Although this research was not used for cancer detection, it gave a general idea 
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for the IR spectral classification method using a glass slide to achieve the clinical 

application of disease diagnosis. 

 

In recent years, the results of several studies also indicate that it is possible to achieve 

infrared SHP for cancer diagnosis using glass slides. In 2014, Bassan et al. [70] 

classified each breast tissue core into four basic cell type classes only by the high 

wavenumber transmission window (2500-3800 cm−1) of glass substrates. Moreover, 

differentiating malignant and non-malignant tissue cores only based on the epithelium 

cell had a reasonable accuracy. In order to reduce the spectral distortion and prevent 

chemical alteration caused by the reagent, tissue cores used in this study still remained 

embedded in the paraffin. Because of the appearance of paraffin, the wavenumber 

region 2700-3000 cm−1 was truncated, and the infrared region used in this study was 

3000-3700cm−1. According to the mean spectra of the four different classes (epithelium, 

stroma, blood and necrosis), there was a difference in peak position, peak width and 

intensity of the shoulder. By using the training set database extracted from two breast 

tissue cores, four features were used to discriminate between different classes, which 

included the ratio of absorbances: 3380:3400 cm−1 , 3520:3530  cm−1 , 3350:3390 

cm−1 and area under spectral region from 3109 to 3580 cm−1. Then, a random forest 

classifier could be constructed using the above four features. The test set was consisted 

of the remaining 69 cores and using a probability acceptance threshold of 0.95, the 

spectra in the test set were classified with high accuracy [70]. 

 

To investigate the viable ability of breast cancer detection only using high wavenumber 

region, all of the epithelial spectra conducted a new database and the discriminatory 

features used to differentiate malignant and non-malignant epithelium were the ratio of 

absorbance: 3160:3170 cm−1 , 3190:3220 cm−1 , , 3200:3220 cm−1 , 3110:3220 

cm−1and 3120:3460 cm−1. Then according to the visualised result processed by PCA, 

it was able to separate the malignant from non-malignant epithelial breast tissue cores 

by using the ratio of absorbance: 3160:3170 cm−1 and 3190:3220 cm−1[70]. However, 
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this limitation lacked specific accuracy for differentiating malignant and non-malignant 

tissue.  

Bussan's study [70] proved that the SHP on glass substrates was a viable method for 

breast cancer discrimination. However, the sample in his research was unstained tissue, 

which was still different from the samples used in clinical biopsy analysis. It will not 

fit into the standard pathologist workflow. Therefore, Pilling et al. [68] carried out a 

study in 2017 using haematoxylin and eosin (H&E) stained prostate tissue microarrays 

on a glass slide. The results demonstrated that by using H&E stained samples, rapid 

automated spectral histology could be achieved with high classification accuracy. 

Furthermore, the different degrees of staining does not affect the classification accuracy.  

The samples in Pilling's study were formalin-fixed paraffin-embedded prostate tissue. 

Before being stained, the samples need to be dewaxed by xylene and rehydrated by 

graded ethanol [68]. This deparaffinised processing would alter tissue chemical 

composition and change the spectra. The results from a study by Pijanka et al. [71] 

showed that the H&E stain process could lead to the appearance of a new peak at 1387 

cm−1 and disappearance of some lipid peaks at 2850 cm−1 and 2920 cm−1. However, 

comparing the chemical image of prostate tissue at 3298  cm−1  (Amide A) and 

brightfield visible image, there was great agreement in morphology [68]. The tissue 

core was still separated into epithelium, stroma, blood and secretion. According to the 

mean spectra of each histological class, there was a distinct difference in the Amide A 

band. Therefore, it was possible to discriminate different histological classes by the 

amide A band [68]. The study using the random forest classifier quickly achieved the 

automated histological classification with high accuracy. Every class was denoted by a 

different colour, producing a false colour image, which had an excellent agreement with 

the visible brightfield image.  

The high agreement of the false colour image indicated that the infrared chemical image 

could classify the histological classes correctly using the H&E stained prostate tissue 

on glass. However, the staining process was still a variable factor. The different tissue 
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cores could possibly have different degrees of stain. Nine serial sections of benign 

prostatic hyperplasia (BPH) with different immersion times were used in this study to 

explore the influence of different degrees of stain on histological classification [68]. 

The different degrees of H&E stain tissues were used as training and test sets, and the 

correct classification results indicated that the different degrees of stain had no effect 

on the classification accuracy.  

The main purpose of the research is to achieve cancer detection by SHP. Because 

epithelium and stroma are the main constituents of prostate cancer tissue in Pilling's 

study [68], each H&E stained sample was identified into four classes: normal 

epithelium, malignant epithelium, normal stroma and malignant stroma. A new random 

forest classifier was constructed by training and validation sets and then used to classify 

the test set with high accuracy for each class (above 95%). The cancerous tissue cores 

were detected according to the high malignant epithelium and stroma percentage.  

Besides the accuracy of the histological classification, the high throughput is also 

essential. The study consumed 51.5 hours of measurement time for 182 cores [68]. In 

order to further improve the translation speed, further study needs to optimise spectral 

collection parameters and find the trade-off between spectral quality and throughput. 

Further work is required to validate the SHP as a reliable method for cancer diagnosis 

by detecting a large number of samples from more independent patients and also 

carrying out studies on different cancer types. The final target is to achieve the SHP 

clinical application for cancer detection.    

Similarly, Tang et al. used FTIR images of H&E stained tissue on glass slides to do 

breast cancer prediction[72]. There were 120 breast tissue biopsy cores from different 

patients. The cancerous core could be classified with high accuracy (95.8%) by 

AdaBoost algorithm classification, which has been proven to be more robust than 

random forest [73]. In addition, the classification threshold is optimised to reduce the 

false-negative rate of cancer diagnosis, and the best threshold is 0.1.  
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Both Pilling and Tang's studies achieved cancer detection on the histopathology glass 

slide (thickness is 1mm), which would lead to the absorption of the mid-IR spectrum 

in the fingerprint region. Rutter et al. found that spectral data from the fingerprint region 

could be obtained if the tissue was mounted on a thinner glass slide, such as a coverslip 

(thickness is around 0.12–0.17 mm) [74]. Three types of cell lines ( peripheral blood 

mononuclear cells, a leukaemia cell line and a lung cancer cell line) mounted on glass 

coverslips could be separated by PCA. In 2020, Rutter et al. studied the previous three 

types of cell lines and lymph node tissue mounted on four different types of glass 

coverslips [75]. They found all types of coverslip could provide spectra from 1800 cm⁻¹ 

to 1550 cm⁻¹. But one type of coverslip has the better spectral quality and the spectral 

range could be down to 1350 cm⁻¹. PCA could achieve the separation between different 

cell lines based on the spectra in the lipid region and fingerprint region.  

 

For the histopathology glass slide (thickness is 1mm), to obtain the spectra in the 

fingerprint region, Optical Photothermal Infrared Microspectroscopy (O-PTIR) could 

be used instead of the FTIR imaging system. O-PTIR could get high-quality spectra 

from the lipid region (3000-2700 cm⁻¹) and fingerprint region (1770-950 cm⁻¹). Kansiz 

et al. used O-PTIR and achieved the separation between lung cancer cells and non-

malignant lung cells mounted on glass slides, and the classification accuracy ranged 

from 96% to 99% [76]. 

 

Infrared spectroscopy could be a diagnostic and prognostic tool and be applied in the 

clinical system. However, many challenges still need to be overcome[77]. For 

spectroscopic histopathology, although the measurement is carried by an FTIR 

microscope with FPA detector, it still needs several hours to get the spectra from a large 

tissue or TMA. Some studies have suggested only measuring some spectral biomarkers 

rather than the whole spectral range[47][78]. Data processing and analysis is a critical 

stage after collecting spectral data. Many appropriate data analysis strategies and 

typical algorithms are used to solve clinical and biological research questions. The data 
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analysis approach includes exploratory data analysis, classification of samples, 

quantitative analysis and explanatory analysis[77]. Hence, finding a suitable method is 

critical for the data analysis phase. Although many challenges in the clinical translation 

of vibrational spectroscopy, it is still a significant technique for developing disease 

diagnosis and prognosis. 
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3.1 The principle of vibrational spectroscopy  

3.1.1 Molecular spectrum 

Molecules consist of atoms joined by chemical bonds. They possess quantised energy 

and can be separated into electronic, vibrational and rotational energy levels. Electronic 

energy is caused by the motion of electrons associated with an atom. Vibrational energy 

is caused by the periodic displacement of atoms, and rotation energy is because of the 

rotation of the molecule. The relative energy of these levels is shown schematically for 

a diatomic molecule in figure 3.1. As can be seen, each electronic state contains a set 

of vibrational energy levels, and each vibrational level includes a set of rotational levels. 

Therefore, electronic energy is larger than vibration energy and significantly larger than 

rotation energy. 

 

 

Figure3. 1 The arrangement of energy levels of a diatomic molecule. 
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3.1.2 Infrared spectrum 

Electromagnetic radiation can be divided into radio waves, microwaves, infrared, 

visible light, ultraviolet, X-ray and Gamma-ray regions. The infrared light region is 

located between the visible light region and the microwave light region. Its wavelength 

range is 0.75~1000 µm, and the infrared spectrum is divided into the far-infrared region 

(400-10 cm−1), mid-infrared region (4000-400 cm−1) and near-infrared region (13300 

-4000 cm−1).  

 

Figure 3.1 depicts that the rotation energy of the molecule is less than the vibration 

energy, which is less than electronic energy. The rotational energy level difference is 

relatively small, and rotational transitions can be excited using far-infrared radiation. 

The interval between vibrational energy levels is much larger than that of rotational 

energy levels, and transitions can be excited using mid-infrared radiation. The interval 

between electron energy levels is much larger than that between vibration energy levels, 

so transitions are excited using visible and ultraviolet-visible radiation.   

 

When the natural vibrational frequency of a functional group is consistent with the 

frequency of the infrared light passing through the substance, the molecule can absorb 

the energy of the infrared light, which will lead to a transition from the ground state to 

the excited state [1]. As such, the intensity of the transmitted infrared light at that 

frequency is weakened. A plot of transmitted intensity vs wavelength (or more normally 

wavenumber) represents the infrared spectrum of the sample. In order for absorption to 

occur, however, there must be a change in the vibrational electric dipole moment of the 

molecules. 

 

 

 

    

      

The most fundamental of organic and inorganic materials absorption bands will appear 

in the mid-infrared region for the infrared spectrum. The mid-infrared is also divided 

into functional group region (4000-1300 cm−1 ) and fingerprint region (1800-

400 cm−1). Therefore, the peaks in the functional group region are used to identify the 
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functional groups of material. While in the fingerprint region, there are more complex 

peaks which are widely used in the study of material structure and composition. 

Therefore, it is beneficial for the fingerprint region to find the difference between 

similar compounds. 

 

  

 

 

 

In polyatomic molecules, the number of fundamental vibrations is related to the number 

of atoms and molecular configurations. The motion of all nuclei of molecules composed 

of N atoms requires N ordinary rectangular coordinate systems. The motion of each 

nucleus in rectangular coordinates has three degrees of freedom (X Y Z). Therefore, 3N 

degrees of freedom are required to describe the motion of N atoms. 3 degrees of freedom 

describe translation of the rigid molecule and 3 describe rotation of the rigid molecule. 

The remaining degrees of freedon must therefore describe vibrations. The number of 

correct vibrations of nonlinear molecules composed of N atoms is 3N-6; for linear 

molecules, the number of normal vibrations is 3N-

3.1.3 Molecular Vibration

In diatomic molecules, stretching vibrations occur along the connection between the 

two nuclei. However, in polyatomic molecules, all atoms in the molecule vibrate with 

different amplitudes around their equilibrium positions. Therefore, stretching vibrations 

are stretching between two, three or more atoms. In addition, there are various modes 

of deformation vibration. 

5.  

 

3.1.4 Vibration mode  

Generally, different groups of molecules have different vibrational modes. Even if for 

the same group, there are several different vibration modes. In the mid-infrared spectral 

region, the vibrational modes can be divided into bending vibrations and stretching 

vibrations. The stretching vibration is the reciprocating motion of the atom along the 

key axis and the key length changes during the vibration. The stretching vibration is 
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divided into the symmetrical stretching vibration (υs ) and asymmetrical stretching 

vibration (υas). The bending vibration is the atomic vibration along the perpendicular 

direction of the bond, which is divided into the in-plane bending vibration (δ) and out-

plane bending vibration (γ). Figure 3.2 shows the vibrational modes of a CH₂ group. 

 

                                     
Symmetrical Stretching (υs)           Asymmetrical Stretching (υas)           Rocking,in-plane bending (δ) 

2850 cm⁻¹                                     2925 cm⁻¹                                        720 cm⁻¹ 

 

Scissoring, in-plane bending (δ)       Twisting, out-plane bending (γ)        Wagging, out-plane bending (γ) 

1465 cm⁻¹                                       1350-1150 cm⁻¹                               1300-1200 cm⁻¹ 

 

Figure3. 2 Vibrational mode for a CH₂ group 

3.1.5 The Development of Infrared Spectrometer 

In 1800, Herschel discovered infrared light and in 1905, Cobeltz published infrared 

spectra of 128 inorganic and organic compounds, demonstrating that the different 

functional groups have different infrared absorption. This work leads to the birth of 

infrared spectroscopy, and the appearance of this new analytical technology also leads 

to the development of infrared spectrometers. 
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In 1947, the prism dispersive infrared spectrometer appeared. However, the 

disadvantage is that the spectral resolution is low, and the spectra are slow to record. 

The spectrometer is more sensitively affected by the temperature and humidity of the 

environment.  

 

During the 1960s, with the development of grating engraving and copying, the grating 

dispersive infrared spectrometer appeared. Compared with the prism dispersion 

infrared spectrometer, it has a high resolution, wide measuring range and was affected 

less by environmental conditions.  

 

During the middle of the 1980s, the fourier transforms infrared (FTIR) spectrometer 

emerged with excellent spectral measurement characteristics, including a wide 

measuring range, high precision and resolution. 

 

3.2. FTIR spectroscopy 

3.2.1 The structure of FTIR 

There are three central systems that make up the FTIR: the infrared optical system, the 

computer data processing system and the electronic circuit system. The most important 

part of the FTIR is the optical system, which is used to measure and collect data. It 

consists of an infrared light source, interferometer, sample chamber and detector. 

Computer data processing systems are used to process and store data and control the 

operation of the instrument. 

 

3.2.2 The principle of FTIR 

The interferometer is the core of the optical system. A high-resolution Michelson 
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interferometer is commonly used nowadays. The Michelson interferometer is 

composed of a light source, a fixed mirror, a movable mirror and a beam splitter. Figure 

3.3 shows the schematic diagram of the interferometer. The beam splitter and two 

mirrors are normally at an angle of 45 degrees. At the beam splitter, half of the infrared 

light is transmitted, and the other half light is reflected. The separated transmitted beam 

and reflected beam are reflected by moving and fixed mirrors. Then two reflected 

signals return to the beamsplitter, where they recombine. Half of the recombined beam 

passes back to the source, but the other half is directed to pass through the sample and 

is detected by a detector. The changing position of the moving mirror creates an optical 

path difference between the two beams in the interferometer resulting in constructive 

and destructive interference of the combined beam[41]. The optical path difference 

between two reflected light beams is δ = 2 (OM-OF), in which OM and OF are two 

beams of the optical path.  

 

 

 

Figure3. 3 Schematic diagram of an interferometer 

3.2.3 The Characteristics of FTIR 

As an analytical technique, FTIR has many advantages and has been applied in a wide 

range of fields, including petroleum industry, polymer research, agriculture and food, 

biochemistry and biomedicine, environmental science[2][3]. The basic characteristics 

include [4]: 
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1) High scanning speed to reduce measurement time enabling spectra to be obtained 

in a few seconds. 

2) High sensitivity enables small amounts of samples to be detected. In addition, 

because it can be scanned many times, the signal can be superimposed and the 

signal to noise ratio (SNR) is also improved.  

 

 

  

  

   

 

Besides the above features, FTIR also has a important advantage for biological 

applications [2]: 

The measurement is non-destructive; it does not destroy the structure of the sample. 

However, FTIR also has some limitations for biological application. Water is an 

essential component of the biological sample. And the strong absorption of water in the 

spectrum would disturb the detection of other functional groups

                             

4) High spectral resolution and high measurement accuracy.

5) Wide spectral range. 

6)

3) The sample can be gas, liquid or solid. 

High precision and good reproducibility.

. 

 

3.3 Microscopic imaging 

3.3.1 The introduction of microscopic imaging  

With the continuous development of FTIR, infrared accessories are also constantly 

developing. At present, there are many kinds of infrared accessories, and the most 

important one is the infrared microscope.  

 

The traditional infrared spectrum only gets the average composition and structure of 

the sample, but it cannot reflect the difference in the composition and structure of 

spatially heterogeneous samples. So it is mainly used for the analysis of homogeneous 

samples. However, when it is applied to the biological field, the complex functions of 
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organisms are primarily determined by the spatial structures of the biological 

macromolecules. For example, the functions of cells and tissues are determined by the 

spatial structures of protein, nucleic acid and lipids.  

 

Infrared spectroscopic imaging successfully overcomes the above limitations. It 

combines the infrared spectrometer with the infrared microscope and carries on the 

infrared spectra measurement in a small area that is selected by the microscope[3]. 

Infrared spectroscopic imaging is the collection of spectral information from each point 

in the area of interest enabling the chemical composition to be obtained at each point.[2]. 

 

3.3.2 The development of microscopic imaging 

 

There are three stages in the development of infrared imaging technology. The first 

stage is the development of the single point infrared microscope [5]. It can only provide 

a single point infrared spectrum of the micro region and cannot scan and image the 

whole sample area.  

 

During the 1980s, single point mapping was developed. By automatic moving of the 

microscope stage, the sample's spectra can be measured point by point. All spectra can 

form a large grid, which can be combined together to create a single chemical image 

[6]. This instrument uses a single element detector and scans the sample point by point, 

which requires a long time to collect data. 

 

The third revolution for infrared chemical imaging is the development of infrared 

detector technology. The linear array and the focal plane array (FPA) detector are now 

widely used [5]. This new method of infrared spectroscopic imaging consists of an 

FTIR, an infrared microscope and an array detector. The spectra of a large area of 

sample can be obtained simultaneously without moving the microscope stage. A large 

number of spectra can directly form chemical imaging. The new method can 
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significantly reduce the time of data collection.   

 

There are two different types of array detectors. One is the linear array detector. A row 

of detector elements is distributed in a straight line, and the row of spectra can be 

measured simultaneously. An image is obtained by translating the sample under the 

array to form a two-dimensional image. The other type of detector is FPA. It has been 

widely used in the research field in recent years. The detector elements are distributed 

in a square array, such as 64×64  and 128×128. The FPA technology can significantly 

reduce the data collection time because a large number of spectra can be analysed at the 

same time [5]. For example, 128×128 FPA enable simultaneous acquisition of 16384 

spectra.  

 

3.3.3 Sampling mode for Infrared spectroscopy  

In order to get the chemical imaging of the sample, there are several different modes of 

operation. And the most common modes are transmission, transflection and attenuated 

total reflection (ATR) [5]. And each mode has convenience and challenges for different 

kinds of samples. Therefore, it is very important for sample measurement to select a 

suitable sampling mode.  

 

3.3.3.1 Transmission  

The transmission mode is the primary method to measure samples, which can provide 

the best SNR and high spatial resolution [5]. It is suitable for the sample with good 

transmittance and thin thickness, such as thin biological specimens with less than 20 

μm.  

 

The transmission mode principle is that the infrared light passes the sample with the 

substrate, the sample absorbs some light, and the transmitted light is measured by the 
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detector. Substrates suitable for  transmission mode are infrared transparent slides and 

commonly CaF2 and BaF2.  

 

A significant limitation of the transmission mode is that since the infrared has to pass 

through the sample, and most biological samples are strong absorbers, the sample but 

be very thin. Ideally, the sample to be of a thickness that will give a good signal to noise 

ratio but not too thick such that absorption deviates from Beer-Lambert behaviour[7]. 

In addition, the substrate itself  is a barrier for mass clinical application because of the 

high price and fragility of the CaF2 and BaF2 slides [8]. The fragility of the slide leads 

to them being unsuitable for handling in automated sample preparation equipment.  

 

3.3.3.2 Transflection 

In transflection mode, the infrared light passes through the sample and then is reflected 

by the reflective layer surface of the substrate. The reflected infrared light goes through 

the sample a second time and then is measured by an infrared detector [5]. 

 

The substrate and sample thickness are two critical factors for the transflection mode. 

The substrate should have an infrared reflecting surface, which is commonly a glass 

slide with IR-reflecting coating. The infrared reflective coating can be a highly 

reflecting metal layer such as silver or gold, but for biological samples a low-emissivity 

(Low-E) material is used, which is also transparent in the visible region allowing the 

sample to be viewed under a standard optical microscope. The commonly used coating 

is a tin oxide film with a buried silver layer [5][9]. Compared with transmission mode 

substrates, infrared reflecting substrates are cheaper and more robust. In addition, the 

spectra for the transflection mode has higher SNR because the infrared light passes 

twice through the sample. Therefore, the sample thickness for transflection mode can 

be ~1–4μm, whereas for transmission mode, it needs to be ~2–8μm [7].  
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In recent years, some doubt has been cast on the application of transflection mode for 

applications involving biomedical studies. This is due to the electric field standing wave 

(EFSW) effect [5][9][13]. Great care has to be taken with data analysis due to scattering 

effects (such as Mie scattering) and spectral standing wave artefacts with IR-reflective 

substrates when the thickness of samples is less than 2μm [7] 

 

The EFSW effect could lead to spectral distortions which are wavelength 

dependant[10]–[12], [14]. There are many studies to find a method to reduce the effect 

of EFSW to reduce spectral distortion[15]. EFSW is affected by the range of incidence 

angles, the degree of coherence of the incident light and the sample thickness[16]. The 

influence of these distortions can be eliminated by the sufficient thickness of the sample 

(~5µm)[16].   

 

Mie scattering in reflection mode is more intense than in transmission mode and would 

lead to the sloping of baselines [7]. There are two methods to reduce the effect, which 

are termed 'physics based' and 'model based', respectively. The 'physics based' method 

uses the optical image–formation from the first principles modelling to do the data 

correction. The 'model based' method uses a model to explain all sample effects. Spectra 

could be the correction by including extended multiplicative scattering correction 

(EMSC), resonant Mie scattering correction (RMieSC) and rubber band baseline 

correction [7] [13]. 

 

3.4 Data analysis method  

MATLAB achieves all data processing in this project. The principal theory for data 

analysis is the machine learning algorithm, and this section describes the common 

learning machine algorithm methods which are used for the SHP.  
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3.4.1 Machine learning Algorithm 

Machine learning refers to the computer science in which computers use the experience 

to "learn" and improve the system's performance. In short, machine learning refers to 

the acquisition of new experience and knowledge through computer learning the 

inherent regular information in the data.  

 

Machine learning is divided into unsupervised and supervised classification algorithms. 

The major unsupervised classification algorithm includes principal component analysis 

(PCA) and hierarchical cluster analysis (HCA). In comparison, the main supervised 

classification algorithm involves linear discriminant analysis (LDA), Random Forest, 

support vector machines (SVM) and Artificial Neural Network (ANN) [17]. Typical 

machine learning training is mainly divided into the following processes: 

1) The acquisition of data sets. In this thesis, the data are the information from all 

spectra by FTIR.  

2) Data regularisation. The information in the collected data set is very complex, 

including a large number of redundant features. Therefore, data pre-processing is 

carried out.  

3) Define the training set. After standardising the sample data, data sets are divided into 

a training set, validation set and test set. The training set is used to establish the model. 

The validation set tests the model structure and complexity and enhances the model's 

classification precision. The test set is used to test the performance of an algorithm and 

evaluate the accuracy of the model[18]. In cancer detection research, the pixels of the 

chemical image in training sets are identified by corresponding areas of histological 

classes using the conventional cancer diagnosis approach.  

4) Selection of classification algorithms. According to previous SHP research[8][19], 

the major classification algorithm is random forest based on decision trees.   

5) Classifier training. All of the samples are trained by a classification algorithm. In 

work related to cancer detection, the sample used for classifier training should contain 

the same number of spectra for different histological classes [3].   
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6) Performance evaluation of classifier. The ability of the classifier is evaluated by error 

and accuracy. 

 

3.4.2 data pre-processing  

In order to obtain optimum classification results, it is very important for collected 

spectra to carry out data pre-processing, which involves quality testing, noise reduction, 

vector normalisation and derivatisation [20].  

 

Quality testing is used to remove the spectra obtained from areas that are without any 

tissue or have high levels of scattering, thus retaining the just useful diagnosis 

information region. Noise reduction based on PCA is applied to improve the SNR. 

Usually, the spectra are decomposed into principal components (PCs), and only the first 

40 PCs are retained. Vector normalisation is used to eliminate the variation of the band 

intensity, which is caused by the different thicknesses of tissue [20].  

 

3.4.3 PCA 

A large number of variables and the inter-correlation between variables always lead to 

a practical problem that is complicated to solve. Therefore, the complexity of the 

problem can be simplified by substituting a few representative variables for the many 

previous variables. These new variables are independent of each other and represent the 

majority of the information of the original variables[21]. PCA is a statistical analysis 

method that replaces original variables with a few new independent variables, and the 

small number of new variables can reflect the maximum extent of the original data 

information. The new uncorrelated variables are called principal components (PC) [21]. 

 

In other words, PCA can reduce the dimensionality and overcome the fact that a single 

index cannot reflect the previous data information. Although a large number of 
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variables can reflect enough original information, it is easy to cause information 

redundancy. As a dimensionality reduction algorithm, PCA can significantly improve 

the learning speed of unsupervised classification algorithms.  

 

In general, PCA is often used to pre-process data, eliminate noise, eliminate the 

correlation between variables, reduce the dimension of data, reduce the amount of 

calculation and improve the machine learning speed [20]. When PCA is applied to FTIR 

microscopic imaging data, the information contained in thousands of infrared spectra 

can be compressed into a small number of PCs. Generally, only the first few PCs are 

related to the chemical composition in the infrared microscopic image. The rest of the 

PCs are mainly attributable to noise. 

 

The loading and score of the PCs can be obtained by PCA [22]. The characteristic peak 

position and peak shape in the loading diagram are similar to that in the original 

spectrum. Therefore, a loading diagram can be regarded as an abstract spectrum. The 

positive and negative in the loading diagram can indicate the change of the substance 

contained in the corresponding position. The score displays the proportion of spectral 

changes by each PC.  

 

3.4.4 Random Forest  

The random forest is essentially a set of decision trees. It is necessary to have a 

certain understanding of the decision tree. 

 

3.4.4.1 Decision Tree  

The decision tree is supervised classification learning and a kind of prediction model. 

It is called a decision tree because of its tree structure. The path from the root to the leaf 

represents classification rules. Each internal node represents a test in characteristic 
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attribute, each branch is the outcome of the test, and the end leaf node represents a 

prediction result, which is a class label [23]. The decision tree model can be used to 

analyse the data and also be used for prediction. There are some advantages for the 

decision trees:  

1. Decision tree is easy to understand and implement and directly reflects the data's 

characteristics. 

2. This classification algorithm is able to handle both data and regular attributes. 

3. It is easy to evaluate the model by static test.  

 

However, when the data is complex and noisy, the decision tree may over-divide the 

sample space in the classification process and conduct a too complex final decision tree, 

which leads to the over-fitting problem [23].  

 

3.4.4.2 Random Forest 

Random forest is an extension of the decision tree. "Forests" consists of many "trees". 

The final classification result is based on the proportion of trees voting [24]. In order to 

reduce error and improve reliability, every tree in the random forest relies on a set of 

random vectors, and each set of vectors is independently and uniformly distributed. 

Therefore, the decision trees in the forest should be randomly selected using completely 

different training data and different characteristics. 

 

The construction of random forest has the following steps: 

(1) Establishment of a sample training set 

Training samples are selected in the original training set using the Bootstrap method 

[25], and each group of the training sample is used to train a decision tree. For example, 

in order to construct a random forest formed by K decision trees, K groups of training 

samples need to be selected. 

(2) Training every decision tree 

For a single decision tree corresponding to each group of training samples, if the total 

number of characteristics in the training samples is M, in which S characteristics are 
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randomly extracted ( S ≤ M ), a single decision tree would be trained using S 

characteristics.  

(3) Building a random forest 

The samples of the test set are classified by several trained decision trees, and the final 

classification result is based on the proportion of decision trees voting. 

 

Random forest is an integrated learning method based on Bagging [26]. The random 

forest has a better classification effect than a single decision tree, which makes this 

method widely used. Random forests have the following advantages [26]: 

a) It can significantly reduce the possibility of overfitting; 

b) It can be adapted to data with partially missing values. 

c) It has good resistance to data noise. 

d) The efficiency of the algorithm is high because it can train each tree in parallel. 

 

3.4.4.3 Classifier performance evaluation  

Classification accuracy is often used to evaluate the performance of a classifier, but for 

training a set with an unbalanced data number of each class, classification accuracy is 

unreliable to judge the classifier's performance. Therefore, some other evaluation 

indicators based on the confusion matrix are widely used to evaluate classifier 

performance[8]. The confusion matrix (Table 3.1) is used in supervised classification 

algorithms and indicates the accuracy of the prediction of every class. 
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Table3. 1 Confusion matrix 

 Real Positive (P) Real Negative (N) 

Predict Positive True positive (TP) False positive (FP) 

Predict Negative False negative (FN) True negative (TN) 

 

According to the above indices in the confusion matrix, some evaluation indicators are 

applied: 

1)  Accuracy =
TP+TN

TP+FP+TN+FN
                                                                                 (3-1) 

2) ROC curves  

The receiver operating characteristic (ROC) curve has been widely used in the fields 

of biology and medical imaging. In recent years, ROC curves have been applied to 

machine learning. The performance of the algorithms is evaluated and compared by 

the ROC curve. The true positive rate is taken as the y-axis and the false positive 

rate as the x-axis. By setting a series of different thresholds for a classifier, many 

different values of true positive rate and false positive rate can be obtained, which 

are used to produce the ROC curve [27].  

 

True positive rate =
positive correctly classified

total positive 
=

TP

P
                        (3-2) 

False positive rate =
negatives incorrectly classified 

total negatives
=

FP

N
                                          (3-3) 

Sensitivity =
TP

P
                                                                                                                     (3-4) 

Specificity
TN

FP+TN
= 1 −

FP

N
                                                                                                  (3-5) 

3) AUC 

When comparing different classifiers, ROC curves for each classifier need to be 

drawn. The area under the curve (AUC) is the area under the ROC curve, which can 

quantitatively compare different classifiers. The larger the AUC value, the better 

the classification performance [27].  

 

3.4.5 Matlab 

Because thousands of spectra are in one infrared image, and many images are required 
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to achieve cancer diagnosis using SHP. A large amount of data needs to be processed 

using suitable algorithms and software. Matlab is one of the most widely used scientific 

computing software and has been used for the analysis in this thesis.  

 

Compared with other computer languages, it has a simple grammar structure, high 

speed and efficiency of mathematical computation and a friendly and brief human-

machine interface. In the aspect of image processing, Matlab has abundant functions 

and a toolbox, which can efficiently complete the geometric and module operation of 

images and can carry out the free transformation of images [28].  

 

3.5  Experimental design 

The key objective of the project is to study the influence of glass type on cancer 

detection by SHP. Three main studies make up the whole project. The first study is to 

compare the spectral difference on the different blank glass slides. The second study is 

to study the impact of different glass slides on tissue classification. And the last study 

is to research the influence of different glass slides on cancer detection. The results of 

these three studies are displayed in chapter 4, chapter 6 and chapter 7, respectively. All 

experimental design details of these three studies are shown in the following sections. 

 

3.5.1 Study 1:Spectral comparison on different blank glass slides 

Glass slides have strong absorption in the infrared region, and the exact nature of this 

absorption could affect the spectrum of tissue samples. There are many kinds of glass 

sides used in clinical practices. It is possible that the different kinds of glass slides have 

different absorption spectra. Therefore, it is essential to study whether the different 

types of glass slides could affect the infrared spectra and then affect the results of cancer 

detection.  
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This study investigates the effect of the different kinds of glass slides on infrared spectra. 

12 different types of glass slides are used in the experiment. And the spectra of the 

different types of blank glass slides will be compared. 

 

3.5.1.1 Sample preparation   

There are 12 different kinds of glass slides in the whole project. The details of these 12 

glass slides are shown in table 3.2, and in order to easily comparison and description, 

each glass slide is labelled with a letter, such as A, B, C…, L.  

 

The slides with a charged surface are most suitable for histopathology because the 

charged surface enables the tissue to adhere to slides. While the non-charged glass 

slides need to be coated or charged before the clinical application. Therefore, according 

to the charge of the interface, the glass slide can be divided into charged and non-

charged glass slides. The charged glass slides include D, E, F, G, J, K, L, and the non-

charged glass slides include A, B, C, H, I.   
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Table3. 2 The information of 12 glass slide 

Label Brand Glass quality Edge Dimensions Thickness 

A Fisherbran

d 

Washed and polished 

 plain glass 

ground edges 90° 26 x 76 mm 1~1.2mm 

B Academy Pre-washed clear glass  ground edges 45° 26 x 76 mm 1~1.2mm 

C VWR 

Internation

al  

Clear white glass  Cut edges 26 x 76 mm 1mm 

D O.Kindler  

SuperFrost 

Extra white soda lime  

silicate glass with very 

 low iron content 

ground edges 45° 26 x 76 mm 1mm 

E Citoglas Extra white glass  

Single frosted 

ground edges 45° 25 x 75 mm 1~1.2mm 

F Citoglas Float glass 

Single frosted 

ground edges 45° 25 x 75 mm 1~1.2mm 

G Citoglas Standard glass 

Single frosted 

ground edges 45° 25 x 75 mm 1~1.2mm 

H  Sail brand Clear glass frosted ground edges 25 x 76 mm 1~1.2mm 

I  Sail brand Clear glass  ground edges 25 x 76 mm 1~1.2mm 

J Marienfeld 

HistoBond 

Made of soda-lime  

glass of 3rd hydrolytic class 

ground edges 26 x 76 mm 1±0.05mm 

K Marienfeld 

HistoBond

+ 

Frosted soda-lime glass  

of 3rd hydrolytic class 

Adhesive surface 

ground edges 26 x 76 mm 1±0.05mm 

L Marienfeld 

HistoBond

+s 

Frosted soda-lime glass  

of 3rd hydrolytic class 

Adhesive surface 

(plus higher intensity of 

positive charge) 

ground edges 26 x 76 mm 1±0.05mm 

 

3.5.1.2 Instrument system  

Infrared chemical images were collected by a Varian 620 FTIR imaging microscope 

coupled to a 128 × 128 FPA mercury cadmium telluride (MCT) detector with Cary 670 

bench. The detector was required to be cooled using liquid nitrogen every 3 hours. 

Chemical imaging was collected in transmission mode. The infrared microscope used 

×15 Cassegrain optics, and the pixel size was 5.5μm with a resultant field of view of 

704 × 704 μm. The spectral range was from 900 to 3800 cm−1and the resolution was 5 

cm−1. Because the 5 cm−1 resolution for tissue work could obtain good-quality spectra 

fastly.  

 

 The chemical images of glass slides were obtained at the same temperature and 

humidity to eliminate environmental interference factors. Especially the humidity of 
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the air was an important factor because of the strong infrared absorption of water vapour. 

Therefore, the dry air is continually purged into a sealed purge box to control the 

environmental humidity to reduce to zero during the measurement. Figure 3.4 shows 

the instrument in Gardner lab. 

 

 

Figure3. 4 The instrument system for measurement in Gardner lab 

3.5.1.3 Setting of measurement  

12 glass slides are selected as samples, and the air is chosen as the background to obtain 

the images of blank glass slides. Co-addition scans of infrared spectra for the 

background and sample are128 and 16, respectively. Every glass slide is randomly 

selected in three different positions and collected three images at these places. Every 

image contains 16384 spectra. Therefore, every glass slide has 49152 spectra and takes 

approximately 15 min to collect. 
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3.5.1.4 Data processing 

All data are pre-processed using Matlab 2017a and CHIToolbox. Infrared images from 

each glass slide are stitched together by Matlab to form a single data cube (3 ×16384 

×  1506). Every type of glass slide consists of 49152 individual spectra with 1506 

wavenumber data points.  

 

Data pre-processing is a crucial step, and it usually includes quality testing, noise 

reduction and vector normalisation. All of these steps are used for tissue samples. 

However, there is no tissue sample on the glass slides, and all spectra of chemical 

images are from the blank glass. Therefore, the quality test of spectra is unnecessary 

for this study. In addition, based on the information of the 12 glass slides, the thickness 

of each glass slide may be different. Thus, vector normalisation is required and also 

achieved by CHIToolbox. To compare the spectra of 12 glass slides, the mean spectra 

of every glass slide are very important.  

 

PCA is a vital data process to get a valid figure to indicate the influence of glass types 

on the infrared spectra. There are too many spectra of every glass slide (49152 spectra). 

Every glass slide randomly selected 200 spectra to do the PCA to get a better result for 

presentation. The loading and score are plotted, and the relationship between the 

different types of glass can be analysed.  

 

All glass slides could be divided into charged and non-charged based on the charge of 

the surface. PCA between the charged and non-charged glass slides is done to find the 

effect of charge on infrared spectra. Every type of glass slide is randomly selected for 

200 spectra. And then, all of the selected spectra are divided into charged and non-

charged groups.  

 



86 

 

3.5.2 Study 2:The tissue classification on different glass slides 

3.5.2.1 Sample preparation  

The 12 glass slides used in this study are consistent with the first study (section 3.5.1), 

and the information of these glass slides is shown in table 3.2. The purpose of this study 

is to determine whether glass types could affect tissue classification. The prostate tissue 

used in this study is from a patient with benign prostatic hyperplasia (BPH). Figure 3.5 

shows that a series of adjacent tissue sections are mounted on the 12 glass slides and 

stained with Haematoxylin and Eosin (H&E). To reduce the difference of every tissue 

section on 12 glass slides, the thickness of every tissue section is only 4µm. In order to 

fix and protect the tissue sections, all of them are fixed by mounting media and 

coverslips.  

 

Figure3. 5 A series of prostate tissue sections from the same BPH patient are mounted on 12 different 

types of glass slides. 
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3.5.2.2 Instrumentation & experiment procedure 

The composition of the whole instrument system and the primary instrumental setting 

have been shown in section 3.5.1.2. The specific procedures for this study are shown in 

this section.  

 

Two regions (region 1 & region 2) are selected for 12 tissue slides to obtain enough 

spectra, which is shown in figure 3.6. For the 12 glass slides, the two regions should be 

located on the tissue section at the same place. Tissue sections in region 1 are imaged 

as a 2 × 2 mosaic and in region 2 are imaged as a 4 × 2 mosaic. All of the spectra are 

collected in transmission mode, and the spectral range is from 900 to 3800 cm−1. The 

resolution of infrared spectra is 5cm−1  and co-addition scans for background and 

sample are 96 and 96, respectively. In general, the collection time for region 1 and 

region 2 are 20 min and 40 min, respectively. 

 

Figure3. 6 Brightfield image of the whole tissue on glass A. The area used for measurement is marked in 

squares, and region 1 in the red square and region 2 in the yellow square. 

 

3.5.2.3 Two experimental methods  

There are two different experimental methods, and finding the best method to achieve 

automated histological classification is significant. The comparison between the two 

 704μm
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experiments is shown in table 3.3. The background in experiment 1 is measured from a 

clean area of the tissue glass slide, while the background in experiment 2 is the same 

type of blank glass slide. According to table 3.3, the final spectral information of both 

experiment 1 and 2 have tissue information and are affected by glue and coverslip. 

Therefore, to obtain the pure spectra of tissue and eliminate the influence of glue & 

coverslip, glue removal is necessary.  

 

Table3. 3 Comparison between two methods of measurement. 

 Background Scan Sample scan Spectra information  

Experiment 1 Glass  

+ coverslip + glue 

Tissue + coverslip  

+ glass + less glue 

Tissue ± some glue 

Experiment 2 Glass  Tissue + coverslip  

+ glass + less glue 

Tissue + coverslip + less glue 

   

3.5.2.4 Annotation & registration  

Because of the large proportion of epithelium and stroma in all histological classes of 

prostate tissue, they are annotated for further histological tissue classification. The 

annotations are done on the H&E brightfield images to keep the identical annotated 

spectra on the chemical images of the two experiments. The different types of tissue are 

annotated with different colours. Green is used to annotate epithelium, and red is used 

to annotate stroma. In addition, the blank and broken tissue areas are annotated in blue 

to eliminate the spectra with bad quality. All of the annotation work is done using GNU 

Image Manipulation Program (GIMP). A Nikon microscope measures the brightfield 

visible images with ×10 optics, and the pixel size of the brightfield image is 0.85μm.  

 

Because the annotations are done on H&E stained images, they still need to correspond 

with the chemical images. The code named "registerto" in Chitoolbox could achieve it 

by selecting some typical points.  
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All spectral data are processed by Matlab, and there are many valid codes to process 

the spectra data in ChiToolbox. Infrared spectra are measured at 1506 points in the 

range of 900 - 3800cm−1. Infrared tiles for region 1 included 2 × 2 mosaics. A data 

cube consists of 65536 individual spectra with 1506 data points each, so a data cube 

contains 256 × 256 ×1506 data. As for region 2, infrared tiles are made of 4 × 2 mosaics. 

The data cube (512 × 256 ×1506) consists of 131072 spectra with 1506 data points. To 

sum up, 12 adjacent tissue sections are mounted on 12 different types of glass, and 

3.5.2.5 Data pre-processing  

196608 spectra per tissue slide are measured.  

 

Data pre-processing is essential to get high-quality spectra for analysis, including 

spectral quality testing, region selection, noise reduction and vector normalisation [20]. 

 

Because the spectra of broken tissue would have high levels of scattering, quality 

testing is used to remove the spectra of the area without tissue and the spectra of broken 

tissue. Quality testing in this study is based on the intensity of amide A (3298cm−1). 

The blank area and damaged tissue area are annotated in blue. The highest intensity of 

these spectra at amide A is selected as a threshold. The threshold is the same for all 

tissue slides to ensure the unity of the 12 tissue slides in the subsequent comparison. 

  

Amide A peak (3298 cm−1) and three lipid peaks (2958 cm−1, 2935 cm−1, 2873 cm−1) 

are all the peaks related to the tissue in the glass transparent infrared range. However, 

the mounting media (glue) has a significant impact on the lipid region. Therefore, amide 

A is the only reliable peak related to the tissue, and the spectral region is selected in 

3125-3700 cm−1.  

 

Noise reduction based on PCA is applied to improve the spectral signal to noise (SNR). 

The largest variation in spectral data is generally contributed by chemical information 

rather than noise. Usually, the spectral data are decomposed into principal components 
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(PCs), and only the first 40 PCs are retained. 20 PCs are used for denoising in the project. 

Due to the heterogeneity of tissue and cutting error, the thickness of tissue is not 

uniform, which would lead to the variation of the band intensity. Vector normalisation 

is used to eliminate it. 

3.5.2.6 Data processing   

PCA and random forest are two crucial data process methods. PCA uses a few new 

independent variables to replace the original variables, and the small number of new 

variables can reflect the maximum extent of the original spectral data. This study's PCA 

results show the spectral difference between stroma and epithelium. 200 spectra of 

stroma and epithelium on 12 glass slides are randomly selected, and the PCA is based 

on these random spectra. 

 

The random forest is used to study the effect of glass types on tissue classification. A 

classifier is constructed using the random forest classification algorithm to differentiate 

between stroma and epithelium. Classifier performance evaluation usually depends on 

accuracy. In order to look at whether the glass type would affect tissue classification, 

the classifier model could be built by the spectra from one glass slide, and the model 

could be tested by the tissue spectra from the other glass slides. 

 

3.5.3 Study 3:The cancer detection on different glass slides 

3.5.3.1 Sample preparation 

There are 12 different brands of glass slides in the previous two studys, but only glass 

D, E, F, J, K, and L are widely used for tissue work and potentially for clinical 

application. Therefore, 6 different brands of glass slides are used in this study, and the 

information of the 6 glass slides is shown in table 3.4. 
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Table3. 4 The information of 6 glass slides for cancer detection 

Label Brand Glass quality Edge Dimensions Thickness 

D O.Kindler  

SuperFrost 

Extra white soda lime  

silicate glass with  

very low iron content 

ground edges 45 ° 26 x 76 mm 1mm 

E Citoglas Extra white glass  

Single frosted 

ground edges 45 ° 25 x 75 mm 1~1.2mm 

F Citoglas Float glass 

Single frosted 

ground edges 45 ° 25 x 75 mm 1~1.2mm 

J Marienfeld 

HistoBond 

Made of a soda-lime  

glass of 3rd hydrolytic class 

ground edges 26 x 76 mm 1±0.05mm 

K Marienfeld 

HistoBond+ 

A frosted soda-lime  

glass of 3rd hydrolytic class 

Adhesive surface 

ground edges 26 x 76 mm 1±0.05mm 

L Marienfeld 

HistoBond+s 

A frosted soda-lime  

glass of 3rd hydrolytic class 

Adhesive surface 

(plus the higher intensity  

of positive charge) 

ground edges 26 x 76 mm 1±0.05mm 

 

A series of adjacent tissue slices mounted on the 6 glass slides are from 4 patients. 

Figure 3.7(a) shows all of the tissue samples mounted on the glass slides. Two patients 

have benign prostate hyperplasia (BPH), and the other two patients have prostate cancer 

(CaP). To easily describe, P1(BPH), P2(BPH) stand for the two BPH patients, and 

P3(CaP), P4(CaP) stand for the two CaP patients, respectively. The details of the 4 

tissue blocks are shown in table 3.5. Four tissue slices with paraffin from 4 patients are 

also mounted on CaF2 slides (figure 3.7(b)) as a control experiment.  
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(a)                                                                                       (b) 

Figure3. 7 (a) A series of prostate tissue sections from the four patients mounted on 6 different types of 

glass slides. (b) The prostate tissue sections from the four patients mounted on CaF2 slides 

 

Table3. 5 The information of four patients 

Label Sample ID Disease  Thickness 

(µm) 

P1(BPH) 14654 BPH 8 

P2(BPH) 14944 BPH 8 

P3(CaP) 16143 CaP 8 

P4(CaP) 15979 CaP 8 

 

3.5.3.2 Instrumentation & experiment procedure 

In this study, all of the spectra are collected on the Agilent FTIR microscope in 

transmission mode (see section 3.5.1.2). The measurement set is also the same with 

study 2. The spectral range was from 900 to 3800 cm−1. The resolution of infrared 

spectra was 5 cm−1 and co-addiction scans for background and sample were 96 and 96, 

respectively. 

 

The study has compared two experimental methods, and the main difference between 

the two methods is the background selection. The comparison of the two experimental 

methods is shown in Table 3.3  
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Because scanning the whole tissue section is a very time-consuming process (around 8 

hours), just two regions of every tissue section were for FTIR scanning. This still 

enabled enough spectra for further data processing to be collected and could save 

measurement time. Figure 3.8 shows the two regions of each tissue section on glass D. 

According to figure 3.8, regions 1 & 2 of P1(BPH) are 5 × 5 and 3 × 5 mosaics, 

respectively. Region 1 & 2 of P2(BPH) are 4 × 4 and 5 × 5 mosaics, respectively. Region 

1 & 2 of P3(CaP) are 5 × 5 and 5 × 5 mosaics, respectively. Region 1 & 2 of P4(CaP) 

are 6 × 3 and 6 × 4 mosaics, respectively.   

 

 

(a)                                                                             (b) 

 

(c)                                                                     (d) 

  

 

Figure3. 8 (a) Two regions of P1(BPH) on glass D for scanning. (b) Two regions of P2(BPH) on glass D 

for scanning. (c) Two regions of P3(CaP) on glass D for scanning. (d) Two regions of P4(CaP) on glass 

704μm

704μm

704μm

704μm
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D for scanning. 

 

3.5.3.3 Annotation & registration 

There are 4 tissue blocks from different patients, and the tissue slices are mounted on 6 

different glass slides. A Nikon microscope measured the brightfield visible images with 

×10 optics. Therefore, there are 24 H&E stained images for annotation.  

 

The epithelium and stroma account for a large proportion of the prostate tissue. 

Therefore, only epithelium and stroma are used for histological tissue classification in 

study 2. The epithelium and stroma are still used for cancer detection to keep the 

consistency of the study. In addition, it is significant to look at which histological 

classes of prostate tissue are more suitable for cancer detection.  

 

The GIMP image editor is used for annotation, and all the annotation work is done on 

the H&E stained brightfield visible image. The different types of tissue are annotated 

in different colours. The detail of the annotation of study 3 is the same with study 2 (see 

section 3.5.2.4).  

 

3.5.3.4 data pre-processing  

All of the spectral data are processed by Matlab, Chitoolbox. In the range of 900 - 

3800 cm−1, infrared spectra contain 1506 points. According to figure 3.8, P1(BPH), 

P2(BPH), P3(CaP) and P4(CaP) totally have 40 tiles, 41tiles, 50 tiles and 42 tiles, 

respectively. Every tile contains 128 × 128 spectra. 

 

The data pre-processing in this study includes quality test, region selection, noise 

reduction, and vector normalisation. The process on the glass slide is similar to study 2 

(see section 3.5.2.5). While the process on the CaF2 is slightly different. The quality test 
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for tissue on CaF2 is based on the intensity of amide Ⅰ (1654 cm−1). And the spectral 

region is 1000-3700 cm−1.  

 

3.5.3.5 Data processing   

Glue removal is the main process after obtaining the high-quality spectra of epithelium 

and stroma. According to table 3.2, the glue influences the spectra for both experiments 

1 and 2. The comparison of the results of cancer detection before and after removing 

glue is one of the aims of this study. 

 

Similar to study 2, PCA and random forest are also critical processes for cancer 

detection. 200 spectra are randomly selected for the PCA, and the results show the 

spectral difference between cancer and non-cancer tissue on the same glass slides.  

 

Random forest could be used to classify spectra of cancer and non-cancer. 80% of 

cancerous and non-cancerous spectral data are used to train the classifier, and the rest 

20% of spectral data are used to test the classifier. The classifier can be evaluated by 

the accuracy of cancer detection. In order to find the influence of glass types on cancer 

detection, the classifier model could be built based on the spectra from one glass slide, 

and the model could be tested by the tissue spectra from the other glass slides. 
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Chapter 4 

Study 1: The spectral comparison of different  

 

  

blank glass slide
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4.1 Results and Discussion 

4.1.1 Mean spectra of 12 glass slides 

Blank glass slides were the samples used in this chapter. To eliminate the errors of the 

instrument itself and the external environment, it was necessary to take the background 

spectrum (figure 4.1), which was obtained by directly measuring the air spectrum.  

 

The main compositions of the dry unpolluted air are nitrogen ( N2  ), oxygen ( O2  ), 

argon (Ar), carbon dioxide (CO2) and other rare gas [1]. However, there is also a small 

amount of water vapour (H2O) in natural air dependent upon ambient humidity. Only 

CO2 and H2O can produce an infrared absorption spectrum since the vibration of the 

molecule results in a change of dipole moment [2]. To control the variable parameters 

of the environment, all spectra were measured in a closed transparent box surrounding 

the microscope, which was purged with dry air. The dry air would remove the water 

vapour and CO2 and decrease the effect of these on the infrared spectrum. Due to the 

fixed window size of the sample stage, up to 6 glass slides were measured at a time. 12 

glass slides were randomly divided into two groups and were separately measured with 

the same temperature (23℃) and humidity (0% RH). The mean background spectrum 

was from two background images including 2 × 128 × 128  spectra, and every 

background spectrum was obtained using the co-addition of 128 scans.  

 

      

   

 

   

   

 



Figure 4.1 is a mean spectrum of two background spectra, the main peak which at 2349 

cm−1 is s caused by carbon dioxide ( CO2 ) in air, and the noise around 1500 cm−1 and 

3600 cm−1, is from the sharp rotational fine structure of water ( H2O ). The other peaks 

are be caused by the inherent influence of the instrument. Because the air relative 

humidity is 0 in the sample compartment of the microscope, water absorption shown in 

figure 4.1 may come from the body of the instrument.
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Figure4. 1 Background spectrum of air  

 

 

Figure4. 2  The mean spectra of 12 glass slides with the infrared range 900 - 3800 cm⁻¹ 
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The mean spectra of 12 glass slides with the infrared range 900 - 3800 cm−1 are shown 

in figure 4.2. Every type of glass slide was measured three times and included  

3 × 128 × 128 spectra in total.   

 

   

 

   

    

  

  

 

 

Figure4. 3 The mean spectra of 12 glass slides with the infrared range 2500 – 3700 cm⁻

Figure 4.2 shows that glass slides have very high absorption in the range of 900 - 2000 

cm−1 and it proves that the glass is not transparent in this infrared range. In addition, 

above 2000 cm−1 also was a typical infrared range for the previous SHP studies using 

glass substrate [12]. Therefore, infrared range between 900 - 2000 cm−1 should be cut.

For a more precise comparison, the mean spectra in this study only remain 2500 -

3700cm−1, and the mean spectra in this range are shown in figure 4.3.

¹  
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Table4. 1 Assignment of hydroxyl infrared bands 

Active groups  Information  wavenumber (cm−1) 

Si − OH Free hydroxyl in the glass  

Si − OH stretching  

in different modes[3][4][5] [6] [7] 

2542, 2750, 3524, 3595[5][6] 

3571-3704[4] 

3600-3750[3] 

3600-3950[7] 

  
H2O Asymmetric and symmetric stretching modes  

of interstitial water molecular[3][5][7] 

2910, 2959, 3200, 3393[5] 

2800-2980, 3400-3500[7] 

3200-3500[3] 

  
≡ Si − OH … O − Si Hydrogen bonded Si-OH[3][5] 2381-2778[4] 

2800±150[5] 

2700-3000[3] 

 

Generally, the composition of the glass consists of SiO2 , Al2O3 , Fe2O3 , MgO , K2O , 

Na2O, CaO and TiO2 [8]. According to the glass manufacturing process, hydrogen (H2) 

and water ( H2O) are the main substances to form hydroxyl [3]. H2 is used for melting 

SiO2 during the production process and  H2O is formed by the reaction between H2 and 

oxygen (O2 ). The vibrational peaks of the main silicate network groups should be 

located in the fingerprint region, which is located at 400-1400 cm−1 [8]. However, it is 

not transparent below 2000 cm−1 the cut-off for the glass slide. While in the range of 

2000-3800 cm−1, only the groups related to hydroxyl, water or similar groups have 

infrared absorption. The band assignment is shown in table 4.1[3][4][5][7][6].  

 

According to figure 4.3, there are two wide bands for all blank glass slides, and the two 

bands for most of the glass slides are around 2926 cm−1 and 3526 cm−1, respectively. 

However, the absorption intensity is different for different kinds of glass slides. Based 

on table 4.1, the peak at 3526 cm−1 is caused by isolated hydroxyl Si − OH groups in 

different stretching modes. The peak at around 2926 cm−1 is wide, and the peak ranges 

from 2700 to 3100 cm−1, which is caused by overlap peaks of hydrogen bonding (≡

Si − OH … O − Si ) with different bond distances.  

 

However, for glass D, the two peaks have a certain "blue shift", and the intensity of the 

peak about hydrogen bonds is also lower than that of the other glass slides. This is 

caused by the lower content of  iron (Fe) in glass D. Adams [9] and Mcmillan [10] 
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studied the infrared spectra of the hydroxyl group in the glass. They proved that there 

is no hydrogen bonding for quartz glass and the absorption peak of the free hydroxyl 

group (Si − OH) at 3676 cm−1. With the addition of some oxides ( Al2O3, Fe2O3), the 

glass structure is disorderly, and the hydroxyl group readily form hydrogen bonds (≡

Si − OH … O − Si  ). Under the action of hydrogen bonds, the vibration frequency 

becomes lower, and the absorption peak is "red shifted". In addition, the greater the 

strength and binding form of hydrogen bonds, the greater the peak width. Therefore, 

the much lower iron content in glass D caused fewer hydrogen bonds, and the peak is 

more "blue shifted" [11]. The band intensity of hydrogen bonds is also lower than the 

others glass slides. However, the isolated hydroxyl Si−OH groups' band intensity is 

slightly lower than the other glass slides, which means the difference of content of 

isolated hydroxyl Si − OH groups among 12 glass slides is small.   

 

The forms of hydroxyl existing in glass include isolated hydroxyl (Si − OH), interstitial 

water molecules and hydrogen bonding (≡ Si − OH … O − Si) [4] [12]. Figure 4.3 only 

indicates that the spectra of glass D have a significant difference from the other glass 

slides. To explore the more specific factors of the difference among the 12 glass slides, 

the PCA of the 12 glass slides is necessary. 

 

4.1.2 Principal component analysis (PCA) of 12 glass slides 

According to the mean spectra of 12 glass slides, the apparent difference between glass 

D and the other glass slides is located at hydrogen bonding peaks. The infrared range 

of PCA in this study is selected to be 2500 – 3700cm−1. Since there are too many 

individual spectra of each type of glass slide, 200 spectra from each type are randomly 

selected and used in the PCA.  
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(a) 

 
 

(b) 
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(c) 

     
Figure4. 4 (a) The score plots of PC1 and PC2 of 12 glass slides (b) The score plots of PC1 and PC3 of 

12 glass slides. (c)The score plots of PC2 and PC3 of 12 glass slides 

 

Figure 4.4 (a), (b), (c) shows two – dimensional PCA scatter plots to analyse the e 12 

glass slides, with t (a), (b), and (c) representing the score plots of PC1 vs PC2, PC1 vs  

PC3, PC2 vs PC3, respectively. The variance explained by PC1, PC2 and PC3 are 

82.4%, 12.7% and 3.01%, respectively. The PC1 is the major component to describe 

the information of spectra. According to figures 4.4 (a), (b), (c), it is easy to find that 

there is a clear separation between glass D and the other 11 glass slides. However, there 

is no visual separation among the other 11 glass slides. Therefore, there is no noticeable 

difference among the infrared spectra of the 11 glass slides. Furthermore, figure 4.1 (a) 

and (c) show that PC2 is the major component to separate the glass D.  

 

To find the major factors which lead to separating the glass D, loading figures of three 

components are necessary, and these are shown in figure 4.5 (a), (b), (c), respectively. 

The loading figures indicate the spectral absorption characteristics of every component. 
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Figure 4.4 shows an apparent separation between glass D and the rest glass slides on 

the PC2. The loading of PC2 is shown in figure 4.5 (b). Two negative peaks constitute 

PC2. One peak is located at 3505 cm−1 , which is related to the isolated hydroxyl (Si −

OH). The other peaks at 2850 cm−1 is related to hydrogen bonds (≡ Si − OH … O − Si). 

As for PC2, figure 4.4 (a) and (c) show that all spectra of glass D locate at the positive 

area of PC2, while the spectra of other glass slides distribute both positive and negative 

areas. Therefore, glass D could be separated because the content of isolated hydroxyl 

(Si − OH) and hydrogen bonds (≡ Si − OH … O − Si) in glass is much 

PC1 is the major component, its loading is shown in figure 4.5 (a). The figure shows 

that PC1 is made of positive and negative peaks. According to table 4.1, the positive 

peak at 3560 cm−1 is related to the absorption of the free Si − OH stretching. Therefore, 

there is a very positive correlation between the loading of PC1 and the content of isolate 

hydroxyl (Si − OH). While the negative peaks at 2800 cm−1 are related to hydrogen 

bonds (≡ Si − OH … O − Si). The PC1 is negatively related to the content of hydrogen 

bonds. Although there is no separation on PC1 for all glass slides, the distribution of all 

glass slides is similar. Most spectra of each type glass slide are located in the negative 

area. It means the hydrogen bonds (≡Si−OH…O−Si) content is higher than the isolated 

hydroxyl (Si − OH) for most spectra. 

lower.  

 

Figure 4.5 (c) shows the loading of PC3. PC3 loading has two positive peaks and a 

negative peak in the range of 2500 − 3700 cm−1. The positive peak at 3200 cm−1 and 

2800 cm−1 are related to the absorption of interstitial water molecules and hydrogen 

bonds (≡ Si − OH … O − Si), respectively. and the negative prak at 2574 cm−1 , is 

related to the isolated hydroxyl (Si − OH)[5]. But the score of PC3 is also very low 

(3.01%). Therefore, the PC3 is not an important component and can be ignored.    
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(a)  

 

(b) 
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(c) 

 

Figure4. 5 (a) The PC1 loading for PCA of 12 glass slides. (b) The PC2 loading for PCA for 12 glass 

slides. (c) The PC3 loading for PCA of 12 glass slides. 

 

Within the infrared range of measurement (2500 – 3700 cm−1), hydroxyl groups are 

present in three forms in the glass: different stretching modes of free Si − OH , 

symmetric and symmetric stretching modes of the interstitial water molecule and 

hydrogen-bonded Si − OH  (≡ Si − OH … O − Si). According to the PCA results of 12 

glass slides, the spectral difference between glass D and the other glass slides is caused 

by the lower hydrogen bonds and interstitial water content.  

 

 

 

In summary, according to the mean spectra of 12 glass slides and the PCA results, it can 

be concluded that glass D has slightly lower content of isolated free hydroxyl (Si − OH), 

and much lower content of hydrogen bonds (≡ Si − OH … O − Si) than the other 11 

glass slides. In addition, hydrogen bonds decrease the vibration frequency and "red 

shift" of the peak. The red shift is an increase in the wavelength and a decrease in 

the frequency. The content of hydrogen bonds is related to the oxide. Glass D has a 
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Figure4. 6 The score plots of PC1 and PC2 of 11 glass slides (remove glass D) 

 

Figure 4.6 shows the score plots of PCA of the other 11 glass slides. The plot is only of 

PC1 and PC2, and the variance explained of PC1 and PC2 are 89.7% and 6.53%, 

respectively. Figure 4.6 indicates that except for glass D, the mean spectra of the other 

11 glass slides are similar, and there is no clear separation between them. It means the 

type of glass slide has little effect on the infrared spectra. Glass D is not used in the next 

section

lower content of iron. Therefore, compared with the other 11 glass slides, the lower 

hydrogen bonds of glass D leads to the peak being lower intensity and blue shifted. 

. 

 

4.1.3 PCA of charged and non-charged glass slides 

The other 11 glass slides (remove glass D) are divided into non-charged glass slides (A, 

B, C, H, I) and charged glass slides (E, F, G, J, K, L). Adhesion of the glass slide is 
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from the positively charged surface. The surface of the glass slide has a permanent 

cationic charge, which can adsorb tissue or cells by electrostatic action[13]. 

Subsequently, a covalent bond can form between glass and a slice of tissue. Therefore, 

adhesive glass slides are more suitable for tissue work. 

 

  

  

 

 

 

  

In order to study whether spectra could separate non-charged and charged glass slides, 

PCA between them is carried out, and the results are shown in figure 4.6. Due to 

the massive amount of spectra, 200 spectra are randomly selected from each type of 

glass, and the infrared range is 2500 – 3700cm−1.  

(a)
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(b) 

 

 

(c) 

 
Figure4. 7 (a) The score plots of PC1 and PC2 of charged and non-charged glass slides. (b) The score 
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plots of PC1 and PC3 of charged and non-charged glass slides. (c)The score plots of PC2 and PC3 of 

charged and non-charged glass slides 

 

Figure 4.7 (a), (b), (c) show the PCA scatter plots to separate non-charged (green) and 

charged (blue) glass slides. The variance explained by PC1, PC2, and PC3 are 89.7 %, 

6.53 % and 1.88 %, respectively. 

 

Figure 4.7 shows a separation trend between charged and non-charged glass slides by 

PC2 and PC3. Most spectra of charged glass slides are located in the negative area of 

PC2 and the positive area of PC3. While most spectra of the non-charged glass slides 

are located in the positive area of PC2. The loadings of each component are shown in 

figure 4.8. 

 

(a) 
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(b) 

 

(c) 

 
Figure4. 8 (a) The loading of PC1 in PCA of charged and non-charged glass slides. (b) The loading of 
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PC2 in PCA of charged and non-charged glass slides. (c) The loading of PC3 in PCA of charged and non-

charged glass slides. 

 

PC1 is the major component and contains most of the information of the spectra. 

Therefore, the loading plot of PC1 (figure 4.8 (a)) is essential to find which 

wavenumbers have an enormous influence on PC1. There are a positive band and a 

negative band in PC1 loading, which located at 3550 cm−1  and 2798 cm−1 ,  

respectively. According to table 4.1, the positive band in the PC1 loading should belong 

to the free Si − OH  in different stretching modes and asymmetric and symmetric 

stretching of interstitial water molecular. The negative band is caused by hydrogen 

bonds (≡ Si − OH … O − Si ). In addition, the loading value of stretching of free Si −

OH and interstitial water molecular higher than hydrogen bonds (≡ Si − OH … O − Si ). 

Therefore, PC1 combines the absorption information of free Si − OH and interstitial 

water molecular and hydrogen bonding (≡ Si − OH … O − Si ) , but is more related to 

the stretching of free Si − OH and interstitial water molecular.  

 

 

 

     

  

 

     

 

 

Although there is no obvious separation between the charged and non-charged glass 

slides, most spectra of charged glass slides are distributed in the negative area of PC2, 

and most spectra of non-charged glass slides are located in the positive area. Because 

the PC2 is negatively related to the free Si − OH  and hydrogen bonds ( ≡ Si −

OH … O − Si ), most charged glass slides have more free Si − OH 

According to figure 4.7, spectra of the charged glass slide and non-charged glass slide 

have a slightly different distribution on PC2.The loading of PC2 contains two negative

 bands and a positive band. Two negative peaks locate at 3504 cm−1 and 2921 cm−1,

 which are related to free Si − OH and hydrogen bonds ( ≡ Si − OH … O − Si  ),

 respectively. The positive peak, located at 3237 cm−1 also related to the interstitial

 water molecular. Therefore, the PC2 is negatively associated with the spectral

 information of free Si − OH and hydrogen bonds (≡ Si − OH … O − Si ), and positively

 related to the interstitial water molecular. 

and hydrogen bonds 



116 

 

than non-charged glass slides.  

 

Figures 4.6 (b) and (c) show that most spectra of charged glass slides are distributed at 

the positive area of PC3. From the loading of PC3 (figure 4.8(c)), the two whole 

positive bands, which located at 3232 cm−1  and 2817 cm−1 , are related to the 

interstitial water molecular and hydrogen bonds, respectively. Therefore, most charged 

glass slides have more interstitial water molecular and hydrogen bonds than non-

charged glass slides.   

 

According to the PCA results, the charged glass slides have slightly more hydrogen 

bonds than non-charged glass slides. But the difference of hydrogen bonds is minimal, 

so there is no apparent red shift and influence on the infrared spectra. Therefore, 

whether the glass slide is charged or not, it has no impact on the infrared spectra.  

 

 

The spectra for every type of glass slide are from three different locations on the slides 

to capture any local variation and thus eliminate the error. But some errors or artefacts 

could still exist. One such artefact relates to the presence of water vapour. The sealed 

box around the microscope stage was purged with dry air to reduce the relative the 

humidity to 0, so that it eliminates water vapour interference., It takes around one hour 

for the humidity to go down to zero after putting the samples on the sample stage and 

closing the box. However, the window size of the sample stage is limited, and only 6 

glass slides could be measured at once. The measurement for the 12 blank glass slides 

needs to carry out twice.  Although the temperature and humidity are normally the same 

for the two measurements, it is still possible that this introduces minor differences in 

the spectra.. In addition, the PCA has not used all the spectra available from 12 glass 

slides because each type of glass slide has associated with it 49152 spectra. 200 spectra 

4.2 Error discussion

per type of glass slide are randomly selected and be analysis. Therefore, once the 200 
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× 12 spectra are seleted, the PCA results would not change. I have tried many times to 

select the spectra randomly, and the separation of the PCA plot and the composition of 

loading for every PC is not changed. Only the scores have changed a little (±3%). 

Because the PCA is a statistical approach to finding critical bands, which caused the 

spectral difference of 12 glass slides. It will not affect the data analysis because loadings 

for every PC are not changed. Therefore, the error for the PCA is minimal and could be 

ignored.   

 

  

The use of glass slides is an essential condition for the clinical application of SHP. 

Although previous studies have shown that SHP on glass substrates is a promising 

method for prostate and breast cancer detection [14][15][16]. In order to achieve 

clinical application, it is necessary to study the effect of glass type on cancer detection. 

This chapter only 

4.3 Conclusion 

explores the influence of glass type on infrared spectra.  

 

  

   

 

  

  

 

   

 

According to the mean spectra and principal component analysis of 12 glass slides, 

except for glass D, the spectra of 11 glass slides have a similar peak position and 

intensity, which means the major components of the glass slide is similar. But the peak 

position of glass D is a little "blue shifted", and the peak intensity 

This chapter compared the infrared spectra of 12 different types of blank glass slides. 

Because the transmission window of glass slides at 2000 – 3800 cm−1. The infrared 

absorption of blank glass slides at this range is caused by hydroxyl and its related groups. 

The groups associated with hydroxyl include isolated hydroxyl (Si − OH),  interstitial 

water molecular and hydrogen bondings (≡ Si − OH … O − Si). Therefore, the spectral 

difference of glass is caused by the different content of three types of hydroxyl related 

groups. And a lot of factors could affect the content, such as raw materials, processing

 technique and so on.

is much lower than 
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that of the other 11 glass slides. Combined with the loading of principal component, the 

results indicate that glass D has a much lower content of hydrogen bonds (≡ Si −

OH … O − Si), which may be caused by the very low iron content. Because the more 

metal oxide would form  more hydrogen bonds (≡ Si − OH … O − Si), and then 

reduce the vibration frequency and lead to the "red shift" of the band. The very low iron 

content of glass D caused to fewer hydrogen bonds, so the peak intensity at 2925 cm−1

is lower than the other glass slides, and the "blue shift" of the peak position on glass D.  

 

The other 11 glass slides have similar mean spectra and cannot be discriminated by 

PCA. In conclusion, the type of most glass slides has no effect on the infrared spectra.  

Furthermore, the rest of 11 glass slides can be grouped as charged and non-charged 

glass slides. Because of the adhesive surface, the charged glass slide is more suitable 

for tissue work. The two groups cannot be clearly separated, but they have a separation 

trend, which means there is a slight difference between the two groups of glass slides 

on PC2 and PC3. According to the loading of PC2 and PC3, they indicate that the 

charged glass slides have slightly more interstitial water molecular and hydrogen bonds 

(≡ Si − OH … O − Si) than non-charged glass slides. However, the difference is too 

small to affect the infrared spectra.  
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Chapter 5 

Glue removal 
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 After a biopsy is removed from the patient, the samples are preserved either by flash 

freezing or by formalin fixation followed by being embedded in paraffin to produce a 

formalin-fixed paraffin embedded (FFPE) block. Both types of samples can be 

preserved for extended periods of time, the former obviously requiring low temperature 

storage conditions, while the latter has essentially no special storage requirements and 

can be kept for 10s of years or longer. Frozen samples are often used under 

intraoperative conditions where a surgeon requires results as quickly as possible 

(normally 15-20 min) before continuing with an operation. However, FFPE blocks are 

the standard used for more routine biopsies and are generally of higher quality leading 

to better diagnostic accuracy [1].  

 

 

 

 

 

 

  

 

 

The mounting media is used to keep the tissue sample in a fixed place, prevent the 

sample from drying, prevent photobleaching and preserve the tissue sample for long-

term storage. There are many kinds of mounting media, and they are mainly divided 

into aqueous mounting media and non-aqueous mounting media. Aqueous mounting 

media are based on distilled water. They could mount tissue sections directly 

after staining, and the dye usually could be dissolved in alcohol, Xylene or other 

organic solvents such as lipid dyes. Syrups, gelatin-based media and gum arabic 

In order to prepare FFPE tissue samples, tissue needs to be preserved in formalin and 

processed by additional solutions, typically a series of successive immersions in 70%, 

80%, 90%, 95% and 100% ethanol, followed by Xylene. Then the tissue is placed in 

paraffin wax and be cut into thin slices after the wax has hardened. When a sample is 

to be analysed, the tissues are dewaxed in Xylene (or suitable xylene substitute). The 

thin tissue slices are put on glass slides and stained with dyes. Haematoxylin and Eosin 

(H&E) are the common dyes in clinical applications[2]. A thin layer of mounting 

media is applied, followed by a glass coverslip. If the stain and subsequent steps 

have been properly performed, the slide will be stable for many years.

media are the main types of aqueous mounting media.
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There are two different experimental methods in the project, and the comparison 

between the two experiments is shown in table 3.3. According to table 3.3, the final 

spectral information of both experiments 1&2 not only has tissue information but is 

also affected by glue and coverslip. Therefore, digital glue removal is necessary to 

obtain pure IR information from the tissue and eliminate the influence of glue & 

Non-aqueous mounting media based on organic solvents, natural or synthetic resins 

dissolved in contain toluene, Xylene or benzene, and they are also called anhydrous or 

organic mounting media. They could protect the tissue sample and provide optical 

brilliance of the dye. However, dehydration is necessary after staining for non-aqueous 

mounting media compared with the aqueous mounting media. This step could avoid 

water on the tissue section that could interfere with the mounting medium. 

 H&E are used for tissue stain and are soluble in water, so the mounting media must 

be water-free. The anhydrous mounting media are generally permanent and can be 

used for the long-term storage of stained tissue sections. Therefore, the 

anhydrous mounting media is widely used in clinical preparation. For easy expression, 

the mounting medium is called the glue for short in the project. In addition, because the 

tissue has been dewaxed before dying. So this project assumes there is no paraffin in 

the H&E stained tissue.

coverslip.  

 

In addition, the “less glue” shown in table 3.3 is mainly caused by the structure 

difference between epithelium and stroma. The normal epithelium has more holes. Thus 

epithelium will contain more glue than stroma (see figure 5.6). But the content of glue 

at the epithelium area is less than that at tissue free area. So using “less glue” to tell the 

different glue content.  
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5.1 The principle of glue removal 

5.1.1 Spectral subtraction 

Matlab processes the glue removal in this project. The method is based on the principle 

of spectral subtraction. Spectral subtraction is one of the essential quantitative analysis 

methods. Bouguer-Lambert-Beer law (Beer’s law) is the basic principle of the 

relationship between absorbance and concentration [3]. Beer’s law is  

Ai(ν̃) = ai(ν̃)bci                                          (5-1) 

where 𝐴𝑖(𝜈) is the absorbance of species i at wavenumber 𝜈, 𝑎𝑖(𝜈) the absorptivity of  

the species at that wavenumber (in units of 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛−1 ∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒−1) and the 

proportionality constant is a function of the wavenumber 𝜈 , b the pathlength, 𝑐𝑖  the 

concentration of species i.  

 

For a mixed component sample, when the infrared light passes through the sample, each 

component in the mixture absorbs the corresponding infrared light, and the total 

absorbance 𝑀(�̃�) at the wavenumber 𝜈  

𝑀(

̃ is the sum of each component's absorbance, 

�̃�) = 𝐴1(�̃�) +  𝐴2(�̃�) + 𝐴3(�̃�) + ⋯                         (5-2) 

 

For example, the total absorbance 𝑀(�̃�) at the wavenumber 𝜈 in the spectrum of the 

two-component system is the sum of the absorbance 𝐴1(�̃�)  and 𝐴2(�̃�)  produced by 

component 1 and component 2 at the wavenumber 𝜈, respectively.  

𝑀(�̃�) = 𝐴1(�̃�) +  𝐴2(�̃�)                                                (5-3)   

                                               

If component 1 is known and component 2 is unknown, the spectrum of unknown 

component 2 can be obtained by spectral subtraction of absorbance. The specific 

method is as follows: take a spectrum of pure component 1 as the reference spectrum 

and the 𝐴′1(�̃�) is the absorbance of the reference spectrum. The same composition of 

the sample, but of different concentration or pathlength (thickness), then,  

A1(υ̃) = kA′1(υ̃)                                              (5-4) 
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where k is a scaling factor. Therefore, the absorbance of the unknown component 2  

A2(υ̃) = 𝑀(�̃�) − kA′1(υ̃)                                 (5-5) 

5.1.2 The function of glue removal  

The tissue sample consists of tissue, coverslip, glass and glue. The spectra of Matrigel, 

glue, and coverslip could be reference spectra. Matrigel is a gelatinous protein mixture 

extracted from Englebreth-Holm-Swarm mouse tumour cells. The growth and 

proliferation of many cells type require an attached surface. Matrigel primarily consists 

of laminin, collagen IV, and entactin and is commonly used as a basement membrane 

matrix for stem cells [4]. Matrigel could promote cell differentiation [5] and is widely 

used to mimic the extracellular matrix (ECM) in cancer and stem cell culture, 

presumably by replicating cell–ECM interactions. The shape of Matrigel spectrum is 

similar to the spectra of cell and tissue. Therefore, the spectrum of Matrigel could be 

used as a reference spectrum of tissue for glue removal. Therefore, the absorbance of 

the sample can be replaced as 

𝑀𝑠𝑎𝑚𝑝𝑙𝑒(�̃�) = k1A′
glue(υ̃) + k2A′

matrigel(υ̃) + k3A′coverslip(υ̃)       (5-6) 

 

According to function 5.5, the absorbance of the tissue is, 

Atissue(υ̃) = 𝑀𝑠𝑎𝑚𝑝𝑙𝑒(�̃�) − k1A′
glue(υ̃) − k3A′coverslip(υ̃)               (5-7) 

 

And the absorbance of the residual is, 

Aresidual(υ̃) = 𝑀𝑠𝑎𝑚𝑝𝑙𝑒(�̃�) − k1A′
glue(υ̃) − k2A′

matrigel(υ̃) − k3A′coverslip(υ̃)  (5-8) 

 

Where Atissue(υ̃) : absorbance of tissue, which is the result after removing glue. 

𝑀𝑠𝑎𝑚𝑝𝑙𝑒(�̃�) : absorbance of the sample, which is the result of FTIR measurement.  

A′
glue(υ̃) ,  A′coverslip(υ̃): absorbance of the pure glue and clear coverslip, respectively. 

A′
matrigel(υ̃)  : absorbace of standard Matrigel. k1 , k2 , k3  : scaling factors of glue, 

Matrigel and coverslip, respectively.  
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5.1.3 Fitting range  

Because the absorbance is a function of wavenumber, the scaling factors would change 

with the fitting range. It is essential to find suitable fit ranges for glue removal. For a 

more intuitive presentation, the tissue sample, which is from a BPH patient and 

mounted on glass K, is used as an example to discover the impact of the fitting range 

changes on the glue removal results in order to find the most appropriate fitting range

Because the absorbance of the sample, glue, coverslip and Matrigel are known, 

according to the function (5-7) and (5-8), the real tissue spectrum with glue 

removal could be obtained if three scaling factors are calculated. Therefore, the key to 

glue removal is to calculate the scaling factors of glue and coverslip. The function for 

getting the scaling factors is the least-squares with known covariance (LSCOV) in 

Matlab, and it is the critical function of glue removal code. 

. 

 

 
Figure5. 1 Mean spectra of epithelium on glass K from the BPH patient for experiments 1&2 
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Figure5. 2 All kinds of reference mean spectra  

 

Figure 5.1 shows the mean spectra of epithelium on glass K for Experiment 1 & 2. 

196608 spectra are obtained in total for BPH tissue on glass K, and 4551 spectra are 

annotated as epithelium. After the quality test, there are 4041 and 4245 spectra for 

experiment 1 and experiment 2, respectively (see table 5.2). Figure 5.2 shows the 

reference spectra of Matrigel, glue, and coverslip. The glue and coverslip are from 

Christie hospital and keep consistent for preparing all of the tissue samples. The glue 

and coverslip each be measured with 32768 spectra. According to Figures 5.1 & 5.2, it 

is easy to see that glue has a more significant effect on experiment 2. Therefore, the 

mean spectra of glass K in experiment 2 are used as an example for testing the results 

of glue removal. 

 

 

  

 

   

 

The fit range is a continuous range, which are used for calculating the most suitable 

scaling factors of every reference spectrum to fit the tissue spectra by LSCOV. If the fit 

range is too small, the errors of scaling factors of every reference spectrum are large. If 

the fit range is too big, it could lead to overfitting. In addition,  not all spectral ranges

 are suitable for fitting the tissue spectra. There is some noise on the whole spectral range

 (2500-3700 cm−1), it would lead to the significant deviation of scaling factors of every

 reference spectrum at every wavenumber. 
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To eliminate the effect of noise and reduce the error of scaling factors, a few small range 

of every significant peak in all reference spectra are selected simultaneously as several 

fit ranges. The small range is selected up and down 10 or 20 wavenumbers centred 

around every significant peak. Therefore, the fit ranges are divided into four types:  

Fit range 1, where the tissue spectra are mainly contributed by absorption of  Matrigel 

(3278-3318 cm−1, 3066-3106 cm−1);  

Fit range 2, where the tissue spectra are mainly contributed by absorption glue and 

Matrigel peak (2848-2852 cm−1, 3415-3455 cm−1);  

Fit range 3, where the tissue spectra are mainly contributed by glue and Matrigel peak 

(2950-2970 cm−1, 2925-2945 cm−1, 2867-2887 cm−1);  

Fit range 4, where the tissue spectra are mainly contributed by absorption of coverslip 

& Matrigel peak (3536-3576cm−1, 2704-2744cm−1). 

 

For ease of presentation, fit ranges 1, 2, 3, or 4 is marked to represent the four types of 

fit range, respectively. The corresponding coefficients of every reference spectrum can 

be calculated based on the LSCOV function in every small fit range. The final scaling 

factors of every reference spectrum at every wavenumber are the mean coefficients of 

all small fit ranges.  

 

To find the suitable fit range, figure 5.3 (a), (b), (c), (d) show the spectra of epithelium 

and stroma with glue removal in 4 different fitness ranges. And to observe clear spectral 

results with glue removal, figure 5.4 (a), (b), (c), (d) show the zoom in of tissue spectral 

results with glue removal in 4 different fit ranges.  
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(a) 

 

 

(b) 

 

 

(c) 
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(d) 

 
Figure5. 3(a)The spectral results of glue removal in the fit range 1 (3278-3318 cm⁻¹, 3066-3106 cm⁻¹); 

(b) The spectral results of glue removal in fit range 2 (2848-2852 cm⁻¹, 3415-3455 cm⁻¹); (c) The spectral 

results of glue removal in the fit range 3 (2950-2970 cm⁻¹ 2925-2945cm⁻¹, 2867-2887 cm⁻¹); (d) The 

spectral results of glue removal in the fit range 4 (3536-3576 cm⁻¹, 2704-2744 cm⁻¹). 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

Figure5. 4 (a)The spectra of epithelium and stroma in experiment 2 with glue removal in the fit range 1 

(3278-3318 cm⁻¹, 3066-3106 cm⁻¹); (b) The spectra of epithelium and stroma in experiment 2 with glue 

removal in the fit range 2 (2848-2852 cm⁻¹, 3415-3455 cm⁻¹); (c) The spectra of epithelium and stroma 

in experiment 2 with glue removal in the fit range 3 (2950-2970 cm⁻¹, 2925-2945 cm⁻¹, 2867-2887 cm⁻¹); 

(d) The spectra of epithelium and stroma in experiment 2 with glue removal in the fit range 4 (3536-3576 

cm⁻¹, 2704-2744 cm⁻¹). 

 

  

 

 

 

  

According to figure 5.3 and 5.4, comparing the spectra of epithelium and stroma before 

and after the glue removal, it is easy to see that in fit ranges 1, 3, 4, the shape of spectra

 after glue removal are similar to the Matrigel spectrum and the intensity on lipid range

 is also reduced. Therefore, the code of glue removal is working. While in fit range 2,

 the shape of spectra is totally distorted. Hence, the fit range 2 (2848-2852 cm−1, 3415-

3455 cm−1) are not suitable for glue removal. The spectral results of glue removal in 

all fit ranges 1, 3, 4 are shown in figure 5.5. 



133 

 

(a) 

 

(b) 

 

Figure5. 5 (a) The spectral results of glue removal in experiment 2 in the fit range 1, 3, 4. (b) The spectra 

of epithelium and stroma in experiment 2 with glue removal in the fit range 1, 3, 4. 

 

For experiment 2, there is a significant effect in 3400 – 3600 cm−1 caused by coverslip 

and small positive peak, located at in 3400 – 3450 cm−1 is caused by glue. According 

to figure 5.5, it could be found that after removing glue, the two bands are removed, 

and the intensity of lipid range is also reduced. After removing glue, the final shape of 

the spectra is similar to the Matrigel spectrum. Therefore, the fit range 1(3278-3318 

cm−1, 3066-3106 cm−1), fit range 3 (2950-2970 cm−1, 2925-2945 cm−1, 2867-2887 

cm−1), fit range 4 (3536-3576cm−1, 2704-2744cm−1) are reasonably reliable and could 

be used for glue removal.  
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5.2 Glue removal with different reference spectra 

Two different glue removal methods are tested to obtain the best spectral results, with 

the main difference between them being the reference spectra. The spectrum of Matrigel 

is used as reference spectrum in method 1, and the spectra of sample in experiment 1 

are used as reference spectra in method 2. The comparison of the two methods is shown 

in table 5.1. 

 

Table5. 1 Comparison between two methods of glue removal. 

 Reference spectra  

Method 1 Matrigel (M),  

Glue (G),  

Coverslip (C) 

Method 2 Spectra in Experiment 1, 

Glue (G), 

Coverslip (C) 

 

The spectrum of Matrigel is regarded as the standard spectrum of the tissue sample, and 

however, it is not the real standard spectrum of tissue. According to table 3.3, the 

spectral information in experiment 1 is tissue plus or minus some glue. Although the 

spectra in experiment 1 are not precise tissue spectra, it is feasible to remove the glue 

by calculation. 

 

5.2.1 The function of method 2  

Figure 5.6 is a schematic diagram of measuring tissue samples in two experimental 

methods. And the comparison of spectral information in two experiments is shown in 

table 3.3. Ideally, the thickness of the tissue sample is consistent. But the normal 

prostate tissue has cylindrical epithelium, the thickness of the sample tissue is varied.  
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Figure5. 6  Schematic diagram of measuring tissue samples in different experimental methods 

 

According to figure 5.6 and table 3.3, the absorbance of background spectra for 

experiment 1 is, 

𝐴𝑏𝑘𝑔1(�̃�) = a1 A′
glue(υ̃) + A′coverslip(υ̃) +  𝐷(υ̃)                 (5-9) 

 

And the absorbance of background spectra for experiment 2 is, 

𝐴𝑏𝑘𝑔2(�̃�) =  𝐷(υ̃)                                          (5-10) 

 

While the absorbance of the sample scan,  

𝐴𝑠𝑎𝑚𝑝𝑙𝑒(�̃�) = (a1−a0) A′
glue

(υ̃) + a0 A′
tissue(υ̃) + A′coverslip(υ̃) +  𝐷(υ̃)    (5-11) 

 

Where a0  and a1  are the thickness of the tissue and glue layer on blank area, 

respectively. A′
glue(υ̃) and A′coverslip(υ  

coverslip, respectively. A′
tissue(υ̃) is the absorbance of tissue. 𝐷(

̃) are the absorbance of the pure glue and clear 

υ̃) is the absorbance 

of glass slide.  

 

The spectral result is the absorbance of the sample scan to remove the background. 

Therefore, the absorbance of spectra in experiment 1 is, 

𝐴𝑒𝑥𝑝1(�̃�) = a0 A′
tissue(υ̃) − a0 A′

glue
(υ̃)                        (5-12) 
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While the absorbance of spectra in experiment 2 is,  

𝐴𝑒𝑥𝑝2(�̃�) = (a1−a0) A′
glue

(υ̃) + a0 A′
tissue(υ̃) + A′coverslip(υ̃)      (5-13) 

 

There are three reference spectra in the new glue removal method: glue spectra, the 

spectra of a tissue sample in experiment 1 and coverslip spectra. The spectra in 

experiment 2 could be written as, 

𝐴𝑒𝑥𝑝2(�̃�) = k1a1 A′
glue(υ̃) + k2 𝐴𝑒𝑥𝑝1(υ̃) + k3A′coverslip(υ̃)           (5-14) 

 

Combine the function (5-12) and (5-14), the real absorbance of the tissue is 

k2a0 A′
tissue(υ̃) = 𝐴𝑒𝑥𝑝2(�̃�) − (a1k1−a0k2) A′

glue
(υ̃) − k3A′coverslip(υ̃)      (5-15) 

 

Where k1, k2, and k3 are the scaling factors for the three reference spectra, respectively. 

 

In general, the thickness of tissue and glue vary slightly, so they can be assumed to be 

the same thickness (a1 ≈ a0), then  

k2a0 A′
tissue(υ̃) = 𝐴𝑒𝑥𝑝2(�̃�) − (k1−k2) a0A′

glue
(υ̃) − k3A′coverslip(υ̃)      (5-16) 

 

The least-squares with known covariance (LSCOV) in Matlab are used to obtain the 

scaling factors. The glue removal code of method 2 could be made by function (5-16). 

 

 

 

 

5.3 Spectral results with two glue removal methods

The objective is to focus on the impact of glass types on cancer detection. Therefore, 

there are two groups of tissue samples. One group is a series of adjacent benign prostatic 

hyperplasia (BPH) tissue sections mounted on the 12 glass slides and stained with H&E. 

The information of the 12 glass slides has already be given in table 3.2. To quickly 

describe, the 12 glass slides are labelled (A, B, C…, L). 
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The other group is a series of adjacent tissue slices mounted on the 6 glass slides from 

4 patients. Two patients have benign prostate hyperplasia (BPH), and the other 2 

patients have prostate cancer (CaP). The charged glass slide is more suitable for tissue 

work, which has been explained in Chapter 4, but there is no description of the use of 

glass G for tissue work in the introduction. Therefore, only glass slides D, E, F, J, K, 

and L are selected for tissue work. 

 

The experimental processes have been shown in chapter 3. The first group of tissue 

samples is to study the effect of type of glass slide on tissue classification (Study 2). 

While the second group is to find the influence of the type of glass slide on cancer 

detection (Study 3). According to the group of the tissue sample, the spectral results of 

glue removal are mainly shown in two sections (5.3.1 and 5.3.2).  

 

5.3.1 Glue removal for BPH samples on 12 glass slides (Study 2). 

The main objective of the BPH samples on 12 glass slides is to research the effect of 

glass type on tissue classification. So all spectra are divided into stromal and epithelial 

spectra. The prostate tissue sections are cut from the same BPH patient. The 12 tissue 

samples and the brightfield image of the whole tissue section on glass A are shown in 

figure 3.5 and figure 3.6. Because it would take a long time to measure the whole tissue 

section (around 7 h), only two regions are selected to measure for every sample, see 

figure 3.6.  

 

Quality control is based on the intensity of amide A peak, which means the intensity of 

amide A for good quality spectra on tissue area must be higher than the highest intensity 

in the tissue-free area, which is set as a threshold. The quality control threshold for 

experiments 1 and 2 are 0.054 and 0.06, respectively.  
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The different thresholds of the two experiments are due to the different background 

scans. The number of annotated spectra before and after quality control for experiment 

1 and experiment 2 is shown in table 5.2. According to the table, the number of 

epithelium spectra is more dramatically reduced than that of the stroma. The threshold 

has more influence on the quality of spectra of epithelium. Therefore, the number of 

spectra of the stroma is much more than the spectra of epithelium. All of the epithelium 

spectra are used in further analysis.  

 

Table5. 2 The number of annotated spectra on 12 glass slides before threshold  

 The number of annotated spectra 

Glass 

type 

Annotated spectra before 

quality control   

  

Experiment 2 after quality 

control with threshold is 

0.0

Experiment 1 after quality 

control with threshold is 

0.054 6 

Stroma Epithelium Stroma Epithelium Stroma  Epithelium  

Glass A 7526 3704 7526 3502 7526 3222 

Glass B 6667 3990 6666 3643 6667 3765 

Glass C 8519 4321 8519 3902 8519 3909 

Glass D  6118 3612 6118 3128 6118 3232 

Glass E 7156 4231 7155 3857 7155 3939 

Glass F 6966 4585 6966 4320 6966 4368 

Glass G 7493 4860 7493 4705 7493 4676 

Glass H 9526 4751 9525 4093 9525 4139 

Glass I 6362 4330 6362 3692 6362 3859 

Glass J 7443 4200 7443 3779 7443 3918 

Glass K 8765 4551 8765 4041 8765 4245 

Glass L 7419 5164 7419 4541 7419 4693 

 

5.3.1.1 The mean spectra of epithelium and stroma on 12 glass slides. 

The mean spectra of histological classes for two experiments are shown in figure 5.7. 

According to figure 5.7, in both experiment 1 and experiment 2, there is one prominent 

peak at amide A (3298 cm−1 ) and three lipid peaks (2958 cm−1 , 2935 cm−1 , 2873 

cm−1) for all of the mean spectra on 12 glass slides. But according to the spectra of 

glue (figure 5.2), the glue has a significant effect on the lipid region and has a minor 

influence at 3400 – 3450 cm−1. Only the amide A peak is caused by tissue. Therefore, 

these infrared regions can be used to evaluate the result of glue removal.   

  

    The lipid region and the broad peak (3400 - 3600 cm−1 ) are the differences between 
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experiments 1 & 2. According to table 3.3, the spectra contain coverslip, glue, and tissue 

information for experiment 2. While for experiment 1, the spectra only have the 

information from tissue minus or plus some glue. Therefore,  there are some negative 

peaks in lipid regain and 3400 – 3450 cm−1 . They have come from the redundant 

removed glue spectra from the background. In addition, according to the spectra of 

coverslip and glue (figure 5.2), the broad peak (3400 – 3600 cm−1) in experiment 2 is 

mainly from the coverslip.  

 

Comparing the mean spectra of two experiments without glue removal, the spectral 

intensity in experiment 1 is higher than in experiment 2. Within the same experiment, 

the intensity of spectra from stroma is always higher than from epithelium.  
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(a)                                                                                 (b) 

 

(c)                                                                                    (d) 

Figure5. 7 (a) Mean spectra of epithelium on 12 glass slides in 2500-3700 cm⁻¹ for experiment 1. (b) 

Mean spectra of epithelium on 12 glass slides in 2500-3700 cm⁻¹for experiment 2.(c) Mean spectra of 

stroma on 12 glass slides in 2500-3700 cm⁻¹ for experiment 1. (d) Mean spectra of stroma on 12 glass 

slides in 2500-3700 cm⁻¹ for experiment 2. 

 

5.3.1.2 The result of glue removal for glass F by glue removal method 1. 

To indicate the results of glue removal with different methods, the spectra on glass F 

are used as an example for further comparison. Figure 5.8 shows the results of 

experiment 1 with glue removal method 1. The reference spectra of method 1 are 

Matrigel spectrum, glue spectra and coverslip spectra (figure 5.8(a)).  
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(a) 

 

(b) 
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(

Figure5. 8 (a) shows the reference spectra and glue removal results of experiment 1 on glass F by method 

1. (b) enlarge the glue removal results of experiment 1 on glass F by method 1.

Figure 5.8 compares the spectra before and after removing glue of experiment 1 by glue 

removal method 1. According to table 3.3, the spectra of experiment 1 contain the 

information of tissue minus or plus some glue. It all depends on the amount of glue in 

the background. According to figure 5.8, there are negative peaks in the lipid region 

and 3400-3450 cm−1. It means the spectra are removed with more glue from the 

background. For glass F, the glue removal code’s real objective is to eliminate the 

negative peaks. After glue removal, the epithelium and stroma spectra changed to the 

positive peak in the lipid region, and the shape of the spectra are also similar to the 

Matrigel spectra. The intensity of amide A is enhanced, and the intensity of stroma is

 still higher than epithelium. 

a) 
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Figure5. 9 (a) shows the reference spectra and glue removal results of experiment 2 on glass F by method 

1. (b) enlarge the glue removal results of experiment 2 on glass F by method 1. 

 

    

 

  

 

 

 

According to table 3.3, the spectra of experiment 2 contain the tissue, glue, and 

coverslip information. Glue has a significant effect on the lipid region and 3400-3450 

cm−1 and the coverslip has a significant impact in 3400-3600 cm−1 and 2700-2750 

cm−1. Therefore, the glue removal code for glass F in experiment 2 aims to remove the 

effect of the glue and the coverslip. Figure 5.9 shows the result of glue removal for 

experiment 2 on glass F by method 1. After removing glue, the intensity of the lipid 

region is reduced. The broad band ( 3400-3600 cm−1 ) is disappeared, and the shape of 

spectra is close to Matrigel spectra, in which the intensity of amide A changes to higher 

than lipid. Therefore, the code of glue removal has worked in the spectra of experiment 

2. In addition, after glue removal, the spectral intensities for both epithelium and stroma 

are lower than the original spectra.  
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5.3.1.3 The result of glue removal for glass F by glue removal method 2. 

  

  

  

  

The references of glue removal method 2 are the spectra of the same glass in experiment 

1, glue and coverslip. Figure 5.10 shows the spectra on glass F, so the reference is 

spectral data of glass F in experiment 1, glue and coverslip (figure 5.10 (a)). As 

mentioned, the objectives of the original spectra in experiment 2 are to remove the 

effect of glue and coverslip. According to figure 5.10 (b), after eliminating glue, the 

intensity of lipid has been reduced to lower than amide A, and the slight peak in 3400-

3450 cm−1 has also disappeared. The glue could be regarded as being removed. 

However, the broad band in 3400-3600 cm−1 and small peak in 2700-2750 cm−1 are 

still existing in spectra after glue removal, which indicates that method 2 glue removal 

does not perform well for removing the effect of the coverslip. 
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(a) 

 

(b) 

 

Figure5. 10 (a) shows the reference spectra and glue removal results of experiment 2 on glass F by 

method 2. (b) enlarge the glue removal results of experiment 2 on glass F by method 2. 
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The fit ranges of glue removal method 2 are the same range as method 1, but the fit 

ranges in method 1 are based on Matrigel, glue and coverslip. Method 2 does not use 

the Matrigel spectra as a reference. Therefore, new fit ranges for method 2 also is tested. 

Similar to the fit range in method 1, the new fit ranges are similarly divided into four 

types: 

New fit range 1, where tissue spectra are only contributed by experiment 1’s tissue 

spectra (3258-3338 cm−1, 3050-3090 cm−1);  

New fit range 2, where tissue spectra are contributed by the absorption of glue and  

experiment 1’s tissue spectral peaks (2846-2854 cm−1, 3422-3442 cm−1);  

New fit range 3, where tissue spectra are contributed by the glue peak and experiment 

1’s tissue spectral peaks (2950-2970cm−1, 2925-2945cm−1, 2867-2887cm−1);  

New fit range 4, where tissue spectra are contributed by the absorption of  coverslips 

and experiment 1’s tissue spectral peaks (3546-3586 cm−1, 2704-2744 cm−1).  

 

Compared with the old four fit ranges, the new fit ranges are larger. Because the spectra 

of the same glass slide in experiment 1 have more overlap ranges with the spectra in 

experiment 2 than Matrigel. All spectral results with method 2 using the new fit range 

are shown in figure 5.11.  

 

 

 

 

 

According to the results in section 5.1.3, the suitable fit ranges are fit ranges 1, 3 and 4. 

Therefore, figure 5.11 compares the glue removal results of the new fit ranges 1, 2, 3, 4

 with new fit ranges 1, 3, 4. According to the spectral results, no matter how the fit ranges

 are changed, the broad bands in 3400-3600 cm−1, caused by a coverslip, still exist. In

 addition, the intensities of lipid in some spectra are still very high, and the small peaks

 in 3400 -3450 cm−1 are not removed. It means the effects of glue in some glass slides

 are not totally removed. The glue removal method 2 does not perform better than

 method 1. 

Thus, the spectral contribution of the coverslip and some glue still exists after glue 
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removal by method 2, and the new fit range still does not improve the glue removal 

results. Therefore, the old fit ranges (1, 3, and 4) will still be used in the next section.  

  

a)                                                                                             (b) 

 

(c)                                                                                                (d)  

 

Figure5. 11 (a) Mean spectra of epithelium on 12 glass slides after glue removing with method 2 in new 

fit range 1, 2, 3, 4. (b) Mean spectra of epithelium on 12 glass slides after glue removing with method 2 

in new fit range 1, 3, 4. (c) Mean spectra of stroma on 12 glass slides after glue removing with method 2 

in new fit range 1, 2, 3, 4. (d) Mean spectra of stroma on 12 glass slides after glue removing with method 

2 in new fit range 1, 3, 4. 

 

5.3.1.4 The mean spectral result of glue removal for 12 glass slides  

Comparing the spectral results of glue removal with two methods, method 1 has better 

performance than method 2. It means that the spectrum of Matrigel is more suitable as 
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the reference. For two experiments with method 1, figure 5.12 shows the glue removal 

result for all spectra on 12 glass slides. Compared with figure 5.7, all of the negative 

peaks of the original spectra in experiment 1 have changed to positive peaks. While for 

experiment 2, the prominent broad bands in 3400-3600 cm−1 in original spectra are 

removed. This means the glue removal code has reduced the effect of the coverslip. For 

experiment 2, the intensities of lipid have changed to similar to Matrigel after removing 

glue by method 1. However, the small peaks in 3400-3450 cm−1 are not very smooth 

as the results in experiment 1. In addition, the spectral intensities of epithelium and 

stroma in experiment 1 are higher than those in experiment 2. It means the spectra with 

glue removal method 1 in experiment 1 are more suitable for further studies.  

 

(a)                                                                          (b) 

 

(c)                                                                           (d) 
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Figure5. 12 (a) Mean spectra of epithelium on 12 glass slides for experiment 1 after glue removing with 

method 1. (b) Mean spectra of epithelium on 12 glass slides for experiment 2 after glue removing with 

method 1. (c) Mean spectra of stroma on 12 glass slides for experiment 1 after glue removing with method 

1. (d) Mean spectra of stroma on 12 glass slides for experiment 2 after glue removing with method 1. 

5.3.2 Glue removal for BPH & CaP samples on 6 glass slides (Study 3) 

The previous section shows glue removal is working for BPH samples on different 

types of glass slides. This section aims to test glue removal results on cancer samples.  

 

 

 

 

 

The threshold is set as the highest intensity at 3298 cm−1 in the blank space to remove 

spectra from the area without tissue. The threshold of experiment 1 and experiment 2 

are 0.012 and 0.050. The number of high-quality annotated epithelium spectra on glass 

This chapter aims to compare the different methods of glue removal and find a suitable 

glue removal method for further study. The previous section shows that the glue 

removal codes are working for the spectra of epithelium and stroma on 12 glass slides 

from the same BPH patient. Therefore, this section only shows the glue removal code 

A series of adjacent tissue slices mounted on these 6 glass slides are from 4 patients, of 

which two patients have benign prostate hyperplasia (BPH), and the other two patients 

have prostate cancer (CaP). And the information of four patients is shown in table 3.5. 

All of the samples are still measured by experiments 1 and 2, and the difference between 

the two experiments is shown in table 3.3. The experimental and data analysis 

processes are shown in section 3.5.3 in chapter 3.

using the spectra of epithelium on glass E from 4 patients. 

E is shown in table 5.3. And these spectra are used in this section analysis.  

 

Table5. 3 The number of high-quality annotated epithelium spectra on glass E 

Epithelium spectra Experiment 1 Experiment 2  

P1(BPH) 8343 8316 

P2(BPH) 21644 21438 

P3(CaP) 17135 17100 

P4(CaP) 9105 9069 
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5.3.2.1 The mean spectra of epithelium from 4 patients on glass E 

Two types of experiments measure all spectra, and the difference between them is 

shown in table 3.3. Figure5.13 compares the spectra of epithelium from 4 patients 

before glue removal in two experiments. In 2500-3700 cm−1, there is only one amide 

A peak and three lipid peaks from tissue, which is located at 3298 cm−1 and 2958 cm−1, 

2935 cm−1, 2873 cm−1, respectively. Because glue also has contribution to the lipid 

region, the intensity of lipid peaks is partly related to glue’s content. For the spectra of 

experiment 1, the lipid peaks are sometimes negative, due to removing more glue from 

the background. While for experiment 2, the backgrounds are blank glass, and the 

spectra have significant effects on glue and coverslip, which mainly lead to the very 

high intensities of lipid peaks and a broad band in 3400-3600 cm−1, respectively. In 

addition, the spectra of cancerous tissue are similar to the normal tissue in both 

experiments 1 and 2.  

 

According to table 3.3, the glue removal code for experiment 1 is to remove or add 

some glue. While for experiment 2, the code is used to remove the effect of glue and 

coverslip. As mentioned, the glue has a particular contribution  in three lipid peaks and 

3400-3450 cm−1. And coverslip has effects in 3400-3600 cm−1 and 2700-2750 cm−1. 

Therefore, these ranges are used to evaluate the impact of glue removal.  
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(a)                                                                                 (b) 

 

 

 

 

Figure5. 13 (a) Mean spectra of epithelium from 4 patients on  glass E for experiment 1 before removing 

glue. (b) Mean spectra of epithelium from 4 patients on  glass E for experiment 2 before removing glue

 

 

The reference of glue removal method 1 are spectra of glue, coverslip and Matrigel. 

And glue is removed in the fit range 1(3278-3318cm−1, 3066-3106cm−1), fit range 3 

(2950-2970cm−1 , 2925-2945cm−1 , 2867-2887cm−1), fit range 4 (3536-3576cm−1 , 

2704-2744cm−1), which are consistent with the glue removal method 1 in the previous 

5.3.2.2 The result of glue removal for glass E by glue removal method 1.

Section 5.3.1 shows that two glue removal methods work for epithelium and stroma 

spectra on different kinds of glass slides. However, all of the tissue samples are from 

the same BPH patients. The objective of this section is to determine whether the two

 glue removal methods work in the spectra from BPH and CaP patients. 

section.   

 

Figure 5.14 and figure 5.15 shows the mean spectra of epithelium on glass E in 

experiment 1 after removing glue by method 1 from two BPH patients and two CaP 

patients, respectively. According to figures 5.14 (a) and 5.15 (a), there is no band in 

3400-3600 cm−1 and 2700-2750 cm−1 before glue removal, it means that coverslip has 

a more negligible effect on the original spectra of experiment 1 for both BPH and CaP 
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patients. But except for the P4 (CaP), all original spectra of the lipid region are negative 

in experiment 1 before glue removal. So the glue removal code aims to add some 

contribution to the glue. According to figures 5.14 (b) and 5.15 (b), the intensities of 

the lipid region are increasing to a certain extent. However, some of the lipid peaks are 

still negative, which means that method 1 does not have a stable glue removal 

performance. However, for these three patients, the intensity of amide A increases after 

removing glue, proving the glue removal method 1 is working but doesn’t have a stable 

and great performance.  
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(a) 

 

(b) 

 

Figure5. 14 (a) shows the reference spectra and spectral results of BPH patients in experiment 1 on glass 

E by glue removal method 1. (b) enlarges the results of BPH patients in experiment 1 on glass E by glue 
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removal method 1. 

 

(a) 

 

(b) 
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Figure5. 15 (a) shows the reference spectra and spectral results of CaP patients in experiment 1 on glass 

E by glue removal method 1. (b) enlarges the results of CaP patients in experiment 1 on glass E by glue 

removal method 1. 

 

 

 

 

For experiment 2, the glue removal spectral results of BPH and CaP patients are shown 

in Figures 5.16 and 5.17, respectively. Glue and coverslip have significant effects on 

the original spectra in experiment 2. According to the reference spectra shown in figure 

5.16 (a) and 5.17 (a), the band in 3400-3450 cm−1 and three very high intensity of lipid 

peaks (2958 cm−1, 2935 cm−1, 2873 cm−1) are caused by glue. While the broad band 

in 3400-3600 cm−1 and a small peak at 2700-2750 cm−1 are caused by a coverslip. The 

glue removal method 1 used in the spectra of experiment 2 aims to remove these bands 

The lipid peaks are positive for P4(CaP) before glue removal. The glue has a much 

higher intensity in the lipid region than tissue, so the mean spectra of P4 still have more 

glue. According to figure 5.15 (b), the intensities of amide A and lipid peaks are reduced 

after removing glue, which means the glue removal method 1 is working in the spectra 

of P4 (CaP). 

According to the spectra of 5.14 (b) and 5.15 (b), glue removal method 1 works in both 

BPH and CaP patients. However, the shape of spectra is not very similar to the Matrigel 

spectra, especially in the lipid region. This means method 1 does not have a particularly 

stable result for glue removal. 

and reduce the intensity of lipid peaks.  

 

According to figure 5.16 (b) and 5.17(b), for spectra of both BPH and CaP patients, the 

bands in 3400-3600 cm−1 are removed after removing glue, which means the spectra 

have removed the coverslip effect. However, the bands in 3400-3450 cm−1 and lipid 

region are changed to negative, which means the spectra have removed more glue. 

Therefore, for both BPH and CaP patients, method 1 could remove the effect of the 

coverslip for the spectra of experiment 2, but the impact of glue cannot totally be 

removed. The results may be optimised by testing the more suitable fit range.  
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(a) 

 

(b) 
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Figure5. 16 (a) shows the reference spectra and spectral results of BPH patients in experiment 2 on glass 

E by glue removal method 1. (b) enlarges the results of BPH patients in experiment 2 on glass E by glue 

removal method 1. 

 

 

(a) 
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(b) 

 

Figure5. 17 (a) shows the reference spectra and spectral results of CaP patients in experiment 2 on glass 

E by glue removal method 1. (b) enlarges the results of CaP patients in experiment 2 on glass E by glue 

removal method 1. 

 

5.3.2.3 The result of glue removal for glass E by glue removal method 2. 

Glue removal method 2 used the spectra of glue, coverslip and the spectral data in 

experiment 1 as the reference. The glue removal results for BPH and CaP patients are 

shown in Figures 5.18 and 5.19, respectively. Compared to the two figures, it is easy to 

see that the three lipid peaks and small bands in 3400-3450 cm−1  for BPH patient 

change to negative. Therefore, for BPH patients, glue removal method 2 works on the 

spectra but removes more glue. However, for the CaP patients, lipid peaks’ intensities 

are reduced, but they are still positive. It means the glue removal method 2 also is 

working on CaP patients. But for spectra of P4(CaP), the intensities of lipid peaks are 

still higher than amide A, and the small peak in 3400-3450 cm−1 also is existing. It 

means the glue removal method 2 does not remove all of the extra glue. In addition, for 
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both BPH and CaP patients, there are apparent broad peaks in 3400-3600 cm−1 after 

removing glue, which is caused by the coverslip. Therefore, method 2 has a bad 

performance of glue removal on both spectra of BPH and CaP patients.  

 

 

 

(a) 
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(b) 

 

Figure5. 18 (a) shows the reference spectra and spectral results of BPH patients in experiment 2 on glass 

E by glue removal method 2. (b) enlarges the results of BPH patients in experiment 2 on glass E by glue 

removal method 2. 
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(a) 

 

(b) 
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Figure5. 19 (a) shows the reference spectra and spectral results of CaP patients in experiment 2 on glass 

E by glue removal method 2. (b) enlarges the results of CaP patients in experiment 2 on glass E by glue 

removal method 2. 

 

5.3.2.4 The result of glue removal for glass E by glue removal method 3. 

 

 

 

 

The tissue thickness from 4 patients in this section is 8 µm, which is twice the thickness 

of previous BPH tissue on 12 glass slides. However, the thickness of standard 

histological coverslips is only 0.13-0.17 mm [6][7], and it is much thinner than glass 

slides. The effect of the coverslip is minimal. As the thickness of tissue increases, the 

impact of the coverslip on the spectra is lower. Therefore, glue removal method 3 is 

tested in the experiment, in which the references are only the spectral data of experiment 

1 and glue. Figures 5.20 and 5.21 showed the glue removal results for BPH and CaP 

The reference spectra of glue removal method 2 are glue spectra, coverslip spectra and 

the spectral data of experiment 1. The previous section has shown that the glue removal 

results cannot be improved even with enlarged fit ranges (figure 5.11). The fit range for 

method 2 would still be the same as  method 1 to keep the consistency. However, 

the broad band in 3400-3600 cm−1 for BPH and CaP patients still cannot be removed 

and even more apparent after glue removal by method 2.

patients with method 3.  
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(a) 

 

(b) 
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Figure5. 20 (a) shows the reference spectra and spectral results of BPH patients in experiment 2 on glass 

E by glue removal method 3. (b) enlarges the results of BPH patients in experiment 2 on glass E by glue 

removal method 3. 

 

 

 

 

 

 

  

According to figures 5.20 and 5.21, the intensities of lipid regions are lower than the

 original spectra in experiment 2, and all of the peaks are positive for both BPH and CaP

 patients. However, except for P2(BPH) spectra, the intensities of lipid peaks of the rest

 spectra are higher than amide A, and the shape of spectra is not similar to the standard

 tissue spectra (Matrigel). Therefore, most spectra only remove some glue, which still

 leaves some glue effect. In addition, compared with the glue removal result of method

 2, the broad bands in 3400-3600 cm−1 still exist for BPH and CaP patients’ spectra after

 glue removal by method 3. Therefore, method 3 still could not improve the glue removal

 performance.  
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(a) 

 

(b) 
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Figure5. 21 (a) shows the reference spectra and spectral results of CaP patients in experiment 2 on glass 

E by glue removal method 3. (b) enlarges the results of CaP patients in experiment 2 on glass E by glue 

removal method 3. 

 

 

The glue removal is the data process to remove the effect of glue. The reference spectra 

for glue and coverslip are the mean spectra. The main glue removal error is from the fit 

range selection, and the effect of removing glue is related to the fit range. The whole 

range (2500-3700 cm⁻¹) is not used as a fit range because it caused overfitting. The final 

best fit range in chapter 5 is a relatively better range of all tests. The real best fit range 

needs to be continuous optimization by constantly reprocessing.  However, it is clear 

that removing glue via this algorithm actually introduces more variation in the spectra 

and generally results in poor performance. In addition, the paraffin was removed before 

the staining process for H&E stained tissue sample. But it might still contain some 

paraffin in actual situations. Therefore, the remained paraffin might still have a 

contribution to the spectra. Therefore, paraffin may need to be considered for glue 

5.4 Error discussion

removal. 

 

5.5 Conclusion  

There are contain mounting media for the clinical H&E stained tissue sample. The 

mounting media always affect the spectra no matter what backgrounds are used during 

the measurement. Glue is used to represent the mounting media in this project. 

Therefore, it is desirable to find a suitable glue removal method for further study.  

 

There are two kinds of glue removal methods used and the critical difference in the 

reference spectra. The reference spectra of method 1 are glue, coverslip and Matrigel. 

The spectrum of Matrigel is regarded as the standard spectrum of tissue, but it is not a 

true spectrum of tissue. The reference spectra of method 2 are selected from glue, 
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coverslip, and spectral data of experiment 1. The original spectra applied the glue 

removal method 2 are all from experiment 2. Therefore, there are mainly three types of 

glue removal spectra for comparison: experiment 1 spectra with glue removal method 

1, experiment 2 spectra with glue removal method 1 and experiment 2 spectra with glue 

removal method 2.  

 

    

 

 

 

  

 

 

 

According to the spectral results of glue removal, both methods 1 and 2 could achieve 

glue removal on both epithelium and stroma spectra from both BPH and CaP patients. 

However, glue removal method 1 has better performance than method 2. According to 

the results of two section studies, method 2 still cannot remove the effect of the 

coverslip. In addition, experiment 1 spectra with glue removal method 1 have better 

performance than on experiment 2. Therefore, glue removal method 1 would be applied 

Overfitting will result if the fit range  selected the whole spectral range (2500-3700 

cm−1) in the glue removal process. It is vital to find a suitable fit range for the glue 

removal. The fit ranges which are used for the test are selected by the obvious peaks of 

the reference spectra. According to the reference spectra and the tissue spectra without 

glue removal, the available range 2500-3700 cm−1 could be divided into four types, 

which are fit range 1: Matrigel (3278-3318cm−1, 3066-3106cm−1); fit range 2: glue & 

Matrigel peak (2848-2852cm−1, 3415-3455cm−1); fit range 3: glue peak & Matrigel 

peak (2950-2970cm−1, 2925-2945cm−1 , 2867-2887cm−1); fit range 4 coverslip & 

Matrigel peak (3536-3576cm−1 , 2704-2744cm−1). According to the comparison of 

glue removal results, the more suitable fit range are 1, 3 and 4. To keep the consistency, 

these fit ranges are applied in both methods 1 and 2. 

in further studies.  
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Chapter 6 

Study 2: Tissue classification of Haematoxylin and Eosin 

             (H&E) Stained Prostate Tissue on Different Types of     

              Glass Slides
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The project aims to study the impact of glass types on cancer detection. In addition, 

cancer detection by SHP could be based on the spectra of different histological classes 

of tissue. In general, histological categories of prostate tissue include epithelium, 

stroma, blood and secretion. Therefore, it is necessary to study whether the glass types 

could affect tissue classification before cancer detection. Because the epithelium and 

stroma account for a large proportion of prostate tissue, only epithelium and stroma 

were used for automated histological tissue classification in this study. 

 

12 different brands of glass slides (entirely from different manufacturers) are studied in 

this chapter. A series of adjacent prostate tissue sections from the same benign prostatic 

hyperplasia (BPH) patients are mounted on different glass slides. The specific 

experimental detail could see in section 3.5.2 in chapter 3. The objective of this chapter 

is to find the influence of glass types on tissue classification.  

6.1 Annotation results 

 

 

 

 

All of the annotation work is done using GIMP. The annotated brightfield images of 

glass L are examples and shown in figure 6.1. The specific pixels of H&E brightfield

 image are annotated for analysis. Epithelium is annotated in green; stroma is annotated

 in red; the blank and broken tissue areas are annotated in blue. 

(a)                                                      (b) 

Figure6. 1 (a) the annotation of region 1 of BPH tissue on brightfield image of glass L. (b) the annotation 

of region 2 of BPH tissue on brightfield image of glass L. Epithelium, stroma and blank are annotated in 

green, red and blue, respectively.   

704µm 704µm 
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6.2 Results and Discussion 

This chapter aims to study whether different types of glass impact pathological tissue 

classification. All spectra on 12 glass slides are processed by PCA and random forest. 

The spectral data from one of the glass slides are used to train the random forest model 

to classify the epithelium and stroma, and the rest spectra from the other glass slides 

are tested using the model. If the classifier could discriminate the spectra of epithelium 

and stroma on different glass slides, it would indicate that the type of glass does not 

affect histological classification. If not, the glass type affects the classification results. 

However, before the primary study process, the pre-processing of raw spectra is 

essential as well.  
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6.2.1 Infrared chemical imaging  

(a)                                                         (b)  

(c)                                                         (d) 

(e)                                                         (f)  

 

Figure6. 2 Comparison between the brightfield images and chemical images from the two experiments. 

(a) The brightfield image of prostate tissue on glass L in region 1. (b) The brightfield image of prostate 

tissue on glass L in region 2. (c) Chemical image on amide A (3298 cm−1) of prostate tissue on glass L 

in region 1 obtained in experiment 1. (d) Chemical image of prostate tissue on glass L in region 2 obtained 

in experiment 1. (e) Chemical image on amide A of prostate tissue on glass L in region 1 obtained in 

experiment 2. (f) Chemical image of prostate tissue on glass L in region 2 obtained in experiment 2. 

 

A series of adjacent prostate tissue is mounted on 12 different types of glass slides, and 

704µm 
704µm 
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figure 3.5 shows all of the tissue on the 12 glass slides. Figure 3.6 shows the one of the 

whole tissue mounted on the glass slides and the marks of the two regions measured. 

The chemical images are rendered by the intensity of the amide A band, which is located 

at 3298 cm−1. Figure 6.2 compares the chemical images of prostate tissue on glass L 

with the brightfield image on the same glass slides.  

 

According to figure 6.2, it is easy to see there is an excellent agreement in the 

morphology between the brightfield images and chemical images obtained from both 

experiments 1 and 2. Different experimental methods do not affect the chemical image. 

Since the annotation is marked on the H&E brightfield images, it has the same 

annotated histological epithelium and stroma spectra between the two experiments.  

 

6.2.2 Quality control for spectra 

To make every tissue section on each glass slide has the same shape and structure as 

possible, the 12 adjacent tissue sections are cut too thin (4µm). It caused the broken of 

some tissue areas, especially for epithelium. Figure 6.3 shows one of the broken tissue 

areas. The fractured tissue would lead to the scattering of spectra, which would 

significantly impact tissue classification results. Therefore, it is essential to remove the 

spectra from these broken areas and control quality before data processing.  

 

  

Figure6. 3 A broken epithelium of prostate tissue on glass L. 
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Because annotated spectra of experiments 1 & 2 are extracted based on the same 

annotated H&E brightfield images, the number of original annotated spectra for every 

Quality control aims to remove spectra from without tissue and broken tissue area. IR 

transmission window for glass slides is only above 2000 cm−1 . Therefore, quality 

control is based on the intensity of amide A peak. It means the intensity of amide A for 

good- quality spectra in tissue area must be higher than the highest intensity in the 

tissue-free area. And the highest intensity at 3298 cm−1 in the blank space was set as a 

threshold.  

glass slide in experiments 1 & 2 is the same, shown in table 6.1. 

 

Table6. 1 The number of annotated spectra on 12 glass slides in experiments 1 and 2  

 The number of annotated spectra 

Epithelium  Stroma  Blank & broken 

tissue area 

Glass A 3704 7526 2889 

Glass B 3990 6667 2690 

Glass C 4321 8519 2492 

Glass D  3612 6118 2292 

Glass E 4231 7156 2240 

Glass F 4585 6966 2793 

Glass G 4860 7493 2871 

Glass H 4751 9526 3076 

Glass I 4330 6362 2673 

Glass J 4200 7443 3017 

Glass K 4551 8765 3792 

Glass L 5164 7419 3803 

 

 

 

 

 

According to table 6.1, there is a difference in the number of annotated spectra among 

12 glass slides slides. Although the 12 tissue sections are adjacent and cut from the same

 patient, the structure of the tissue sections on every glass slide has a slight difference. 

In addition, the annotation is a subjective process, and all of the operations are done 

manually. Therefore, the annotation cannot keep consistency among the 12 tissue 

sections. In addition, because stroma accounts for the majority in every tissue section, 

and most of the epithelium is broken and cannot be annotated, the number of annotated 

epithelium spectra is much lower than stroma spectra.
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Compared to table 6.3 and 6.4 with table 6.2, it is easy to see the variation in the number 

of spectra after quality control. There is little change in the number of stroma spectra 

for the two experiments. However, most of the epithelium spectra are removed, and the 

The threshold of every glass slide is set as the highest intensity of amide A on the 

annotated blank and broken-tissue area. The thresholds of 12 glass slides in experiments 

1 and 2 are shown in table 6.2. To keep the consistency for further comparison among 

the spectra on 12 glass slides, the highest threshold in every experiment 1 is selected 

and applied. According to table 6.2, the thresholds for experiments 1 and 2 are 0.054 

and 0.060, respectively. Tables 6.3 and 6.4 show the number of spectra after quality 

control in experiments 1 and 2, separately.   

broken epithelium causes it in the tissue section.   

 

  Table6. 2 The thresholds of 12 glass slides in experiments 1 and 2 

Glass type Experiment 1 Experiment 2 

Glass A 0.0386 0.0378 

Glass B 0.0157 0.0243 

Glass C 0.0240 0.0312 

Glass D  0.0282 0.0374 

Glass E 0.0223 0.0330 

Glass F 0.0252 0.0303 

Glass G 0.0232 0.0278 

Glass H 0.0540 0.0600 

Glass I 0.0145 0.0253 

Glass J 0.0173 0.0251 

Glass K 0.0237 0.0361 

Glass L 0.0276 0.0370 
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Table6. 3 The number of annotated spectra on 12 glass slides in experiment 1 after quality  control  

 The number of annotated spectra 

Stroma  Epithelium 

Glass A 7526 3502 

Glass B 6666 3643 

Glass C 8519 3902 

Glass D  6118 3128 

Glass E 7155 3857 

Glass F 6966 4320 

Glass G 7493 4705 

Glass H 9525 4093 

Glass I 6362 3692 

Glass J 7443 3779 

Glass K 8765 4041 

Glass L 7419 4541 

 

Table6. 4 The number of annotated spectra on 12 glass slides in experiment 2 after quality  control  

 The number of annotated spectra 

Stroma  Epithelium  

Glass A 7526 3222 

Glass B 6667 3765 

Glass C 8519 3909 

Glass D  6118 3232 

Glass E 7155 3939 

Glass F 6966 4368 

Glass G 7493 4676 

Glass H 9525 4139 

Glass I 6362 3859 

Glass J 7443 3918 

Glass K 8765 4245 

Glass L 7419 4693 

 

noise reduction and vector 

After quality control, all good-quality spectra are processed in order of range selection, 

normalization. Because the three peaks related to the lipid 

region are highly affected by the glue. The range is only selected in 3125-3700 cm−1 

to reduce the interference from the noise, and this range contains the most valuable 

biological information in a glass transmission window. The noise reduction is using the 

first 20 PCs. 
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6.2.3 Tissue classification without glue correction 

6.2.3.1 Mean spectra of histological classes  

6.2.3.1.1 Mean spectra in experiment 1 

 

The mean spectra of epithelium and stroma on 12 glass slides for experiment 1 are 

shown in figure 6.4. According to the figure, although the tissue sections are mounted 

on different glass slides, the shape of spectra is similar. There is only a pronounced peak 

at amide A (3298 cm−1) for all of the mean spectra on 12 glass slides in experiment 1, 

and the peak results from tissue. The intensity of amide A on 12 glass slides is also 

similar. Comparing the mean spectra of epithelium and stroma on 12 glass slides (figure 

6.4 (a) &(b)), the intensities of stroma spectra are always higher than the epithelium 

spectra on the same glass slides. Because the structure of epithelium has more holes.  

 

However, the spectral intensity and the trend of 12 glass slides are different in  3400-

3450 cm−1 . The peak in this range is related to the O-H &N-H stretching[19]. 

According to the spectra of glue in figure 5.2, this difference is caused by the glue and 

measurement method. For experiment 1, the background is a clear area without tissue. 

Due to tissue thickness, the glue content on the background is variable. If the content 

of glue on the background is less than that in the sample, the tissue spectra would 

contain a little glue, and there would be a positive peak in 3400 – 3450 cm−1 in figure 

6.4, which are indicated in the spectra on glass I and glass D. If not, the final spectra 

would be from tissue minus a little glue and cause a negative peak in this range, which 

is obviously indicated in the spectra on glass A (figure 6.4). The spectra are generated 

only from the tissue when the glue content on the background is exactly the same as 

that on tissue. However, it is tough to achieve.       
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(a) 

(b) 
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Figure6. 4 (a) Mean spectra of epithelium on 12 glass slides in 3125 – 3700 cm−1 for experiment 1. (b) 

Mean spectra of stroma on 12 glass slides in 3125 – 3700 cm−1 for experiment 1. 

  

6.2.3.1.2 Mean spectra in experiment 2 

 

Figure 6.5 shows the mean spectra of tissue in experiment 2. Compared with the mean 

spectra in experiment 1 (figure 6.4), the main differences are the band in 3400-3450 

cm−1  and  3400-3600 cm−1 . Because the background in experiment 2 is blank glass 

and sample measurement includes coverslip, glue, tissue and glass slide, so the final 

spectra contain the information from coverslip, glue and tissue (table 3.3). According 

to figure 5.2, the band in 3400-3450 cm−1  and  3400-3600 cm−1 are caused by glue 

and coverslip, respectively. Although the glue and coverslip significantly affect spectra, 

all of the mean spectra on 12 glass slides have the same shape and trend, and only the 

intensity of amide A is slightly different. It indicates that the type of glass has no 

extreme effect on spectra. 

 

(a) 
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(b) 

 

Figure6. 5 (a) Mean spectra of epithelium on 12 glass slides in 3125 – 3700 cm−1 for experiment 2. (b) 

Mean spectra of stroma on 12 glass slides in 3125 – 3700 cm−1 for experiment 2. 

 

In addition, the spectra of epithelium and stroma have a similar shape for both two 

experiments. However, the spectral intensity of stroma is always higher than epithelium 

on the same glass slide due to the structure of epithelium.  

 

6.2.3.2 The PCA of 12 glass slides  

There is no noticeable difference among the mean spectra on 12 glass slides for 

experiments 1 and 2. Therefore, the results of PCA could indicate the difference in 

spectral data among different types of glass slides. Two hundred spectra of stroma and 

epithelium on 12 glass slides are randomly selected, and the PCA is based on these 

random spectra. Figure 6.6 and figure 6.8 show the PCA results of 12 glass slides for 

experiment 1 and experiment 2. Because the spectra of epithelium and stroma have 
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similar PCA distribution in both experiments 1 and 2, only the PCA results of spectra 

of stroma in the two experiments are shown.  

 

6.2.3.2.1 The results of PCA of 12 glass slides in experiment 1 

 

Figure 6.6 is PCA scatter plots to separate stroma on 12 glass slides in experiment 1, in 

which the (a), (b), (c) represent the score plots of PC1 vs PC2, PC1 vs PC3, and PC2 

vs PC3, respectively. The scores of PC1, PC2 and PC3 are 68.8%, 22.5% and 3.69% 

respectively. In addition, figure 6.7 shows the loadings on the three PCs. There is no 

clear separation among the spectra of tissue sections on 12 glass slides in experiment 1. 

However, the spectra have a regular distribution on PC1. 

 

(a) 
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(b) 

 

(c) 
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Figure6. 6 (a) The score plots of PC1 and PC2 of stroma on 12 glass slides in experiment 1. (b) The score 

plots of PC1 and PC3 of stroma on 12 glass slides in experiment 1. (c)The score plots of PC2 and PC3 

of stroma on 12 glass slides in experiment 1. 

 

According to figure 6.7 (a), PC1 mainly has two whole peaks in the range of 3125 – 

3700 cm−1. The positive peak located at 3295 cm−1 is related to amide A. The broad 

negative peak located at 3437 cm−1 is associated with O-H asymmetric stretching[19]. 

According to the comparison of the mean spectra of glue (figure 5.2), the negative peak 

(3437 cm⁻¹) is caused by glue. According to the loading of PC1, the distribution of 

spectra on PC1 is nearly positively correlated with the intensity of amide A and 

negatively relative to the intensity of glue peak (3400-3450 cm−1). 

 

The loading on PC2 is shown in figure 6.7 (b). The positive peak located at 3274 cm−1 

belongs to O-H symmetric stretching. The negative peaks located at 3342 and 

3478 cm−1 are related to N-H and O-H stretching [19][20]. The spectra on every glass 

are distributed in both positive and negative areas, which means spectra cannot be 

separated based on the PC2.   

 

  

  

    

 

  

According to figure 6.7 (c), many peaks are made of the PC3 loading. The two positive 

peaks (3295 and 3432 cm−1) are related to amide A (N-H stretching) [19]. All of the 

negative peaks (3224, 3350 and 3486 cm−1) and one positive peak (3556 cm−1) are 

related to O-H stretching [20]. According to figure 6.6 (b) and (c), spectra on every 

glass slide have similar distributions on both negative and positive areas of PC3

. Therefore, the spectra cannot be separated based on the PC3.
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(a) 

 

(b) 
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(c) 

 
Figure6. 7 (a) The PC1 loading for PCA of stroma on 12 glass slides in experiment 1. (b) The PC2 loading 

for PCA stroma on 12 glass slides in experiment 1. (c) The PC3 loading for PCA of stroma on 12 glass 

slides in experiment 1. 

 

6.2.3.2.2 The results of PCA of 12 glass slides in experiment 2 

The scores of PC1, PC2 and PC3 in experiment 2 are 64.4%, 22.3% and 7.39%, 

respectively. Figure 6.8 (a) indicates a clear separation between the spectra of stroma 

on glass A and the other glass slides depending on PC1 and PC2. However, the spectra 

of stroma on the other 11 glass slides cannot be separated entirely.  

 

The loadings of three PCs are shown in figure 6.9. The PC1 mainly results from the 

negative peak (3295 cm−1), which is related to amide A. The distribution of spectra on 

PC1 should be around negatively correlated with the intensity of amide A. According 

to the mean spectra of stroma on glass A (figure 6.4 (b)), the intensity of amide A on 

glass A is relatively high than on most glass slides, so the spectra of glass A distributed 

on the PC1 negative area. 
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Figure 6.9 (b) indicates PC2 mainly includes three peaks. One positive peak, located at 

3293 cm−1, is related to amide A, and two negative peaks located at 3436 and 3544 

cm−1 are both related to O-H stretching, which may be from the glue and coverslip, 

respectively. The distribution of spectra on PC2 is nearly positively correlated with the 

intensity of amide A and negatively related to the intensity of glue and coverslip. 

According to the mean spectra of stroma on 12 glass slides (figure 6.4 (b)), the intensity 

of amide A generally negatively correlates with the intensity of glue peak on most glass 

slides. So except for glass A, the spectra on the other 11 glass slides locate on both 

positive and negative areas of PC2 and cannot separate.  

 

For the spectra on glass A, the intensity of amide A is relatively high, but the intensity 

of glue peak (3450 cm−1 ) is much higher than the other glass slides. Therefore, the 

distribution of spectra of glass A on PC2 is more affected by the intensity of the glue 

peak. The spectra of stroma on glass A only distribute on the negative area of PC2.  
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(a) 

 
(b) 
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(c) 

 
Figure6. 8 (a) The score plots of PC1 and PC2 of stroma on 12 glass slides in experiment 2. (b) The score 

plots of PC1 and PC3 of stroma on 12 glass slides in experiment 2. (c)The score plots of PC2 and PC3 

of stroma on 12 glass slides in experiment 2. 
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(a) 

 

(b) 

 

(c) 
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Figure6. 9 (a) The PC1 loading for PCA of stroma on 12 glass slides in experiment 2. (b) The PC2 loading 

for PCA stroma on 12 glass slides in experiment 2. (c) The PC3 loading for PCA of stroma on 12 glass 

slides in experiment 2. 

 

6.2.3.3 The epithelium and stroma classification on every glass slide  

Spectra of epithelium and stroma are compared in 3125 – 3700 cm−1  to find the 

difference between the epithelium and stroma on the same glass slides. Because the 

results of the spectral comparison of epithelium and stroma on the same glass are similar. 

The comparison of spectra of epithelium and stroma on glass L is used as an example 

and demonstrated. Figures 6.10 and 6.12 show the spectral comparison results on glass 

L for experiment 1 and experiment 2.  

 

6.2.3.3.1 Tissue classification on same glass slides in experiment 1 
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(a) 

 

(b) 
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Figure6. 10 (a) Mean spectra of epithelium and stroma on glass L in experiment 1. (b) All of the spectra 

of stroma and epithelium on glass L in experiment 1 (epithelium in green and stroma in red). 

 

Based on the mean spectra of epithelium and stroma (figure 6.10 (a)), it generally 

indicates that the intensity of amide A for stroma is higher than the epithelium. However, 

Figure 6.10 (b) shows that the stroma and epithelium spectra on glass L are nearly 

overlapping. It means the spectra of epithelium and stroma on the same glass slide have 

a minor difference. Therefore, to have an apparent separation between epithelium and 

stroma, PCA of spectra of stroma and epithelium is necessary to process, and 200 

spectra of every type of tissue are randomly selected. 

 

(a) 
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(b) 

 

(c) 
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Figure6. 11 (a) The score plots of PC1 and PC2 of epithelium and stroma on glass L in experiment 1. (b) 

The score plots of PC1 and PC3 of epithelium and stroma on glass L in experiment 1. (c) The PC1 loading 

for PCA of epithelium and stroma on glass L in experiment 1. 

 

According to figure 6.11 (a) and (b), there is a relatively clear separation between the 

spectra of epithelium and stroma on glass L, and the separation is based on PC1. The 

loading of PC1 is shown in figure 6.11 (c). The score of PC1 is 71%, and PC1 is mainly 

made of the negative peak (3306 cm−1), which is related to N-H asymmetric stretching 

[19]. N-H is from the tissue, and their intensity is positively correlated to amide A. 

Therefore, the distribution of spectra on PC1 is negatively correlated with the intensity 

of amide A. It means the spectra with higher intensity of amide A are distributed in a 

negative area of PC1. According to the spectra of epithelium and stroma on glass L 

(figure 6.10), most of the intensity of amide A of the stroma is higher than the 

epithelium. Thus, the spectra of the stroma are mainly located in a negative area of PC1, 

and most of the spectra of epithelium are distributed in a positive area of PC1. 

 

  

Because the spectra in experiment 2 contain additional spectral information of glue and 

coverslip. The small peak in 3400-3450 cm−1 and broad peak in 3400-3600 cm−1 is 

related to glue and coverslip, respectively. For experiment 2, the mean spectra and all 

of the spectra of epithelium and stroma on glass L are shown in figure 6.12 (a) and (b). 

The mean spectra indicate that, in general, the intensity of amide A of the stroma is 

higher than the epithelium. While the intensity of bands (3400 – 3600 cm−1 ) of 

epithelium is higher than the stroma. Figure 6.12 (b) shows that all spectra of epithelium 

and stroma, and most of the spectra are overlap and cannot be separated only depending 

6.2.3.3.2 Tissue classification on the same glass slides in experiment 2

on the spectra. It is necessary to separate epithelium and stroma by PCA.  
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(a) 

 

(b) 
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Figure6. 12 (a) Mean spectra of epithelium and stroma on glass L in experiment 2. (b) All of the spectra 

of stroma and epithelium on glass L in experiment 2 (epithelium in green and stroma in red). 

 

Figure 6.13 (a) and (b) make it easy to see that the epithelium and stroma have a 

separation trend in experiment 2 based on the PC1. And the loading of PC1 is shown in 

figure 6.13 (c). Two whole peaks are made of PC1. One is a positive peak (3298 cm−1)  

related to amide A and the negative abroad peak (3400 – 3700 cm−1) is connected to 

glue and coverslip. They mean the intensity of amide A is positively correlated to PC1, 

and the intensity of bands related to glue and coverslip are negatively correlated to PC1. 

According to figure 6.12, for stroma spectra in experiment 2, the intensity at amide A 

is higher than epithelium, while the intensity at glue range is lower than epithelium. 

Therefore, most of the spectra of the stroma are located in a positive area of PC1, while 

most of the spectra of epithelium are located in the negative area. 

 

 

(a) 
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(b) 

 

(c) 
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Figure6. 13 (a) The score plots of PC1 and PC2 of epithelium and stroma on glass L in experiment 2. (b) 

The score plots of PC1 and PC3 of epithelium and stroma on glass L in experiment 2. (c) The PC1 loading 

for PCA of epithelium and stroma on glass L in experiment 2. 

 

In addition, comparing the PCA results of epithelium and stroma between the two 

experiments (figure 6.11 and 6.13), the spectra of epithelium and stroma in experiment 

1 have a better separation than spectra in experiment 2.  

 

6.2.3.4 Automated histopathological classification on the same glass slide  

 

 

Table6. 5 Classifier construction by random forest (Take spectra on glass L as an example.

Random forest is a common method to classify spectra of epithelium and stroma. All 

of the spectra of epithelium and stroma on the same glass slides are divided into two 

data set. 80% of spectral data are used to train the classifier, and the rest 20% of 

spectral data are used to test the classifier. The classifier can be evaluated by the 

accuracy of histological classification. 

) 

 Training set  Test set  

Model test  80% spectra of stroma L 20% spectra of stroma L 

80% spectra of epithelium L 20% spectra of epithelium L 

 

The accuracies of epithelium and stroma classification on the same glass for 

experiments 1 and 2 are shown in table 6.6. According to the exactness in the table, all 

of the overall accuracies are above 98.40%. It indicates the classifier has high accuracy 

in discriminating the epithelium and stroma on the same glass slides for experiments 1 

and 2. Compared with the specific accuracies on the same glass slide, the classification 

results in experiment 1 are slightly better than those in experiment 2.  
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Table6. 6 The accuracy of histological classification on the same glass slide in experiments 1 and 2. 

Model test (%) Experiment 1  Experiment 2  

Glass A 98.78 98.84 

Glass B  99.37 98.80 

Glass C 98.71 98.95 

Glass D 99.24 98.82 

Glass E 99.77 99.14 

Glass F 99.47 98.99 

Glass G 99.51 99.42 

Glass H 98.42 98.83 

Glass I 99.25 99.22 

Glass J 99.55 99.38 

Glass K 99.53 99.58 

Glass L 99.62 99.38 

 

6.2.3.5 Automated histopathological classification on the different glass slides  

The high accuracy in the previous part has indicated that the spectra of epithelium and 

stroma could be easily classified on the same glass slide by random forest. Furthermore, 

the main aim of this chapter is to look at the influence of glass type on histological 

classification. It is necessary to classify the spectra of epithelium and stroma on the 

different glass slides.  

 

Spectral data from one glass slide are used to train the classifier to distinguish 

epithelium and stroma. And the spectra from the other glass slide are used to test the 

classifier. If the classifier could classify the spectra of epithelium and stroma on the 

different glass slides, it would indicate that the type of glass does not affect histological 

classification. If not, the type of glass affects tissue classification. 

 

    

 

 

 

Tables 6.7 and 6.8 show all results of tissue classification on different types of glass 

slides in experiments 1 and 2. According to the classification results in experiment 1 

(Table 6.7), most of the tissue classification accuracy of the classifier is above 90%. 

The bad classification results, which classification accuracy lower than 80%, are 

highlighted in blue. According to the highlighting in table 6.7, it could be easier to find 

that the performance of classifiers, which independently tested on the spectra on glass 

I, are poor and the worst accuracy are only around 52%.
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Table6. 7 The accuracy of histological classification on different glass slides in experiment 1 

Accuracy 

(%) 

Test on  

glass A 

Test on  

glass B 

Test on  

glass C 

Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass G 

Test on  

glass H 

Test on  

glass I 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on 
glass A  99.29  98.37  96.24  98.86  98.09  98.66  97.63  87.51  98.83  99.25  98.47  

Train on 
glass B 92.07   96.63  92.13  98.95  96.01  96.74  96.78  67.90  98.50  99.55  97.02  

Train on 

glass C 98.54  99.19   94.82  99.13  99.18  99.02  97.56  76.98  99.22  99.21  96.38  

Train on 

glass D 78.29  95.19  85.14   94.39  82.05  89.34  89.43  95.75  93.13  97.01  98.09  

Train on 

glass E 94.42  99.25  98.10  93.69   95.86  98.15  97.75  77.23  98.33  99.32  95.59  

Train on 

glass F 97.64  96.83  98.37  80.92  97.17   98.82  93.02  63.43  96.77  95.09  83.15  

Train on 

glass G 96.16  97.52  98.98  71.26  98.01  97.86   94.38  52.12  96.90  96.59  80.07  

Train on 

glass H 93.70  99.46  97.69  97.49  98.81  93.09  98.55   80.13  98.89  99.47  98.81  

Train on 

glass I 89.35  96.97  90.65  97.20  95.20  86.91  92.81  93.67   94.72  97.18  98.89  

Train on 

glass J 97.82  99.41  98.41  97.86  98.91  98.70  98.53  97.86  90.87   99.39  98.20  

Train on 

glass K 92.28  99.35  95.64  95.39  98.64  94.58  96.59  96.97  75.72  98.24   98.00  

Train on 
glass L 84.61  98.26  92.10  98.57  95.82  89.39  92.32  93.66  95.67  95.96  97.81   

 

 

Table6. 8 The accuracy of histological classification on different glass slides in experiment 2 

Accuracy 

(%) 

Test on  

glass A 

Test on  

glass B 

Test on  

glass C 

Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass G 

Test on  

glass H 

Test on  

glass I 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on 
glass A  72.85  75.72  76.13  72.20  67.93  70.81  78.77  80.06  73.33  74.27  76.31  

Train on 

glass B 56.89   98.41  97.68  96.62  92.73  98.82  97.52  93.48  98.01  98.46  99.26  

Train on 

glass C 58.48  98.32   97.26  97.80  94.97  99.27  95.89  87.05  98.84  99.19  98.74  

Train on 

glass D 75.76  98.06  97.98   94.48  88.50  98.74  97.61  90.64  96.05  95.78  98.89  

Train on 

glass E 61.45  94.01  96.51  90.51   98.11  98.24  85.69  59.45  99.05  98.25  93.48  

Train on 

glass F 48.45  89.95  94.12  84.62  97.91   97.66  75.75  57.33  96.37  95.70  89.94  

Train on 

glass G 68.13  97.11  98.20  94.99  98.19  97.68   93.95  78.27  98.64  98.75  97.88  

Train on 

glass H 69.42  98.14  96.93  98.45  90.72  80.75  97.47   96.01  94.16  95.18  98.63  

Train on 

glass I 96.40  93.41  87.89  92.36  80.22  72.00  88.13  93.36   84.26  87.62  92.59  

Train on 

glass J 54.55  96.27  97.55  93.72  98.60  96.31  99.01  90.57  65.76   99.02  95.92  

Train on 
glass K 69.43  97.32  98.36  95.71  98.57  96.05  99.14  93.95  74.06  99.11   97.52  

Train on 

glass L 68.33  98.59  98.30  96.91  95.97  93.55  98.45  97.01  91.29  97.80  98.35   

 

For experiment 2, classification accuracy is above 90% for most classifiers. However, 

the classifier trained by spectral data of glass A always has a poor classification 

performance. In addition, the other classifiers always have poor accuracy results when 

they are tested on glass A and glass I. It is caused by the spectral difference on glass A. 

According to the mean spectra (figure 6.5) and PCA results (figure 6.8) in experiment 

2, the spectra of glass A have a specific difference and could be separated from the 
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spectra on the rest 11 glass slides. Glass A has much more glue than the other glass slide, 

which lead to the intensity of glue peak (3400-3450 cm−1) are much higher. For glue 

peak, the intensity of epithelium is usually higher than stroma. Therefore, if the spectral 

data on glass A is used to train a model, the tested spectra of epithelium on the other 11 

glass slides would be misclassified as stroma and cause low accuracy.  

 

The high classification accuracies of the two experiments indicate that the type of glass 

slide has little influence on tissue classification. In addition, the spectra in experiment 

1 always have better tissue classification performance than experiment 2. 

 

6.2.4 Tissue classification with glue removal 

According to the comparison between experiments 1 and 2 (tale 3.3), it is easy to see 

glue will have much more influence on the spectra in experiment 2. While for 

experiment 1, because the glue content on the background and tissue sample is variable, 

spectra information maybe plus or minus a little glue. It can be seen in the mean spectra 

of 12 glass slides (figure 6.4); some of the mean spectra have positive peaks, and some 

of them have negative peaks in 3400 – 3450 cm−1. However, the little glue has a slight 

influence on spectra in experiment 1. Therefore, in both experiments 1 and 2 an attempt 

will be made to correct or remove glue from spectra.  

 

Glue removal is based on the principle of spectral subtraction, and the critical function 

of code is least squares with known covariance (LSCOV). According to the discussion 

in chapter 5, the most suitable reference spectra of glue removal are the spectra of 

Matrigel, coverslip and glue, and the most suitable fit ranges include range 1: Matrigel 

(3278-3318 cm−1 , 3066-3106 cm−1 ); range 3: glue peak & Matrigel peak (2950-

2970cm−1 , 2925-2945cm−1 , 2867-2887cm−1 ); range 4 coverslip & Matrigel peak 

(3536-3576cm−1 , 2704-2744cm−1 ). The reference spectra are shown in figure 5.2. 

Every mean spectrum of epithelium and stroma has had the glue removed. Figures 6.14 
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and 15 showed the mean spectra after correcting or removing glue on 12 glass slides in 

experiments 1 and 2.  

 

6.2.4.1. Mean spectra with glue removal  

6.2.4.1.1 Mean spectra with glue removal in experiment 1  

 

(a)  
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(b) 

 

Figure6. 14 (a) the mean spectra of epithelium on 12 glass slides with glue removal in 3125 – 3700 cm⁻¹ 

for experiment 1. (b) mean spectra of stroma on 12 glass slides with glue removal in 3125 – 3700 cm⁻¹ 

for experiment 1 

 

Table 3.3 shows that the spectra information in experiment 1 includes tissue plus or 

minus some glue. In addition, the spectral range in 3400-3450 cm−1 is related to glue. 

Therefore, the mean spectra without glue removal on 12 glass slides (figure 6.4) have 

different trends in the 3400-3450 cm−1 region. For example, the mean spectra on glass 

A have prominent negative peaks in 3400-3450 cm−1 but the mean spectra on glass I 

positive peaks in this range.  

 

 

 

 

 

  

 

Figure 6.14 show that after removing glue, for mean spectra on glass A the negative 

peak in 3400 -3450 cm−1 has disappeared, indicating that some of the glue has been 

added to mean spectra on glass A, while for the mean spectra on glass I, there is no 

positive peak in the range of 3400 -3450 cm−1 after glue removal. It shows the glue on 

spectra of glass I has already been removed.
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6.2.4.1.2 Mean spectra with glue removal in experiment 2 

 

Table 3.3 indicates that spectra in experiment 2 are significantly affected by the glue 

and coverslip. Based on the spectra in figure 5.2, the band in 3400-3450 cm−1  and 

3400-3600 cm−1 are caused by glue and coverslip, respectively. Figure 6.15 shows the 

mean spectra of 12 glass slides in experiment 2 after removing the glue, and it is easy 

to see the small peaks 3400-3450 cm−1 and the broad brands in 3400-3600 cm−1 have 

been removed, compared with the mean spectra of 12 glass slides without removing 

glue (figure 6.5).  

 

However, the spectra in 3400-3450 cm−1  are not very smooth and have slightly 

negative trends after removing glue in figure 6.15. It is caused by over remove the glue. 

Therefore, there is some limitation on the code of glue removal.  

 

(a) 
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(b) 

  

 

Figure6. 15 (a) the mean spectra of epithelium on 12 glass slides after removing glue in 3125-3700 cm⁻¹  

for experiment 2. (b) mean spectra of stroma on 12 glass slides after removing glue in 3125-3700 cm⁻¹ 

for experiment 2 

 

 6.2.4.2. The PCA on 12 glass slides with glue removal  

PCA results of spectra on 12 glass slides in experiments 1 and 2 with glue removal are 

shown in Figures 6.16 and 6.17, respectively. The PCA distributions of epithelium and 

stroma on 12 glass slides are similar, so the PCA results are shown from spectra of the 

stroma only. 

 

6.2.4.2.1 The results of PCA on 12 glass slides in experiment 1 with glue removal 

 

According to figure 6.16 (a), there is no clear separation between the spectra on 12 glass 

slides, but there is a regular trend in distribution on PC2. Therefore, figure 6.16 only 

shows the score plots of PC2 and PC3 and the loading of PC2. 
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(a) 

 

(b) 
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Figure6. 16 (a) The score plots of PC2 and PC3 of stroma on 12 glass slides with glue removal in 

experiment 1. (b) The PC2 loading for PCA stroma on 12 glass slides with glue removal in experiment 

1. 

 

According to the loading of PC2 (figure 6.16 (b)), it shows that the PC2 only is made 

of one negative peak, which is related to amide A (3296 cm−1). Therefore, the intensity 

of amide A is negatively correlated to PC2. It means the lower the intensity of amide 

A, the more spectra are distributed in the positive area of PC2. 

 

6.2.4.2.2 The results of PCA on 12 glass slides in experiment 2 with glue removal 

 

PCA results of spectra of stroma on 12 glass slides after removing glue are shown in 

figure 6.17. There is no separation among the spectra on 12 glass slides from the score 

plots. And according to the loading of PC1, PC1 is made of a significant positive peak 

at 3298 cm−1, which is related to amide A. Thus, the distribution of PC1 is positively 

associated with the intensity of amide A. However, because the difference of intensities 

of amide A among 12 glass slides is tiny, the distribution of spectra on PC2 only has a 

regular but cannot be separated.  

 

In addition, compared with the PCA results of spectra on 12 glass slides in experiment 

2 without glue removal (figure 6.8), there is an apparent separation between glass A and 

the other glass slides. However, after removing the glue, the separation disappeared. 

Therefore, the split for spectra without glue removal is much more caused by glue rather 

than tissue. Furthermore,  the type of glass slides has very slight effect on the infrared 

spectra.  

 

  



208 

 

(a) 

 

(b) 

Figure6. 17 (a) The score plots of PC1 and PC2 of stroma on 12 glass slides after removing glue in 

experiment 2 (b) The PC1 loading for PCA stroma on 12 glass slides after removing glue in experiment 
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2. 

 

6.2.4.3 The epithelium and stroma classification on every glass slide  

According to the PCA results of spectra with glue removal on 12 glass slides, there is 

no separation in experiments 1 and 2. It indicates that the spectra with glue removal on 

12 glass slides are similar. Therefore, the spectra of epithelium and stroma on glass L 

are used as an example.  

 

6.2.4.3.1 The tissue classification on every glass slide in experiment 1 

 

(a) 

 

  



210 

 

(b) 

 

Figure6. 18 (a) Mean spectra of stroma and epithelium on glass L with glue removal in experiment 1 

(b)All of the spectra of stroma and epithelium on glass L with glue removal in experiment 1 (epithelium 

in green and stroma in red).   

 

According to the mean spectra of epithelium and stroma on glass L (figure 6.18 (a)), 

the spectral intensity of amide A of epithelium is lower than the stroma. Figure 6.18 (b) 

indicates all spectra of epithelium and stroma in experiment 1 after removing glue have 

a significant overlap. However, spectra of epithelium and stroma can be separated by 

PCA. And figure 6.19 shows the PCA results of stroma and epithelium on glass L.  
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(a) 

 

(b) 

 

Figure6. 19 (a) The score plots of PC2 and PC3 of epithelium and stroma on glass L with glue removal 

in experiment 1. (b) The PC3 loading for PCA of epithelium and stroma on glass L with glue removal in 
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experiment 1. 

 

 

 

 

6.2.4.3.2 The tissue classification on every glass slide 

According to figure 6.19 (a), there is a separation between the spectra of epithelium and 

stroma with glue removal on glass L. The separation mainly depends on the PC3, which 

only accounts for 3.84% of the full information. From the loading of PC3 (figure 6.19

 (b)), it is mainly made of a negative peak, which locates at 3302 cm−1 . Thus, the

 distribution of spectra on PC3 is negatively correlated with the intensity of amide A.

 Figure 6.18 has indicated that most of the spectra of stroma have higher intensity at

 amide A than spectra of epithelium. Therefore, most of the spectra of the stroma are

 distributed in the negative area of PC3. 

in experiment 2 

 

Figure 6.20 shows the spectra of stroma and epithelium after removing glue in 

experiment 2. Although the spectra overlap, the difference between the stroma and 

epithelium is the intensity of amide A. In general, the intensity of amide A for most 

spectra of the stroma is higher than epithelium.  
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(a) 

 

(b) 

Figure6. 20 (a) Mean spectra of stroma and epithelium on glass L after removing glue in experiment 2. 
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(b) All of the spectra of stroma and epithelium on glass L after removing glue in experiment 2. 

(epithelium in green and stroma in red). 

  

 

  

 

 

Because the epithelium and stroma cannot be distinguished,obviously, the PCA is used

 for discrimination. Figure 6.21 shows the PCA results of tissue classification. The score

 plot of PC1 and PC2 shows that the spectra of epithelium and stroma cannot be

 separated. But there is a separating trend on the PC1. According to the loading of PC1

 (figure 6.21(b)), the positive peak at 3300 cm−1 and the negative peak at 3600 cm−1

 

 

(

are made PC1. In addition, the peak at 3600 is caused by O-H stretching. Therefore, the 

PC1 is positively related to the intensity of amide A and negatively related to the O-H 

stretching. According to the spectra of epithelium and stroma in figure 6.20, the 

intensity of amide A of the stroma is higher than the epithelium. While the intensity of 

peaks at 3600 cm−1 for stroma usually is lower than epithelium. Thus, more spectra of

 the stroma are distributed in the positive area of PC1. 

a) 
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(b) 

 

Figure6. 21 (a) The score plots of PC1 and PC2 of epithelium and stroma on glass L after removing glue 

in experiment 2. (b) The PC1 loading for PCA of epithelium and stroma on glass L after removing glue 

in experiment 2. 

 

Comparing the PCA results before and after removing glue in both experiments 1 and 

2, it is easy to find that the separation of epithelium and stroma based on PCA always 

has a better performance when the spectra have not been subjected to glue removal. It 

suggests that the glue has a specific contribution to tissue classification.  

 

6.2.4.4 Automated histopathological classification on the same glass slide 

As mentioned in the previous section, the separation of spectra of epithelium and stroma 

with glue removal on the same glass slide is not very clear, according to PCA. It is 

necessary to achieve stroma and epithelium classification by building a classifier.  

 

Random forest based histopathological classification on the same glass slides is 
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Table6. 9 The accuracy of histological classification on the same glass slide in experiments 1 and 2 after 

achieved by training a classifier using 80% spectra of stroma and epithelium. The 

remaining 20% spectra are used to test whether the classifier could predict the class the 

spectrum belongs to (table 6.5). The accuracy is used to evaluate the performance of 

the classifier. The accuracy of the classifier on the same glass slides in experiments 1 

and 2 with glue removal is shown in table 6.9.

removing the glue. 

Model test Experiment 1  Experiment 2  

Glass A 98.14 98.05 

Glass B  98.98 97.99 

Glass C 98.67 98.51 

Glass D 97.73 97.38 

Glass E 98.68 98.69 

Glass F 98.72 97.71 

Glass G 98.61 98.85 

Glass H 97.76 97.07 

Glass I 99.01 97.99 

Glass J 98.75 98.72 

Glass K 99.26 98.77 

Glass L 99.21 98.18 

 

According to the accuracies in table 6.9, the overall accuracies are above 97.70% in 

experiments 1 and 2 after removing the glue. It indicates classifiers still have high 

accuracy in discriminating the epithelium and stroma on the same glass slides for both 

experiments with glue removal. In addition, the accuracy in experiment 1 with glue 

removal is slightly higher than in experiment 2 with glue removal.  

 

 

 

6.2.4.

Compared with the accuracy without glue removal (Table 6.6), the accuracies of 

experiments 1 & 2 with glue removal (97.70%) are slightly lower than those 

without glue removal (98.40%).  

5 Automated histopathological classification on the different glass slides 

The independent test is processed to study the effect of glass type on tissue classification. 

The independent test uses the spectra from one of the glass slides to test a classifier 
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trained by spectral data from the other glass slides. The independent test results in 

experiments 1 and 2 with glue removal are shown in Tables 6.10 and 6.11, respectively. 

In addition, the accuracies lower than 80% in the two tables are highlighted in blue. 

Therefore, it is easy to find that the tissue classification on the different glass slides has 

poor performance in two experiments with glue removal, but the accuracy in 

experiment 2 with glue removal is slightly higher. 

 

Table6. 10 The accuracy of histological classification on different glass slides in experiment 1 after 

removing glue  

Accuracy 

(%) 

Test on  

glass A 

Test on  

glass B 

Test on  

glass C 

Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass G 

Test on  

glass H 

Test on  

glass I 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on 
glass A  67.07  82.05  66.27  65.53  68.82  62.62  83.35  63.48  74.02  68.56  62.68  

Train on 

glass B 33.91   85.19  69.04  90.54  76.18  96.31  67.77  67.38  61.38  73.68  73.79  

Train on 

glass C 48.23  99.19   69.37  92.39  76.88  96.72  92.92  67.78  77.37  75.22  76.25  

Train on 

glass D 38.27  94.75  88.58   89.97  72.84  87.12  83.32  82.56  88.79  97.18  97.58  

Train on 

glass E 32.36  97.48  71.80  48.69   76.24  97.64  53.39  50.59  46.01  61.51  56.56  

Train on 

glass F 55.89  97.22  93.05  60.74  97.86   96.30  84.10  54.53  87.60  94.94  94.56  

Train on 

glass G 32.52  98.25  72.35  60.69  95.39  76.24   59.13  55.16  65.29  81.38  86.91  

Train on 

glass H 52.91  93.04  96.50  61.31  86.60  72.15  87.25   56.03  97.80  98.39  97.06  

Train on 

glass I 37.07  97.47  74.78  87.74  93.27  74.61  93.70  68.10   75.56  91.10  86.28  

Train on 

glass J 52.68  77.18  86.55  61.12  77.38  66.07  72.14  90.81  55.19   98.52  96.74  

Train on 
glass K 32.43  96.05  70.73  60.71  95.55  74.51  92.63  63.22  55.40  80.20   96.20  

Train on 
glass L 35.33  94.96  76.79  62.58  95.24  73.64  93.81  70.99  55.85  83.84  97.64   
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Table6. 11 The accuracy of histological classification on different glass slides in experiment 2 after 

removing glue  

Accuracy 

(%) 

Test on  

glass A 

Test on  

glass B 

Test on  

glass C 

Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass G 

Test on  

glass H 

Test on  

glass I 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on 
glass A  64.36  69.30  68.28  64.95  61.65  63.60  71.09  69.52  65.87  67.50  63.65  

Train on 
glass B 29.98   75.26  60.57  97.13  94.12  53.82  68.78  55.73  98.24  97.84  76.76  

Train on 

glass C 30.32  89.11   94.35  92.73  78.82  96.51  95.66  75.53  92.27  87.76  97.89  

Train on 

glass D 31.97  88.11  95.99   86.49  74.94  98.41  96.12  90.22  88.60  84.27  96.51  

Train on 

glass E 30.00  92.12  87.90  65.25   93.13  67.61  77.13  53.47  97.89  97.52  85.12  

Train on 

glass F 29.98  87.13  66.74  49.79  94.74   50.10  49.69  47.38  93.21  97.33  65.67  

Train on 

glass G 33.04  72.13  94.45  95.74  78.84  66.78   94.04  84.80  76.12  73.31  93.44  

Train on 

glass H 31.78  90.53  97.20  96.04  88.01  74.57  97.42   81.65  90.23  85.84  97.70  

Train on 

glass I 52.70  89.69  83.76  91.14  78.12  70.49  90.13  89.53   85.04  82.52  86.49  

Train on 

glass J 29.99  95.02  67.77  56.51  96.76  93.09  48.27  61.07  54.28   97.97  71.09  

Train on 

glass K 29.98  92.33  43.58  46.12  91.41  95.88  40.38  45.01  50.72  97.01   55.42  

Train on 
glass L 30.87  90.19  98.01  94.83  92.14  78.31  95.92  96.20  76.54  91.99  86.68   

 

However, comparing the classification accuracies between before glue removal (table 

6.7 and 6.8) and after glue removal (table 6.10 and 6.11) in experiments 1 and 2, the 

results clearly showed that the accuracy without glue removal always is higher. Above 

all, the lower classification accuracy may be caused by successful glue removal. Glue 

removal adds variance. Because glue has a certain contribution to tissue classification. 

According to the mean spectra of epithelium and stroma, the intensity of epithelium is 

always lower than stroma at amide A. While a small peak in 3400-3450 cm−1 , the 

spectral intensity of epithelium is always higher than stroma. It is caused by the 

different structures between epithelium and stroma. The columnar epithelium has lots 

of holes in the normal prostate tissue, and the content of glue is related higher than 

stroma.  

 

 6.3 Error discussion

There are many reasons for the error in chapter 6. First, in terms of measurement, only 

two tissue slides could be tested at a time due to the limitation of the window size of 

the sample stage. The measurement for a tissue sample needs around 2 hours (including 
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waiting humidity time ); Therefore, the total 12 tissue samples need to be tested in a 

few days. The purge box could keep the humidity at0, but the temperature has slightly 

changed (23.5℃±0.5℃). Slight temperature variation can be source of error related to 

background variations, but this is unlikely to significantly influence the results. The

 annotation is an important factor in error. Compared w i t h  the directly annotated 

IR chemical image achieved with  the subjective judgement of the eyes, annotations on

 the H&E brightfield image are  more accurate. However,  there is an error in 

registering the annotation on H&E images into chemical images by Matlab. Because 

the pixel resolution of  H&E images and chemical images is different (<0.5 µm 

compared with 5.5 µm),  if the registered annotation is on the edge of one pixel of a 

chemical image, the corresponding spectrum cannot be used. Thus, the quality test 

could effectively eliminate most of these spectra, and the rest would cause an error. The 

error for PCA results comes from the random selection of 200 stroma and 200 

epithelium spectra for every tissue sample. The PCA score will slightly change (±3%) 

if the selected spectra are changed. But the loading composition of the three main PC 

will not modify, which is more critical for the data analysis. The algorithm itself causes 

the error of the random forest. 80% of spectra are randomly selected to build the model, 

and the remaining 20% of spectra test the model. Therefore, the spectra used for the 

train and test model cannot be the same every time the random forest is reprocessed. 

But the classification accuracy only has a slight change (around ±0.35%). 

6.4 Conclusion 

The purpose of this chapter is to study whether the different types of glass could affect 

histopathological classification. In addition, to find the most suitable experiment 

method.  

 

A series of prostate tissue sections from the same BPH patient are mounted on the 12 

different glass slides. Because these tissue sections are adjacent, the composition and 



220 

 

structure of tissue on different glass slides are roundly the same. Due to the same kinds 

of glue and coverslip, the glass slides are the only difference between the 12 tissue 

samples. 

 

   

 

  

 

 

  

Different methods measure the spectra, and the most significant difference between the 

two methods is from the selection of background. The background for experiment 1 is 

a clear and tissue-free area. While for experiment 2, the background is an empty glass. 

Therefore, the spectra in experiment 1 are made of tissue information minus or add a 

little glue information. The spectra in experiment 2 are made of tissue, coverslip and 

glue information. Thus, there is an obvious amide A band at 3298 cm−1 in every 

spectrum of both experiments. However, the shape of the spectrum in experiments 1 

and 2 is different. The spectra in experiment 1 have slightly different trends in 3400-

3450 cm−1, which is related to the glue. In experiment 2, the spectra have a small peak 

in 3400-3450 cm−1 and a broad band in 3400-3600 cm−1, which are related to glue and 

coverslip, respectively.

 

 

The random forest looks at the effect of glass slides on histological classification. A 

classifier, trained by spectra on one glass slide, is used to classify the spectra of 

According to the PCA results of 12 glass slides, there is no separation for the spectra 

on the different glass slides in experiment 1. While in experiment 2, except for the 

spectra on glass A, the rest spectra on the other 11 glass slides cannot be separated. It 

can indicate that the type of glass slide generally does not affect the spectra. In addition, 

there is an obvious separation between the spectra of stroma and epithelium on the same 

glass slide based on PCA. It indicates that the spectra of epithelium and stroma on the 

same glass slides have a particular difference and could be discriminated. Combined 

with the mean spectra, the intensity of epithelium is always lower than stroma at amide 

A. While at small glue peak 3400-3450 cm−1, the spectral intensity of epithelium is 

always higher than stroma.

epithelium and stroma on another glass slide. If it works, it would indicate glass type 
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does not affect tissue classification, and if not, it would mean the type of glass 

influences tissue classification.  

 

Comparing two experiments without glue removal, both have high accuracy in 

classifying the epithelium and stroma on the same glass slides. The classification 

accuracies in the two experiments are above 98.40%. There is no significant difference 

in accuracy on the same glass slides between the two experiments. Therefore, 

epithelium and stroma could be easily classified on the same glass slide in both 

experiments 1 and 2.  

 

However, when the classifier is used to classify the epithelium and stroma on a different 

glass slide, most tissue classification accuracy is above 90% in both experiments. But 

spectral data in experiment 1 have a better performance than experiment 2. In 

experiment 1, only the accuracy of classifiers, independently tested on glass I, are poor 

(52%). While in experiment 2, the classifier trained by spectra on glass A always has a 

bad classification performance, and the other classifiers always have bad accuracy 

results when is tested on glass A and glass I. 

 

 

 

 

  

 

Above all, tissue classification on the same glass slide has very high accuracy (above 

98.40%) for the two experiments. There is also very good performance in tissue 

classification on different glass slides, which means that the type of glass slide has a

 minor influence on tissue classification. In addition, the spectra in experiment 1 always

 have better tissue classification performance than experiment 2.

Because spectra in both experiments are affected by the glue, it is important to see if it 

is possible to  eliminate the influence of glue on spectra. The glue removal method 

has been studied in chapter 5, and the most suitable way is using spectra of glue, 

Matrigel and coverslip as reference spectra and fit range are range 1: Matrigel (3278-

3318cm−1, 3066-3106cm−1); range 3: glue peak & Matrigel peak (2950-2970cm−1,

2925-2945 cm−1 , 2867-2887 cm−1 ); range 4 coverslip & Matrigel peak (3536-



222 

 

3576cm−1, 2704-2744cm−1). Therefore, all of the spectra in experiments 1 and 2 are 

processed for glue removal. Reprocessing all of the steps using spectral data with glue 

removal.  

 

The results show good accuracies (above 97.7%) for both experiments to classify 

epithelium and stroma on the same glass slide. But both experiments have very poor 

accuracy for tissue classification on different glass slides. It indicates that the type of 

glass greatly influences tissue classification in both experiments with glue correction.  

 

 

   

 

 

In conclusion, before removing glue, the type of glass slide only has a slight influence 

on tissue classification, especially for experiment 1 without glue removal. However, 

after eliminating glue, the effect of the kind of glass slide on tissue classification 

increases. In addition, the performance of tissue classification on the same glass slides 

In addition, the changes in accuracy after glue correction are also  compared. For 

both experiments, the accuracies of tissue classification on the same glass slide 

decreased after glue removal. It indicates the presence of glue also has a particular

 contribution to tissue classification. Because the structure of epithelium is thinner than

 stroma, the glue content on epithelium is more than stroma. In 3400 – 3450 cm−1, the

 spectral intensity of epithelium is higher than stroma.

is always very good for both experiments before or after removing the glue.    
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Chapter 7   

Study 3:Cancer detection on the different type of glass slide 
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Although many studies have proven that SHP can distinguish normal and cancerous 

samples[1][2][3], this has generally been achieved in small-scale trials and is not 

currently in clinical practice [1]. Since in order for SHP to gain acceptance into clinical, 

it would be preferable that the new pre-screening SHP process should not disrupt the 

existing pathology workflow. Ideally, the sample preparation process should not be 

disturbed, and the same Haematoxylin and Eosin (H&E) stained tissue sample on the 

glass slide should be used for pre-screening by SHP[5]. This means that the glass sides 

have to be used as the substrate for SHP. 

 

The infrared chemical images used for SHP are measured by Fourier transform infrared 

spectroscopy (FTIR). However, glass is partly opaque in the infrared region, and the 

partly transparent infrared region is from 2500 to 3800cm−1 [2][5]. Therefore, most of 

the critical biological peaks used for further data processing are completely blocked out 

by the glass absorption. The only useful peak in the glass transmission window is the 

very broad amide A band centred at ~3298cm−1. The previous study by Pilling et al. 

has shown that SHP could distinguish prostate cancerous tissue from benign tissue on 

the glass substrate with high sensitivity and accuracy; similarly, Bassan et al. and Tang 

et al. demonstrated that it could be used to distinguish breast cancer[7][8]. Thus, SHP 

can discriminate between cancerous and normal tissue on the glass slides. However, the 

glass substrate would be measured during SHP, and there are a variety of different types 

of glass slides used in clinical practice. Therefore, it is essential for SHP clinical 

application to study whether the different types of glass could affect the detection result. 

 

A number of these different brands of glass slides (from completely different 

manufacturers) are studied in the project. The whole project is divided into 3 main steps.  

Firstly, establish the critical infrared spectral differences of the blank glass slides. 

Secondly, establish whether the glass types could affect basic tissue classification. 

Thirdly, establish whether the glass types could affect cancer detection.  

 

 Using FTIR measure 12 blank glass slides and the data are processed by Matlab. The 
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results showed that except for one of the glass slides (glass D), there is no significant 

difference among the rest 11 types of glass slides. 

 

In chapter 6, a series of prostate tissue sections from the same benign prostate 

hyperplasia (BPH) patient mounted on 12 different types of glass slides are measured 

in two experimental methods and annotated by GIMP. The purpose is to find the 

influence of glass types on tissue classification. And the results in chapter 6 have shown 

a good classification for epithelium and stroma spectra on different types of glass slides, 

especially for the spectra without glue removal. It has proved that the kind of glass slide 

has significantly less effect on tissue classification.  

 

In this chapter, a series of adjacent tissue slices mounted on the 6 glass slides, which 

form 4 patients (2 benign prostate hyperplasia & 2 prostate cancer), are measured in 

two experimental methods and annotated by GIMP. The study is to find the influence 

of glass type on cancer detection. Due to the effect of glue, glue removal is also an 

important process in this project.   The specific experimental design and data process 

are shown in section 3.5.3 in chapter 3.  
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7.1 Annotation results 

 

 

 

 

 

 

(

The GIMP image editor is used for annotation, and all of the annotation work is done 

on the H&E stained brightfield visible image. Epithelium and stroma were used for 

cancer detection and are annotated in green and red, respectively. Tissue-free area 

are annotated in blue. Figure 7.1 shows the annotated H&E images of each tissue 

section on glass D.   

(a)

b) 
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(c) 

 

(d) 

 

Figure7. 1 (a) The annotated H&E images of P1(BPH) on glass D. (b) The annotated H&E images of 

P2(BPH) on glass D. (c) The annotated H&E images of P3(CaP) on glass D. (d) The annotated H&E 

images of P4(CaP) on glass D. 

 

7.2 Results and Discussion 

7.2.1 Cancer detection for CaF2 slide 

To evaluate whether the spectra of cancer and non-cancer tissue are different and 

whether infrared spectral histopathology (SHP) is a potential method for cancer 

detection, the tissue slices of 4 patients are mounted on CaF2 slides. This enables the 

whole range spectral range to be collected, and the analysis acts as the spectral gold 

standard. The tissue slices are in paraffin wax and are not H&E stained. 

 

The spectral range on the CaF2 is 1000 - 3700 cm−1 and the quality control is based on 

the intensity of amide Ⅰ, which is located at 1654 cm−1. The threshold of the intensity 
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of amide Ⅰ is 0.5-2. The number of annotated spectra of epithelium and stroma from 4 

patients are shown in table 7.1. 

 

Table7. 1 The number of annotated spectra on CaF2 slide from 4 patients 

Spectra P1(BPH) P2(BPH) P3(CaP) P4(CaP) 

epithelium 1662 666 8199 2567 

stroma 5198 6028 7488 13313 

 

The mean spectra of epithelium and stroma from 4 patients are shown in figure 7-3 (a) 

and (b), respectively. There are mainly eight peaks in 1000 - 3700 cm−1 and most of 

the bands are due to protein and lipids. Protein has three main bands, which are amide 

Ⅰ (1658 cm−1), amide Ⅱ (1537 cm−1) and amide A (3298 cm−1). Lipid range in 2700-

3000 cm⁻¹ are affected by the paraffin, so it is removed. Another lipid range in 1340-

1490 cm⁻¹ is also affected by paraffin and removed. 2300-2400 cm⁻¹ is also removed 

due to the CO₂ absorption. Thus, figure 7.2 shows the mean spectra of 4 patients on 

CaF₂ without paraffin. 

 

(a) 
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(b) 

 
   

      

 

 

 

 

  

Figure7. 2 (a) The mean spectra of epithelium on CaF₂ from 4 patients in 1000 – 3700 cm−1 without 

wax. (b) The mean spectra of stroma on CaF2 from 4 patients in 1000 – 3700 cm−1 without wax.

7.2.1.1 The PCA of cancer & non-cancer patients on CaF₂ slide

The 4 patients could be divided into cancer and non-cancer groups based on the disease. 

Therefore, P1(BPH) and P2(BPH) belong to the non-cancer group, and P3(CaP) and 

P4(CaP) belong to the cancer group. Randomly selecting 200 spectra from every patient 

and doing the PCA. The PCA results of the two groups are shown in figure 7.3. 
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(a) 

 

(b) 
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(c) 

 

 

 

  

 

According to figure 7.3 (a) and (b), there is no separation between the cancer and non-

cancer group for both spectra of epithelium and stroma. According to the loading of 

PC1 (figure 7.3 (c)), the composition of PC1 is three positive peaks, which is related to 

amide A, amide Ⅰ and amide Ⅱ. However, the spectra of cancer and non-cancer groups 

cannot be separated based on PC1. It means the spectral difference between the two 

groups is small in the absorption of protein (amide A, amide Ⅰ and amide Ⅱ

Figure7. 3 (a) The score plots of PC1 and PC2 of epithelium on CaF₂ slide for cancer and non-cancer 

patients. (b) The score plots of PC1 and PC2 of stroma on glass CaF₂ for cancer and non-cancer patients. 

(c) The loading of PC1 of epithelium on CaF₂ slide. 

).  

 

 

 

7.2.1.2 Cancer detection on CaF₂ slide by random forest 

As mentioned before, there is no separation of spectra of cancer and non-cancer groups 

on the CaF2 slide according to PCA. It is necessary to achieve cancer and non-cancer 
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Table7. 2 The accuracy of cancer detection on the CaF₂ 

classification by building a classifier. 80% of spectral data are used to train the classifier, 

and the rest 20% of spectral data are used to test the classifier. There are 4 

combinations of cancer and non-cancer groups for 4 patients, which are 

P3(CaP)&P1(BPH), P3(CaP)&P2(BPH), P4(CaP)&P1(BPH), P4(CaP)&P2(BPH). In 

addition, the cancer group is combined by the spectra of P3(CaP) & P4(CaP), while the

 non-cancer group is the combination of the spectra of P1(BPH) & P2(BPH). Table 7.2 

shows all accuracies of cancer detection

slide. 

Model test (%) epithelium stroma 

Cancer group P1(BPH) P2(BPH) & 

Non-cancer group P3(CaP) P4(CaP)  

97.79 97.50 

P3(CaP) & P1(BPH) 98.99 99.92 

P3(CaP) & P2(BPH) 98.28 97.52 

P4(CaP) & P1(BPH) 96.93 99.59 

P4(CaP) & P2(BPH) 96.13 97.67 

 

According to table 7.2, all of the accuracies of cancer detection on CaF2 slide are above 

96.13%, and the lowest accuracy is the classification of P4(CaP) & P2(BPH) by 

epithelium spectra. It may be because of the fewer spectra of epithelium from P2(BPH). 

The high accuracy of cancer detection indicates the spectra of cancer and non-cancer 

tissue could be separated by random forest, and SHP could be used for cancer detection. 

 

7.2.2 Quality control for spectra  

The purpose of quality control is to remove spectra from an area without tissue. The IR 

transmission window on the glass slide is only above 2000 cm−1. In the range of 2000 

– 3700 cm−1, the amide A is the only proper biological peak. Therefore, quality control 

is based on the intensity of amide A peak, which means the intensity of amide A for 

good quality spectra on tissue area must be higher than the highest intensity in the 

tissue-free area. And the highest intensity at 3298 cm−1 in the blank area was set as a 

threshold. The highest threshold was selected and applied in all spectra to keep the 

consistency for further comparison among the spectra on 6 glass slides,. Due to the 
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different experimental methods, the thresholds of annotated spectra from 4 patients on 

every glass slide threshold is different.  

 

7.2.2.1 Experiment 1  

The thresholds of annotated spectra from 4 patients on every glass slide are shown in 

table7.3. In order to keep the consistency for  further comparison among the spectra 

on 6 glass slides, the highest threshold was selected and applied to all of the spectra. 

According to table 7.3, the threshold for all spectra is 0.0120. The number of annotated 

spectra of epithelium and stroma with high quality from 4 patients is shown in tables 7.4 

& 7.5, respectively.  

 

Table7. 3 The thresholds of annotated spectra on 6 glass slides 

Threshold  P1(BPH) P2(BPH) P3(CaP) P4(CaP) 

Glass D 0.0113 0.0069 0.0081 0.0049 

Glass E 0.0050 0.0120 0.0025 0.0085 

Glass F 0.0043 0.0029 0.0113 0.0085 

Glass J  0.0103 0.0067 0.0077 0.0119 

Glass K 0.0085 0.0044 0.0107 0.0097 

Glass L 0.0064 -0.0018 0.0114 0.0087 

 

Table7. 4 The number of high-quality annotated epithelium spectra on 6 glass slides 

epithelium spectra P1(BPH) P2(BPH) P3(CaP) P4(CaP) 

Glass D 10442 32204 29476 7391 

Glass E 8343 21644 17135 9105 

Glass F 5727 14716 8975 8791 

Glass J  8221 28372 9312 10953 

Glass K 9103 31159 15071 9784 

Glass L 8889 28064 18396 9543 

 

Table7. 5 The number of high-quality annotated stroma spectra on 6 glass slides 

stroma spectra P1(BPH) P2(BPH) P3(CaP) P4(CaP) 

Glass D 16563 9770 6504 14185 

Glass E 6020 8715 5610 14593 

Glass F 7673 7677 5366 17449 

Glass J  5828 9147 4705 13411 

Glass K 3826 8853 6872 14301 

Glass L 6442 8510 11921 14023 
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 7.2.2.2 Experiment 2

Compared with experiment 1, the spectra of annotation are the same between the two 

experiments, but the background spectrum is different. Thus the threshold is different, 

and it is shown in table 7.6. The enormous threshold in table 7.6 is 0.050, and it is 

applied in all of the spectra in experiment 2. Tables 7.7 and 7.8 show the number of 

high-quality annotated spectra of epithelium and stroma.  

 

Table7. 6 The thresholds of annotated spectra on 6 glass slides 

Threshold  P1(BPH) P2(BPH) P3(CaP) P4(CaP) 

Glass D 0.0500 0.0389 0.0239 0.0280 

Glass E 0.0431 0.0312 0.0464 0.0470 

Glass F 0.0456 0.0333 0.0344 0.0424 

Glass J  0.0398 0.0386 0.043 0.0485 

Glass K 0.0135 0.0135 0.0408 0.0478 

Glass L 0.0380 0.0388 0.0474 0.0493 

 

Table7. 7 The number of annotated epithelium spectra on 6 glass slides 

epithelium spectra P1(BPH) P2(BPH) P3(CaP) P4(CaP) 

Glass D 10423 32015 29275 7352 

Glass E 8316 21438 17100 9069 

Glass F 5712 14585 8953 8731 

Glass J  8187 27889 9282 10896 

Glass K 9060 30769 15043 9764 

Glass L 8804 27426 18349 9533 

 

Table7. 8 The number of annotated stroma spectra on 6 glass slides 

stroma spectra P1(BPH) P2(BPH) P3(CaP) P4(CaP) 

Glass D 16562 9770 6503 14185 

Glass E 6020 8714 5610 14592 

Glass F 7673 7677 5366 17448 

Glass J  5828 9147 4705 13411 

Glass K 3826 8853 6872 14300 

Glass L 6438 8508 11921 14023 

 

According to tables 7.4, 7.5, 7.7 and 7.8, it is easy to find that the high-quality number 

of annotated spectra from the same patient on different glass slides has a big difference. 

It is because the annotation is a subjective process, and all of the processes only depend 

on my judgment. Although a series of tissue slices from the same patients are adjacent, 

they still slightly different, and the structure of the tissue slices on every glass slide is a 

little different.   
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After quality control, all good quality spectra were processed in order of range selection, 

noise reduction, and vector normalisation. To reduce the interference from the noise, 

the range was only selected in 3125-3700 cm−1 , which contain all of the valuable 

biological information in a glass transmission window.  

 

7.2.3 Experiment 1 result  

7.2.3.1 Mean spectra  

The mean spectra of epithelium and stroma on 6 glass slides for 4 patients are shown 

in figure 7.4. According to all of the mean spectra in figure 7.4, there is only a 

pronounced peak at amide A (3298 cm−1 ) in the wavenumber range. Although the 

tissue sections are mounted on different glass slides, the shape of spectra is the same, 

and the intensity of amide A is also similar. The peak in 3400 – 3450 cm−1 is related to 

the O-H &N-H stretching. However, in this range, the spectral intensity and the trend 

of 6 glass slides are different. The glue mainly causes this difference. The background 

is a clear area without a tissue in experiment 1. Although tissue thickness is 8 µm, the 

structure of epithelium and stroma is different. The columnar epithelium has lots of 

holes. Therefore, the content of glue is variable. If the content of glue on the background 

is less than that in the sample, the tissue spectra would contain a little glue, and there 

would be a positive peak in 3400-3450 cm−1. If not, the final tissue spectra would be 

minus a bit of glue and cause a negative peak in this range. Only when the glue content 

on the background is precisely the same as that on the tissue do the spectra only 

represent the tissue. However, this perfect match is tough to achieve. The shape and 

trend of spectra among 6 glass slides are similar. It indicates that the type of glass has 

no extreme effect on spectra. Study 1 in chapter 4 has shown the spectra of blank glass 

D are different than the other blank glass slides. However, the difference is “disappeared” 

when the tissue is mounted on the glass slide. It could indicate that the tissue contributes 

much more to the spectra than the glass slide. The spectral influence of glass type cannot 

be directly told by eyes. Therefore, more specific data processes (PCA and random 
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forest) are necessary to explore the effect of glass type on cancer detection.  

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 
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Figure7. 4 (a) (b) Mean spectra of epithelium & stroma on 6 glass slides in 3125 – 3700 cm⁻¹ for P1(BPH). 

(c) (d) Mean spectra of epithelium & stroma on 6 glass slides in 3125 – 3700 cm⁻¹ for P2(BPH). (e) (f) 

Mean spectra of epithelium & stroma on 6 glass slides in 3125 – 3700 cm⁻¹ for P3(CaP). (g) (h) Mean 

spectra of epithelium & stroma on 6 glass slides in 3125 – 3700 cm⁻¹ for P4(CaP). 

 

7.2.3.2 The PCA of 6 glass slides 

There is no noticeable difference among the mean spectra on 6 glass slides. Therefore, 

the difference of spectral data among different types of glass maybe could be indicated 

based on PCA. 200 spectra of stroma and epithelium on 6 glass slides were randomly 

selected. The PCA is based on these random spectra. Figure 7.5 shows the PCA results 

of 6 glass slides for 4 patients. Due to the similar PCA distribution between epithelium 

and stroma for every patient, there are only show the PCA figures of the stroma.  

 

  

(h)
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(a) 

 
(b) 
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(c) 

 

(d) 

 

Figure7. 5 (a) The score plots of PC1 and PC2 of stroma on 6 glass slides for P1(BPH). (b) The score 

plots of PC1 and PC2 of stroma on 6 glass slides for P2(BPH). (c) The score plots of PC1 and PC2 of 



246 

 

stroma on 6 glass slides for P3(CaP). (d) The score plots of PC1 and PC2 of stroma on 6 glass slides for 

P4(CaP). 

 

According to figure 7.5, it is accessible to see that there is no clear separation among 

the tissue sections on 6 glass slides. It indicates that the type of glass has little influence 

on the spectra of the same histological class.  

 

7.2.3.3 The PCA of 4 patients 

Figure 7.6 shows the PCA results of 4 patients on glass D. Due to the similar PCA 

distribution between 4 patients for every glass slide, only the PCA figures on glass D 

are shown. According to figure 7.6, there is no clear separation, but there is a separation 

trend, especially for the spectra of epithelium on glass D (figure 7.6(a)). The spectra of 

4 patients are mainly distributed in the four different regions of the PCA scores plot, 

and it suggests that the spectral difference is caused by different patients.  

 

(a) 
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(b) 

 

Figure7. 6 (a) The score plots of PC1 and PC2 of epithelium on glass D for 4 patients. (b) The score plots 

of PC1 and PC2 of stroma on 6 glass slides for 4 patients. 

 

 

 

 

  

According to figure 7.6, the spectra of the epithelium of cancer and no-cancer could 

be almost separated by PC1. While for the spectra of stroma, cancer and non-cancer 

spectra are separated by PC2. The loading of PC1 of epithelium spectra and PC2 of 

stroma spectra from 4 patients on glass D is shown in figure 7.7 (a) and (b), 

respectively. According to figure 7.7, except that they go in the opposite direction, the 

spectral peaks of the two loadings are similar for epithelium and stroma spectra. The 

PC1 loading of epithelium spectra is taken as an example for the analysis. 
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(a) 

 

(b) 

 

Figure7. 7 (a)The PC1 loading for PCA of epithelium spectra from 4 patients on glass D. (b) The PC2 

loading for PCA of stroma spectra from 4 patients on glass D. 
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The loading of PC1 of epithelium spectra from 4 patients on glass D is shown in figure 

7.7 (a). The PC1 is the significant component to represent the information of spectra. 

According to figure 7.7 (a), PC1 has two whole peaks in the range of 3125 – 3700 cm−1. 

The prominent negative peak is located at 3298 cm−1, which is related to amide A. The 

positive peak is located at 3437 cm−1 , which is associated with O-H asymmetric 

stretching. An overall consideration of negative and positive peaks in PC1, the loading 

of PC1 mainly results from the intensity of amide A. Therefore, the distribution of 

spectra on PC1 is nearly negatively correlated with the intensity of amide A. P1(BPH) 

& P2(BPH) are mainly distributed in the negative area, which means the intensity of 

amide A for non-cancer spectra is higher than cancer spectra. 

 

7.2.3.4 The PCA of cancer & non-cancer patients 

One of the objectives is achieving cancer detection. To find the difference between 

cancer and non-cancer spectra on the same glass slide, spectra of cancer and non-cancer 

are compared in 3125 – 3700 cm−1. There are 2 BPH patients and 2 cancer patients. 

Therefore, it is meaningful to combine the spectra from 2 BPH patients and 2 cancer 

patients and become cancer and non-cancer groups. Because the results of the spectral 

comparison of cancer and non-cancer on the same glass are similar. Figure 7.8  shows 

the comparison of mean spectra on glass D, and figure 7.9 shows the PCA figures on 

glass D. 
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(a) 

 
(b) 

 

Figure7. 8 (a) the mean spectra of epithelium for cancer &non-cancer group on glass D. (b) the mean 
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spectra of stroma for cancer &non-cancer group on glass D  

 

 

 

  

 

 

According to  figure 7.8, not only for the mean spectra of the epithelium but also for the

 spectra of stroma, the intensity of amide A for the non-cancer group is higher than the

 cancer group. In addition, according to the comparison of the mean spectra of 

epithelium and stroma, the intensity of amide A of stroma spectra is a little higher than 

epithelium spectra. 

 

 

(a

According to figure 7.9, there is a nearly clear separation between  cancer and non-

cancer groups. The break is based on PC1. The loading of PC1 has two whole peaks. 

However, the most contribution is a negative peak located at 3298 cm−1 and it is related 

to amide A. Therefore, the spectra distribution is nearly negatively correlated with the 

intensity of amide A. Because the non-cancer group is located in a negative area on 

PC1, the intensity of amide A of epithelium spectra for the non-cancer group is higher 

than the cancer group.  

) 
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(b) 

 
Figure7. 9 (a) The score plots of PC1 and PC2 of epithelium on glass D for cancer and non-cancer patients. 

(b) The PC1 loading for PCA of epithelium spectra on glass D for cancer and non-cancer patients. 

 

7.2.3.5 Cancer detection by random forest on the same glass slide 

The tissue slices from 4 patients (P1(BPH), P2(BPH), P3(CaP), P4(CaP)) are mounted 

on 6 different types of glass slides (glass D, E, F, J, K, L) in the experiment. For an easy 

description in the further report, “ patient_glass ” stand for a patient’s tissue fixed on a 

type of glass slide. For example, “P1_D” represents the P1’s tissue slice mounted on 

glass D. P1 _D and P2_D are BPH slides on glass D, P3_D and P4_D are cancer slides 

on glass D. For looking at the accuracy of cancer detection, there are 4 kinds of 

classification in total, which are P1_D & P3_D, P2_D & P3_D, P1_D & P4_D, P2_D 

& P4_D.  

 

All spectra of a BPH tissue slice and a cancer tissue slide on the same glass slide are 

divided into two data sets. 80% of spectral data are used to train the classifier, and the 
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rest 20% of spectral data are used to test the classifier (table 7.9). The accuracy of cancer 

and non-cancer classification is applied to evaluate the classifier. In addition, epithelium 

and stroma are annotated and applied to train the model, respectively. And the accuracy 

of cancer detection by the spectra of epithelium and stroma is shown in table 7.10 and 

table 7.11, respectively.  

 

Table7. 9 Classifier construction by Random forest (Take spectra of P1 & P3 on glass D as an example.) 

 Training set  Test set  

Model test  80% spectra of P1_D 20% spectra of P1_D 

80% spectra of P3_D 20% spectra of P3_D 

 

Table7. 10 The accuracy of cancer detection by epithelium spectra on the same glass slide.   

Model test (%) P1(BPH) 

P3

& 

(CaP) 

P2(BPH) 

P3

& 

(CaP) 

P1(BPH) 

P4

& 

(CaP) 

P2(BPH) 

P4

& 

(CaP) 

Glass D 99.07 98.68 99.94 99.75 

Glass E 98.39 99.90 99.46 99.90 

Glass F 100 100 99.83 98.92 

Glass J 99.03 99.20 99.71 99.86 

Glass K 99.11 97.47 99.47 99.77 

Glass L 95.49 92.76 97.18 97.35 

 

Table7. 11 The accuracy of cancer detection by stroma spectra on the same glass slide.   

Model test (%) P1(BPH) 

P3

& 

(CaP) 

P2(BPH) 

P3

& 

(CaP) 

P1(BPH) 

P4

& 

(CaP) 

P2(BPH) 

P4

& 

(CaP) 

Glass D 99.24 98.89 98.59 99.87 

Glass E 97.85 99.93 99.51 99.81 

Glass F 99.96 100 96.52 99.30 

Glass J 96.44 96.2 99.22 99.76 

Glass K 98.41 97.36 99.03 99.37 

Glass L 96.90 94.00 98.41 98.96 

 

Table 7.10 and table 7.11 show there is very high accuracy for cancer detection on the 

same glass slide. Most of the accuracies are above 96%. It indicates the classifier has 

high precision to discriminate against cancer and non-cancer on the same glass slide for 

both by spectra of epithelium and stroma. Compared with the specific accuracies on the 

same glass slide, the cancer detection results by epithelium are slightly better than by 

stroma. 

 

However, the detection only between two patients cannot ensure the classification is 

based on the biochemical difference rather than the patient’s difference. Therefore, it is 
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Table7. 12 The accuracy of cancer detection between cancer and non-cancer group on the same glass 

meaningful to obtain cancer and non-cancer groups by combining the spectra of two 

CaP patients and two BPH patients, respectively. And table 7.12 shows the accuracy of 

cancer detection between the cancer group and the non-cancer group.

slide 

Model test (%) epithelium stroma 

Glass D 98.55 98.80 

Glass E 99.16 98.63 

Glass F 99.49 97.46 

Glass J 99.12 97.19 

Glass K 98.00 97.59 

Glass L 93.10 95.79 

 

 

 

According to table 7.12, the results indicate that both by spectra of epithelium and 

stroma  cancer detection has a specific high accuracy on the same type of glass slide. 

The classification accuracy on the glass L is only above 93%, and the better results are 

training classifiers by the spectra of the epithelium. Except for  glass L, the accuracy 

of cancer detection on the other glass slide is above 97%. To sum up, the accurate results 

indicate that SHP for cancer detection on the same type of glass slide is a possible way. 

7.2.3.6 Cancer detection by random forest on the different glass slide 

For clinical application, the main objective of the project is to look at the influence of 

glass type on cancer detection. Therefore, spectral data from one glass slide are used to 

train the classifier to distinguish between cancer and non-cancer patients. And the 

spectra from the other glass slide are used to test the classifier. If the classifier could 

achieve cancer detection on the different glass slides, it would indicate that the type of 

glass does not affect cancer detection. If not, the type of glass affects cancer detection. 

 

Table 7.13 and Table 7.14 show the classification results of cancer and non-cancer 

groups on different types of glass slides by spectra of epithelium and stroma, 

respectively. The classification accuracy of cancer and non-cancer group is very 
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different on the various glass slide. Some classifiers have an excellent performance on 

cancer detection between some glass slides. The good results, in which the accuracy is 

more than 80%, are highlighted in yellow. But some classifiers have very bad 

classification between some glass slides.  

 

 

 

Table7. 13 

According to the highlighting in Tables 7.13 and 7.14, it is easy to find that the cancer 

detection between glasses D & E or between glasses F & K & J could get a 

good classification result. It means that the differences in glasses D & E or in glasses 

F & K & J are smaller than the difference in cancer tissue. Therefore, the type of glass

 slide has a certain influence on cancer detection. But if the glass slides are similar, 

the effect on cancer detection could be lower. In addition, the comparison of the 

accuracy of cancer detection by epithelium and stroma spectra shows that the 

classifier trained by epithelium spectra could get better performance. 

The accuracy of cancer detection by epithelium spectra on a different glass slide 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  90.53 50.21 40.0 63.94 63.88 

Train on glass E 84.87  40.17 37.54 48.0 66.3 

Train on glass F 62.54 43.93  93.95 91.09 69.85 

Train on glass J 66.48 68.63 97.16  91.23 67.76 

Train on glass K 76.50 73.95 95.05 88.03  73.26 

Train on glass L 85.53 83.72 86.23 82.19 84.08  

 

Table7. 14 The accuracy of cancer detection by stroma spectra on a different glass slide 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  92.16 59.47 58.10 69.86 48.42 

Train on glass E 88.46  59.46 59.84 70.81 64.05 

Train on glass F 70.53 60.49  85.08 88.95 65.77 

Train on glass J 68.89 74.34 89.06  84.35 56.64 

Train on glass K 79.83 76.54 89.43 81.88  72.45 

Train on glass L 43.33 60.26 85.79 77.96 79.98  

 



256 

 

7.2.4 Experiment 2 results  

7.2.4.1 Mean spectra  

   

 

  

   

 

 

  

Figure 7.10 show the mean spectra of epithelium and stroma on 6 glass slides for 4 

patients in experiment 2. The background in experiment 2 is blank glass, and sample 

measurement includes coverslip, glue, tissue and glass, so the final spectra contain the 

information from coverslip, glue and tissue. There is only a pronounced peak at amide 

A (3298 cm−1) for all of the mean spectra on six glass slides, which is amide A peak 

and caused by tissue. The broad band ( 3400-3600 cm−1 ) is the most significant

 difference between experiments 1 and 2, and it is caused by the coverslip. In addition,

 the peak in 3400-3450 cm−1 is related to the O-H &N-H stretching. For experiment1,

 in this range, not only is the spectral intensity different but so is the spectral profile.

 This difference is caused by the glue and measurement method. While for experiment

 2, there is a small positive peak in 3400-3450 cm−1 and is related to the glue. Although

 the glue has a significant effect on spectra, all of the mean spectra on 6 glass slides for

 4 patients have the same shape and trend, and only the intensity of amide A is slightly

 different. Compared with the spectra of the same patients, the intensity of spectra from

 stroma is always higher than from epithelium. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

 

 

 

(h) 
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Figure7. 10 (a) (b) Mean spectra of stroma & epithelium on 6 glass slides in 3125 – 3700 cm⁻¹ or P1(BPH). 

(c) (d) Mean spectra of stroma & epithelium on 6 glass slides in 3125 – 3700 cm⁻¹ for P2(BPH). (e) (f) 

Mean spectra of stroma & epithelium on 6 glass slides in 3125 – 3700 cm⁻¹  for P3(CaP). (g) (h) Mean 

spectra of stroma & epithelium on 6 glass slides in 3125 – 3700 cm⁻¹ for P4(CaP). 

 

  

 

 

(

7.2.4.2 The PCA of 6 glass slides in experiment 2

Figure 7.11 is the PCA results of 6 glass slides for 4 patients. It can be seen that there is 

 no clear separation among the tissue sections on 6 glass slides. It indicates that the type 

 of glass has  little influence on the spectra of the same histological class. Due to the  

similar PCA distribution between epithelium and stroma for every patient, there are  

only show the PCA figures of the stroma. 

a) 
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(b) 

 

(c) 
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(d) 

 
Figure7. 11 (a) The score plots of PC1 and PC2 of stroma on 6 glass slides for P1(BPH). (b) The score 

plots of PC1 and PC2 of stroma on 6 glass slides for P2(BPH). (c) The score plots of PC1 and PC2 of 

stroma on 6 glass slides for P3(CaP). (d) The score plots of PC1 and PC2 of stroma on 6 glass slides for 

P4(CaP). 

 

7.2.4.3 The PCA of cancer & non-cancer patients 

Figure 7.12 is the mean spectra of cancer and non-cancer group on glass D. Because of 

the similar figures on the other glass slide, the spectral comparison of two groups on 

glass D is an example.   
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(a) 

 

(b) 
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Figure7. 12 (a) the mean spectra of epithelium for cancer &non-cancer group on glass D. (b) the mean 

spectra of stroma for cancer &non-cancer group on glass D

According to figure 7.12, the intensity of amide A for the non-cancer group is higher 

than the cancer group for both spectra of epithelium and stroma. While for the peak in 

3400-3450 cm−1, the intensity for the cancer group is higher than the non-cancer group. 

(a)
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(b) 

 

 

Figure7. 13 (a) The score plots of PC1 and PC2 of epithelium on glass D for cancer and non-cancer 

patients. (b) The score plots of PC1 and PC2 of stroma on glass D for cancer and non-cancer patients. 

 

Figure 7.13 is the PCA plot of cancer and non-cancer spectra. There is no clear 

separation between the cancer and non-cancer groups for both spectra of epithelium 

and stroma on glass D. 

 

 

 

  

7.2.4.5 Cancer detection by random forest on the same glass slide

PCA cannot separate cancer and non-cancer spectra on the same glass slide. It is 

essential to apply to the random forest. All of the spectra of cancer and non-cancer on 

the same glass slides are divided into two data sets. 80% of spectral data are used to 

train the classifier, and the rest 20% of  spectral data are used to test the classifier. 

The accuracy of histological classification is applied to evaluate the classifier. 
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Table7. 15 Accuracy of cancer detection between cancer and non-cancer group on the same glass slide. 

Model test (%) epithelium stroma 

Glass D 98.80 98.61 

Glass E 93.12 95.61 

Glass F 99.13 99.36 

Glass J 95.59 96.22 

Glass K 92.29 92.41 

Glass L 94.91 96.23 

 

According to the accuracies in Table 7.15, all of the overall accuracies are above 0.920. 

It indicates the classifier has high accuracy in discriminating cancer and non-cancer 

groups on the same glass slides for both spectra of epithelium and stroma. However, 

the accuracy in experiment 2 is lower than in experiment 1. Therefore, more glue and 

coverslip maybe have a specific effect on cancer detection.  

 

7.2.4.6 Cancer detection by random forest on the different glass slide 

 

 

 

 

 

 

 

  

The main objective of the project is to look at the influence of glass type on cancer 

detection. Therefore, spectral data from one glass slide are used to train the classifier to 

distinguish between cancer and non-cancer patients. And the spectra from the other 

glass slide are used to test the classifier. If the classifier could achieve cancer detection 

on the different glass slides, it would indicate that the type of glass has no effect on 

cancer detection. If not, the type of glass affects cancer detection. The classification of 

cancer and non-cancer groups on different types of glass slides by spectra of epithelium 

and stroma are shown in table 7.16 and table 7.17, respectively. The accuracy, which is 

more than 80% is highlighted in yellow. The cancer detection results on different glass 

slides are changeable. Some classifiers have very bad classification between some glass 

slides. Compared with experiment 1, there are fewer good classification results in 

experiment 2.   
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Table7. 16 The accuracy of cancer detection by epithelium spectra on a different glass slide 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  65.43 94.10 43.20 60.04 36.87 

Train on glass E 62.4  92.83 83.34 65.54 69.94 

Train on glass F 76.73 77.09  70.95 62.27 35.53 

Train on glass J 59.96 82.69 80.97  81.77 80.90 

Train on glass K 61.63 64.61 75.69 87.26  64.77 

Train on glass L 33.56 65.43 37.08 83.51 69.35  

 

 Table7. 17 The accuracy of cancer detection by stroma spectra on a different glass slide 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  86.71 93.34 57.60 71.10 55.26 

Train on glass E 66.77  92.14 81.95 59.61 65.29 

Train on glass F 75.44 81.50  68.52 53.18 32.09 

Train on glass J 66.54 89.31 77.03  83.73 72.37 

Train on glass K 78.39 74.62 75.71 84.23  57.35 

Train on glass L 35.78 62.69 50.79 64.10 64.49  

 

7.2.5 Cancer detection with glue removal 

 

 

 

The glue removal in this project is based on the data processing by Matlab, and it is 

based on the principle of spectral subtraction. The specific process of glue removal has 

been discussed in chapter 5. The critical function of the glue removal code is the least-

squares with known covariance (LSCOV). The corresponding coefficients can be 

calculated based on the LSCOV function and every small fit range. And the final 

A previous study has shown that glue greatly affects all of the spectra in experiment 2. 

Therefore, glue removal is an essential process for experiment 2. Even for experiment 

1, the background is a clear tissue-free area. Because the glue content on the 

background and sample scan is variable, the spectra information maybe plus or minus 

a small amount of glue. This is shown in the mean spectra of epithelium & stroma on 

the 6 glass slides (figure 7.4): some of the mean spectra have positive peaks and some 

of them have negative peaks in the range 3400-3450 cm−1. Therefore, it is necessary 

to correct or remove glue from the spectra.

coefficient is the mean coefficient of all fitness ranges.  
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The results of chapter 5 are that the reference spectra of glue removal is Matrigel, glue,

and coverslip spectra, and the most suitable fit range for glue removal is range 1 (3278-

3318 cm−1 , 3066-3106 cm−1 ), range 3 (2950-2970 cm−1 , 2925-2945 cm−1 , 2867-

2887cm−1), and range 4 (3536-3576cm−1, 2704-2744cm−1). Figure 5.2 shows the  

reference spectra.

 

 

Table7. 18 The spectral information in 3400-3450 cm−1 at 

The glue effect on the spectra in this chapter is presented in 3400-3450 cm−1 for both 

two experimental results. For experiment 2, there is only a positive peak in this range. 

While for the spectra in experiment 1, there are both positive and negative peaks in this 

range. The comparison of spectral information under different situations is shown in 

table 7.18. According to table 7.18, the purpose of glue correction for a negative peak 

is to add some glue, while for a positive peak is to remove some glue. In addition, the 

broad band ( 3400-3600 cm−1 ) for experiment 2 is also caused by coverslip. 

different situations 

Experiment  3400 – 3450 𝐜𝐦−𝟏 Background Scan Sample scan Spectral information  

Experiment 1 Negative peak More glue +  

coverslip + glass 

Sample + coverslip + 

 glass + less glue 

Sample - some glue 

Positive peak  Less Glue +  

coverslip + glass 

Sample + coverslip +  

glass + more glue 

Sample + some glue 

Experiment 2 Positive peak Glass  Sample + coverslip +  

glass + more glue 

Sample + glue  

+coverslip 

 

 

 

  

Figure 7.14 shows the results of glue removal in experiment 1. Figure 7.14 (a) shows 

that the intensity of amide A is higher after glue removal because the effect of some 

glue is added. The intensity of amide A in figure 7.14 (b) is lower after glue removal 

because of glue removal. Figure 7.15 shows the results of glue removal in experiment 

2. Therefore, the code of glue removal works in two experiments.
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(a) 

 

(b) 

 

Figure7. 14 (a) Mean spectra of epithelium from P1 on the glass D with glue removal. (b) Mean spectra 

of epithelium from P1 on the glass F with glue removal.  
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Figure7. 15 Mean spectra of epithelium from P1 on the glass D with glue removal.  

7.2.5.1 Mean spectra with glue removal 

Figure 7.16 shows all mean spectra of epithelium and stroma after removing glue on 

the 6 glass slides from 4 patients in experiment 1. Glue has an influence on the peak in 

3400-3450 cm−1. There is no pronounced peak in 3400-3450 cm−1 after glue removal. 

It indicates that the glue removal code has already worked on all spectra. Comparing 

the spectra on epithelium and stroma on 6 glass slides from the same patient, the 

intensity of amide A of stroma spectra is always slightly higher than the epithelium 

spectra. 
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(a) 

 

(b) 

 

  



273 

 

(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

 

 

(h) 
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Figure7. 16 (a) (b) Mean spectra of epithelium & stroma on 6 glass slides for P1(BPH) after glue removal 

in experiment 1. (c) (d) Mean spectra of epithelium & stroma on 6 glass slides for P2(BPH) after glue 

removal in experiment 1. (e) (f) Mean spectra of epithelium & stroma on 6 glass slides for P3(CaP) after 

glue removal in experiment 1. (g) (h) Mean spectra of epithelium & stroma on 6 glass slides in for P4(CaP) 

after glue removal in experiment 1. 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 
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(f) 

 

(g) 
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(h) 

 

 

Figure7. 17 (a) (b) Mean spectra of epithelium & stroma on 6 glass slides for P1(BPH) after glue removal 

in experiment 2. (c) (d) Mean spectra of epithelium & stroma on 6 glass slides for P2(BPH) after glue 

removal in experiment 2. (e) (f) Mean spectra of epithelium & stroma on 6 glass slides for P3(CaP) after 

glue removal in experiment 2. (g) (h) Mean spectra of epithelium & stroma on 6 glass slides in for P4(CaP) 

after glue removal in experiment 2. 

 

The mean spectra of epithelium and stroma from 4 patients with glue removal in 

experiment 2 are shown in figure 7.17. The apparent peak in 3400-3450 cm−1 have 

mainly been removed. However, the peaks in some of the epithelium spectra are not 

completely smoothed out and appear a little negative in some cases. Therefore there is 

a need to improve and optimise the parameters in further study. In addition, there is no 

broad peak in 3400-3600 cm−1 region indicating that the glue removal code has worked. 

Similar to the result in experiment 1, the intensity of amide A band of stroma is higher 

than that for epithelium.  
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7.2.5.2 The PCA of cancer & non-cancer patients with glue removal

Figure 7.18 and figure 7.19 show the comparison of mean spectra of cancer and non-

cancer groups on glass D in experiments 1 and 2, respectively. For glue removal of both 

experiments, the intensity of the amide A band for the non-cancer group is always 

higher than cancer group and the peak intensity of stroma is higher than the epithelium. 

(a)
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(b) 

 

 

Figure7. 18 (a) the mean spectra of epithelium for cancer &non-cancer group on glass D with glue 

removal in experiment 1. (b) the mean spectra of stroma for cancer &non-cancer group on glass D with 

glue removal in experiment 1. 
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(b

(a)

) 

 

  

Figure7. 19 (a) the mean spectra of epithelium for cancer &non-cancer group on glass D with glue 
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removal in experiment 2. (b) the mean spectra of stroma for cancer &non-cancer group on glass D with 

glue removal in experiment 2. 

 

 

   

 

  

Figures 7.20 and 7.21 show the PCA results of cancer and non-cancer group 

classification in experiments 1 and 2. Figure 7.20 indicates that the separation of cancer 

and  non-cancer group is unclear. But the two groups still have a trend of separation 

and it depends on the PC1. The loading of PC1 has a positive feature which is located 

at around 3450 cm−1. The positive peak is related to O-H stretching. Therefore, the 

distribution of spectra in PCA is correlated with the intensity at 3450 cm−1. Because 

the cancer group is located in the negative area on PC1, the intensity of epithelium 

spectra at 3450 cm−1 for the cancer group is lower than the non-cancer group.
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(a) 

 
(b) 

 



286 

 

  

  

 

 

 

 

 

 

 

  
  

Figure7. 20 (a) The score plots of PC1 and PC2 of epithelium on glass D for cancer and non-cancer 

patients in experiment 1. (b) The PC1 loading for PCA of epithelium spectra on glass D for cancer and 

non-cancer patients in experiment 1.

According to figure 7.21, the separation of cancer and the non-cancer group with glue 

removal in experiment 2 is a little clearer, and it mainly depends on PC1 for separation. 

The loading of PC1 is shown in figures 7.21 (b). PC1 mostly has a positive peak, which 

is located at 3298 cm−1. It means cancer and non-cancer group are separated based on 

amide A. 

(a)
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(b) 

 
Figure7. 21 (a) The score plots of PC1 and PC2 of epithelium on glass D for cancer and non-cancer 

patients in experiment 2. (b) The PC1 loading for PCA of epithelium spectra on glass D for cancer and 

non-cancer patients in experiment 2. 

 

7.2.5.3 Cancer detection by random forest on the same glass slide with glue removal 

For both two experiments, the separation of spectra of cancer and non-cancer with glue 

removal on the same glass slide is not very clear based on PCA. It is necessary to 

achieve cancer detection by building a classifier.  

 

The model test of cancer detection on the same glass slides is training a classifier using 

80% of spectra of stroma or epithelium based on the random forest; the rest 20% of 

spectra are used to test whether the classifier could predict the spectrum belongs to. 

Tables 7.19 and 7.20 show the accuracy of the model test for cancer detection by the 

spectra of epithelium and stroma in experiments 1 and 2, respectively.  
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Table7. 19 The accuracy of cancer detection between cancer and  

non-cancer group on the same glass with glue removal in experiment 1. 

Model test (%) epithelium stroma 

Glass D 97.61 99.21 

Glass E 98.78 99.23 

Glass F 98.27 97.69 

Glass J 97.74 97.37 

Glass K 96.72 97.68 

Glass L 92.51 97.96   

 

 

 

 

For experiment 1 with glue removal, the accuracies of cancer detection between 

the cancer group and the non-cancer group are shown in table 7.19. According to table

7.19, cancer detection on the same glass slide has a specific high accuracy by both 

spectra of epithelium and stroma. Except for glass L, the accuracy of cancer detection 

on the other glass slide is all above 96.00%. In addition, the higher accuracy of the 

classification of cancer and non-cancer group is obtained by the spectra of the stroma.

 

 

Table7. 20 The accuracy of cancer detection between cancer and  

non-cancer group on the same glass with glue removal in experiment 2

Table 7.20 shows the accuracy of cancer detection on the same glass slide for spectra 

with glue removal in experiment 2. Compared with experiment 1 with glue removal, 

the accuracy of cancer detection on the same glass slide is lower in experiment 2 with 

glue removal and they are above 89.00%. 

. 

Model test (%) epithelium stroma 

Glass D 94.23 96.33 

Glass E 89.99 90.73 

Glass F 93.72 97.41 

Glass J 94.60 92.28 

Glass K 92.09 89.73 

Glass L 93.76 93.26 

 

7.2.5.4 Cancer detection by random forest on the different glass slide 

To study the effect of glass type on cancer detection, the classifier is trained by spectral 

data from one glass slide and is tested by spectral data from the other glass slide. The 

results of the classification of cancer and non-cancer groups on different types of glass 
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For experiment 1 with glue removal, most cancer detection accuracy between different 

glass slides is very low, but the accuracy is ok between a few glass slides. Table 7.21(a) 

shows that cancer detection on glass F&K and K&L could obtain good results using 

epithelium spectra. While by stroma spectra in table 7.21(b), cancer detection only on 

slides by spectra of epithelium and stroma in experiments 1 and 2 are shown in 

table 7.21 and table 7.22, respectively. Table 7.21 and table 7.22 have highlighted the 

table cell in which the accuracy is above 80% in yellow. Most of the cancer 

detection accuracy between different glass slides is significantly lower. According to 

the number of highlighted cells, no matter for experiments 1 and 2,

the accuracy of the classification of cancer and non-cancer group on different glass 

slides by epithelium spectra could have a better result than by stroma spectra. 

glass F&K could have high accuracy.  
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Table7. 21 (a) The accuracy of cancer detection by epithelium spectra on different glass slides  

with glue removal in experiment 1. 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  84.28 32.75 41.15 46.13 40.45 

Train on glass E 71.62  38.49 47.38 59.25 63.33 

Train on glass F 61.56 24.67  74.00 81.56 61.49 

Train on glass J 71.55 49.68 85.19  68.53 56.03 

Train on glass K 79.09 47.38 81.45 56.20  81.08 

Train on glass L 49.35 25.75 83.01 73.84 80.57  

 

Table 7.21(b) The accuracy of cancer detection by stroma spectra on different glass slides  

with glue removal in experiment 1. 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  53.09 54.61 46.93 57.39 11.86 

Train on glass E 47.48  58.18 63.97 40.80 46.09 

Train on glass F 78.70 49.69  71.49 86.11 61.79 

Train on glass J 57.69 37.02 66.86  47.69 31.67 

Train on glass K 79.88 27.31 71.88 58.22  45.27 

Train on glass L 20.39 44.70 60.61 47.32 65.97  

 

 

Table7. 22 (a) The accuracy of cancer detection by epithelium spectra on different glass slides  

with glue removal in experiment 2. 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  64.39 91.06 47.02 50.73 34.35 

Train on glass E 66.79  82.94 88.44 83.08 84.55 

Train on glass F 91.62 68.77  48.03 51.25 35.61 

Train on glass J 52.92 82.84 60.04  91.02 88.69 

Train on glass K 47.16 80.30 49.08 91.60  87.73 

Train on glass L 33.50 70.05 42.05 86.20 84.30  

 

Table 7.22(b) The accuracy of cancer detection by stroma spectra on different glass slides  

with glue removal in experiment 2. 

Accuracy (%) Test on  

glass D 

Test on  

glass E 

Test on  

glass F 

Test on  

glass J 

Test on  

glass K 

Test on  

glass L 

Train on glass D  69.70 91.97 53.41 50.86 16.60 

Train on glass E 73051  78.17 78.39 78.02 62.27 

Train on glass F 86.3 67.75  49.81 54.26 21.08 

Train on glass J 54.10 80.55 46.30  86.15 82.17 

Train on glass K 60.29 81.26 53.61 89.50  74.03 

Train on glass L 24.80 66.84 36.84 81.41 76.30  

 

While for experiment 2 with glue removal, the cancer detection results on different 

glass slides have better performance than experiment 1. The accuracy is ok only 

between more glass slides. Table 7.22 (a) shows that cancer detection on glass F&D, 
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glass E&J&K&L could obtain good results by epithelium spectra. While by stroma 

spectra in table 7.22 (b), cancer detection only on glass F&D, glass J&K could have 

high accuracy. 

 

To sum up, the type of glass slide has a certain influence on cancer detection. However, 

maybe due to the similar composition or structure, there is little effect on cancer 

detection for some glass slides. In addition, the classifier of cancer detection on 

different glass slides trained by epithelium spectra could get better performance than 

when using stroma. It indicates the type of glass slide has less impact on cancer 

detection results for epithelium spectral data.  

 

 

Similar to the error in chapter 6 (see section 6.3), the errors in chapter 7 are from 

measurement and data processes. It will take several days to measure all of the tissue 

samples, and the environmental changes during these days (temperature) would lead to 

an error. The different resolutions between the H&E brightfield and chemical images 

could lead to annotation and registration errors. Error for PCA and random forest results 

are caused by randomly selecting the spectra when reprocessing the spectral data every 

time. But the results change a little, only around ±3% and ±0.35% for PCA score and 

random forest accura

7.3 Error discussion

cy, respectively.  

 

7.4 Conclusion 

 The high accuracy of classification of cancer and non-cancer on CaF2 indicates that SHP

 is a valuable method for cancer detection. The purpose of this report is to study whether

 the different types of glass could affect cancer detection. Two types of experimental

 methods are applied in this project. However, whichever method is used, the spectra

 could be affected by glue. Therefore, glue removal is a necessary process. Every
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experimental result could be divided into two parts: spectra without glue removal and 

spectra with glue removal.  

 

The biggest difference between the two experiments is the background scan. In 

experiment 1, the background is a clear and tissue-free area. According to chapters 5 

and 6, the glue has less effect in experiment 1. While in experiment 2, the background 

is a blank glass slide, both glue and coverslip would have an influence on spectra. The 

glue removal has a considerable impact on the spectra in experiment 2.  

 

Tissue sections from 4 patients are mounted on 6 kinds of glass slides, and P1(BPH), 

P2(BPH), P3(CaP) and P4(CaP) stand for the 4 patients. The cancer group is made of 

P3(CaP) and P4(CaP) spectra. The non-cancer group is made of P1(BPH) & P2(BPH) 

spectra.  

  

 

 

 

While in experiment 2 without glue removal, PCA cannot separate all of the spectra on 

For the spectra without glue removal in experiment 1, there is no separation for PCA 

results of 6 glass slides from the same patient. It means the type of glass slide has no 

effect on spectra. The classification of cancer and non-cancer group on the same glass 

slide by PCA has a good performance. It also has a high accuracy by random forest 

(accuracy above 97.00%), especially for the spectra of the epithelium. However, for 

the classification on the different glass slides, the accuracies are very different. The 

cancer detection on some of the glass slides could have good performance (accuracy

 above 80.00%), and the better results are also from the spectra of the epithelium. 

According to the detection result, the cancer detection between glasses D & E or 

between glasses F & K & J could get a good classification result. It means that the 

differences in glasses D & E or in glasses F & K & J are smaller than the difference 

in cancer tissue. Therefore, the type of glass slide impacts cancer detection, and the 

effect is lower for the spectra of epithelium than stroma.

6 glass slides from the same patient, and it cannot separate the spectra of cancer and 



293 

 

 

 

non-cancer groups on the same glass slide. It means the spectra difference between 

cancer and non-cancer group are less than spectra from experiment 1. Cancer detection 

only could achieve by random forest. Cancer detection accuracy on the same glass slide 

is above 92.00%, and it is slightly lower than experiment 1. For cancer detection 

on different glass slide, they have good results on glass J & E and glass J &K. it means 

the difference between glasses J & E, glasses J & K are smaller. In addition, for the

 cancer detection by epithelium spectra in experiment 2, the glasses J & L also 

have good performance.   

 

 

There are certain separations between cancer and non-cancer groups by PCA for both 

two experiments after removing the glue. The accuracy of the classification of cancer 

and non-cancer group on the same glass slide is above 96.00% and 89.00% for 

experiment 1 and 2, respectively. And both of the accuracies are decreased after 

removing glue for two experiments. In addition, for both experimental spectra with

 glue removal, the better classification performance on the same glass slide is from

 the spectra of the stroma. But the spectra of stroma always have worse performance

 than epithelium on cancer detection on the different glass slides. It means the glass 

slide has more impact on cancer detection by stroma spectra after removing the glue. 

 

 

For experiment 1, the better cancer detection results on the same glass slide are from 

epithelium spectra before removing the glue. The better results are from stroma spectra 

after removing the glue. Generally, 

Comparing the cancer detection on the same glass slide, spectra without glue removal 

always have better results than those with glue removal for both experiments. It 

means that the glue has a particular contribution to cancer detection. Compared with 

experiments 1 and 2, cancer detection on the same glass slide in experiment 1 always 

performs better than experiment 2. Although the spectra in experiment 2 have more 

effect on glue, they also have an effect on the coverslip. Therefore, experiment 1 is a 

better method than experiment 2. 

the thickness of the glue on the normal epithelium 
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area is higher than the stroma area. The more glue in the epithelium has a certain 

contribution to cancer detection without glue removal. After removing glue, cancer 

detection only depends on the tissue. The thickness of the stroma is higher than the 

epithelium, so better classification results are from stroma spectra with glue removal. 

It also proves that glue has a specific effect on cancer detection. 

 

 

 

 

Most of the cancer detection accuracy on the different glass slide is very low, and it 

indicates the type of glass slide has an effect on cancer detection. However, the accuracy 

among some of glass slides has good results, and the spectra of epithelium always 

have higher accuracy than stroma for both experiments with glue removal. It means that 

spectra of epithelium are less affected by the type of glass slide than stroma. As 

mentioned above, the normal epithelium area contains more glue, so the glue removal 

process has more significant changes on spectra of epithelium than stroma. This change 

could lead to the spectra with glue removal being more similar to the reference spectra 

(matrigel spectra). Therefore, the glue removal maybe would reduce the spectral 

difference among the glass slides. Thus, the type of glass slide has less impact on cancer 

detection by epithelium spectra with glue removal. 

 

 

To sum up, cancer detection could be achieved by the spectra of epithelium and stroma 

on the same glass slide. SHP on glass slides is a potential method for cancer detection. 

But the type of glass slide has an impact on cancer detection. Therefore, the type of 

glass slide must be consistent du

Compared with the results in chapter 6, the type of glass slide has a slight influence on 

tissue classification for spectra without glue removal,  however, it has an impact on 

cancer detection. It indicates that the difference between epithelium and stroma is 

bigger than the difference in glass type and is bigger than the difference in spectra of 

cancer and non-cancer. 

ring cancer detection.   
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Chapter 8 

Conclusion and future work 
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8.1 Conclusion 

Spectral histopathology (SHP) using H&E stained tissue on glass slides is a potential 

method to augment current pathology and help cancer diagnosis. There are many 

advantages if it were used as a pre-screening method for clinical application: 1) high 

speed of cancer detection, 2) no additional sample preparation process, 3) low cost, 4) 

no disruption to the pathologists’ workflow. However, the most significant limitation of 

using glass slides is that the substrate is opaque in the rich fingerprint spectral region. 

The amide A envelope is the only band which could be used for SHP. In order to achieve 

the clinical translation of SHP, many fundamental studies need to be explored. The work 

presented in this thesis attempts to evaluate the influence of different types of glass 

substrates on the classification of tissue types and cancer detection using FTIR. 

 

  

 

Chapter 4 compared the infrared spectra of 12 different types of blank glass slides. The 

infrared absorption of blank glass slide in 2000 – 3800 cm−1 is caused by hydroxyl and 

its related groups. Except for glass D, the rest of the glass slides cannot be separated by 

their infrared spectra. Furthermore, the rest of 11 glass slides could be divided into 

charged and non-charged glass slides. However, the PCA analysis still cannot 

completely separate the two groups of glass slides. Therefore, the types of glass slides 

generally have little effect on infrared spectra, and the spectral difference between the 

charged and non-charged glass slides is also very small.  This is perhaps to be expected 

given that the charged surface layer is negligible in thickness compared with the bulk 

Glass is a non-crystalline amorphous solid consisting of a complex mixture of chemical

 components. Except for silicon dioxide, which is  the main component, the types 

and proportions of other components are variable for different glass slides. There are 

many types of glass slides used in clinical histopathology. 12 different glass slides, 

which were produced by different manufacturers, were used in this project.

(~1 mm) glass slide. 
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For the tissue analysis, there are two experimental methods for comparison. The 

background of experiment 1 is a clear tissue-free area. While the background of 

experiment 2 is the blank glass. These two methods are compared for both tissue 

classification and cancer detection. 

 

A glue removal method is developed and discussed in chapter 5. The existence of bands 

at 3400-3450 cm−1  and 3400-3600 cm−1  are related to the glue and the coverslip, 

respectively. The suitable removal method and fit range are compared to eliminate the 

interference of glue and coverslip. And the results indicate that the most appropriate 

glue removal method uses the spectra of glue, coverslip and Matrigel as references and 

the fit ranges 1: Matrigel peak (3278-3318cm−1, 3066-3106cm−1); fit range 3: glue 

peak & Matrigel peak (2950-2970cm−1, 2925-2945cm−1, 2867-2887cm−1); fit range 

4 coverslip & Matrigel peak (3536-3576 cm−1 , 2704-2744 cm−1 ) for the fitting 

procedure.  

 

Epithelium and stroma are essential components of the prostate tissue and have 

previously been used for IR based cancer detection[1]. Therefore, the classification of 

epithelium and stroma is used to evaluate the influence of glass type on tissue 

classification. A series of adjacent BPH tissue sections cut from the same tissue block 

are mounted on the 12 glass slides. For tissue classification on the same glass slide, the 

accuracy of discriminating epithelium and stroma is above 98.40% for two experiments. 

The results indicate that the tissue classification on the same glass slides based on the 

spectra can be easily achieved. 

 

 

 

 

For tissue classification on the different glass slides without removing glue, except for 

glass A and glass I, most of the accuracies of distinguishing epithelium and stroma 

based on the spectra are above 90.57%. The results indicate that the glass slide type 

only slightly influences tissue classification, especially for experiment 1 without glue 

removal. However, after removing glue, the classification accuracy gets worse 

indicating that the glue removal introduces additional errors to the analysis. 
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Using either spectrum of epithelium or stroma could achieve cancer detection on the 

same glass slides, especially for experiment 1 without glue removal (above 97.19%). 

But accuracy is higher when using the spectra of epithelium. Spectra without glue 

removal always have higher cancer detection accuracy than glue removal for both 

experiments. It means that the glue contributes to cancer detection or introduces an 

additional random error that reduces the classification accuracy. Since glue has no 

biological relevance, it is likely that this relates to tissue density and porosity of the 

cancerous and non-cancerous tissue, which allows differing amounts of glue to 

penetrate, thus contributing a spectral difference. However, the accuracy of cancer 

detection always has poor performance on the different glass slides. Therefore, the type 

of glass slide has an impact on cancer detection.  

 

In conclusion, the type of glass slide has a slight influence on spectra and tissue 

classification without glue removal, but it affects cancer detection. Glue has a 

contribution to tissue classification and cancer detection. In an ideal situation, the type 

of glass slide must be consistent in building a database to achieve cancer detection and 

the clinical translation of SHP. In addition, the spectra of epithelium in experiment 1 

without glue removal are most suitable for cancer detection.  
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8.2 Future work  

This project aims to study the effect of the type of glass slides on cancer detection, 

which is an important foundational work for SHP to obtain acceptance into clinical. The 

results indicate the type of glass slide affects cancer detection; thus, the type of glass 

slide should be kept consistent for spectral histopathology. However, further work is 

required to draw a more definitive conclusion because this project still has some 

shortcomings that need to be improved.  

 

Firstly, in tissue classification and cancer detection work, only one adjacent tissue 

sample is mounted on every type of glass slide. It means there is only once sample 

preparation for every kind of slide. So, for tissue classification and cancer detection, 

the accuracy differences either be due to the glass itself or external factors during the 

sample preparation. For example, tissue classification in chapter 6 shows a big 

difference between the spectra on glass A and the other 11 glass slides, which caused 

the model trained by glass A cannot to be used to classify the epithelium and stroma on 

the other glass slides. It is unclear whether the spectral difference is caused by glass 

type or other factors during the sample preparation. Therefore, to eliminate the error 

from sample preparation, the same adjacent prostate tissue from the same BPH patient 

could be mounted on the 12 glass slide again as the second group. It means there are 24 

adjacent tissue mounted on the 12 glass slides, and every type of glass slide has two 

adjacent prostate tissue. Similarly, the second group is also needed for cancer detection.  

   

Secondly, only one patient was used for studying tissue classification, and only 4 

patients were used for studying cancer detection. Therefore, it is necessary to prepare a 

series of adjacent tissue samples from more CaP and BPH patients for repeating the 

experiment and explore whether the experiment could get the same results about the 

influence of glass type on tissue classification and cancer detection.  

 

Tissue microarray (TMA) is the most suitable sample for further research to improve 
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the above two shortcomings, even though fewer spectra could be selected than the 

whole prostate tissue. A schematic of the sample preparation is indicated in figure 8.1. 

Twelve adjacent prostate tissue are mounted on 6 different glass slides, and every type 

of glass slide have two adjacent tissue from the same patient. Figure 8.1 displays 12 

prostate tissue cores from 6 BPH and 6 CaP patients. But the number of patients can 

also be appropriately increased when the experiment is really carried out.  

 

 

  

 
Figure8. 1 The sample preparation design for future study.  

 

Thus the spectra used for training the model on the same type of glass slide could be 

selected from two adjacent tissue samples, which could reduce the error caused by 

sample preparation. Suppose the models perform well on tissue classification or cancer 

detection on the different types of glass slides. In that case, it could prove the type of 

glass slide not affect tissue classification or cancer detection. If not, the kind of glass 

slide caused the spectral difference and bad performance on tissue classification or 

cancer detection. The above experimental design is to obtain more reliable and stable 

results about the effect of glass slides on tissue classification and cancer detection.  
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In addition, glue removal is one of the difficulties for data processing. Glue always has 

an impact on the spectra, no matter what experimental method is used. The project 

results indicated that the glue contributes to tissue classification and cancer detection. 

It is caused by the structural difference between epithelium and stroma. There is more 

holes for the normal epithelium. So the normal epithelium would contain more glue. In 

order to make sure the classification (epithelium & stroma, cancer & non-cancer) is 

based on the real tissue spectra, glue removal is necessary. Chapter 5 has already tried 

to remove the glue with algorithms in Matlab. The key problem in removing glue is 

finding the best fit range. Therefore, the future study for developing the glue removal 

method is optimizing the fit range based on constantly reprocessing the spectral data by 

the supercomputer. 

 

High accuracy and affordability are the two critical aspects of clinical translation for 

SHP. Traditional substrate ( CaF2  or BaF2 ) for infrared spectra at present is too 

expensive to be applied in the clinical field[2]. Therefore, using glass as a substrate is 

an important research field for the clinical application of SHP. Studies by Rutter el al. 

have proven that the thickness of the glass slide enable some data from the fingerprint 

region to be obtained.[3][4]. Coverslips (0.13-0.17 mm) could therefore be used to 

obtain the spectral data from the fingerprint range, but it still needs additional sample 

preparation above normal pathology procedure and the cover slips are considerably 

more fragile than the normal glass slides. The histopathology glass slide (around 1mm) 

is only transparent in the infrared region above 2000 cm⁻¹. The Amide A envelope is 

the only peak that could be used for SHP, which affects the accuracy of the classification. 

Kansiz used optical photothermal infrared (O-PTIR) spectroscopy combined with a 

quantum cascade laser (QCL) IR pump source to study cancer detection[5]. It was 

demonstrated that could obtain the IR spectra from lipid and fingerprint regions on cell 

lines but has yet to be fully demonstrated on biopsy tissue samples.  

 

Compared with the above studies, using H&E stained tissue on the glass slides does not 

add additional sample preparation and cannot disturb the clinical histopathologist’s 
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workflow. Cancer detection could be achieved only based on the amide A. This method 

in principle therefore the most straightforward method to push for the clinical 

translation for sample pre-screening and cancer detection.  

 

Figure 8.2 describe the ideal workflow for the SHP used as a pre-screening process in 

the future. The traditional workflow for cancer detection is depicted by the blue arrow, 

and the pathologist has to examine all biopsy tissue and give detection results. SHP 

could be applied as a pre-screening process for clinical translation to reduce the 

pathologist’s workload and detection time. As is shown in the yellow arrow in figure 

8.2. just like a traffic light system,  all H&E stained biopsy samples on the glass slide 

need to be detected by SHP. Only the samples, which are detected to be suspicious and 

cancerous, need to be given to the pathologist to make the final decision, while the 

normal samples could directly give the detection result.  

  

 

Figure8. 2  The workflow for clinical application of SHP in the future. 

 

Many fundamental studies need to be considered to build a stable and reliable model 

for SHP. This project has explored the effect of glass type on cancer detection. Further 

study could discuss the impact of glue and coverslip on cancer detection. All of these 

studies could determine a very strict sample preparation protocol for the clinical 

application of SHP in the future.  
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