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Abstract

OPTIMIZING RATE-BASED SPIKING NEURAL NETWORKS

Chen Li
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

A notable trend in recent years is the transition of the prevalent deep learning
algorithms to edge devices, and a primary concern is unsustainable energy dissipa-
tion. Deep SNN, benefiting from their event-based nature and efficient information
communication by spikes, can serve as a competitive candidate for achieving a more
power-efficient computing paradigm. A practical way to train an SNN is to first train
an ANN and then convert it into a rate-coded SNN, a method called ANN-to-SNN
conversion. This method enables building functional SNNs at a low cost and validating
various optimization strategies in SNNs.

Based on ANN-to-SNN conversion, this thesis explores the rationale behind SNNs
and the optimization of SNNs from various aspects. First, it clarifies the fundamental
question of why to use SNNs. Few advantages of SNNs compared with conventional
ANN have been found up to now. The presented results show that SNNs can render
better robustness to noisy synaptic weights. This research paves the way for applying
memristors, a cutting-edge component with intrinsic noise, to spike-based in-memory
computing. Second, it focuses on retaining the biological plausibility of state-of-the-art
SNNs. In the presented study, the neuronal dynamics of the standard integrate-and-fire
model are analyzed, and the difficulty of weight-bias imbalance when using this model is
relieved. Better accuracy is achieved than the state-of-the-art SNNs. Third, the accuracy-
latency trade-off, one of the essential challenges in rate-coded SNNs, is alleviated in
the presented study. It elaborates on the role of noise in fast SNNs and the necessity of
information compression in achieving low-latency SNNs. The SNNs optimized by this
approach achieved an accuracy of 70.18% in 8 times steps on ImageNet. Finally, SNNs
need to be deployed to neuromorphic hardware or neuromorphic chips for real-world
applications. An SNN deployment on SpiNNaker is described in this thesis, featuring
high accuracy (98.63% on MNIST), structural plasticity, and low firing rates.
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Glossary

ANN Artificial neural network (ANN) is a deep neural network model, the dominant
model in deep learning. 6–9, 14–17, 33, 36–38, 40, 42, 43, 50, 51, 53, 54, 57–60,
62–64, 67, 68, 71, 73, 75, 77–85, 87–89, 92, 93, 95–97, 99–105, 107, 109–121,
123

ANN-to-SNN conversion ANN-to-SNN conversion is a method to build a spiking
neural network by converting an artificial neural network. 6–9, 16, 38–42, 51, 53,
57–60, 64, 77, 78, 81–83, 87, 89, 90, 92, 93, 95, 96, 98–101, 103, 104, 109–114,
118–120, 122–124

API Application programming interface (API) is a way for two or more computer
programs to communicate with each other. 15, 50, 101

CPU Central processing unit (CPU) is the electronic circuitry that executes instructions
comprising a computer program. 14, 50, 52, 55, 92

GPU Graphics processing unit (GPU) is a specialized electronic circuit designed to
accelerate certain computations such as the creation of images. 14, 15, 50–52, 55,
92

SNN Spiking neural network (SNN) is a neural network model made up of spiking
neurons. 6–9, 14–20, 22, 24, 28, 31–36, 38, 40–45, 48–89, 92–104, 106–124
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Chapter 1

Introduction

1.1 Overview of context

Neuromorphic computing, whose origins can be traced back to the 1980s, is meeting
new challenges and opportunities. In its initial definition, neuromorphic computing
is using very-large-scale integration (VLSI) circuits to emulate biological neurons
and neural systems formed by these neurons. The rationale for implementing spiking
neurons on hardware is twofold: promoting a better understanding of the brain by
implementing intelligence in silicon, and exploring bio-inspired computing during this
implementation of silicon neurons. The scope of neuromorphic computing has gradually
expanded, and silicon neurons are implemented on more architectures. In this century,
various projects have received generous funding to build large-scale neuromorphic
machines as well as to validate neuromorphic chips.

At the same time, the third wave of artificial intelligence has surged from 2006
[HOT06], featuring the adoption of deep learning techniques. The success of AlexNet
in 2012 [KSH12] and the new ImageNet records that surpass the human level in
2015 [RDS+15, HZRS15, HZRS16] are two influential landmarks in deep learning.
Nevertheless, these deep learning algorithms are run on CPUs, GPUs, and neural
network accelerators, instead of on neuromorphic hardware.

A pioneering paper was published in 2015 [DNB+15], which demonstrates the
conversion of ANNs, a dominant technique in deep learning, to SNNs, a model that
can be simulated on neuromorphic hardware. This research has had a long-term
impact on neuromorphic computing and inspired many following studies. On the one
hand, by converting an ANN to an SNN and then implementing it on neuromorphic
hardware, neuromorphic hardware can implicitly run deep learning algorithms, the

14



1.2. OBJECTIVES AND CONTRIBUTIONS 15

current dominant AI method. On the other hand, considering the reported similarity
between ANNs and SNNs, some deep learning tools that are initially designed for
ANNs can be utilized to simulate SNNs.

A key challenge to be met by neuromorphic machines is the effective and efficient
deployment of SNN algorithms. “Effective” refers to the lossless deployment of a
SNN from GPUs to neuromorphic hardware. The accuracy loss can come from the
different neuronal dynamics of SNNs simulated on GPUs and SNNs implemented on
neuromorphic hardware, as well as from different APIs and hardware architectures.
“Efficient” refers to the power-efficient SNN implementation in real-time. Algorithm
optimization is proven to be a significant method to optimize for these two aspects.
For instance, an SNN can be optimized to adapt to the constraints of neuromorphic
hardware so bringing better accuracy and a lower burden on memory and computing
units.

Simulating SNNs on deep learning tools offers many beneficial effects such as
accelerating SNN prototyping and validation, and driving faster progress on algorithm
development and optimization. By simulating SNNs on deep learning tools, many
pivotal problems such as why to use SNNs instead of ANNs, how to build noise-robust
SNNs, and how to build fast SNNs can be studied. The knowledge that appears during
this process can be transmitted on neuromorphic hardware to implement functional
SNNs on practical tasks.

In summary, SNNs are promising to bring deep learning techniques to neuromorphic
computing, which provides new opportunities to implement functional spike-based
algorithms on neuromorphic hardware for real-world tasks. There are some challenges
associated with these opportunities along this new journey, which have drawn increased
scholarly attention.

1.2 Objectives and contributions

As described in the section above, the new trend, leveraging the techniques and tools
from deep learning to improve SNN performance and expand SNN scope, provides
new opportunities and challenges. To capture these opportunities and overcome the
challenges met by current SNNs, this thesis presents several original research that
contributes to the development of SNNs. The presented research in this thesis covers
several key aspects of SNNs, including deploying SNN on neuromorphic hardware (
Section 3.5) and cutting-edge materials (Section 3.4), the advantages of using SNNs
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over traditional ANNs (Section 3.1 to Section 3.3), the biological plausibility of SNNs
(Section 4), and the inference latency of SNNs (Section 5). The works covered in
this thesis are not independent but closely related to each other. By combing them
together, a complete workflow to apply SNNs to real-world applications with high
biological plausibility and performance is presented: from why to use SNNs to how to
improve their performance; from SNN simulation and optimization on simulators, to
SNN deployment on current neuromorphic hardware and neuromorphic hardware that
contains noisy but energy-efficient components.

Central to this thesis is the optimization of rate-based deep spiking neural networks.
The studies presented in this thesis close the gap between ANNs and SNNs with regard
to inference performance, and reveal the merits of SNNs such as its noise robustness
and biological plausibility. The main contributions are:

• A quantization framework for fast SNNs (Chapter 5): The performance of
SNNs, and specifically their inference accuracy, has improved significantly over
recent years, which can be attributed to the bridge built by pioneer researchers
to carry knowledge from ANNs over to SNNs, a method called ANN-to-SNN
conversion. In this study, a second bridge from ANNs to SNNs is built, with
the primary goal to reduce the inference latency of SNNs. This study provides
a comprehensive quantization framework for fast SNNs, and investigates the
challenges of information compression and noise suppression. The results show
this approach achieves state-of-the-art accuracy and latency (70.18% in 8 time
steps on ImageNet) compared with other low-latency SNNs built by ANN-to-SNN
conversion. In summary, the accuracy-latency trade-off in SNNs is alleviated by
this study.

• An SNN normalization method to balance network performance and biologi-
cal fidelity (Chapter 4): Except for the well-known accuracy-latency trade-off
in SNNs, a trade-off between network performance and biological plausibility
exists in the current SNN research. The recent trend in SNN research is trading
biological plausibility for better performance. This study demonstrates that state-
of-the-art SNN accuracy can also be achieved with more biologically-plausible
neuronal models and input coding schemes. The main challenge solved in this
study is the modeling of bias and batch normalization, two key elements in ANNs,
by the standard spiking neurons, which enables converting more powerful ANN
model to build SNNs with higher accuracy. The SNNs achieved 99.71% accuracy
on MNIST and 93.6% accuracy on CIFAR-10.
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• Noisy weights (Chapter 3): After the proposal of the first method to build func-
tional SNNs, there is considerable scholarly attention attached to the advantages
of SNNs compared to ANNs. This study suggests that SNNs are more robust
to noisy synaptic weights than ANNs. This research contributes to our under-
standing of the dynamics of spiking neurons, specifically, their characteristics
on noise robustness. This research may also be of value to memristor-based
neuromorphic computing where the memristor, a noisy cutting-edge device, is
adopted as non-volatile memory to store weights efficiently.

• SNN implementation on SpiNNaker (Chapter 3): Ultimately, an SNN algo-
rithm will be deployed to neuromorphic hardware for real-world applications.
This study reports the deployment of a deep SNN algorithm on SpiNNaker, a
digital neuromorphic hardware. The reported results outperform other SNN
implementations on SpiNNaker (0.43% higher accuracy on MNIST).

1.3 Publications

There are several published peer-reviewed papers to support the contributions of this
thesis.

• C. Li, S. Furber, Towards Biologically-Plausible Neuron Models and Firing
Rates in High-Performance Deep Spiking Neural Networks, International Con-
ference on Neuromorphic Systems (ICONS 2021). This paper [LF21] provides a
method to model bias and batch normalization by the standard integrate-and-fire
model in SNNs, which obviously improves the SNN accuracy on MNIST and
CIFAR-10. Meanwhile, biological plausibility is retained. The contents of this
paper are presented in Chapter 4.

• C. Li, R. Chen, C. Moutafis, S. Furber, Robustness to noisy synaptic weights in
spiking neural networks, International Joint Conference on Neural Networks
(IJCNN 2020). This study [LCMF20] shows that SNNs are more robust to
Gaussian noise in synaptic weights than ANNs under some conditions. This
finding will enhance our understanding of the merits of SNNs compared with
ANNs. Also, these results imply the possibility of using high-performance cutting-
edge materials with intrinsic noise as an information storage medium in SNNs.
This study is shown in Chapter 3.
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• R. Chen, C. Li, C. Moutafis, S. Furber, Nanoscale room-temperature multi-
layer skyrmionic synapse for deep spiking neural Networks, Physical Review
Applied. This research [CLL+20] proposes a nanoscale skyrmionic synapse com-
posed of magnetic multilayers that enables room-temperature device operations
tailored for optimal synaptic resolution. A method to embed such multilayer
skyrmionic synapses in spiking neural networks is provided, and results show
that an accuracy of 98.61% is achieved on MNIST. This research illustrates that
the proposed skyrmionic synapse can be a potential candidate for future energy-
efficient neuromorphic edge computing. Chapter 3 includes a part of the contents
of this study.

• C. Li, L. Ma, S. Furber, Quantization Framework for Fast Spiking Neural
Networks, Frontiers in Neuroscience. This study elaborates a comprehensive
quantization framework to build SNNs with ultra-low latency. The significance
of information compression and noise suppression is emphasized in this paper,
with an in-depth analysis and corresponding practical solutions. State-of-the-art
SNN latency is achieved on ImageNet. This study is introduced in Chapter 5.

1.4 Thesis structure

The rest of this thesis is composed of the following chapters:
Chapter 2 introduces the fundamental elements in both classical spiking neural

networks and deep spiking neural networks, and the overview of neuromorphic hardware
and deep learning.

Chapter 3 investigates the robustness of noisy weights in spiking and non-spiking
neural networks, as well as the architecture design and optimizations of an SNN built
with skyrmionic synapses. Also, a demonstration of an SNN on SpiNNaker is provided.

Chapter 4 discusses the imbalance between weights and biases in SNNs when
applying the standard integrate-and-fire model, and provides a feasible solution to
overcome this challenge.

Chapter 5 proposes a quantization framework for achieving low-latency SNNs, and
highlights the role of information compression and noise suppression.

Chapter 6 summarizes the research presented in this thesis and suggests future
directions.



Chapter 2

Background

This chapter provides background information on deep spiking neural networks. In the
first two sections, classical spiking neural networks and neuromorphic hardware are
introduced. After the surge of deep learning in 2012, spiking neural networks gradually
go deeper and transition to deep spiking neural networks. Section 2.3 gives a brief
overview of deep learning. The related elements and techniques about deep spiking
neural networks are introduced in Section 2.4. Section 2.5 summarizes the contents
covered in this chapter.

2.1 Classical spiking neural networks

SNNs are neural networks that contain structured biologically-inspired spiking neuronal
models which are connected by synapses. In SNNs, the information is processed in
spiking neurons, carried by “all-or-none” spikes, and propagated through synapses.
These information processing systems are researched intensively to explore the reasons
behind the astonishing spatiotemporal data processing ability in the brain, and to
mimic these brain merits and duplicate them in other platforms by reverse engineering.
Spiking neurons are sparsely activated and their firing time is usually not synchronized.
These features allow SNNs to be efficiently implemented on neuromorphic machines
[FGTP14, MAAI+14, DSL+18, SBG+10] which are often event-based, asynchronous,
and highly-parallel.

SNNs are divided into two categories in this thesis—classical SNNs and deep
SNNs—according to whether they follow the deep learning paradigm and apply deep
learning techniques such as gradient descent and backpropagation. This section covers
the contents of classical SNNs, with an emphasis on their computational properties
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Figure 2.1: The anatomy of a neuron. The figure is modified from [Tow91].

and biological plausibility. The over-detailed biological foundations of SNNs, such as
some experimental neuroscience observations and some computational neuroscience
conclusions, are out of the scope of this section.

2.1.1 Anatomy of a neuron

A neuron (also known as a nerve cell) comprises three parts: dendrites, a soma, and an
axon. Communication between neurons relies on synapses. As shown in Figure 2.1,
dendrites are tree-shaped structures that receive information from other neurons through
synapses. The soma, also known as the cell body, is the core of a neuron that maintains
the normal function of the neuron, e.g. by producing proteins in the nucleus of the
soma. The axon is a tail-like structure that sends signals to other neurons. Locating
at the end of the axon are axon terminals, and they contain neurotransmitters that are
crucial for signal transmission from this neuron to another. Neurons do not touch each
other directly, but are connected by synapses. Specifically, a synapse connects an axon
terminal of a neuron to a dendrite of the next neuron. Neurons are extensively linked to
other neurons in this way, enabling information to be carried to different neurons.

The carrier of information is spike. When spikes are generated and propagated
through the axon to the axon terminals, neurotransmitters are released into the synapses
and accepted by the dendrites of other neurons. During this process, the electrical signals
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Figure 2.2: The waveform of two action potentials with similar height and width. The
Figure is modified from [SS14].

(spikes) in the neurons are converted to chemical signals (carried by neurotransmitters)
and then converted to electrical signals (input currents) in the other neurons.

2.1.2 Spikes

A spike is an electrical signal occurring in a neuron, and it is also known as an action
potential or a nerve impulse. When a spike is generated in a spiking neuron, the
membrane potential of this neuron rapidly rises and falls, forming a pulse-shaped
electrical signal traveling along the axon of this neuron. The waveforms of spikes are
identical, and follow a stereotypical voltage change and time duration as shown in
Figure 2.2. After a spike is emitted, this neuron enters a refractory period with a typical
time length of several milliseconds during which spikes are harder to generate.

Whether a spike is generated is determined by the values of its membrane potential
and spiking threshold. The membrane potential is the difference between the inside
and outside electrical potentials in a neuron, represented by voltage with the units of
millivolts. The spiking threshold is usually modeled by a voltage value that provides the
explicit criterion to determine whether a spike will be generated, though the biological
details are more complicated. A more detailed description of the spike generation
process is given along with an introduction to the IF model in the following section.
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2.1.3 Neuronal models

There are a variety of neuronal models proposed to capture the dynamics of spiking
neurons in nervous systems. This section introduces five typical models which are
widely supported in neuromorphic hardware and SNN simulators. These models are all
single-compartment point neurons which means they ignore the complicated dendrite
dynamics and the physical shape of spiking neurons. The computational complexity
and biological plausibility of these five models are compared in Figure 2.3.

• Integrate-and-fire model (IF model). This is also known as the non-leaky
integrate-and-fire model, and it is one of the earliest and simplest spiking neuronal
models [Abb99]. The neuronal dynamics of the IF model can be summarised
as two stages: voltage integration and spike firing. At the voltage integration
stage, the input current is integrated into the membrane potential of a spiking
neuron, and causes the membrane potential (which is usually measured by voltage.
Typical values of membrane potential are in the range from -70 mV to -40 mV.)
to increase or decrease; this voltage will keep stable if no more input electrical
signals are integrated. Once the voltage inside a spiking neuron surpasses a
threshold, it enters the second stage, spike firing. At this stage, a spike will be
generated, and the membrane potential will drop down to the resting potential
(e.g. -70 mV) and wait for the next integration.

• Leaky integrate-and-fire model (LIF model). The LIF model is more bio-
logically plausible than the standard IF model, as it takes the imperfection of
membrane potential into consideration. Due to this imperfection, the integrated
voltage in a spiking neuron will slowly leak out over time, which is modeled by
the leak mechanism in the LIF model. The leak rate in an LIF neuron is controlled
by a time constant whose typical value is several milliseconds. The LIF model is
the default spiking model in many neuromorphic machines and SNN simulators.
More detailed neuronal dynamics of the LIF model are illustrated by equations in
the following section.

• Other variants of Integrate-and-fire model. In addition to the LIF model,
there are other variants of the standard IF model, e.g. the adaptive integrate-and-
fire model which is useful in online learning in SNNs. There are one or more
parameters in the adaptive IF model that can adapt to the input current. This
neuronal model can fit and predict the data from experimental neuroscience more
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Figure 2.3: Neuronal models with different computational complexity and biological
plausibility. The figure is modified from [Izh04]. The detailed position of different
neuronal models is disputable.

precisely, so it is more biologically plausible than the standard IF model and,
potentially, the LIF model.

• Hodgkin-Huxley (HH) model. The Hodgkin-Huxley neuronal model [HH52]
was proposed in 1952. It consists of several nonlinear differential equations to
model the impact of different ion channels to the membrane potential of spiking
neurons. In contrast, there is only one differential equation in the IF model and
the LIF model.

• Izhikevich model. The Izhikevich spiking model [Izh03] was proposed in 2003,
with the rationale to reconcile computational efficiency and biological plausibility
in spiking neuronal modeling. As shown in Figure 2.3, the biological plausibility
of the Izhikevich model is higher than the IF models and the IF model variants,
while its computational complexity is lower than the HH model. [Izh04] shows
that the Izhikevich model is in a “sweet spot”: it has a similar computational



24 CHAPTER 2. BACKGROUND

efficiency to the IF model and the same number of biologically-plausible features
as the HH model.

2.1.4 Neuronal dynamics of the LIF model

The LIF model is widely supported in neuromorphic machines and SNN simulators as
a basic neuronal model. This section describes the detailed neuronal dynamics of the
LIF model using equations. It starts by deriving the two main equations that control the
subthreshold and supra-threshold dynamics of the LIF model. Some useful conclusions,
including how the membrane potential is charged, instantly charged, and leaked, can
be gotten from the subthreshold equation. These conclusions enable the adoption of
the simplified computation of LIF neurons during SNN simulations, and facilitate the
understanding of the dynamics of LIF neurons. Combining the subthreshold equation
and the supra-threshold equation, the output spike rates of an LIF neuron under different
input can be calculated. This input-output response is crucial for rate-coded SNNs, and
is elaborated in this section as well.

LIF Equations

LIF model consists of three mechanisms: integration, leak, and firing. The first two
mechanisms, also known as the subthreshold dynamics of an LIF neuron, can be
modeled by an RC circuit as shown in Figure 2.4 . This RC circuit has a resistor with
the resistance R, connected to a power supply whose voltage is urest , in parallel with a
capacitor whose capacitance is C. The input to this circuit is the current I(t). According
to Kirchhoff’s current law,

I(t) = IR + IC, (2.1)

in which
IR =

u(t)−urest

R
, (2.2)

and

IC =
dq
dt

=C
du
dt

. (2.3)

Combining Equation 2.2 and 2.3 with Equation 2.1 gives

I(t) =
u(t)−urest

R
+C

du
dt

. (2.4)
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Figure 2.4: An LIF neuron and its RC circuit model. A neuron enclosed by the cell
membrane receives an input current I(t) which causes the change of its membrane
potential. The cell membrane acts like a capacitor in parallel with a resistor which is in
line with a battery of potential urest (zoomed inset). Figure is from [GKNP14].

Multiplying both sides of this equation by R and introducing the time constant of the
membrane potential τm = RC, this becomes:

τm
du
dt

=−[u(t)−urest ]+RI(t), (2.5)

which is the standard equation defining the subthreshold dynamics of an LIF neuron.

The spike generating mechanism (also known as the supra-threshold dynamics) of
an LIF neuron is controlled by its threshold uthreshold . Equation 2.6 describes how the
output spike train is calculated. Once u(t)> uthreshold , a spike z(t) is generated at time
t and the membrane potential u(t) is reset to resting potential urest ; on the other hand,
no spike will be generated when u(t)≤ uthreshold .

z(t) =

1 and u(t) = urest , when u(t)> uthreshold,

0, when u(t)≤ uthreshold.
(2.6)

Note that the values “1” and “1” of z(t) represent the all-or-none property of a spike
rather than describing its explicit form and shape.

The leak of the pre-charged voltage

Considering an LIF neuron with an initial membrane potential u(t0) under the constraint
urest < u(t0)≤ uthreshold and zero input current I(t),



26 CHAPTER 2. BACKGROUND

u(t0) = urest +∆u, (2.7)

and

I(t) = 0, f or t ≥ t0. (2.8)

The solution of Equation 2.5 with these initial conditions is

u(t)−urest = ∆ue
t−t0
τm , f or t ≥ t0. (2.9)

It suggests that in the absence of input current, the membrane potential of an LIF neuron
decays exponentially with time, and the decay rate is characterized by the time constant
τm. When t = ∞, Equation 2.9 becomes

u(t)−urest = 0. (2.10)

This equation shows that after infinite time t, the membrane potential u(t) drops to urest .
In practice, when t − t0 is much larger than τm, u(t) can be roughly thought to have
dropped to urest .

One useful conclusions that can be drawn from Equation 2.9 is that the absolute
decay speed of the membrane potential slows down:

u(t −∆t)−u(t)
∆t

>
u(t)−u(t +∆t)

∆t
, f or t −∆t > t0. (2.11)

Constant current injection

Considering an LIF neuron with the initial membrane potential u(t0) and the input
current I(t) as shown below:

u(t0) = urest , (2.12)

and

I(t) = I0. f or t > t0 (2.13)

The solution of Equation 2.5 with these initial conditions is

u(t)−urest = RI0[1− e−
t−t0
τm ], f or t > t0. (2.14)
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When t = ∞, Equation 2.14 becomes

u(t)−urest = RI0. (2.15)

This suggests that when time t is long enough, the membrane potential u(t) will
stabilize at a certain voltage which is determined by the input constant current I0 and
the resistance R in the LIF neuron.

A useful conclusion that can be drawn from Equation 2.14 is that the absolute charge
speed of the membrane potential slows down:

u(t)−u(t −∆t)
∆t

>
u(t +∆t)−u(t)

∆t
, f or t −∆t > t0. (2.16)

In other words, as u(t) gets closer to the maximum membrane potential urest +RI0, the
charge speed of u(t) slows down (du

dt gets smaller).

LIF Response curve with a constant current injection

Equation 2.14 is the solution of the subthreshold equation of an LIF neuron when
applying a constant current injection. This equation shows how the membrane potential
u(t) increases with time, and indicates that the highest value the membrane potential
u(t) can reach is urest +RI0. Note that Equation 2.5 and its solution Equation 2.14 do
not involve any spike generating mechanism. Instead, the spike generating mechanism
is controlled by the supra-threshold equation 2.6. To explore how many time steps until
a spike is generated and how many spikes will be generated in a given time window,
Equation 2.14 and Equation 2.6 need to be considered together.

Assigning u(t) = uthreshold and bringing it to Equation 2.14, the time t can be
calculated. (Of course, if the highest membrane potential this LIF neuron can get is
smaller than the threshold, which is urest +RI0 < uthreshold , the membrane potential
will never surpass the threshold, and Equation 2.14 will not have a solution. For these
situations, t can be thought as infinite.) This time point is when the membrane potential
reaches the threshold and causes a spike to be emitted. Also, an inter-spike interval
(ISI) t − t0 can be derived, which represents how long it will take for a spike to be
generated with the constant current injection and the initial membrane potential urest .
The firing rate (or firing frequency) of an LIF neuron is represented by 1

t−t0
. Note that

this calculation ignores the impact of the refractory time. If taking the refractory time
into considerations. ISI is t − t0 + tre f ractory time and the firing rate is 1

t−t0+tre f ractory time
.

Given a different constant input current RI0, a corresponding firing rate can be
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calculated according to the method above (If the value t is infinite as aforementioned,
the firing rate is approximated as 0 Hz). This input-output mapping is called the
response curve of the LIF neuron. A typical response curve of an LIF neuron is shown
in Figure 2.5, along with the input current and the change of membrane potential with
time. Note that the time window of the input current injection in this Figure is about
1000 ms instead of infinite, so its output firing rate is discrete instead of continuous.

It is clear that the slope of this response curve gradually decreases with increasing
input current. This response curve can be characterized by two values. The first value is
the minimum input current that can give rise to an output spike in this spiking neuron,
which is uthreshold−urest

R . This is when the maximum voltage of the membrane potential
urest +RI0 just equals the spiking threshold uthreshold . The second value is the cut-off
frequency, which is the maximum output firing rate that can be reached by this LIF
neuron. This value is primarily controlled by the refractory time.

LIF response curve with a noisy current injection

When the input is noisy, e.g. by adding Gaussian noise to the constant current input, the
response curve of an LIF neuron will be smoothed as shown in Figure 2.6. Compared
with constant input, noisy input can give rise to output spikes even with a small input
current. This feature is considered to be an advantage of noise in SNNs, that is improving
the sensitivity of weak signals and enabling these weak signals to be transmitted to
other neurons by generating a few spikes [FSW08]. Nevertheless, a shortcoming is that
these generated output signals are noisy rather than precise.

Generally, most input currents to SNNs are noisy, the reasons are twofold: First, the
input current of an LIF neuron is the sum of input signals from many other neurons,
these input signals are usually generated irregularly and they are discrete in time which
causes the summed input current to be noisy. The spiking neurons in the input layer
may receive constant input current, but these input neurons are only a small portion of
the neurons in SNNs or in the nervous system. Second, the nervous system are affected
by multiple noise sources [FSW08], which leads to noisy input currents to LIF neurons.

The response curve of an LIF neuron with noisy inputs has inspired the adoption of
the ReLU activation function in artificial neural networks.

Instant current injection

The solution of a constant current injection is provided in Equation 2.14 which is shown
below:
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Figure 2.5: A. An LIF neuron and its RC circuit model. B. The constant current injection
and how membrane potential changes with time. C. The response curve (tuning curve)
of this LIF neuron. Figure is from [JLPPSRE22].
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Figure 2.6: The response curve of an LIF neuron when inputs are noisy current injections.
The noise type is Gaussian noise which is characterized by its standard deviation (whose
values are 0, 0.2, 0.5, and 1.0 as shown in legend. 0 corresponds to a constant current
injection). This shows that noisy inputs can smooth the response curve of an LIF neuron,
and enable spikes to be generated when the input is weak and even negative. Note that
the response curves of noisy inputs are noisy as well, so only some typical curves are
picked here. Figure is from [LF16].
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u(t)−urest = RI0[1− e−
t−t0
τm ], f or t > t0. (2.17)

When the input current I0 is infinitely high and the current injection time t − t0 is
infinitely small, the input turns to instant current injection. This instant current injection
can be defined by an equation similar to the Dirac delta function

I(t) =

+∞, f or t0 < t ≤ t0 + 1
∞
,

0, f or t > t0 + 1
∞
,

(2.18)

under the constraint of ∫ +∞

t0
I(t)dt = q. (2.19)

Since the current injection time t − t0 is infinite small, e−
t−t0
τm in Equation 2.17 can

be approximated by Taylor series:

e−
t−t0
τm = 1− t − t0

τm
, f or t = t0 +

1
∞
. (2.20)

Note that only the first order of the Taylor series is considered here. Bring it to Equation
2.17, Equation 2.17 becomes

u(t)−urest = RI0[
t − t0

τm
], f or t = t0 +

1
∞
. (2.21)

Since I0(t − t0) = q, and R
τm

= 1
C . Equation 2.21 becomes

u(t)−urest =
q
C
, f or t = t0 +

1
∞
, (2.22)

a very simple solution.

The advantage of modeling input current as an instant injection is that, compared
with the constant injection, instant injection avoids computing membrane potential
u(t) for every time step. Also, the improved membrane potential given an input can
be interpreted straightforwardly: it equals to q

C . Due to these reasons, some SNN
simulations simplify the input as an instant injection. Also, when the time constant of
synapses τsyn (See Section 2.1.5 for the definition of τsyn) is set much lower than the
time resolution of simulation, the current transmitted by synapses can be seen as being
injected to a neuron instantly.



32 CHAPTER 2. BACKGROUND

Decomposing the input current

In Equation 2.5 which defines the subthreshold dynamics of the LIF model, the in-
put current I(t) is provided directly. This section gives more details on how I(t) is
calculated.

In SNNs, a spiking neuron usually receives inputs from many other spiking neurons,
so the input current I(t) is essentially the sum of currents sent from other spiking
neurons. These spiking neurons are called presynaptic neurons, and their generated
electric signals will go through synapses and are received by a postsynaptic neuron.
These currents will cause postsynaptic potentials (PSPs) in the postsynaptic neuron,
which are divided into the excitatory postsynaptic potentials (EPSPs) and the inhibitory
postsynaptic potentials (PSPs), according to whether the postsynaptic potential increases
(depolarization) or decreases (hyperpolarization).

The sum of these currents can be either spatial (when these currents are from
different synapses), or temporal (when these currents are from the same synapse but
arrive at different times), or both (when spatial integration and temporal integration
happen simultaneously, known as spatiotemporal integration).

2.1.5 Synaptic model

Spiking neurons in the nervous system are connected and communicate through
synapses. Nevertheless, not all neurons are connected, and how neurons in the brain
are connected to realise highly-efficient information communication and information
processing is a significant research topic. Different synapses have different strengths
which are referred to as synaptic strengths, leading to different currents I(t) aroused in
postsynaptic neurons by identical spikes. The strength of synapses may be determined
by the release probability of neurotransmitters, and the current jump caused by the
release of neurotransmitters in synapses [Mur98]. Synapses are plastic, which is known
as synaptic plasticity, and this is thought to involve the function of memory and learning
in nervous systems. Two typical examples are STDP (spike-timing-dependent plasticity,
a formulation of Hebbian learning) and structural plasticity.

In SNNs, a synapse is modeled by a synaptic weight ω. The sign of this weight
represents the type of the synapse, one arouses EPSPs in the postsynaptic neuron and
one arouses IPSPs in the postsynaptic neuron. The magnitude of this weight models
the synaptic strength. Synaptic weight ω can contribute to the input current I(t) of the
postsynaptic neuron through two stages (exemplified by a single exponential synaptic
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model). First, a weight effect ω(t) in the single exponential synapse can be calculated
by

ω(t) = ∑
f

ωe−
t−t f
τsyn . (2.23)

t f is the spike firing time of the presynaptic neuron whose axon is connected to this
synapse, and these spikes can evoke the weight effect ω(t). τsyn is the time constant of
this synapse, and it controls the detailed synaptic dynamics, similar to the function of
the membrane potential time constant τm in LIF neurons. Second, ω(t) can contribute
to the input current I(t) of the postsynaptic neuron. When applying a current-based
synaptic model,

I(t) = ω(t); (2.24)

when applying a conductance-based synaptic model,

I(t) = gsyn(t)[u(t)−Esyn], (2.25)

where Esyn is the reversal potential of a synapse (Esyn is usually set to -75 mV for
inhibitory synapses and 0 mV for excitatory synapses) and gsyn(t) is the conductance
of the transmitter-activated ion channels whose value equals ω(t). Note that these
equations only model one synapse and the temporal integration of I(t). If there are more
synapses connected to the postsynaptic neuron, the spatial integration of I(t) needs to
be considered as well.

When analyzing synapses at the neural-network level, more features of synapses can
be found. Both theoretical analysis and experimental evidence indicate that excitatory
synapses and inhibitory synapses are well balanced (E-I Balance) [ZY18]. E-I Balance
is crucial for achieving effective computation and communication in the nervous system.
Besides, it is claimed that there is a clear pattern on the synapses. Synapses connected
from a given neuron are either inhibitory or excitatory but not blended; this is referred to
as Dale’s law or Dale’s principle. From the computational perspective, it means that the
synaptic weights of these synapses are either positive or negative. From the biological
perspective, this synaptic pattern is because neurons release the same set of transmitters
to all of their synapses. Some studies show that Dale’s law is not a limitation for the
computational capacity of SNNs [PAE08, TE16] and of ANNs[CKL+21].
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2.2 Neuromorphic hardware

2.2.1 Categories of neuromorphic hardware

The concept of Neuromorphic hardware was proposed by Carver Mead, with the pursuit
of electronic modeling of human neurology [Mea90]. Neuromorphic hardware repli-
cates the merits presented in the nervous system on analog/digital circuits, with the goal
of enhancing our understanding of the human brain and brain-inspired computing. It
embodies the quote of the famous theoretical physicist Richard Feynman “What I cannot
create, I do not understand”. The brain merits that are replicated on neuromorphic
hardware usually include parallel computing, asynchronous computing, event-based
computing, near-memory computing, in-memory computing, domain-specific com-
puting, dense connections, spike communications, and optimal spike routing. Other
minor goals of neuromorphic computing can be categorized into two aspects: promoting
academic research by providing efficient machines to computational neuroscientists and
researchers in robotics for neuronal simulation, and promoting practical industrial appli-
cations by facilitating low-power low-latency deployments of spike-based deep learning
algorithms and validating AI algorithms in new paradigms. Current neuromorphic
hardware can be roughly divided into three types: analog, digital, and hybrid.

Analog neuromorphic hardware usually adopts energy-efficient devices such as
memristors [LWM+18], skyrmions [SJP+20], and photonics [SBMN17], or utilizes
subthreshold transistor dynamics to emulate neurons directly [Mea90], pursuing ultra-
low-power computing. However, their building blocks are usually of low precision and
suffer imperfection and noise, which imposes the challenges of reliable programming
and large-scale applications.

Digital neuromorphic hardware simulates SNNs using digital circuits. “simulate”
refers to the fact that in fully digital neuromorphic hardware, neuronal models, synaptic
models, and spikes are all simulated digitally. Simulating these components may be
less power-efficient than emulating them, but routing spikes with digital circuits is far
simpler than with analog circuits. SpiNNaker [FGTP14], TrueNorth [MAAI+14], and
Loihi [DSL+18] can be categorized as digital neuromorphic hardware.

Hybrid neuromorphic hardware mixes digital circuits and analog circuits to simulate
SNNs. The spiking neurons and synapses in this type of neuromorphic hardware
are emulated directly by analog components, and the generated spikes are routed to
other neurons by digital circuits. Compared to pure analog neuromorphic hardware,
the hybrid paradigm removes the obstacle of effective spike routing so it enables the
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building of larger machines. However, the imperfection problem still exists when
emulating neurons and synapses. Neurogrid [KGT+15] and BrainScales [SBG+10] can
be put into this category.

2.2.2 Other related hardware

Dynamic Vision Sensors (DVS). Dynamic Vision Sensors (DVS) [GDO+20], also
known as event cameras, are biologically inspired sensors that capture images asyn-
chronously only when the pixel intensity changes. They are generally compared with
static vision sensors applied in conventional frame-based cameras which capture images
synchronously in a fixed interval. There are several differences between DVS and
frame-based cameras: (1). DVS only measures motion (pixel intensity change) and
acquires input signals in an event-based manner, rather than measuring absolute pixel
intensity by frame-based signal acquisition. (2). DVS is achieved by more complicated
circuits than static vision sensors, and each pixel in DVS usually occupies a bigger
space than that in static vision sensors, so its spatial resolution is usually lower. (3).
Though the spatial resolution is potentially lower, its temporal resolution is obviously
higher. A typical latency of signal acquisition in DVS is 1 µs (10−6 s). The latency
can be further reduced in lighter illumination. Hence, DVS gains more advantages in
low-light environments than static vision sensors. The dynamic range of EVS is also
wider. (4). DVS has lower bandwidth and lower power consumption. The acquired data
is sparser and less than that acquired by static vision sensors. (5). Motion blur can be
more efficiently alleviated.

When brightness changes in any pixel, DVS generates a piece of data that contains
the information of the time, location, and the sign of brightness change. This spatial-
temporal representation follows the address-event representation protocol, which is also
known as AER [Mah92]. This data form is significantly different than the form of data
gathered by conventional sensors, and it needs whole new algorithms to process. SNNs
are naturally compatible with processing DVS data, and there have been many studies
surging on this research topic [ONL+13, FYC+21b]. In the application aspect, DVS
can work jointly with static vision sensors to capture more detailed information.

Dynamic audio sensors. They are biologically inspired sound sensors which
measure air vibrations and generate neural signals [LvSMD13]. They mimic human
hearing in the cochlea so they are also known as silicon cochleas. Similar to DVS, the
data acquisition in dynamic audio sensors is asynchronous and event-based, and follows
the AER protocol. In dynamic audio sensors, the “address” in the AER protocol is
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the frequency address instead of the spatial address used in DVS, e.g. the index of a
channel which measures sound in a certain frequency range.

Neurorobotics. Robotics develops machines to substitute for humans and replicate
human actions. Neurorobotics, or biologically-inspired robotics, is a research area in
robotics, and it is closely related to many other research fields, such as computer vision,
neuromorphic hardware, dynamic sensors, and SNNs. One promising application
scenario is recording human behaviours by biologically-inspired dynamic sensors and
processing the acquired data efficiently by SNN algorithms on neuromorphic hardware.
The output of SNNs is then sent to a robot to generate motor commands for robot
control. The actions of robot may in turn affect the behaviours of the human, which
forms a closed-loop biologically-inspired system. Robotics can also be simulated in
virtual environments.

2.3 Deep learning

This section introduces deep learning techniques related to SNNs, with the focus on
neural networks and supervised learning.

Deep artificial neural networks, simplified as ANNs, are hierarchical neural network
models that can learn input-output mappings from labeled examples. This learning
process is called supervised learning as the examples are labeled, which is equivalent
to providing supervision and instructions during learning. The learning in ANNs is
essentially an information processing and extraction to represent infinite input-output
mappings by finite network parameters trained by finite examples. “Finite” guarantees
low cost during ANN training and “infinite” signifies the generalization of the ANN
models.

2.3.1 Network architectures

The network architecture has a major impact on the performance that can be achieved
after training. Some network architectures are intrinsically easier to train, or more
computationally efficient, or more efficient to represent features during learning. This
section introduces three typical network architectures, fully-connected networks, VGG,
and ResNet.

Fully-connected networks usually contains several layers, and two adjacent layers
are fully connected to each other. The connections between these adjacent layers
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are dense, which prevents this network architecture from scaling to more layers and
solving more difficult tasks. VGG is a group of efficient image recognition models
whose building blocks are convolutional layers and pooling layers. The information
in these networks can only be propagated forward, and these networks do not contain
any feedback connections. ResNet introduces shortcut connections over some layers,
enabling establishing deeper ANNs and rendering better performance.

2.3.2 Objective functions

An objective function, also known as a cost function, or loss function, quantifies the
performance of ANNs on a task, and provides a criterion for choosing an ANN learning
process. During ANN training, the training samples X are sent to the input layer of an
ANN which generates inference results Y ′ in the output layer. Each training example
contains a label Y , and the goal of ANN learning is to minimise the difference between
Y ′ and Y while ensuring this difference is small for new samples as well. There are
various objective functions to choose from, such as MSE (mean squared error) and
cross-entropy.

2.3.3 Learning rules

ANNs do not learn directly from humans or human knowledge, but learn by the pre-
defined learning rules that control how their network parameters are updated. In
supervised learning, the parameter updates are controlled by learning signals which
eventually come from the objective function and are transmitted to these parameters by
the backpropagation algorithm.

The backpropagation (backprop, BP) algorithm is widely used to facilitate the
training of deep artificial neural networks. It gives a methodology to calculate gradients
of the learning signal to the trainable parameters in a deep ANN. The calculation of
gradients in the output layer is straightforward, and BP is applied to calculate the
gradients in hidden layers and determines how gradient flows go back to the top layers.

2.3.4 Activation functions

Artificial neurons are the information processing units in ANNs, and their neuronal
dynamics can be described by their activation functions. An activation function gives
a mapping from an input x to an output y in a neuron which is usually nonlinear and
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differential. The nonlinearity of activation functions is vital for their computing capacity,
and their differentiable form benefits the use of backpropagation to calculate gradients.

The rectified linear unit (ReLU) is one of the most frequently used activation
functions, and it is inspired by the response curve of spiking neurons [GBB11]. ReLU
can be approximated more easily by spiking neurons than other activation functions.
The form of ReLU is shown as follows:

y j = max(0,∑
i

ωi jyi), (2.26)

where y j is the output of an artificial neuron, and yi is the output of an artificial neuron
in the previous layer. ωi j denotes the synaptic weight from neuron i to j.

2.4 Deep spiking neural networks

2.4.1 Synaptic models

The synaptic models in deep SNNs are simpler than those in classical SNNs. Usually,
the detailed synaptic dynamics are ignored, and the weight effect is fixed as

ω(t) = ω. (2.27)

Note that ω(t) will be integrated into the postsynaptic neuron only when a spike is
generated in the presynaptic neuron. These synaptic models in deep SNNs do not
distinguish the type of synapses implicitly, but these synaptic models are essentially
closer to the form of current-based synaptic model (Equation 2.24).

2.4.2 Neuronal models

There are a variety of neuronal models used in deep SNNs. In the context of ANN-to-
SNN conversion, the focus of this thesis, there are three typical models as introduced
below. In these neuronal models, the current will be injected to neurons instantly, which
gives simplified equations of neuronal dynamics.

Leaky integrate-and-fire model. SNNs that use the leaky integrate-and-fire model
usually feature high biological plausibility. LIF neuronal dynamics are described in
Equation 2.28 and 2.29. The leak mechanism in this neuronal model hurts the similarity
of ANN activation and SNN output response, which hinders this model from scaling to
large datasets such as ImageNet.



2.4. DEEP SPIKING NEURAL NETWORKS 39

ut
j = αut−∆t

j +∑
i

wi jz
t
i . (2.28)

zt
j = 1 and ut

j = urest , when Θ(ut
j −uthreshold) = 1. (2.29)

In these equations, ut
j and ut−∆t

j are the membrane potential of spiking neuron j at
time t and t −∆t respectively. α controls the leak rate, ∆t is the time resolution during
simulation. wi j are the synaptic weights between neuron i in the previous layer and
neuron j in this layer. zt

i denotes the spike generated by neuron i at time t, and it has
two states {0, 1} representing whether or not a spike is elicited. The range of the sum
is all spiking neurons connected to neuron j. uthreshold and urest are the threshold and
the reset membrane potential of the spiking neuron j respectively. Θ(·) denotes the
Heaviside step function.

The standard integrate-and-fire model. The neuronal dynamics of this model are
controlled by two equations below:

ut
j = ut−∆t

j +∑
i

wi jz
t
i , (2.30)

zt
j = 1 and ut

j = urest , when Θ(ut
j −uthreshold) = 1. (2.31)

Compared with LIF model, this neuronal model is more effective when applying to
ANN-to-SNN conversion so more frequently adopted. Some studies have reported the
competitive results on nontrivial datasets such as CIFAR-10 and ImageNet using this
model.

The modified integrate-and-fire model (soft-reset integrate-and-fire model). To
improve the compatibility to the ANN-to-SNN conversion technique, the reset mecha-
nism of the standard integrate-and-fire model is changed from reset-to-rest (Equation
2.31) to reset-by-subtraction:

zt
j = 1 and ut

j = ut
j − (uthreshold −urest), when

Θ(ut
j −uthreshold) = 1.

(2.32)

This modification prevents the information loss brought by reset-to-rest, and enables
more precise information to be be processed in spiking neurons and propagated to
deeper layers. The subthreshold neuronal dynamics of this model is controlled by 2.30.
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The SNNs with this neuronal model have achieved the highest accuracy in various
datasets.

2.4.3 Training

Deep SNNs can be trained in various ways, and there are many new training approaches
proposed each year. This section starts from introducing two basic training methods:
ANN-to-SNN conversion and direct training. They are both based on ANN training
techniques, while other SNN training methods are primarily based on these two methods.
Some training techniques will apply feedback alignment to avoid backpropagation,
which is introduced as well.

Training approaches

• ANN-to-SNN conversion. When applying rate coding in SNNs, the response
curve of a spiking neuron is similar to a ReLU activation function in ANNs.
Hence, an SNN can be implicitly trained through training an ANN whose ac-
tivation function is ReLU and converting this ANN into a rate-coded SNN, an
approach referred to as ANN-to-SNN conversion [DNB+15]. The fundamental
problem in ANN-to-SNN conversion is how to effectively map ANN activation to
SNN firing rate to obtain higher accuracy, lower latency, and lower computational
burden.

• Direct training by surrogate gradients. Direct training is inspired by the
backpropagation through time algorithms in recurrent neural networks. When
conducting direct training, an SNN is unfold in the time domain, and the learning
signal is backpropagated spatiotemporally [NMZ19]. Direct training usually
renders lower latency than ANN-to-SNN conversion. Also, direct training is
naturally compatible with DVS data.

• Feedback alignment. Feedback alignment [LCTA16] is an alternative to back-
propagation. Specifically, the feedback weight matrices are randomly generated,
and the learning signal will transmit through these weight matrices without the
need to access the original weight matrices in ANNs. This algorithm avoids the
weight mirroring problem in backpropagation and is claimed to be more biologi-
cally plausible. On the other hand, the randomly generated weights are biased
compared to the original weights matrices, causing a biased learning process and
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lower performance especially in challenging datasets such as ImageNet. Note
that feedback alignment is not a learning approach, e.g., it does not generate
learning signals by itself. It needs to associate with other learning methods such
as gradient descent to realize its function.

• Online learning. Online learning attracted wide scholarly attention, as it promises
to complete learning on new input samples while processing them. In other words,
the training and inference happen simultaneously. In contrast, offline learning
cannot achieve such real-time training but relies on extra time to train on new
samples. These samples will accumulate and require external memory to store
them, waiting to be loaded and trained again when the machine is spare. These
features of online learning—simultaneous learning and low memory require-
ments—facilitate on-chip learning, especially learning on neuromorphic chips
[IC20]. Note that most online learning research in SNNs is not continuous learn-
ing, which suggests that they do not solve the problem of catastrophic forgetting.
An online learning algorithm called e-prop is exemplified here [BSS+20]. In
e-prop, the equation of backpropagation through time is divided into two parts:
the eligibility trace which originates from a reinforcement learning concept, and
the instantaneous learning signal which ignores the learning signal from future
time steps. Both of these two parts can be obtained during the inference of input
data without the need to wait for future signals, promoting e-prop as a powerful
algorithm on recurrent SNNs. e-prop can be combined with feedback alignment
to avoid accessing weight metrics.

• Event-based on-chip direct training. It is spiking neurons rather than artificial
neurons that are simulated or emulated on neuromorphic hardware. Hence,
the on-chip learning algorithms on neuromorphic hardware are training spiking
neurons. Considering this, the direct training algorithms, instead of ANN-to-
SNN conversion, are more compatible with on-chip learning. One primary
requirement of on-chip learning is that the information involved in learning
should be local, since accessing global information is expensive [TKPM21].
It suggests that on-chip learning algorithms can be combined with feedback
alignment. Besides, on-chip learning needs to be power-efficient and compatible
with neuromorphic hardware, or on-cloud learning would be more practical. How
to make the learning signals in on-chip learning sparse and event-based for higher
compatibility with neuromorphic hardware has triggered a surge of interest.
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2.4.4 ANN-to-SNN conversion

This section provides more technical details and analysis on ANN-to-SNN conversion,
as it has significant impact on deep SNN optimizations and it is at the center of many
studies presented in this thesis.

ANN-to-SNN conversion is a highly effective training method. It is essentially
training an ANN to represent a rate-coded SNN at the abstract level where only the
input-output response curve of a spiking neuron is considered. In theory, if a perfect
ANN-to-SNN mapping is achieved, an SNN built by ANN-to-SNN conversion can
achieve exactly the same accuracy as that of the ANN. Some recent studies suggest
that by adding some constraints during ANN training before ANN-to-SNN conversion,
the SNN can obtain some extra features, such as sparser communications (lower firing
rates) [SLBS20, NBLD22]. ANN-to-SNN conversion can transfer the progress in
ANNs to promote building more competitive SNNs. Considering that the current ANN
community is obviously larger and its research is prosperous, ANN-to-SNN conversion
is expected to promote faster progress in SNNs, at least at this stage.

The ANN-to-SNN conversion technique is proposed in [CCK15] which shows using
spiking neurons to approximate hyperbolic tanh neurons in ANNs. This study not only
demonstrates good approximation between a single spiking neuron and an artificial
neuron but also shows an unchanged approximation of these neurons at the network
level, by which a functional SNN can be built by converting an already-built ANN.
[DNB+15] propose to use ReLU in ANNs and show competitive accuracy on MNIST,
probably benefiting from the better approximation of the response curve of spiking
neurons to ReLU. The implicit link between the activation function in spiking neurons
and artificial neurons is suggested in more early studies, see [OB11, GBB11] which
introduce this in the perspective of neuroscience and deep learning respectively.

Central to ANN-to-SNN conversion are the adopted normalization strategies to map
the ANN activation to the SNN firing rate. This topic is first researched in [DNB+15],
and there are two normalization methods proposed in this paper, named model-based
normalization and data-based normalization. Model-based normalization is too conser-
vative which leads to a long latency; data-based normalization takes both the model
parameters (such as synaptic weights) and the input data into consideration so renders
a better latency and accuracy. The maximum firing rate of an SNN when applying
data-based normalization is 1000 Hz under the time resolution of 1 ms. [RLH+17]
provides the exact equations for data-based normalization as well as equations to nor-
malize biases and convert batch normalization. The maximum firing rate defined in this
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paper is 1000 Hz as well, but it maps the great majority of ANN activation to higher
SNN firing rates. As a result, the latency is reduced considerably. Besides, [RLH+17]
applies analog input (instead of rate coding) and the modified IF model (instead of
the standard IF model) to render better ANN-to-SNN mapping, enabling to convert
ANNs for challenging datasets such as CIFAR-10 and ImageNet. A channel-wise
data-based normalization is raised in [KPNY20] to improve the granularity of parameter
normalization. Consequently, the firing rate is higher than the original data-based
normalization.

[SYW+19] proposed a firing rate management strategy called Spike-Norm. This
strategy is non-deterministic so the firing rate range is different for each trial. The
firing rate of spiking neurons after applying this strategy is low in general, though
the inference latency is extended consequently. The bias in ANNs is not modeled in
SNNs in this research. [LF21] proposed an approach to enable more flexible firing rate
management compared with data-based normalization. It shows that for the standard IF
model, applying a maximum firing rate of 400Hz outperforms the default 1000 Hz used
in [DNB+15]. Also, the bias and batch normalization is successfully modeled in this
study. [HSR20] illustrates the response curve of the standard IF model and suggests that
this curve is non-linear. However, this non-linear shape of the response curve will only
appear in the first hidden layer. Feedforward propagation will smooth this response
curve in deeper layers [LF21].

The equations for data-based normalization are provided below:

w̃n = wn ∗
λn−1

λn
, (2.33)

b̃n = bn ∗
1
λn

. (2.34)

wn and bn ( w̃n and b̃n) are the weights and biases before (after) the normalization in
layer n respectively. λn is the maximum ANN activation value in layer n.

2.4.5 Encoding

Rate coding. Rate coding was initially found in muscle nerve cells [AZ26], and was
further expanded to brain neurons as more extensive biological evidence appeared. The
information in rate coding is encoded by the firing rate—the generated spike counts in a
certain time window—to guarantee the ratio of spike count N(spikes) and time window
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∆t is proportional to input density Density(Input) as below:

N(spikes)
∆t

∝ Density(Input). (2.35)

The time window ∆t usually needs to be long enough to maintain sufficient encoding
precision. The long time window is not suitable for tasks that require a fast response.
However, it provides enhanced robustness to noise, e.g. noise caused by accidental
appearance or loss of spikes. Rate coding was applied in SNNs to solve various pattern
recognition tasks[BFD+21, LF21].

The naive way to encode information according to Equation 2.35 is using pure rate
coding. In pure rate coding, the inter-spike interval (ISI) ∆t

N(spikes) is fixed. However,
pure rate coding cannot be effectively applied in SNN simulators and on neuromorphic
hardware. This is because pure rate coding requires a high time resolution to calculate
the spike emitting time according to ISI, but the time resolution in these platforms is
usually low (Typical time resolutions are 1 ms or 0.1ms). This mismatch will bring
considerable errors in neural encoding.

Most rate coding applied to SNN neuromorphic hardware, SNN simulators and SNN
algorithms is the stochastic version of the rate coding. Stochastic rate coding introduces
randomness and probability to neural encoding, based on the fact that spike patterns are
different in each neuroscience experimental trial, even when the input stimuli is kept the
same. Due to this randomness, the generated spike counts in a certain time window in
statistical rate coding is not guaranteed to be equal to the target spike count N(spikes).
Nevertheless, its error is still smaller than that in pure rate coding. In statistical rate
coding, whether a spike is generated in a simulation time step is controlled by the
equation below:

P(St = 1) ∝ Density(Input). (2.36)

St = 1 represents a spike generated at time t. P(St = 1) is the probability of generating
a spike at time t, which is proportional to the input intensity Density(Input). According
to Equation 2.36, whether a spike is generated in one time step follows a Bernoulli
distribution. Also, whether a spike is generated in each time step is independent, so the
overall generated spike counts in n time steps follows a Binomial distribution.

In addition to the lower error in neural coding, another useful advantage of stochastic
rate coding over pure rate coding is that it does not require defining the time window ∆t

in advance. This is due to stochastic rate coding calculating spike generation in each
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individual time step instead of based on a predefined time window.

Temporal coding. Temporal coding encodes information in the precise time of a
spike or the time interval between spikes. It is a highly efficient encoding approach that
is capable of providing richer information than rate coding. However, naive temporal
coding is not robust to noise such as the variation of spike generation time. There are
many temporal coding schemes proposed in SNN research, such as rank order coding
[GJDSA07], latency coding [PWZ+19] and Time-to-First-Spike Coding [PKNY20].

Population coding. Population coding [PWZ+19] encodes information in the firing
pattern of a group of neurons. In population coding, each neuron responds to a part of
the input signal, so the joint response activity (spikes) of a neuronal population can be
combined to encode the original input signal.

Binary coding. Binary coding [SM19, SM21] encodes information according
to binary code, a coding scheme used in computer processing. In binary coding,
the generation of a spike corresponds to the signal “1” and the absence of a spike
corresponds to the signal “0”. Each spiking neuron represents a bit in binary code.

Burst coding. In burst coding [GFES21], a burst of spikes is sent out instead of
one spike. Sending more spikes can improve the robustness to noise and non-idealities,
making burst coding a useful encoding scheme on analog or hybrid neuromorphic
hardware.

2.4.6 Datasets

Datasets are a crucial factor behind the prosperity of deep learning, while it is also
significant to SNNs to test and compare the effectiveness of SNN algorithms and drive
more rapid progress. The datasets adopted in SNNs can be roughly divided into two
categories: datasets inherited from deep learning such as some pattern recognition
datasets, and datasets built for SNNs or datasets intrinsically suitable for using SNNs to
solve such as DVS datasets.

Deep learning datasets

• MNIST. MNIST is a handwritten digit database for computer vision and pattern
recognition [LBBH98]. It has a training set of 60,000 examples and a test set
of 10,000 examples. These examples are 28x28 pixel pictures of handwritten
numbers between 0 to 9. Each pixel has a grey-scale value between 0 (black
background) and 255 (white foreground).
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• Caltech101. Caltech101 [FFFP04] contains about 9,000 object images grouped
in 101 classes, plus a background class. The size of these images varies, with a
typical height of 245 pixels and a width of 302 pixels.

• fashion-MNIST. This dataset [XRV17] shares the same sample size, data format,
and dataset splits of training samples and test samples as MNIST: It consists of
60,000 examples in the training set and 10,000 examples in the test set. Each
example is a 28x28 grey-scale image. There are 10 classes of clothes in Fashion-
MNIST, such as “shirt” and “sneaker”.

• EMNIST. EMNIST [CATVS17], or Extended-MNIST, is a handwritten character
and digit dataset whose image format and dataset structure are arranged in a
similar way to MNIST. There are six different subset splits in this dataset such as
the ByClass dataset and the Balanced dataset.

• SVHN. SVHN [NWC+11] is the abbreviation of Street View House Numbers, a
real-world image dataset tailored for object recognition algorithms. Similar to
MNIST, each sample in this dataset is a single digit whose label is one of “0”
to “9”. Nevertheless, the size of each sample is 32-by-32 and the size of this
dataset is bigger (73,257 digits for training, 26,032 digits for testing, and 531,131
additional less difficult samples which can be used as extended data in the training
set.); also, the digit recognition problem in this dataset is more challenging than
MNIST, since the digit is in a natural scene. SVHN is collected from house
numbers in Google Street View images.

• CIFAR-10. This dataset [KH+09] contains 60,000 images, divided into 10 classes
such as bird and cat. There are 50,000 training images and 10,000 test images.
The size of each image is 32x32 pixels and their format is RGB.

• CIFAR-100. This dataset [KH+09] is similar to CIFAR-10 in image size and
format (32x32 color images), but differs in the number of classes and the number
of images per class (100 classes with 600 images each, divided into 500 training
images and 100 test images.).

• ImageNet. ImageNet [DDS+09] is a large object recognition dataset, and the
frequently-used version is ILSVRC-2012. ILSVRC-2012 has over one million
labeled RGB examples, and 1000 object classes. Generally, its validation set
instead of the test set is adopted to test the model after training. The size of the
validation set is 50,000.
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• Keyword spotting tasks. Keyword spotting involves monitoring a real-time
audio stream with the purpose of identifying keywords of interest in utterances.
One typical application scenario is the wake-up word detection such as “Hey,
Siri” in virtual assistants. A keyword spotting dataset provided in [BCHE19]
consists of a training set of about 2,000 utterances and a test set of 192 utterances,
collected from 96 speakers,

• TIMIT. TIMIT [ZSG90], or TIMIT Acoustic-Phonetic Continuous Speech Cor-
pus, is a speech recognition dataset. The samples in this dataset are recorded
from 8 dialects of American English, and each of them reads 10 phonetically-rich
sentences

• PASCAL VOC. PASCAL VOC (PASCAL Visual Object Classes) [EEVG+15] is
a dataset for object recognition, semantic segmentation, and classification tasks,
containing 20 categories such as vehicles and animals. Each sample in this dataset
is an image with pixel-level segmentation annotations, bounding box annotations,
and object class annotations. It has 1,464 images in the training set and 1,449
images in the validation set

• TIDIGITS. TIDIGITS [LD93] is an acoustic dataset originally collected at Texas
Instruments, Inc, with the purpose of designing and evaluating algorithms for
speaker-independent, sequence-connected audio classification. The audio signals
in this dataset are labeled from ‘zero’ to ‘nine’ and ‘oh’, and there are 2,464
training and 2,486 testing utterances. Speakers are selected for balance (111 men,
114 women, 50 boys, and 51 girls), and each speaker group is divided into a
training set or a test set.

• RWCP. RWCP (Real World Computing Partnership) [NHA+00] is a sound
dataset consisting of 200 training and 200 test samples. Unlike speech datasets
such as TIDIGITS, this dataset includes non-speech sounds with the labels such
as “bell” and “phone”.

Event-based datasets

• POKER-DVS and SLOW-POKER-DVS. The POKER-DVS [SGLB15] database
comprises 131 poker pip symbols which are tracked and extracted from a dy-
namic vision sensor. The samples in this dataset are 32x32 pixel event streams,
categorized into 4 categories (“club”, “diamond”, “heart” or “spade”) according
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to the poker symbol. The SLOW-POKER-DVS dataset is collected in the similar
manner, while the poker cards are slowly moving across the screen.

• MNIST-DVS and MNIST-FLASH-DVS. The MNIST-DVS [SGLB15] database
consists of 30,000 DVS recordings of handwritten digits between 0 to 9. The
samples are collected by moving the digit samples in MNIST and recording them
by a highly-sensitive DVS. MNIST-FLASH-DVS is collected in the similarly
way to MNIST-DVS. However, Each digit is flashed several times during DVS
recording, which make this dataset more challenging.

• N-Caltech101. This is a neuromorphic vision dataset converted from an existing
Computer Vision static image dataset Caltech101 [OJCT15]. This dataset is
captured by mounting a Asynchronous Time-based Image Sensor (ATIS) sensor
on a pan-tilt unit, and move the sensor while viewing Caltech101 samples on an
LCD monitor.

• N-MNIST. The Neuromorphic-MNIST (N-MNIST) dataset is a spiking version
of the original frame-based MNIST dataset, captured in a similar way to N-
Caltech101 [OJCT15]. It has the same dataset size and sample size as the original
MNIST dataset: 60,000 training samples and 10,000 test samples, and 28x28
pixels per sample.

• N-TIDIGITS. This dataset is converted from the TIDIGITS dataset, an audio
dataset, to spiking version using a spiking silicon cochlear sensor[ANDL18].

• Yin-Yang. The Yin-Yang dataset [KGP22] is tailored for deep SNN research
especially that adopts biologically-plausible error backpropagation algorithms.
The training set has 5,000 samples and the test set has 1,000 samples. Each
sample is a two-dimensional representation of the yin-yang symbol, and it is
classified into one of the three classes, “Yin”, “Yang”, and “Dot”.

• DVS128 gesture dataset. This is a spiking gesture recognition dataset, recorded
by a DVS in the form of event streams [ATB+17]. This dataset contains 11 hand
gestures, collected from 29 subjects under 3 illumination conditions

• SHD. SHD [CSSZ20], the abbreviation of Spiking Heidelberg Digits, is an audio
classification dataset. It is converted from the Heidelberg Digits dataset to the
spiking version. There are 8,332 training samples and 2,088 test samples, each
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sample has 700 input channels. These samples are recordings of spoken digits
from 0 to 9 from 12 speakers in both German and English.

• SSC. SSC [CSSZ20]. is converted from the Speech Commands dataset [War18],
which was initially released by Google, to the spiking version. It consists of utter-
ances recorded from a great number of speakers under less controlled conditions,
divided to 35 categories.

• N-Cars. The N-CARS dataset [SBB+18] is a large-scale real-world event-based
dataset for car classification. It was directly recorded in urban environments by an
event-based sensor. The raw data is an approximately 80-minute video, which is
then extracted and processed to generate samples. These samples are grey-scale
images, including 12,336 car samples (7,940 samples in the training set and 4,396
in the test set) and 11,693 background samples (7,482 samples in the training set
and 4,211 in the test set). Each sample lasts 100 milliseconds.

• CIFAR10-DVS. This dataset [LLJ+17] is converted from CIFAR-10, a frame-
based object classification dataset. A subset of samples in CIFAR-10 is converted
to event streams with the size of 128×128 by a dynamic vision sensor, and there
are totally 10,000 samples in this dataset.

• ES-ImageNet. ES-ImageNet [LDQ+21] is an event-stream (ES) version of
a computer vision dataset ImageNet, comprising about 1,300,000 event-based
samples divided into 1,000 categories. This dataset is generated by an algorithm
(which is called Omnidirectional Discrete Gradient) rather than acquired by
a DVS, which enables building such a large-scale dataset with low-cost and
high-speed.

2.4.7 SNN simulators

SNNs are eventually targeted to be deployed to neuromorphic hardware to achieve
brain-like energy efficiency for practical tasks. Before that, SNNs can be simulated on
simulators for concept validation and fast development. The SNN simulators introduced
in this section are crudely divided into two main categories: classical SNN simulators
which are initially designed to run classical SNNs, and the simulators built upon deep
learning tools for deep SNN simulations.
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Classical SNN simulators

• NEST. NEST [GD07] is a function simulator for spiking neural network models.
This simulator emphasizes the function and dynamics at the neuronal level and
the connection and structure at the neural system level. The exact morphology of
individual neurons is ignored. NEST supports the simulation of some learning
and plasticity mechanisms in SNNs.

• Brian and Brian2GeNN. Brian [GB08] is an efficient Python-based SNN simu-
lator with the goal of providing easy-to-use SNN modeling tools for scientists
in computational neuroscience and other research disciplines. It is flexible and
scalable, which enables new models, especially networks of single-compartment
spiking neurons (point model), to be developed rapidly. Brian has realized the
second version called Brian2 [SBG19]. Brian2GeNN [SGN20] couples Brian
and GeNN to accelerate SNN modeling by using GPUs. One to two orders of
magnitude times speed-up is realized in two example models on Brian2GeNN.

• PyNN. PyNN [DBE+09] is a python package for SNN simulation. It is simulator-
independent, which means a model defined by PyNN APIs can be run on any
supported simulators by PyNN such as NEURON, NEST, and Brian, and on
neuromorphic hardware including SpiNNaker and BrainScaleS. PyNN can be
seen as a high-level SNN model library to define SNN elements including neurons,
layers, connections, and so on at the abstract level. Some low-level APIs are also
provided in PyNN, giving more flexibility and, potentially more efficiency.

Simulators based on deep learning tools

• PyTorch. PyTorch [PGM+19] is an open-source machine learning framework,
aiming to accelerating model prototyping as well as practical hardware deploy-
ment. It can build ANNs with very deep network structures efficiently and the
gradients, a key factor related to the learning process in ANNs, can be calcu-
lated automatically. PyTorch supports GPU acceleration which improves the
simulation speed of deep neural networks by orders of magnitude compared
with CPUs-based simulations. Some studies simulate SNNs in PyTorch when
the investigated tasks, learning algorithms, and network structure are closely
related to deep learning [WDL+18, LF21]. PyTorch provides many advantages
for SNN simulation. It is convenient to build an SNN with typical ANN network
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topology. Also, the learning algorithms of SNNs are well supported in PyTorch:
For SNNs built by ANN-to-SNN conversion, the learning process takes place
in ANNs. This ANN learning process can easily be achieved in PyTorch since
PyTorch is designed for ANNs and ANN learning; for SNNs built by direct
training, the training is based on the surrogate gradient algorithms which needs
to modify gradients. This need on custom gradient modifications can be met by
PyTorch as well. On the other hand, simulating SNNs on PyTorch suffers some
difficulties. For example, PyTorch does not provide standard spiking neuronal
models to use, so any spiking neuronal models need to be built from scratch.
Some functions in spiking neuronal models such as leak and refractory time may
not be straightforward to simulate. Also, some synaptic connection patterns such
as random connection and some synaptic dynamics such as postsynaptic potential
which are naturally supported in classical SNN simulators may not be supported
in PyTorch by default. Another difficulty is that the recording of neuronal states,
such as spike count recording and membrane potential recording in each time
step, need to be programmed manually from the beginning, which involves many
data merge, data format conversion, and data calculation issues.

• SpykeTorch. This [MGNDM19] is a an open-source high-speed PyTorch-based
simulator for convolutional SNNs. Each spiking neuron in this framework only
generates one spike at most and input is encoded by rank order to build highly-
efficient SNNs. This framework supports the STDP learning rule and reward-
modulated STDP learning, and can run on GPUs for acceleration.

• CARLsim. CARLsim [BCC+15] is a library for simulating large-scale SNNs
efficiently while keeping high biological details. For example, this simulator al-
lows building SNNs composd of Izhikevich spiking neurons and realistic synaptic
dynamics and accelerating them using GPUs. It provides C/C++ level interface
like in PyNN, which improves the flexibility of SNN modeling in this simulator.

• SpikingJelly. SpikingJelly [FCD+20] is an open-source framework for deep
SNN simulation on PyTorch. Some high-impact SNN algorithms and some
neuromorphic datasets are embedded in this framework, to move obstacles on
PyTorch-based SNN simulation.

• snnTorch. This [EWN+21] is a PyTorch-based Python package with the function
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of conducting gradient-based learning in spiking neural networks. snnTorch pre-
designs many spiking neuronal models such as leaky integrate-and-fire neurons
as well as other functions including rate coding, the surrogate gradient descent
algorithm, and the online learning algorithm, which empower user-friendly deep
SNN modeling.

• Rockpool. Rockpool is a Python package to build machine-learning-based
SNNs for signal processing applications. It contains necessary functions to build,
simulate, train, test, and deploy SNNs. Rockpool is simulator-independent so the
SNNs built in Rockpool can be run on simulation backends such as Brian2, NEST,
and Torch. It also supports SNN deployment on event-driven neuromorphic
hardware.

• DECOLLE. DECOLLE [KMN20] (a rough abbreviation of Deep Continuous
Local Learning) is an SNN simulation framework for online learning. This
framework provides a local error signal to enable online learning in SNNs with no
extra memory overhead, paving the way to further deployment on neuromorphic
hardware

• Norse. Norse [PP21] is a deep learning library for spiking neural network
simulation with the aim of exploiting the advantages of bio-inspired neural
components such as sparsity and event-based computing. Also, since Norse is
based on PyTorch, the merits of deep learning tools can be retained as well. It
provides some examples to solve MNIST and CIFAR-10 using SNNs as well as
to realize some learning algorithms in SNNs.

• BindsNET. BindsNET [HSK+18] is a Python package for SNN simulation,
utilizing PyTorch Tensor-based computation on CPUs or GPUs. It assists research
into applying SNNs to machine learning problems.

• cuSNN. cuSNN [PVSDC20] is a C++ library to simulate large-scale SNNs which
are accelerated by GPUs. It contains some LIF models and STDP learning rules,
and supports building SNNs with convolution network topology.

• Nengo. Nengo [BBH+14] is a Python package for building, evaluating, and
deploying neural networks including their spiking versions. Nengo is based on
the Neural Engineering Framework, it is highly flexible and easily extensible.
The detailed neuronal models, learning rules, and so on can be customized by
users.
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• Sinabs. Sinabs is a python library for developing and implementing of Spiking
Convolutional Neural Networks (SCNNs), managed by SynSense (former aiCTX
AG).

• SLAYER. SLAYER [SO18] is the crude abbreviation of Spike LAYer Error
Reassignment, and it provides methods to handle the non-differentiability of
spike function and to achieve effective SNN training. Both the fully connected
network and convolutional neural network are available to be trained in this
framework.

• SNN toolbox. SNN toolbox (Spiking neural network conversion toolbox) is
designed for automating ANN-to-SNN conversion. An ANN built and trained in
PyTorch or in other deep learning frameworks can be converted to SNNs by this
toolbox, and run on SNN simulators or neuromoprhic hardware.

2.5 Summary

This chapter introduced the fundamental knowledge about deep SNNs as well as
related concepts in classical SNNs, neuromorphic computing, and deep learning. The
computational property of a single spiking neuron was highlighted in Section 2.1. Also,
the detailed equations that describes the neuronal dynamics and synaptic dynamics
were provided. Neuromorphic hardware was initially designed to conduct bio-inspired
computing and enhance our understanding of the human brain. However, more deep
learning elements are now involved in neuromorphic computing. Deep SNNs are
promising to achieve power-efficient event-based computing. Section 2.4 described the
building blocks of deep SNNs.



Chapter 3

SNNs on neuromorphic hardware

3.1 Introduction

So far, SNNs are still in the early stage, and many researchers are attempting to discover
the advantages of SNNs compared with ANNs which are currently more successful
on many benchmarks [LBBH98, KH+09, RDS+15]. Two potential advantages of
SNNs have been found and received considerable scholarly attention: First, SNNs can
achieve better energy efficiency when power-efficient neuromorphic hardware is applied
[MPSC17], and when SNNs are optimized for short latency [WCZ+19] and low firing
rates [PSRGSGLB20]. Second, a rate-coded SNN can generate outputs faster than an
equivalent ANN, though its output may be noisy and of low precision. The inference
precision would then rise with more evidence accumulated over time by the spiking
neurons [DNB+15]. This feature is potentially useful for dealing with the challenge of
real-time processing in self-driving vehicles which current ANNs struggle to overcome.
In summary, SNNs have potentially beneficial effects on power efficiency and fast
inference. However, we have just scratched the surface of realizing these advantages
[PP18] and we do not know yet how to use these characteristics properly to make SNNs
more competitive than their ANN counterparts.

To promote a deeper understanding of SNN merits, this chapter first investigates
one potential advantage on noise robustness of SNNs and compares it to ANNs. The
results show that SNNs are more robust to Gaussian noise in synaptic weights, a typical
perturbation to SNNs when deploying SNNs on cutting-edge materials, than ANNs
under some conditions. This finding will expand our understanding of the neural
dynamics in SNNs and the advantages of SNNs compared with ANNs. Also, the
reported results imply the possibility of using high-performance cutting-edge materials

54
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with intrinsic noise as an information storage medium in SNNs, such as memristors and
skyrmions. The contents related to the simulation of deploying the weights of SNNs on
skyrmions are illustrated in the following section. At the end of this chapter, the process
of deploying an SNN on SpiNNaker, a digital neuromorphic hardware, is presented.

3.2 Preliminary

3.2.1 Weights

At the algorithm level, the function of a deep neural network model is characterized by
its network parameters, including weights, biases, and so on. The most fundamental
parameters of a neural network are its weights which define the synaptic connections
between two adjacent layers. The biases, on the other hand, are not a compulsory
element in neural network models, such as in [DNB+15]. The lack of biases in a neural
network model may cause an accuracy degradation as the model representation capacity
is impaired.

At the hardware level, weights attract more attention than biases as well. There is
much research focusing on how to deploy a neural network more efficiently to hardware
during inference. One promising approach is using the structure of a crossbar to store
a weight matrix efficiently in an analog manner, a method called in-memory neural
network computing.

In summary, the weights are widely researched both at the algorithm level and at the
hardware level. The research presented in this chapter also focuses on noise injections
into weights rather than biases.

3.2.2 Weights in hardware

The research into the storage medium of weights in deep neural networks is vigor-
ous. Three typical storage mediums for weights are listed and discussed here: digital
platforms, analog platforms, and non-volatile analog platforms.

Digital platforms are the main solution for parameter storage in neural networks.
The neural network models are stored in digital memories and are loaded to digital
computing platforms such as GPUs, CPUs, TPUs, and FPGAs during inference. GPUs
and other similar computing devices are reliable enough and the neural network models
can be run on them without the need to consider noise. Keeping these models on digital
platforms, however, will consume significant electricity, which poses a challenge to
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power-efficient neural network inference for real-world applications. This drawback is
more serious when the input to the neural network is sparse.

Analog platforms are more power-efficient for neural network applications. There
are different ways to represent weights in analog platforms, such as using an analog
crossbar and by digital SRAM. Some variations may exist in these weights for both
cases. When conducting feedforward propagation, these weights are extracted from
these storage media and participate neural network computing in the form of current.

Current neural network storage techniques do not result in noisy weights, but noise
could become an issue when more advanced storage devices such as memristors and
magnetic skyrmions are used to implement neural networks [SSSW08, JUZ+15]. These
two devices have the excellent characteristics of non-volatility and nanoscale size. These
advantages make memristors and magnetic skyrmions good candidates to deal with the
challenges of high power-dissipation in neural networks and the continuation of Moore’s
law. Memristors and magnetic skyrmions have been applied to SNNs by both theoretical
simulations and experimental investigations [SHY18, CSR18]. However, these cutting-
edge devices may contain non-negligible random noise at room temperature, which is
typically Gaussian distributed.

3.2.3 Noisy weights

The noise type investigated in this study is Gaussian noise. The key parameters of
Gaussian noise are its mean and standard deviation (SD). The mean of Gaussian noise
is zero, and the discussions are mainly focused on how to determine the SD of Gaussian
noise. Here three different ways to choose the standard deviation are considered: SD is
fixed in different synaptic weights; SD is proportional to the amplitude of each weight;
SD is proportional to the square root of each weight’s amplitude (which is equivalent
to setting the variance of the Gaussian noise to be proportional to the values of the
weights). This study chooses the second method to determine the standard deviation of
Gaussian noise. In this situation, weights with high amplitude will have larger noise
fluctuations.

Note that the investigated noise in this study is not the random variance in crossbar-
based weight matrices which has been widely researched [ZM18, SNP+15]. This
random variance originates from the physical properties of materials and the fabrication
of transistors therefore this variance is fixed and will not change over time. By contrast,
the noise in synaptic weights discussed in this study is the random noise that exists in
future high-performance devices such as memristors and magnetic skyrmions at room
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temperature. This random noise has a certain distribution and its value will change over
time.

3.2.4 Related work

Previous research suggests that the biological neural networks of the brain inherently
contain noise and rely on the presence of noise to carry out their functions [BBNM11,
RT11]. [FSW08] reviewed various noise sources in the nervous system at different
levels and showed how noise contributes to trial-to-trial variability. This paper also
suggests the potential benefits of noise and illustrates the principles to manage noise.
[BCFA01] studies noisy synaptic weights computationally, and shows that the primary
noise source of neurons comes from synaptic activities, and the noise in a synapse will
reduce to 1/

√
N if N spikes are generated and propagated through this synapse.

In the context of deep spiking neural networks for pattern recognition, the integrate-
and-fire mechanism in spiking neurons introduces subthreshold noise and over-threshold
noise to the neural network [DNB+15]. Moreover, when using rate coding as an
encoding method in SNNs, the input signal is typically noisy as well [PP18]. Even if
SNNs inherently contain these noise sources, they could still complete inference with
high accuracy in many benchmarks [TGK+19]. Existing research has systematically
investigated the impacts of several kinds of noise on the performance of spiking deep
belief networks [TGK+19]. However, the inference accuracy of these neural networks
is not competitive, and the comparisons in this paper are limited to the same SNNs with
different noise levels. By contrast, better results have been achieved by the technique
of ANN-to-SNN conversion; meanwhile, ANN-to-SNN conversion allows comparing
SNNs to ANNs with the same architecture and synaptic weights.

Though several kinds of noise are investigated in [SNP+15], no study has reported
the impact of noisy synaptic weights in SNNs. This gap is filled by this research which
studies the tolerance of SNNs to Gaussian noise in synaptic weights. Moreover, the
robustness to noisy weights of SNNs and ANNs with the same network architecture are
compared, for the first time indicating that SNNs are potentially more robust to noisy
weights than ANNs.
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3.3 Robustness to noisy weights on MNIST

3.3.1 Network architectures

The experiments are conducted on two kinds of feed-forward neural network: fully
connected networks (FCNs) which can be efficiently modeled by a crossbar, and
convolutional neural networks (CNNs) which are more powerful models for pattern
recognition tasks.

The detailed network parameters are shown in Figure 3.1. In fully connected
networks, every two adjacent layers are fully connected in a feed-forward pattern. The
output of spiking neurons in the same layer will be sent to all neurons in the subsequent
layer without any feedback connection to other layers as shown in Figure 3.1(a). If the
connections between two adjacent layers in an FCN become localized and share the
same kernels, it will turn into a CNN as shown in Figure 3.1(b). CNNs could achieve
better inference results than FCNs with relatively fewer connections, and more local
structure information of inputs could be maintained by convolutional kernels. Usually,
a pooling layer would be added after a convolutional layer to sub-sample feature maps
and reduce the number of parameters. In this study, average pooling layers rather than
max-pooling layers are adopted to make the conversion to SNNs easier.

The selected network architectures for evaluation of noise weights are not the state-
of-the-art network structure. Impressive results were achieved by using more hidden
layers in FCNs [16] and more hidden layers on CNNs [17]. However, to keep the
network simple and make it easy to be repeated by other researchers, we use a shallow
structure as well as limited optimization techniques for both FCNs and CNNs. Another
reason for choosing these relatively shallow network structures is for maintaining the
balance between a model and a task. Usually, a bigger deep neural network model
is applied only when the tasks to be solved by this model become harder. The task
investigated in this study is MNIST, a relatively basic task, which fits the adopted
shallow network structure.

3.3.2 ANN-to-SNN conversion

ANN-to-SNN conversion is a relatively successful algorithm to achieve both high
inference accuracy and short inference latency in SNNs [DNB+15]. More importantly,
it provides an opportunity to compare the performance of ANNs and SNNs in the same
network architecture and with the same trained weights. Note that for the standard
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Figure 3.1: The architecture of FCNs and CNNs, and the diagram of the IF neural
model

ANN-to-SNN conversion, the weights in ANNs and SNNs are different as the weights
are scaled by a factor. In this study, the weights in ANNs and SNNs are kept identical to
fairly compare ANNs and SNNs. The thresholds of spiking neurons are scaled instead
during ANN-to-SNN conversion. Besides, as the research topic in this study is noisy
weights, the biases are deleted to avoid the problem of weight-bias imbalance when
using rate coding and the standard integrate-and-fire neurons in SNNs (See Section 4.4
for details).

The weights of the ANN are trained by stochastic gradient descent. After ANN
training, the weights are kept unchanged and the analog neurons are replaced with the
standard integrate-and-fire neurons. The analog inputs will be encoded as spike trains
by rate coding.

The threshold in the layer l is set to Dl/Dl−1, whereDl is the maximum input of
analog neurons in the layer l, and Dl−1 is the maximum input of analog neurons in
the previous layer l −1. In particular, the threshold in the first hidden layer should be
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D2/D1. Because D1 is the maximum input in the input layer and it is equal to 1 in the
MNIST dataset, the threshold in the first hidden layer is simplified to D2, the maximum
input in this layer in the ANN.

In Section 3.3.7, we adopt different SNN thresholds to explore the influence of
thresholds on inference accuracy and inference latency. The thresholds in these ex-
periments are set by replacing all Dl in the threshold normalization with σDl . σ is a
scale factor. After adding this scale factor, the threshold in the first hidden layer would
be σD2 and the thresholds in other layers are kept unchanged. When σ equals 1, the
dynamics of spiking neurons are unchanged. When σ is higher (lower) than 1, spiking
neurons will integrate more (fewer) time steps before emitting spikes. The detailed
explanations are given below.

Through this weight scaling, the threshold in the first hidden layer will be σ times
the maximum input in this layer. According to the theory of data-based normalization,
scaling the threshold in a layer will inversely scale the maximum inputs in the subsequent
layer (This point is questioned by [SYW+19] because this theory is only strictly correct
when the activation in SNNs is exactly the same as that in ANNs. However, this theory
is still useful to roughly estimate the change of maximum inputs when the threshold is
scaled.). The maximum input in the subsequent layer would be σ times smaller than the
original maximum input. Since the threshold in the subsequent layer is unchanged as
Dl/Dl−1, the threshold in subsequent layers will be σ times their maximum inputs as
well. Hence, simply adding σ to D1 will scale the relative magnitude of the maximum
input and the threshold in each layer, which will then scale the firing rate of spiking
neurons in each layer.

3.3.3 Metrics for accuracy and latency

The inference result of rate-coded SNNs is the label of the spiking neuron that has
the highest firing rate. The output firing rate of SNNs changes over time so that their
inference results will change over time [PP18]. These fluctuations of firing rate in
the time domain poses a fundamental problem as to when to end SNN simulation and
decode the output firing rates as the final inference results.

No paper has been found that discusses the detailed metrics about the choice of
simulation time steps on deep SNNs built by ANN-to-SNN conversion. A practical
method is provided below:

The first step of the proposed method is to determine a fluctuation range and a
monitoring time window. When conducting SNN inference, the SNN simulation will
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end when the SNN accuracy in the monitoring time window is within the fluctuation
range. The SNN latency is the front end of this time window, and the SNN accuracy is
the accuracy reached at the front end of this time window. These two parameters can be
assigned with different values for different network architectures, tasks and noise levels.

An example to clarify the implementation of this method is given here. Assume that
the fluctuation range is set as ±0.05%, and the monitoring time window is 20 time steps.
During SNN simulation, the SNN accuracy in any successive 20 time steps is monitored.
The accuracy on the first time step of this time window is the baseline accuracy, and the
accuraciy in other 19 time steps is compared with this baseline accuracy. Only when
the accuracy in the these 19 time steps is all around the baseline accuracy and their
differences are within ±0.05%, the simulation is terminated. The inference latency of
this SNN simulation is the time point of the beginning of this time window, and the
inference accuracy is the accuracy achieved at this time point.

The reason to apply this metric is that accuracy fluctuates widely in rate-coded
SNNs, and these fluctuations are enlarged when the synaptic weights in the SNNs
are noisy. This can be illustrated from two perspectives. From the perspective of
information, the information is accumulated by the integration mechanisms of spiking
neurons, and is processed and propagated to the next layer by the firing mechanisms of
spiking neurons. At each simulation time step new information comes in to the input
layer, and successively propagates to deep layers, eventually leading to the firing rate of
the output neurons changing over time and the inference accuracy fluctuating over time.
From the perspective of noise, rate-coded SNNs are inherent noisy. Rate-coded SNNs
suffer rate coding noise, subthreshold noise, supra threshold noise, and occasional noise
(See Chapter 5 for more details.). These noise elements will propagate to deep layers
and lead to the SNN output being noisy and the SNN accuracy fluctuating. In the
following experiments, the fluctuation range is set as ±0.03%, and the monitoring time
window is 10 time steps.

To record latency more precisely for SNNs when injecting high noise levels, an
extra metric is introduce. This metric will record the simulation latency when an
SNN reaches an acceptable accuracy. This metric is based on the observations that
in rate-coded SNNs, increases of accuracy slow down when the accuracy is close to
the highest accuracy. Hence, the latency of SNNs to reach slightly lower accuracy is
usually obviously shorter than the latency to reach final accuracy, and is less noisy. This
lower accuracy is particularly valuable for real-world tasks, as lower accuracy renders
lower inference latency and lower power consumption, which are more crucial for many
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real-world applications.

With this metric, the time when the SNN accuracy is approaching the final accuracy
and is within a certain percent accuracy loss from the final inference accuracy will be
recorded. For example, when the latency of one percent accuracy loss is selected as
the metric and the final inference accuracy is 98.8%, the time point when the inference
accuracy is higher than 97.8% for the first time would be recorded. Similarly, the latency
of 0.5% accuracy loss is the time point when the accuracy surpasses 98.3% for the first
time.

Table 3.1: Training parameters for FCNs and CNNs.

Training parameters FCNs CNNs
Learning rate 1 1
Momentum 0.5 0
Dropout rate 0 0

Training epochs 20 30
Batch size 100 50

3.3.4 Experimental setup

The dataset is MNIST, a handwritten digit database for computer vision and pattern
recognition [LBBH98]. It has a training set of 60,000 examples and a testing set of
10,000 examples. These examples are 28*28 pixel pictures of 10 handwritten numbers
from 0 to 9. Every pixel has a grey-scale value between 0 and 1.

The FCNs and CNNs are trained in MATLAB using a stochastic gradient descent
algorithm. The performance of the ANNs will be slightly different due to different
initialized weights and the randomness in the SGD algorithm, thus the final inference
accuracy of the ANNs is averaged over 5 trials. The network structure of the FCNs is
784-1200-1200-10 and the network structure of the CNNs is 28x28-12c5-2s-64c5-2s10o
as shown in Figure 3.1. The detailed training parameters are shown in Table 3.1. The
activation function is ReLU without bias, and it is defined as

y j = max(0,∑
i

wi jyi), (3.1)

where y j is the output of an analog neuron and yi is the output of an analog neuron in
the previous layer. wi j denotes the synaptic weight connecting neuron i to j. max(a,b)
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Figure 3.2: Accuracy comparison of the ANNs and the SNNs in the architecture of
FCNs for different noise levels.

returns the highest value between a and b.
After training, all analog neurons are replaced by spiking neurons, and the weights

are kept unchanged. The applied spiking neuronal model is the standard IF model. The
time resolution of the SNNs is set to 1 ms. The input is changed to rate coding. The
maximum pixel intensity has the highest firing rate of 1000 Hz, and the minimum pixel
intensity has the firing rate of 0 Hz. The corresponding relationship of firing rate and
pixel intensity is linear. The thresholds are set to Dl/Dl−1. In the output layer, the
inference result is the label of the neuron that has the highest firing rate.

3.3.5 Inference accuracy

The comparison of ANNs and SNNs for different noisy weights on FCNs is shown in
Figure 3.2. The X-axis represents the ratio of the Gaussian noise’s standard deviation to
synaptic weights. The noise level of zero percent on the X-axis represents noise-free
synaptic weights. In this figure, the recognition accuracy of the SNNs is slightly lower
than that of the ANNs when the noise level is 0%. However, with the increase of noise
level, the inference accuracy of the ANNs drops dramatically. When the noise level
is 100%, the inference accuracy of the ANNs is only 94.74% on average, and their
standard deviation shows an increasing trend for higher noise levels. By contrast, the
inference accuracy of the SNNs keeps stable for all noise levels at around 98.76%, and
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Figure 3.3: Accuracy comparison of the ANNs and the SNNs in the architecture of
CNNs for different noise levels.

their standard deviation is smaller than that of ANNs when the noise level is greater
than zero percent. When the noise level is 20%, the accuracy of the SNNs has surpassed
that of the ANNs.

Figure 3.3 is the comparison of the ANNs and the SNNs for noisy weights on
CNNs. The inference accuracy of the ANNs is higher than SNNs when the noise level
is 0%. When the noise level is 20%, the accuracy of the ANNs drops below 99%, but
the accuracy of the SNNs is still above 99%. The accuracy of the ANNs decreases
dramatically and their standard deviation increases to about 10% when the noise level is
greater than 40%. By contrast, the accuracy of the SNNs is still 98.89% even when the
noise level is 100%. Also, their standard deviation remains small for all noise levels.

3.3.6 Inference latency

The inference accuracy of SNNs represents their inference performance and the effec-
tiveness of ANN-to-SNN conversion, while the inference latency of SNNs reflects their
energy efficiency and inference speed. If the inference latency is too long, SNNs will
lose their essential advantages of power efficiency and fast inference and will be not
suitable for applying to neuromorphic hardware and other cutting-edge devices. The
inference latency and standard deviation of spiking FCNs for different noise levels are
shown in Table 3.2. As shown in this table, the inference latency increases roughly with
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the noise level, as does the standard deviation. The inference latency of one percent
accuracy loss is relatively stable at around 16 ms and shows minor increases for higher
noise levels.

Table 3.2: The inference latency of the spiking FCNs for different noise levels.

Noise level Inference latency (ms) Inference latency
of 1% loss (ms)

0% 30.8±4.6 16±0.0
20% 40.2±3.1 16±0.0
40% 41.4±9.8 16±0.0
60% 60.2±26.3 16.8±0.3
80% 69.0±16.4 17.0±0.0

100% 64.8±18.2 17.6±0.9

Table 3.3 illustrates the inference latency of spiking CNNs. As can be seen from
this Table, the inference latency of SNNs with a high noise level is significantly longer
than that with a low noise level. The inference latency with one percent accuracy loss
shows a similar trend. The standard deviation increases for higher noise levels as well.

Table 3.3: The inference latency of the spiking CNNs for different noise levels.

Noise level Inference latency (ms) Inference latency
of 1% loss (ms)

0% 206.5±32.5 28±0.0
20% 196.8±60.2 29.6±1.1
40% 222.0±57.2 39.6±1.7
60% 312.0±76.0 71.7±1.7
80% 654.8±168.6 111.4±9.1

100% 701.3±134.8 173.5±11.3

3.3.7 Different thresholds

The thresholds in SNNs will significantly affect their inference accuracy and inference
latency. The threshold in this research is set by data-based normalization [DNB+15], in
the expectation that this threshold normalization could achieve both fast inference as
well as high accuracy. The optimal method to set thresholds may be different when the
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Figure 3.4: The relationship of inference accuracy for different σ.

weights in the SNN are noisy. Driven by that, this section will provide more results on
different thresholds.

The thresholds are changed by a scale factor σ as described in Section 3.3.2. Four
scale factors σ of 0.2, 0.5, 1, and 2 are tested here. The accuracy of the spiking CNNs
for these scale factors and noise levels is shown in Figure 3.4. The accuracy of the
spiking FCNs is stable at around 98.77% for all scale factors and noise levels so it will
not be presented here. As shown in this figure, the inference accuracy for all noise
levels rises with increasing scale factor σ. This indicates that the networks with high
thresholds tend to have a higher inference accuracy. As for inference latency, SNNs
adopting scale factors of 0.2, 0.5 and 2 show a similar increasing trend for different
noise levels as when the scale factor is 1. Figure 3.5 illustrates the relationship of
the inference latency ratio to the scale factor σ. This ratio is calculated by dividing
the inference latency at 100% noise level by the inference latency at 0% noise level,
and it represents how much additional time is needed to cope with Gaussian noise on
the weights before SNNs reach the target accuracy. The 1% accuracy loss inference
latency is applied as the metric for CNNs and the 0.5% accuracy loss inference latency
is applied as the metric for FCNs. The reason to choose 0.5% accuracy loss rather than
1% accuracy loss in FCNs is to improving sensitivity. As seen in Figure 3.5, the network
with a higher scale factor has a lower inference latency ratio both in FCNs and CNNs.
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Figure 3.5: The ratio of convergence time of 100% noise and 0% noise on FCNs and
CNNs.

3.3.8 Analysis

Inference accuracy

The inference accuracy of ANNs drops considerably with the increase of noise level
in synaptic weights. The reason why ANNs are vulnerable to noisy weights is that
the noisy weight in ANNs are similar to the weight variance investigated in [SNP+15].
During the inference phase, the noisy weights in ANNs are used once in the feedforward
propagation, and the Gaussian noise will only affect the value of synaptic weights once.
This Gaussian noise is effectively a random offset which is fixed over time. A high
noise level will dramatically change the value of the synaptic weights and affect the
function of the ANNs, which causes the final inference accuracy to drop drastically. In
addition, a high noise level will introduce more uncertainty in synaptic weights, so the
standard deviation of the inference accuracy will increase as well.

By contrast, SNNs have an additional time dimension, and weights with Gaussian
noise in SNNs will be used several times during simulation. Thus, the impact of
Gaussian noise will be minimized with more spikes transmitted across this synapse.
To illustrate it more clearly, assuming a weight with the value w and Gaussian noise
G(0,SD), where SD is the standard deviation. The number of spikes transmitted by
this synapse is n. Hence, the total effective information transmitted by this synapse is
wn, and the total noise is ∑n G(0,SD). The value of wn will increase with more spikes
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transmitted. However, the value of ∑n G(0,SD) equals to G(0,
√

nSD) according to
standard statistics. As a result, the signal-noise ratio wn/∑n G(0,SD) will increase with
more spikes transmitted.

Inference latency

The accuracy of the SNNs is higher than 98.7% for all noise levels. While SNNs could
achieve high inference accuracy at high noise level, their inference latency still goes
up at high noise level on both FCN and CNN architectures. This indicates that though
SNNs can minimize the impact of noise by averaging noise over time, Gaussian noise
on synaptic weights still poses difficulties for SNNs and pushes SNNs to require more
time steps to handle the noise .

Influence of Thresholds

In previous sections, why SNNs are more robust than ANNs to noisy weights is
explained from a signal-noise ratio perspective. However, the information transmitted
by weights will not be fully obtained by postsynaptic neurons due to subthreshold noise
and over-threshold noise [DNB+15]. Hence, the choice of thresholds will influence
SNNs’ robustness to noisy weights. Figures 3.4 and Figure 3.5 illustrated the impact
of the scale factor on inference accuracy and inference latency. It can be seen that the
robustness to noisy weights is clearly affected by the scale factor on the threshold, and
the network with a higher scale factor has better robustness to noisy weights. This is
because, in SNNs, the information in weights can only be transmitted to deeper layers
through spikes. In the standard integrate-and-fire neuron, the information carried by
a spike is always equivalent to the integrated voltage (uthreshold − urest) in a spiking
neuron no matter how much voltage is cut off by the threshold. uthreshold is the threshold
of this spiking neuron, and urest is its resting membrane potential. If the threshold is
small, the relative error introduced by this supra-threshold noise will increase. This
error will make it difficult for spiking neurons to discriminate the original value of the
weights under Gaussian noise. In this situation, the signal-noise ratio may not obviously
increase with the number of spikes transmitted through a synapse.
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Figure 3.6: The proposed skyrmionic synaptic device. Illustrations of (a) a Néel
skyrmion (used in this device) and (b) a Bloch skyrmion spin texture. (c) Schematic of
biological neurons connected with a synapse. (d) The proposed nanoscale multilayer
skyrmionic synapse device based on skyrmion flow between a pre-synapse and a post-
synapse region. The multilayer structure here enables room-temperature operations.

3.4 Optimizing a skyrmion-based SNN

3.4.1 A multi-layer skyrmionic synapse

A multi-layer skyrmionic synapse is proposed and simulated at room temperature.
Figure 3.6 shows the schematic diagram of a skyrmionic synapse. As can be seen in this
figure, a skyrmionic synapse is composed of three parts: a pre-synapse region, a post-
synapse region, and a barrier located in between. The synaptic weight is represented by
the conductance of the post-synapse region and measured by a magnetic tunnel junction
(MTJ) reading device. This synaptic weight can be tuned by carrying skyrmions to
this region, and the movement of skyrmions can be achieved by imposing current
pulses on this device. The stability of this proposed device at room temperature
is maintained by a multi-layer [HM1/FM/HM2] sandwiched structure, where FM
represents a ferromagnetic metal layer and HM represents a heavy metal layer.

3.4.2 Towards supervised learning

The existed skyrmion-based SNN simulations usually focus on unsupervised learning,
specifically, training SNNs by spike-timing dependent plasticity (STDP). STDP is a
biologically-plausible learning rule. Furthermore, the learning process in STDP only
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involves local information, facilitating on-chip learning on neuromorphic hardware.
However, there are two challenges to applying STDP to SNNs.

First, the performance of the SNNs trained by STDP is limited. [DC15] reported an
accuracy of 95% on MNIST using a 2-layer SNN, obvious lower than the accuracy of a
2-layer SNN trained by gradient descent which is about 98% on MNIST. The accuracy
of SNNs trained by STDP is enhanced in the following works [KGTM18, LPSR18],
but the results are still not promising. Also, the scalability of STDP is questionable,
as the most STDP-based SNNs are only tested on MNIST and there are rare results
demonstrating their effectiveness on more challenging datasets such as ImageNet.

Second, STDP may need huge memory and computing resource during training to
get acceptable accuracy. [DC15] shows the impact of the number of neurons in the
hidden layer to SNN accuracy. To achieve an accuracy of 82.9% on MNIST, at least 400
excitatory neurons are required; to reach an accuracy of 95%, at least 6400 excitatory
neurons are required. On the contrary, an accuracy of 95% can be straightforwardly
achieved by using only 100 neurons in the hidden layer in an SNN when adopting
supervised learning.

To avoid these problems, this study applies supervised learning to skyrmion-based
SNNs, featuring high accuracy during inference and high efficiency during training.

3.4.3 Towards edge inference

As discussed in the previous section, supervised learning shows advantages in accuracy
and power efficiency over STDP. Nevertheless, gradient descent and backpropagation,
two key techniques in supervised learning are hard to deploy in skyrmionic devices.
Gradient descent requires complicated circuits to calculate derivatives and backprop-
agation needs to access global information instead of local information and to send
this information backward. One possible approach to alleviate these high requirements
on hardware is applying e-prop, an online learning algorithm without the need for
backpropagation [BSS+20]. This research provides a paradigm of developing SNNs
offline and on cloud, and deploying them on chips for efficient edge inference.

As shown in Figure 3.7, the proposed edge inference scenario comprises four phases:
full-precision on-cloud training, efficient model loading, low-precision edge inference,
and data uploading. The on-cloud training is conducted on high performance computing
(HPC) clusters with full-precision, where a neural network model is trained by gradient
descent and backpropagation on a specific real-world task. The model is then converted
to an SNN and loaded to skyrmionic devices at edge. These skyrmionic devices store
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the weights in the proposed skyrmion-based synapses in low-precision. The proposed
skyrmionic synapses are non-volatile and nanoscale, and they can operate at room
temperature. These features make them suitable for edge applications under hardware
constraints on power, space, and so on.

The edge devices do not need to embed extra circuits on chip for training, bringing
more efficient edge inference. When personalized training is necessary among edge
devices, the data from users can be collected and sent to cloud devices. This data as
well as the whole dataset stored in the cloud is used to fine-tune the model. After the
training is completed, the model is reloaded to the edge skyrmionic device.

The main difference between this application scenario and the traditional application
scenarios is that the training phase and the inference phase are detached. In edge devices,
power can be in short supply, and the resource available for computing and storage
can be limited as well. Therefore, inference rather than training is more suitable
to be conducted at the edge. On the other hand, the training of the neural network
is energy-intensive and relies on high-precision computing and complicated circuits,
which can be conducted more efficiently on a fully-digital on-cloud HPC cluster. Some
more advanced training techniques such as continuous training and quantization-aware-
training which are hard to apply on chip can be applied during on-cloud training.
Besides, since this application scenario involves model reloading to edge devices, the
efficient weight updating of the proposed skyrmionic synapses is not wasted.

In summary, the presented application scenario forms a closed-loop system, and
paves the way for real-world applications of skyrmion-based SNNs.

3.4.4 SNNs with the proposed skyrmionic synapses

This section provides details about applying the proposed skyrmionic synapses to SNNs.

A four-layer fully-connected ANN is trained by stochastic gradient descent. The
network architecture is 784-1200-1200-10, which is composed of 784 input neurons,
1200 neurons per hidden layer, and 10 output neurons. Data-based normalization and
rate coding are applied to convert the ANN and its inputs to an SNN and input spike
trains. In order to deploy room-temperature skyrmionic synapses to deep SNNs, a
biology-inspired SNN structure and a weight rescaling technique are proposed.

The original weight matrices of the SNN are W21, W32, and W43 which connect the
neurons in four layers L1, L2, L3, and L4 of the SNN. The input is rate coding and is
represented as R, which is fed into L1. This network structure is amended as follows:
the numbers of neurons in the input layer and two hidden layers are doubled, forming
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Figure 3.7: Skyrmionic deep SNNs for edge computing. The proposed skyrmionic
deep SNN can be integrated into a framework concept where training takes place in
the cloud and updating at the edge. The process is an iterative full-precision training
to low-precision conversion cycle: i) full precision cloud-based online training and ii)
skyrmionic devices low-energy updating with offloaded low-precision synaptic weights.

the neurons L+
1 , L−

1 , L+
2 , L−

2 , L+
3 , and L−

3 . Meanwhile, the neurons in the output layer
keep unchanged as L4. The rate coding input spike trains R are duplicated as R+ and
R−, and fed to L+

1 and L−
1 , respectively. The weight matrices W21, W32, and W43 are

split to positive weight matrices W+
21, W+

32, and W+
43 and negative weight matrices W−

21,
W−

32, and W−
43 with identical size.

Each weight element w in the original weight matrix, e.g. in W21, is represented by
the sum of a positive weight element w+ in W+

21 and a negative weight element w− in
W−

21, which is

w = w++w−. (3.2)

w+ and w− are within the range of skyrmionic synaptic weights [1.0,1.6] and [−1.6,−1.0]
respectively as shown in Figure 3.8. By summing w+ and w− together, w can represent
values in the range of [−0.6,0.6]. In other words, the weight ranges of w+ and w− are
merged to [−0.6,0.6] by using this method. This proposed network architecture with
mirrored neurons and paired synapses is inspired by Dale’s principle.

The proposed rescaling method is essentially finding an optimal quantization step
size to deal with the challenge of the discrete weight states in skyrmionic synapses.
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Figure 3.8: The supervised skyrmionic deep SNN. (a) Schematics of the proposed
biologically inspired structure of the deep skyrmionic SNN utilizing Dale’s principle.
(b) Comparison of classification accuracy between i) skyrmionic deep SNNs with
directly converted weights and ii) skyrmionic deep SNNs with scaled weights and
thresholds, for different number of synaptic states.

The proposal of this method comes from the observation that the accuracy loss when
using the conductance of skyrmionic devices to represent weights is due to the weight
mismatch. For example, most weighs are distributed in the range between −0.1 and
0.1 after training of the ANN, while the synaptic states at room temperature are in the
range between −0.6 and 0.6 after applying the aforementioned SNN structure. This
mismatch could cause a huge accuracy loss since most of synaptic states are not utilized.
A naive way to improve the accuracy is to apply a scaling factor σ = 0.6/0.1 = 6 on
the threshold of the spiking neurons, which is essentially converting weights from
(−0.1,0.1) to (−0.6,0.6). In the proposed rescaling approach, the scale factor is
obtained by scanning σ and finding the optimal scaling factor that achieves the highest
accuracy. This scanning operation on σ is achievable, as with the improving of σ, the
accuracy is approximately rising at first and then falling after a certain value. The σ
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that enables the neural network to achieve the highest accuracy is the one chosen in this
proposed rescaling method. Note that in this method, the neural network accuracy is
the only adopted metric to evaluate which scaling factor is optimal. The experimental
results show that this is a highly efficient way to find a suitable scaling factor that
achieves competitive inference accuracy.

SNNs with different weight precisions, achieved by changing the number of synaptic
states to 1, 3, 5, 7, 9, 13, 17, 33, 65, and +∞, are simulated. The number of synaptic
states is given by 2X +1, where X is the number of positive and of negative synaptic
weights, and there is one zero weight state. The negative values can be obtained by
applying a reverse voltage in the crossbar hardware implementations, and the zero-
weight state can be acquired by setting the same value of w+ and w−. For example,
13 synaptic states consists of 6 positive, 6 negative and a zero-weight state. The
classification accuracy for each weight precision is illustrated in Figure 3.8, where
the height difference between the light grey and dark grey columns represents the
improvement in accuracy of SNNs with directly converted synaptic weights to SNNs
with scaled weights and thresholds. For SNNs with directly converted weights, the
results show that the skyrmionic synapse should have 33 synaptic states (16 skyrmionic
states) to achieve a < 1% accuracy loss compared to the ideal full-precision synapses.
In comparison, SNNs with scaled weights and thresholds show a much faster increase
of classification accuracy when the number of synaptic states increases. The accuracy
exceeds ∼ 98% at only 7 synaptic states (3 skyrmionic synaptic states). Notably, we
obtain a superior ∼ 98.61% classification accuracy with 13 synaptic states (6 skyrmionic
states of RT skyrmionic synapse), which is merely ∼ 0.06% lower than the SNNs with
ideal full-precision synapses. The results here demonstrate the excellent potential for
the use of the proposed skyrmionic synapses in neuromorphic computing, especially
when deployed in deep SNNs and ensuring room-temperature operations.

3.5 Deploying on SpiNNaker

A four-layer fully-connected SNN whose network architecture is 784-1200-1200-10
is deployed on SpiNNaker to valid its function on a real neuromorphic machine. The
weights in this SNN are static instead of noisy, since SpiNNaker is a digital neuromor-
phic platform and it can store and represent weights reliably.

The goal of this research is demonstrating the process to deploy an offline-trained
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functional SNN to a neuromorphic machine. Before this study, there was no demonstra-
tion of SNNs built by deep learning techniques on SpiNNaker. Deep learning techniques
in this context narrowly refer to deep ANNs that are trained by supervised learning and
backpopagation.

A deep belief network trained by the Restricted Boltzmann Machine methods
was applied to SpiNNaker, achieving an accuracy of 95.01% [SNG+15]. Concurrent
research [PSRGSGLB20] applies a convolutional SNN to SpiNNaker, yet its accuracy
is limited as well (98.20% on MNIST) and the tackled challenges are different from this
research. The deployment of a convolutional SNN on SpiNNaker faces the challenge
of the efficient representation of convolutional kernels on SpiNNaker. This research,
in contrast, uses a fully-connected neural network architecture so will not meet this
problem. However, the number of synapses and synaptic events in this fully-connected
SNN are orders of magnitude greater than that in the convolutional SNN, posing a
challenge of efficient resource management of the low-power neuromorphic hardware.

3.5.1 SpiNNaker

SpiNNaker [FGTP14, FLP+12] is a fully digital neuromorphic hardware composed
of one million ARM cores, with the aim of achieving large-scale brain modeling
in biological real-time. “SpiNNaker” is a crude contraction of “spiking neural net-
work architecture”. It supports massively-parallel, large-scale neural computation with
highly-efficient interconnection between the processing units which is inspired by the
connectivity characteristics of the mammalian brain. The tremendous inter-neuron
communications is effectively managed by an asynchronous packet-switching multicast
spike routing network. Another salient feature of SpiNNaker is flexibility, as it offers
various neuronal models and learning rules to choose for neural modeling.

In SpiNNaker, each chip contains 18 ARM968 processing cores, and each core is
associated with an adjacent memory including 32KB for instructions (instruction tightly
coupled memory, ITCM) and 64KB for data storage (data tightly coupled memory,
DTCM). These 18 cores share an 128-Mbyte off-chip low-power mobile dual-data-rate
(DDR) SDRAM (Synchronous Dynamic Random Access Memory) where most of the
information on synaptic connectivity is held.

The spike routing network in SpiNNaker is optimized to deliver very large numbers
of very small packets. Each packet carries a single “spike” event whose length is 40
bits: 32 bits for an AER (address event representation) identifier and 8 bits for manage-
ment. This identifier contains information about the neuron that spiked. In addition
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Figure 3.9: Different scales of SpiNNaker neuromorphic hardware. (a). SpiNNaker big
machine with 1 million cores. (b). 48-node board with 864 cores. (c). A plot of a single
chip with 18 cores.

to AER “spikes”, SpiNNaker also supports non-AER information flows through the
same communication mechanism. Figure 3.9 shows the different scales of SpiNNaker
neuromorphic hardware.

3.5.2 Implementation details

The first step in deploying the offline-trained SNN is defining the network structure
and parameters on SpiNNaker. The fully-connected SNN comprises 4 layers so there
are four groups of neurons to be built on sPyNNaker, a PyNN-based software package
that enables simulating SNNs on SpiNNaker [RBB+18]. The neuronal model is leaky
integrate-and-fire, with the time constant of 700 ms (while the time resolution during the
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SNN simulation on SpiNNaker is 1 ms), a comparably slow leak rate, and the refractory
time of 1 ms. Specially, there is one extra neuron connected to all these neurons through
one-to-all connections to reset these neurons for new input samples. How this works
will be introduced latter.

The synaptic weights of this SNN are converted manually from MATLAB to SpiN-
Naker: The weight matrices are extracted from MATLAB files and are converted to
lists in Python. Each item in these lists includes the index of a presynaptic neuron, the
index of a postsynaptic neuron, and the weight value of the synapse connecting these
two neurons. These lists are used to build the synaptic connections of the SNN on
SpiNNaker. Note that the excitatory synapses and inhibitory synapses need to be built
separately, so each weight matrix is divided to two lists, one for positive weights and one
for negative weights. The synaptic model is conductance-based, and its time constant is
0.1 ms, which means that the current is injected from synapses to postsynaptic neurons
instantly.

The samples in the MNIST dataset are converted to rate-coded spike trains and fed
to the SNN as inputs. The maximum input firing rate is 1000 Hz and the encoding
time window is 100 ms. At the end of this time window, the aforementioned resetting
neuron will generate a spike to all other neurons. The synaptic weights of this one-to-all
connection is set as a very high positive value, so the generated spike will trigger all
postsynaptic neurons to fire and their membrane potential can be reset consequently.
After the membrane potentials of all neurons in this SNN have been cleaned by this
mechanism, the next sample will be sent to the network for inference.

3.5.3 Results

The recognition accuracy of the SNN on SpiNNaker is 98.63% on test dataset, with only
0.01% ANN-to-SNN conversion loss compared with the original ANN in MATLAB.
98.63% is the highest reported accuracy of MNIST on SpiNNaker to date, compared
to other reported accuracies of 95.01% [SNG+15] and 98.2% [PSRGSGLB20]. Also,
0.01% conversion loss is lower than other reported conversion loss of 1.05% [SNG+15]
and 0.76% [PSRGSGLB20].

The information transmission in this SNN is sparse. Typically, there are only 6
to 7 neurons firing in these layers on each simulated time step. This low firing rate
brings comparably few synaptic events, alleviating the burden on the memory buffer
and computing resource during SNN simulation. Further reductions of the firing rate
can be achieved by either optimizing the firing rate during training or applying a higher
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neuronal threshold during ANN-to-SNN conversion.

Another feature of this SNN is lower connectivity. A naive weight pruning technique
is applied to remove small weights. After weight pruning, 55% of the weights in
this SNN are removed. Weight pruning can directly benefit to SNN simulation on
SpiNNaker: First, SpiNNaker represent weights by lists so the removed weights will
be removed from these lists, which brings reduced memory to store these weight lists.
Second, after weight pruning, a generated spike in a presynaptic neuron will only needs
to be sent to postsynaptic neurons whose synapse is not deleted, leading to reduced
spike communications.

Compared with the standard IF model used in the original MATLAB SNN simulation
[DNB+15], the adopted neuronal model in the SNN built on SpiNNaker has leak and
refractory times but still achieves a competitive accuracy. It should be a small step to
reconcile biological plausibility and computational performance in SNNs.

3.6 Summary

Research in SNNs is still in the early stages and a substantial amount of the research is
driven by exploring the differences between SNNs and their counterpart ANNs. Few
practical advantages of SNNs have been found up to now. The present study on noisy
weights provided the first comprehensive assessment of the effect of Gaussian noise on
synaptic weights and found that SNNs are significantly more robust to Gaussian noise
on synaptic weights than conventional ANNs. This robustness to noise comes from
the time dimension of SNNs and the integrate-and-fire mechanism of spiking neurons,
which assists in our understanding of the characteristics of SNNs. This study paves the
way for the adoption of a spike-based computational paradigm on cutting-edge devices
such as memristors and magnetic skyrmions for noise-resilient edge AI inference.

The non-idealities such as weight variations and noisy weights, have been researched
for years in neuromorphic hardware and neural network accelerators. However, studies
of noisy weights from the perspective of SNN algorithms are lacking. The presented
research on noisy weights filled this gap. Also, the robustness to noisy weights investi-
gated in this research provided a new metric for SNN algorithms. Note that these SNN
algorithms are not necessarily designed for noisy memory devices such as memristors
and skyrmions. Instead, the evaluation of noise robustness from the perspective of SNN
algorithms has independent research value. Most of the current SNN algorithms are
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only benchmarked on inference accuracy and inference latency, and state-of-the-art per-
formance is considered as the primary goal. This research highlighted the significance
of noise resilience especially the robustness to noise on weights. By evaluating SNN
algorithms with these extended metrics, more SNN algorithms can be evaluated instead
of solely the one with state-of-the-art accuracy and latency.

There are a variety of ways to evaluate SNN algorithms on this new proposed metric.
The robustness to noisy weights of a SNN algorithm can be compared to the baseline
ANN algorithm, or other related SNN algorithms, or the same SNN algorithm before
applying a certain optimization technique. This study exemplified the first category.
When deploying intelligence at the edge for real-world tasks, algorithm-hardware
co-design has been proven to be a practical approach to improve performance and
robustness. Though this research solely investigated the noise robustness of algorithms,
further optimizations under noise can be applied to SNN algorithms to prepare for
future implementations on noisy hardware in advance.

Section 3.4 described how to embed the skyrmionic synapses into SNNs for a pattern
recognition task. To fully exploit the limited-precision weights and the intrinsic merits of
RT MML skyrmionic synapses, the skyrmionic synapse was integrated into a deep SNN
that is trained by supervised learning. A high classification accuracy of about 98.61%
was achieved with 13 weight states obtained from the proposed skyrmionic synapses.
The simulation of deep SNNs with the proposed skyrmionic synapses enabled wider
possibilities for energy-efficient hardware implementations to perform neuromorphic
computing. Also, this study provided a application paradigm of edge inference and
shed new light on real-world applications of skyrmion-based SNNs.

The contents in Section 3.5 demonstrated the deployment of a biologically-plausible
neural network model on a biologically-inspired neuromorphic hardware SpiNNaker. It
has achieved state-of-the-art accuracy, and features spatial-temporal sparsity.



Chapter 4

Biological plausibility of SNNs

4.1 Introduction

Initially, SNNs were applied to describe the dynamics of biological neural systems and
neural circuits [ESC+12, MJS07] by computational neuroscientists, benefiting from
their biological plausibility and computational capability. With these successes in biolog-
ical neural modeling and promoted by the parallel achievements of deep learning, there
are various approaches proposed to build deep SNNs to achieve biologically-plausible,
event-based computing [CCK15, DNB+15, SNP+15, HE15, EAM+15, LDP16, OW16,
NAPD17].

The most successful approach to date trains an ANN using supervised learning and
converts the trained ANN into a rate-based SNN [CCK15, HE15, LCF17]. Lossless
conversion can be achieved by this method compared with direct training, but it usu-
ally requires using spiking neuron models that are “artificially” modified to transmit
precise information to the subsequent layer [RLH+17, SM19, SM20]. These meth-
ods can achieve good accuracy on many benchmarks but work against the original
objective of using spiking neurons in deep neural networks. In other word, current
deep SNN research is trading biological plausibility to achieving competetive network
performance.

Another desirable way to go to build functional SNNs is applying more biologically-
plausible spiking neuron models. Though there will be many obstacles to this research
direction, this is an unavoidable process if we wish to unlock the mysteries of the human
brain and duplicate them on the machine. Previous work has explored building deep
SNNs using the standard IF model [SYW+19], but the modeling of bias and batch
normalization remains unaddressed until now. These two elements directly affect the

80
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inference accuracy in ANNs which is also the target accuracy of SNNs. The lack of
these elements is obstructing the performance of SNNs built by the standard IF model
as well as their further application.

This research demonstrates that it is possible to retain both high performance and
biological plausibility in SNNs. Also, some insights into managing the firing rate range
in deep SNNs are offered. The main contributions of this study are:

• State-of-the-art accuracy on the MNIST and CIFAR-10 data sets is achieved
compared to other research that builds deep SNNs using the standard IF model.

• Bias and batch normalization are modeled in deep SNNs whilst retaining biologi-
cal fidelity.

• The presented method features a 2.5 to 7.5 times lower spike rate than previous
state-of-the-art ANN-to-SNN conversion methods, so paves the way to run these
networks on neuromorphic hardware.

• The significance of input normalization during ANN-to-SNN conversion is empha-
sized and integrated into the proposed normalization approach, MCR-Norm (an
abbreviation of minimum chain rule normalization), to form the first systematic
parameter normalization strategy for SNNs.

4.2 Related work

This section provides a brief review of studies directly related to the proposed normal-
ization approach. Several successful parameter normalization approaches have been
proposed in deep SNNs to facilitate ANN-to-SNN conversion [DNB+15, RLH+17,
SYW+19].

Data-based normalization scales weights according to the input patterns of spiking
neurons. The input patterns of the test data set are estimated from the input patterns of
the training data set. This estimation relies on an independent and identically distributed
(IID) hypothesis between the training data set and the test data set.

Percentile data-based normalization provides an additional bias normalization equa-
tion on the basis of data-based normalization [RLH+17]. The balance of weights and
biases in SNNs is maintained by adding an extra membrane potential reset mechanism
to the IF model. The outliers of the neuron inputs are discarded to improve firing
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rates. However, this discard may bring accuracy loss if the outliers contain important
information.

Spike-Norm calculates the maximum inputs in spiking neurons layer-by-layer in
a sufficiently long time window to determine the values of the thresholds [SYW+19].
Spike-Norm successfully applies the original IF model to challenging data sets, but
does not include the normalization of biases and batch normalization layers. Due to the
inherent noise in SNNs, the normalized thresholds calculated by this method vary in
different trials and with different lengths of time-window.

4.3 Current methods and gaps

In the beginning, ANN-to-SNN conversion is applied to a standard IF model, and
its effectiveness is demonstrated on the MNIST dataset [DNB+15]. However, the
standard IF model fails to scale to more challenging datasets such as CIFAR-10 and
ImageNet, and deeper network structures such as VGG-16 and ResNet. Some methods
are proposed to tackle this problem, and the following are the two typical solutions as
well as their pros and cons:

• Modifying the reset mechanism of the standard IF model and replaying rate coding
to analog coding, to transmit more precise information layer-by-layer in SNNs.
This solution provides a method to achieve lossless ANN-to-SNN conversion.
Also, this method supports the modeling of bias and batch normalization, and
enables SNNs to be run with high firing rates, which brings higher network
capacity, higher accuracy, and lower latency. However, biological plausibility is
damaged.

• Sticking to the standard IF model and rate coding to keep biological plausibility,
and modifying the network structure to delete bias and batch normalization, two
problematic elements which are hard to model by the standard IF model. This
solution can maintain more biological plausibility, with the compromise of lower
SNN performance. Specifically, the ANN accuracy drops due to the lack of bias
and batch normalization, and ANN-to-SNN conversion loss increases due to
using a more noisy neuronal model and more noisy inputs in the SNN. Another
impact is that the SNNs built by this method are required to run at low firing rates
to reduce the noise in the standard IF model, which leads to a prolonged latency
of the SNNs.
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Figure 4.1: The response curves of the IF model and ReLU. The input is a constant
current injection, and the synapse model is the delta model. (a) The response curve of
the IF model and ReLU. (b) Changing the input to a statistical current injection. τ is
the time resolution during the SNN simulation. When τ is 1 ms, 1/τ is 1000 Hz. Other
firing rates can be calculated in the same way.

Currently, Network performance is the primary consideration in many deep SNN
studies, and the first solution is dominant. The second solution is limited due to long
latency, lower accuracy and incapacity to model the biases in the ANNs. This study
focus on improving the second solution to enable effective modeling of biases as well
as improving accuracy.

4.4 Firing rate degeneration and weight-bias imbalance

This section will introduce a “firing rate degeneration” phenomenon in deep SNNs
when building SNNs using the standard IF model and rate coding after ANN-to-SNN
conversion. This phenomenon may bring the risk of too long latency, and moreover,
it will lead to the mismatch between weights and bias (which is named as weight-bias
imbalance in this chapter) so prevent the modeling of bias and batch normalization in
an SNN.

Figure 4.1(a) illustrates the response curve of the standard IF model to constant
current injection and a comparison with the target response curve, e.g. ReLU, in ANNs.
It can be seen from this figure that the shape of the IF response curve is unevenly
stepped and a gap exists between these two curves.

The stepped shape can almost be eliminated when the input is noisy. The noisy
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Figure 4.2: The firing rate degeneration phenomenon on deep SNNs. The figures with
labels (a) to (d) show the response curves in layers 1, 2, 6 and 8 respectively. The
neural model is the standard IF model and the weights are normalized by the traditional
parameter normalization method [RLH+17].

input can be generated by changing the constant current injection to a Gaussian current
injection. In deep SNNs, the input of a spiking neuron is noisy as well since it receives
randomly generated spikes from spiking neurons in the previous layer. A typical
response curve of the IF model smoothed by noisy input is shown in Figure 4.1(b).
As shown in this figure, the response curve of the IF model is now more similar to
ReLU, especially when the input value is small. However, the output firing rate is still
lower than the expected ReLU-like shape; this is called the “firing rate degeneration”
phenomenon in the IF model. This phenomenon imposes two challenges to deep SNNs
that are converted from ANNs:

(1). The degenerated firing rate in one layer generates a ripple effect in subsequent
layers. More specifically, with the network going deeper, the spike firing rate range
gradually moves towards a lower region. (Figure 4.2). When the network is deep, the
spiking neurons in deep layers may be rarely activated so require more time steps to
transmit the same amount of information, which eventually leads to a long inference
latency.

(2). When conducting the standard data-based normalization (equations are shown
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in Equation 2.33 and Equation 2.34), weights need to be scaled additionally by a factor
λn−1, the maximum activation in the previous layer, to compensate for the weight
scaling in the previous layer. Nevertheless, since the response curve of the spiking
neuron suffers from firing rate degeneration (as well as its ripple effect in subsequent
layers), the correct scaling factor needs to be adjusted correspondingly to compensate
for the degenerated input firing rate in the previous layer. Without this adjustment,
the weights and biases will be mismatched. Also, since the firing rate degeneration
is more severe in deeper layers, the weight-bias imbalance is worse when SNNs have
more layers, which leads to huge accuracy loss in SNNs. In other words, weight-bias
imbalance prevents SNNs from scaling to deeper neural network models..

4.5 Proposed methods

To overcome these challenges caused by firing rate degeneration, and to achieve high-
performance deep SNNs using the standard IF model, a normalization method called
MCR-Norm, an abbreviation of minimum chain rule normalization, is proposed. The
“minimum” in this term emphasizes that the firing rate range in each layer after applying
MCR-Norm is maintained identically at a low level. “chain rule” emphasizes that the
normalization is performed layer-by-layer under a chain rule.

The core idea of MCR-Norm is that the accuracy of deep SNNs can be kept by
scaling weights additionally to compensate for the firing rate degeneration and regu-
lating the firing rate to a predefined range. MCR-Norm is modified on the data-based
normalization, whose equations are shown below:

w̃n = wn ∗
λn−1

λn
, (4.1)

b̃n = bn ∗
1
λn

. (4.2)

wn and bn ( w̃n and b̃n) represent the weights and biases before (after) the normalization
in layer n respectively. λn and λn−1 are the maximum activations in layer n and layer
n−1 respectively. The subscript of these scale factors represents the layer in which
the scaling calculation happens. After conducting parameter normalization by these
equations, an ANN is converted to an SNN whose firing rate range in each layer is (0
Hz, 1000 Hz) if time resolution is 1 ms.

If targeting to build an SNNs with a lower firing rate range, a scale factor gn can be
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added to λn in the parameter normalization equations. After replacing λn with λn/gn as
well as replacing λn−1 with λn−1/gn−1, the equations become

w̃n = wn ∗
λn−1 ·gn

λn ·gn−1
, (4.3)

b̃n = bn ∗
gn

λn
. (4.4)

The value of gn is determined by the target firing rate range. For example, if the target
firing rate range is (0 Hz, 200 Hz), gn will be 0.2. Note that these equations do not
consider the impact of the firing rate degeneration phenomenon and assume the firing
rate range is the same in each layer, e.g. (0 Hz, 200 Hz). In reality, SNNs suffer firing
rate degeneration and the firing rate range is different in each layer. This suggests
the need of further regulations on gn to control the firing rate in each layer within the
predefined target range.

In MCR-Norm, the following equations are adopted to normalize network parame-
ters:

w̃n = wn ∗
λn−1 ·gn

λn ·gn−1
, (4.5)

b̃n = bn ∗
hn−1 ·gn

λn ·gn−1
. (4.6)

The role of gn in Equation 4.5 and 4.6 is compensating the impact of firing rate degener-
ation and regulating the firing rate in each layer to a predefined range (e.g., 0 Hz to 200
Hz). gn is calculated layer-wise: In each layer, its response curve with different gn is
plotted, and gn that makes the response curve closest to the target firing rate range is
chosen. More details about calculating gn and its computational complexity is presented
in the following section.

Another contribution of MCR-Norm is a method to achieve the correct scaling of
biases. As shown in Equation 4.6, the calculation of bias normalization is different from
Equation 4.4 that does not consider firing rate degeneration. hn−1 is a predefined factor
that is determined by the target firing rate. For example, if the target firing rate range is
(0 Hz, 200 Hz), the value of hn−1 will be 0.2.

The correctness of the equation of bias normalization in MCR-Norm can be checked
in the following way: According to Equation 4.5 and 4.6, the weights are normalized
additionally by a factor λn−1/hn−1. This additional scaling compensates for the mapping
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in the previous layer n−1 from the ANNs activation in the range of [0, λn−1] to the
SNN firing rates in the range of [0, hn−1 ·1000Hz].

4.5.1 Efficient calculation of gn

The most computational complexity of MCR-Norm comes from the calculation of gn.
It is not feasible to scan all possible gn to obtain the desired firing rate range. To reduce
its computational complexity, two techniques are applied:

(1). Since the scale factor gn is positively related to the upper bound of the firing
rate range in layer n, some techniques such as dichotomy can be used to reduce the
computational complexity to get the target firing rate range. After using dichotomy, the
deep SNN needs an average of a few thousand time steps to get the correct scale factor
gn in each layer. Then it is around the same computational complexity as Spike-Norm.

(2) The scanning operation is conducted on the valid set rather than on the whole
training set. This technique can make MCR-Norm a few orders of magnitude faster.
Also, using the scale factors derived from the calibration set is proven to work well on
the test set.

4.5.2 Input normalization

In addition to normalizing the weights and biases inside the network, the normalization
of the inputs fed into the network also has a major impact on the performance of the
SNN. Previous SNN normalization techniques skip the input normalization and start
the normalization from the first hidden layer [DNB+15, RLH+17, SYW+19]. The
correctness of these normalization methods relies on the assumption that the inputs
to the ANN are in the range (0, 1) or (-1, 1), and the normalized SNN inputs are in
the range of (0, 1/τ), which is (0, 1000 Hz) if the time resolution τ is 1 ms. These
two assumptions are not always fulfilled, e.g. the inputs of CIFAR-10 after input
normalization in ANNs are in the range about (-2.2, 2.2), and the input firing rate range
of SNNs can be (0, 400 Hz) in some configurations [DNB+15].

To correct this fault in parameter normalization after ANN-to-SNN conversion, and
to enable the flexible configuration of input firing rates, MCR-Norm is extended to
include normalization in the input layer. This is achieved by considering that the input
range (0, λ0) in the ANN is linearly mapped to the input spike firing rate range (0,g0/τ)
in the SNN. Thus, the MCR-Norm equation starts in the input layer rather than the
first hidden layer. g0 controls the target firing rate range, e.g. g0 is set to 0.4 if the
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target input firing rate range is (0, 400 Hz). h0 is simply set as 1. The normalization of
negative inputs is achieved in the same way by using signed spikes [RLH+17].

4.5.3 Further improvements and compatibility

Some experimental results in this study show that fine-tuning hn can achieve better
accuracy. This may be because the response curve of real spiking neurons is not exactly
linear even when the firing rate range is low. Due to this reason, the predefined hn may
not be the optimal value but need a small amount of fine-tuning around.

The idea behind the MCR-Norm to manage the firing rate range layer-wise can be
applied to other neuron models as well. When the neuron model is the IF model with
an extra reset mechanism and the input is analog, gn will be predefined and have the
same value as hn, without the need to conduct scanning and fine-tuning.

4.6 Considerations behind the proposed methods

4.6.1 Inspirations

The firing behaviour of spiking neuron can be controlled by one hyper-parameter
threshold: a high threshold causes a low output firing rate and a low threshold results in
a high output firing rate. MCR-Norm adjusts weights (which is inversely equivalent to
changing thresholds) slightly to compensate for the effect of firing rate degeneration in
the IF neuron. Then the firing rate range is identical in every layer, and biases can be
normalized according to this determined firing rate range.

The phenomenon of firing rate degeneration occurs in every layer so the weights
(thresholds) need to be tuned in each layer. Inspired by batch normalization in ANNs
which normalizes the inputs in each layer to the same distribution, MCR-Norm is
conducted layer-wise and the spike firing rate is normalized to the same range.

One main goal of neuromorphic hardware is conducting the simulation of biological
neural networks. The biological neural network is naturally sparse and the maximum
firing rate is below 200 Hz [Len03], rather than 1000 Hz as used in most SNN sim-
ulations. From the hardware viewpoint, the construction of neuromorphic hardware
usually considers the worst situation during running. For example, the highest spike
rate that might be received by one hardware node, and whether this traffic upper bound
is the same in different hardware nodes. This consideration of the highest firing rate is
reflected in the proposed MCR-Norm, where the firing rate upper bound is limited to an
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identical low value in every layer. Consequently, when the simulated results are applied
to the real neuromorphic hardware, the spike traffic upper bound is low and identical in
hardware nodes.

4.6.2 Normalizing weights vs normalizing biases

To maintain the balance between weights and biases under the firing rate degeneration
phenomenon, there are two feasible solutions: scaling weights to match biases, or
scaling biases to match weights. The latter solution can achieve a balance between
parameters but cannot solve the firing rate degeneration problem. With that in mind,
weight scaling is chosen in the present method.

4.6.3 Low firing rates vs high firing rates

MCR-Norm scales weights to make the firing rate range in every layer identical. This
section quantitatively explores the optimal firing rate range to achieve high performance.
Under the same experimental conditions (listed at the end of this section), the upper
bound of the firing rate range is adjusted and its impact on the network performance,
specifically, inference accuracy and inference latency are recorded as shown in Figure
4.3. It can be seen that the accuracy drops when the firing rate is high, while high
latency appears at low firing rates. The results suggest that unlike modified IF models,
there is a trade-off inside the choice of the working zone of the standard IF model. The
balance point is approximately between 200 Hz - 400 Hz. This is in line with some
biological observations that neurons usually fire below 200 Hz as the cost of spike
generation is high [Len03].

A toy model was built to explore the optimal identical firing rate range. The data set
is CIFAR-10. The network architecture is shown in Table 4.1. This ANN model only
has weights and does not apply biases and batch normalization, to avoid the problem
of weight-bias mismatch after conversion to SNN. After ANN-to-SNN conversion, the
SNNs are built using the standard IF model with a time resolution of 1 ms and are
normalized to different firing rate ranges as shown in Figure 4.3. The baseline accuracy
is 89.43%.
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Figure 4.3: Inference accuracy loss after ANN-to-SNN conversion and inference latency
for different firing rates. The data set is CIFAR-10 [RLH+17].

Figure 4.4: The response curves of spiking neurons under different parameter normal-
ization methods.
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Table 4.1: Network structures for MNIST and CIFAR-10

MNIST
28*28-64c3BN-128 c3BN-128 c3BN-p2-D0.1

-128 c3BN-256c3BN-256c3BN-p2-D0.1-256 c3BN
-512 c3BN-D0.1 -2048FC-D0.4-10FC

CIFAR-10
32*32*3-64c3BN-128c3BN-128c3BN-p2-D0.1

-128 c3BN-256c3BN-p2-D0.1-256 c3BN- 256c3BN
-p2-D0.1-512 c3BN-p2-D0.1-2048FC-D0.4-10FC

4.6.4 Comparison to other normalization methods

Figure 4.4 compares the response curves of spiking neurons in MCR-Norm and other
parameter normalization strategies. All these approaches normalize thresholds propor-
tional to the maximum activation λ. Note that this diagram is simplified to show the
essence of these parameter normalization methods. The real response curve of spiking
neurons has variation and noise. It shows that for the same inputs, the spike firing
rate after using MCR-Norm is 2.5 times smaller than data-based normalization and 7.5
times smaller than percentile data-based normalization (Ignoring the 0.1% to 1% outlier
neurons).

4.7 Benchmarks

4.7.1 Experimental setup

The datasets used here are MNIST and CIFAR-10 [LBBH98, HRFS16]. The network
architectures are inspired by earlier work [HRFS16] and are given in Table 4.1. There
are several convolutional layers with BN layers to extract features, and some fully-
connected (FC) layers at the end. The size of the convolution kernels is 3*3 and the
size of the pooling kernels is 2*2. Spatial dropout is applied after some pooling layers
and the standard dropout is applied before the FC layers. The activation function used
in these networks is ReLU. The network parameters and hyper-parameters are shown in
Table 4.2.

The spiking neuron model used here is the standard IF model and the synapse model
is the delta model [DNB+15]. A statistical rate coding is applied to map input values to
averaged firing rates. The time resolution is 1 ms.
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Table 4.2: Training parameters and hyperparameters of neural networks for MNIST and
CIFAR-10.

Dataset MNIST CIFAR-10
Criterion Cross entropy Cross entropy
Optimizer Adadelta Adadelta

Epochs 150 150
Batch size 100 100

Other techniques Early stopping Early stopping,
data

augmentation,
L2 regulator

All experiments are run on a computer with a Core i7 2.8 GHz multi-core CPU, 8 GB
RAM, and a GTX1050Ti GPU. The operating system on this computer is Windows10.
The ANNs and SNNs are built using Pytorch.

4.7.2 Inference accuracy

MCR-Norm was tested on the MNIST and CIFAR-10 pattern recognition data sets. The
inference accuracy is compared with various ANN-to-SNN conversion techniques in
Table 4.3. The proposed method achieved a state-of-the-art accuracy of 99.71% on
MNIST, benefiting from the powerful architecture and the use of the batch normaliza-
tion technique. More importantly, it achieved zero accuracy loss after ANN-to-SNN
conversion, without any modifications to the standard IF model.

For CIFAR-10, it achieved an accuracy of 93.60%, which is the best reported
accuracy with the standard IF model up to now. It shows approximately 2% accuracy
improvement over SNNs built using the standard IF model without biases and BN layers
[SYW+19]. The ANN-to-SNN conversion accuracy loss is 0.29%, which is better than
many methods using less biologically plausible neural models [RLH+17, SM19, SM20];
however, this conversion accuracy loss is higher than [RLH+17, HSR20] which uses
the IF model with an extra membrane potential reset mechanism.

4.7.3 Inference latency

The SNN takes 100 ms to converge to the final accuracy on MNIST during inference.
The inference latency of the SNN on CIFAR-10 is much longer than on MNIST. It takes
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Table 4.3: Accuracy loss on MNIST and CIFAR-10 with ANN-to-SNN conversion
techniques.

Neuron type Bias BN Dataset ANN Loss (%) SNN Loss(%)
Original IF model [DNB+15] No No MNIST 0.86 0.90

IF model with subtraction mechanism [RLH+17] Yes Yes MNIST 0.56 0.56
Standard IF model (this work) Yes Yes MNIST 0.29 0.29

IF model with subtraction mechanism [RLH+17] Yes Yes CIFAR-10 8.09 9.15
Original IF model [SYW+19] No No CIFAR-10 8.3 8.45

IF model with soft reset [HSR20] No No CIFAR-10 6.37 6.37
AMOS unit [SM19] Yes Yes CIFAR-10 7.07 7.58
FS neuron [SM20] Yes Yes CIFAR-10 7.01 7.58

Standard IF model (this work) Yes Yes CIFAR-10 6.11 6.40

1,700 ms to reach the final accuracy as shown in Figure 4.5. This result on CIFAR-10
is compared with a deep SNN converted from the same ANN model but normalized
using data-based normalization and applied the IF model with subtraction mechanism
[RLH+17]. The results are shown in Figure 4.5 and it shows that the proposed method
does not incur additional latency during inference. What is more, the firing rate range is
(0, 400 Hz) rather than (0, 1000 Hz) used in data-based normalization and percentile
data-based normalization.

4.8 Summary

This research proposed the “MCR-Norm” normalization method to tune parameters
systematically after ANN-to-SNN conversion and, using that, it achieved competitive
accuracy on the MNIST and CIFAR-10 pattern recognition data sets with the standard IF
model. As well as the absolute accuracy of the deep SNN, the accuracy loss compared
with the original ANN after MCR-Norm is crucial to represent the efficiency of ANN-
to-SNN conversion. Thanks to the layer-wise optimization, the reported accuracy loss
was only 0.29% on CIFAR-10 and 0% on MNIST.

The core of MCR-Norm is to control the firing rate range at a low level, rather
than allowing varying and/or high firing rates. This study showed that a standard IF
model naturally prefers a firing rate range close to the one used by biological neurons.
The proposed normalization approach also paved the way to efficiently adopt SNNs on
neuromorphic hardware [FGTP14].
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Figure 4.5: The convergence time of the SNN on CIFAR-10.



Chapter 5

A quantization framework for fast
SNNs

5.1 Introduction

The performance of SNNs, and specifically their inference accuracy, has improved
significantly over recent years, driven by the motivation to prove that SNNs are as
functional as their ANN counterparts. Emerging techniques show that lossless SNN
accuracy is possible [DNB+15, RLH+17, SYW+19, LZZ21, DG21].

With this success in the pursuit of inference accuracy, considerable scholarly atten-
tion has shifted to the aspect of inference latency[DG21, HCO+21, HC20, LDD+21].
This research topic is referred to as “latency optimization in SNNs”, or simply as “fast
SNNs”. Fast SNNs are achieved either by conducting more efficient ANN-to-SNN
conversion or by training the SNNs directly by surrogate gradients. Nevertheless, with
the reduction in latency comes degradation in accuracy, resulting in the well-known
accuracy-latency trade-off in SNNs.

The main goal of this research is to build fast SNNs while avoiding accuracy loss.
In particular, This research chooses an ANN-to-SNN conversion technique to minimize
accuracy loss while applying a novel quantization framework to push latency below ten
time steps, for the first time. Thus, a highly-effective method to build state-of-the-art
ultra-fast, high-accuracy SNNs is demonstrated. The key contributions of this study are
listed below.

• Performance: The proposed method overcomes the accuracy loss problems

95
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previously seen in fast SNNs after conversion from ANNs, and achieves a state-
of-the-art accuracy and latency. Specifically, on ImageNet it achieves the accuracy
of 70.18% in 8 time steps and 74.36% in 10 times steps.

• Information compression: The fast SNNs are generated by compressing ac-
tivation precision. This research discusses how to achieve extremely low-bit
activation compression (down to 2 bits) and, more importantly, how to ensure the
compatibility of this technique with SNNs.

• Noise suppression: a new type of noise in spiking neurons, which is called
“occasional noise”, is identified, and shown that it is the main obstacle to achieving
competitive accuracy for fast SNNs. An effective approach is proposed to suppress
its negative effect on SNN performance.

• Framework: A comprehensive quantization framework for fast SNNs (QFFS)
is proposed to include the proposed information compression, noise suppression
techniques, and other techniques. This framework enables SNNs to be built with
both high inference accuracy and low inference latency. Beyond that, further
improvements in accuracy, latency, and biological plausibility are possible based
on this framework.

5.2 Related work

The inference latency of SNNs has continued to reduce over the last five years. The early
demonstration of SNNs on ImageNet needed about 2000 time steps to get competitive
accuracy [SYW+19]. Rueckauer et al [RLH+17] applied a modified integrate-and-fire
model and analog input to facilitate the accuracy and latency of SNNs. The 0.1% to 1%
activation outliers were discarded to further reduce the SNN latency.

The modified IF model and analog input were then widely used in SNN research,
and there was a surge of interest in further shortening the inference latency of the
SNNs. Hwang et al [HCO+21] and Deng et al [DG21] used a pre-charged membrane
potential and bias shift respectively to eliminate systematic error during ANN-to-SNN
conversion. Another contribution of [DG21] is they used clipped ReLU during ANN
training to match the response curve of SNNs better. Ho et al [HC20] applied clipped
ReLU during ANN training as well, but the clipping point in each layer is trainable.
Through these efforts, ANN-to-SNN conversion has become increasingly effective, and
the inference latency of the SNNs has reduced to about 30 time steps. However, the
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accuracy loss after conversion is considerable when the latency is pushed down towards
ten time steps.

There are two parallel methods have been proposed for achieving fast SNNs: direct
training [FYC+21a] and tandem learning [WXH+21]. Nevertheless, both of these
two methods are hindered by the huge memory budget during training and accuracy
degeneration during inference. The comparison between the proposed method in this
study and these two methods is illustrated in Section 5.6.

The research into ANN quantization is extraordinarily prosperous, pursuing low
computation and memory budgets for deploying Tiny Machine Learning applications
on edge devices [WS19]. The standard methods are post-training quantization and
quantization-aware training [Kri18]. Using these two approaches, most neural net-
work models can achieve lossless accuracy with 8-bit precision compared with the
corresponding full precision models. Further reduction of the precision mainly relies
on modifying gradients [EMB+19]. The extreme situation is using 1-bit weights and
activations to conduct inference, an approach called binary neural networks (BNNs)
[QGL+20].

Research into applying quantization to SNNs is comparably limited. Quantization
techniques are primarily adopted to compress the model footprint of the SNNs, and
these techniques have been applied to weights, neuronal parameters, and neuronal state
to deploy SNN algorithms on memory-constrained neuromorphic hardware [LN21,
SJ20, CGR21].

Meanwhile, several studies have explored the effectiveness of using quantization
techniques to promote fast SNNs [WXH+21, MHAK21, BFD+21]. However, these
methods either fail to scale to ImageNet, or suffer severe accuracy degradation. The
main challenge for fast SNNs - preventing accuracy drop when pushing down the
inference latency - has not been dealt with. The main differences between the study
presented in this chapter and these studies are:

• This research provides a comprehensive analysis of occasional noise and provides
a corresponding noise suppression method, which is shown to be crucial to
achieving competitive accuracy for SNNs within strictly limited time steps.

• This research enables building SNNs with 2-bit precision and loss-less accuracy
(while other research uses 4-bit to 8-bit quantization and suffers serious accuracy
loss). Also, some key modifications to the standard quantization techniques are
emphasized in this paper to better fit the dynamics of spiking neurons.
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Figure 5.1: The accuracy and latency of SNNs built by different methods (Spike-
Norm [SYW+19], TS [DG21]), RMP [HSR20], TCL [HC20], QCFS [BFD+21] DS
[LGZ+21], SEW [FYC+21a], DIET-SNN [RR20], and QFFS proposed in this paper.
ANN-to-SNN conversion delivers high accuracy, and direct training delivers low latency.
The proposed QFFS approach pushes the latency, when using ANN-to-SNN conversion,
to a level similar to that using direct training. Also, our method shows about 2.5%
higher accuracy than the best accuracy achieved by direct training.

• Other methods usually apply analog neurons instead of spiking neurons in the
output layer of the SNNs, to improve the resolution of the output layer so keeping
competitive accuracy on tasks such as ImageNet. The presented method shows the
possibility of achieving an accuracy higher than 70% on ImageNet with spiking
neurons in the output layer.

5.3 Motivation

The motivation for this research is to develop a practical method to reconcile the
accuracy-latency trade-off in SNNs. Currently, there are two dominant methods to build
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SNNs: ANN-to-SNN conversion, and direct training with surrogate gradients. Which
method is chosen depends on the requirements of the SNNs under different application
scenarios. Generally, ANN-to-SNN conversion features high accuracy, while direct
training features low latency. In other words, an accuracy-latency trade-off arises with
current SNNs. To illustrate this, the accuracy and latency of SNNs using these two
methods are shown in Figure 5.1, grouped by different symbols. It is obvious that these
two methods are currently distinguished from each other and have distinct working
zones. To date, there is no approach to building SNNs with latency matching that using
direct training and accuracy equivalent to that using ANN-to-SNN conversion. The
purpose of this paper is to push the bounds of both of these methods, to promote the
reconciliation of the accuracy-latency trade-off in SNNs. Specifically, this research
focuses on improving the latency of ANN-to-SNN conversion, for the first time to a
level close to that of direct training. As a result, the latency gap between these two
methods can be closed, while ANN-to-SNN conversion will show clear advantages
in training (lower memory budget and shorter training time) and in inference (higher
accuracy) than direct training.

5.4 Materials and methods

Considering a rate-coded SNN built using the ANN-to-SNN conversion technique
[DNB+15, RLH+17], the accuracy of the SNN, Acc(SNN), is given by

Acc(SNN) = Acc(ANN)−Loss(conversion), (5.1)

where Acc(ANN) is the accuracy of the full precision ANN, Acc(SNN) is the accuracy
of the SNN, and how close this is to the full ANN accuracy depends on Loss(conversio

n) , which is the accuracy loss introduced by ANN-to-SNN conversion. If we quantize
the ANN prior to conversion then this becomes

Acc(SNN) = Acc(Quant ANN)−Loss(conversion), (5.2)

where Acc(Quant ANN) is the accuracy of the quantized ANN. After this modification,
the target accuracy of the SNN becomes Acc(Quant ANN). Benefitting from the recent
advances in ANN quantization techniques, Acc(Quant ANN) is increasingly close to
Acc(ANN) even when the bit precision is strictly constrained. Hence, the baseline
accuracy of the SNN, Acc(Quant ANN), is maintained in principle.
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Figure 5.2: The general ANN-to-SNN conversion diagram and the proposed approach
to achieve fast SNNs.

Minimising the ANN-to-SNN conversion loss Loss(conversion) is crucial to en-
suring that the SNN approaches this baseline accuracy. It is achieved by analyzing
the neuronal dynamics of spiking neurons to find the origin of the accuracy loss and
eliminate it (Sections 5.4.2 and 5.4.3).

As for the inference latency, this study empirically show that the inference latency
of the SNN and the activation bit-width of the ANN are correlated after ANN-to-SNN
conversion, so a fast SNN can be built by using a quantized ANN. This is covered in the
following section, describing the applied ANN quantization techniques and highlighting
the modifications to the standard quantization techniques to ensure compatibility with
SNNs.

Another issue addressed in this study is the simulation of max pooling in SNNs.
This study proposes a practical SNN max pooling method to improve the accuracy of the
SNN compared with that using average pooling, without compromising its event-based
nature.

The exploration of these aspects forms a quantization framework for fast SNNs
(QFFS) as shown in Figure 5.2. How this framework delivers further improvements in
SNN performance is discussed at the end of the Chapter. The detailed equations related
to the ANN-to-SNN conversion and Quant-ANN-to-SNN conversion are provided in
Section 5.4.5.
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5.4.1 Information compression during training

Implementing quantization training

The inference accuracy of SNNs increases with the simulation time step but, in essence,
it increases with the amount of information transmitted by uniform spike trains. After
sufficient information has been accumulated, a comparatively reliable “decision” can
be made, and this point in time is defined as the inference latency of the SNN. For
example, to transmit 8-bit information, at least 255 ms is required in a rate-coded SNN
with a 1ms time resolution. If temporal coding is used, the required length of time is
also related to the target information bit-width. Thus, reducing the required information
bit-width is the key to achieving fast SNNs.

When using an ANN-to-SNN conversion technique, the required bit precision of the
SNN is determined by the activation bit precision of the ANN. So the problem becomes
that of building a quantized ANN with an activation bit-width as low as possible while
maintaining high accuracy.

During the last decade, ANN quantization techniques have been at the centre of
much attention, and the standard quantization methods (post-training quantization
and quantization-aware training) have increasingly matured. For instance, there are
well-developed and easily accessed APIs in PyTorch to conduct ANN quantization
by these two methods. Though these APIs are easy to access, these two standard
methods are not suitable for this research, as they fail to achieve competitive accuracy
in extremely low bit precision such as 2 bits. Hence, the first obstacle is to choose a
more effective quantization method than the standard post-training quantization and
quantization-aware training. This obstacle is also part of the reasons why early attempts
to use ANN quantization to promote fast SNNs either failed to scale to challenging
datasets (such as ImageNet) or suffered high accuracy loss in fast SNNs (e.g. 6% on
ImageNet).

The ANN quantization technique chosen in this study is based on LSQ [EMB+19].
LSQ defines the gradients of the quantization step size to prevent activations from being
too close to quantization transmission points. It can enable network quantization down to
2 bits while minimizing the accuracy loss introduced by quantization. This quantization
accuracy loss equals Acc(ANN)−Acc(Quant ANN), which is the accuracy difference
between the full-precision ANN model and the quantized-ANN model. According to
the original LSQ paper, this accuracy loss is about 3.2% for 2-bit ANN and 1.1% for
3-bit ANN on ResNet-50. How to reduce this accuracy loss is discussed in Section 5.7.
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Table 5.1: The main differences between general quantization techniques and the
quantization techniques for fast SNNs.

Standard quantization Quantization for fast SNNs
Position Network input, network output, ReLU, arithmetic ReLU

Procedure Fake quantization training - convert to integer model Fake quantization training
- run on the backend with integer arithmetic accelerator

Operation Rounding Grounding
Granularity Per tensor, per channel Per tensor

Benefits Speed up inference and reduce memory budget Reduce inference latency

Additionally, LSQ is not open-sourced, and the implementation of LSQ in this study
has not achieved a similar accuracy to that claimed in that paper. For example, the 2-bit
and 3-bit ANN quantization results on ImageNet are 1.5% and 2.3% lower than the
reported results in the LSQ paper respectively. This suggests that there is further scope
for improving the presented methods.

Modifications to promote compatibility with SNNs

As the quantized ANN will be converted into an SNN in the future, the ANN quantiza-
tion technique should be compatible with the properties of SNNs.

Table 5.1 lists the modifications to the general ANN quantization technique. Only
the activation quantization is applied during training and the input, weights, and biases
are left as floating-point. In the standard quantization procedure, the model generated
by fake quantization training will be converted to an integer model and run on different
backends. Here, only the fake quantization training is applied and the model is then
converted to an SNN. The granularity of activation quantization is the tensor. There are
two modifications found crucial to the final SNN performance:

Firstly, many quantization techniques including the applied LSQ leave the output
layer in floating-point to render better accuracy, e.g. 4% higher on ImageNet than that
quantizing the output layer. However, modeling floating-point with spiking neurons
is expensive. It needs either many time steps to generate enough spikes to reach the
same precision, or to use integrate-but-not-fire neurons in the SNN and represent the
high-precision information by the neurons’ membrane potentials. These two solutions
will damage the inference latency or biological plausibility of the built SNNs. In this
research, the sensitivity of SNN performance to the activation precision in the output
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layer is investigated. The results support the choice of an optimal precision to promote
competitive accuracy and latency.

Secondly, the integrate-and-fire mechanism in spiking neurons corresponds to round-
ing down rather than rounding to nearest which is generally used in ANN quantization.
This issue can be solved either by shifting to using the rounding down during the
quantization training, or sticking to using rounding to the nearest during quantization
and compensating for it later. Considering that the quantization method is fine-tuning an
already trained full-precision model, rounding down during quantization will introduce
a systematic error resulting in a considerable accuracy loss, especially for low-precision
quantization. This study sticks to using rounding to nearest during quantization and
compensates for it in the SNN by pre-charging the membrane potential [HCO+21].

5.4.2 Occasional noise

The types of noise causing accuracy loss during ANN-to-SNN conversion are summa-
rized for the first time in [DNB+15], where three kinds of noise – sub-threshold noise,
supra-threshold noise, and rate-coding noise - are illustrated. Some research categorizes
these as errors rather than noise. This study sticks to calling them noise, to emphasize
their randomness and uncertainty.

This research argues that there is a fourth kind of noise, which is called as occasional
noise. Occasional noise refers to the phenomenon that occasional spikes are generated
in spiking neurons where they should not be. For example, consider an artificial neuron
with an input of 0.4, and the threshold of the corresponding spiking neuron is 1 with
a simulation period of 10 time steps. During this simulation period, the average input
value is 0.4 and the neuron should generate 4 spikes in 10 time steps, in the simplest
situation. However, the inputs of a spiking neuron are weighted spikes, with random
spike timing. Possible situations include:

• Situation 1: The input of this spiking neuron is -1 in the first 9 time steps and 13
in the last time step. Here the number of spikes generated is 1 instead of 4.

• Situation 2: The input is 1 in the first 8 time steps and -2 in the last 2 time steps.
Then the summed input is 8*1 + 2*(-2) = 4, which is correct, but the generated
spike count is 8 instead of 4.

These erroneously generated spikes will propagate through the network and cause
an accuracy drop in the SNN. To verify this, Some ANNs are trained with different
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Figure 5.3: ANN accuracy after quantization training with different bit precisions, and
SNN accuracy without handling the occasional noise. The model is VGG-16 and the
dataset is ImageNet. The ANN-to-SNN conversion is based on the approach proposed
in this paper to facilitate the conversion of low-bit activation.

activation quantization precision, and evaluated after converting to SNNs. As shown in
Figure 5.3, the SNN accuracy is far from the baseline ANN accuracy for all activation
precisions higher than 1 bit. Note that a 1-bit SNN can complete inference in one time
step, then its function is equivalent to a 1-bit ANN so its conversion accuracy loss
is zero. However, no temporal information was utilized during its inference, so the
network is no longer spiking and is out of the scope of fast SNNs. The following section
will discuss how this noise may be suppressed to achieve lossless Quant-ANN-to-SNN
conversion.

5.4.3 Handling occasional noise and the other three noise types

To achieve lossless Quant-ANN-to-SNN conversion, occasional noise and the other
three types of noise need to be handled. This section will briefly introduce how to cope
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Figure 5.4: (a) The response curve of the modified IF model with the maximum spike
count bound of 3; (b) adding pre-charged membrane potential to (a); (c) the response
curve of a 2-bit quantified ANN; (d) and (e) are the sub-threshold noise of (a) and (b)
respectively, compared with clipped ReLU; (f) is the quantization error of (c) relative to
clipped ReLU.

with the other three types of noise, as these three noise types have been researched for
years. The focus of this section, then, is illustrating the proposed approach to handle
occasional noise.

Handling the first three noise types

By using analog inputs and the modified IF neuron, rate-coding noise is eliminated, and
the dropped supra-threshold signal is recovered by the reset-by-subtraction mechanism
in the modified IF model [RLH+17].

Sub-threshold noise is the residual membrane potential of spiking neurons after
simulation which may cause the output of spiking neurons to be lower than the expected
value [DNB+15]. The solutions proposed in previous research are either bias shift
[DG21] or pre-charged membrane potential [HCO+21]. This study chooses the pre-
charged membrane potential to reduce the amplitude of this noise. After applying the
pre-charged membrane potential, the sub-threshold noise shares the same amplitude and
patterns as the quantization error in the ANN, so the sub-threshold noise is canceled
out. Detailed illustrations are in Figure 5.4.
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Algorithm 1 The spiking neuronal model.
Input: Spiking neuron’s input x
Parameter: Spiking neuron’s voltage u, Current time-step t, Time window T , Threshold
th, Generated spike count Z, Maximum spike count Z max, Heaviside step function Θ

Output: Generated spike z
1: LET u−1 = 0,z−1 = 0,Z−1 = 0
2: for t ∈ [0,T ] do
3: ut = ut−1 − zt−1th+ x
4: if (ut ≥ th)and(Zt−1 < Z max) then
5: zt = Θ(ut − th)
6: else if (ut ≤ 0)and(Zt−1 > 0) then
7: zt =−Θ(−ut)
8: else
9: zt = 0

10: end if
11: Zt = Zt−1 + zt
12: end for

Handling occasional noise

To avoid the negative impact of occasional noise, it is necessary to identify its
pattern of occurrence. Occasional noise only occurs when:

• The membrane potential of a spiking neuron after the simulation is negative, but
at least one spike has been generated during the simulation. This means that more
spikes were generated than there should have been. This corresponds to Situation
2 in the previous section.

• The membrane potential of a spiking neuron after the simulation is higher than
the threshold, which means that the generated spike count is lower than expected.
This corresponds to Situation 1 in the previous section.

The spiking neurons that fit either of these two situations are considered to suffer the
impact of occasional noise. The occasional noise is mitigated by the proposed feasible
method in this study. The main feature of this method is that it can compensate for the
occasional noise during the simulation instead of after the simulation. In other words,
the event-based nature of SNNs is maintained (An example of a non-event-based SNN
can be found in [LZC+22]).

To handle the first situation, a mechanism for generating negative spikes in spiking
neurons is added to compensate for the incorrectly emitted positive spikes: A negative
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spike will be generated when the membrane potential is smaller than zero and the total
spike count generated by this neuron is greater than zero. These two prerequisites
correspond to the two features listed in the first situation. After a negative spike is
generated, the membrane potential will increase by a value equal to its threshold, which
is opposite to the reset mechanism of the positive spike. A maximum spike count
is set to mimic the maximum quantization value in activation-quantized ANNs. The
pseudo-code of this spiking model is given in Algorithm 1. There are two parameters in
this spiking model that need to be defined, the threshold of the spiking neurons th and
the Maximum spike count limitation Z max. How these parameters can be determined is
illustrated in Section 5.4.5. The simulation time of the SNN is extended correspondingly
to enable these newly-generated spikes to propagate to deep layers.

In order to deal with the second situation, the simulation time is simply extended to
allow the spike to emit.

5.4.4 Event-based max pooling

Max pooling is problematic for rate-coded SNNs due to their fundamentally different
ways of representing information. In ANNs, information is represented by activation
values, while in rate-coded SNNs, information is represented by the number of accu-
mulated spikes over time. In each time step, only a limited amount of information is
carried by a spike, so simply conducting max pooling on a spike for each time step will
introduce considerable accuracy loss. Using winner-take-all mechanisms to model max
pooling is more biologically plausible, yet sometimes the winner may not be the one
with the maximum activation value.

The following contents discuss this problem and provide a practical approach to
implementing max pooling in SNNs. Basically, max pooling in ANNs is picking
the maximum value from a series of values in the previous layer. These values are
represented as spike counts if the SNNs are rate-coded, so the output of the max pooling
should be the maximum value of these spike counts. Note that spike counts need to
be recorded after all spikes are generated, to prevent the miscounting of spikes. For
example, when calculating the max pooling in a layer of an SNN, assuming the time
window of this SNN is T , and the accumulated spike counts recorded at time T is ZT ,
then the max pooling output MT would be

MT = max pooling(ZT ), (5.3)
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where max pooling is the max pooling operation. The limitation of this method is
obvious. The max pooling output can only be obtained at time T after all spikes have
been generated in the previous layer, which violates the event-based nature of SNNs.

To protect the event-based nature of SNNs, some modifications are added to the
method above: for each time step t, the max pooling on spike counts Zt are recorded as

Mt = max pooling(Zt). (5.4)

The output of max pooling at time t is defined as

zt = Mt −Mt−1. (5.5)

Using this approach, a max pooling output spike zt is generated only when Mt changes,
which keeps the event-based nature of SNNs. All generated spikes ∑

T
t=1 zt during the

simulation will be the target max pooling output MT , which is explained below:

According to Equation 5.5, the accumulated spike output of max pooling ∑
T
t=1 zt

would be

T

∑
t=1

zt =
T

∑
t=1

(Mt −Mt−1)

= (MT −MT−1)+(MT−1 −MT−2) · · · (M0 −M−1)

= MT +(−MT−1 +MT−1)+(−MT−2 +MT−2) · · · (−M0 +M0)−M−1

= MT −M−1.

It can bee seen that all intermediate terms are canceled out, and the last term M−1 is 0,
this equation then becomes

T

∑
t=1

zt = MT . (5.6)

The result equals that calculated in Equation 5.3 which conducts max pooling on total
spike counts.

Access to the spike count and the calculation of the difference are uncomplicated
and can be implemented in PyNN [DBE+09] and PyTorch-based SNN simulation
platforms such as snnTorch and SpikingJelly, which offers compatibility with the
proposed method. Also, the nature of event-based computing in SNNs is preserved in
this proposed method.



5.4. MATERIALS AND METHODS 109

Algorithm 2 Event-based max pooling.
Input: The accumulated spike counts of spiking neurons before the max pooling layer
Z
Parameter: Max pooling max pooling, the output of max pooling M, Current time-step
t, Time window T
Output: Generated spike z

1: LET z−1 = 0,M−1 = 0
2: for t ∈ [0,T ] do
3: Mt = max pooling(Zt)
4: zt = Mt −Mt−1
5: end for

5.4.5 Quantization meets ANN-to-SNN conversion

This section provides detailed equations relating to the general ANN-to-SNN conversion
and the proposed Quant-ANN-to-SNN conversion. At the end of this section shows
that Quant-ANN-to-SNN conversion is a special form of the general ANN-to-SNN
conversion.

ANN-to-SNN conversion

In an ANN, the information processing in the artificial neurons in layer l can be modeled
as

yl = a(W lyl−1 +Bl), (5.7)

where a(·) is the ReLU activation function, W l and Bl denote the weight and the bias
in layer l, yl is the output of layer l, and yl−1 is the output of layer l −1 (which is also
the input to layer l).

Meanwhile, the integrate-and-fire model used in an SNN is defined as

ul
t = ul

t−1 +W̃ lzl−1
t thl−1 + B̃l −zl

t−1th
l, (5.8)

zl
t = Θ(ul

t − thl), (5.9)

where ul
t and ul

t−1 are the membrane potential of spiking neurons in layer l at time t

and t −1 respectively, W̃ l is the weight and B̃l is the bias. Θ denotes the Heaviside
step function. thl is the threshold in layer l. zl

t is the output spike in this layer at time t.
Note that the reset mechanism in this spiking neuronal model is the reset-by-subtraction
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rather than the reset-to-zero.

When conducting ANN-to-SNN conversion based on the data-based normalization,
the SNN parameters W̃ l , B̃l and thl are calculated by

W̃ l =
λl−1W l

λl , (5.10)

B̃l =
Bl

λl , (5.11)

thl = 1, (5.12)

where λl and λl−1 are the maximum ANN activation value in layer l and the previous
layer l −1.

Quant-ANN-to-SNN conversion

In an activation-quantized ANN, the activation function is defined by

yl = sl ×⌊clip(
W l ·yl−1 +Bl

sl ,0,2b −1)⌉, (5.13)

where sl is the quantization step size in layer l, and it is the only parameter that is not
predefined but is learned during quantization training. b is the activation bit precision
so 2b −1 is the maximum quantization value in this ANN. clip(a,b,c) clips a with the
value below b set to b and the value above c set to c. ⌊a⌉ rounds a to the nearest integer.
This process comprising scaling, clipping, rounding, and re-scaling is applying a fake
quantization to ANN activation.

After conducting Quant-ANN-to-SNN conversion, the applied spiking neuronal
model is described in Algorithm 1, or defined by the equations below:

ul
t = ul

t−1 +W̃ lzl−1
t thl−1 + B̃l −zl

t−1th
l, (5.14)

zl
t = Θ(ul

t − thl)Θ(Z max−Z l
t−1)−Θ(−ul

t)Θ(Z l
t−1), (5.15)

Z l
t =Z l

t−1 +zl
t . (5.16)

The meaning of these items is in Algorithm 1. Θ(ul
t −thl)Θ(Z max−Z l

t−1) determines
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whether a spike is generated, where Θ(Z max−Z l
t−1) prevents emitting more spike

than Z max. −Θ(−ul
t)Θ(Z l

t−1) identifies the occasional noise and compensate it by
generating a negative spike. The SNN parameters are calculated by

W̃ l = thl−1W l, (5.17)

B̃l =Bl, (5.18)

thl = (2b −1)sl, (5.19)

Z max = 2b −1. (5.20)

By using the spiking neuronal model described in equations 5.14 - 5.16 and normalizing
SNN parameters by Equations 5.17 - 5.20, a lossless Quant-ANN-to-SNN conversion
can be achieved.

Connection between ANN-to-SNN conversion and Quant-ANN-to-SNN conversion

The connection between ANN-to-SNN conversion and Quant-ANN-to-SNN conversion
is illustrated below. Equations 5.17 - 5.19 are significantly different from the data-based
normalization Equations 5.10, 5.11 and 5.12. However, one characteristic of spiking
neural networks is that the function of an SNN will be unchanged after scaling weights,
bias, and spiking thresholds simultaneously. If scaling these parameters by 1/(2b −1)sl

simultaneously, these equations become

W̃ l =
(2b −1)sl−1W l

(2b −1)sl , (5.21)

B̃l =
Bl

(2b −1)sl , (5.22)

thl = 1. (5.23)

It is apparent that these equations become more similar to the data-based normalization
Equations 5.10, 5.11, and 5.12. For instance, (2b−1)sl in Equation 5.21 corresponds to
λl in Equation 5.10, and they are both the maximum output value in an ANN layer. This
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Table 5.2: Hyper-parameters of ANN quantization training.

Learning rate 0.01
Momentum 0.9

Weight decay 0.0005
Epoch 40

Batch size 32
Other technique Data augmentation

shows the internal correspondence of the described method to traditional ANN-to-SNN
conversion techniques.

5.5 Experiments

5.5.1 Experimental setup

The quantization training is applied on pre-trained full precision VGG-16 and ResNet
models. The networks were trained by stochastic gradient descent with the loss function
of cross-entropy and the exponential decay scheduler. Detailed hyper-parameters are in
Table 5.2. A 2-bit activation precision is chosen in all hidden layers for CIFAR-10 and
ImageNet in quantization training to render the best SNN latency. Notably, the output
layer is 3-bit, and the reasons for this choice are discussed in the following section.
Both ANN quantization training and SNN implementation are carried out with PyTorch.

In SNN simulation, the network input is analog-coded [RLH+17] and the time
resolution is 1ms. The adopted neuronal model was described in Algorithm 1. The
maximum spike count is limited to 2b −1 in hidden layers and 2b+1 −1 in the output
layer, which corresponds to the maximum quantization states during quantization
training. b is the activation bit precision during ANN quantization training and is
chosen as 2. The weight W̃ l , the bias B̃l , the threshold thl and the maximum spike
count limitation Z max in layer l are determined by

W̃ 1 = thl−1W l, (5.24)

B̃1 =Bl, (5.25)
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Table 5.3: Benchmarking SNNs built by ANN-to-SNN conversion on CIFAR-10 and
ImageNet.

Method Dataset Architecture Acc(ANN)(%) Acc(SNN)(%) Latency (ms)
RNL+RIL [DYTH21] CIFAR-10 ResNet-18 93.06 91.96 64
RNL+RIL [DYTH21] CIFAR-10 VGG-16 92.82 91.15 64

TCL [HC20] CIFAR-10 ResNet-20 91.58 91.22 35
TCL [HC20] CIFAR-10 VGG-16 93.25 92.6 20

QCFS [BFD+21] CIFAR-10 ResNet-20 91.77 91.62 16
QCFS [BFD+21] CIFAR-10 ResNet-18 96.04 94.82 8
QCFS [BFD+21] CIFAR-10 VGG-16 95.52 94.95 8

TS [DG21] CIFAR-10 ResNet-20 92.32 92.41 16
TS [DG21] CIFAR-10 VGG-16 92.09 92.29 16

QFFS (This work) CIFAR-10 ResNet-18 93.12 93.14 4
QFFS (This work) CIFAR-10 VGG-16 92.44 92.64 4

Spike-Norm [SYW+19] ImageNet VGG-16 70.52 69.96 2500
Spike-Norm [SYW+19] ImageNet ResNet-34 70.69 65.47 2000

RMP [HSR20] ImageNet VGG-16 73.49 73.09 4096
RMP [HSR20] ImageNet ResNet-34 70.64 69.89 4096
TCL [HC20] ImageNet VGG-16 73.22 70.75 30
TCL [HC20] ImageNet ResNet-34 70.85 70.37 250

QCFS [BFD+21] ImageNet VGG-16 74.29 72.85 64
QCFS [BFD+21] ImageNet ResNet-34 74.32 72.35 64

TS [DG21] ImageNet VGG-16 72.4 70.97 64
QFFS (This work) ImageNet ResNet-50 70.15 70.18 8
QFFS (This work) ImageNet VGG-16 69.88 69.69 8

QFFS with analog output (This work) ImageNet ResNet-50 72.81(74.07) 72.91(74.36) 5(10)
QFFS with analog output(This work) ImageNet VGG-16 71.88(73.08) 72.10(73.10) 4(8)

thl = (2b −1)sl, (5.26)

Z max = 2b −1, (5.27)

where W l , Bl and sl are the weight, the bias and the quantization step size in layer
l which are learned during ANN quantization training [EMB+19]. The membrane
potential of the spiking neurons in all layers is pre-charged by 0.5th at the first time
step to eliminate systematic errors relative to the quantized ANNs [HCO+21].

Bias in the SNNs is modeled by constant current injection into the spiking neurons
[RLH+17]. After time step 2b −1, both the bias and the network input are shut down,
so only the spikes caused by occasional noise can be passed through the network.

5.5.2 Benchmark results

The following benchmark results are on ResNet models. More results on VGG-16
models are in Section 5.5.6.

After converting quantized ANNs to SNNs, an accuracy of 93.14% is achieved
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Figure 5.5: The relationship between ANN-to-SNN conversion loss and SNN inference
latency on ImageNet.

within 4 time steps on CIFAR-10 and an accuracy of 70.18% is reached within 8 time
steps on ImageNet. Compared with previous work on ANN-to-SNN conversion, the
inference latency of the SNNs is shortened significantly while retaining competitive
accuracy as shown in Table 5.3.

Note that in fast SNN research, sometimes the SNN accuracy will be higher than the
ANN accuracy. This phenomenon usually appears when an SNN is converted from an
ANN whose activation function is clipped ReLU, or when the dataset is less challenging
such as CIFAR-10. This has been reported in several studies but an adequate explanation
is still lacking [DG21, DYTH21]. This research also shows higher SNN accuracy than
that in the ANN in some experimental settings - the extreme case is that the accuracy
of a SNN is about 0.3% higher than its ANN accuracy, as shown in Table 5.3. The
reason may be that the applied ANN activation function contains a clipped point such
as in the clipped ReLU. Another potential reason may be the difference in information
processing mechanisms between ANNs and SNNs. ANNs calculate the activation
function by multiplication, while SNNs calculate outputs using their integrate-and-fire
mechanism. Thus, even if a perfect ANN-to-SNN conversion is conducted, a value in
the ANN may be represented as a slightly different value in the SNN.

This study also benchmarks the required time steps to achieve lossless ANN-to-SNN
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Figure 5.6: The impact of the activation precision during the quantization training of
ResNet-50 on the performance of SNNs on ImageNet.

conversion on ImageNet in Figure 5.5. The y-axis in this figure represents the accuracy
gap to the baseline ANN accuracy before the conversion. The horizontal axis is the
required number of time steps of the SNNs, which is converted into the equivalent bit
resolution at the bottom. What stands out in this figure is that the proposed quantization
framework for fast SNNs only needs 13 time steps - about 4 bits of information - to
reach lossless accuracy, while other methods need at least 500 time steps, or 9 bits
of information, to achieve lossless accuracy. This highlights the merit of applying
information compression techniques to SNNs and the effectiveness of the proposed
Quant-ANN-to-SNN conversion paradigm.

5.5.3 Bit precision during quantization training

Figure 5.6 illustrates the impact of the activation precision during quantization training
on the accuracy and latency of SNNs on ImageNet. As shown in the figure, higher
activation precision during quantization training will offer higher accuracy in the SNNs,
while the number of time steps required by the SNNs is extended. Hence, there is an
accuracy-latency trade-off inside the Quant-ANN-to-SNN conversion technique.

Some SNN research keeps the output layer as floating-point and suggests that this
promotes inference accuracy. For a fair comparison with this kind of research, the
performance of SNNs built using this paradigm is also reported. As shown in Figure
5.7, using full precision in the output layer during ANN quantization training obviously
improves the inference accuracy and latency of the SNNs. Particularly, the 2-bit SNN
reaches 72.91% in 5 time steps, and the 3-bit SNN reaches 74.36% in 10 time steps.
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Figure 5.7: The impact of the activation precision in hidden layers during the quantiza-
tion training of ResNet-50 on the performance of SNNs on ImageNet.

5.5.4 Bit precision in the output layer

The results in the previous section show that the network accuracy is very sensitive to
the bit precision in the output layer. For instance, changing the output layer from 2-bit
to floating-point gives a 4% accuracy improvement on ImageNet. This section provides
more fine-grained results on the bit precision in the output layer. Also, how to improve
inference accuracy without sacrificing biological plausibility is discussed, in particular
without using analog neurons in the output layer of the SNNs.

From Figure 5.6, it can be seen that the SNN converted from a 2-bit ANN needs
about 7 time steps to reach the highest accuracy, which means that most of the informa-
tion has been transmitted to the output layer in 7 time steps. 7 time steps can represent
3 bits of information from a rate-coded spiking neuron in theory, while the bit precision
of the output layer is only 2 bits. This gap motivates us to further utilize the information
representation ability of spiking neurons by adjusting the precision of the output layer.

The bit precision in all hidden layers is kept as 2-bit, and the bit precision in the
output layer is adjusted before quantization training. As shown in Figure 5.8, higher
precision in the output layer brings higher accuracy but longer latency. What stands out
in this figure is the case with 3-bit bit precision: its accuracy improves 1.49% while its
latency is only extended by 1 time step compared with the case with 2-bit precision.
Meanwhile, its latency is 2 times shorter than the case with 4-bit precision. With that in
mind, the presented results choose 2-bit in all hidden layers and 3-bit in the output layer
during quantization training to build high-accuracy, low-latency SNNs.
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Figure 5.8: The impact of the activation precision in the output layer during ANN
quantization on the performance of SNNs on ImageNet. The network architecture is
ResNet-50.

5.5.5 Ablation studies

The effect of the proposed methods are decomposed using an ablation study as shown in
Table 5.4. The default setting is the SNN converted from a 2-bit quantized ANN. After
applying the mechanisms of generating negative spikes and extending the simulation
time to let the newly generated spikes propagate, the accuracy reaches 67.29%. Using
max pooling in the network increases the SNN accuracy to 68.69% compared with
using average pooling. Another 1.49% accuracy improvement comes from using 3-bit
quantization in the output layer.

5.5.6 Results on VGG-16

Table 5.4: Ablation studies on ImageNet

Index Setting Accuracy
1 Default 0.01%
2 1 + Negative spike 10.64%
3 2 + Simulation time step extension 67.29%
4 3 + Max pooling 68.69%
5 4 + More bits in the output layer 70.18%
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The SNNs applying the VGG-16 network architecture achieved an accuracy of
92.62% in 4 time steps on CIFAR-10 and an accuracy of 69.69% in 8 time steps on
ImageNet. The results on the impact of bit precision, the bit precision in the hidden
layers, and the bit precision in the output layer are shown in Figure 5.9.

Figure 5.9: The impact of the bit precision in (a) all layers, (b) all hidden layers, and (c)
the output layer on SNN accuracy and latency. The output precision in (b) is floating-
point; the precision of hidden layers in (c) is 2 bits. The dataset is ImageNet and the
network architecture is VGG-16.

5.6 Comparison with other fast SNN approaches

This section summarizes and compares three methods to build a low-latency SNN.
Quant-ANN-to-SNN conversion: This method is based on the observation that

after ANN-to-SNN conversion, the ANN activation precision is represented as SNN
temporal precision. Therefore, a low-latency SNN can be achieved by converting a
low activation precision ANN. The fundamental challenges of this method are low-bit
quantization training in ANNs and noise suppression in SNNs. The first challenge can
be solved by applying advanced ANN quantization techniques. The second challenge,
currently, has not got an efficient solution. The current approaches either ignore the
occasional noise in SNNs so meet a huge accuracy drop [BFD+21], or adopt negative
spikes to correct the occasional noise so bring extra computational overhead.

Tandem learning [WXH+21] (SNN calibration [LDD+21]): This method reduces
SNN latency by minimizing the differences between ANN activation and SNN output
and regarding it as a optimization problem that can be solved by gradient descent.
The first step of tandem learning is adopting a pre-trained ANN which will not bring
extra overhead. However, the next step of tandem learning, layer-wise fine-tuning,
needs a large number of epochs, and the number of epochs is related to the network
depth. A loss function is defined during fine-tuning to model the difference between
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the activation value of analog neurons and the output spike counts of the corresponding
spiking neurons; a gradient descent algorithm is then applied layer-by-layer to optimize
this loss function.

Direct training by surrogate gradients: This method applies a technique in
recurrent neural networks called back propagation through time to SNNs, which enables
training SNNs directly by gradient descent. In direct training, a SNN is unfolded
at the time scale and a surrogate gradient is adopted to alleviate the non-linearity
problem of spike generating. In this way, the gradients can backpropagate in SNNs
and SNNs can be trainable. Direct training has been studied by many researcher, and
many new techniques has been proposed to boost the performance of direct training
[NMZ19, WDL+18, FYC+21a].

Quant-ANN-to-SNN conversion and Tandem learning are all based on ANN-to-SNN
conversion techniques. Both of these two methods reduce SNN latency by improving
the similarity of artificial neurons’ activation and spiking neuron’s output spike counts.
Specifically, Quant-ANN-to-SNN conversion improves the ANN-SNN similarity by
quantizing ANNs, while Tandem learning improves the ANN-SNN similarity by fine-
tuning SNNs.

Both tandem learning and direct training conduct training according to the simulation
results of a SNN. However, Tandem learning only records output spike counts, but
direct training requires recording more parameters during feedforward propagation and
backpropagation. Tandem learning trains SNNs layer-wise, while direct training does
not.

To further clarify the aforementioned three methods of reducing SNN latency. These
methods are compared in the aspect of resource budget during training, and performance
during inference.

Resource budget during training: The resource budget of Quant-ANN-to-SNN
conversion during training is very low, as it just needs a short ANN quantization training
(e.g. only 30 epochs) based on a full-precision ANN model. Tandem learning needs to
simulate an SNN layer-wise during training. When the network is deep, it will require
huge memory and computational resource. Direct training is the most computationally
expensive one among these three methods, it requires more fine-grained parameter
recording of an SNN (e.g. membrane potential and spike generating in each spiking
neurons and each time step) during training, and one extra temporal dimension to
consider during training.

Performance during inference: Currently, the highest accuracy and latency are
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achieved by Quant-ANN-to-SNN conversion. For example, it can achieve an accuracy of
72.1% in 4 time steps on ImageNet (with the compromise of adopting a less biologically
plausible spiking neuronal model). Direct training is capable of achieving a similar
latency but lower accuracy than Quant-ANN-to-SNN conversion. There are not reported
results to achieve similar latency and accuracy by tandem learning.

5.7 Further improvements

This research provides a novel method to achieve lossless ANN-to-SNN conversion
within several time steps. Furthermore, a framework to facilitate future improvements
in fast SNN research is built: The accuracy can be increased by improving the first step
in QFFS, which is quantizing the ANN activation as shown in Figure 5.2. The method
chosen for quantization training is LSQ. However, quantization training techniques are
developing rapidly, and there are other effective methods being proposed after LSQ.
This study suggest that the progress in ANN quantization techniques can promote
accuracy improvements in fast SNN research through the bridge built by the proposed
framework.

The four identified types of noise are the main cause of the degradation in accuracy
and the extension in latency. In this research, the noise suppression measures are
considered only after the ANN-to-SNN conversion. An alternative method is to suppress
noise before conducting the ANN-to-SNN conversion. For example, it may be helpful
if some constraints can be added during quantization training to make SNNs robust to
occasional noise. In this case, the noise could be suppressed more effectively, and the
latency of SNNs may be improved.

Furthermore, occasional noise is suppressed by modifying spiking neuronal models
(the third step in Figure 5.2). It is worthwhile to study how to use more biologically plau-
sible mechanisms to suppress occasional noise in the future, thereby further improving
the proposed QFFS.

5.8 Summary

By establishing a bridge from ANN quantization precision to SNN inference latency,
this study achieved state-of-the-art inference latency in SNNs. This demonstration
significantly improves the performance of rate-coded SNNs, and should facilitate future
SNN implementations on edge devices for ultra-fast, event-based computing. SNNs
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encoded by temporal coding may also benefit from this research as, in these encoding
schemes, the amount of information to be encoded is crucial as well.

This study offers a fresh perspective on how to generate more rapid progress on
SNNs: in the proposed quantization framework for fast SNNs, the first step is selecting
one effective technique (instead of developing an SNN algorithm from scratch). The
remaining three steps in QFFS are making the knowledge transmission from ANNs
to SNNs smoother. Considering the prosperity in current ANN research, it is highly
possible that this research concept will continue to work in the near future.



Chapter 6

Summary and future work

6.1 Summary

Central to this thesis is the optimization of rate-based spiking neural networks, and it is
related to three different but overlapped research fields: deep learning, neuromorphic
hardware, and computational neuroscience.

Chapter 5 investigates the quantization techniques in deep learning, and applies
them in SNNs to minimize latency. This chapter proposes a methodology for optimizing
low-latency SNNs, and suggests the necessity of knowledge transmission from deep
learning to SNNs. Chapter 3 investigates noise, an element that has been intensively
researched in neuroscience and analog neuromorphic hardware, in the context of algo-
rithm optimization in SNNs, which provides a useful metric to SNN algorithms. Also,
Chapter 3 demonstrates the deployment of an SNN algorithm to neuromorphic hardware
and the hardware-algorithm co-design for SNNs with noisy synapses. The main issue
addressed in Chapter 4 is retaining biological plausibility in the current SNN algorithms.
By maintaining the biological plausibility, it facilitates SNNs to get inspiration from
the observations in computational neuroscience. Chapter 2 is concerned with the basic
background in this thesis.

The SNNs researched in this thesis are trained by ANN-to-SNN conversion which
converts the current non-spiking neural network models to spiking neural networks.
ANN-to-SNN conversion has proven to be a highly-efficient method to rapidly build
a functional SNN, so various optimizations on SNNs can be applied and analyzed.
Though ANN-to-SNN conversion and rate coding are dominant methods in SNNs,
there are also other training methods and encoding strategies in SNNs as introduced
in Chapter 2. However, this thesis focuses on rate-coded SNNs which are trained by
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ANN-to-SNN conversion, since these two methods have enabled research on SNN
optimizations. The insights generated in the studies presented in this thesis can benefit
other methods. For instance, the concept of information compression analyzed in Quant-
ANN-to-SNN conversion can benefit temporal coding; also, the performance achieved in
ANN-to-SNN conversion and provide a baseline to SNNs trained by surrogate gradients.

6.2 Future work

Despite the promising results presented in this thesis, there are still some research
questions that could be asked.

Further research should be undertaken to further investigate the noisy synaptic
weights in SNNs. Firstly, the investigated neural network structures are shallow FCNs
and CNNs, and the benchmark used in this research is a basic computer vision bench-
mark MNIST. More experiments in deeper neural network architectures [SZ14] and
harder benchmarks [KH+09, RDS+15] are required. Secondly, in this study, only
the robustness of Gaussian noise is investigated in neural networks, and the standard
deviation of Gaussian noise is proportional to the value of the synaptic weights. In
practice, the random noise found in advanced materials may have different distributions.
Future work is required to establish systematic studies of different noise types. Also,
to conduct more systematic studies, a potential research direction is expanding results
to different spiking neuron models (e.g. leaky integrate-and-fire model) and different
encoding methods (e.g. temporal coding). Thirdly, the inference accuracy and the
inference latency are different for FCNs and CNNs for the same noise level. According
to the results in previous sections, the accuracy of CNNs drops faster than FCNs with
the increase of noise level for both ANNs and SNNs. Meanwhile, the inference latency
of SNNs grows faster in CNNs than in FCNs. These different performances show the
different tolerances to noisy weights in FCNs and CNNs and stem from their different
neural network architectures, which have not been thoroughly explored in this study.

In the research on the skyrmionic synapses, an application scenario is proposed to
detach training and inference for edge intelligence tasks. More detailed illustrations
on this topic are necessary. The research into SNN implementation on SpiNNaker
achieved state-of-the-art accuracy and conversion loss on MNIST on SpiNNaker. Fur-
ther improvements in resource management and latency optimizations will need to be
undertaken.

A new firing rate normalization strategy referred to as MCR-Norm is proposed in



124 CHAPTER 6. SUMMARY AND FUTURE WORK

Chapter 4 to balance performance and biological plausibility in SNNs. The firing rate
is normalized to 400 Hz according to the quantitative experiments. Future work is
required to allocate gradients on the firing rate range, by which SNNs can learn their
optimal spike rates during ANN-to-SNN conversion.

Chapter 5 provides a full picture of establishing a quantization framework for fast
SNNs. The detailed model applied in Quant-ANN-to-SNN conversion is a modified IF
model. It is worth exploring achieving state-of-the-art latency by the standard IF model
and rate coding.
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