
BIOLOGICALLY INSPIRED
NEURAL COMPUTATION

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Adam William Perrett

Department of Computer Science

Contents

Acronyms 16

Abstract 19

Declaration 21

Copyright 22

Acknowledgements 23

1 Introduction 24
1.1 Introduction . 24

1.2 Hypothesis - Research questions . 25

1.3 Contributions . 26

1.4 Publications . 26

1.5 Thesis structure . 27

1.5.1 Chapter 2 - Background . 28

1.5.2 Chapter 3 - Visual attention 28

1.5.3 Chapter 4 - E-prop on SpiNNaker 29

1.5.4 Chapter 5 - Error driven neurogenesis 29

1.5.5 Chapter 6 - Conclusions . 30

2 Background 31
2.1 Understanding biological intelligence 31

2.2 Learning how to learn . 35

2.3 The medium matters . 40

2.4 Summary . 45

2

3 Visual attention 46
3.1 Introduction . 46

3.2 Background . 47

3.3 Event-based SNN proto-object model of saliency 50

3.4 Experiments and Results . 56

3.5 Conclusion . 66

4 E-prop on SpiNNaker 70
4.1 Introduction . 70

4.2 Background . 71

4.3 Online and local learning . 73

4.3.1 E-prop . 74

4.3.2 SpiNNaker . 75

4.4 Implementation and experimental design 75

4.4.1 An overview of e-prop . 75

4.4.2 E-prop neuron models . 76

4.4.3 SNN architecture & mapping to SpiNNaker 79

4.4.4 Tasks . 81

4.5 Results . 85

4.5.1 Wave-form matching . 85

4.5.2 Temporal credit assignment 87

4.5.3 Firing rate (ir)regularisation 88

4.6 Discussion . 93

5 Error driven neurogenesis 96
5.1 Introduction and background . 96

5.2 Implementation and experimental design 100

5.2.1 Error Driven Neurogenesis algorithm design 100

5.2.2 Task specific alterations . 108

5.2.3 Related algorithms . 112

5.3 Results . 114

5.3.1 Visualising the expectation 120

5.3.2 Visualising the receptive fields 121

5.3.3 Inverted pendulum - reinforcement learning 122

5.3.4 Parametric analysis . 123

5.4 Discussion . 127

3

6 Conclusions 132
6.1 Summary and conclusions . 132
6.2 Future work . 136

A Appendix 158
A.1 Error Driven Neurogenesis appendix 158

Word Count: 33671

4

List of Tables

3.1 The percentage firing thresholds for different population connections,
input->filter is the only inhibitory connection. Percentage firing thresh-
old is the percentage of the pre-synaptic population that need to fire to
produce a spike in the post-synaptic population. Inhibitory connections
do not induce a spike but are scaled in the same fashion. This metric is
used to standardise weights across varying convolutional kernel sizes. 55

3.2 Qualitative comparison among the PyTevProto and the SNNevProto.
From the left column to the right column: the example number, a
RGB image representing the scene shown to iCub (the input stimu-
lus), PyTevProto saliency map and SNNevProto saliency map. This
table shows only results from clutter experiments of the SalMapIROS
dataset. The events are recorded directly from the event-driven cam-
eras mounted on iCub’s eyes. The objects and the 2D printed patterns
are placed on a desk in front of the robot. 58

3.3 Metrics summary. This table takes inspiration from [19] 59
3.4 Table showing the number of neurons and SpiNNaker boards required

given a percentage of overlapping (OL) for the VM filters. The spalloc
server was used to run these jobs which allocates boards in multiples
of 3. 59

3.5 Results of latency in milliseconds for different datasets of SalMapIROS.
The test is done measuring the latency of two different samples for
each dataset. Each row represents a dataset used to measure the latency
in two separate samples. Each dataset represents static and dynamic
objects placed in front of iCub (such as a paddle, a puck, calibration
circles, proto-object patterns, a mouse, a cup and clutter (see Fig. 3.4) 64

5

List of Figures

32figure.caption.10

2.2 A typical artificial neuron: real-valued inputs, xi, (including a bias)
are passed along weighted synapses, wi, and summed at the neuron.
The weighted sum is passed through some nonlinear activation, σ, to
produce the neuron output. 33

2.3 A typical artificial spiking neuron: inputs are discrete spikes, si, in
time (a binary value indicating a spike at time t or not), spikes pass
along weighted synapses, wi, and activation collects at the neuron. The
contribution of the weighted inputs is added to the neuron’s membrane
voltage (its internal state, vmem); the membrane voltage will decay with
time but if enough input is received and it crosses its threshold, vth, the
neuron will release a spike and vmem will be reset to the resting voltage
vrest ; following a spike there is a refractory period, tre f ract , in which
the neuron cannot spike again. 34

2.4 An example of a parameter being updated via gradient descent. The
gradient of the error with respect to a parameter is calculated at a point
and the parameter (red cross) is updated in the direction that the gradi-
ent (black dotted line) points towards reducing error. The parameter is
continuously updated this way, possibly even overshooting the optimal
value, until some termination criteria is met. 37

6

2.5 The middle plot shows an input data stream, this can be imagined as
a single photo sensitive element of a charge-coupled device (CCD).
The top plot shows an example of how a frame-based sensor would
collect information from the sensor; with regularity in time the current
value of the sensor is recorded. The bottom plot shows how an event-
based sensor records data; the current value is set following a thresh-
old crossing and when the value next moves a threshold distance away
from the stored value an event is triggered. An ON event (green) sig-
nifies the value is a threshold above the stored value and an OFF event
(red) signifies it went a threshold below the stored value. The red lines
connecting dots gives a rough example of how the signal could be re-
constructed from the stored values. Both frame-based and event-based
sensors recorded 10 data points yet the event-based sensor retains more
of the original signal, owing to its asynchronous sensing, and filters the
relatively quiescent parts. 41

2.6 A labelled SpiNNaker chip. Not shown is the DTCM (Data Tightly-
Coupled Memory) which is physically mounted on top of the cores and
router and stitch-bonded to it. 43

2.7 Each core is capable of simulating up to 1000 neurons, 18 cores com-
pose a SpiNNaker chip, 48 chips are on a single SpiNN5 board, 24
boards are in a rack with 5 racks per cabinet for a total of 10 cabinets.
In total this means the over 1 million core machine could in theory
simulate around 1 billion neurons. 44

7

3.1 An overview of the model architectures for the PyTevProto (on the left)
and the SNNevProto (on the right). The events are split based on the
polarity and fed into the two models as input. The event-based model
generates different scales by subsampling the "event-frame" and creat-
ing a pyramid. The resulting scaled "event-frames" are convolved with
VM (Von Mises) filters at 4 different orientations (Border Ownership
Pyramid) and grouped at the Grouping Layer which processes the in-
put with the two layers of Border Ownership and Grouping Pyramids.
The red lines are inhibitory signals. The spike-based implementation
processes the events asynchronously exploiting layers of VM shaped
neuron receptive fields at different scales and rotations. The Proto-
Object Neurons (Grouping Pyramid Layer) integrate the response con-
necting VM filters with opposite rotation and pool the response from
different scales. The outcome of both models is the saliency map. . . 51

3.2 Representation of the VM filter described in Eq. 3.1 at 0 ◦ 51

3.3 Representation of a VM layer and its connections. Each VM filter is
split into 4 sections all connected to the same Filter neuron. The blue
area around the "active" part of the neuron (the moon shaped yellow
region) is connected to the Filter neuron with an Inhibitory connection
(red lines). This stage of the model represents the Border Ownership
pyramids detecting closed contours. Two complementary VM filters
with opposite orientation are then connected to the same Proto-Object
Neuron (Grouping Pyramid) to identify possible proto-objects. This
structure is repeated for each layer with different orientations of the
filter: 0◦, 45◦, 90◦ and 135◦. 52

3.4 Qualitative comparison of the PyTevProto and the SNNevProto. From
the left column to the right column: the example number, an RGB im-
age representing the scene shown to iCub (the input stimulus), PyTevProto
saliency map and SNNevProto saliency map. These examples are a se-
lection from 13 scenarios of the SalMapIROS dataset. The events are
recorded directly from the event-driven cameras mounted on iCub’s
eyes. The objects and the 2D printed patterns are placed on a desk in
front of the robot. The RGB input images are only for a better visuali-
sation of the input stimulus. 57

8

3.5 Comparison with different metrics evaluating the similarity between
the SNNevProto saliency maps and the PyTevProto saliency maps [63]
using the SalMapIROS dataset exploring different OL percentages (a)
exploring a range of inhibition percentage firing thresholds (b) (%/µS
conductances) with fixed OL percentage at 60%. The metrics used are:
the Normalized Scanpath Saliency (NSS), Area under the ROC Curve
(AUC-Borji) & (AUC-Judd), Pearson’s Correlation Coefficient (CC)
and Similarity (SIM) [15, 16, 19, 65], Structural Similarity (SSIM) and
Mean Square Error (MSE). A higher score is better for all excluding
the MSE where the lower score determines similarity. 60

3.6 Representation of examples from the NUS3D (robot scenario) dataset.
The three columns represent the input RGB image, the outcome from
the SNNevProto and the related ground truth from the NUS3D dataset.
These examples show how the model performs when the observer fix-
ation maps focus on objects. The response from the model is with 60%
OL and 0.013 inhibition. 62

3.7 Representation of random chosen examples from the NUS3D (random
subset) dataset. The three columns represent the input RGB image, the
outcome from the SNNevProto and the related ground truth from the
NUS3D dataset. These examples show how the model performs when
the observer fixation maps are sparse and unclear. The response from
the model is with 60% OL and 0.013 inhibition. 62

3.8 Comparison with different metrics evaluating the similarity of the SNNevProto
saliency maps with the NUS3D fixation maps (ground truth) [76] in
two different subsets (robot scenario (a) and random subset (b)) for dif-
ferent OL percentages. The metrics used are: the Normalized Scanpath
Saliency (NSS), Area under the ROC Curve (AUC-Borji) & (AUC-
Judd), Pearson’s Correlation Coefficient (CC) and Similarity (SIM) [15,
16, 19, 65], Structural Similarity (SSIM) and Mean Square Error (MSE).
A higher score is better for all excluding the MSE where the lower
score determines similarity. 63

9

4.1 A diagram from the original e-prop paper published in Nature [11]. It
shows how the eligibility, et

ji, at time t is synapse specific, in this case
between neuron i and j. Inputs, xi, are passed into the network at each
timestep as well as the neuron specific learning signal, Lt

j, generated
by the error module which is a part of the task environment. 77

4.2 (a) Generic spiking neural network architecture suitable for training
with e-prop: input neurons provide network stimulation; hidden neu-
rons perform the computation; and readout neurons capture network
output. During training, the readout neuron population additionally
computes an error E via supervision, and communicates this to the
rest of the network to drive learning. (b) Populations of neurons are
partitioned and mapped on individual SpiNNaker cores, with synaptic
information stored local to the postsynaptic core. 80

4.3 Experimental setup of the temporal credit assignment task. The mouse
starts at the beginning of a hallway and is presented with left and right
cues as it progresses down. Each cue lasts 100ms with a 50ms gap
between each. There is a 1 second wait following the final cue before
a prompt signal is sent for the network to make a decision which of left
or right presented the most cues. 84

4.4 Wave-form matching task. Top: repeating staggered input spikes. Mid-
dle: initial performance before any learning and after one weight up-
date (indicated by dashed line). Bottom: Converged performance after
200 presentations of the inputs. 85

4.5 Error for each presentation of a target wave-form as seen in the ex-
periment of Fig. 4.4. Each presentation lasts 1024 timesteps with a
timestep size of 1ms, error is accumulated over the test to give the iter-
ation error. Performance rapidly improves with convergence at around
the 65th presentation. 86

10

4.6 Performance of e-prop on the left-right task. The black line shows
the running average accuracy over the last 64 tests with the required
threshold performance shown in the horizontal dashed green line. The
dashed red line displays performance for random action selection. The
vertical blue line displays the trial at which the network achieved over
90% accuracy over 64 tests and the number of cues is increased. The
first blue line shows completion of the 1 cue task and the last the 7 cue
task, network parameters are retained between transitions. 87

4.7 A comparison of firing rate estimation with a constant rate across 8
neurons (top plot) and 256 neurons (bottom plot) using exponential
decay (blue) and a running average (green). The average Poisson firing
rate is shown with the red line and the actual spike times for each
neuron are represented by the black dots in the bottom half of each plot. 90

4.8 A comparison of firing rate estimation with bursting behaviour across
8 neurons (top plot) and 256 neurons (bottom plot) using exponential
decay (blue) and a running average (green). The average Poisson firing
rate is shown with the red line. In this instance the 10Hz Poisson firing
of 2048ms is condensed into 12.85ms to give an extreme example of
bursting behaviour. 92

5.1 (a) the general structure of the EDN (Error Driven Neurogenesis) al-
gorithm. First an input is presented which produces an associated er-
ror. If the magnitude of the error is above the error threshold then
neurogenesis is triggered. Input synapses of the newborn neuron are
selected and the values of the current inputs set the centre of the kernel
function on the synapses. An output synapse connects the neuron to
outputs whose error was above threshold with a weight proportional to
the error produced. (b) an example topology created with EDN. The
different colours connected to the hidden neurons signify different sub-
sampled input vectors, which have been stored on the synapses; they
all contribute equally to neuron activity. The colour and thickness of
connections between the hidden layer and the outputs displays that
output connections are weighted and the magnitude can be negative
or positive. The weight of these connections is determined during the
training process by the error produced when neurogenesis is triggered. 102

11

5.2 A comparison of a standard ANN (Artificial Neural Network) neuron
with ReLU activation and an EDN neuron’s activation. The black dot
is a single data point, the pink shaded area shows the output activation
of the neuron in both cases, with a deeper colour representing a higher
level of activation. The red and blue shaded areas represent the level
of activation of each synapse, which possess the triangle kernel shown
in the bottom right, with spread s and centred at individual values of
v. The EDN neuron’s activity is the average of the incoming synapse
activity and is also passed along an outgoing synapse using a triangle
kernel with the same s value and v = 1. This output synapse acts to
threshold neuron activity and create the bounded purple area in the
input space in which the neuron is active. 105

5.3 A selection of training steps of EDN (top) and an ANN trained with
GD (Gradient Descent) (bottom) are shown for a toy classification ex-
ample. The data set is composed of three classes: blue, green and
red. Class boundaries are drawn in a darker shade than the data points
showing what output each model would associate to that point in space.
The white area around the EDN plots indicates that there are no output
values at that point in the input space. 107

5.4 A example of how output values of 0 and 1 are combined to create
a position on the regression scale. As described in Equation 5.8 the
output value for the real part of the scale (red) is divided by the total
of the real and inverted (blue) outputs to create the position on the
regression scale, in this case 26

26+14 = 0.65. This value is then scaled to
the full range of regression values possible in the task to produce the
estimated regression value of the input. 109

5.5 A comparison of testing accuracy during training on the wine cultivar
classification task of EDN (black) and an ANN trained via gradient de-
scent using Adam (Adaptive moment estimation) optimisation (blue).
An inset is shown for the first few iterations of training to display the
initial emptiness of the EDN network producing no output and the ini-
tialisation bias of the ANN network already achieving testing accuracy
equivalent to random choice. The fast acquisition of information in
EDN allows it to overtake the testing accuracy of GD before the first
batch update is done at the 8th training instance. 115

12

5.6 A comparison of an ANN trained via gradient descent using Adam
optimisation (red and blue, with lr being the learning rate and b being
the batch size) against EDN (black) applied to the auto-mpg non-linear
regression task task. A zoomed in inset is given to display the learning
curve of EDN. Batch sizes and learning rates were chosen which gave
the fastest convergence in gradient descent. 117

5.7 A comparison of an ANN trained in tensorflow using Adam optimisa-
tion (blue) against EDN with surprise driven input selection (black)
and random input selection (red) applied to the MNIST (Modified
NIST) classification task. A batch size of 64 is used to train the ANN
and the moving average of the last 50 batches is used to calculate the
running training accuracy. EDN training accuracy is the moving aver-
age of the last 3200 (50*64) training examples as it does not perform
batch updates. Training accuracy is used as since this is the first epoch
none of the data has been seen before and therefore it is equivalent to
testing accuracy. 119

5.8 A visualisation of the expectation for the class 3 retrieved from the
parameters stored by EDN during training on MNIST. A range of sur-
prise thresholds, sth, are given to show how this effects the stored val-
ues and the subsequent effect on testing accuracy after a single epoch
through the training set. 120

5.9 The values of v stored on each neuron’s incoming synapses form a
record of the inputs which were captured by EDN during training. The
weight on the synapse connecting the neurons to the outputs enables
the receptive field of each class to be determined by multiplying the
stored values by their neuron’s associated weights. When taking the
positively weighted neurons of each class and multiplying their stored
v values by their associated output weight you create the first row of
the plot, this forms a weighted expectation of each class. The sec-
ond row is generated by also including the negatively weighted neu-
rons connected to each output, showing the average receptive field of
each class. The bottom row is an unweighted combination of the input
synapses which are instances of each class. 121

13

5.10 EDN with varied network size limits benchmarked against an ANN
trained in tensorflow using an actor-critic model (black) applied to the
inverted pendulum task. The lines show the running average of the
last 100 trials with the dashed line showing the threshold performance
required for the task to be considered solved. Each configuration is
repeated 100 times and the average of their performance is shown. . . 123

5.11 Showing the effect of range of parameter values for kernel spread s

(top) and surprise threshold sth (bottom) on neuron and synapse count
after training on the wine classification task. The left y-axis and the
line in blue of each plot corresponds with neuron counts. The right
y-axis and the red line correspond with the synapse count. The vertical
bars show the standard error over a stratified 10 fold cross validation. . 125

6.1 On the left shows the EDN network output after training on a three
class problem. Dots are the training points with the dots with stars rep-
resenting the saved data points and the larger dots are the weighted av-
erage of each class. On the right a tanh neuron is created which draws
a hyperplane between all pairs of class centroids with their outputs
corresponding to the respective class on each side of the hyperplane.
When observing the outputs of the tanh neurons (the coloured back-
ground) it can be seen that a good class separation is acquired using
nonlinear neurons without any gradient descent. 138

A.1 How the testing accuracy during training changes with error threshold,
Eth . 159

A.2 How the neuron and synapse counts following two epochs changes
with error threshold, Eth . 159

A.3 How the running average (moving window over 100 examples) of ab-
solute testing error changes with error threshold, Eth 160

A.4 How the testing accuracy during training changes with kernel spread
size, s . 160

A.5 How the neuron and synapse counts following two epochs changes
with kernel spread size, s . 161

A.6 How the running average (moving window over 100 examples) of ab-
solute testing error changes with kernel spread size, s 161

14

A.7 How the testing accuracy during training changes with different ran-
dom sample sizes . 162

A.8 How the neuron and synapse counts following two epochs changes
with different random sample sizes 162

A.9 How the running average of absolute testing error changes with differ-
ent random sample sizes . 163

A.10 How the testing accuracy during training changes with surprise thresh-
old, sth . 163

A.11 How the neuron and synapse counts following two epochs changes
with surprise threshold, sth . 164

A.12 How the running average (moving window over 100 examples) of ab-
solute testing error changes with surprise threshold, sth 164

15

Acronyms

Adaptive moment estimation (Adam) Adam optimisation is a stochastic gradient de-
scent method that is based on adaptive estimation of first-order and second-order
moments. 12, 13, 29, 36, 114–119, 122

Adaptive-Leaky-Integrate-and-Fire (ALIF) A variant of the LIF neuron which has
its internal threshold increased following the emission of a spike, it will then
decay back to resting threshold. 74, 77, 83, 85, 87, 88, 134

Address Event Representation (AER) A way in which spike events in an SNN can
be represented as addresses for routing, where each address corresponds to the
source the spike came from. 43, 49

Artificial Neural Network (ANN) A typical computation structure used in machine
learning comprised of a network of linearly weighted real valued inputs fed into
a node with a nonlinear activation which produces a real valued number. 12, 14,
24, 25, 45, 69–74, 77, 96–98, 100, 101, 103–105, 112, 114–118, 122, 123, 128,
130, 132, 134, 136

Back-Propagation (BP) A method which employs the chain rule to calculate the gra-
dients of parameters with respect to an objective function for neural networks.
24, 45, 72, 75, 76, 97

Back-Propagation-Through-Time (BPTT) A variant of backpropagation which is
applied to recurrent neural networks. It involves storing previous state and then
rolling back the gradients and errors in time. 74, 137

Convolutional Neural Network (CNN) A neural architecture in which repeating fil-
ters with shared weights are tiled over an input, typically visual. 36, 47, 67, 71,
97, 132, 133

16

Data Tightly-Coupled Memory (DTCM) An ARM name for a scratchpad memory
holding program data. 7, 43

Error Driven Neurogenesis (EDN) An optimisation algorithm which uses neurogen-
esis and synaptic nonlinearities to immediately store information. 11–14, 28–30,
99–107, 109, 111–124, 128–130, 136, 138, 158

Evolutionary Algorithm (EA) An optimisation algorithm which uses processes akin
to natural Darwinian evolution to create solutions to problems. 71, 134, 137

Genetic Algorithm (GA) An evolutionary algorithm in which the gene defines the
agent. Agents are then evaluated, mutated and recombined to produce subse-
quent generations. 134

Gradient Descent (GD) An optimisation algorithm which calculates the gradient of
an error with respect to parameters to move towards a position in the solution
space with reduced error. 12, 24, 25, 30, 35, 36, 39, 71, 72, 75, 94, 97, 100, 107,
114, 116–118, 122, 128, 130, 132, 134, 135

Instruction Tightly-Coupled Memory (ITCM) An ARM name for a scratchpad mem-
ory holding instruction data. 43

Leaky-Integrate-and-Fire (LIF) A standard type of spiking neuron which integrates
inputs over time, with some leak, and when the input crosses a threshold a spike
is emitted. 72, 74, 78, 79, 134

Long Short Term Memory (LSTM) A neural architecture used in machine learning
to imbue networks with a form of memory capable of being trained with gradient
descent 36, 77, 98

Modified NIST (MNIST) A dataset of images containing handwritten digits 13, 29,
99, 117, 119, 120, 126–129

Overlap (OL) The measure of overlap between filters. It is relative to the filter size
and is measured as a percentage enabling it to be invariant to the filter size. 55,
56, 58, 63–65, 67

17

Radial Basis Function (RBF) A form of activation function used in RBF networks
which has activity relative to a position in space, often a Gaussian funcion is
used. 97, 113

Spiking Neural Network (SNN) A version of an ANN in which activity is commu-
nicated via discrete spikes rather than numbers. 27, 29, 33, 35, 36, 49, 53, 54,
61, 66, 67, 69, 71–74, 77, 80, 134, 135, 137

Synchronous Dynamic Random-Access Memory (SDRAM) Memory in computers
which has high density and performance. 43, 81

Von Mises (VM) A crescent shaped filter kernel designed to respond to curved edges.
8, 50, 51, 53–56, 58, 61, 66, 67

18

Abstract

BIOLOGICALLY INSPIRED

NEURAL COMPUTATION

Adam William Perrett
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

Models of intelligence can come in many forms, from concept driven approaches such
as formal mathematical reasoning to data driven approaches such as machine learning.
Current state of the art approaches fall into the second category, requiring vast amounts
of data to form statistical representations within the architecture of neural networks.
This is in stark contrast to biological brains whose neural networks can learn with
limited examples and training time. Biology originally inspired the neural network but
there is still much more to be learned from nature about how to construct and train
neural architectures.

By exploring techniques employed by biology it can be possible to overcome the
challenges of modern machine learning algorithms. Biological brains can be trained on
tasks sequentially without forgetting previously gathered information and data integra-
tion is performed online and in real-time, except for processing done during sleep. The
brain also only consumes 12W of energy, which is a far cry from the energy budget of
CPU and GPU implementations of neural networks.

The research described in this thesis first investigates the use of biologically in-
spired models of visual attention, on the SpiNNaker neuromorphic hardware, creating
an event-driven low latency model of visual saliency. Following this, biologically plau-
sible training algorithms are examined with the e-prop learning algorithm being instan-
tiated on SpiNNaker to explore the challenges faced when learning using only locally
available information. Finally, abstractions of dendritic nonlinearities are co-opted

19

for use in tandem with neurogenesis to create a learning architecture, which does not
rely on gradient descent whilst retaining previously learned information. It is shown
to reach similar levels of performance to a network trained using Adam optimisation
with less presentations of data samples on a number of benchmark tasks.

20

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

21

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

22

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

I would like to thank my parents for their continual support and encouragement, with-
out them I would not be here, quite literally. I would also like to thank Edward G. Jones
for his enticing and distracting conversations both related and not to work. Thanks as
well to Miguel Silva for his support and motivation throughout the PhD process and
also to Markos Kynigos for always being there to talk things through over a beer.

23

Chapter 1

Introduction

1.1 Introduction

From mathematical reasoning to function approximation

In essence artificial intelligence is an attempt to capture the most relevant properties
of the brain and apply them to a task. This began in earnest with the idea of for-
mal reasoning in which it was thought possible that the processes of human thought
could be mechanised and co-opted [12]. It was later with the advent of McCulloch and
Pitts’s neuron model and the mathematical foundation of neural networks that models
of intelligence began to more closely resemble the biological brain [88], and also lend
increased computational complexity to models. The universal function approximation
capability of neural networks enables them, in theory, to be used to model any com-
putable input-output mapping [25]. The growing processing power of computers has
again lifted the capabilities of models enabling large data sets to be processed and sum-
marised within a neural network. The machine learning community often sees gains in
two ways, algorithm improvement or increased computing resource.

Biology is the greatest muse

What this thesis will argue is that by modelling the biology of the brain we can lend
increased computational power to behavioural models. It was noted above that moving
from formal mathematical models of intelligence to more biological inspired models
lent increased computational complexity to a system. The understanding and abstrac-
tification of the biological neuron has enabled complex models of the world to be
created. However, the formulation of neural network models has since relied on math-
ematical methods such as BP (Back-Propagation) in conjunction with GD (Gradient
Descent) to imbue ANNs (Artificial Neural Networks) with a model of data. They

24

1.2. HYPOTHESIS - RESEARCH QUESTIONS 25

have proven themselves as useful tools in the creation of impressive computational
constructs, capable of besting humans at tasks thought to have too many possible
game state for appropriate calculation, such as chess and go. However, GD is not a
panacea and requires added tricks to be able to reach high-levels of performance, such
as dropout, which is is similar to the inherent stochasticity of biological neuron’s firing
in which, with some probability, a neuron will not emit a spike after receiving supra-
threshold input. An eye must always be kept towards biology for inspiration and clues
about how to further improve the complexity of models of intelligence. ANNs are
impressive but they are a far cry from the biological brain.

Evolution is the greatest architect

Evolutionary search has provided the impressive breadth and depth of the world’s bio-
logical diversity. It does not succumb to the bias humans do when designing intelligent
systems as it does not have specific agency; evolution is a random process in which
the probability of a gene persisting is relative to its benefit in its environment. This
has resulted in many complex organisms, which are well suited to its surroundings.
Arguably the most impressive adaptation is the ability to adapt during one’s lifetime
through learning. The organ in the seat of learning is the brain and it has proven it-
self an invaluable tool to a creature’s survival. Computational models often abstract
the brain to a collection of point neurons, which linearly sum inputs and then perform
some non-linear function on them. This is incredibly powerful and can approximate
any input-output mapping [25], although it misses many elements of the brain such as
dendritic trees, working memory, attention and one of the major unknown states hu-
mans spend a third of their life in, sleep. GD is attractive as it offers a way to guide
universal approximators towards reduced error but it then becomes restricted to the
predefined architecture and requires vast amounts of data to train. Gaze must move
towards the solutions stumbled upon by evolution to be able to inform future direc-
tions; biology has been discovering solutions for billions of years, it would be remiss
to not investigate it as a source of inspiration in any way possible. The question then
becomes, what techniques does biology use and what level of abstraction is necessary
to achieve similar performance?

1.2 Hypothesis - Research questions

This thesis looks towards biology for inspiration and explores applying those ideas to
the development of neural computation. The main areas approached in this work are:

26 CHAPTER 1. INTRODUCTION

• Can visual attention be modelled in a spiking neural network architecture on
neuromorphic hardware?

• What are the challenges involved in the application of spiking neural network
learning algorithms and their instantiation on the SpiNNaker neuromorphic hard-
ware?

• How can biologically inspired dendritic nonlinearities in conjunction with net-
work growth be used to develop learning architectures?

1.3 Contributions

The research questions presented above are broad and possess many potential answers.
Each chapter will roughly address each point respectively with the main work of this
thesis approaching those challenges with the following contributions:

• Providing and investigating a fully event-based model of a biologically inspired
attention model for SpiNNaker simulation running on the iCub humanoid robot,
surpassing the latency achieved with previously implemented GPU models

• Creating a SpiNNaker implementation of the e-prop learning algorithm for on-
line and real-time spiking neural network learning on neuromorphic hardware
using locally available information

• Developing and exploring the use of neurogenesis and synaptic non-linearities
for online and one-shot learning in neural networks

1.4 Publications

This thesis contains work which has been presented in the following publications:

Giulia Veronica D’Angelo, Adam Perrett, Massimiliano Iacono, Stephen Furber,
and Chiara Bartolozzi. 2022. Event driven bio-inspired attentive system for the
iCub humanoid robot on SpiNNaker. Neuromorphic Computing and Engineering
(April 2022). This journal article was a joint first authorship between myself and Giu-
lia D’Angelo. This work started from a workgroup collaboration at the Capo Caccia
workshop and was continued during a 3 month interruption to visit IIT in Genoa, Italy.

1.5. THESIS STRUCTURE 27

My main contribution was the conversion of the attention model into a spiking neural
network architecture for SpiNNaker as well as the testing and gathering of data. Giulia
performed the data analysis and comparison with other data sets (as well as integration
with the iCub robot, although this work was not completed and is therefore omitted).
This forms the core of Chapter 3.

Adam Perrett, Sara Summerton, Andrew Gait, and Oliver Rhodes. 2022. On-
line Learning in SNNs with E-Prop and Neuromorphic Hardware. In Neuro-
Inspired Computational Elements Conference (NICE 2022), Association for Com-
puting Machinery, Virtual Event, USA, 32–39. This conference paper was a first
authorship by myself with assistance and discussion from Sara Summerton and An-
drew Gait on the software and hardware integration of e-prop with SpiNNaker. Oliver
Rhodes was instrumental in the development of this work. He instigated the project
and helped develop the initial framework that the final e-prop implementation was
built upon. It was accepted for a long presentation at the NICE conference in Texas
(virtually presented). The experimental work in Chapter 4 comes from this paper.

Petrut, Antoniu Bogdan, Garibaldi Pineda García, Michael Hopkins, Edward
Jones, James Courtney Knight, and Adam Perrett. 2020. Learning in neural
networks. In SpiNNaker, Steve Furber and Petrut, Antoniu Bogdan (eds.). Now
Publishers Inc, United States, 209–265. A contribution was made to the SpiNNaker
book [46] regarding learning in neural networks, with a focus on neuro-evolution, and
their application to neuromorphic hardware. Some of this work is included in the
background section of Chapter 4.

Adam Perrett, Steve B. Furber and Oliver Rhodes. 2022. Error driven Synapse
Augmented Neurogenesis. Frontiers in AI, (2022). This journal article explores a
non-spiking implementation of synaptic non-linearities in conjunction with a network
growth algorithm [107]. It is entirely my own work with guidance and proof reading
from Oliver Rhodes and Steve Furber. It forms the work of Chapter 5.

1.5 Thesis structure

The thesis begins in Chapter 2 with an overview of how natural systems have devel-
oped forms of intelligence and how research attempts to capture properties of intelli-
gence. This will set the context for the rest of the thesis with Chapter 3 beginning the
discussion with an event-based implementation of an attention model. Learning algo-
rithms and their application to SNNs (Spiking Neural Networks) will be explored in

28 CHAPTER 1. INTRODUCTION

Chapter 4 with an implementation of the e-prop algorithm on SpiNNaker being inves-
tigated. Chapter 5 introduces the EDN (Error Driven Neurogenesis) algorithm which
makes use of neurogenesis and synaptic nonlinearities to drive learning in a one-shot
fashion without gradient calculation. Finally, Chapter 6 will summarise the work and
discuss potential future directions of research.

1.5.1 Chapter 2 - Background

To set the context of the wider thesis the background chapter will discuss machine
learning techniques from a biological perspective. The main literature review sur-
rounding the separate research contributions will come as a component of each subse-
quent chapter. First, the progress of artificial intelligence and the advances leading to
the development of modern neural networks will be introduced. Next, their qualities
and limitations will be touched upon with an eye towards future implementations with
more biological insight. This leads into neuromorphic hardware and more biologically
inspired technologies.

1.5.2 Chapter 3 - Visual attention

Chapter 3 explores the implementation of an event-based attention system. Attention
leads the gaze of the observer towards interesting items, allowing a detailed analysis
only for selected regions of a scene. A robot can take advantage of the perceptual
organisation of the features in the scene to guide its attention to better understand its
environment. Current bottom-up attention models work with standard RGB cameras
requiring a significant amount of time to detect the most salient item in a frame-based
fashion. Event-driven cameras are an innovative bio-inspired technology to asyn-
chronously detect contrast changes in the scene with a high temporal resolution and
low latency.

A new neuromorphic pipeline is proposed exploiting the asynchronous output of
the event-driven cameras to generate saliency maps of the scene in a more biologically
inspired way. In an attempt to further decrease the latency, the neuromorphic attention
model is implemented in a spiking neural network on SpiNNaker. SpiNNaker is a
dedicated neuromorphic platform whose architecture is closer to the biological brain
compared to traditional computers. The proposed implementation has been compared
with its bio-inspired GPU counterpart, and benchmarked against ground truth human
fixation maps. The system successfully detects items in the scene, producing saliency

1.5. THESIS STRUCTURE 29

maps comparable with the GPU implementation. The asynchronous pipeline achieves
an average latency of 16ms to produce a usable saliency map compared to∼170ms for
the GPU implementation.

1.5.3 Chapter 4 - E-prop on SpiNNaker

Chapter 4 discusses learning in spiking neural networks and explores their challenges.
A neuromorphic implementation of the biologically inspired alternative to the back-
propagation algorithm, e-prop, is explored. It offers a way to train SNNs online using
only locally available information.

Online learning in neural networks has the potential to transform AI research. By
enabling new information to be assimilated into existing systems, platforms can be
adaptive to unseen data and can personalise performance to an individual. A common
approach in providing AI to a user is to send queries to a remote cloud service which
processes the information and sends back a response. Neuromorphic hardware offers
an alternate solution by providing a dedicated computing platform from which neural
networks can be run locally and efficiently.

1.5.4 Chapter 5 - Error driven neurogenesis

Capturing the learning capabilities of the brain has the potential to revolutionise arti-
ficial intelligence. Humans display an impressive ability to acquire knowledge on the
fly and immediately store it in a usable format. Parametric models of learning, such as
gradient descent, focus on capturing the statistical properties of a data set. Information
is precipitated into a network through repeated updates of connection weights in the
direction gradients dictate will lead to less error.

Chapter 5 presents the EDN algorithm which explores how neurogenesis coupled
with non-linear synaptic activations enables a biologically inspired mechanism to im-
mediately store data in a one-shot, online fashion and readily apply it to a task without
the need for parameter updates. Regression (auto-mpg) test error was reduced more
than 135 times faster and converged to an error around 3 times smaller compared to
gradient descent using Adam (Adaptive moment estimation) optimisation. EDN also
reached the same level of performance in wine cultivar classification 25 times faster
than gradient descent and twice as fast when applied to MNIST (Modified NIST) and
the inverted pendulum (reinforcement learning).

30 CHAPTER 1. INTRODUCTION

1.5.5 Chapter 6 - Conclusions

Chapter 6 summaries the work and discusses future directions. Each chapter discusses
biologically inspired neural computation from different perspectives yet each would
likely gain the most benefit from integration with the others. The attention system in
Chapter 3 shows the potential for low latency saliency map generation, yet a learning
algorithm on top would enable applicability to a broader context than is covered by the
current architecture. The implementation of e-prop in Chapter 4 shows the potential
for neuromorphic implementations. This algorithm could benefit from a vision based
architecture, as is displayed in the attention model, or from stable learning without
catastrophic forgetting, as is displayed by EDN. The algorithm discussed in Chapter 5,
EDN, would definitely benefit from some fine tuning of parameters, as could be offered
by GD. Some form of network conversion or distillation of the trained model may also
allow continual learning and more generalised representations. This could be likened
to sleep mechanisms in which knowledge acquired during the day is processed and
stored in a long term format.

Biology has approached the problem of generating intelligence from multiple per-
spectives. The evolutionary process has determined the initial architecture learning is
performed on. The learning that is performed on the initial architecture is optimised to
gather particularly useful information, such as language in humans. Neurons contain
many computational elements, such as ion channels, neurotransmitters and dendritic
compartments, which create many complex interactions. Connections are made and
broken between neurons via structural plasticity whilst synaptic plasticity alters the
strength of connections. There are many interwoven elements that make up the biolog-
ical brain, the deeper the understanding of each part, the better the systems that can be
create. But it will not be one element in isolation, which creates high-level intelligence,
it will be an amalgamation of many into a cohesive whole.

Chapter 2

Background

2.1 Understanding biological intelligence

Thinking about the brain

One of the great mysteries of our time is understanding how the brain functions as a
whole. Holding an as yet unsurpassed capability to capture information, manipulate it
and apply it to a range of tasks, the human mind presents one of the great frontiers of
science. The Ancient Egyptians first thought the heart to be the seat of intelligence but
with developments through the ages we have come to understand with greater clarity
the role the brain plays in behaviour. Starting with Luigi Galvani’s discovery of the role
of electricity in nerves in the late 18th century, the importance of the brain in control-
ling bodily functions was becoming clear. Following the invention of the microscope
by Zacharias Janssen and the development of a staining procedure by Camillo Golgi,
Santiago Ramón y Cajal would go on discover the neuron as the fundamental unit of
the brain which would win him the Nobel Prize in 1908, see Figure 2.1 for a diagram
of a typical biological neuron as we know it today.

Alan Hodgkin and Andrew Huxley’s experiments on the giant squid axon provided
the first use of a mathematical model to represent neural systems [57]. They discovered
how ion-channels embedded into the cell membrane govern the progression of the
neuron membrane voltage throughout an action potential. Their work culminated with
the creation of the Hodgkin-Huxley conductance based circuit model which accurately
describes the excitation and inhibition of the cells [56], a model which remains to this
day one of the most biologically faithful models of neuron behaviour.

31

32 CHAPTER 2. BACKGROUND

Figure 2.1: A typical biological neuron: synapses at the end of dendrites receive chem-
ical or electrical input from other neurons which is sent towards the soma (cell body),
charge collects at the soma until a threshold is crossed at which a spike is emitted down
the axon, the myelin sheath is produced by the Schwann cells and acts to insulate the
axon improving transmission quality and speed and the nodes of Ranvier act as signal
boosters/repeaters along the axon improving transmission quality over distance. This
image by Dhp1080 is licensed under CC BY-SA and has been further annotated for
this work.

The known and unknown unknowns of neurons

As collective understanding of neurons, and the brain as a whole, progresses it is fur-
ther grasped that neurons, and brain areas, come in many forms and serve a diverse
range of purposes. It is only in recent years that we are beginning to appreciate the
role dendrites, the branching arms of neurons, play in brain dynamics. No longer as-
sumed to be passive cables for charge there is mounting evidence surrounding their
role in cognition and memory formation [47, 67, 136]. For every piece of information
we gain we realise another hole in our understanding. It is this inescapable chasm of
knowledge we must cross before we can harness the computational power of the brain
with enough clarity to ever seriously attempt creating human-level intelligence. Mathe-
matics is a language to define an understanding but it struggles to facilitate innovation
in domains such as artificial intelligence. It allowed the formalisation of neurons as
computational units but it took experimentation and investigation to first find out what
properties to be modelled. Biology has been guided by one of the greatest innovators
we know of, evolution.

Machine learning has taken to using a high level abstraction of biological neurons;
they are point neurons with linearly weighted inputs being summed and passed through

2.1. UNDERSTANDING BIOLOGICAL INTELLIGENCE 33

Figure 2.2: A typical artificial neuron: real-valued inputs, xi, (including a bias) are
passed along weighted synapses, wi, and summed at the neuron. The weighted sum is
passed through some nonlinear activation, σ, to produce the neuron output.

a nonlinear activation function to produce the output of a neuron (Figure 2.2). The spik-
ing nature of biological neurons is instead compressed into a rate-based model where
a real-valued number is the output of a neuron and represents an instantaneous firing
rate. This has proved very effective but the abstraction loses important subtleties, such
as the temporal element of spiking neurons and the nonlinearities of dendrites. SNNs
(Spiking Neural Networks) are a lower level abstraction and, therefore, more faithful
to the biological neurons, see Figure 2.3. Their membrane voltage, vmem, possesses
a time constant which imbues the spiking neuron with a temporal dynamic, as past
states can influence future states. Different data encoding schemes can also be used in
which the timing of spikes can communicate information, such as the relative timing
of rank-order coding [138] and precise-time coding which encodes information in the
arrival time of spikes [151].

A spiking neuron’s potential benefits over their non-spiking counterparts can be
summarised as follows:

• sparse activity (neuron spiking is often be zero, reducing communication)

• temporal element to processing (internal states integrate over time)

• energy efficiency (sparse and binary activity saves energy)

• information density (with non rate-based codes single spikes can be information
dense)

• event-driven (offers high temporal resolution and energy efficiency, discussed in
Section 2.3)

• low latency (event-driven input allows rapid processing)

34 CHAPTER 2. BACKGROUND

Figure 2.3: A typical artificial spiking neuron: inputs are discrete spikes, si, in time (a
binary value indicating a spike at time t or not), spikes pass along weighted synapses,
wi, and activation collects at the neuron. The contribution of the weighted inputs is
added to the neuron’s membrane voltage (its internal state, vmem); the membrane volt-
age will decay with time but if enough input is received and it crosses its threshold,
vth, the neuron will release a spike and vmem will be reset to the resting voltage vrest ;
following a spike there is a refractory period, tre f ract , in which the neuron cannot spike
again.

2.2. LEARNING HOW TO LEARN 35

These benefits are attractive for a number of applications, such as mobile devices with
limited battery size and self driving cars to reduce reaction time. However, the discon-
tinuity of the SNN neuron’s spiking activation proves a challenge to gradient descent
approaches because the derivative is not defined at time of spike and zero otherwise.
Modern approaches tend to use a derivative of the membrane potential rather than
spiking activity, this will be further discussed in Chapter 4.

2.2 Learning how to learn

Gradient descent ascends to greatness

At present, the main approach to imbuing a model with intelligence is via GD (Gradient
Descent), see Figure 2.4. This offers a mathematically grounded way to update the
parameters of a model in a fashion that reduces an objective error. This process of
neural network training begins first with defining a computational structure. Following
this, the derivatives of the model parameters with respect to the error are calculated
and the parameters are updated in the direction the gradient suggests will minimise the
error. However, there are a number of challenges with gradient descent techniques:

• catastrophic forgetting (learning can overwrite previously acquired information)

• requires differentiability (no derivatives, no gradients, no learning)

• only smooth transitions (alters parameters, not creation of new ones or architec-
tural changes)

• vanishing gradients (gradients effectively become zero halting learning)

• exploding gradients (gradients accumulate making weight updates large and caus-
ing unstable learning or numerical overflow)

• saddle points (points within the solution space without gradients)

• hyperparameter sensitivity (slight alterations to learning rate, batch size etc can
significantly effect learning)

• sensitive to initial conditions (the parameters the model begins with shapes the
converged representation)

36 CHAPTER 2. BACKGROUND

There are proposed solutions to these problems, such as batch learning to mitigate
catastrophic forgetting, gradient clipping to limit exploding gradients, skip connec-
tions to limit vanishing gradients and learning with momentum to avoid saddle points.
The Adam (Adaptive moment estimation) optimizer, used in Chapter 5, incorporates
previous gradient calculations to create a per parameter moment for future weight up-
dates that reduces the likelihood of being caught in saddle points and has been shown
to speed up learning [68]. However, the general learning structure remains the same
with a predefined architecture gradually acquiring information during training, which
is incorporated in the model parameters. With representative data this leads to a statis-
tical summary of the data within the model. This is a different paradigm to biological
brains, which process information in real time and explore their predictions actively
rather than passively. This is termed active sensing and describes how information is
acquired through action and is often controlled by attention mechanisms [123]. In real
time scenarios this could enable efficient data acquisition [97] and hypothesis testing,
as opposed to passive streams of information being captured in a statistical model, al-
though machine learning approaches would need to account for this bias in sampling
as the data could no longer be statistically representative.

As progress in the field of machine learning advances, the complexity of the train-
able architectures increases. We have transitioned from single layer networks to multi-
layer networks to CNNs (Convolutional Neural Networks) and recently to transform-
ers [33, 143], LSTMs (Long Short Term Memorys) have also been an important struc-
tural addition to neural networks with regards to temporal processing [52, 110, 121,
135]. Each transition highlights the importance of the topology of the model in con-
trolling the way in which information can be processed, and stored via learning, within
the network. GD offers a great way to update the parameters of a model as the structure
has already been defined. GD allows movement around a continuous solution space.
However, when training relies on the smooth updates of network parameters, this cre-
ates a bottleneck of potential updates. There is no way gradient descent could update a
feedforward network to create a CNN or a transformer as these are non-smooth archi-
tectural transitions. In theory a feedforward network could create the same mapping
as a CNN but it would rely on the data being representative enough that the mapping
is translation invariant. GD also struggles with an SNN neuron’s nonlinearity (as the
derivative is undefined around spiking because of its discontinuity), although there are
a number of proposed solutions to this. The difficulties in training SNNs will be further
expanded in Chapter 4.

2.2. LEARNING HOW TO LEARN 37

Figure 2.4: An example of a parameter being updated via gradient descent. The gra-
dient of the error with respect to a parameter is calculated at a point and the parameter
(red cross) is updated in the direction that the gradient (black dotted line) points to-
wards reducing error. The parameter is continuously updated this way, possibly even
overshooting the optimal value, until some termination criteria is met.

38 CHAPTER 2. BACKGROUND

Evolution is the old revolution

One potential solution to learning without smooth transitions is the application of evo-
lution to network generation. Evolution does not require a gradient to be able to iterate
and instead relies on a combination of network evaluation, combination and mutation.
Using similar principles as Darwinian evolution, that the fittest have a higher probabil-
ity of passing on their genes and random mutation is a driver of genetic change, evo-
lutionary algorithms can solve tasks without the need for gradient calculation. There
are incremental methods such as NEAT [130] in which the complexity of the agents
is increased with successive generations, although direct encoding methods like this
often suffer from an inability to scale. Indirect encoding methods, in which a single
gene can encode multiple agent parameters, such as hyperNEAT [131], enable larger
networks with complex structures to be formed. The genes allow multiple different
neuron types with a range of activation functions, such as linear, sigmoid, Gaussian
and sinusoidal, to be combined in a network. The network is then queried to determine
the connectivity of a secondary network enabling the creation of complex structured
connectivity. By developing networks in such a way, architectural design does not re-
quire expert knowledge because the learning algorithm is able to adapt. This could
create feedforward or convolutional networks as the task demands. However, gen-
erally evolutionary algorithms struggle when it comes to the fine tuning of network
parameters which is where gradient based methods excel. A combination of gradient
based techniques and evolution, often called learning-to-learn [139], which can have
evolution controlling the initialisation and hyperparameters of the inner-loop gradient
optimisation, has been shown to combine the strengths of both approaches and allow
generalised initialisation and improved fine-tuning of parameters [8, 14].

Online is off-brand

When creating intelligent systems and installing them in robotic scenarios there are a
number of challenges to be faced. The first challenge is the generation of the model.
Current popular development techniques require either the presentation of vast amounts
of data to the learning model, such as in gradient descent methods, or the evaluation of
many candidate models, such as evolutionary algorithms. The commonality between
these approaches is the need for offline network training. This puts a limit on robotic
applications as it requires the learned model to capture everything the robot could en-
counter in its environment. If there was to be some environmental change or damage to
a component there would have had to have been explicit training about such a scenario,

2.2. LEARNING HOW TO LEARN 39

as well as the ability to detect it, for the robot to be able to adapt its behaviour. Meth-
ods such as data augmentation [125] allow small examples to be extrapolated to many
training examples but often they are translational augmentations or an added variance
to data which cannot capture the full range of possible future situations.

Continuous models continually forget

A common problem with the application of continuous learning is that of catastrophic

forgetting [43]. Parametric learning models, such as GD, require that updates are
passed into existing network parameters. This allows the network to gradually move
towards a position in the solution space with an estimated reduction in error. However,
if care is not taken, this can cause previously learned information to be overwritten.
In standard training regimes batch updates or low learning rates are used to smooth
weight updates over multiple examples which are presented in a random order; this
gradually moves the parameters towards a position in the solution space which reduces
the error across a number of examples, ideally the whole data set. If you were to train
a classification model on each class sequentially then each subsequent class’s weight
updates will be put into the same parameters which stored the previous class’s up-
dates overwriting the previously learned information [69]. This is termed catastrophic

forgetting, which restricts neural networks to narrow intelligence as they cannot learn
tasks sequentially without sacrificing performance on previous tasks [152]. In a robotic
scenario this could prove fatal to operation. An agent trained to interact with an envi-
ronment could forget large amounts of its training if learning was not halted or con-
trolled in some way.

Biology has managed to tackle the problem of continuous learning. Instead of
memories being lost when new things are learnt, they follow very reliable forgetting
curves [36, 98]. Memories are formed and processed during the day to be later consoli-
dated during sleep [132]. It is processes like this of memory formation and subsequent
consolidation that is missed from current machine learning approaches. Generally, gra-
dient descent approaches skip the step of memory formation and jump straight to the
creation of a consolidated model. This works well for scenarios in which a large and
representative sample of the data has been collected for training but struggles in more
dynamic and complex environments, as would be found in real world robotics applica-
tions. This suggests a missing step between the maths and the biology. Mathematical
approaches want a predefined structure which rigorous operations can be applied to,
biological approaches aim for a continuously changing and adapting model with quick

40 CHAPTER 2. BACKGROUND

acquisition of experience. If we wish to iterate machine learning more towards human-
level intelligence then we need to investigate these biological primitives further.

Attention reduces what needs to be attended to

An important primitive that is missed from many machine learning models is that of
attention. It offers an agent the ability to reduce the dimensionality of the problem and
allows computational resource to be focused on the more salient parts of an environ-
ment [93, 97]. At a higher level it can also allow an agent to be attentive to different
goals depending on the situation, which is an executive form of attention. Being able
to better allocate processing power can mean increased processing of important infor-
mation and reduced energy expenditure on irrelevant information. In biology this is
important to reduce energy expenditure, which would mean increased need for food
consumption, and it is especially relevant in machine learning given the energy cost to
train models [105].

Current research has found great computational benefits in the use of transformers
which are a form of attention mechanisms. First they were applied to natural language
processing [143] but have also more recently shown advances in machine vision [33].
They dispense with recurrent connections and convolutions, which are typically used
to facilitate processing of related elements, and display state of the art performance
whilst also being shown to require significantly less time to train, which means energy
and time savings. Transformers are an important step towards instantiating forms of
attention in intelligent systems, although higher level executive attention is still yet to
be displayed.

2.3 The medium matters

Machine learning models are typically run on CPUs, GPUs or TPUs. Their focus is
generally on the calculation of matrix multiplications as neural network activations and
connections are often expressed as vectors and matrices. Their specialised hardware
allows many computations to be done per second but it is far from how a biological
brain behaves. There is significantly sparser connectivity in the human brain compared
to the all-to-all connections you find in typical machine learning architectures. The
spiking nature of biological neurons also means activity is sparse in time too. This
construction creates inefficiencies in matrix operations as they do not account for the
spatial and temporal sparsity. This leads to more calculations performed per operation
than is necessary as many elements are zero and therefore have no effect on the result.

2.3. THE MEDIUM MATTERS 41

Figure 2.5: The middle plot shows an input data stream, this can be imagined as a
single photo sensitive element of a charge-coupled device (CCD). The top plot shows
an example of how a frame-based sensor would collect information from the sensor;
with regularity in time the current value of the sensor is recorded. The bottom plot
shows how an event-based sensor records data; the current value is set following a
threshold crossing and when the value next moves a threshold distance away from
the stored value an event is triggered. An ON event (green) signifies the value is a
threshold above the stored value and an OFF event (red) signifies it went a threshold
below the stored value. The red lines connecting dots gives a rough example of how
the signal could be reconstructed from the stored values. Both frame-based and event-
based sensors recorded 10 data points yet the event-based sensor retains more of the
original signal, owing to its asynchronous sensing, and filters the relatively quiescent
parts.

42 CHAPTER 2. BACKGROUND

Sensing a change

There is increased attention given to event-based sensors. These are sensors which
represent their inputs as an asynchronous stream of discrete, typically ON and OFF,
events rather than the constant stream of data seen in traditional sensors, such as RGB
cameras. Figure 2.5 shows a comparative example of frame-based and event-based
sensors receiving an input stream. Although event-based sensors only store ON and
OFF events they can be interpolated to achieve a representative reconstruction of the
original signal. This is in part a result of the asynchronous sensor, which has a signif-
icantly lower latency than frame-based cameras enabling fast contrast changes to be
captured. Frame-based sensors save the continuous sensor reading for each frame but
the relatively high latency means quick fluctuations in the sensor are not captured. Dur-
ing periods when the sensor value does not change the frame-based sensor continues
to record values, which is less computationally efficient compared to the event-based
sensor, which would not produces events.

By also providing an input stream which is encoded as discrete spikes, as is done
with the event-based sensor, an entire data processing pipeline can be made which is
biologically inspired, where inputs encoded as events are passed through a sparsely
connected and active network to produce an output. The event-based nature of the
computation could reduce the number of timesteps which are needed for inference
leading to increased response time. A movement needs to be made from constant com-
putation to event-based computation where updates are only performed in the presence
of events. Sparse activity and connections could significantly reduce the cost of infer-
ence. This is of particular importance when you consider the energy budget of large
deep learning models [105]. The amount of computation used to train deep learning
models is doubling approximately every 3.4 months [5], if this trend continues the en-
ergy required to train these models will become staggering. The estimated energy to
train GPT-3 was 1287MWh [106], with the average domestic electricity consumption
per year of an English household at 4MWh [4]. This means the energy used to train
GPT-3 could have provided a year of electricity to around 320 English households.

Brain-like computers

Neuromorphic computers offer a solution to biologically plausible processing by struc-
turing their computational framework to better match biology. The word neuromorphic
means ‘brain like’ and neuromorphic systems aim to create computers that better match
the operation and power efficiency of the neuronal architectures, rather than treating
them as elements in matrices to perform operations on. There are a number of potential

2.3. THE MEDIUM MATTERS 43

Figure 2.6: A labelled SpiNNaker chip. Not shown is the DTCM (Data Tightly-
Coupled Memory) which is physically mounted on top of the cores and router and
stitch-bonded to it.

solutions from analogue chips which have passive electrical components whose com-
bined behaviour emulates neurons [22, 122], to digital chips with configurable cores
capable of simulating a range of learning rules and neuron types [28, 46].

The neuromorphic hardware used in this work is SpiNNaker [45], a highly par-
allel digital computing platform. A single chip has 18 interconnected ARM968 pro-
cessors with 64kBytes of DTCM for data memory and 32kBytes of ITCM (Instruc-
tion Tightly-Coupled Memory) for instruction memory locally at each core. There is
also 128MBytes of SDRAM (Synchronous Dynamic Random-Access Memory) shared
across all cores on a single chip, see Figure 2.6 for a chip schematic. Using a Globally
Asynchronous Locally Synchronous approach, each chip is connected to 6 neighbour-
ing chips. Following the AER (Address Event Representation), communication across
the SpiNNaker machine is in the form of small packets containing either 32 or 64 bits

44 CHAPTER 2. BACKGROUND

Figure 2.7: Each core is capable of simulating up to 1000 neurons, 18 cores compose
a SpiNNaker chip, 48 chips are on a single SpiNN5 board, 24 boards are in a rack with
5 racks per cabinet for a total of 10 cabinets. In total this means the over 1 million core
machine could in theory simulate around 1 billion neurons.

of data. Typically, the only information in a packet is the information about the source
location which is used for routing and eventually neuron updates. This is similar to the
biological brain in which spikes/events do not communicate information apart from
knowledge the source node emitted a spike/event which is then broadcast to all con-
nected nodes. 48 interconnected chips compose a SpiNNaker board which can also
be interconnected enabling many more cores to operate in parallel, as on the million
core SpiNNaker machine, see Figure 2.7 for a broken down version of the scale of the
million core machine. In theory this could simulate up to 1 billion neurons which is
equivalent to around 10 mouse brains or 1% of a human brain.

SpiNNaker presents an ideal platform for biologically plausible algorithms. Its
communication fabric possesses many of the same qualities as the biological brain,
namely: information is communicated through packets, data is mainly available lo-
cally and operation is in real-time. It is a digital and programmable computational
resource, which lends a high level of configurability to simulations. Its real-time oper-
ation also makes it ideal for robotics applications, though, when looking at the current
state-of-the-art machine learning approaches towards training, which involve many
thousands of presentations of inputs to a model, running at real-time can be seen as

2.4. SUMMARY 45

a disadvantage. It is for this reason that different paradigms of learning must be ex-
plored, the biological brain does not require the many thousands of presentations of
inputs to grasp certain concepts and only operates in real-time.

2.4 Summary

The brain is one of the most complex structures in the known universe and under-
standing it will likely be a never ending task. Humans have abstracted away important
elements of brain cognition, most notably neural networks, but there is still a large
chasm between the ANNs (Artificial Neural Networks) used in machine learning and
the biological neurons present in the brain, and likely an even larger difference be-
tween the algorithms used to train them. Geoffrey Hinton, one of the pioneers of BP
(Back-Propagation), is quoted as saying he is "deeply suspicious" of BP and "My view
is throw it all away and start again" [80]. It is the dependence on labelled data that
Hinton is justifying the need for abandoning BP for, something that is not required
for much learning in the brain. An eye must be kept towards biology and we must
be cautious of becoming over reliant on existing mathematical tools to develop neural
architectures.

The following chapters will explore a number of biologically inspired mechanisms
of neural processing. First, an entirely event based implementation of a visual attention
system on the SpiNNaker neuromorphic hardware will be presented. Following this
an implementation of the biologically plausible alternative to the BP algorithm, e-
prop, will be instantiated on SpiNNaker to explore its effectiveness and limitations
of learning online on neuromorphics with only locally available information. Next, a
model of dendritic nonlinearities will be integrated with a neurogenesis mechanism to
create a gradient free learning architecture in a biologically inspired way. Finally, the
work will be concluded and possible future work discussed.

Chapter 3

Visual attention

3.1 Introduction

Overt and covert

Attention covers a range a definitions which have different interpretations depending
on the context. One of the most fundamental ways to divide classes of attention mech-
anisms is into overt and covert. Overt is where focus is actively brought towards the
most salient stimuli, this could be foveating the eyes towards a position in the visual
field. This is of particular importance in biological contexts as the centre of the fovea
has the highest density of receptors and therefore higher resolution processing is done
on objects centred in the visual field. In robotic contexts this is less important as the
visual field generally has a uniform packing of photoreceptors. Covert attention is
where focus is brought toward a part of the visual field without the moving of the eyes,
such as with saliency map generation (to be discussed later). This is generally how
attention works in robotics and machine learning contexts as often the inputs are fixed
and it is selectivity to them that is modified rather than alterations to their resolution or
a movement of the visual field. Visual transformers [33, 143] always receive all inputs
and it is only the weighted vector representation of them that is is processed rather than
any down or up sampling that is taking place.

Attentive in and out

A key aspect of attention is to guide processing in an effort to better allocate com-
putational resource. This processes can be exogenous, produced outside, and driven
by low level stimuli, such as a bright object moving fast across your visual field; this
is sometimes referred to as bottom up attention. The alternative is endogenous, pro-
duced inside, and driven by high level features derived from goals and desires; this is

46

3.2. BACKGROUND 47

sometimes called top down attention. Both are important to survival, you want to be
able to react quickly to stimuli without it needing to be relevant to the current goal and
you want to be able to direct attention providing more computational resource towards
stimuli related to complex goals. There is also a higher level of attention which is re-
ferred to as executive attention, this is a mechanism which allows switching between
goals and moving focus between different tasks and subtasks.

All modalities of attention are important for efficient processing and action se-
lection. This chapter explores the application of biologically motivated concepts of
attention and their application to a robotic context. It falls into the category of covert
attention as the visual field is not moved during the experimentation; the processing
outputs a saliency map of the environment. It is driven by high level features, putting
it somewhere between exogenous and endogenous attention. Exploring how biologi-
cal primitives drive attention in the absence of learning mechanisms allows unbiased
inferences to be made about how features can drive attention. The design of future
learned attention architectures can then be influenced by the conclusions drawn, anal-
ogous to how CNNs (Convolutional Neural Networks) are influenced by the structures
in the visual system but their shared weights for learning are not biologically plausi-
ble [44, 60].

3.2 Background

Visual attention guides the perception of the environment [83]. It is a mechanism
that selects relevant parts of the scene to sequentially allocate the limited available
computational resources to smaller regions of the field of view. In the animal world,
this is coupled with eye movements, aimed to sequentially centre the selected region
within the highest resolution region of the retina [141]. The detailed analysis only of
salient regions of the visual field can dramatically reduce the computational load of
processing the full visual field at once. In a similar manner, a robot working in real-
time can exploit visual attention advantageously to optimise the use of computational
resources.

Machine attention

The motivation of this work is to develop an attention system, which can produce a re-
duction in computational loads for autonomous systems. Robots, such as the humanoid
robot iCub [89], would need to generate a fast and precise response autonomously to
interact with the environment when reacting to external stimuli. Recent studies in

48 CHAPTER 3. VISUAL ATTENTION

computer vision have exploited the concept of attention for different tasks: classify-
ing MNIST handwritten numbers only on regions of interest (ROIs) of the visual field
with the 1.07% error [93] (making the visual processing invariant to input dimension),
fixation prediction adding audio cues [90], visual search [91], and object recognition,
where it has been demonstrated that attentional selection (based on saliency) increases
the number of objects that can be identified in a visual scene [119].

Attention has attracted interest since the first psychological experiments where
Yarbus et al. [150] were recording the fixation points of subjects examining different
pictures. Since then, attention has been modelled in order to understand its under-
lying neural implementation, and to equip artificial agents with similar capability to
obtain a reasonable perception of the scene [64]. Biological attention is a complex
mechanism that results from the interplay of a bottom-up process that is driven by the
physical characteristic of the stimuli and top-down effects that depends on priors and
goals [149]. Diverse studies tried to model the bottom-up components of attention.
Some proposed the use of the saliency map formalism [37, 109, 140]. A saliency map
is the representation of visual saliency in a scene, where each item appears to be inter-
esting (salient) based on the observer’s visual exploration [70]. Specifically, selective
attention extracts features from the environment and explains the situation as fast as
possible filtering what is not necessary to understand the scene [86].

Model attention models

The widely used feature-based saliency model [64] extracts in parallel multiple dif-
ferent visual features and finds regions of high contrast within each feature channel.
Their contribution defines the saliency of each point in the field of view. The weight
of each feature map can be modulated to model the effect of top-down mechanisms
competing with each other for the representation of the scene. This model was then
augmented [144], by integrating principles of perceptual grouping of individual com-
ponents that reflect “Gestalt laws” as proximity, common fate, good continuity and
closure [72]. These principles give perceptual saliency to regions of the visual field
that can be perceived as "proto-objects" [71, 134].

A proto-object describes regions of the visual field that may correspond to real
objects in the physical world, referring to the human ability to organise part of the
retina stimuli into structures [102]. The work of Russell et al. [118] improved [144]
by creating a filter capable of detecting partial contours. Recent studies added other
sources of information to the proto-object model such as motion [94], depth [58] and
texture [142]. Further, a new line of research has started to develop these types of

3.2. BACKGROUND 49

models using event-driven cameras as input. In these cameras, the contrast change
in the scene is output asynchronously, with high temporal resolution, low latency, and
most importantly, a reduced data rate. For a real-time application in a robotics scenario,
this leads to a faster response given the low processing required [49, 112].

An event for the senses

Adams et. al. [3] exploited the AER (Address Event Representation) and the neuromor-
phic platform SpiNNaker to allow the humanoid robot iCub [89] to perform real-world
tasks fixating attention upon a selected stimulus. Rea et. al. [111] exploited visual at-
tention for a bio-inspired pipeline using event-driven cameras (ATIS cameras) [108]
mounted on iCub, the neuromorphic robot [7]. This implementation [111] exploits the
low latency of the event-based cameras, further increasing the speed of the response
towards online attention, but does not include the proto-object concept, that was later
included by modifying a frame-based proto-object model [118] in a way that is suitable
for event-based cameras [63].

The implementation proposed by Iacono et al. [63] adapts the proto-object model
based on RGB cameras to event-driven input, using the contrast feature maps naturally
encoded by event-driven cameras. However that work did not fully exploit the ad-
vantages given by the event-based sensor. In fact events were accumulated over time
generating frames that were then processed using a GPU. In an attempt to decrease
latency and computational cost the model proposed in [63] was implemented on the
SpiNNaker neuromorphic computing platform [46] that is able to properly exploit the
asynchronous output of the event-based cameras. SpiNNaker is a dedicated neuromor-
phic computational device which provides a digital platform to model SNNs (Spiking
Neural Networks) at large scale in real time. Using an asynchronous and highly paral-
lel architecture, large numbers of small data packets can be processed, which in most
applications represent spikes being sent between biological neurons. This provides an
ideal computational tool for event based processing.

The neuromorphic platform supports asynchronous spiking models that propagate
events from the sensors in the network. Such models yield minimum processing la-
tency, most of which depends on the propagation across layers and on the accumula-
tion of sufficient information [20]. The contribution of this work is the validation of
the model implemented in a biologically plausible way on SpiNNaker (SNNevProto)
through a direct comparison with the event-driven proto-object (PyTevProto) (i.e. its
counterpart implemented on GPU using PyTorch). The two models are compared us-
ing the data set from [63] (SalMapIROS) and are both benchmarked against human

50 CHAPTER 3. VISUAL ATTENTION

fixation maps [76]. Analysis of the trade off between accuracy, number of neurons,
computational cost and latency is performed.

3.3 Event-based SNN proto-object model of saliency

The model before the event

This work takes inspiration from the bio-inspired saliency-based proto-object model
for frame-based cameras initially proposed by Russell et al. [118] and its event-camera
adaptation [63]. The former is composed of three channels: intensity, colour oppo-
nency and orientation, competing with each other to represent the scene. Its core is
composed of four layers: Center Surround Pyramids (CSP), Edge Pyramids, Border
Ownership and the Grouping Pyramid (see Figure 3.1). The term pyramid indicates
that it exists at multiple spatial scales.

The CSP layer convolves the input image with a difference of Gaussians kernel
to detect regions in the scene with either positive or negative contrast, emulating the
Center Surround (or Bipolar) cells present in the retina [18, 61]. The difference of
Gaussians kernel has a strong weight in the middle and a weaker inverse sign weight
surrounding it to respond to points of high contrast. In parallel, the system convolves
the RGB image with Gabor filters, emulating the edge extraction done by the Primary
Visual Cortex [74], creating the Edge Pyramids. The Border Ownership and Grouping
Pyramid implement the ‘Gestalt laws’ of continuity and figure-ground segmentation,
mimicking the neurons in the Secondary Visual Cortex area, which are mostly selective
to edges [155]. This groups previous inputs to create a response to contours, the Border
Ownership layer, and then closed contours, the Grouping layer. All the computation
steps are performed at several scales to obtain object size invariance/tolerance.

In the Border Ownership layer the output of the CSP is convolved with curved
VM filters (see Figure 3.2). The convolution with four different orientations of the
filter detects partial contours of objects. All filters in the same location are connected
via inhibitory connections to each other creating local competition for the dominant
orientation. The output is then pooled by the Grouping Pyramid which combines op-
positely rotated contours oriented to the same centre forming a partially closed contour.
Closed contour activity is captured by the proto-object neurons whose combined ac-
tivity creates the saliency map. In [63] this model was adapted to run using the output
of event-driven cameras. Here it is taken a step further, implementing the model with
spiking neurons on neuromorphic hardware.

3.3. EVENT-BASED SNN PROTO-OBJECT MODEL OF SALIENCY 51

Figure 3.1: An overview of the model architectures for the PyTevProto (on the left) and
the SNNevProto (on the right). The events are split based on the polarity and fed into
the two models as input. The event-based model generates different scales by subsam-
pling the "event-frame" and creating a pyramid. The resulting scaled "event-frames"
are convolved with VM (Von Mises) filters at 4 different orientations (Border Owner-
ship Pyramid) and grouped at the Grouping Layer which processes the input with the
two layers of Border Ownership and Grouping Pyramids. The red lines are inhibitory
signals. The spike-based implementation processes the events asynchronously exploit-
ing layers of VM shaped neuron receptive fields at different scales and rotations. The
Proto-Object Neurons (Grouping Pyramid Layer) integrate the response connecting
VM filters with opposite rotation and pool the response from different scales. The
outcome of both models is the saliency map.

Figure 3.2: Representation of the VM filter described in Eq. 3.1 at 0 ◦

52 CHAPTER 3. VISUAL ATTENTION

Figure 3.3: Representation of a VM layer and its connections. Each VM filter is split
into 4 sections all connected to the same Filter neuron. The blue area around the
"active" part of the neuron (the moon shaped yellow region) is connected to the Filter
neuron with an Inhibitory connection (red lines). This stage of the model represents
the Border Ownership pyramids detecting closed contours. Two complementary VM
filters with opposite orientation are then connected to the same Proto-Object Neuron
(Grouping Pyramid) to identify possible proto-objects. This structure is repeated for
each layer with different orientations of the filter: 0◦, 45◦, 90◦ and 135◦.

The event that changed it all

Event-driven cameras’ pixels asynchronously produce an event every time a local il-
lumination change occurs larger than a set threshold, providing the information of
positive or negative change in contrast. As such, they perform an inherent operation
of edge extraction that can functionally be equivalent to the edge extraction performed
by center-surround (CS) cells in the frame-based model. Similar contrast change in-
formation is provided by the CS cells [124]. The event-driven camera does not obtain
the local contrast change due to lateral inhibition as in the CS cells, but rather due to
the relative motion between the camera and the scene. The two processes are different
but the related outcome, the edge extraction and the contrast information, are similar.

PyTorch lights the way to the event

The inherent capabilities of event-based cameras can be used as substitutes for the first
two layers of processing in the event-based version of the saliency-based model [63]:

3.3. EVENT-BASED SNN PROTO-OBJECT MODEL OF SALIENCY 53

center-surround filtering and edge extraction. Assuming a dynamic scene where a dark
object is moving over a white background the leading edge would produce negative
events and the trailing edge positive events, therefore providing information about the
object contrast with respect to the background.

In the PyTevProto model implementation running on a GPU, the output from the
event-based cameras is used to create frames of events divided into positive and nega-
tive polarity. The frames of events are fed into the Border Ownership layer following
the process explained above. The pipeline following the event-based camera is not
spike-based and contains no inhibitory connections, as implemented in the following
SNN model.

Event-based through and through

This work proposes a new fully spike based pipeline, with dedicated neuromorphic
hardware, to improve the speed and reduce the latency of the model, dubbed SNNevProto.
Code is available at https://github.com/adamgoodtime/SpiNNiCub. The SpiNNaker
neuromorphic platform [46] acts as a computation medium modelling the SNN in a
feedforward architecture (see Figure 3.1). The SpiNNaker IF_curr_exp neural model
mimics the cells as populations of current-based leaky integrate and fire neurons, the
default PyNN parameters are used [29]. These neurons process the data coming from
the ATIS cameras in the form of events carrying the information of the position in the
visual field, polarity (positive or negative contrast change, although they are treated
uniformly by the model) and the timestamp of the event.

A full pipeline of SNNevProto can be seen in Figure 3.3. Events are passes into
the convolved VM filter segments, on SpiNNaker this is created using the KernelCon-
nector to speed up loading onto the machine. All delays throughout the model are
set to 1ms, the timestep of the SpiNNaker simulation. The output of these neurons
is combined to create the overall VM filter activity and passed into the filter neuron.
The area surrounding the VM is also connected with inhibitory connections to the filter
neuron to increase the selectivity of the kernel, in contrast to PyTevProto which did not
possess these connections. Complementary filters are then grouped and their activity
is passed into the proto-object neuron whose firing creates the saliency map output by
the model.

The VM filter, shown in Figure 3.2, is a kernel designed to respond to curved edges
that can potentially delimit a closed area. They are formalised as a curve (Equation 3.1)
with the largest value at its midpoint providing the ideal shape to respond to closed
contours:

https://github.com/adamgoodtime/SpiNNiCub

54 CHAPTER 3. VISUAL ATTENTION

V Mθ(x,y) =
exp(ρ ·R0 · cos(arctan2(−y,x)−θ)

I0(
√

x2 + y2−R0)
(3.1)

Where x and y are the kernel coordinates with origin in the centre of the filter, R0

is the radius of the filter, ρ determines the arc length of active pixels in the kernel
allowing the convexity of the kernel to change, θ its orientation and I0 is the modified
Bessel Function of the first kind [6]. The VM output is then thresholded to reduce
sensitivity to localised activity:

e(x,y) =

1 for V Mθ(x,y)> 0.75

−1 else
(3.2)

Where e(x,y) describes whether the pixel at (x, y) is connected to the filter neuron with
excitatory synapses (e(x,y) = 1) or inhibitory synapses (e(x,y) =−1) (see Figure 3.3).
Connection weights, w, are determined using Equation 3.3 where n is the size of the
pre-synaptic population and p is the percentage firing threshold for that particular pro-
jection between populations. A value of 5µS is chosen as it is the minimum weight
at which one excitatory input spike produces a spike in the post-synaptic neuron in
this implementation of conductance based neurons. As varied kernel sizes are used
in the different pyramids, this provides a way to scale weights in a way invariant to
filter size and instead a percentage of the population that must fire to produce the same
downstream effect. Inhibitory connections are scaled using the same method, but do
not produce a post-synaptic spike. Values of the percentage firing thresholds of con-
nection weights can be found in Table 3.1. The filters are used as convolutional kernels
which are tiled over the whole image.

w =
5
pn

(3.3)

A spiking model

This implementation of the model is an SNN where the first layer is covered with VM
filters spaced with strides relative to their size. Consequently, each VM filter has its
own receptive field onto the input layer. Therefore each incoming event triggers a
specific pixel belonging to one filter. Each VM filter is composed of four rotationally
distributed segments. As the inputs are discrete spikes generated by an event-based
camera it is possible for noise and other artefacts to produce a high number of events

3.3. EVENT-BASED SNN PROTO-OBJECT MODEL OF SALIENCY 55

input->segment segment->filter input->filter filter->proto-object

0.02% 0.8% 0.0013% 0.75%

Table 3.1: The percentage firing thresholds for different population connections,
input->filter is the only inhibitory connection. Percentage firing threshold is the per-
centage of the pre-synaptic population that need to fire to produce a spike in the post-
synaptic population. Inhibitory connections do not induce a spike but are scaled in the
same fashion. This metric is used to standardise weights across varying convolutional
kernel sizes.

in a small area unrelated to the visual scene. Splitting the VM filter into four sec-
tions helps to reduce the sensitivity to localised activity, aiding the filter to respond
more selectively to input spikes arranged in the shape of the VM. As the strides of the
convolutional kernels are relatively large, appropriate control of VM filter activity is
important to reduce undesired spikes and, therefore, inaccurate saliency map genera-
tion.

Each filter segment is connected to a neuron representing the entire VM filter. The
refractory periods of the segment neurons and input weights to the filter neuron are
balanced to require all segments to fire within a narrow temporal window to produce
a spike. In addition, all spikes within the filter region that are not part of the VM
kernel will have an inhibitory contribution to the combined filter neuron, effectively
increasing the selectivity to the VM shape (see Figure 3.2).

The grouping cells, called proto-object neurons, pool the output of VM comple-
mentary cells that form a closed contour representing proto-objects (see Figure 3.3).
The output of the convolution, and the subsequent output of the proto-objects which
form the saliency map, are all represented as spikes emitted by a neuron. The filters ex-
ist in 4 rotation pairs with their complementary filters rotated 180◦, evenly distributed
from 0-135◦, and in 5 spatial scales (104, 73, 51, 36, 25 pixels2).

Over each layer the VM filters are placed overlapped with each other. Overlap
is related to stride used in the convolutional layers of neural networks. Instead of
measuring how much the filter has shifted relative to the previous filter it measures
how much it is overlapping with the previous filter, which makes it filter size invariant.
The overlap among the VM filters is important to define the robustness of the model. In
biology, cell receptive fields are often overlapped for robustness, ensuring a response
even if a cell no longer functions [40, 128]. Over time, overlapping cells have been
used as a way to avoid the aliasing problem in bio-inspired models [21].

The OL (Overlap) percentage increases resolution and accuracy and it is directly

56 CHAPTER 3. VISUAL ATTENTION

linked to the number of neurons required in the implementation and, hence, its power
and computational cost (see Table 3.4). It was therefore decided to use the OL as
a parameter of the model to be explored. A percentage is used to ensure a uniform
overlap at multiple spatial scales.

Each VM filter is connected with its mirrored counterpart (VM in Figure 3.3) of
the opposite side creating a sub-population. All projections between sub-populations
share a common weight as described in Equation 3.3. This approach is analogous to
tuning the percentage of the pre-synaptic neurons that must fire to produce a spike in
the post-synaptic neuron of the next layer. A list of percentage firing thresholds for
population projects can be found in Table 3.1. This stage of the SNNevProto mimics
the Border Ownership Pyramid in [118].

A similar process to the Border Ownership in [118] pools the activity of mirrored
VM filter orientations into a single neuron. The combined filter neuron has maximal
activation at the presentation of a closed surface of the same size as the convolution
filter size. Following the Gestalt principles [72] this represents detection of a proto-
object.

The proto-object spikes are added to a combined saliency map with their energy
spread over the surrounding pixels using a 2D Gaussian distribution with standard
deviation a third of the filter size in pixels. Therefore, a pooling stage mimicking
the Grouping Pyramid is computed making the response size invariant. Values from
all scales and the four pairs of rotations are pooled together to produce a combined
saliency map.

3.4 Experiments and Results

The SNNevProto, the SpiNNaker implementation of the proto-object attention model,
was validated by comparing its performance with PyTevProto, the PyTorch GPU im-
plementation [63]. The system is further benchmarked using the Human 2D fixation
maps of the NUS-3D dataset [76], obtained recording the eye movements of 14 sub-
jects observing the images of the dataset and averaging their scan paths to create a
combined saliency map.

The characterisation compares the responses from the two models qualitatively,
showing the strength and the weaknesses of each system. Next, quantitatively, the
response was compared between the SNNevProto and the PyTevProto using the latter
model as the baseline. The best set of parameters were searched for, exploring different

3.4. EXPERIMENTS AND RESULTS 57

Example # Input stimulus PyTevProto SalMap SNNevProto SalMap

1

2

3

4

Figure 3.4: Qualitative comparison of the PyTevProto and the SNNevProto. From the
left column to the right column: the example number, an RGB image representing the
scene shown to iCub (the input stimulus), PyTevProto saliency map and SNNevProto
saliency map. These examples are a selection from 13 scenarios of the SalMapIROS
dataset. The events are recorded directly from the event-driven cameras mounted on
iCub’s eyes. The objects and the 2D printed patterns are placed on a desk in front of the
robot. The RGB input images are only for a better visualisation of the input stimulus.

58 CHAPTER 3. VISUAL ATTENTION

Example # Input stimulus PyTevProto SalMap SNNevProto SalMap

1

2

Table 3.2: Qualitative comparison among the PyTevProto and the SNNevProto. From
the left column to the right column: the example number, a RGB image represent-
ing the scene shown to iCub (the input stimulus), PyTevProto saliency map and
SNNevProto saliency map. This table shows only results from clutter experiments
of the SalMapIROS dataset. The events are recorded directly from the event-driven
cameras mounted on iCub’s eyes. The objects and the 2D printed patterns are placed
on a desk in front of the robot.

OL percentages of the VM filters on each layer and the best inhibition value. Increas-
ing the overlap is equivalent increasing the resolution of the model and, therefore,
exploring this parameter determines how important resolution is to the final output.
Increasing inhibition increases how selective each filter is to the specific VM shape.

The experiments

To characterise the response, this analysis exploits the SalMapIROS dataset which
contains patterns and robotic scenarios with objects and clutter in the scene. The
SalMapIROS dataset is obtained recording the events coming from the event-driven
cameras mounted on iCub looking at different scenes with real objects or 2D printed
patterns. The robot performs small circular periodic stereotyped ocular movements to
generate stimulus-dependent activity from event-driven cameras for static scenes.

To estimate the selectivity to a range of sizes a pattern representing circles of dif-
ferent dimensions was used (see Figure 3.4, third row). The other two patterns in
Figure 3.4 (first and second row) describe the definition of non proto-object and proto-
object exploiting the design used by [118]. The proto-object is represented by the four
corners facing each other forming closed contours reminiscent of a square shape. The
remaining pictures see objects of different sizes over a desk (fourth row) to study the

3.4. EXPERIMENTS AND RESULTS 59

Metrics

Normalized Scanpath Saliency (NSS)
CC approximation, good for saliency
evaluation.

Area under ROC Curve (AUC)
Invariant to monotonic transformations,
driven by high-valued predictions.
Good for detection applications.

Pearson’s Correlation Coefficient
(CC)

Linear correlation between the predic-
tion and human fixation distributions.
Treats false positives and false negatives
symmetrically.

Similarity (SIM)
Similarity computation between his-
tograms, more sensitive to false nega-
tives than false positives.

Structural Similarity (SSIM)
Similarity among images, highly sensi-
tive to structural changes.

Mean Square Error (MSE)
Similarity among images, global com-
parison.

Table 3.3: Metrics summary. This table takes inspiration from [19]

OL% # of neurons # of SpiNNaker boards
10% 10428 3
20% 12000 3
30% 15801 3
40% 22266 3
50% 30306 6
60% 48878 6
70% 82084 12
80% 176248 24

Table 3.4: Table showing the number of neurons and SpiNNaker boards required given
a percentage of overlapping (OL) for the VM filters. The spalloc server was used to
run these jobs which allocates boards in multiples of 3.

60 CHAPTER 3. VISUAL ATTENTION

(a)

(b)

Figure 3.5: Comparison with different metrics evaluating the similarity between
the SNNevProto saliency maps and the PyTevProto saliency maps [63] using the
SalMapIROS dataset exploring different OL percentages (a) exploring a range of inhi-
bition percentage firing thresholds (b) (%/µS conductances) with fixed OL percentage
at 60%. The metrics used are: the Normalized Scanpath Saliency (NSS), Area under
the ROC Curve (AUC-Borji) & (AUC-Judd), Pearson’s Correlation Coefficient (CC)
and Similarity (SIM) [15, 16, 19, 65], Structural Similarity (SSIM) and Mean Square
Error (MSE). A higher score is better for all excluding the MSE where the lower score
determines similarity.

3.4. EXPERIMENTS AND RESULTS 61

applicability of the system in a scenario where the robot is interacting with items in the
scene. Table 3.2 shows two cases of simple clutter represented by a pattern and a bag
of nails alongside with an object (a puck).

Qualitative response

Figure 3.4 and Table 3.2 qualitatively show the saliency map from the two models on
some samples of the SalMapIROS dataset. Overall, the response from the models is
coherent and both implementations detect the objects in the scene. In Figure 3.4 the
response from the SNNevProto is more sparse and localised over the targets which is
helpful if a robot needs to locate and reach the object. The PyTevProto does not cor-
rectly get rid of the clutter in Figure 3.2 (first row) but does in Figure 3.2 (second row).
The SNNevProto instead successfully discards clutter in both cases. This result shows
robustness to clutter of the SNN model. This behaviour was achieved by tuning the
level of inhibition, which PyTevProto does not possess as it does not contain inhibitory
connections. By balancing inhibition appropriately the filter can be made selective to
the VM kernel shape without silencing the firing of the filter neurons. As the clutter
did not contain the specific contours the VM filter is selective to, the inhibition effec-
tively suppresses firing from the filter neurons. PyTevProto does not possess inhibitory
connections and therefore is not a selective to the VM shape.

Fastest model in the West

The SalMapIROS dataset has been used also to obtain data related to the latency mea-
surements. As the SpiNNaker simulation is run in real-time, latency is both walk-
clock time and simulated time. The results in Table 3.5 show the amount of time
needed to obtain spikes from the proto-object neurons, which compose the saliency
map, given an input. Each sample is obtained by waiting for the onset of input spikes
following a quiescent period and measuring the time taken for activity to flow out of
the model. This allows the delay of input spike to consequential output spike to be
most clearly extracted. The average latency is 18.5ms (2.40ms standard deviation) and
19.2ms (3.37ms standard deviation) for the second set of samples, compared with the
∼120ms needed on average for the PyTevProto model to obtain a saliency map of the
scene.

Quantitative response

Figure 3.5a shows the comparison between the SNNevProto and the PyTevProto saliency
maps using the SalMapIROS dataset. The similarity was evaluated among the out-
comes using Normalized Scanpath Saliency (NSS), Area under the ROC Curve (AUC-
Borji) & (AUC-Judd), Pearson’s Correlation Coefficient (CC) and Similarity (SIM) [15,

62 CHAPTER 3. VISUAL ATTENTION

Image # NUS3D RGB image SNNevProto SalMap NUS3D Fixation Map

23

6

91

Figure 3.6: Representation of examples from the NUS3D (robot scenario) dataset.
The three columns represent the input RGB image, the outcome from the SNNevProto
and the related ground truth from the NUS3D dataset. These examples show how the
model performs when the observer fixation maps focus on objects. The response from
the model is with 60% OL and 0.013 inhibition.

Image # NUS3D RGB image SNNevProto SalMap NUS3D Fixation Map

238

468

558

Figure 3.7: Representation of random chosen examples from the NUS3D (random
subset) dataset. The three columns represent the input RGB image, the outcome from
the SNNevProto and the related ground truth from the NUS3D dataset. These examples
show how the model performs when the observer fixation maps are sparse and unclear.
The response from the model is with 60% OL and 0.013 inhibition.

3.4. EXPERIMENTS AND RESULTS 63

(a) (b)

Figure 3.8: Comparison with different metrics evaluating the similarity of the
SNNevProto saliency maps with the NUS3D fixation maps (ground truth) [76] in two
different subsets (robot scenario (a) and random subset (b)) for different OL percent-
ages. The metrics used are: the Normalized Scanpath Saliency (NSS), Area under the
ROC Curve (AUC-Borji) & (AUC-Judd), Pearson’s Correlation Coefficient (CC) and
Similarity (SIM) [15, 16, 19, 65], Structural Similarity (SSIM) and Mean Square Er-
ror (MSE). A higher score is better for all excluding the MSE where the lower score
determines similarity.

16, 19, 65], Structural Similarity (SSIM) and Mean Square Error (MSE) (see Ta-
ble 3.3 for a summary of each metric). These metrics are computed to compare the
saliency maps to the human fixation maps, following standard analysis methods in the
literature[15, 16, 19, 65]. A single saliency map cannot perform well in all the metrics
since they judge different aspects of the similarity between average human saliency
and predicted saliency map [75]. These metrics offer a way to determine how well a
saliency-based model approximates human eye fixations.

The properties of the chosen images for the benchmark, such as dataset bias (centre
biasing, blur and scale), probabilistic input and spatial deviations, affect the result of
the metrics [19]. Saliency based models can include such properties. In this work
the robot needs to detect objects of different sizes to potentially interact with them.
In fact, the SNNevProto only focuses on the scale of the objects rather than other
properties. MSE and SSIM are metrics used in classical computer vision to explore
the similarity among images. MSE estimates the error between two images and it is a
global comparison, and the SSIM estimates the similarity between two images taking
into account structural changes in the images.

There is not a significant difference over the OL percentages comparing the saliency
maps between the SNNevProto and the baseline (PyTevProto). Only AUC-JUDD and

64 CHAPTER 3. VISUAL ATTENTION

dataset # First sample latency [ms] Second Sample latency [ms]
1 18 19
2 18 18
3 17 18
4 22 29
5 18 15
6 21 19
7 15 17
8 14 16
9 18 19
10 19 20
11 19 20
12 22 19
13 20 21

average 18.5±2.40 19.2±3.37

Table 3.5: Results of latency in milliseconds for different datasets of SalMapIROS. The
test is done measuring the latency of two different samples for each dataset. Each row
represents a dataset used to measure the latency in two separate samples. Each dataset
represents static and dynamic objects placed in front of iCub (such as a paddle, a puck,
calibration circles, proto-object patterns, a mouse, a cup and clutter (see Fig. 3.4)

SIM slightly increased with increasing the OL percentage. Although there is not a
remarkable increment 60% OL was chosen to explore the inhibition parameter (%/µS
conductances). 60% OL represents a good compromise between the robustness of the
model, ensuring enough overlap to cover the whole visual field without losing any area
of the visual field, the number of SpiNNaker boards needed (see Table 3.4) and the
results obtained. Each significant increment of neurons causes an increase in the num-
ber of SpiNNaker boards required. Nevertheless, the number of neurons required does
not affect the latency of the model because the pipeline remains unaltered. Figure 3.5b
explores a range of different inhibitions showing again no significant incremental or
decremental trend. Only SIM and CC show a slight improvement with increasing the
inhibition parameter (decreasing the magnitude of inhibition as an increased percent-
age firing threshold means more spikes are required to produce the same effect). The
results exhibit a stable response exploring different parameters showing no need to
create a complex network with a large number of neurons to get usable saliency maps.
Overall SSIM and AUC-JUDD seem the best metrics to explain the saliency map re-
sults.

3.4. EXPERIMENTS AND RESULTS 65

Let’s fixate on human fixation

Along with the characterisation where the response of this implementation is compared
with the PyTevProto, the response from the model was evaluated by benchmarking the
saliency maps with the human fixation maps provided by the NUS-3D dataset [76].
The investigation includes the comparison between the saliency maps generated by the
SNNevProto and the fixation maps qualitatively and quantitatively evaluating the sim-
ilarity between the two maps. The 2D fixation maps of the NUS-3D were collected
from subjects looking at images while recording eye movements. The human fixa-
tion benchmark obtained recording the response from the subjects includes different
mechanisms of bottom-up and top-down processings, increasing the complexity of the
observers’ fixations. The observer response does not exclusively derive from a data-
driven process but also a task-driven mechanism focusing the gaze towards a particular
region of the scene. Attention is a complex interplay between these two mechanisms
combining bottom-up and top-down mechanisms to perceive the surroundings [149].
The model proposed is a bottom-up system that does not include top-down mecha-
nisms, but 2D fixation maps can be used to evaluate the response of the system as they
represent the only benchmark that can be referred to.

To use the NUS-3D dataset within the event-driven proto-object model, the Open
Event Camera Simulator [113] is used to shake the images to simulate small periodic
circular eye movements. Two subsets of data were chosen from the dataset: one is
a selection of 50 images representative of a robotic scenario (robot scenario) and the
second one is a collection of 50 random images (random subset). The first subset
(see Figure 3.6) represents a simple robotic scenario where objects are placed over a
surface. The second subset (see Figure 3.7) is a random selection among all the dataset
images adding complexity and variety to the scenarios.

Qualitatively, the saliency maps from the model and the fixation maps are sparse
and not easily understandable at a first glance (see Figure 3.6 and Figure 3.7). Fig-
ure 3.6 represents a scenario where the SNNevProto Saliency Map and the human
fixation target select the same objects as interesting. The highest response (brightest)
is located around the objects in the scene. Figure 3.7 shows a slightly sparse response
from the model compared to the fixation maps, not allowing a clear understanding of
the agent’s attention.

Quantitatively, Figure 3.8 shows good results for both datasets exploring different
percentages of OL. Furthermore, all the metrics do not show a significant increment
changing the OL, validating the response of the model either for simple or for complex

66 CHAPTER 3. VISUAL ATTENTION

scenarios.

Although the complex bottom-up top-down interplay [149] is not included in this
implementation, overall the results yield a good representation of the scene for the
work’s purposes. Moreover, the metrics used to quantify the similarity do not give
equal results among them. All the metrics are used in the literature to explain saliency-
based model performances. They compare different aspects depending on the bench-
mark representation and the definition of the saliency map of the model. These metrics
treat differently false negative and positives, viewing biases, spatial deviation and the
pre-processing of the saliency maps. Initially there was interest in the location of the
responses from the saliency maps rather then the value in that position, for that SSIM
could be relied on as the metric. SSIM estimates the structural similarity between two
images comparing small sub-samples of the images with each other. This metric well
describes this situation where there is more interest in having a response in the same
location rather then having the same amount of response in terms of intensity. Other
metrics used in the literature were added for completeness [19]. Overall, in this case
SSIM seems a good metric to explain the saliency maps. Alongside with the SSIM,
AUC-JUDD provides good results too, where each saliency pixel is treated as a classi-
fier splitting them into ‘fixation’ and ‘background’. This metric computes the ratio of
true and false positives to the total number of fixations and saliency map pixels using
a thresholded mechanism [116].

3.5 Conclusion

Inhibiting is exciting

Overall the response of the spiking implementation of the event-driven attention model
on SpiNNaker (SNNevProto) is coherent with PyTevProto, showing a significant im-
provement in removing the clutter with respect to the baseline GPU-based implemen-
tation (PyTevProto). This can be well explained by the nature of the model. The SNN
model, as a result of the inhibitory connections, is far more selective to the shape of the
VM filter, than in a classic convolution using a kernel with no negative weighting. The
convolution will produce activity everywhere the filter overlaps with events, enabling
clutter to evoke a response in the saliency map. The advantage of the resulting higher
selectivity and localised activity in the saliency map is in the possibility to improve
object localisation and segmentation and, hence, the interaction of the robot with the
selected object.

3.5. CONCLUSION 67

For the same structural reason, the response from the SNN is more sparse and
focused on the location where the detected objects are placed. Two VM filters of
opposite rotation are connected together for every scale and set of rotations. Only
when they both respond is there a response from the successive layer of the SNN.
Therefore, this helps significantly in generating a more precise saliency map.

More is not always more

Given the parallel structure of SpiNNaker, increasing the number of neurons does not
affect the latency. For this reason, the model is tested for an increasing OL percentage,
and therefore increasing the density of the convolutions. This strategy appears to pro-
vide little benefit to model performance and requires the use of additional SpiNNaker
boards. Results for low values of OL percentage, equivalent to a large stride in CNNs,
produce a similarly reasonable representation of the visual scene compared to high val-
ues, with significantly reduced network size. This displays the feasibility of fitting the
SNNevProto model on a single SpiNNaker board and having it work in tandem with
the iCub humanoid robot which possess a single SpiNNaker board.

Event-based, more like speed based

The SNN implementation provides a saliency map of the scene in around 18.9ms.
In comparison with the PyTevProto (∼120ms), these results are a significant improve-
ment that enables the system to run online in dynamic environments, where the saliency
map can be used to drive the gaze and actions of the robot in real-time. To this aim,
the SNN implementation on SpiNNaker could easily include Winner-Take-All com-
petition and Inhibition of Return [64] to dynamically select the location of the next
saccade within a scene. Additionally, the saliency map allows the system to focus its
attention towards a specific target, devoting computational resources to perform other
tasks, such as object recognition, only in the area where they are needed.

Humans - the ultimate benchmark

Finally, attention and gaze of robots are extremely important in the interaction with
humans [147], it is therefore questioned how close the saliency map (used as proxy
for the robot’s fixational eye movements) was to humans’. The system was validated
and characterised, but the quantitative results of the benchmark do not capture the true
merit of the model. Quantitatively, the similarity among the benchmark results (robot
scenario and random subset datasets) suggests another question; how do we define
the complexity of a scenario and which aspects should we take into consideration for
attention? These results proved that the random subset does not produce lower results,
hence, it may not contain complex scenarios as could be expected.

68 CHAPTER 3. VISUAL ATTENTION

Each metric captures a specific aspect of the saliency maps, this analysis is instru-
mental to give a quantitative comparison but mostly to study the effects of the different
parameters on the model performance. Moreover, most of the metrics present a high
variance due to the mismatch between the SNNevProto and the human fixation saliency
maps. This should be investigated in depth creating several subsets from the 600 im-
ages of the NUS3D dataset investigating the response’s variability. As expected, a pure
bottom-up neuromorphic attention system taking into consideration only the input in-
tensity as a feature to determine the saliency map only partially predicts the fixational
eye movements of humans. To this aim, the model can be enriched with other chan-
nels (such as motion, depth, texture, etc) and with top-down processing to focus the
attention towards a specific task.

The model could benefit from the leveraging of learning dynamics in the fine tuning
of network parameters. This could allow the model to adapt itself to particular data sets
and reach a higher level of performance. This may improve the inference of the model
given appropriate training and data as compared to handcrafted parameter selection. It
may also provide specific goal driven attention, which could better match the fixation
maps of humans, especially if trained using human fixation maps.

Moreover, the spatial integration [26] and the lateral inhibition [31] could enrich
the model following a detailed biologically inspired pipeline and further reducing the
amount of data to be processed. Finally, further experiments could be done emphasis-
ing the clutter removal capabilities exploring the potential of the model.

The wider context

This chapter has displayed how biologically inspired mechanisms can be used to drive
attention. The translation into a spike based implementation enabled a sparse and
efficient implementation to be run on the neuromorphic hardware SpiNNaker. This
created a biologically plausible attention system both at the algorithmic and computa-
tional level. Compared to its non-spiking counterpart, PyTevProto, it boasted sparser
activation and significantly reduced latency. As a result of its hand crafted design it
functioned in a limited capacity with differences between its saliency and human fix-
ation maps likely coming from the difference in the primitives driving attention in the
two cases.

Although saliency is driven by high level features in SNNevProto, it lacks the en-
dogenous drives and biological primitives, such as being attentive of faces, that humans
possess. But how do you instil a network with alternative forms of attention? To remain

3.5. CONCLUSION 69

within a hand crafted regime new filters could be constructed but this makes every al-
teration an engineering problem. Learning mechanisms allow function to be driven by
data and remove the need for engineered solutions. The problem then becomes, how
do you train a network? There are many solutions within ANNs (Artificial Neural Net-
works) and a large portion of their techniques are transferable to SNNs (see Chapter 4
for further details), although there are still many unanswered questions about how to
unlock the full potential of spiking neurons and how biology has managed to reach the
computational complexity of the brain. The following chapters will explore potential
techniques to train neural networks in a biologically inspired way.

Chapter 4

E-prop on SpiNNaker

4.1 Introduction

Time for intelligence

Biological processes have approached the generation of intelligence across two timesc-
ales. The first is in the order of millions of years with evolutionary processes guiding
random genetic mutations in an organism’s DNA towards better adaptation to its en-
vironment. This technique proved effective with an incredible diversity of solutions
created. However, as the evolutionary process works over a long timescale it can only
provide slow alteration to a creature’s behaviour, which limits the capacity of intel-
ligent actions. Evolution then stumbled upon a method to increase the capacity for
behavioural adaptability through lifetime learning.

Learning during the process of one’s life enables acquisition of information about
an environment without the need for evolutionary adaptation. This provides a huge
benefit to an organism relative to its non-learning counterparts. An animal can learn
to avoid dangerous environments and remember places of likely food sources without
the need for evolutionary pressures to build in some preference. It can also allow
adaptive modelling of prey and competition giving the edge in prediction and action.
The majority of current machine learning techniques fall within this second category of
fast timescale learning. A neural topology is created (expert knowledge simulating the
evolutionary process of brain development) and then a learning algorithm incorporates
knowledge into the parameters of the network.

Biology inspires creativity

The progress of neural network research has highlighted the importance of architec-
ture in the model that can be generated by an ANN (Artificial Neural Network). A

70

4.2. BACKGROUND 71

multi-layer feedforward architecture is a universal approximator [25] and yet the the
advent of CNNs (Convolutional Neural Networks) revolutionised computer vision by
altering the architecture learning is performed across. CNNs mimic the connectivity of
the early mammalian visual system [60] and the sharing of weights (which is not bio-
logically plausible) allows reduced computational load in training and memory whilst
also solving problems of translation invariance. Although ANNs can approximate any
function [25] and can be trained precisely with GD (Gradient Descent), inspiration
from biology enabled a large step to be made within machine learning.

What follows what came first

First, lifetime learning algorithms will be discussed within the context of neural net-
works, specifically SNNs (Spiking Neural Networks), with their limitations contrasted
with EAs (Evolutionary Algorithms). Next an implementation of the e-prop learn-
ing algorithm with be presented with its instantiation on the SpiNNaker neuromorphic
hardware. Finally, the work performed will be put in the greater context and future
directions of research will be suggested.

4.2 Background

Evolution to an update solution

Learning algorithms come in many forms but in this context they are considered sep-
arate from evolutionary algorithms in that they do not use a population of individuals
and instead create a single model which gradually incorporates information about the
world through experience. Compared to natural Darwinian evolution, they operate on
much shorter time scales and in biology this enables an individual to adapt to their
surroundings during their lifetime, increasing their individual fitness. There have been
many attempts to harness the learning capacity of the biological brain with neural net-
works forming the foundation of the most successful modern approaches. Training
algorithms often rely on the updating of network parameters as governed by some er-
ror metric with the most successful forms using a mathematical gradient of the network
parameters with respect to the error. With successive data presentations this charac-
terises a learning dynamic in which performance on a task increases with time.

As the field of neural networks matures, the methods available to harness their
power have diversified accordingly. The selection of neuron type and learning algo-
rithm allows tailoring of network training to match a range of different applications.

72 CHAPTER 4. E-PROP ON SPINNAKER

BP (Back-Propagation) is considered a state of the art algorithm with the power to cal-
culate the gradients of weights in deep networks and incrementally incorporate knowl-
edge about errors into the weights of the network. An approximation of the network’s
gradient with respect to the error is leveraged to move the network weights to a position
in the solution space with reduced overall error. This requires a record of the network
response to be combined with an error, which is propagated backwards through the
same weights the activity was first passed forward, thus back-propagation. Despite its
effectiveness as an algorithm, researchers struggle to posit how the biological brain
could achieve such calculation. The main biological challenge is the weight transfer
problem, in which the path the error is propagated back along must have knowledge
of the forward propagation’s contribution to previous states [81]. In addition, the algo-
rithm requires the halting of network activity whilst updates are calculated, operating
offline and restricting instant incorporation of new information.

Continuing past discontinuity

A major challenge with the application of gradient descent algorithms used in deep-
learning to SNNs is the discontinuity of the spiking neuron’s activation function. As
the derivative is undefined around spiking, a gradient cannot be as easily extracted as
with ANNs, making it difficult to construct weight updates for training. A number of
possible solutions have been proposed to facilitate the application of gradient descent
algorithms to SNNs. Broadly speaking they fall into three categories: pseudo deriva-
tives and surrogate gradients [8, 66, 77, 100, 126], which apply some function to the
membrane voltage to approximate the differential of neuron activity; smoothed acti-
vation curves [62, 78], where LIF (Leaky-Integrate-and-Fire) neuron dynamics are al-
tered to enable continuous gradients; and spike time based gradients [23, 96, 148, 151],
in which the timing of the spikes is used to generate a derivative of the weight with re-
spect to the error. E-prop (discussed later in this chapter) falls into the first category in
which pseudo derivatives are used to approximate the gradient of neuron activation.

Biology never switches off

The above mentioned algorithms attempt to tackle the issue of transferring gradient
based learning to SNNs but because of this they fall into the same traps as GD with
ANNs, notably in this case the need to compute offline. Biological brains are continu-
ously acquiring information and updating models without access to global information
or the state of other synapses. There are neurotransmitters which can have a wider
local effect but GD algorithms often rely on the knowledge of the weights across a
network, a record of activity over multiple instances and a global error signal which

4.3. ONLINE AND LOCAL LEARNING 73

are not as biologically plausible. E-prop addresses these problems with its online and
local formulation and error signal which acts in a away analogous to neurotransmitter
release.

4.3 Online and local learning

Artificial intelligence pervades everyday life, from smart fridges to phone assistants,
yet often relies on queries sent to a remote server running a pre-trained AI model such
as a neural network. Although functionally this provides more computational power
than is available on an edge device to a neural network model, it also precludes local
tailoring of the system. Local learning has the potential to enable speech recognition
to become tailored to your voice and facilitate a personal understanding of queries.
There is the added benefit of removing the need to communicate personal data if the
network is kept locally, aiding individual privacy. Computing locally also opens up
edge applications such as satellites and operating in hazardous environments in which
communication with a remote system may prove limiting.

As training becomes more parallel and networks become larger, we must look to
novel hardware to meet a wider range of computational requirements. Neuromorphic
systems aim to fill this niche by providing novel computing architectures dedicated to
SNN simulation. In contrast to standard ANNs, which require information to be passed
along a synapse at each timestep, SNNs communicate state intermittently through a
discrete spike indicating that accumulated input crossed a threshold. This creates a
temporal element to SNN computation, which is missed in standard ANNs. SNNs
have been posited as the next generation of neural networks [85], however challenges
remain around how to train them to reach and surpass the performance of their non-
spiking counterparts.

A recent breakthrough in training SNNs on real-world tasks was the development
of the e-prop learning rule [9]. This work developed a learning rule based on synaptic
traces, enabling online training in both supervised and reinforcement learning scenar-
ios. The proposed synaptic traces capture an ‘eligibility’ for the weight updates that
drive learning, and are computed based only on locally available information, avoiding
the weight transfer problem [81]. In contrast, standard ANN training requires informa-
tion of neuron activation to be passed backwards through the network, requiring global
information which is not biologically plausible. This localisation makes e-prop a can-
didate for implementation in neuromorphic hardware, potentially offering a low-power

74 CHAPTER 4. E-PROP ON SPINNAKER

online training paradigm for spiking neural networks, with accuracy performance com-
parable to the commonly employed BPTT (Back-Propagation-Through-Time) training
algorithm in recurrent ANNs.

The following work explores the requirements of neuromorphic hardware to run
the e-prop learning algorithm online and in real time. SpiNNaker is used as the neuro-
morphic development platform as its programmable nature enables implementation of
the e-prop algorithm. Its architecture also imposes similar restrictions to other neuro-
morphic systems (e.g. co-location of memory and compute). This setup is applied to
two tasks, one explores the application of e-prop to a wave-matching task and the next
tests the ability to learn when the error signal is delayed in time from the inputs. First,
the algorithm and computing platform will be discussed.

4.3.1 E-prop

E-prop [9] is a biologically inspired online learning algorithm for recurrently con-
nected neural networks. It incorporates historic information, obtained and stored lo-
cally on a cellular and synaptic level, to accurately update the connectivity of an SNN
in response to a global learning signal. Changes to the network’s synaptic weights can
be made in an online fashion, at each simulation timestep or in batches, incorporating
performance information in real time. This is an attractive advantage in that past states
of the network, or indeed its performance over the entire duration of a task, need not
be precisely recorded to make adjustments to synaptic weights, as is required by BPTT
and other learning algorithms for ANNs.

Components

The e-prop learning rule has been developed using two spiking neuron models, and can
be employed in networks comprising one or a combination of both types. LIF neurons
linearly sum inputs as contributions to their membrane potential, which decays over
time. The neuron will release an action potential, or fire, when a critical membrane
potential is reached, after which the potential resets to a baseline and cannot fire again
for a short refractory period. In a LIF model, the internal state of the neuron can be
wholly described by its membrane potential and time since last action potential. In
contrast, ALIF (Adaptive-Leaky-Integrate-and-Fire) neurons allow the neuron’s firing
threshold to vary relative to its spike frequency. This threshold adaptation cannot be
immediately measured from the neuron’s current membrane potential, and as such, the
firing threshold in ALIF neurons is considered a hidden variable and must be stored
internally. E-prop depends on a pseudo-derivative of the membrane voltage and firing

4.4. IMPLEMENTATION AND EXPERIMENTAL DESIGN 75

threshold for each neuron that, combined with synaptic activity, allows quantification
of its behaviour over time in an eligibility trace that is unique to each synapse.

It is important to note that the eligibility trace is derived from purely local infor-
mation, not shared between neurons or over the entire network. By low-pass filtering
the synapse and neuron variables an approximation of the contribution to performance
through time can be made. Information about the performance of the network at any
moment in time is provided globally in the form of a learning signal and propagated
to all neurons in the network via random feedback weights [81]. This can be de-
scribed as analogous to a neurotransmitter being released and diffusing through the
brain. The learning signal only quantifies errors in the network’s output at the current
point in time, but combined with the eligibility trace it allows synapses to be adjusted
according to their impact on the network’s behaviour over time. This reliance on local,
synapse-specific historic information and only one global error signal is well-suited to
implementation on neuromorphic systems.

4.3.2 SpiNNaker

A summary of the SpiNNaker architecture and design can be found in Section 2.3,
with specific alterations the SpiNNaker architecture described later in this chapter in
Section 4.4.3 Code is available at https://github.com/SpiNNakerManchester/ with the
separate repositories being: DataSpecification, PACMAN, PyNN8Examples, spalloc,
SpiNNakerGraphFrontEnd, spinnaker_tools, spinn_common, SpiNNFrontEndCommon,
SpiNNMachine, SpiNNMan, SpiNNStorageHandlers, SpiNNUtils, sPyNNaker, sPyN-
Naker8 and SupportScripts is also useful. sPyNNaker uses the branch eprop_adaptive
for the sinewave matching task and eprop_left_right for the temporal credit assignment
task. All other branches are master if eprop_adaptive is not available.

4.4 Implementation and experimental design

4.4.1 An overview of e-prop

The pseudo gradient

Like other GD techniques, e-prop relies on assigning credit to network weight pa-
rameters in relation to an error signal. Instead of directly calculating gradients, as in
BP, e-prop uses a combination of the incoming spike train, z, and the pseudo deriva-
tive of the post-neuron’s membrane potential, ψ. This essentially assigns credit to the

https://github.com/SpiNNakerManchester/

76 CHAPTER 4. E-PROP ON SPINNAKER

synapses that had a lot of spikes move across them and are connected to neurons which
are close to threshold, as the peak of the triangle-like pseudo derivative is centred at
the threshold. It could also be thought of as determining which synapses would af-
fect performance the most if altered. The combined incoming spike train and pseudo
derivative creates the synapse specific eligibility, e. The exact equations describing this
will be discussed later.

The error creates the correction direction

The environment generates the error, E, which is broadcast to the network. The error
is passed down randomly distributed feedback weights, B, which creates the neuron
specific learning signal, L. This relies on the principle of random feedback alignment
which states that the error distributed to neurons does not need to be directly related
to their activity or synapse weights and that the learning undertaken begins to align
with B and improve the performance of the network [81]. Essentially it determines
beforehand which weights will be strongly effected by the error and by what sign.
The learning signal is then combined with the synapse eligibility to create the weight
update. Figure 4.1 shows the general structure of learning.

E-prop offers an alternative to BP by locally storing information about previous
activity in an eligibility trace, capturing the effect of making a change in the synaptic
weight, akin to a gradient. This record allows weight updates to be calculated online
without the need for global knowledge of the connection weights and any propagation
of errors through the network. Error is instead incorporated via a global error signal,
which is broadcast to the network [8]. This error signal is passed along random feed-
back weights, which have been shown to enable similar learning to symmetric feedback
weights because the network weights and feedback weights align during learning [81].
While there are variants of the e-prop algorithm in which learning takes place on these
feedback weights to allow them to align with the feedforward weights, these are not
explored in this work.

4.4.2 E-prop neuron models

Working spiking neuron working memory

For many applications a direct input-output mapping is sufficient for task completion,
e.g. F(x) = y to classify a picture. However, there any many tasks in which inputs
have to be accumulated over time, e.g. F(xt , ...,xt−k) = y to generate the spoken text
of an audio sample. The later type requires some internal state of the network to
store information about previously received input, also known as working memory.

4.4. IMPLEMENTATION AND EXPERIMENTAL DESIGN 77

Figure 4.1: A diagram from the original e-prop paper published in Nature [11]. It
shows how the eligibility, et

ji, at time t is synapse specific, in this case between neuron
i and j. Inputs, xi, are passed into the network at each timestep as well as the neuron
specific learning signal, Lt

j, generated by the error module which is a part of the task
environment.

In standard ANNs this could imply the use of LSTM (Long Short Term Memory)
units [55] due to their memory mechanics possessing a differentiable gradient. There
are approaches that achieve similar working memory in SNNs. The mechanism imple-
mented in this work employs ALIF neurons. These neurons increase their threshold
after firing, creating a memory of previous input, before decaying back down to resting
threshold. Equation 4.3 describes the current state of the ALIF neuron’s threshold and
Equation 4.4 governs how the adaptive threshold increases following a spike and de-
cays back to resting voltage threshold. Training an SNN with ALIF neurons has been
shown to produce comparable results to training an ANN with LSTM units [8].

The adaptive neuron’s fixed equations

The membrane voltage of neuron j at time t + 1, vt+1
j , for an ALIF hidden neuron is

governed by Equation 4.1, where W rec
ji is the weight between neuron i and j, zt

i is a
binary value indicating whether neuron i spiked at time t, W in

ji is the weight between
neuron j and input i, xt

i is a binary value indicating whether input i spiked at time t

and At
j is the current value of the adaptive threshold, At

j is multiplied by zt
j to reset

the membrane voltage by subtraction following a spike by neuron j. The membrane
voltage at time step t of neuron j is decayed by α which equals e−δt/τm , where δt is
the timestep of the SpiNNaker machine which for all simulations is set to 1ms and

78 CHAPTER 4. E-PROP ON SPINNAKER

τm governs the rate of decay of the membrane voltage, it is set to 1000ms, making
α≈ 0.999.

vt+1
j = αvt

j +∑
i 6= j

W rec
ji zt

i +∑
i

W in
ji xt+1

i − zt
jA

t
j (4.1)

Equation 4.2 describes how a spike in neuron j is produced if its membrane voltage
goes above its adaptive threshold A j, otherwise no spike is produced. The membrane
voltage reset is governed by the last term in Equation 4.1 which is a reset by subtrac-
tion.

zt
j =

1, if (vt
j−At

j)> 0

0, otherwise
(4.2)

Equation 4.3 below describes how the adaptive threshold changes with time. It is
a combination of the base threshold value, vth = 10mv, and adaptive threshold compo-
nent, at

j, which is scaled by β = 10.

At
j = vth +βat

j (4.3)

The adaptive threshold component, α, of the combined adaptive threshold, A, is
governed by Equation 4.4, showing it increases by 1 following a spike from the neuron
and is decayed by ρ, where ρ = e−δt/τa with τa = 6500ms and δt, as earlier, being the
timestep of the SpiNNaker machine set to 1ms in these experiments.

at+1
j = ρat

j + zt
j (4.4)

Calculating calculation

As determined in Equation 4.5, this leads to the pseudo derivative, ψ, for the neurons,
where vthbase is the base voltage threshold at which a spike is emitted. A value of
γpd = 0.3 is used to scale the pseudo derivative, as in the original work [8].

ψ
t
j =

1
vth base

γpd max

(
0,1−

∣∣∣∣∣vt
j−At

j

vth base

∣∣∣∣∣
)

(4.5)

At
j is the value of the adaptive threshold for neuron j at time t (for the LIF neuron

At
j = vthbase when calculating the pseudo derivative).

The eligibility, et
ji, of the synapse between neuron i and j at time t is shown in

Equation 4.6, where z̄t−1
i is the lowpass filtered incoming spike train and εt

ji,a is the

4.4. IMPLEMENTATION AND EXPERIMENTAL DESIGN 79

adaptive threshold contribution which is zero in the LIF neuron case. It is determined
using Equation 4.7 and initialised to zero. The variables used in this equation are the
same as presented earlier.

et
ji = ψ

t
j

(
z̄t−1

i −βε
t
ji,a

)
(4.6)

ε
t+1
ji,a = ψ

t
j z̄

t−
i +(ρ−ψ

t
jβ)ε

t
ji,a (4.7)

Finally, the eligibility is lowpass filtered to give the eligibility trace, ē ji, and mul-
tiplied by the learning signal, Lt

j, and learning rate, η, to give the synaptic weight
update ∆Wji shown in Equation 4.8. The error, Et

k, for output k at time t is produced by
subtracting the target output, y∗,tk , from the predicted output, yt

k. The neuron specific
learning signal, Lt

j, is created by multiplying the Et
k by the feedback weight, B jk, for

neuron j and output k. The weighted error for each output is summed to produce the
overall learning signal for the neuron.

∆Wji =−η∑
t

∑
k

B jk

=Et
k︷ ︸︸ ︷

(yt
k− y∗,tk)


︸ ︷︷ ︸

=Lt
j

ē ji (4.8)

The lowpass filtering of the incoming spike train, z, and eligibility, e, is used to ef-
fectively produce a running average of their values and is controlled by Equation 4.9,
where c̄ is the lowpass filtered version of c (which stands in place of z and e here) and
α is the same value as earlier when decaying the membrane voltage, approx. 0.999.

c̄t+1 = αc̄t +(1−α)ct (4.9)

4.4.3 SNN architecture & mapping to SpiNNaker

This work defines SNN architectures according to the generic description displayed in
Figure 4.2(a). Neural network models are defined in PyNN [30], created from groups
of neurons known as populations, with models typically containing populations of:
input neurons providing network stimuli, hidden neurons providing the core compu-
tation, and readout neurons capturing network output. Projections capturing synaptic
connections are made between populations, as depicted by the solid blue and green
arrows in Figure 4.2(a). All connections are trained using the e-prop learning rule,
and are therefore said to contain e-prop synapses (Sec. 4.4.2). The readout neurons

80 CHAPTER 4. E-PROP ON SPINNAKER

Hidden Neurons (Core 3 DTCM)

Readout Neuron (Core 1 DTCM)

ALIF Neuron State

E-prop Synaptic State
Input->Hidden Neurons

Readout Neuron State

E-prop Synaptic State
Hidden->Readout Neurons

In
pu

t N
eu

ro
ns

Hidden
Neurons

Readout
Neurons

𝐸

(a) (b)

Figure 4.2: (a) Generic spiking neural network architecture suitable for training with
e-prop: input neurons provide network stimulation; hidden neurons perform the com-
putation; and readout neurons capture network output. During training, the readout
neuron population additionally computes an error E via supervision, and communi-
cates this to the rest of the network to drive learning. (b) Populations of neurons
are partitioned and mapped on individual SpiNNaker cores, with synaptic information
stored local to the postsynaptic core.

capture network output, and during training are therefore able to quantify the error be-
tween the network prediction and a target. While this target can take different forms
in different problems (Sec. 4.4.4), the process of distributing an error is common, and
forms the learning signal L, which drives plasticity (solid black line in Figure 4.2(a)).
When modelling neurons and synapses on SpiNNaker, neuron populations are parti-
tioned into sub-groups suitable for execution on a single core. This enables large-scale
neural networks to be partitioned and mapped to the many-core SpiNNaker architec-
ture [117]. This process is displayed in Figure 4.2(b), with the input population divided
across two SpiNNaker cores and the hidden population across six, while the readout
population occupies a single core. This partitioning enables parallelisation and distri-
bution of operations over multiple chips, and hence demonstrates the potential of the
system to scale to larger SpiNNaker machines and SNNs.

A number of changes are made to the standard SpiNNaker programming model
for SNNs [114], to accommodate the unique features of the e-prop learning rule for
specific tasks. While spikes are communicated between cores using the conventional
multicast packets with no payload, the learning signal is distributed via multicast pack-
ets with 32-bit payload. This payload carries the error, which is evaluated and sent
on the core executing the readout population. While this error represents the global
learning signal, each individual neuron receives a uniquely-weighted learning signal

4.4. IMPLEMENTATION AND EXPERIMENTAL DESIGN 81

by combining the globally-distributed value with an individual feedback weight, rep-
resented as an additional parameter within the neuron model stored locally to the re-
ceiver. Storage and updating of the synaptic matrix also requires a new approach rel-
ative to the conventional SpiNNaker programming model [114]. The SpiNNaker chip
was designed to house large data structures such as synaptic matrices in the chip-level
128 MB SDRAM (Synchronous Dynamic Random-Access Memory), as subsections
of these structures are typically only required (and therefore fetched) on the arrival of
a spike. However, the e-prop learning rule requires direct access to the synaptic state,
as updating the eligibility trace requires continuous access to both the incoming spike
train and the postsynaptic neuron state. In this work these data structures are therefore
located in core-local memory, enabling them to be updated on every timestep along
with the neuron state. This is possible on SpiNNaker due to its programmable core
and flexible memory allocation. However, the relatively small local memory (64 kB),
limits the total number of e-prop synapses per hidden neuron. A total of 6 intermediate
state variables are used to capture the operations of Eqs. 4.6 & 4.8, meaning a total of
24 bytes are used per e-prop enabled synapse. In this work cores simulating hidden
neurons were therefore assigned 8 neurons, each with a potential 256 e-prop synapses.

4.4.4 Tasks

Two tasks were implemented to display the learning capabilities of e-prop on neuro-
morphic hardware. The first is tailored to test the ability to match a target output in an
online manner. The second is to explore the learning capability when the error signal
is delayed in time relative to the inputs, referred to as the temporal credit assignment
problem. Together they encompass a regression task and a classification task which
requires working memory.

Readout neuron design

As SpiNNaker is a real-time neuromorphic system, any environment or test a simu-
lation interacts with must also be processed in real-time. This puts a number of con-
straints on network simulation and testing. The most pertinent restrictions are memory,
with regards to hardware restrictions on shared memory, limiting the scale and com-
plexity of environment simulation on chip. Without simulating the environment on
chip a large amount of data would need to be streamed on and off the SpiNNaker
system, which has data rate limitations and restricts potential parallelism.

82 CHAPTER 4. E-PROP ON SPINNAKER

The readout neurons act to encapsulate everything that is needed around the net-
work for learning. This population retains the state of the environment and uses that to
control the inputs as necessary. Another key part of its function, and why it is called
the readout population, is the incorporation of output neurons. They receive spikes and
update membrane potentials as leaky integrator neurons that cannot produce a spike.
The membrane voltages of these readout neurons act as the output values that are used
for task evaluation. They need to be kept on the same core as the test environment to
enable quick access to the current values for error calculation at each timestep.

Task 1: Wave-form matching

The task explores the training of the readout neurons to produce a 1-D continuous
function from a fixed predefined and repeating Poisson spiking input. The inputs are
all-to-all connected to the outputs via plastic weights. A target wave-form is composed
from the combination of two sine waves of different frequencies, as shown in Equa-
tion 4.10. Possessing this capability translates to a number of tasks, such as creating
the appropriate motor commands to move a joint in a robotic arm. Following this, from
the Fourier transform, all continuous signals can be described as a combination of si-
nusoids. Therefore, being able to match a target wave-form displays the theoretical
ability to match any target signal.

y = Asin(pt)+Bsin(qt) (4.10)

Here y is the output of the target wave-form at time t, A = 2, p = 4π/1024, B = 2 and
q = 8π/1024.

The network receives input from a population of 100 neurons firing at an aver-
age rate of 10Hz. The spikes are generated by a Poisson process and repeated every
presentation of the target signal. Replaying the same inputs each trial is crucial to per-
formance. If they are controlled by a random process, even with the same average rate,
the network is not able to produce the target output as there is no regularity to sample
from. This is a result of the readout neuron requiring a repeating input to create a re-
peating output. Further improvement in performance was achieved by staggering the
inputs in time, although, this is not required to solve the task. By splitting them into
20 groups firing intermittently at 200Hz, maintaining a population average firing rate
of 10Hz, the network receives more timing information and can better match the tar-
get signal. Inputs are directly all-to-all connected to the readout neurons with weights

4.4. IMPLEMENTATION AND EXPERIMENTAL DESIGN 83

initialised from a normal distribution, (µ = 0,σ = 1) and divided by the square-root of
the input size. A learning rate of η = 0.04 is used. The error is described by

E = 0.5(y∗− y)2 (4.11)

δE = y∗− y (4.12)

here E is the error between readout output, y, and target output, y∗ and δE is the partial
derivative of the error which will be broadcast to the network. The network output
is the membrane voltage of readout neuron. It cannot spike to allow the membrane
voltage to act a readout for a continuous value.

The target value for each timestep is generated beforehand and loaded onto the ma-
chine as part of the readout neuron’s parameters. The target wave is a repeating signal
of length 1024 timesteps, which is looped back through at the end of each presentation.
At each timestep the membrane potential of the readout neuron is compared with the
current target value and an error is produced via Equation 4.11. The partial derivative
of this error, Equation 4.12, is broadcast to all neurons at every timestep via a multi-
cast packet with payload. The feedback weights are stored locally at the neuron and are
multiplied by the broadcast error to produce the neuron specific learning signal for that
timestep, Lt

j. The learning signal is then multiplied by the synaptic eligibility trace,
ē ji, to produce the weight updates, as described in Equation 4.8. These weight updates
are accumulated and used to update the network weights at the end of the presentation
(Equation 4.8), acting as a small batch update, but performed online without halting
SNN execution.

Task 2: Temporal credit assignment

This task explores the application of working memory to a classification task. An
environment is simulated in which the network acts as a mouse moving down a hallway
in search of a reward, as in the original experiment [95], see Figure 4.3 for a diagram
of experimental setup. The mouse moves down the hallway and at intervals cues are
presented on either the left or right with seven cues presented in total. Following this a
prompt signal is given to the network to signify the end of the hallway is reached and it
must decide whether it received more cues on the left or the right, which corresponds to
the location of the reward. Completing this task requires storing of cues in the working
memory of the ALIF neurons and combining this information to evaluate the correct
choice. The error signal is evaluated and delivered at the end of the test. This requires

84 CHAPTER 4. E-PROP ON SPINNAKER

Figure 4.3: Experimental setup of the temporal credit assignment task. The mouse
starts at the beginning of a hallway and is presented with left and right cues as it
progresses down. Each cue lasts 100ms with a 50ms gap between each. There is a 1
second wait following the final cue before a prompt signal is sent for the network to
make a decision which of left or right presented the most cues.

credit to be historically assigned to each neuron’s performance through time.

Following the experimental setup used in the original e-prop implementation of
the task [11], the network receives from four inputs: left cue, right cue, prompt and
random noise. The input is population encoded as a variable rate Poisson spike source
of 10 neurons for each input. The rate of the Poisson input is controlled by the readout
population which can sends rate updates in the payload of a packet to update the rate of
the Poisson source depending on the state of the task. The random input fires constantly
at 10Hz, which acts as a bias for the neurons to sample from. The cues produce no
spikes, 0Hz, unless selected, at that point the rate is increased to 100Hz for 100ms
before returning to zero. There is a 50ms wait before a new cue is randomly selected
and presented to the network. After the cues have been presented, there is a 1s wait
before the prompt signal of 100Hz is given to the network for 150ms. This is the only
point in the test at which an error is generated and broadcast to the network. It is
because of this that credit must be applied to temporally shifted activity.

The test is set up in an incremental fashion, with the number of cues increasing only
when the current difficulty is solved. This is determined by averaging the classification
accuracy over the last 64 tests, with the number of cues increased once this average
crosses 90%. Starting from one random cue, the number of cues increases by two
each time threshold performance is achieved until the final difficulty of seven cues is
solved, after which learning is terminated. The readout neuron handles the timings of
the experimental inputs and generation of error. The cues are randomly selected and
an updated Poisson rate is sent to the appropriate inputs. After the cues have all been
sent and following the 1s delay the prompt signal is delivered to the network. The
error between the correct output choice and readout membrane potentials is broadcast

4.5. RESULTS 85

Figure 4.4: Wave-form matching task. Top: repeating staggered input spikes. Mid-
dle: initial performance before any learning and after one weight update (indicated by
dashed line). Bottom: Converged performance after 200 presentations of the inputs.

to the network only for the 150ms duration of the prompt signal. The softmax of the
two readout neuron membrane values is combined with the one-hot-encoded output
values to produce the cross-entropy error. Weight updates are accumulated over two
trials before being committed into the network weights.

Inputs are all-to-all connected to a single layer of 100 ALIF neurons which are
in turn all-to-all connected to the readout neurons. All weights are initialised from
a normal distribution and divided by the square-root of the population size. Xavier
initialisation [48] is used to ensure the network is started in a state in which spikes
can flow through the network. This results in weights being normally distributed with
µ = 0.55 and σ = 1. Without this the pseudo derivative ψ, remains too small to drive
learning without firing rate regularisation. A learning rate of 0.3 is used and an ALIF
threshold time constant of τa = 6500 ms and adaptive threshold scale factor β= 10 mV.

4.5 Results

4.5.1 Wave-form matching

This task investigates the power of the readout neuron to sample from its inputs to
produce a desired continuous output. Figure 4.4 shows the final performance of the
network after training. It can be seen that the membrane voltage of the readout neu-
ron (in blue) matches the target wave with a high level of agreement. Even after the

86 CHAPTER 4. E-PROP ON SPINNAKER

Figure 4.5: Error for each presentation of a target wave-form as seen in the experiment
of Fig. 4.4. Each presentation lasts 1024 timesteps with a timestep size of 1ms, error
is accumulated over the test to give the iteration error. Performance rapidly improves
with convergence at around the 65th presentation.

first weight update the output captures the general form of the target wave with the
remainder of the learning process fine tuning the response. The largest disagreement
is present at the highest and lowest value of the wave-form. The presence of error at
this part of the target signal is likely a result of the high curvature of this section of
the wave-form. The quick change from one direction to another proves a challenge
for the algorithm to match smoothly with spiking input and leaky-integrator readout
dynamics.

The online functionality of this algorithm was able to reach convergence, requiring
around 65 presentations of the target-wave form to create a close match, see Figure 4.5.
This is approximately 65 seconds of real-world compute time to incorporate enough
information about the task to achieve agreement between a target and the actual output.
This displays the ability of e-prop to combine local traces of network activity with an
instantaneous error to match a global error signal. The online functionality does appear
to add some noise to the learning process, as past a certain accuracy the network re-
mains in a state of oscillation with weight updates incrementally moving up and down
struggling to match the finer details of the task. It is likely this could be alleviated with
the addition of a decay in the learning rate. By slowly decreasing the learning rate, the
weight updates would tend towards zero and performance would stabilise. Additional
experiments were also run with a hidden layer between the inputs and outputs, however
due to the instability of the learning process the hidden layer struggled to converge on
a static firing pattern. This created an irregular input for the readout to sample from

4.5. RESULTS 87

Figure 4.6: Performance of e-prop on the left-right task. The black line shows the run-
ning average accuracy over the last 64 tests with the required threshold performance
shown in the horizontal dashed green line. The dashed red line displays performance
for random action selection. The vertical blue line displays the trial at which the net-
work achieved over 90% accuracy over 64 tests and the number of cues is increased.
The first blue line shows completion of the 1 cue task and the last the 7 cue task,
network parameters are retained between transitions.

hampering final convergence.

4.5.2 Temporal credit assignment

This task highlights the power of e-prop to use instantaneous approximations of pre-
vious network activity to solve a task which requires memory of previous states. The
main component of memory within the network is the ALIF neuron. As described in
Sec. 4.4.2 the ALIF neuron’s threshold increases after emitting a spike, decaying back
to resting threshold as governed by the time constant τa. This provides the neuron
with a memory of previous input, which can be combined with the trace of previous
neuronal activity and a global error signal to update the synaptic weights in response
to inputs received previously in time. The memory of previous activity enables the on-
line learning to incorporate more than the instantaneous information available locally
and solve the temporal credit assignment problem. Although the learning is online, the
simulation had to be run at eight times slow-down to ensure the neuromorphic fabric
could handle all spikes at each timestep whilst updating all environment and neuron
variables.

88 CHAPTER 4. E-PROP ON SPINNAKER

As in Sec. 4.4.4, the test begins in its simplest form in which only 1 cue is pre-
sented. The incremental learning approach breaks down the task enabling quick ac-
quisition of appropriate mapping between inputs and outputs, which can later be fine
tuned as the task becomes more difficult. Figure 4.6 shows the network initially at ran-
dom chance of correctly choosing left or right. Following this the network begins to
incorporate enough errors into the weights to classify better than random (50%) chance
at approximately the 100th test. This leads to a quick improvement in performance,
with the target performance of 90% accuracy over the previous 64 tasks reached at the
175th trial.

Next the task difficulty is increased; the network is now trained using three cues,
of which the correct choice is the input which generated the most prompts by the
end of trial. This proved a small increment to the network which mostly maintained
above target performance reaching the next task increment at the minimum 64 trials.
The increase to five cues proved a challenge to learning with performance dropping
and taking a further 180 trials to reach target performance. This is likely due to the
increased separation in time between input cues and the final prompt to decide. For
example, if the first three cues are for the left and the last two signal the right, the
network must be able to store this information in the decaying ALIF neuron thresholds
without the last two cues becoming the dominant memory retained within the network.
This requires a fine balance of the input contribution to each of the ALIF neurons
as an imbalance can become amplified given the decay of the memory through time,
resulting in an incorrect choice at the end of the trial. The training achieved in the five
cue setup was enough to enable the seven cue task to be solved immediately within 64
trials.

4.5.3 Firing rate (ir)regularisation

During the learning process care must be taken to keep neurons within a certain firing
range. If the rate becomes too high then the entropy of the system drops and little
information is carried to the outputs. If the rate becomes too low this can create ‘dead
neurons’ which do not receive enough input to learn. As shown in Equation 4.13, the
error, Erate, is generated at the core by comparing the current rate with a target rate of
10Hz. This error is then added to the learning signal to calculate the combined weight
update.

Erate = frate(t)− ftarget (4.13)

4.5. RESULTS 89

Two ways were attempted to estimate the firing rate of the population. The first, shown
in Equation 4.14, involves taking the number of spikes, n, and dividing by the elapsed
time, t, to get the frequency via a running average.

frate(t) = (n(t)−n(t0)/(t− t0) (4.14)

The second method, shown in Equation 4.15, employs an exponential decay to create
a running average of the firing rate. The number of spikes in the current time step is
added to the running total, frate, which is decayed by τ. As this is done every timestep
with a ms timestep τ = e−1/1000 creating an approximation of the spike rate in Hz.

frate(t) = τ frate(t−1)+(n(t)−n(t−1)) (4.15)

A constant rate is not constant

Figure 4.7 shows a comparison between the two forms of firing rate calculation when
all neurons in the population are firing with a constant 10Hz Poisson rate. The top
plot shows how the rate calculation looks across 8 neurons, as in this implementation
on a single SpiNNaker core. The bottom plot displays how the rate calculation looks
averaged over the whole population of 256 neurons, as in the original TensorFlow
implementation.

It can be seen that even with a constant rate across all neurons, 8 neurons is in-
sufficient to get a smooth read out of rate using the exponential decay. After around
2000ms enough time has elapsed for the running average to be relatively accurate for
8 neurons, although this is a long time relative to input stimulus duration.

When looking at the 256 neuron case of Figure 4.7, the running average stabilises
after around 300ms. The exponential estimate is significantly more stable with the only
issue being the requirement to move from the initialisation value. This shows how even
in perfect conditions where neurons are firing regularly the firing rate estimate is far
less noisy when averaging over a larger population. A larger population average error
would also generate more distributed firing across the population with some subgroups
firing more for some stimuli than others, as opposed to many needing to fire as would
be encouraged with smaller population averages.

Bursting the estimation

Figure 4.8 shows a comparison between the two forms of firing rate calculation when
all neurons in the population are firing with a bursting Poisson rate of 10Hz Poisson
condensed from 2048ms into 12.85ms, as an extreme example of bursting behaviour,

90 CHAPTER 4. E-PROP ON SPINNAKER

Figure 4.7: A comparison of firing rate estimation with a constant rate across 8 neurons
(top plot) and 256 neurons (bottom plot) using exponential decay (blue) and a running
average (green). The average Poisson firing rate is shown with the red line and the
actual spike times for each neuron are represented by the black dots in the bottom half
of each plot.

4.5. RESULTS 91

similar to the bursting nature of the mouse experiment’s inputs. The top plot shows
how the rate calculation would look on a SpiNNaker core with 8 neurons, as in the
implementation. The bottom plot displays how the calculation would look if you were
to average over the whole population of 256 neurons, as in the original TensorFlow
implementation. A more pronounced difference can be seen between the the firing
rate estimates of the two population sizes. The population of 256 neurons allows sub-
groups of 8 neurons to fire at a much increased rate with the population size creating a
smoothing in the rate estimation.

The top plot of Figure 4.8 shows what a single core would see when the whole pop-
ulation fired as in the bottom plot of Figure 4.8. The bursting nature of the input makes
exponential decay estimation incredibly inaccurate with only a brief time when the rate
is correct. The running average is correct shortly before the subsequent burst with the
rate estimate then increasing. As time progresses the increased estimate following a
burst diminishes.

The original TensorFlow implementation of e-prop was able to estimate the firing
rate over the whole population. As shown in the two contrasting firing examples of
Figure 4.7 and Figure 4.8 this leads to a very clean firing rate estimate relative to what
is possible with 8 neurons. Appropriate firing regularisation is of particular importance
when training recurrent networks. Their looping connections create a lot of potential
feedback mechanisms within the network, which need to be carefully balanced to en-
sure the network is neither firing constantly or quiescent.

Regularity in practice

When applying mechanisms of firing rate regularisation in the SpiNNaker implemen-
tation, the noise in the firing rate calculation would often drive the spiking activity
towards low entropy. This may mean no activity as weights were pushed too low and
many neurons become ‘dead’ or, as was more often the case, towards habitual firing of
the whole population in synchrony. Although the firing rate may have been close to the
target 10Hz, in this last case the small population sizes mean there was little variation
across neurons and any individual responses to different inputs was lost, significantly
affecting task performance. The error generated from the firing rate regularisation of-
ten dominated the weight update reducing variance to inputs. There is also the case
when firing rate regularisation would drive the network towards a state when the firing
rate would be high enough that packets would be dropped. Eventually, the router would
not be able to handle routing that many packets, eventually causing the simulation to
crash and be lost.

92 CHAPTER 4. E-PROP ON SPINNAKER

Figure 4.8: A comparison of firing rate estimation with bursting behaviour across 8
neurons (top plot) and 256 neurons (bottom plot) using exponential decay (blue) and a
running average (green). The average Poisson firing rate is shown with the red line. In
this instance the 10Hz Poisson firing of 2048ms is condensed into 12.85ms to give an
extreme example of bursting behaviour.

4.6. DISCUSSION 93

4.6 Discussion

This work demonstrates the applicability of the e-prop learning algorithm [9] to neuro-
morphic hardware through a functioning implementation on SpiNNaker. Training was
carried out in an online fashion with locally stored parameters capturing enough infor-
mation to enable the matching of a target wave-form and the processing of temporal
information. This displays the potential for neuromorphic implementation of learning
algorithms in a number of domains. This could allow local tailoring of neural net-
works on personal devices in an energy efficient manner. Lower power consumption
would lend itself well to mobile devices with on device learning increasing the user
experience through individualised data processing.

Controlling the fire element

A key challenge in the development of this work was ensuring the network remained in
a state in which the pseudo derivative was non-zero. If the weights of the network lead
to a neuron not firing this could easily become permanent, resulting in a ‘dead neuron’
that could no longer contribute to network performance. Firing rate regularisation can
aid in alleviating this, although it proved difficult to create a stable response using
only locally available information. The original e-prop work achieved stable firing
rate estimation by averaging over the entire population [8], enabling some neurons
to fire a lot and some very little. However, with only local information available in
the neuromorphic implementation the neurons can often form a homogeneous firing
pattern reducing the information content of the spikes. This was especially true for
the temporal credit assignment task, in which the input spike frequency had a large
variability in time with high frequency inputs followed by large periods of quiescence.
Subsequently this makes the task of sampling from the hidden layer spikes significantly
more difficult for the readout neuron.

A neuromorphic future

Implementation of the e-prop algorithm on SpiNNaker demonstrates its suitability for
deployment on neuromorphic hardware. Management of individual synaptic traces per
synapse was achieved by moving the synaptic matrix into core local memory, and com-
puting updates within the periodic neuron state update. While this led to increased use
of core memory and longer state update times, the implementation was able to success-
fully complete the presented tasks with online learning in real-time for the wave-form
matching task, with an effective upper limit of 256 e-prop synapses per neuron. More
complex problems such as the temporal credit assignment task challenged these lim-
itations, and may require an alternative mapping to SpiNNaker hardware to improve

94 CHAPTER 4. E-PROP ON SPINNAKER

performance. This could include parallelisation of neural processing [115], and ad-
ditional measures such as use of sparse connections to reduce the number of e-prop
synapses. The fixed-point arithmetic utilised on SpiNNaker was found to be suffi-
cient for the given tasks, however the lack of an FPU causes the divide operation to be
performed in software impacting performance. More complex tasks requiring lower
learning rates for training stability may benefit from additional scaling of variables,
e.g. re-defining values between 0 and 1 as long fract type, or scaling the weight rep-
resentation to enable low-end precision. The online batch training mode used here
could also be explored further, to enable accumulation of significant weight changes
before committing them to synaptic weights. However, overall this work highlights the
potential of bio-inspired learning rules implemented on neuromorphic hardware.

The work continues

There are a number of potential directions for further adaptation of this work. Devel-
oping more stable regularisation techniques, which can be applied using only locally
available information will allow the network to operate in a higher entropy state, in-
creasing the efficacy of the learning as a whole. In this work the power of e-prop to
train recurrently connected networks was not fully explored, in part due to the chal-
lenges of firing rate regularisation to create appropriate firing in the hidden layer. If
regularisation can be developed to tame the recurrent network using local informa-
tion then more complex temporal tasks, such as sound and video processing, could be
trained online.

Bringing advancements from future implementations of e-prop [11] in which a
network is trained to play Pong, the work in this chapter could be extended to re-
inforcement learning scenarios. Although requiring a large amount of training time
for more complex environments such as Atari games, the architecture explored in this
work could, in theory, be applied to reinforcement learning tasks. This would enable
online real-time learning on neuromorphic systems to be applied to a wider range of
applications with sparse and complex error signals.

The wider context

A biologically inspired learning rule has been explored within the brain-like constraints
of the neuromorphic platform SpiNNaker. By operating using only locally available
information and constrained with information transmission in similar ways to the bio-
logical brain, GD-like learning is shown to be possible. However, it is still only a part
of the puzzle of learning. There are many hyper parameters and topological choices

4.6. DISCUSSION 95

which must be made when applying a learning algorithm to a new task. Expert knowl-
edge and trial and error are often required to determine sufficient settings. Biology has
performed this trial and error process through evolution reaching a complex and adapt-
able architecture capable of learning a plethora of different tasks. Machine learning
research can continue to try and identify individual elements, such as useful transfer
functions and architectures, although it will only be when we can start putting them
together in meaningful ways that complex cognition will emerge.

Matching the creativity and ingenuity of evolutionary search in creating efficient
solutions to complex problems remains a difficult challenge. The field of learning-
to-learn attempts to bridge this gap, at least in terms of hyperparameter selection and
initialisation, by putting an outer-loop optimiser around an inner-loop learning algo-
rithm [8, 14, 145]. This allows qualities of the inner-loop optimiser to be more finely
tuned to a particular task enabling faster learning and more efficient operation. The
question still remains, what parameters are chosen for the outer-loop optimiser, but
learning-to-learn lends more adaptability to the implementation of the fast timescale
learning process and potentially paves the way for future algorithmic complexity with-
out requiring expert knowledge. Research has also gone into directly feeding back
information from the inner-loop to the outer-loop [39], displaying a potential bridge
between the two scales.

There will always be the inherent need for data to drive the learning process but if
more efficient learners can be created then individual networks may not always need
to start from scratch. If initialisation can move beyond random and begin at starting
points with broad applicability then knowledge can be begin to be transferred across
tasks and fast learning becomes a simpler task. Slow learning gave us the biological
brain but machine learning continues to leave its focus on the fast learning and fine-
tuning processes starting from random initialisation.

Chapter 5

Error driven neurogenesis

5.1 Introduction and background

The brain possesses an impressive ability to acquire information and is able to readily
apply it without a disconnect between learning and acting. From a young age humans
can be presented novel stimuli with associated labels and is immediately able to recall
and manipulate these concepts. This is in part a consequence of the learning that has
happened before (both in the life time of the human and on an evolutionary timescale)
to extract general features, but it is also a consequence of the state in which information
is stored in the brain. With time, through sleep and further training, memories can be
consolidated and kept in a more general form for future application [132].

New neurons equal new information

One possible mechanism by which information can be stored in the brain is via neu-
rogenesis, a process which continues throughout a lifetime [129]. Research has sug-
gested that adult hippocampal neurogenesis plays a roll in learning and memory [32].
Newborn neurons de novo grow axons and dendrites forming both efferent (outgo-
ing) and afferent (incoming) synapses enabling topological adaptation. The integra-
tion of neurogenesis in the hippocampus suggests an important role in learning and
memory throughout a lifetime, which is missed from the majority of machine learning
approaches.

Gradient descent is (not so) secretly statistics

Traditional ANN (Artificial Neural Network) training techniques, such as gradient de-
scent, skip the initial acquisition of memories and their functional storage and jump
straight to building a generalised representation. These algorithms are examples of

96

5.1. INTRODUCTION AND BACKGROUND 97

parametric models that allow an input-output mapping to be compressed into the pa-
rameters of a network. Owing to the universal function approximation properties of
feedforward artificial neuronal networks with sigmoid activation [25], in theory, a sta-
tistical approximation of any continuous mapping between any two Euclidean spaces
can be captured in the parameters of an ANN. This has also been extended to show
the universal function approximation of neural networks in other cases such as non-
Euclidean spaces [73], RBFs (Radial Basis Functions) [104] and CNNs (Convolutional
Neural Networks) [154]. Learning usually begins with the weights of a predefined
architecture being randomly initialised, the gradient of an error with respect to the
weights is estimated and used to gradually move the network towards a position in the
parameter space with reduced error. The random initialisation can also have a bearing
on the final optimum that will be converged upon due to a sensitivity to initial con-
ditions. This is an incremental approach and requires averaging over many samples
before a useful model can be elucidated.

GD (Gradient Descent) uses data to build a statistical summary and incorporates it
in the weights of the ANN. This leads to a condensed representation within the net-
work and a generalised solution, assuming suitable architecture and hyperparameters.
This condensed statistical representation leads to the black box nature of ANNs; their
behaviour cannot easily be investigated without evaluation using a test set. This can be
problematic in cases with limited data where situations that must be accounted for are
not part of the training data, such as different weather and lighting conditions for an
autonomous car. It is also of importance in understanding what particular features are
being selected to produce an output, for example in medical diagnosis.

The general function of gradient descent algorithms applied to ANNs, such as BP
(Back-Propagation), requires that the network be paused to perform an update. This
is in part because of gradient descent often utilising batch updates to smooth weight
updates across multiple examples. There is also the computational demand of cal-
culating gradients for all weights within the network and combining them with the
produced error, which can prove challenging during operation. Online learning could
allow robots to explore an environment and adapt their behaviour continuously, such
as changing their gait to adapt to unexpected terrain or select new behaviour after
damage. Solutions exist to this such as the multi-compartment model of dendritic mi-
crocircuits [120] in which activity is simultaneously passed forwards and backwards
to enable online updating of connection weights in a biologically plausible way.

Neural networks are more than neurons

98 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

Recent research has shown that the branching arms, dendrites, of L2/L3 pyramidal
neurons possess non-linear activation functions capable of solving the XOR task [47].
They are not active with low level stimulus before a threshold level at which they begin
producing activity. After a point, as input stimulus increases their activity decreases.
This suggests some tuning of dendritic activity to a particular level of input activation.
If that tuning can be adjusted to the level of inputs then the dendrites can be argued to
have stored memory of those activations. This is a contrast to standard ANN connec-
tions which perform only linear transforms of inputs. There is evidence of dendritic
dynamics and maintenance being involved in long term memory formation and cogni-
tion [67, 136], suggesting there is still far more untapped computational power within
the biological brain yet to be harnessed by modern artificial intelligence.

Remembering beyond synaptic weights

Memory within neural networks often takes the form of recurrent circuits like LSTM
(Long Short Term Memory) units [8, 52, 110, 135]. They have shown great perfor-
mance applied to time series data such as video and speech processing [59, 121].
They allow the storing of information in a way that can be trained via gradient descent
which is ideal for traditional learning approaches in ANNs. External memory units
have also been used in conjunction with neural networks [51, 146]. A powerful exam-
ple is the neural Turing machine [50] which possesses memory locations which can
be used to store and retrieve data. Their design allows training via gradient descent,
as with LSTMs. However, due to their reliance on gradient based techniques they re-
quire large amounts of compute time to form and manipulate useful memories of the
system. Deep neural networks have been augmented with episodic memory units in an
attempt to solve the data hungriness of model-based neural network approaches. This
is often in the form of a lookup table whose stored value is used in conjunction with a
neural network trained with gradient descent [79, 82, 84]. The addition of an episodic
memory buffer enables quick acquisition of beneficial behaviours which can be ex-
ploited. This is exemplified by Blundell et al. in which a purely table based approach
to episodic memory is used to solve Markov Decision Processes [13]. The approach
boasted fast learning capabilities as a result of being able to quickly exploit highly
rewarding states. However, the episodic approach may be overtaken by parametric
function approximators, such as DQN [53], in the later stages of training.

Neurogenesis is continually generative

As mentioned earlier, neurogenesis has been suggested to play a role in learning and
memory formation. However, neurogenesis has been a target of research within the

5.1. INTRODUCTION AND BACKGROUND 99

machine learning community mainly with a focus on continual learning. In [34] this is
displayed by first training an auto-encoder on a reduced number of MNIST (Modified
NIST) classes using gradient descent. After introducing the missing classes neurons
are added to layers with a high reconstruction error and further trained with a reduced
learning rate on non-new connections. This allows the network to adapt its architec-
ture in response to the data and incorporate new information with mitigated catas-
trophic forgetting. Other examples of neurogenesis in literature often rely on starting
first with a trained network and adding neurons via some method and further train-
ing the networks, such as in Mixter and Akoglu [92] where neurons were added to a
seed network using neuron activity as a synapse selection metric. The algorithm grew
the network displaying a reduced parameter size compared to standard approaches or
methods employing pruning techniques with comparable MNIST performance. Mar-
tin and Pilly [87] also start with a pre-trained network applied to MNIST. Following
initial training a perturbed version of MNIST is presented and a genetic algorithm used
to determine where new neurons should be added before being trained with stochastic
variational inference to set the new weights. Parisi et al. [103] apply neurogenesis to
self-organising maps with new neurons added to a pre-trained feature extractor layer
and later trained with a Hebbian learning rule. Abolfazli Esfahani et al. [2] use a seed
network not trained on the desired task and instead took the first feature extraction layer
of GoogLeNet trained on Places205 [153], a place recognition data set. By utilising
the robust feature detectors of the first convolutional layer, particle swarm optimisation
was applied to control neurogenesis to create a corner detector.

There is very limited work on neurogenesis that does not rely on a seed network,
the best example comes from [133] in the paper Lifelong Learning Starting From Zero.
They begin with an empty network and add neurons in response to errors, unlike the
similar work of [38] in which neurons are added for unrepresented states. Value nodes
connected to neurons use Gaussian transfer functions to enable downstream neurons
to be maximally responsive to particular inputs. The weights, biases and Gaussian pa-
rameters are updated via backpropagation and gradient descent. Quick learning capa-
bilities are displayed in contrast to networks trained with only gradient descent. Brains
could achieve this network growth through neuron recruitment as well as generation.

Error driven neurogenesis

The algorithm explored in this chapter, EDN (Error Driven Neurogenesis), leverages
neurogenesis to enable online one-shot learning in a range of applications. It displays
a rapid acquisition of new information, without the need for gradient calculation, in

100 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

a biologically inspired way by modelling forms of neurogenesis and dendritic non-
linearities. Starting from an empty network imbues it with no initialisation bias and
it is therefore only driven by the inputs it is presented and the context they are put
in by the current performance of the network and how that effects the error gener-
ated. Incrementally a non-spiking connectionist model is grown in response to errors
experienced during training. The rest of the chapter is organised as follows: in Sec-
tion 5.2 an overview will be given of EDN’s design before discussing how it is applied
to different domains in Section 5.2.2 and then contrasting it with similar algorithms
in Section 5.2.3. Following this results are displayed in Section 5.3 and discussed in
Section 5.4.

5.2 Implementation and experimental design

The current focus of machine learning research is often on the fine tuning of ANN
parameters. An architecture is predetermined using expert knowledge to best suit a
specific task and is gradually fed data to create a statistical model. This limits the gen-
eral applicability of the network as a different topology may be required in a different
domain and applying it to a new task can result in catastrophic forgetting, significantly
hurting performance on the previously learnt task. It also does not enable the network
to fine tune its structure in response to unexpected limitations, such as requiring more
layers or more neurons to extract different features. Neurogenesis offers a potential
solution to these problems by incorporating new neurons into a network. This can be
done in a way that does not effect the previously learned information whilst allow-
ing incorporation of new data. The algorithm explored in this work relies on three
key principles: 1) errors drive learning, 2) synapses can be used to store information
and 3) neurogenesis facilitates information acquisition. When put in a learning sce-
nario this combination leads to a modular network that grows in response to errors
and stores information to mitigate these errors in its synapses. Code is available at
https://github.com/adamgoodtime/neurogenesis which includes both the code used for
EDN and GD comparison.

5.2.1 Error Driven Neurogenesis algorithm design

An overview of EDN’s operation can be seen in Figure 5.1a. There are three key el-
ements to the EDN algorithm: error generation, neurogenesis and synaptic storage.

https://github.com/adamgoodtime/neurogenesis

5.2. IMPLEMENTATION AND EXPERIMENTAL DESIGN 101

They are used in combination to create a non-spiking neural network which grows as
data is presented to it. First an input is presented to the network which in turn pro-
duces an output. The output is used to generate an error signal which is compared with
a threshold to determine whether neurogenesis is triggered. Following the triggering of
neurogenesis input values are selected to be stored, creating a neuron that is maximally
active at the presentation of the same input. This newborn neuron is then connected to
the corresponding outputs as determined by the generated error, e.g. when classifying
digits, guessing a 3 when the class was 8 would connect negatively to the 3 and posi-
tively to the 8. This has now added a neuron to the network that upon seeing the same
input of an 8 will inhibit the 3 and excite the 8. This process continues incrementally
adding more information to the network each time the error is above threshold. The
following subsections will first explain how the network processes information and
how that determines its representation. Next neurogenesis will be explained and how
it makes use of the synapses to store information and alleviate errors.

Network activation

The EDN network is composed of two elements, the neurons and the synapses. In
contrast to traditional ANNs, the synapses contain the non-linearities, not the neurons.
The synapse activation is a triangle kernel centred around a value v which is sampled
from the inputs when neurogenesis is triggered and stored as a synapse parameter. The
width of this kernel is controlled by the spread s. Equation 5.1 shows how a synapse
input, x, is transformed with the triangle kernel, k, to produce the synapse activation.
This puts maximum synapse activation when the input x is the same as v with activation
dropping the larger the separation until a difference of s at which it becomes zero. This
is similar to the non-linear properties of dendrites discussed in [47] shown to be able
to solve the XOR problem.

k(x) = max
(

0,1− |(v− x)|
s

)
(5.1)

an =
1
N

N

∑
i

k(xi) (5.2)

Hidden neuron activation, an, is governed by Equation 5.2. The N inputs, xi, are
passed through the triangle kernel, k, to produce the synapse activations. The synapse
activations are averaged to produce the neuron activation without any weight term.
This makes neuron activation a measure of similarity between the synapse parameter

102 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

Figure 5.1: (a) the general structure of the EDN algorithm. First an input is presented
which produces an associated error. If the magnitude of the error is above the error
threshold then neurogenesis is triggered. Input synapses of the newborn neuron are
selected and the values of the current inputs set the centre of the kernel function on
the synapses. An output synapse connects the neuron to outputs whose error was
above threshold with a weight proportional to the error produced. (b) an example
topology created with EDN. The different colours connected to the hidden neurons
signify different sub-sampled input vectors, which have been stored on the synapses;
they all contribute equally to neuron activity. The colour and thickness of connections
between the hidden layer and the outputs displays that output connections are weighted
and the magnitude can be negative or positive. The weight of these connections is
determined during the training process by the error produced when neurogenesis is
triggered.

5.2. IMPLEMENTATION AND EXPERIMENTAL DESIGN 103

v (taken from previously stored input values) and the current inputs x; there is no
weighting parameter, just a measure of similarity. The measure of similarity is 0− 1
because of the activation limits imposed by the function k and the averaging of the
inputs. Synapses from the hidden neurons to the outputs also possess the non-linear
activation shown in Equation 5.1 with v = 1 and the same value of s as the rest of the
network. This acts to threshold neuron contribution to output values to only the most
similar detected features.

ay =
N

∑
i

wik(ani) (5.3)

Output activation, ay, is controlled by Equation 5.3. Output values are calculated in
much the same way as neuron activation with the main difference being the addition
of a weight term w which is a function of the error produced during neuron creation
(discussed in Section 5.2.2 for each task domain). The weight is set during neurogene-
sis and modulates the contribution of each neuron, and therefore feature, to the output
values. Also, activation is now the sum of the inputs rather than the average. As many
hidden neurons can be connected to the outputs with only a fraction of them being
active, the sum provides more information about relative difference between output
activity.

A graphical 2D example of a single neuronal unit’s activation (composed of synapses
connecting inputs to the neuron and the neuron to an output) is shown in Figure 5.2.
The EDN neuron’s synapse activation can be seen to be highest around the values v0

and v1 and decreasing further from those stored values. As the neuron activation also
passes through a synapse possessing a triangle kernel, the neuron activation is thresh-
olded creating the purple diamond activation at the centre of the two synapses’ peak
activation, (v0, v1), which is narrower than the synapse activation.

Network representation

A key difference in EDN compared to traditional ANN approaches is the way informa-
tion is stored within a network. Neurons in a standard ANN take a linearly weighted
sum of inputs and pass it through a non-linear activation function. This is analogous to
drawing a hyperplane through n-dimensional space and having the neuron’s activation
relative to the distance from this plane, see Figure 5.2. By combining multiple neurons

104 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

in multiple layers a complex high dimensional boundary can be created which deter-
mines a certain output for any input. The training of such a network typically requires
the gradual acquisition of data to build a statistical summary of input-output mappings
into the functionality of the network architecture.

Instead of neuron activity being relative to the distance from a hyperplane, the ac-
tivity of neurons in EDN are relative to distance from a data point. This removes the
need for averaging over multiple instances as a single point can already say with confi-
dence that the area around it is likely to share the same property. This is exemplified by
Figure 5.2 where on the left a traditional ANN neuron with ReLU activation attempts
to classify a single data point but without other data it becomes hard to say with any
confidence where the boundary should be placed. On the right an ANN neuron’s acti-
vation is shown with the neuron activation being limited to the area around the stored
data point. The ReLU neuron will remain active infinitely far from the hyperplane.
For this to be beneficial, generalisation over many data points is required to create an
appropriate model of the input-output mapping.

EDN neurons allow the instant acquisition of information and an adaptation of the
network’s model without disruption to previously learned information. The parameters
retained within the model are never updated; information is only added, never altered.
In parametric versions of ANNs, care must be taken when incorporating new informa-
tion as error is transferred to the parameters (connection weights) of the network and
can effectively overwrite previously learned knowledge. This is termed catastrophic
forgetting and can limit the continual learning capabilities of ANNs as result of them
being parametric models. Updating the model to include more information requires
updating parameters, which is where previous information is stored. The knowledge
is being condensed into a limited number of parameters, therefore, changing any can
alter the representation as a whole. Training a parametric model requires gradual and
repeated tuning of parameters to ensure the model represents the data as a whole.

Synapse creation

When neurogenesis is triggered the current input values are retrieved to become the v

parameter for incoming synapses of the newborn neuron. They form the input synapses
of the new neuron creating a neuron which is maximally active when presented with
the same inputs as were just stored because each synapses triangle kernel is centred
on v. Subsets of inputs can be selected to be the incoming synapses of the neuron.

5.2. IMPLEMENTATION AND EXPERIMENTAL DESIGN 105

Figure 5.2: A comparison of a standard ANN neuron with ReLU activation and an
EDN neuron’s activation. The black dot is a single data point, the pink shaded area
shows the output activation of the neuron in both cases, with a deeper colour repre-
senting a higher level of activation. The red and blue shaded areas represent the level
of activation of each synapse, which possess the triangle kernel shown in the bottom
right, with spread s and centred at individual values of v. The EDN neuron’s activity
is the average of the incoming synapse activity and is also passed along an outgoing
synapse using a triangle kernel with the same s value and v = 1. This output synapse
acts to threshold neuron activity and create the bounded purple area in the input space
in which the neuron is active.

106 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

This moves the neuronal representation from an input-output mapping to a feature-
output mapping. Output synapses of all hidden neurons have a uniform v equal to 1,
in contrast to the input synapses where v is set by the values of the inputs. Because
the synapses still possess a triangle kernel this acts to threshold and accentuate output
contributions of neurons which are receiving the most similar inputs to their stored
values. Neuron contributions to outputs are further modulated by error, discussed next.

Error integration

The algorithm uses neurogenesis to mitigate errors produced by the network. The
weight of the synapse connecting the new neuron to the outputs is opposite sign of
the error produced. Neurogenesis is only triggered if the magnitude of the error is
above the error threshold Eth. The way in which error is produced and integrated
into the network is task specific and will be elaborated in Section 5.2.2. A general
way to view it is to compare it to how weights are updated in gradient descent. The
sign of the gradient indicates which direction the weight should be altered, larger or
smaller magnitude, to reduce the error. You take a step in the direction of the gradient
to move the weight in the opposite direction of the gradient of the error with respect
to the weight. This update can be broken into two components: a magnitude and
a direction. In EDN the magnitude is incorporated into the w parameter of output
synapses of hidden neurons to outputs. The direction is governed by the inputs stored
in the individual input synapses’ v parameter. This in essence makes each neuron an
individual update to overall network performance.

A comparison of learning dynamics between gradient descent and EDN can be seen
in Figure 5.3. It is a 2D demonstrative example composed of 3 classes: red, green, and
blue, with all points being the training data. Decision boundaries are drawn for each
class at each training step. At the start EDN has no output representation and therefore
makes no guess about which output belongs to what point in the input space, this can
be seen as the white area around the points. The network initialisation of gradient
descent produces a bias at the beginning of training creating an output for all points in
the input space. This is a consequence of the neuron activation that is active infinitely
far from the hyperplane drawn by the incoming synapse weights, although they have
no relation to the data at this stage. As training progresses the class boundaries drawn
by gradient descent shift and begin to match the data. It is also seen that EDN’s storage
of a few data points enables the classification of many other data points immediately.
This trend continues with gradient descent gradually matching the input data until a

5.2. IMPLEMENTATION AND EXPERIMENTAL DESIGN 107

Figure 5.3: A selection of training steps of EDN (top) and an ANN trained with GD
(bottom) are shown for a toy classification example. The data set is composed of three
classes: blue, green and red. Class boundaries are drawn in a darker shade than the
data points showing what output each model would associate to that point in space.
The white area around the EDN plots indicates that there are no output values at that
point in the input space.

general approximation of data distribution is converged upon. EDN converges to a
general boundary surrounding the classes, although, there remains no activity far from
the data points. If subsamples of inputs were taken neuron activity could persist along
selected dimensions, however, with this example all inputs are selected to be a part of
the new neuron.

The neuronal unit

The network in EDN is a collection of independent and modular neurons. Each one
has a set of input synapses that are more active the closer the input activity is to their
stored v value. A neuron’s contribution to the outputs is proportional to the output error
produced when that neuron was created. Combined, this creates a modular neuronal
unit that attributes a specific output value to inputs similar to its stored v values. The
more similar the input the more confident the neuron is in the expected output. En
masse this creates a network that, through training, has an expectation of the correct
output for all points within a certain distance of the saved features.

The storage of information on the synapses allows neurons to be investigated and
input-output mappings to be extracted from the network. The values of v on the input

108 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

synapses store the inputs and the output synapses indicate which outputs those inputs
correspond to. When subsets of inputs are selected, this enables feature-output map-
pings to be extracted. Parametric models do not possess this ability as the knowledge
is condensed into a set number of parameters. Evaluating the model requires querying
it with input and observing the output. Investigating output response to inputs is im-
portant to be able to accurately examine performance, however, being able to dissect a
network and determine what constituent elements compose the behaviour as a whole
enables fine grained inspection and conclusions to drawn beyond the data presented to
the model.

5.2.2 Task specific alterations

For all tests input values are normalised between 0 and 1 by subtracting the minimum
and dividing by the range before training. An error threshold, Eth, determines the
minimum absolute error that is required for neurogenesis to trigger. Only outputs with
a magnitude of error greater than Eth will form connections with the new neuron.

Classification

For the classification tasks the error is generated by subtracting the estimated classifi-
cation (softmax of the output values), y∗, from a one-hot encoding of the correct labels,
y. This gives positive error for outputs which were too small and negative error for out-
puts which were too high. As shown in Equation 5.4, this error value, E, becomes the
weight of the connection from a new neuron i to the respective output o if neurogenesis
is triggered.

woi = yo− y∗o = Eo (5.4)

Using surprise to guide input selection in classification

During classification, when neurogenesis is triggered, a record of the input values
stored on input synapses is added to an expectation for the associated class, eo, where
e is the expectation of the output o. Equation 5.5 shows how the receptive field for an
output is calculated by weighting the vector of values of v stored on each neuron i by
their weighted contribution to the output o. The expectation is a uniform weighting,
woi = 1, which creates a broader representation in the expectation, discussed in the
results.

5.2. IMPLEMENTATION AND EXPERIMENTAL DESIGN 109

Figure 5.4: A example of how output values of 0 and 1 are combined to create a
position on the regression scale. As described in Equation 5.8 the output value for the
real part of the scale (red) is divided by the total of the real and inverted (blue) outputs
to create the position on the regression scale, in this case 26

26+14 = 0.65. This value is
then scaled to the full range of regression values possible in the task to produce the
estimated regression value of the input.

eo =
∑i woivi

∑i woi
(5.5)

When neurogenesis is triggered, the expected output for each class, ey, is multiplied
by the activation values of their respective outputs, ay, to create an expected output, e

(see Equation 5.6). The activity modulated expectation and the input values, x, are
compared for each input, i, to create the input surprise s, as shown in Equation 5.7.
Inputs with a surprise greater than the surprise threshold, sth, are selected to form
synapses of the new neuron. When there is no expected value of an input, such as at
the beginning of training, the input is selected by default.

e =
out puts

∑
y

ayey (5.6)

si = abs(ei− xi) (5.7)

Encoding continuous values

Classification is a mapping from inputs to a discrete label but many possible input
output mappings do not map to discrete outputs. Regression tasks involve mapping
inputs to continuous values and, therefore, require a different formulation to work
with EDN. Neurons within EDN attribute a specific input to a specific output error. In
classification this is straightforward as neurons can be directly connected to the outputs
associated with the error produced. In regression this is less simple as outputs can take
any value within a continuous range. The output connection has to be able to point at
a specific position on a scale. It also has to be able to point with a certain magnitude to
indicate similarity with stored inputs (neuron activity) and the associated error created
during neurogenesis (output weight).

110 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

These challenges are solved by splitting each regression value into two compo-
nents, one for the low value on a scale and one for the high value. The scale is from
0-1 and is rescaled to fit the full range of output values possible for the specific task. A
newborn neuron is connected to both the low and the high outputs. The total activity
of the network’s contribution to both outputs is combined to estimate the regression
value. This is exemplified in Figure 5.4 where a value of 0.65 on a scale from 0-1 is
encoded as 26 for the low output and 14 for the high. Equation 5.8 is used to retrieve
that position on the scale, where y is the value, l is the low value magnitude and h is the
high magnitude. This splitting enables the activity level of a neuron to not effect the
estimated output value and instead become a measure of confidence in the value. Mul-
tiple neurons’ activities can also be added together and modified by individual output
weights to create a weighted average of regression estimates.

y =
l

l +h
(5.8)

During operation all output values are bounded from 0-1 and used to calculate outputs
as shown in Figure 5.4. The range of possible regression values is used to calculate
what the minimum and maximum values should be when translating back and forth
between a scale from 0-1 and actual regression values. They are scaled to the full
range of regression values to calculate the mean squared error for a given input and 0-1
when represented in the network. This error, E then becomes the connection weight
from a neuron to the low, wl , and high, wh, outputs with the ratio between the two
encoding the position in the output range associated with that input. This is shown in
Equation 5.9 and Equation 5.10 where y is the current regression value for that input
that needs to be stored on the neuron, min is the minimum possible regression value and
max is the maximum possible value. This attributes a particular input with a particular
regression value and weights it by the error produced by the network. The min and
max value of the data are calculated before hand to allow for an maximum dynamic
range of the outputs.

wl = E
y−min

max−min
(5.9)

wh = E(1− y−min
max−min

) (5.10)

5.2. IMPLEMENTATION AND EXPERIMENTAL DESIGN 111

Reinforcement learning

Classification and regression are learning paradigms where a model is trained with data
in which all inputs are given an output label, either discrete or continuous. Reinforce-
ment learning scenarios do not have access to such information and must make con-
nections between actions taken through time and their eventual reward state. In EDN
actions are taken greedily with the output with the highest value used to determine the
action performed. Random actions are taken when all outputs are equal. There is no
correct label due to the reinforcement learning nature of the task, therefore, errors are
simulated by inhibiting the last m timesteps before a negative reward. This is in an ef-
fort to reduce the chance of the action associated with a negative behaviour happening
in the future. The most recent timestep is given an error of -1, then decreasing by 1

m

until the t−mth timestep after which no more neurons are formed. This generates m

new neurons for each failure with the neurons connected to the output chosen at that
particular timestep. Equation 5.11 shows how output weights are generated. Only the
ith output corresponding to action i being chosen, at

i, at timestep t forms a connec-
tion with the new neuron, where t f inal is the timestep when the negative reward was
generated.

wi =−at
i(1−

t f inal− t
m

) (5.11)

Neuron reinforcement and deletion

Reinforcement learning presents the challenge of associating actions with rewards.
Unlike classification and regression there is not a specific input output mapping to learn
via supervision. Negative reinforcement is captured in the error driven neurogenesis.
In the inverted pendulum task a positive reward is given at each timestep the pole is
balanced. This signal is passed into the network and used to keep track of each neuron’s
contribution to network performance. A neuron’s individual reward value, R, is first
initialised to the average of the network’s reward, starting at zero for the first neuron,
to allow time for new neurons to be evaluated. The equation for updating the neuron’s
reward, R, at each timestep can be seen in Equation 5.12 where r = 1 is multiplied by
the activity of the neuron, an, and low-pass filtered with a τ value of 0.9999.

To remove unrewarding behaviours, and keep the best input-action mappings, neu-
ron deletion is used in conjunction with neuron reward to prune the network of the
least productive neurons. This is done when the number of neurons in the network

112 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

goes above a set limit. When a neuron needs to be deleted the neuron with the lowest
accumulated reward is selected to be removed. This aids in capping network size and
has the added benefit of aiding speed of convergence.

R(t +1) = τR(t)+ [(1− τ)ran(t +1)] (5.12)

5.2.3 Related algorithms

While EDN shares attributes with ANNs and gradient descent it also shares common-
alities with other learning algorithms. The methodologies discussed below are similar
in formulation to EDN and are introduced to highlight the similarities to and differ-
ences from related algorithms. They do not have the same breadth of applicability as
backpropagation and are therefore not used for comparison in the results.

K-nearest neighbours

A similar non-parametric algorithm that leverages the data points to form the func-
tion output of the model is K-Nearest Neighbours (KNN)[41]. All the training data
forms the model with the K closest training data points performing a majority vote
to determine the property of an unseen point. Careful tailoring of K is needed to en-
sure appropriate classification [24]. EDN does not require the defining of a K with
the training process selecting and weighting individual data point’s contribution to the
combined model output. The thresholding of output synapse activity puts a limit on
how many neurons will contribute to the prediction. The synapse thresholding also
alters the way in which distance between data points is measured; if two input vectors
are similar in all but a small number of inputs which are very different then Euclidean
distance between them can become large. In contrast the thresholded synapse activity
will put a cap on the distance between variables allowing the vector as a whole to still
be considered similar to stored values if a minority are very dissimilar. This puts an
emphasis on the feature-output mapping rather than the input-output mapping. Only if
an error is produced will this assumption be adjusted and neurogenesis triggered to al-
ter the belief. This mechanism in combination with input subsampling puts a stronger
emphasis on the features and their relation to network error rather than the data points
as a whole.

5.2. IMPLEMENTATION AND EXPERIMENTAL DESIGN 113

Radial basis functions

RBF networks share a similar topological design to EDN. They both have a single
layer of neurons whose activity is distant-dependent from their centres to the input
point with the peak at zero distance. However, EDN uses a triangle kernel on each
synapse rather than an absolute distance between two points. The neuron then becomes
a measure of distance between features rather than points in n-dimensional space. This
emphasis enables exploration of different feature combinations and their contribution
to performance and allows neurons to have broader applicability outside their local
area.

When designing an RBF network, once a kernel has been decided, often Gaussian,
there are 4 main parameters: number of nodes, centre of nodes, radius of the function
and the weights of the RBF outputs (see [27] for a survey of RBF networks). Com-
mon training methods for determining the centres of nodes involve a clustering of the
data points. Following this an iterative process of calculating the radius and weights of
each radial basis function reduces some objective error and guides the network towards
a local optimum. EDN avoids the need for gradient descent and tuning of neuron pa-
rameters by computing error on the fly, and combining this with the current input to
adjust the network as a whole. This avoids the need for network parameter optimisa-
tion, however, EDN will end up with more nodes within the network compared to a
typical RBF network.

Kernel density estimation

Another algorithm with commonalities to EDN is that of kernel density estimation
(KDE) [127]. By applying a kernel to individual samples an approximation of the data
distribution can be established. This technique finds its main use within establishing a
probability distribution over a geographical area. Applying a kernel to samples within
a space allows inference to be made about the area surrounding the samples. This can
even be extended to the time domain as in [99] where the temporal element of crime
statistics is used to create an estimated crime density in Kyoto in both space and time.

The main difference between KDE and EDN is the uniformity of kernel contribu-
tion to the overall output. In KDE each data point is part of a random distribution and
the objective is to combine those samples to estimate that distribution. Data points are
all considered of equal importance and specific inputs are not subsampled to extract
different features. With EDN the data points are not all considered uniformly and are

114 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

only added to the network if they are not currently captured by the model, as deter-
mined by the error during operation. This pivot towards an error driven distribution
removes the need to store all data points in a model and also enables application to a
wide variety of machine learning domains. The subsampling of inputs enables useful
features to be extracted in contrast to all inputs contributing equally.

5.3 Results

Results are shown for the individual tasks comparing EDN with GD using the Adam
(Adaptive moment estimation) optimiser. Following this a parametric analysis of EDN
is given using the wine data set to explore the sensitivity and influence of different
parameters. Parameter values for both EDN and GD were found via grid search for
each task individually and given below. The parameters were selected for both EDN
and GD based on how quickly they were able to learn to model the data in a stable
manner, ideally after a single training epoch. Smaller learning rates could be used for
GD, which would likely lead to better performance after hundreds of epochs but the
speed of information acquisition was the main criteria for comparison.

Wine - classification

The UCI wine data set [35] is a standard classification benchmark comprised of 13
inputs and 3 possible output labels determining the cultivar/type of wine. There are 178
training examples with a class distribution of 59, 71 and 48 for each class respectively.
A stratified K-fold cross-validation of K=10 and validation test set size of 10% is used
to evaluate the performance of the algorithms. A comparison of performance between
EDN and a network trained with GD can be seen in Figure 5.5. After every training
update networks are evaluated on the entirety of the test set and the average across all
folds is displayed. The EDN parameters used were: s = 0.4, Eth = 0.1, sth = 0.05. GD
used a learning rate of 0.03 with Adam optimisation, a batch size of 8 and a network
with a single layer of 200 neurons, a network of similar size to the final number of
neurons created in EDN training was selected for comparison.

The bias created by the initialisation of the ANN can be seen in the performance
starting at an average testing accuracy of 39.9%. This roughly mirrors the testing ac-
curacy of random output selection given the class distribution of this task. In contrast,
EDN begins with an empty network and, therefore, starts with no initial bias. This
results in the network not being able to make any initial guesses and beginning with

https://archive.ics.uci.edu/ml/datasets/wine

5.3. RESULTS 115

Figure 5.5: A comparison of testing accuracy during training on the wine cultivar clas-
sification task of EDN (black) and an ANN trained via gradient descent using Adam
optimisation (blue). An inset is shown for the first few iterations of training to display
the initial emptiness of the EDN network producing no output and the initialisation bias
of the ANN network already achieving testing accuracy equivalent to random choice.
The fast acquisition of information in EDN allows it to overtake the testing accuracy
of GD before the first batch update is done at the 8th training instance.

116 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

a testing accuracy of 0%. The training process adds neurons to the network, rapidly
increasing the testing accuracy and surpassing the performance of GD after 4 samples,
this is before the first batch update of GD has been calculated. It can also be seen
that learning via GD causes fluctuation in testing accuracy which stabilises with time.
EDN’s performance displays less variance between training examples with a final test-
ing accuracy of 99.4% reached in 298 iterations using 216 neurons. A few thousand
training examples is required by GD before testing accuracy converges towards a per-
formance of 99.4%. This is over 25 times slower than EDN with testing accuracy still
not completely converged. Neuron count continues to increase in EDN with testing
accuracy remaining constant throughout the remainder of the training. Early stopping
could have been used here to limit network growth, however, it continued to display
the lack of overfitting present after convergence.

Auto-mpg - non-linear regression

The auto-mpg regression data set [1] consists of 398 cars with 9 attributes such as
number of engine cylinders and horsepower. The aim is to process the attributes and
output the miles-per-gallon of the car. K- fold cross validation of K=10 is used to
evaluate performance. The results shown are the average testing accuracy across all
folds. The EDN parameters used were s = 0.4, Eth = 0 and all inputs were selected by
each neuron. Two different configurations are shown for GD to display how batch size
and learning rate can effect learning. A single layer of 1024 hidden neurons is used as
this resulted in the fastest and most stable learning using Adam optimisation.

Mean squared error (MSE) is calculated over the whole testing set after each pre-
sentation of an input or batch in the GD cases where the batch size is greater than
one. A comparison between EDN and GD on the auto-mpg data set can be seen in
Figure 5.6. EDN begins with its MSE above the ANN’s, however, it rapidly acquires
enough data points to surpass any converged MSE achieved by GD. GD achieved a
minimum MSE of 24.9mpg2 with a batch size of 1 and 32.9mpg2 with a batch size
of 32 during the 20 epochs of training. EDN surpasses the minimum achieved by GD
with an MSE of 23.2mpg2 after 29 training examples (creating 29 neurons) and an
MSE of 12.2mpg2 at the end of the first epoch (creating 358 neurons as Eth = 0 so
every sample creates a neuron). The error continues to be fine tuned during the pro-
ceeding epochs until a converged MSE of 10.25mpg2. If it assumed that GD reached
its best performance at 4000 training iterations (even though performance has not con-
verged yet, especially for the batch size of 32) this makes EDN over 135 times faster

https://archive-beta.ics.uci.edu/ml/datasets/auto+mpg

5.3. RESULTS 117

Figure 5.6: A comparison of an ANN trained via gradient descent using Adam optimi-
sation (red and blue, with lr being the learning rate and b being the batch size) against
EDN (black) applied to the auto-mpg non-linear regression task task. A zoomed in
inset is given to display the learning curve of EDN. Batch sizes and learning rates were
chosen which gave the fastest convergence in gradient descent.

than GD to achieve comparable accuracy. With further training EDN also converged
towards an MSE almost 3 times smaller than GD.

Gradient descent takes considerably longer to produce the same level of perfor-
mance. EDN can achieve a faster acquisition of appropriate regression values as neu-
rogenesis can instantly store values. This mechanism enables any data points close to
this value to be attributed a similar value, which is often close to its true value in re-
gression. EDN is also not effected by the non-linear nature of this regression problem
compared to GD. As described in Section 5.2.1 the combination of synapses and neu-
rons in the GD ANN draws a hyperplane through the input dimensions with a neuron’s
activity being relative to the distance from this plane. This makes producing a smooth
output value across the input space difficult for GD to achieve, especially in non-linear
regression.

MNIST - visual classification

MNIST hand-written digit recognition is a common benchmark used in visual classifi-
cation. It is comprised of the numbers 0-9 discretised into a 28x28 grid with grey-scale
pixel intensity from 0-255. The data is split into a training set of 60,000 digits and a

http://yann.lecun.com/exdb/mnist/

118 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

test set of 10,000. The dimensionality of the inputs is far greater for this task than those
explored previously and, therefore, an appropriate sampling of the inputs is important
to aid performance and reduced the number of parameters in the network. EDN pa-
rameters used for experiments unless otherwise specified were sth = 0.4, Eth = 0.1 and
a kernel spread s = 0.4. For EDN with random input selection the number of input
synapses per neuron was limited to 150, which produced the best performance and is
inline with the average number of synapses selected per neuron with using sth = 0.4.
The ANN trained with gradient descent with Adam optimisation used 1024 neurons
with ReLU activation, a learning rate of 0.001 and a batch size of 64.

The graph in Figure 5.7 compares the performance of EDN against GD. A running
average of training classifications is used to enable a fine grained comparison without
needing to evaluate over the test set after every training example. As the comparison
only shows the first epoch none of the training examples have been seen before and
therefore it is equivalent to testing accuracy. As with the previously discussed tasks, a
fast acquisition of information allows EDN to reach a higher level of accuracy faster
than GD in the initial stages. EDN reaches 90, 92.5 and 95% accuracy after around
4300, 6250, 13000 iterations respectively whereas GD takes around 7200, 12000 and
25000 making EDN almost 2 times faster. When EDN uses random input selection
the network’s ability to collect the most pertinent input information is hampered re-
sulting in slower learning and a maximum accuracy of around 93% after one epoch.
This highlights the importance of surprise driven input selection to guide the network
towards the inputs representing information not currently captured by the model.

After one epoch the testing accuracy of EDN is 96.3% with surprise selection and
90.93% with random input selection. GD achieves 96.7% putting surprise selection at
comparable levels of performance after seeing the entire training set. EDN’s testing
accuracy does not increase considerably with further training, gaining only another
0.5% after another epoch and little after that. The parameters for GD were chosen to
produce the fastest, stable learning meaning that continued training did not push testing
accuracy to the 98%+ seen with state-of-the-art training methods, however, further
epochs continued to improve performance up to around 97.5%. These experiments
display how EDN is able to acquire information quickly and store it in a functional way
that can be applied to the task, however, the ability of GD to perform slight alterations
of parameters allows continued refinement of the model, which is not possible with
EDN’s use of a uniform kernel.

5.3. RESULTS 119

Figure 5.7: A comparison of an ANN trained in tensorflow using Adam optimisation
(blue) against EDN with surprise driven input selection (black) and random input se-
lection (red) applied to the MNIST classification task. A batch size of 64 is used to
train the ANN and the moving average of the last 50 batches is used to calculate the
running training accuracy. EDN training accuracy is the moving average of the last
3200 (50*64) training examples as it does not perform batch updates. Training accu-
racy is used as since this is the first epoch none of the data has been seen before and
therefore it is equivalent to testing accuracy.

120 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

Figure 5.8: A visualisation of the expectation for the class 3 retrieved from the param-
eters stored by EDN during training on MNIST. A range of surprise thresholds, sth, are
given to show how this effects the stored values and the subsequent effect on testing
accuracy after a single epoch through the training set.

5.3.1 Visualising the expectation

Using the input surprise method outlined in Section 5.2.2 an expected output can be
generated for each class. The expectation is generated by an uniformly weighted com-
bination of the input values stored in the network’s v parameter for each class. In
Figure 5.8 the effect of the surprise threshold, sth, on the expectation and performance
after one epoch can be seen. When sth = 0 this corresponds to all inputs being saved
when neurogenesis is triggered which leads to a well defined expectation of a 3. As
sth is increased the network now begins to use the expectation of a 3 to guide input
selection.

At low values of sth the performance suffers as many inputs are above threshold,
and therefore form synapses with the new neuron, but the most similar inputs do not,
resulting in a neuron with an unrepresentative feature-output mapping. When com-
bined they create a good expectation of the class, as can be seen in Figure 5.8, but indi-
vidually their feature detection suffers. As the threshold increases the neurons begin to
select inputs with a greater emphasis on the features of the input that make it different
from previous presentations. This leads to a greater diversity and selectivity of feature-
output combinations captured by the network. The best performance can be seen when
sth = 0.4 and this comes when the expectation is more evenly distributed around the
input. This broader expectation allows only the most different inputs to be selected
without too much focus on saving what is already captured by the model. When sth

increases beyond this point performance drops considerably as now the threshold is
too high for a representative sample of the class to be captured. At sth = 0.6 it can be
seen that very few samples are taken as there is pixelation from the lack of samples
averaging out the expectation.

5.3. RESULTS 121

Figure 5.9: The values of v stored on each neuron’s incoming synapses form a record
of the inputs which were captured by EDN during training. The weight on the synapse
connecting the neurons to the outputs enables the receptive field of each class to be de-
termined by multiplying the stored values by their neuron’s associated weights. When
taking the positively weighted neurons of each class and multiplying their stored v val-
ues by their associated output weight you create the first row of the plot, this forms
a weighted expectation of each class. The second row is generated by also including
the negatively weighted neurons connected to each output, showing the average recep-
tive field of each class. The bottom row is an unweighted combination of the input
synapses which are instances of each class.

5.3.2 Visualising the receptive fields

The previously explored expectation was an unweighted collection of each class’s
stored values. To examine what each class is sensitive to the weightings of each neu-
ron are included. In Figure 5.9 the receptive fields are extracted in the same way as
described in Section 5.2.2 with the stored values of v on the synapses being multiplied
by their associated weight, the weight from the neuron to the output. The top part of
Figure 5.9 displays the weighted sum of the neurons which connect positively to the
respective outputs, forming an average representation of each class. When negative
weights are also included the full receptive field for each class can be seen. Prominent
examples of inhibition can be seen for class 0 and 1 where there is strong negative
weighting at the centre of the 0 and to the sides of the 1. This technique shows it is
straightforward to extract the information present in the network and evaluate what
each class is responsive to. It is possible that with some form of clustering that sub-
divisions of each class could also be extracted, such as sevens with and without a line
crossing their middle. Here just the average receptive field is presented.

122 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

5.3.3 Inverted pendulum - reinforcement learning

Networks are connected to the TensorFlow gym enviroment [17] cartpole_v1 to test
performance. The task is to keep a pole balanced on a cart without the cart moving too
far from the starting position or the angle of the pole moving too far from the vertical.
The maximum balance time is 500 timesteps with the task being considered solved
if the the average balance time over the last 100 trials is over 475. A slightly broader
kernel proved effective in this task resulting in s= 0.6 being chosen. A memory length,
m, of 10 was sufficient which means the last 10 timesteps are classified as a failure and
each trigger an individual neurogenesis step. All inputs are selected by each neuron.
An ANN actor-critic model is created and trained using GD, a learning rate of 0.003
with Adam optimisation, 128 hidden neurons (more did not improve performance) and
a gamma value of 0.99. 100 trials are run for both EDN and the actor-critic with their
average performance being shown in figures.

Figure 5.10 compares the performance of EDN against an ANN trained with GD.
The quick acquisition of information enables EDN to reach a stable control of the
inverted pendulum almost twice as fast as the GD approach case. The actor-critic
model takes on average 798 trials before a stable configuration is reached. The best
configuration of EDN, with a maximum network size of 350, was able to solve the task
in an average of 415 trials. Similar performance is seen for network sizes of 200 and
above. The effect of maximum network size on performance is most noticeable below
150 neurons. At this point neuron deletion becomes too frequent to keep a stable set of
behaviours in the network. At 100 neurons the performance significantly suffers with
the network taking 1091 trials to complete the task. A maximum network size of 50
puts strain on the learning with it failing to solve the task in 2000 trials, only achieving
an average balance length of 424 timesteps at the end of training.

Without neuron deletion EDN takes on average 1250 trials to complete the task.
Performance is initially better than the actor-critic, displaying the fast learning capa-
bility of EDN, although the convergence to stable balancing proves harder leading to
more trials needed to average over 475 over the last 100 trials. During training without
neuron deletion it was noticed that there were a number of trials in which the learn-
ing did not converge to stable behaviour. Instead the performance would quickly drop
from balancing for the full duration to struggling to get balance for longer than 100
timesteps. This is likely a result of beneficial behaviours being inhibited via neuroge-
nesis during the learning process and, although those actions are useful to balancing,

5.3. RESULTS 123

Figure 5.10: EDN with varied network size limits benchmarked against an ANN
trained in tensorflow using an actor-critic model (black) applied to the inverted pendu-
lum task. The lines show the running average of the last 100 trials with the dashed line
showing the threshold performance required for the task to be considered solved. Each
configuration is repeated 100 times and the average of their performance is shown.

causing strain on further learning. Neuron reinforcement and deletion avoids this pit-
fall by rewarding neurons that contribute to good behaviour and deleting the ones that
do not, resulting in a better performing and more condensed network.

The relative speed with which EDN is able to complete this task is a result of the
instant labelling of poor behaviour and the adapting of performance. This allows a
behavioural space to be built in which actions resulting in negative results are avoided.
The rewarding and subsequent deletion of neurons enables this further by injecting
positive reward into neurons which are contributing to good behaviour and removing
the neurons which do not aid performance. Overall this incorporates reinforcement
learning signals into the network behaviour instantly and in a one-shot fashion.

5.3.4 Parametric analysis

Parametric analysis was carried out on the wine classification task. The following
section discusses the effect of s, Eth and input selection with a focus on the convergence
and number of neurons and synapses generated during learning. All experiments used
the same random seed and were averaged over a stratified 10 fold cross validation.
Unless otherwise specified the parameters used for all tests were s = 0.4, Eth = 0.2 and

124 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

sth = 0.1. Only two of the parametric analysis graphs are included here. Please see the
appendix Figure A.1 to Figure A.12 for graphs of testing accuracy, synapse and neuron
counts and iteration error for each of the explored parameters.

The effect of kernel spread

The top plot of Figure 5.11 displays how kernel spread affects the final neuron and
synapse count of EDN networks following training. Generally, the more neurons cre-
ated the worse the performance as the error was more often above Eth. Low values of
s produce many neurons as the hat function is too narrow to allow information transfer
across examples. The synaptic response is too specific and therefore the neuron is only
active when receiving almost the exact same input causing it to overfit to the the train-
ing data and perform poorly in testing. When s is large there is the opposite problem.
Note that all inputs are normalised to fall between 0 and 1 and therefore any s > 1
will be active at least by some amount for any input. This means with large values
of s that there are more neurons active at any one time and, therefore, there are over
generalisations made about the data. This hurts performance with testing accuracy
being far more erratic, especially during the early stage of learning. However, with
further training and neuron generation a balance is found in the network for different
output activations bringing the final testing accuracy to a comparable level with more
appropriately chosen values of s.

In Figure 5.11 it can be seen that the fewest neurons are created when s = 0.6,
however, this does not correspond to the best testing accuracy. The best performance
was found when s was slightly below this level at 0.4; this is likely because there is
less transfer of information between saved data points resulting in more triggering of
neurogenesis. Increased neurogenesis in tandem with slightly more specific neuron
activation leads to better defined input-output mappings. Overall the choice in s is a
balance between overfitting to the training data at low values and over-generalising
from the training data with high values.

The effect of error threshold

Error threshold, Eth, controls the level at which neurogenesis is triggered. When
Eth = 0 every training example triggers neurogenesis resulting in as many neurons
in the network as examples presented. Increasing the threshold slightly leads to fewer
neurons being created with little effect on testing accuracy. It was found that Eth > 0.2
was when performance started to be non-negligibly affected, at this point the model

5.3. RESULTS 125

Figure 5.11: Showing the effect of range of parameter values for kernel spread s (top)
and surprise threshold sth (bottom) on neuron and synapse count after training on the
wine classification task. The left y-axis and the line in blue of each plot corresponds
with neuron counts. The right y-axis and the red line correspond with the synapse
count. The vertical bars show the standard error over a stratified 10 fold cross valida-
tion.

126 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

becomes a less complete representation of data and testing accuracy reduced. As Eth

increases this effect becomes more pronounced with fewer neurons being saved and
accuracy dropping until eventually neurogenesis is no longer triggered and the model
remains empty. It is possible that some form of annealing of Eth could allow a detailed
model to first be created and then add neurons after that if the magnitude of the error
is large helping to reduced network size that remains representative of the data.

The effect of surprise threshold

The method used for selection of synapses in classification tasks is to compare an
expected input with the correct input and select the ones with the highest disparity
(see Section 5.2.2). The inputs with a surprise value above sth are chosen to seed the
synapses of the newly formed neuron. The bottom plot of Figure 5.11 shows how
varying sth effects the number of synapses and neurons created after training on the
wine classification task.

Similar to the results of s, generally speaking the fewer neurons created the better
the performance on the task. From the plot it can be seen that lower values of sth lead
to fewer neurons being created and more synapses being created. For sth < 0.2 the final
testing accuracies are equivalent but overall fewer synapses are created the larger the
threshold. This shows that the selection process can allow the most important inputs
to be selected without hurting overall network performance. This puts focus more on
feature-output mappings rather than input-output mappings.

As sth is increased further the model suffers as the inputs selected by the model
become too fragmented and no longer represent the data as a whole. This leads to fewer
synapses being created overall whilst the neuron count increases. For high values of sth

eventually a point is reached at which neurogenesis is triggered and no input synapses
are selected for the new neuron causing the model to stagnate. Generally the choice of
sth is a balance between saving all information and extracting a reduced form. From
MNIST experiments it was found sth = 0.4 allowed the most important features to be
extracted resulting in the best performance, again, putting emphasis on the feature-
output mapping rather than the input-output mapping.

5.4. DISCUSSION 127

How random input selection size effects performance

An alternative method for input selection is to select n inputs randomly, without re-
placement, to form the synapses of the new neuron. This avoids the need for con-
structing an expected input and comparing it with the actual input, reducing the com-
putational overhead for each training example. It was found that when the number
of synapses randomly selected was increased the testing accuracy generally increased,
however, this also led to increased neurogenesis in these experiments. It would be
expected that the better the testing accuracy the less neurogenesis, however, neuroge-
nesis is triggered by the magnitude of the error produced not the classification. The
speed at which the error decreased was uniform across the values of n but the larger the
value of n the larger the error which means more instances in which neurogenesis was
triggered. A likely cause for this is that an increased number of synapses per neuron
leads to more accurate but less precise representations for each class (accuracy being
a measure of correctness and precision a measure of exactness). A more accurate rep-
resentation of input-output mappings can be stored on the neuron with more synapses
as a more complete representation of a data point is stored. However, reducing the
number of synapses stored on a neuron makes the input-output mapping more precise
as the number of inputs involved in an output prediction are limited. This precise rep-
resentation comes at the cost of a more fragmented model of each class which hurts
testing accuracy. This explains why the MNIST experiments run with random input
selection did not get the best performance when all synapses are selected. The best
performance does not come from complete input-output mappings but extracting the
most important feature-output mappings, creating a more precise representation of the
classes.

5.4 Discussion

This work has demonstrated how non-linear synaptic activations can be used in con-
junction with neurogenesis to tackle a range of tasks in an online fashion. A new
neuron is created following an error and the synapses are used to store input values
related to that error. This can be done in parallel with network operation and requires
no further altering of parameters, which means previously stored information is never
forgotten from the model. The instant incorporation of information into the network
enables behaviour to be updated immediately. In a robotic scenario this could enable an
agent to explore and acquire information without the need for multiple trials and offline

128 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

computation. This would allow robots to explore unknown environments whilst updat-
ing models of their surroundings. It could also be applied to adjusting their behaviour
to account for damage to components without the need for outside intervention, much
in the same way humans limp following an injury.

Benchmarking against gradients

EDN has been applied to a range of tasks (classification, regression and reinforce-
ment learning) and a fast and data efficient learning has been displayed. EDN offered
a speed up of 25 times on the wine classification task, 135 times on the auto-mpg
regression task, 2 times on MNIST digit recognition and 2 times on the inverted pen-
dulum reinforcement learning task compared to a traditional ANN trained with GD.
This improvement in speed is a result of the encoding of input and output values in
the neurons enabling immediate application of new information following error driven
neurogenesis without the need for gradual parameter updates. Classification accuracy
was the same for both EDN and GD, however, mean squared error for the regression
task was 3 times smaller with EDN compared to GD. EDN was able to readily attach
positions in the input space to regression values. This led to both faster and more ac-
curate performance compared to gradient descent. This is likely a consequence of the
non-linear properties of the regression task making capturing the exact input-output
mapping more difficult for traditional ANNs. Gradient descent with ANNs requires
the building of a statistical summary of the data and encoding it in the weights of a
predefined network, paired with the neurons producing an output relative to the dis-
tance from a hyperplane (see Section 5.2.1); this makes producing a smooth non-linear
output value challenging.

MNIST presented the greatest challenge for EDN with the main gains being shown
in comparison to GD in terms of speed. The power of EDN comes from its ability to
store a value on the synapses and attribute a particular output to it through the neuron;
following this any input that is similar will cause the neuron to activate the associated
output. MNIST provides a challenge to this as members of the same class could have
exactly the same inputs with only a slight spatial transformation. The result of this
transformation is that the input values will now be different, and although the general
structure of the input is the same as a previously saved input the input-output map-
pings will no longer be helpful. If the synapses or neurons could encapsulate possible
input transforms, effectively giving the synaptic triangle kernel a spatial spread, then
there could be more information transfer between examples. Possibly some form of
convolutional filter may achieve a similar affect.

5.4. DISCUSSION 129

Another possible reason for the difficulty in reaching higher levels of performance
on MNIST is because of the increased dimensionality of the input. This makes sam-
pling the correct features and using them to classify inputs increasingly difficult. It
was shown that altering the way in which the inputs are sampled can effect the perfor-
mance of EDN, if sampling or the generation of expected response can be improved it
would increase the performance of the model further. A potential route for this could
be the implementation of an attention mechanism that adaptively selects different in-
puts rather than relying on a collective representation of individual classes. It is also
possible that a neuron deletion dynamic, as was displayed in reinforcement learning,
could enable EDN to remove neurons whose activity does not aid performance in clas-
sification.

Future directions

In the reinforcement learning task the positive reward generated at each timestep was
fed into the network and enabled the deletion of the least useful neurons. This acted to
put a cap on the network size but came with the added benefit of improving the speed
of task completion by removing the least beneficial input-output mappings. In future
work it could be useful to find an analogous mechanism for other learning regimes
by which network growth can be restricted and potentially, in parallel, improve the
performance of the model. As neurogenesis is triggered by errors if they cannot be
brought below threshold then network size continues to increase. Some form of early
stopping or error threshold annealing may also help curtail the continual growth of
the network as performance generally converges quickly with only minor fine tuning
happening afterwards even though network growth continues.

The mechanism by which information is stored within the network allows easy
access to what specifically is influencing behaviour leading to more informed model
debugging. Saved data can also be extracted for post processing and the creation of a
more condensed model. This is of particular importance given the size to which EDN
can grow a network. Without a cap on network size the number of neurons continues
to grow in the presence of error, therefore, a mechanism by which saved data can be
elucidated into a reduced model would allow learning over a much longer time period
without a growing memory footprint. This would also enable offline training without
the need for further examples as previous inputs are saved within the model and can
be extracted. The condensed model may also provide beneficial extra dimensions to
the inputs, akin to the kernel trick used in support vector machines (SVM). In SVMs,
kernels are used to provide additional dimensions to the data thereby allowing a linear

130 CHAPTER 5. ERROR DRIVEN NEUROGENESIS

classifier to separate the data. If the produced EDN model could be used to generate
ANN neurons this would add extra dimensions to the data which future learning with
EDN can take advantage of.

If the branching structure of dendrites could also be made a part of the network’s
connections, more complex dependencies between features could be constructed. As
was shown in the results the best performance came when the most appropriate feature-
output mappings were captured by the network and not solely the input-output map-
pings. Branching dendrites could allow a richer description of inputs to be represented
by a single neuron as activity would no longer be a uniform sum of synapse activations.
This may allow each neuron to have branching dependencies of inputs with some be-
ing more important than others. If neurons could also be allowed to connect to other
hidden neurons, instead of only inputs, it would enable synapses to be responsive to
higher level features and allow more complex topologies to grow.

The bias of biases

EDN updates its model by adding new neurons to its current network in response to
errors. GD updates its model by moving the weights in the direction gradient calcu-
lations dictate will produce less error, eventually creating a statistical summary of the
data in its weights. This puts the model bias in EDN on the order in which information
is presented as opposed to bias coming from the random initialisation of the network
as in GD. This may be utilised with a form of curriculum learning in which simple and
representative examples are first presented and the difficulty is increased from there.
This is similar to how we teach children (and adults), first starting with simple con-
cepts and characteristic features then incrementally building from there. Modern GD
approaches do not require this as they can eventually build a statistical summary of the
input-output mappings without concern for first capturing the fundamentals.

The bigger picture

This work explores how neurogenesis in tandem with synapse non-linearities can be
used to store information about inputs in a form that can be used to alleviate errors.
It enables fast acquisition of information and updating of a behavioural model. Ulti-
mately, this is not a panacea and is only a part of the puzzle. Traditional ANN transfer
functions, whose activity is relative to the distance from a hyperplane, allow neurons
to be active beyond a local area of the input space, providing broader statements about
input-output mappings. It is likely that a hybrid approach between quick, functional
data acquisition and the building of general statistical representations of data is re-
quired to create more complete learning systems. This could allow a combination of

5.4. DISCUSSION 131

learning across timescales, such as the data gathered within a day being condensed
down into a reduced model, iteratively increasing the complexity of the representa-
tions captured by the network during a lifetime. Something akin to this may happen
in biological brains where wakeful hours are used to acquire data through interacting
with the world, followed by sleep in which information is consolidated and pushed into
a more general model whilst freeing up previously used neural real estate.

Chapter 6

Conclusions

6.1 Summary and conclusions

Generally machines are narrowly intelligent

Humans have taken inspiration from biology in many areas, from aeroplanes to Velcro.
Neural networks are another example with their computational structures enabling vast
amounts of data to be condensed into their parameters to form a model of a system.
ANNs (Artificial Neural Networks) have been trained, using mathematical principles,
to surpass human level performance at a range of tasks, such as chess and go. They are
games with more possible game states than atoms in the observable universe, however,
they fall into a category of environments with perfect information; moving a pawn
forwards will always produce the same result, compared to real world environments in
which perfect information (especially for training) is not available. Self-driving cars
are an example of a domain in which humans are able to reach proficient performance
using limited experience but which machine learning models struggle to reach high
levels of proficiency due to their lack of a generalised model.

Current neural network training methods are restricted by the methods used to train
them, which are heavily reliant on the training data. They are universal function ap-
proximators, which when paired with GD (Gradient Descent) allows them to, in theory,
model any input-output mapping, however, this then puts a large onus on the data used
to train the model [25, 73]. If the data cannot fully encompass all possible input-output
mappings then the model will struggle as it does not generalise towards unseen ex-
amples well. This can be exemplified in computer vision, a multi-layered feedforward
network is a universal function approximator yet it takes a CNN (Convolutional Neural
Network) to be able to solve translation invariance (where the position of an object in

132

6.1. SUMMARY AND CONCLUSIONS 133

the visual field does not effect the detection of the object). If the training data was aug-
mented to include all possible translations of objects then a feedforward architecture
could likely compete with a CNN, although it would be more computational expensive
to train.

Neural networks need to work towards extracting generalised principles from their
training data rather than reliance on building a suitable statistical summary of the input-
output mapping. When artificial systems can become more efficient with their data, by
making and testing hypotheses, and extract abstract principles, robots will no longer
be restricted to training offline and subsequent deployment. This will aid in bridging
the gap between training data and real-world environments, which presently is solved
by increasing the data presented to the model (through data augmentation or simula-
tion [101, 125]) as training in the real world is too slow. It could also imbue robots
with the ability to adapt to unseen environments and situations enabling fast adaptation
and fault tolerance.

Paying attention to attention

As was discussed in Chapter 3, attention systems allow computational resource to be
allocated to the most important elements of an environment. In effect this filters the in-
put stream providing only what is deemed as most relevant to be processed. Having an
attention system can move focus around an image, can provide translation invariance
as location is only relative to the centre of gaze and in extreme cases can even allow
inputs to be shuffled [137].

This thesis showed that an entirely event-based implementation run on SpiNNaker
allows the attention processing to be achieved on average in 17.5ms, approximately 7
times faster than a GPU implementation. This displays that when inputs are processed
in a biologically plausible way a significant reduction in latency can be achieved. This
can allow an attention system to be a preliminary form of processing to better allocate
higher level processing without a large cost to processing time.

To spike or not to spike, is it even a question?

As explored in the background, spiking neurons offer a number of benefits compared
to their non-spiking counterparts:

• sparse activity

• temporal element to processing

• energy efficiency

• robust to noise

134 CHAPTER 6. CONCLUSIONS

• information density (with non rate-based codes)

• low latency

• event-driven

The challenge remains how to train them in a fashion that can fully exploit their benefits
and compete with non-spiking ANNs. GD methods have proven incredibly effective
with ANNs yet they struggle to transfer to SNNs (Spiking Neural Networks) due to
their discontinuity around spike time making the derivative undefined. Attempts have
been made to circumvent this problem with the use of pseudo derivatives and surrogate
gradients [8, 66, 77, 100, 126], smoothed activation curves [62, 78] and spike time
based gradients [23, 96, 148, 151] but they often do not take inspiration from biology
and instead rely on approximating ANN neurons with rate-based SNN neurons which
is inherently less accurate at transmitting information, therefore, not reaching the same
accuracy as ANNs.

E-prop offers a biologically plausible alternative to backpropagation [11], using
only locally available information and a global error signal. With this limited informa-
tion it is able to train recurrently connected LIF (Leaky-Integrate-and-Fire) and ALIF
(Adaptive-Leaky-Integrate-and-Fire) neurons online and can be applied to a range of
tasks, from classification to Atari games [10]. In Chapter 4 e-prop was instantiated
on SpiNNaker to explore its application to real-time, online learning using only local
available information. A number of challenges were highlighted in contrast to the Ten-
sorFlow implementation, most notably the difficulty in regularising the firing rate. As
TensorFlow averaged firing rate over many neurons, it could achieve a more robust ap-
proximation of population firing. SpiNNaker could only easily share spike rates across
a core, which limited the population average to eight neurons. This showed that, al-
though e-prop uses local information to approximate weight gradients, it relied on
global information to regularise the network. Design of learning algorithms must keep
in mind the constraints of neuromorphics to better understand the challenges faced by
the biological brain. There are also further benefits to be had from EAs (Evolutionary
Algorithms), specifically GAs (Genetic Algorithms) due to their increased flexibility
of gene expression. Due to SpiNNaker’s highly parallel architecture it lends itself to
population training as all agents can be run simultaneously without impedance to run-
time.

Gradients are only as good as the hill you are on

Learning can take many forms, even increasing the number of entries in a lookup table

6.1. SUMMARY AND CONCLUSIONS 135

can be considered a type of learning. Gradient based techniques are a set of powerful
training algorithms for updating a parametric model. They calculate the error gradient
of some objective function with respect to model parameters and update them in the
direction that will mitigate future errors. With careful selection of hyperparameters
such as learning rate this can imbue a model with a good representation of the data.
However, as discussed in this thesis, there are a number of challenges with gradient
descent techniques:

• catastrophic forgetting

• requires differentiability

• only smooth transitions

• vanishing gradients

• exploding gradients

• saddle points

• parameter sensitivity

• sensitive to initial conditions

There are a number of solutions to these problems, such as skip connections that add
synapses between distant layers to allow a shortcut for gradients, and pseudo deriva-
tives for the SNN neuron’s activation discontinuity. GD is mainly applied to parametric
functions where the model topology remains fixed and the function parameters are al-
tered to improve the quality of the model. As all information is placed within the same
parameters, care must be taken to ensure learning is controlled, through learning rate
and batch size, such that parameter updates can capture qualities of the entire data set
without catastrophic forgetting causing previously learned information to be overwrit-
ten. This also then limits the longevity of models as further learning means forgetting
what was learned. Any time new data is to be trained care must be taken, such as all
data being presented to the model again, to update parameters without forgetting what
was incorporated before.

Chapter 5 proposed the use of synaptic nonlinearities in tandem with a neuroge-
nesis mechanism to form a non-parametric model that does not overwrite previously
learned information. By constructing information without gradients an increased speed

136 CHAPTER 6. CONCLUSIONS

of data acquisition was achieved whilst retaining all learnt information within the net-
work. In EDN (Error Driven Neurogenesis) information remains within the network
and can be inspected and retrieved, this allows inspection of model behaviour without
inference. Retrieval of stored information could even allow a form of self learning af-
ter data acquisition, something akin to sleep. Neural networks have a lot to be gained
from more closely matching biology. It was shown with EDN that the nonlinearity of
dendrites and neurogenesis can be co-opted to solve classification, regression and rein-
forcement learning tasks. There are, no doubt, still many more aspects of intelligence
to be gleaned from more closely modelling the biological brain.

6.2 Future work

The biological brain possesses many facets that are missed from their current com-
putational analogues. Biological neurons alone contain far more complexity than is
currently modelled by ANN neurons. When you factor in complex neuromodulartory
interactions [42] and the mysterious glial cells that make up the majority of cells in the
brain [54] there is still much to unlock. It has been discussed that spiking neurons offer
a potentially important step towards increased computational power because of their
information density, with certain encoding schemes, and inherent temporal properties.
However, the problem remains open as to how to unlock their potential.

Attentive towards the future

As was shown in Chapter 3, a full event-based attention system is possible on neuro-
morphic hardware. This was originally designed for real-time operation on the iCub
humanoid robot, further work could benefit from increased testing on iCub. Control-
ling foveation of the robot’s gaze was tested to a small extent, and proved possible with
saccadic suppression (removal of events caused by moving of the eyes). If this could
be paired with a higher level objective, such as looking towards specific objects, this
could prove a beneficial research goal.

Controlling the goals of an attention system was shown to be possible with Gestalt
principles, however, they are only underlying principles of attention. For more objec-
tive driven approaches careful tailoring of filter kernels may prove beneficial, although,
in recent years engineered approaches have fallen to the wayside in favour of learned
models. The human fixation data set, the ground truth in the SNNevProto work, could
be used for supervised learning of a human-like attention model. The architecture
could remain the same, which would reduce the number of parameters to learn, leaving

6.2. FUTURE WORK 137

the main kernel to be the learnt element (which can be rotated and up and downsam-
pled as needed), and possibly the percentage firing thresholds between layers to fine
tune the response. Appropriate choice of learning algorithm will need to be consid-
ered given the sharing of parameters within the model and the spiking neuromorphic
implementation. It could be considered an indirect encoding, because the topology is
already defined, and then an EA may be well suited as the population can be run in
parallel on SpiNNaker.

FuturE-prop

Having access to a state of the art SNN training algorithm on neuromorphic hardware
gives a number of possible directions for future work. Extending to more complex
tasks to gauge the limitations of the implementation would be beneficial, such as tack-
ling reinforcement learning tasks with much longer time horizons and less immediate
error feedback.

To approach more complex learning domains there are two main challenges that
need to be tackled. Firstly, recurrent connections; e-prop boasts being able to train
recurrently connected SNNs without the need for BPTT (Back-Propagation-Through-
Time), remaining online during the training process [11]. Recurrent connections lend
increased computing power, especially with temporal data, to a model. The implemen-
tation on SpiNNaker struggled to harness the power of recurrent connections because
of the second challenge, firing rate regularisation. Regularising the population firing
was difficult because of three main reasons:

• limited to averaging over eight neurons

• sparse/irregular firing of inputs

• cannot easily calculate firing rate over short time scales

A potential solution and direction of future work could be to move to a multi-core
model of e-prop neurons. This would split the neurons and synapses to work on differ-
ent cores giving each one increased memory and processing time. This in turn would
allow increased neurons per core and better approximation of firing rates. It would
also enable increased time for spike processing, this would reduce problems during the
learning process of regularisation pushing firing rates too high and causing spikes to
be dropped and simulations to crash.

The end of the beginning of the EDN

It was shown in Chapter 5 that using nonlinear synapses with uniform parameters was

138 CHAPTER 6. CONCLUSIONS

Figure 6.1: On the left shows the EDN network output after training on a three class
problem. Dots are the training points with the dots with stars representing the saved
data points and the larger dots are the weighted average of each class. On the right a
tanh neuron is created which draws a hyperplane between all pairs of class centroids
with their outputs corresponding to the respective class on each side of the hyperplane.
When observing the outputs of the tanh neurons (the coloured background) it can be
seen that a good class separation is acquired using nonlinear neurons without any gra-
dient descent.

able to achieve competitive results at a range of tasks. A possible future iteration of
EDN could be used to perform some form of unsupervised learning, after training,
in which the network’s parameters, output weights and kernel spreads, are trained to
form a cohesive whole. As all the learnt information is present within the network
it is possible that the network can perform self-supervised learning using the stored
information. This may form a sleep-like state in which learnt information is integrated
to form a complete picture.

Another possible sleep like mechanism may come in the form of network conver-
sion. In Figure 6.1 a simple mechanism is displayed in which hyperplanes are created
between class centres, which when combined create a condensed representation of the
original data. These hyperplanes add further dimensions to the data which can be fur-
ther sampled by EDN providing potentially useful features for learning. This would
create a hybrid system capable of both fast learning, via EDN, and broadly applicable
feature extraction, via nonlinear neurons. This combined approach could allow contin-
ual learning and feature extraction in an entirely self-supervised manner. It would also
be entirely offline, as data has been acquired during initial training, making it akin to
some sleep-like mechanism.

Bibliography

[1] Auto MPG. UCI Machine Learning Repository, 1993. URL https://

archive.ics.uci.edu/ml/datasets/auto+mpg.

[2] Mahdi Abolfazli Esfahani, Han Wang, Benyamin Bashari, Keyu Wu, and
Shenghai Yuan. Learning to extract robust handcrafted features with a sin-
gle observation via evolutionary neurogenesis. Applied Soft Computing, 106:
107424, 2021. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2021.
107424. URL https://www.sciencedirect.com/science/article/pii/

S1568494621003471.

[3] Samantha V Adams, Alexander D Rast, Cameron Patterson, Francesco
Galluppi, Kevin Brohan, José-Antonio Pérez-Carrasco, Thomas Wennekers,
Steve Furber, and Angelo Cangelosi. Towards real-world neurorobotics: in-
tegrated neuromorphic visual attention. In International Conference on Neural

Information Processing, pages 563–570. Springer, 2014.

[4] Bruna Alves. Average household energy consumption uk, Feb
2022. URL https://www.statista.com/statistics/517845/

average-electricity-consumption-uk/.

[5] Dario Amodei. Ai and compute, Jun 2021. URL https://openai.com/blog/

ai-and-compute/.

[6] Árpád Baricz. Generalized Bessel functions of the first kind. Springer, 2010.

[7] Chiara Bartolozzi, Francesco Rea, Charles Clercq, Daniel B Fasnacht, Giacomo
Indiveri, Michael Hofstätter, and Giorgio Metta. Embedded neuromorphic vi-
sion for humanoid robots. In CVPR 2011 WORKSHOPS, pages 129–135. IEEE,
2011.

139

https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://www.sciencedirect.com/science/article/pii/S1568494621003471
https://www.sciencedirect.com/science/article/pii/S1568494621003471
https://www.statista.com/statistics/517845/average-electricity-consumption-uk/
https://www.statista.com/statistics/517845/average-electricity-consumption-uk/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/

140 BIBLIOGRAPHY

[8] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and
Wolfgang Maass. Long short-term memory and learning-to-learn in networks
of spiking neurons. Advances in neural information processing systems, 31,
2018.

[9] Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. Biologically inspired alternatives to backpropagation
through time for learning in recurrent neural nets. CoRR, abs/1901.09049, 2019.
URL http://arxiv.org/abs/1901.09049.

[10] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj,
Robert Legenstein, and Wolfgang Maass. A solution to the learning dilemma
for recurrent networks of spiking neurons. bioRxiv, 2019. doi: 10.1101/738385.
URL https://www.biorxiv.org/content/early/2019/12/09/738385.

[11] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj,
Robert Legenstein, and Wolfgang Maass. A solution to the learning dilemma
for recurrent networks of spiking neurons. Nature communications, 11(1):1–15,
2020.

[12] Evert Willem Beth. Mathematical Epistemology and Psychology. New York:
Gordon & Breach, 1966.

[13] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruder-
man, Joel Z Leibo, Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free
episodic control. arXiv preprint arXiv:1606.04460, 2016.

[14] Thomas Bohnstingl, Franz Scherr, Christian Pehle, Karlheinz Meier, and Wolf-
gang Maass. Neuromorphic hardware learns to learn. Frontiers in Neuro-

science, 13:483, 2019. ISSN 1662-453X. doi: 10.3389/fnins.2019.00483. URL
https://www.frontiersin.org/article/10.3389/fnins.2019.00483.

[15] Ali Borji and Laurent Itti. Cat2000: A large scale fixation dataset for boosting
saliency research. CVPR 2015 workshop on "Future of Datasets", 2015. arXiv
preprint arXiv:1505.03581.

[16] Ali Borji, Dicky N Sihite, and Laurent Itti. Quantitative analysis of human-
model agreement in visual saliency modeling: A comparative study. Image

Processing, IEEE Transactions on, 22(1):55–69, 2013.

http://arxiv.org/abs/1901.09049
https://www.biorxiv.org/content/early/2019/12/09/738385
https://www.frontiersin.org/article/10.3389/fnins.2019.00483

BIBLIOGRAPHY 141

[17] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR,
abs/1606.01540, 2016. doi: https://doi.org/10.48550/arXiv.1606.01540. URL
http://arxiv.org/abs/1606.01540.

[18] Dwight A Burkhardt and Patrick K Fahey. Contrast enhancement and distributed
encoding by bipolar cells in the retina. Journal of Neurophysiology, 80(3):1070–
1081, 1998.

[19] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand.
What do different evaluation metrics tell us about saliency models? IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 41(3):740–757, 2019.
doi: 10.1109/TPAMI.2018.2815601.

[20] Luis Camunas-Mesa, Carlos Zamarreño-Ramos, Alejandro Linares-Barranco,
Antonio J Acosta-Jimenez, Teresa Serrano-Gotarredona, and Bernabé Linares-
Barranco. An event-driven multi-kernel convolution processor module for
event-driven vision sensors. IEEE Journal of Solid-State Circuits, 47(2):504–
517, 2011.

[21] Manuela Chessa, Guido Maiello, Peter J Bex, and Fabio Solari. A space-variant
model for motion interpretation across the visual field. Journal of vision, 16(2):
12–12, 2016.

[22] E. Chicca, G. Indiveri, and R. Douglas. An adaptive silicon synapse. In Pro-

ceedings of the 2003 International Symposium on Circuits and Systems, 2003.

ISCAS ’03., volume 1, pages I–I, 2003. doi: 10.1109/ISCAS.2003.1205505.

[23] I. M. Comsa, T. Fischbacher, K. Potempa, A. Gesmundo, L. Versari, and
J. Alakuijala. Temporal coding in spiking neural networks with alpha synaptic
function. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 8529–8533, 2020.

[24] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.1053964.

[25] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

http://arxiv.org/abs/1606.01540

142 BIBLIOGRAPHY

[26] Giulia D’Angelo, Ella Janotte, Thorben Schoepe, James O’Keeffe, Moritz B
Milde, Elisabetta Chicca, and Chiara Bartolozzi. Event-based eccentric motion
detection exploiting time difference encoding. Frontiers in neuroscience, 14:
451, 2020.

[27] Ch. Sanjeev Kumar Dash, Ajit Kumar Behera, Satchidananda Dehuri, and
Sung-Bae Cho. Radial basis function neural networks: a topical state-of-the-
art survey. Open Computer Science, 6(1):33–63, 2016. doi: doi:10.1515/
comp-2016-0005. URL https://doi.org/10.1515/comp-2016-0005.

[28] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta
Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Math-
aikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkatara-
manan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. Loihi:
A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1):
82–99, 2018. doi: 10.1109/MM.2018.112130359.

[29] Andrew Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller,
Dejan Pecevski, Laurent Perrinet, and Pierre Yger. Pynn: a common in-
terface for neuronal network simulators. Frontiers in Neuroinformatics, 2,
2009. ISSN 1662-5196. doi: 10.3389/neuro.11.011.2008. URL https:

//www.frontiersin.org/articles/10.3389/neuro.11.011.2008.

[30] Andrew P Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif
Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. PyNN: a com-
mon interface for neuronal network simulators. Frontiers in Neuroinfor-

matics, 2(January):11, 2008. ISSN 16625196. doi: 10.3389/neuro.11.011.
2008. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=2634533{&}tool=pmcentrez{&}rendertype=abstract.

[31] Tobi Delbruck, Chenghan Li, Rui Graca, and Brian Mcreynolds. Utility and
feasibility of a center surround event camera. arXiv preprint arXiv:2202.13076,
2022.

[32] Wei Deng, James B. Aimone, and Fred H. Gage. New neurons and new mem-
ories: how does adult hippocampal neurogenesis affect learning and memory?
Nature Reviews Neuroscience, 11(5):339–350, May 2010. ISSN 1471-0048.
doi: 10.1038/nrn2822. URL https://doi.org/10.1038/nrn2822.

https://doi.org/10.1515/comp-2016-0005
https://www.frontiersin.org/articles/10.3389/neuro.11.011.2008
https://www.frontiersin.org/articles/10.3389/neuro.11.011.2008
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2634533{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2634533{&}tool=pmcentrez{&}rendertype=abstract
https://doi.org/10.1038/nrn2822

BIBLIOGRAPHY 143

[33] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. 2020. doi:
10.48550/ARXIV.2010.11929. URL https://arxiv.org/abs/2010.11929.

[34] Timothy J. Draelos, Nadine E. Miner, Christopher C. Lamb, Jonathan A. Cox,
Craig M. Vineyard, Kristofor D. Carlson, William M. Severa, Conrad D. James,
and James B. Aimone. Neurogenesis deep learning: Extending deep networks
to accommodate new classes. In 2017 International Joint Conference on Neural

Networks (IJCNN), pages 526–533, 2017. doi: 10.1109/IJCNN.2017.7965898.

[35] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

[36] Hermann Ebbinghaus. Memory: A contribution to experimental psychology
(no. 3). University Microfilms, 1913.

[37] Charles W Eriksen and James D St James. Visual attention within and around
the field of focal attention: A zoom lens model. Perception & psychophysics,
40(4):225–240, 1986.

[38] Pontus Eriksson and Love Westlund Gotby. Dynamic network architectures for
deep q-learning: Modelling neurogenesis in artificial intelligence. 2019.

[39] Chrisantha Fernando, Dylan Banarse, Malcolm Reynolds, Frederic Besse,
David Pfau, Max Jaderberg, Marc Lanctot, and Daan Wierstra. Convolution by
evolution: Differentiable pattern producing networks. In Proceedings of the Ge-

netic and Evolutionary Computation Conference 2016, pages 109–116. ACM,
2016.

[40] Burkart Fischer. Overlap of receptive field centers and representation of the
visual field in the cat’s optic tract. Vision research, 13(11):2113–2120, 1973.

[41] Evelyn Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrim-
ination: Consistency properties. International Statistical Review / Revue In-

ternationale de Statistique, 57(3):238–247, 1989. ISSN 03067734, 17515823.
URL http://www.jstor.org/stable/1403797.

https://arxiv.org/abs/2010.11929
http://archive.ics.uci.edu/ml
http://www.jstor.org/stable/1403797

144 BIBLIOGRAPHY

[42] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-
dependent plasticity, and theory of three-factor learning rules. Frontiers in neu-

ral circuits, 9:85, 2016.

[43] Robert M. French. Catastrophic forgetting in connectionist networks. Trends in

Cognitive Sciences, 3(4):128–135, 1999. ISSN 1364-6613. doi: https://doi.org/
10.1016/S1364-6613(99)01294-2. URL https://www.sciencedirect.com/

science/article/pii/S1364661399012942.

[44] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neu-
ral network model for a mechanism of visual pattern recognition. In Shun-ichi
Amari and Michael A. Arbib, editors, Competition and Cooperation in Neu-

ral Nets, pages 267–285, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.
ISBN 978-3-642-46466-9.

[45] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The spinnaker project.
Proceedings of the IEEE, 102(5):652–665, May 2014. ISSN 0018-9219. doi:
10.1109/JPROC.2014.2304638.

[46] Steve Furber and Petrut, Bogdan. SpiNNaker-A Spiking Neural Network Archi-

tecture. Now publishers, 2020.

[47] Albert Gidon, Timothy Adam Zolnik, Pawel Fidzinski, Felix Bolduan,
Athanasia Papoutsi, Panayiota Poirazi, Martin Holtkamp, Imre Vida, and
Matthew Evan Larkum. Dendritic action potentials and computation in human
layer 2/3 cortical neurons. Science, 367(6473):83–87, 2020. doi: 10.1126/
science.aax6239. URL https://science.sciencemag.org/content/367/

6473/83.

[48] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics, pages 249–256. JMLR Workshop
and Conference Proceedings, 2010.

[49] Arren Glover and Chiara Bartolozzi. Event-driven ball detection and gaze fixa-
tion in clutter. In 2016 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 2203–2208. IEEE, 2016.

https://www.sciencedirect.com/science/article/pii/S1364661399012942
https://www.sciencedirect.com/science/article/pii/S1364661399012942
https://science.sciencemag.org/content/367/6473/83
https://science.sciencemag.org/content/367/6473/83

BIBLIOGRAPHY 145

[50] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv

preprint arXiv:1410.5401, 2014. doi: https://doi.org/10.48550/arXiv.1410.
5401.

[51] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, et al. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626):471–476, 2016.

[52] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural

networks and learning systems, 28(10):2222–2232, 2016.

[53] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continu-
ous deep q-learning with model-based acceleration. In Maria Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Con-

ference on Machine Learning, volume 48 of Proceedings of Machine Learn-

ing Research, pages 2829–2838, New York, New York, USA, 20–22 Jun 2016.
PMLR. URL https://proceedings.mlr.press/v48/gu16.html.

[54] Fei He and Yi E. Sun. Glial cells more than support cells? The International

Journal of Biochemistry & Cell Biology, 39(4):661–665, 2007. ISSN 1357-
2725. doi: https://doi.org/10.1016/j.biocel.2006.10.022. URL https://www.

sciencedirect.com/science/article/pii/S1357272506003141.

[55] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

[56] A. L. HODGKIN and A. F. HUXLEY. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Jour-

nal of physiology, 117(4):500–544, Aug 1952. ISSN 0022-3751. doi: 10.
1113/jphysiol.1952.sp004764. URL https://pubmed.ncbi.nlm.nih.gov/

12991237. 12991237[pmid].

[57] A. L. HODGKIN, A. F. HUXLEY, and B. KATZ. Measurement of current-
voltage relations in the membrane of the giant axon of loligo. The Jour-

nal of physiology, 116(4):424–448, Apr 1952. ISSN 0022-3751. doi: 10.
1113/jphysiol.1952.sp004716. URL https://pubmed.ncbi.nlm.nih.gov/

14946712. 14946712[pmid].

https://proceedings.mlr.press/v48/gu16.html
https://www.sciencedirect.com/science/article/pii/S1357272506003141
https://www.sciencedirect.com/science/article/pii/S1357272506003141
https://pubmed.ncbi.nlm.nih.gov/12991237
https://pubmed.ncbi.nlm.nih.gov/12991237
https://pubmed.ncbi.nlm.nih.gov/14946712
https://pubmed.ncbi.nlm.nih.gov/14946712

146 BIBLIOGRAPHY

[58] Brian Hu, Ralinkae Kane-Jackson, and Ernst Niebur. A proto-object based
saliency model in three-dimensional space. Vision research, 119:42–49, 2016.

[59] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for se-
quence tagging. arXiv preprint arXiv:1508.01991, 2015. doi: https://doi.org/
10.48550/arXiv.1508.01991.

[60] D. H. Hubel and T. N. Wiesel. Ferrier lecture: Functional architecture of
macaque monkey visual cortex. Proceedings of the Royal Society of London.

Series B, Biological Sciences, 198(1130):1–59, 1977. ISSN 00804649. URL
http://www.jstor.org/stable/77245.

[61] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiology,
160(1):106–154, 1962.

[62] Dongsung Huh and Terrence J Sejnowski. Gradient descent for spiking neural
networks. pages 1433–1443, 2018.

[63] Massimiliano Iacono, Giulia D’Angelo, Arren Glover, Vadim Tikhanoff, Ernst
Niebur, and Chiara Bartolozzi. Proto-object based saliency for event-driven
cameras. In IROS, pages 805–812, 2019.

[64] L Itti and Christof Koch. Computational modelling of visual attention. Nature

reviews. Neuroscience, 2(3):194–203, mar 2001. ISSN 1471-003X. doi: 10.
1038/35058500. URL http://www.ncbi.nlm.nih.gov/pubmed/11256080.

[65] Tilke Judd, Frédo Durand, and Antonio Torralba. A benchmark of computa-
tional models of saliency to predict human fixations. In MIT Technical Report,
2012.

[66] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynam-
ics for deep continuous local learning. arXiv preprint arXiv:1811.10766, 2018.

[67] Haruo Kasai, Masahiro Fukuda, Satoshi Watanabe, Akiko Hayashi-Takagi,
and Jun Noguchi. Structural dynamics of dendritic spines in memory and
cognition. Trends in Neurosciences, 33(3):121–129, 2010. ISSN 0166-
2236. doi: https://doi.org/10.1016/j.tins.2010.01.001. URL https://www.

sciencedirect.com/science/article/pii/S0166223610000020.

http://www.jstor.org/stable/77245
http://www.ncbi.nlm.nih.gov/pubmed/11256080
https://www.sciencedirect.com/science/article/pii/S0166223610000020
https://www.sciencedirect.com/science/article/pii/S0166223610000020

BIBLIOGRAPHY 147

[68] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2014. URL https://arxiv.org/abs/1412.6980.

[69] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic forgetting in neural net-
works. Proceedings of the National Academy of Sciences, 114(13):3521–3526,
2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/

abs/10.1073/pnas.1611835114.

[70] C Koch and S Ullman. Shifts in selective visual attention: towards the underly-
ing neural circuitry. Human neurobiology, 4(4):219–227, 1985.

[71] Kristin Koch, Judith McLean, Michael Berry, Peter Sterling, Vijay Balasub-
ramanian, and Michael A. Freed. Efficiency of Information Transmission
by Retinal Ganglion Cells. Current Biology, 14(17):1523–1530, sep 2004.
ISSN 09609822. doi: 10.1016/j.cub.2004.08.060. URL https://ac.

els-cdn.com/S0960982204006566/1-s2.0-S0960982204006566-main.

pdf?{_}tid=3dfa152e-d580-4890-998f-01b5291f1cd7{&}acdnat=

1549451672{_}da6bc1f8f08d4bee99e6653668b165a0https://

linkinghub.elsevier.com/retrieve/pii/S0960982204006566.

[72] Wolfgang Köhler. Gestalt psychology. Psychological research, 31(1):XVIII–
XXX, 1967.

[73] Anastasis Kratsios and Ievgen Bilokopytov. Non-euclidean univer-
sal approximation. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Pro-

cessing Systems, volume 33, pages 10635–10646. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

786ab8c4d7ee758f80d57e65582e609d-Paper.pdf.

[74] Janus J Kulikowski, S Marčelja, and Peter O Bishop. Theory of spatial position
and spatial frequency relations in the receptive fields of simple cells in the visual
cortex. Biological cybernetics, 43(3):187–198, 1982.

https://arxiv.org/abs/1412.6980
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://ac.els-cdn.com/S0960982204006566/1-s2.0-S0960982204006566-main.pdf?{_}tid=3dfa152e-d580-4890-998f-01b5291f1cd7{&}acdnat=1549451672{_}da6bc1f8f08d4bee99e6653668b165a0 https://linkinghub.elsevier.com/retrieve/pii/S0960982204006566
https://ac.els-cdn.com/S0960982204006566/1-s2.0-S0960982204006566-main.pdf?{_}tid=3dfa152e-d580-4890-998f-01b5291f1cd7{&}acdnat=1549451672{_}da6bc1f8f08d4bee99e6653668b165a0 https://linkinghub.elsevier.com/retrieve/pii/S0960982204006566
https://ac.els-cdn.com/S0960982204006566/1-s2.0-S0960982204006566-main.pdf?{_}tid=3dfa152e-d580-4890-998f-01b5291f1cd7{&}acdnat=1549451672{_}da6bc1f8f08d4bee99e6653668b165a0 https://linkinghub.elsevier.com/retrieve/pii/S0960982204006566
https://ac.els-cdn.com/S0960982204006566/1-s2.0-S0960982204006566-main.pdf?{_}tid=3dfa152e-d580-4890-998f-01b5291f1cd7{&}acdnat=1549451672{_}da6bc1f8f08d4bee99e6653668b165a0 https://linkinghub.elsevier.com/retrieve/pii/S0960982204006566
https://ac.els-cdn.com/S0960982204006566/1-s2.0-S0960982204006566-main.pdf?{_}tid=3dfa152e-d580-4890-998f-01b5291f1cd7{&}acdnat=1549451672{_}da6bc1f8f08d4bee99e6653668b165a0 https://linkinghub.elsevier.com/retrieve/pii/S0960982204006566
https://proceedings.neurips.cc/paper/2020/file/786ab8c4d7ee758f80d57e65582e609d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/786ab8c4d7ee758f80d57e65582e609d-Paper.pdf

148 BIBLIOGRAPHY

[75] Matthias Kummerer, Thomas SA Wallis, and Matthias Bethge. Saliency bench-
marking made easy: Separating models, maps and metrics. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 770–787, 2018.

[76] Congyan Lang, Tam V Nguyen, Harish Katti, Karthik Yadati, Mohan Kankan-
halli, and Shuicheng Yan. Depth matters: Influence of depth cues on visual
saliency. In European conference on computer vision, pages 101–115. Springer,
2012.

[77] Chankyu Lee, Syed Shakib Sarwar, and Kaushik Roy. Enabling spike-based
backpropagation in state-of-the-art deep neural network architectures. CoRR,
abs/1903.06379, 2019. URL http://arxiv.org/abs/1903.06379.

[78] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spik-
ing neural networks using backpropagation. Frontiers in Neuroscience, 10:
508, 2016. ISSN 1662-453X. doi: 10.3389/fnins.2016.00508. URL https:

//www.frontiersin.org/article/10.3389/fnins.2016.00508.

[79] Máté Lengyel and Peter Dayan. Hippocampal contributions to control: The
third way. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Ad-

vances in Neural Information Processing Systems, volume 20. Curran Asso-
ciates, Inc., 2008. URL https://proceedings.neurips.cc/paper/2007/

file/1f4477bad7af3616c1f933a02bfabe4e-Paper.pdf.

[80] Steve LeVine. Artificial intelligence pioneer says we need to start over. Arling-

ton, VA: Axios, 2017.

[81] Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Ak-
erman. Random synaptic feedback weights support error backpropagation
for deep learning. Nature Communications, 7(1):13276, 2016. ISSN 2041-
1723. doi: 10.1038/ncomms13276. URL https://doi.org/10.1038/

ncomms13276.

[82] Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. Episodic mem-
ory deep q-networks. CoRR, abs/1805.07603, 2018. URL http://arxiv.org/

abs/1805.07603.

[83] Jing Liu, Yang Xiao, Qi Hao, and Kaveh Ghaboosi. Bio-inspired visual attention
in agile sensing for target detection. IJSNet, 5(2):98–111, 2009.

http://arxiv.org/abs/1903.06379
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://proceedings.neurips.cc/paper/2007/file/1f4477bad7af3616c1f933a02bfabe4e-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/1f4477bad7af3616c1f933a02bfabe4e-Paper.pdf
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1038/ncomms13276
http://arxiv.org/abs/1805.07603
http://arxiv.org/abs/1805.07603

BIBLIOGRAPHY 149

[84] David Lopez-Paz and Marc Aurelio Ranzato. Gradient episodic mem-
ory for continual learning. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances

in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

f87522788a2be2d171666752f97ddebb-Paper.pdf.

[85] Wolfgang Maass. Networks of spiking neurons: The third generation of
neural network models. Neural Networks, 10(9):1659 – 1671, 1997. ISSN
0893-6080. doi: https://doi.org/10.1016/S0893-6080(97)00011-7. URL http:

//www.sciencedirect.com/science/article/pii/S0893608097000117.

[86] George R Mangun. Neural mechanisms of visual selective attention. Psy-

chophysiology, 32(1):4–18, 1995.

[87] Charles E. Martin and Praveen K. Pilly. Probabilistic Program Neurogenesis.
ALIFE 2019: The 2019 Conference on Artificial Life:440–447, 07 2019. doi:
10.1162/isal_a_00199. URL https://doi.org/10.1162/isal_a_00199.

[88] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. 5(4):115–133. ISSN 1522-9602. doi: 10.1007/BF02478259.
URL https://doi.org/10.1007/BF02478259.

[89] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and Francesco
Nori. The icub humanoid robot: an open platform for research in embodied
cognition. In Proceedings of the 8th workshop on performance metrics for in-

telligent systems, pages 50–56, 2008.

[90] Xiongkuo Min, Guangtao Zhai, Ke Gu, and Xiaokang Yang. Fixation prediction
through multimodal analysis. ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), 13(1):1–23, 2016.

[91] Silviu Minut and Sridhar Mahadevan. A reinforcement learning model of se-
lective visual attention. In Proceedings of the fifth international conference on

Autonomous agents, pages 457–464, 2001.

[92] John Mixter and Ali Akoglu. Growing artificial neural networks. In Hamid R.
Arabnia, Ken Ferens, David de la Fuente, Elena B. Kozerenko, José Angel Oli-
vas Varela, and Fernando G. Tinetti, editors, Advances in Artificial Intelligence

https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
http://www.sciencedirect.com/science/article/pii/S0893608097000117
http://www.sciencedirect.com/science/article/pii/S0893608097000117
https://doi.org/10.1162/isal_a_00199
https://doi.org/10.1007/BF02478259

150 BIBLIOGRAPHY

and Applied Cognitive Computing, pages 409–423, Cham, 2021. Springer In-
ternational Publishing.

[93] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual
attention. pages 2204–2212, 2014.

[94] Jamal Lottier Molin, Alexander F Russell, Stefan Mihalas, Ernst Niebur, and
Ralph Etienne-Cummings. Proto-object based visual saliency model with a
motion-sensitive channel. In 2013 IEEE Biomedical Circuits and Systems Con-

ference (BioCAS), pages 25–28. IEEE, 2013.

[95] Ari S Morcos and Christopher D Harvey. History-dependent variability in pop-
ulation dynamics during evidence accumulation in cortex. Nature neuroscience,
19(12):1672–1681, 2016.

[96] H. Mostafa. Supervised learning based on temporal coding in spiking neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 29(7):
3227–3235, July 2018. ISSN 2162-2388. doi: 10.1109/TNNLS.2017.2726060.

[97] Scott O. Murray and Ewa Wojciulik. Attention increases neural selectivity in the
human lateral occipital complex. Nature Neuroscience, 7(1):70–74, Jan 2004.
ISSN 1546-1726. doi: 10.1038/nn1161. URL https://doi.org/10.1038/

nn1161.

[98] Jaap M. J. Murre and Joeri Dros. Replication and analysis of ebbinghaus’ for-
getting curve. PLOS ONE, 10(7):1–23, 07 2015. doi: 10.1371/journal.pone.
0120644. URL https://doi.org/10.1371/journal.pone.0120644.

[99] Tomoki Nakaya and Keiji Yano. Visualising crime clusters in a space-time cube:
An exploratory data-analysis approach using space-time kernel density estima-
tion and scan statistics. Transactions in GIS, 14(3):223–239, 2010.

[100] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient
learning in spiking neural networks. arXiv preprint arXiv:1901.09948, 2019.

[101] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder,

https://doi.org/10.1038/nn1161
https://doi.org/10.1038/nn1161
https://doi.org/10.1371/journal.pone.0120644

BIBLIOGRAPHY 151

Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving ru-
bik’s cube with a robot hand. 2019. doi: 10.48550/ARXIV.1910.07113. URL
https://arxiv.org/abs/1910.07113.

[102] Lucas Paletta. Attention in Cognitive Systems. Theories and Systems from an

Interdisciplinary Viewpoint: 4th International Workshop on Attention in Cogni-

tive Systems, WAPCV 2007 Hyderabad, India, January 8, 2007 Revised Selected

Papers, volume 4840. Springer Science & Business Media, 2007.

[103] German Ignacio Parisi, Xu Ji, and Stefan Wermter. On the role of neuro-
genesis in overcoming catastrophic forgetting. CoRR, abs/1811.02113, 2018.
doi: https://doi.org/10.48550/arXiv.1811.02113. URL http://arxiv.org/

abs/1811.02113.

[104] J. Park and I. W. Sandberg. Universal Approximation Using Radial-Basis-
Function Networks. Neural Computation, 3(2):246–257, 06 1991. ISSN 0899-
7667. doi: 10.1162/neco.1991.3.2.246. URL https://doi.org/10.1162/

neco.1991.3.2.246.

[105] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. Carbon
emissions and large neural network training. 2021. doi: 10.48550/ARXIV.
2104.10350. URL https://arxiv.org/abs/2104.10350.

[106] David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-
Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. The
carbon footprint of machine learning training will plateau, then shrink, 2022.
URL https://arxiv.org/abs/2204.05149.

[107] Adam Perrett, Steve B. Furber, and Oliver Rhodes. Error driven synapse aug-
mented neurogenesis. Frontiers in Artificial Intelligence, 5, 2022. ISSN 2624-
8212. doi: 10.3389/frai.2022.949707. URL https://www.frontiersin.org/

articles/10.3389/frai.2022.949707.

[108] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. A QVGA 143
dB dynamic range frame-free PWM image sensor with lossless pixel-level
video compression and time-domain CDS. In IEEE Journal of Solid-State Cir-

cuits, volume 46, pages 259–275, jan 2011. ISBN 9781424460342. doi: 10.

https://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1811.02113
http://arxiv.org/abs/1811.02113
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1162/neco.1991.3.2.246
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2204.05149
https://www.frontiersin.org/articles/10.3389/frai.2022.949707
https://www.frontiersin.org/articles/10.3389/frai.2022.949707

152 BIBLIOGRAPHY

1109/JSSC.2010.2085952. URL http://ieeexplore.ieee.org/document/

5648367/.

[109] Michael I Posner. Orienting of attention. Quarterly journal of experimental

psychology, 32(1):3–25, 1980.

[110] Arjun Rao, Philipp Plank, Andreas Wild, and Wolfgang Maass. A long
short-term memory for ai applications in spike-based neuromorphic hard-
ware. Nature Machine Intelligence, 4(5):467–479, May 2022. ISSN 2522-
5839. doi: 10.1038/s42256-022-00480-w. URL https://doi.org/10.1038/

s42256-022-00480-w.

[111] Francesco Rea, Giorgio Metta, and Chiara Bartolozzi. Event-driven visual
attention for the humanoid robot icub. Frontiers in Neuroscience, 7:234,
2013. ISSN 1662-453X. doi: 10.3389/fnins.2013.00234. URL https:

//www.frontiersin.org/article/10.3389/fnins.2013.00234.

[112] Henri Rebecq, Timo Horstschäfer, Guillermo Gallego, and Davide Scaramuzza.
Evo: A geometric approach to event-based 6-dof parallel tracking and mapping
in real time. IEEE Robotics and Automation Letters, 2(2):593–600, 2016.

[113] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. ESIM: an open event
camera simulator. Conf. on Robotics Learning (CoRL), October 2018.

[114] Oliver Rhodes, Petruţ A. Bogdan, Christian Brenninkmeijer, Simon David-
son, Donal Fellows, Andrew Gait, David R. Lester, Mantas Mikaitis, Luis A.
Plana, Andrew G. D. Rowley, Alan B. Stokes, and Steve B. Furber. sPyN-
Naker: A Software Package for Running PyNN Simulations on SpiNNaker.
Frontiers in Neuroscience, 12(November), 2018. ISSN 1662-453X. doi:
10.3389/fnins.2018.00816. URL https://www.frontiersin.org/article/

10.3389/fnins.2018.00816/full.

[115] Oliver Rhodes, Luca Peres, Andrew G.D. D. Rowley, Andrew Gait, Luis A.
Plana, Christian Brenninkmeijer, and Steve B. Furber. Real-time cortical simu-
lation on neuromorphic hardware. Phil. Trans. R. Soc. A, 378:20190160, 2020.
doi: 10.1098/rsta.2019.0160. URL https://doi.org/10.1098/rsta.2019.

0160.

http://ieeexplore.ieee.org/document/5648367/
http://ieeexplore.ieee.org/document/5648367/
https://doi.org/10.1038/s42256-022-00480-w
https://doi.org/10.1038/s42256-022-00480-w
https://www.frontiersin.org/article/10.3389/fnins.2013.00234
https://www.frontiersin.org/article/10.3389/fnins.2013.00234
https://www.frontiersin.org/article/10.3389/fnins.2018.00816/full
https://www.frontiersin.org/article/10.3389/fnins.2018.00816/full
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1098/rsta.2019.0160

BIBLIOGRAPHY 153

[116] Nicolas Riche, Matthieu Duvinage, Matei Mancas, Bernard Gosselin, and
Thierry Dutoit. Saliency and human fixations: State-of-the-art and study of
comparison metrics. In Proceedings of the IEEE international conference on

computer vision, pages 1153–1160, 2013.

[117] Andrew G. D. Rowley, Christian Brenninkmeijer, Simon Davidson, Donal Fel-
lows, Andrew Gait, David R. Lester, Luis A. Plana, Oliver Rhodes, Alan B.
Stokes, and Steve B. Furber. Spinntools: The execution engine for the spin-
naker platform. Frontiers in Neuroscience, 13:231, 2019. ISSN 1662-453X. doi:
10.3389/fnins.2019.00231. URL https://www.frontiersin.org/article/

10.3389/fnins.2019.00231.

[118] Alexander F. Russell, Stefan Mihalaş, Rudiger von der Heydt, Ernst Niebur,
and Ralph Etienne-Cummings. A model of proto-object based saliency. Vision

Research, 94:1–15, 2014. ISSN 00426989. doi: 10.1016/j.visres.2013.10.005.

[119] Ueli Rutishauser, Dirk Walther, Christof Koch, and Pietro Perona. Is bottom-up
attention useful for object recognition? In Proceedings of the 2004 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, 2004.

CVPR 2004., volume 2, pages II–II. IEEE, 2004.

[120] João Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn.
Dendritic cortical microcircuits approximate the backpropagation algo-
rithm. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems, volume 31, pages 8721–8732. Curran Associates,
Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf.

[121] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term mem-
ory based recurrent neural network architectures for large vocabulary speech
recognition. CoRR, abs/1402.1128, 2014. URL http://arxiv.org/abs/

1402.1128.

[122] Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karl-
heinz Meier, and Sebastian Millner. A wafer-scale neuromorphic hardware sys-
tem for large-scale neural modeling. In 2010 IEEE International Symposium on

Circuits and Systems (ISCAS), pages 1947–1950, 2010. doi: 10.1109/ISCAS.
2010.5536970.

https://www.frontiersin.org/article/10.3389/fnins.2019.00231
https://www.frontiersin.org/article/10.3389/fnins.2019.00231
https://proceedings.neurips.cc/paper/2018/file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf
http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1402.1128

154 BIBLIOGRAPHY

[123] Charles E Schroeder, Donald A Wilson, Thomas Radman, Helen Scharfman,
and Peter Lakatos. Dynamics of active sensing and perceptual selection. Current

Opinion in Neurobiology, 20(2):172–176, 2010. ISSN 0959-4388. doi: https:
//doi.org/10.1016/j.conb.2010.02.010. URL https://www.sciencedirect.

com/science/article/pii/S0959438810000322. Cognitive neuroscience.

[124] Robert Shapley and V Hugh Perry. Cat and monkey retinal ganglion cells and
their visual functional roles. Trends in Neurosciences, 9:229–235, 1986.

[125] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmen-
tation for deep learning. Journal of Big Data, 6(1):60, Jul 2019. ISSN 2196-
1115. doi: 10.1186/s40537-019-0197-0. URL https://doi.org/10.1186/

s40537-019-0197-0.

[126] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reas-
signment in time. pages 1412–1421, 2018. URL http://papers.nips.cc/

paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf.

[127] BW Silverman. Density estimation for statistics and data analysis. 1986. doi:
https://doi.org/10.1201/9781315140919.

[128] Takuma Sonoda, Yudai Okabe, and Tiffany M Schmidt. Overlapping morpho-
logical and functional properties between m4 and m5 intrinsically photosensi-
tive retinal ganglion cells. Journal of Comparative Neurology, 528(6):1028–
1040, 2020.

[129] Kirsty L. Spalding, Olaf Bergmann, Kanar Alkass, Samuel Bernard, Mehran
Salehpour, Hagen B. Huttner, Emil Boström, Isabelle Westerlund, Céline Vial,
Bruce A. Buchholz, Göran Possnert, Deborah C. Mash, Henrik Druid, and Jonas
Frisén. Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6):
1219–1227, 2013. ISSN 0092-8674. doi: https://doi.org/10.1016/j.cell.2013.
05.002. URL https://www.sciencedirect.com/science/article/pii/

S0092867413005333.

[130] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augment-
ing topologies. Evolutionary Computation, 10(2):99–127, June 2002. ISSN
1063-6560. doi: 10.1162/106365602320169811.

https://www.sciencedirect.com/science/article/pii/S0959438810000322
https://www.sciencedirect.com/science/article/pii/S0959438810000322
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
https://www.sciencedirect.com/science/article/pii/S0092867413005333
https://www.sciencedirect.com/science/article/pii/S0092867413005333

BIBLIOGRAPHY 155

[131] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based indirect
encoding for evolving large-scale neural networks. Artificial Life, 15(2):185–
212, April 2009. ISSN 1064-5462. doi: 10.1162/artl.2009.15.2.15202.

[132] Robert Stickgold. Sleep-dependent memory consolidation. Nature, 437(7063):
1272–1278, 2005.

[133] Claes Strannegård, Herman Carlström, Niklas Engsner, Fredrik Mäkeläinen,
Filip Slottner Seholm, and Morteza Haghir Chehreghani. Lifelong learning
starting from zero. In Patrick Hammer, Pulin Agrawal, Ben Goertzel, and
Matthew Iklé, editors, Artificial General Intelligence, pages 188–197, Cham,
2019. Springer International Publishing. ISBN 978-3-030-27005-6.

[134] S. P. Strong, Roland Koberle, Rob R. de Ruyter van Steveninck,
and William Bialek. Entropy and Information in Neural Spike
Trains. Physical Review Letters, 80(1):197–200, jan 1998. ISSN
0031-9007. doi: 10.1103/PhysRevLett.80.197. URL https:

//journals.aps.org/prl/pdf/10.1103/PhysRevLett.80.197https:

//link.aps.org/doi/10.1103/PhysRevE.69.056111https://link.aps.

org/doi/10.1103/PhysRevLett.80.197.

[135] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks
for language modeling. In Thirteenth annual conference of the international

speech communication association, 2012.

[136] Michael A. Sutton and Erin M. Schuman. Dendritic protein synthesis, synaptic
plasticity, and memory. Cell, 127(1):49–58, 2006. ISSN 0092-8674. doi: https:
//doi.org/10.1016/j.cell.2006.09.014. URL https://www.sciencedirect.

com/science/article/pii/S0092867406012062.

[137] Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-
invariant neural networks for reinforcement learning, 2021. URL https://

arxiv.org/abs/2109.02869.

[138] Simon Thorpe and Jacques Gautrais. Rank Order Coding, pages 113–118.
Springer US, Boston, MA, 1998. doi: 10.1007/978-1-4615-4831-7_19. URL
https://doi.org/10.1007/978-1-4615-4831-7_19.

[139] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Busi-
ness Media, 2012.

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.80.197 https://link.aps.org/doi/10.1103/PhysRevE.69.056111 https://link.aps.org/doi/10.1103/PhysRevLett.80.197
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.80.197 https://link.aps.org/doi/10.1103/PhysRevE.69.056111 https://link.aps.org/doi/10.1103/PhysRevLett.80.197
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.80.197 https://link.aps.org/doi/10.1103/PhysRevE.69.056111 https://link.aps.org/doi/10.1103/PhysRevLett.80.197
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.80.197 https://link.aps.org/doi/10.1103/PhysRevE.69.056111 https://link.aps.org/doi/10.1103/PhysRevLett.80.197
https://www.sciencedirect.com/science/article/pii/S0092867406012062
https://www.sciencedirect.com/science/article/pii/S0092867406012062
https://arxiv.org/abs/2109.02869
https://arxiv.org/abs/2109.02869
https://doi.org/10.1007/978-1-4615-4831-7_19

156 BIBLIOGRAPHY

[140] Anne M Treisman and Garry Gelade. A feature-integration theory of attention.
Cognitive psychology, 12(1):97–136, 1980.

[141] John K Tsotsos and Albert Rothenstein. Computational models of visual atten-
tion. Scholarpedia, 6(1):6201, 2011.

[142] Takeshi Uejima, Ernst Niebur, and Ralph Etienne-Cummings. Proto-object
based saliency model with second-order texture feature. In 2018 IEEE Biomed-

ical Circuits and Systems Conference (BioCAS), pages 1–4. IEEE, 2018.

[143] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. 30, 2017. URL https://proceedings.neurips.cc/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[144] Dirk Walther and Christof Koch. Modeling attention to salient proto-objects.
Neural networks, 19(9):1395–1407, 2006.

[145] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learn-
ing to reinforcement learn. 2016.

[146] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv

preprint arXiv:1410.3916, 2014. doi: https://doi.org/10.48550/arXiv.1410.
3916.

[147] Cesco Willemse and Agnieszka Wykowska. In natural interaction with em-
bodied robots, we prefer it when they follow our gaze: A gaze-contingent mo-
bile eyetracking study. Philosophical Transactions of the Royal Society B, 374
(1771):20180036, 2019.

[148] Timo C. Wunderlich and Christian Pehle. Eventprop: Backpropagation for exact
gradients in spiking neural networks. 2020.

[149] Agnieszka Wykowska and Anna Schubö. On the temporal relation of top–down
and bottom–up mechanisms during guidance of attention. Journal of Cognitive

Neuroscience, 22(4):640–654, 2010.

[150] Alfred L Yarbus. Eye movements and vision. Springer, 2013.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

BIBLIOGRAPHY 157

[151] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in
multilayer spiking neural networks. Neural Computation, 30(6):1514–1541,
2018. doi: 10.1162/neco_a_01086. URL https://doi.org/10.1162/neco_

a_01086. PMID: 29652587.

[152] Friedemann Zenke, Ben Poole, and Surya Ganguli. Improved multitask learning
through synaptic intelligence. CoRR, abs/1703.04200, 2017. URL http://

arxiv.org/abs/1703.04200.

[153] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Antonio Torralba, and Aude
Oliva. Places: An image database for deep scene understanding. CoRR,
abs/1610.02055, 2016. doi: https://doi.org/10.48550/arXiv.1610.02055. URL
http://arxiv.org/abs/1610.02055.

[154] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Ap-

plied and Computational Harmonic Analysis, 48(2):787–794, 2020. ISSN
1063-5203. doi: https://doi.org/10.1016/j.acha.2019.06.004. URL https:

//www.sciencedirect.com/science/article/pii/S1063520318302045.

[155] Hong Zhou, Howard S Friedman, and Ru diger von der Heydt. Coding of border
ownership in monkey visual cortex. The Journal of Neuroscience, 20(17):6594–
6611, 2000.

https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1162/neco_a_01086
http://arxiv.org/abs/1703.04200
http://arxiv.org/abs/1703.04200
http://arxiv.org/abs/1610.02055
https://www.sciencedirect.com/science/article/pii/S1063520318302045
https://www.sciencedirect.com/science/article/pii/S1063520318302045

Appendix A

Appendix

A.1 Error Driven Neurogenesis appendix

The following figures are additional plots of the EDN (Error Driven Neurogenesis)
parametric analysis. They explore the effect error threshold Eth, kernel spread s, ran-
dom sampling and sampling with a varied surprise threshold sth have on testing accu-
racy, absolute error, neuron count and synapse count.

158

A.1. ERROR DRIVEN NEUROGENESIS APPENDIX 159

Figure A.1: How the testing accuracy during training changes with error threshold, Eth

Figure A.2: How the neuron and synapse counts following two epochs changes with
error threshold, Eth

160 APPENDIX A. APPENDIX

Figure A.3: How the running average (moving window over 100 examples) of absolute
testing error changes with error threshold, Eth

Figure A.4: How the testing accuracy during training changes with kernel spread size,
s

A.1. ERROR DRIVEN NEUROGENESIS APPENDIX 161

Figure A.5: How the neuron and synapse counts following two epochs changes with
kernel spread size, s

Figure A.6: How the running average (moving window over 100 examples) of absolute
testing error changes with kernel spread size, s

162 APPENDIX A. APPENDIX

Figure A.7: How the testing accuracy during training changes with different random
sample sizes

Figure A.8: How the neuron and synapse counts following two epochs changes with
different random sample sizes

A.1. ERROR DRIVEN NEUROGENESIS APPENDIX 163

Figure A.9: How the running average of absolute testing error changes with different
random sample sizes

Figure A.10: How the testing accuracy during training changes with surprise threshold,
sth

164 APPENDIX A. APPENDIX

Figure A.11: How the neuron and synapse counts following two epochs changes with
surprise threshold, sth

Figure A.12: How the running average (moving window over 100 examples) of abso-
lute testing error changes with surprise threshold, sth

	Acronyms
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Introduction
	Hypothesis - Research questions
	Contributions
	Publications
	Thesis structure
	Chapter 2 - Background
	Chapter 3 - Visual attention
	Chapter 4 - E-prop on SpiNNaker
	Chapter 5 - Error driven neurogenesis
	Chapter 6 - Conclusions

	Background
	Understanding biological intelligence
	Learning how to learn
	The medium matters
	Summary

	Visual attention
	Introduction
	Background
	Event-based SNN proto-object model of saliency
	Experiments and Results
	Conclusion

	E-prop on SpiNNaker
	Introduction
	Background
	Online and local learning
	E-prop
	SpiNNaker

	Implementation and experimental design
	An overview of e-prop
	E-prop neuron models
	SNN architecture & mapping to SpiNNaker
	Tasks

	Results
	Wave-form matching
	Temporal credit assignment
	Firing rate (ir)regularisation

	Discussion

	Error driven neurogenesis
	Introduction and background
	Implementation and experimental design
	Error Driven Neurogenesis algorithm design
	Task specific alterations
	Related algorithms

	Results
	Visualising the expectation
	Visualising the receptive fields
	Inverted pendulum - reinforcement learning
	Parametric analysis

	Discussion

	Conclusions
	Summary and conclusions
	Future work

	Appendix
	Error Driven Neurogenesis appendix

