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Abstract

DIFFERENTIABLE CONSTRAINT-BASED SOLVERS FOR

EXPLANATION-BASED MULTI-HOP INFERENCE

Mokanarangan Thayaparan
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2022

Explanation-based Question Answering (XQA) for complex questions involving
scientific and common-sense reasoning is often modelled as a multi-hop reasoning.
Constrained optimization solvers based on Integer Linear Programming (ILP) have
been proposed to address these multi-hop inference tasks. This family of approaches
provides a viable mechanism to encode explicit and controllable assumptions, casting
multi-hop as an optimal subgraph selection problem.

However, these approaches have shown diminishing returns with an increasing
number of hops suffering from a phenomenon called semantic drift. Moreover, these
approaches are typically non-differentiable and cannot be integrated as part of a deep
neural network. This shortcoming prevents these methods from learning end-to-end on
annotated corpora and achieving performance comparable to deep learning counterparts.

This thesis attempts to solve these problems by presenting the following contribu-
tions:

• Introduce a novel model (ExplantionLP) that performs inference encoding grounding-
abstract chains for explanation-based multi-hop inference and reduces semantic

drift. We demonstrate that ExplantionLP is more robust to semantic drift when
compared with graph-based and transformer-based approaches.

• Present the first hybrid model (Diff-Explainer) that integrates constrained opti-
mization as part of a deep neural network via differentiable convex optimization,

11



allowing the fine-tuning of pre-trained transformers for downstream explanation-
based multi-hop Inference task. We empirically demonstrate on scientific and
common-sense QA benchmarks that integrating explicit constraints in an end-
to-end differentiable framework can significantly improve the performance of
non-differentiable ILP solvers.

• Propose a novel hybrid model (Diff-Comb Explainer) that integrates constrained
optimization as part of a deep neural network via Differentiable BlackBox
Combinatorial solvers, allowing the fine-tuning of pre-trained transformers for
downstream explanation-based multi-hop Inference task. Diff-Comb Explainer
demonstrates improved answer and explanation selection accuracy over non-
differentiable solvers, transformers and existing differentiable constraint-based
multi-hop inference frameworks.

We also present a systematic review of the explainable natural language inference
field. In this survey, we present an analysis of existing benchmarks and models. Ad-
ditionally, identifying the emerging research trends and highlighting challenges and
opportunities for future work.
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Chapter 1

Introduction

1.1 Motivation

Explanation-based inference is the design of models capable of performing transparent
inference through the generation of an explanation for the prediction. Explanation-based
Question Answering (XQA) for complex questions involving scientific and common-
sense reasoning is often modelled as a multi-hop reasoning problem (Jansen, 2018;
Jansen et al., 2016). The goal of a typical XQA solver is to answer a given question
and construct an explanation as a graph composed of multiple interconnected sentences
(i.e., hops) supporting the answer (Jansen, 2018; Khashabi, Khot, Sabharwal, & Roth,
2018; Kundu et al., 2019).

For example, consider the question and answer presented in Figure 1.1. In order
to answer this question, an XQA solver should be able to combine multiple facts from
how a stick is an object and rubbing two objects together creates friction leading to heat
being produced.

Recently, large-scale benchmarks have been proposed to train and evaluate models
with multi-hop reasoning capabilities. These benchmarks covers a diverse set of rea-
soning domains including open-domain (Z. Yang et al., 2018), scientific (Clark et al.,
2018; Khot et al., 2020), commonsense (Talmor et al., 2019) and format: multiple

choice selection (Clark et al., 2018), textual entailment (Williams et al., 2017) and span

selection (Z. Yang et al., 2018).

The current state-of-the-art (SOTA) models trained on these benchmarks for multi-
hop inference are exclusively represented by Transformer-based models (He et al., 2020;
Khashabi et al., 2020; Yadav et al., 2020). Pre-trained transformer models have been
shown to learn natural language representations from large volumes of text data and

16



1.2. CONSTRAINED OPTIMIZATION FOR MULTI-HOP INFERENCE 17

Answer: 

Question:

Explanations: 

to rub together means to move against

friction is a force

a stick is an object

Two sticks getting warm when rubbed together

What is an example of force producing heat

friction occurs when two object's surfaces 
move against each other

friction causes the temperature of an object
to increases

Figure 1.1: An example for explanation-based multi-hop inference (Jansen et al., 2018).

transfer this knowledge to downstream tasks like question answering, textual entailment,
and language generation with little fine-tuning (Devlin et al., 2019; Y. Liu et al., 2019).
However, Transformers are typically regarded as black-boxes (Liang et al., 2021), posing
concerns about the interpretability and transparency of their predictions (Guidotti et al.,
2018; Rudin, 2019).

Despite yielding high performance across various benchmarks, these SOTA deep
learning models have been shown to exploit biases in the data (Gururangan et al., 2018;
McCoy et al., 2019). In contrast, an explanation-based solver can provide an additional
mechanism to investigate and analyze the internal reasoning mechanisms (Dua et al.,
2020; Inoue et al., 2020; Ross et al., 2017). By focusing on explicit reasoning methods,
research in explanation-based inference can lead to the development of novel models
able to perform compositional generalization (Andreas et al., 2016a; N. Gupta et al.,
2020) and discover abstract inference patterns in the data (Khot et al., 2020; Rajani
et al., 2019), favouring few-shot learning and cross-domain transportability (Camburu
et al., 2018).

1.2 Constrained Optimization for Multi-hop Inference

In this context, constrained optimization solvers based on Integer Linear Programming
(ILP) have been proposed to address these multi-hop inference tasks (Khashabi et al.,



18 CHAPTER 1. INTRODUCTION

[✓]:   Explanatory Facts 
[✕]:   Non-Explanatory Facts

Grounding Facts:[✓] a stick is an object: F1 
[✓] friction is a force: F2 
[✕] a pull is a force: F3 
[✓] to rub together means to move against: F4 
[✕] rubbing against something is kind of   
    movement: F5
[✓] friction occurs when two object's surfaces  
    move against each other: F6
[✓] friction occurs when two object's surfaces  
    move against each other: F7
[✕] magnetic attraction pulls two objects  
    together: F8

Background Knowledge:

H1

F1 

stick
F2 

force force

F3 force

F5 

rub

F4 

rub  
together

F6 
object

friction

move 
against F7 

friction friction

F8 
together

pull

together

For Hypothesis H:

: Explanatory Facts : Non-Explanatory Facts

rub

Hypothesis (H): 

Two sticks getting warm when rubbed together
is an example of force producing heat

Figure 1.2: An example where relevant information needs to be extracted while discard-
ing spurious facts to answer the question.

2016; Khashabi, Khot, Sabharwal, & Roth, 2018; Khot et al., 2017). This family of ap-
proaches provides a viable mechanism to encode explicit and controllable assumptions,
casting multi-hop and explanation-based QA as an optimal subgraph selection problem
(Clark et al., 2018; Jansen et al., 2018; Xie et al., 2020).

For example, refer to Figure 1.2, here an explanation-based solver should be able
to identify that the central concept is of friction and its properties. In order to achieve
this, the solver needs to be able abstract from stick to object, friction to force to connect
with the facts about friction. The solver should also be able to filter out distracting
knowledge about pull and magnetic attraction that has strong lexical overlaps but is not
relevant to the hypothesis. This process can be cast as an optimal subgraph problem
where a constraint-based solver aims to identify a subgraph of facts supporting the
answer.

TableILP (Khashabi et al., 2016) is one of the earliest approaches to formulate
the construction of explanations as an optimal sub-graph selection problem over a
set of structured tables and evaluated on multiple-choice elementary science question
answering. In contrast to TableILP, TupleILP (Khot et al., 2017) was able to perform
inference over free-form text by building semi-structured representations using Open
Information Extraction. SemanticILP (Khashabi, Khot, Sabharwal, & Roth, 2018) also
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comes from the same family of solvers that leveraged different semantic abstractions,
including semantic role labelling, named entity recognition and lexical chunkers for
inference.

1.3 Problem Formulation

In this thesis, we focus on multiple-choice science question answering to evaluate the
capabilities of constraint-based solvers. The motivation to choose science questions is
because, unlike open-domain factoid-based question answering, it requires complex
forms of inference, including causal, model-based and example-based reasoning (Clark
et al., 2018; Clark et al., 2013; Jansen, 2018; Jansen et al., 2016). Our goal is also aided
by the availability of explanations supporting benchmarks for science questions (Jansen
et al., 2018; Xie et al., 2020).

The problem of Explanation-based Multi-Hop Question Answering (XQA) can be
stated as follows:

Definition 1 (Explanations in Multi-Hop Question Answering). Given a question Q,
answer a and a knowledge base Fkb (composed of natural language sentences), we say
that we may infer hypothesis h (where hypotheses h is the concatenation of Q with a) if
there exists a subset (Fexp) of supporting facts { f1, f2, . . .} ⊆ Fkb of statements which
would allow to arrive at h from { f1, f2, . . .}. We call this set of facts an explanation for
h.

Given a question (Q) and a set of candidate answers C = {c1, c2, c3, ..., cn} ILP-
based approaches (Khashabi et al., 2016; Khot et al., 2017) convert them into a list of
hypothesis H = {h1, h2, h3, . . . , hn} by concatenating question and candidate answer.
For each hypothesis hi these approaches typically adopt a retrieval model (e.g: TF-IDF,
BM25 (Robertson, Zaragoza, et al., 2009)), to select a list of candidate explanatory
facts F = { f1, f2, f3, . . . , fk}, and construct a weighted graph G = (V ,E,W ) with
edge weights W : E → R where V = {{hi} ∪ F}, edge weight Wik of each edge Eik

denote how relevant a fact fk is with respect to the hypothesis hi.

Based on these definitions, ILP-based QA can be defined as follows:

Definition 2 (ILP-Based Multi-Hop QA). Find a subset Ṽ ⊆V , h ∈ Ṽ , Ṽ \{h}= Fexp

and Ẽ ⊆ E such that the induced subgraph G̃ = (Ṽ , Ẽ) is connected, weight W [G̃ =

(Ṽ , Ẽ)] := ∑e∈Ẽ W (e) is maximal and adheres to set of constraints Mc designed to
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emulate multi-hop inference. The hypothesis hi with the highest subgraph weight
W [G̃ = (Ṽ , Ẽ)] is selected to be the correct answer cans.

There are two major gaps with existing ILP-based QA solvers:

1. Semantic Drift: The challenge of a constraint-based explanation-based solver
is to aggregate multiple facts. Each fact combined here is treated as a hop (i.e.,
hopping from one fact→ fact or hypothesis→ fact). With an increasing number
of aggregated facts, the probability of inference drifting out of context also
increases, leading to a phenomenon called semantic drift. Fried et al. (2015) and
Jansen et al. (2018) had demonstrated that the performance gain achieved with
2-3 hops decreases for more than three hops.

2. Non-differentiability of ILP-based solvers: Constraint-based optimization
solver provides a way to encode explicit and controllable assumptions to construct
explanations and perform inference. While delivering explanations, existing
optimization solvers are typically non-differentiable (Paulus et al., 2021) and
cannot be integrated as part of a deep neural network. These approaches are
also often limited by the number of constraints adopted for inference. This
shortcoming prevents these methods from learning end-to-end on annotated
corpora and achieving performance comparable to deep learning counterparts.
Integrating constraint-based solvers with deep learning models can potentially
combine the best of both worlds to achieve the following aims:

• Acquire explanation-based inference, control and interpretability of constraint-
based solvers into transformer-based models

• Incorporate semantic flexibility supported by distributional semantics from
transformer-based approaches into constraint-based solvers.

Given the above gaps, we formulate the central problem of the thesis as follows:

Problem Formulation:

Given a question (Q) and candidate answers C = {c1, c2, c3, ..., cn}, the aim is to build
a differentiable constraint-based optimization model Diff constrained robust to semantic
drift that combines constraint-based solvers and transformers to select the correct answer
cans and explanation Fans that supports the answer.
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1.4 Research Objectives and Questions

The following section outlines the Research Objectives and Questions to address the
central problem:

Systematic review of explanation-based multi-hop inference Explanation-based
inference has emerged as a crucial requirement for multi-hop inference. However, little
work has been done to present a systematic review of the field to identify the challenges
and opportunities. Hence, the first primary research objective (RO1) we aim for is as
follows:

RO1: Identify challenges and opportunities within explanation-based multi-hop infer-

ence

We seek to answer the following research questions by attempting to achieve
Research Objective 1 (RO1):

• RQ1.1: What types of inferences are required in multi-hop inference?

Aim to understand the different types of explanations presented in recent literature.
Multi-hop inference is moving away from relying only on lexical overlaps and
towards abstractive reasoning. Here, the solver is expected to go beyond the
surface form of the problem and towards more abstract concepts. This RQ also
aims to understand the effect of this paradigm in explanations.

• RQ1.2: How have explanation-based benchmarks evolved to support multi-hop

inference?

Investigate the benchmarks proposed for explanation-based multi-hop inference.
Define a categorization for the benchmarks based on the domain, format, and ex-
planation properties. Subsequently, group the explanation supporting benchmarks
along the categories to analyze how the notion of inference represented in these
datasets has evolved.

• RQ1.3: How did explanation-based multi-hop inference models evolve?

Investigate different architectures used with explanation-based inference mod-
els. Identify different modelling paradigms based on the architectures used and
plot how state-of-the-art has changed to arrive at the currently used modelling
paradigm. Also, identify the challenges and shortcomings of each group of
approaches.
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• RQ1.4: What are the gaps in the explanation-based multi-hop inference bench-

marks and models?

Identify challenges and opportunities based on the analysis of the benchmarks
and models. These findings allow us to outline the potential gaps that could be
addressed with our research.

Tackling semantic drift in constraint-based solvers The current method of long
hops of constrained solvers is not capable of dealing with semantic drift (Jansen et al.,
2018; Khashabi et al., 2019).

Hence, the second primary research objective (RO2) we aim for is as follows:

RO2: Propose a novel constraint-based solver for explanation-based multi-hop infer-

ence method which reduces semantic drift

We seek to answer the following research question by attempting to achieve Research
Objective 2 (RO2).

• RQ2.1: Does the encoding of grounding-abstract mechanisms reduce semantic

drift?

Empirically investigate if reducing the number of hops by encoding grounding-
abstract mechanisms leads to better answer and explanation selection performance.
Understand how each component plays a role in the inference process.

Integrating constraint-based solvers with transformer-based learning architec-
tures to build Explanation-based multi-hop models Constraint-based solvers using
Integer Linear Programming are non-differentiable and cannot be integrated into deep
learning networks. Therefore, incorporating them in the current formulation is not
possible and would require approximation (Agrawal, Amos, et al., 2019) or adapta-
tion (Pogančić et al., 2019). We define the third research objective (RO3) as follows:

RO3: Build a hybrid framework for multi-hop inference that combines constraint-

based optimization layers with pre-trained neural representations, enabling end-to-end

differentiability for explanation-based inference with optimization-based solvers.

We use the same experiments with RO2 and seek to answer the following research
question by attempting to achieve Research Objective 3 (RO3).

• RQ3.1: Do incorporating constraint solvers with transformers improve perfor-

mance when compared to the non-differentiable solver?
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Figure 1.3: Overall end-to-end architecture diagram and how it connects to the research
questions, the structure of the thesis, and dependencies between the chapters.

Compare the explanation-based inference performance obtained by a hybrid
framework against the non-differentiable solver with an equivalent objective
function and constraints.

• RQ3.2: Does incorporating constraint solvers with transformers demonstrate bet-

ter robustness in inference to increasing distracting noise compared to transformer-

based models?

As noted by previous works (Yadav et al., 2019b, 2020), transformer-only models
exhibit lower performance with increasing distraction information. With this RQ,
we aim to compare the performance of transformer-based only models against
our models with increasing distractors.

1.5 Thesis Outline

• Chapter 2 (Explanation-based Inference in Machine Reading Comprehen-
sion):

This Chapter presents the survey of recent benchmarks and approaches proposed
for explanation-based machine reading comprehension (MRC). With MRC, we
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cover both single-hop and multi-hop inference approaches. As dictated in Re-
search Objective 1, this survey aims to present a systematic review of the field.

This Chapter is based on the paper “A Survey on Explainability in Machine
Reading Comprehension”. An earlier version of the paper can be found in
https://arxiv.org/abs/2010.00389.

• Chapter 3 (Explanation-based Inference Over Grounding-Abstract Chains):

This Chapter proposes an explanation-based inference approach for science ques-
tions by reasoning on grounding and abstract inference chains. Our method,
ExplanationLP, elicits explanations by constructing a weighted graph of relevant
facts for each candidate answer and employs a linear programming formalism de-
signed to select the optimal subgraph of explanatory facts. The graphs’ weighting
function comprises a set of parameters targeting relevance, cohesion and diversity,
which we fine-tune for answer selection via Bayesian Optimization.

This Chapter is based on the paper “Explainable Inference Over Grounding-
Abstract Chains for Science Questions”. The current version can be found in
https://aclanthology.org/2021.findings-acl.1/ and has been accepted and published
in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.

• Chapter 4 (Differentiable Convex Optimization for Explanation-based Multi-
hop Inference):

This Chapter presents Diff-Explainer, the first hybrid framework for an explanation-
based multi-hop inference that integrates explicit constraints with neural archi-
tectures through differentiable convex optimization. Specifically, Diff -Explainer
allows for fine-tuning neural representations within a constrained optimization
framework to answer and explain multi-hop questions in natural language. To
demonstrate the efficacy of the hybrid framework, we combine existing ILP-
based solvers for multi-hop Question Answering (QA) with Transformer-based
representations.

This Chapter is based on the paper “Diff-Explainer: Differentiable Convex Op-
timization for Explainable Multi-hop Inference”. This can be found in https:
//arxiv.org/pdf/2105.03417.pdf and has been accepted for Transactions of the

Association for Computational Linguistics, 2022.

• Chapter 5 (Differentiable Blackbox Combinatorial Solvers for Explanation-
based Multi-hop Inference):

https://arxiv.org/abs/2010.00389
https://aclanthology.org/2021.findings-acl.1/
https://arxiv.org/pdf/2105.03417.pdf
https://arxiv.org/pdf/2105.03417.pdf
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In Chapter 4, we proposed a novel methodology Diff-Explainer to integrate ILP
with Transformers to achieve end-to-end differentiability for complex multi-
hop inference. While this hybrid framework has been demonstrated to deliver
better answer and explanation selection than transformer-based and existing ILP
solvers, the neuro-symbolic integration still relies on a convex relaxation of the
ILP formulation, which can produce sub-optimal solutions. To improve these
limitations, we propose Diff-Comb Explainer, a novel neuro-symbolic architecture
based on Differentiable BlackBox Combinatorial solvers (DBCS) (Pogančić et al.,
2019). Unlike existing differentiable solvers, the presented model does not require
the transformation and relaxation of the explicit semantic constraints, allowing
for direct and more efficient integration of ILP formulations.

This Chapter is based on the paper “Going Beyond Approximation: Encoding
Constraints for Explainable Multi-hop Inference via Differentiable Combinatorial
Solvers”. The current version of the paper can be found in https://arxiv.org/abs/
2208.03339.

Figure 1.3 illustrates the overall end-to-end architecture diagram and how it connects
to the research questions, the structure of the thesis, and the dependencies between the
chapters.

1.6 Other Publications

• Mokanarangan Thayaparan, Marco Valentino, Peter Jansen, and Dmitry Ustalov.
2021. TextGraphs 2021 Shared Task on Multi-Hop Inference for Explanation Re-
generation. In Proceedings of the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-15), pages 156–165, Mexico City,
Mexico. Association for Computational Linguistics.

• Mokanarangan Thayaparan, Marco Valentino, Viktor Schlegel, and André Freitas.
2019. Identifying Supporting Facts for Multi-hop Question Answering with
Document Graph Networks. In Proceedings of the Thirteenth Workshop on
Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages
42–51, Hong Kong. Association for Computational Linguistics.

• Guy Marshall, Mokanarangan Thayaparan, Philip Osborne, and André Freitas.
2021. Switching Contexts: Transportability Measures for NLP. In Proceedings of

https://arxiv.org/abs/2208.03339
https://arxiv.org/abs/2208.03339
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Chapter 2

Explanation-based Inference in
Machine Reading Comprehension

This Chapter is based on the paper “A Survey on Explainability in Machine Reading
Comprehension”. An earlier version of the paper can be found in https://arxiv.org/abs/
2010.00389. This Chapter is the literature review of the thesis.

2.1 Introduction

Machine Reading Comprehension (MRC) has the long-standing goal of developing
machines that can reason with natural language. A typical reading comprehension task
consists in answering questions about the background knowledge expressed in a textual
corpus. Recent years have seen an explosion of models and architectures due to the
release of large-scale benchmarks, ranging from open-domain (Rajpurkar et al., 2016;
Z. Yang et al., 2018) to commonsense (Huang et al., 2019; Talmor et al., 2019) and
scientific (Clark et al., 2018; Khot et al., 2020) reading comprehension tasks. Research
in MRC is gradually evolving in the direction of abstractive inference capabilities,
testing the models for their ability to go beyond what is explicitly stated in the text
(Baral et al., 2020). As the need to evaluate abstractive reasoning becomes predominant,
a crucial requirement emerging in recent years is explanation-based inference (Jansen
et al., 2018; Khot et al., 2020; Xie et al., 2020; Z. Yang et al., 2018), intended as the
ability of a model to expose the underlying mechanisms adopted to arrive at the final
answers. Explanation-based inference has the potential to tackle some of the current
issues in the field:

27

https://arxiv.org/abs/2010.00389
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Extractive MRC Abstractive MRC

Question When was Erik Watt’s father born? What is an example of a force producing
heat?

Answer May 5, 1939 Two sticks getting warm when rubbed
together

Explanation (1) He (Erik Watt) is the son of WWE
Hall of Famer Bill Watts; (2) William
F. Watts Jr. (born May 5, 1939) is an
American former professional wrestler,
promoter, and WWE Hall of Fame In-
ductee (2009).

(1) A stick is a kind of object; (2) To
rub together means to move against; (3)
Friction is a kind of force; (4) Friction
occurs when two object’s surfaces move
against each other; (5) Friction causes
the temperature of an object to increase.

Table 2.1: Explanations for extractive (Z. Yang et al., 2018) and abstractive (Jansen
et al., 2018) MRC.

• Evaluation: Traditionally, MRC models have been evaluated on end-to-end
answer prediction tasks. In other words, achieving high performance on specific
datasets has been considered a proxy for evaluating the desired set of reasoning
skills. However, recent work has demonstrated that this is not necessarily true for
state-of-the-art models, which are particularly capable of exploiting biases in the
data (Gururangan et al., 2018; McCoy et al., 2019). Research in explanation-based
inference can provide novel evaluation frameworks to investigate and analyze the
internal reasoning mechanisms (Dua et al., 2020; Inoue et al., 2020; Ross et al.,
2017).

• Interpretability: A system capable of delivering explanations is generally more
interpretable, meeting some of the requirements for real-world applications, such
as user trust, confidence and acceptance (Biran & Cotton, 2017; Holzinger et al.,
2017; Miller, 2019).

Despite the potential impact of explanation-based inference in MRC, little has been
done to provide a unifying and organized view of the field. This Chapter aims to
categorize explanation-supporting benchmarks and models systematically. To this end,
we review the work published in some of the major AI and NLP conferences from
2015 onwards, which actively contributed to explanation-based inference in MRC, also
referring to preprint versions when necessary.
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2.2 Dimensions of Explanation-based Inference

As AI embraces a variety of tasks, the resulting definition of explanation-based inference
is often fragmented and dependent on the specific scenario. Here, we frame the scope
of the survey by investigating the dimensions of explanation-based inference in MRC.

We refer to explanation-based inference as a specialization of the higher level
concept of interpretability. In general, interpretability aims at developing tools to
understand and investigate the behaviour of an AI system. This definition also includes
tools that are external to a black-box model, as in the case of post-hoc interpretability
(Guidotti et al., 2018). On the other hand, the goal of explanation-based inference is the
design of models capable of performing transparent inference through the generation of
an explanation for the final prediction.

In general, an explanation can be seen as an answer to a how question formulated
as follows: “How did the model arrive at the conclusion c starting from the problem

formulation p?”. In the context of MRC, the answer to this question can be addressed
by exposing the internal reasoning mechanisms linking p to c. This goal can be achieved
in two different ways:

1. Knowledge-based explanation: exposing part of the relevant background knowl-
edge connecting p and c in terms of supporting evidence and/or inference rules.

2. Operational explanation: composing a set of atomic operations through the
generation of a symbolic program, whose execution leads to the final answer c.

This survey reviews recent developments in knowledge-based and operational

explanation, emphasising the problem of explanatory relevance for the former – i.e., the
identification of relevant information for the construction of explanations and question

decomposition for the latter – i.e., casting a problem expressed in natural language into
an executable program.

2.2.1 Explanation and Abstraction

Depending on the nature of the MRC problem, a complete explanation can include
pieces of evidence at different levels of abstraction. Traditionally, the field has been
divided into extractive and abstractive tasks (e.g. Table 2.1).

In extractive MRC, the reasoning required for the explanations is derivable from the
original problem formulation. In other words, the correct decomposition of the problem
provides the necessary inference steps for the answer, and the role of the explanation is
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Linguistic Space

Explanation Space

Extensional Intensional

Supporting Facts

Ground Atoms, Coreferences
and Paraphrases

Supporting Definitions

Essential Properties and
Taxonomic Relations

Supporting Inference

Abstract Rules and
Atomic Operations

abstraction

Q: When was Erik Watts' father born?
Paragraph A: Erik Watts
Erik Watts (born December 19, 1967) is an American semi-retired professional wrestler. He is best known
for his appearances with World Championship Wrestling and the World Wrestling Federation in the
1990s. He is the son of WWE Hall of Famer Bill Watts.
Paragraph B: William Watts
William F. Watts Jr. (born May 5, 1939) is an American former professional wrestler, promoter, and WWE
Hall of Fame Inductee (2009). Watts was famous under his "Cowboy" gimmick in his wrestling career, and
then as a tough, no-nonsense promoter in the Mid-South United States, which grew to become the
Universal Wrestling Federation (UWF).

Reasoning Space

Q: father(a, Erik Watts) and born(a, ?)

P1: son(Erik Watts, William Watts)
P2: born(Erik Watts, May 5, 1939)
P3: son(x, y) |- father(y, x)

(1) (2)

(3)

(Extractive MRC) (Abstractive MRC)

Figure 2.1: Dimensions of explanation-based inference in Machine Reading Comprehension.

to fill an information gap, identifying the correct arguments for a set of predicates via
paraphrasing and co-reference resolution. As a result, explanations for extractive MRC
are often expressed in the form of supporting passages retrieved from the contextual
paragraphs (extensional level) (Z. Yang et al., 2018).

On the other hand, abstractive MRC tasks require going beyond the surface form of
the problem with the inclusion of implicit knowledge about abstract concepts. In this
case, the explanation typically leverages the use of supporting definitions, including
taxonomic relations and essential properties, to perform abstraction from the original
context in search of high-level rules and inference patterns (intensional level) (Jansen
et al., 2016). As the nature of the task impacts explanation-based inference (See Fig.
2.1(3)), we consider the distinction between extractive and abstractive MRC through-
out the survey, categorizing benchmarks and approaches according to the underlying
reasoning involved in the explanations.
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Domain The knowledge domain – i.e. open domain (OD) , science (SCI), or commonsense (CS).
Format The task format – i.e. span retrieval (Span), free-form (Free), multiple-choice (MC), textual

entailment (TE).
MRC Type The explanation can be derived from the correct decomposition of the problem – i.e. Extrac-

tive (Extr.); the explanation requires knowledge not expressed in the text – i.e. Abstractive
(Abstr.).

Multi-hop (MH) Whether the construction of explanations requires multi-hop reasoning – i.e. the aggregation
of multiple pieces of evidence from the background knowledge.

Explanation Type (ET) The type of explanation – i.e. knowledge-based (KB) or operational (OP).
Explanation Level (EL) The explanations include only supporting facts – i.e. Extensional (E); the explanations

expose the underlying inference rules or atomic operations – i.e. Intensional (I).
Background Knowledge
(BKG)

The format of the provided background knowledge, if present, from which to extract or
construct the explanations – i.e. single paragraph (SP), multiple paragraphs (MP), sentence
corpus (C), table-store (TS), suit of atomic operations (AO).

Explanation Representation
(ER)

The explanation representation – i.e. single passage (S), multiple passages (M), facts
composition (FC), explanation graph (EG), generated sentence (GS), symbolic program
(PR).

Dataset Domain Format Type MH ET EL BKG ER Year

WikiQA (Y. Yang et al.,
2015)

OD Span Extr. N KB E SP S 2015

HotpotQA (Z. Yang et al.,
2018)

OD Span Extr. Y KB E MP M 2018

MultiRC (Khashabi,
Chaturvedi, et al., 2018)

OD MC Abstr. Y KB E SP M 2018

OpenBookQA (Mihaylov
et al., 2018)

SCI MC Abstr. Y KB I C FC 2018

Worldtree (Jansen et al.,
2018)

SCI MC Abstr. Y KB I TS EG 2018

e-SNLI (Camburu et al.,
2018)

CS TE Abstr. N KB I - GS 2018

Cos-E (Rajani et al., 2019) CS MC Abstr. N KB I - GS 2019
WIQA (Tandon et al.,
2019)

SCI MC Abstr. Y KB I SP EG 2019

CosmosQA (Huang et al.,
2019)

CS MC Abstr. N KB I SP S 2019

CoQA (Reddy et al., 2019) OD Free Extr. N KB E SP S 2019
Sen-Making (C. Wang et
al., 2019)

CS MC Abstr. N KB I - S 2019

ArtDataset (Bhagavatula
et al., 2020)

CS MC Abstr. N KB I C S,GS 2019

QASC (Khot et al., 2020) SCI MC Abstr. Y KB I C FC 2020
Worldtree V2 (Xie et al.,
2020)

SCI MC Abstr. Y KB I TS EG 2020

R4C (Inoue et al., 2020) OD Span Extr. Y KB E MP EG 2020
Break (Wolfson et al.,
2020)

OD Free, Span Abstr. Y OP I AO PR 2020

R3 (R. Wang et al., 2020) OD Free Abstr. Y OP I AO PR 2020

Table 2.2: Categorisation of explanation-supporting benchmarks in MRC.
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2.3 Explanation-supporting Benchmarks

In this section, we review the benchmarks that have been designed for the development
and evaluation of explanation-based reading comprehension models. Here, we consider
only the benchmarks that exhibit at least one of the following properties:

1. Labelled explanations: The benchmark includes gold explanations that can be
adopted as an additional signal for the development of explanation-based MRC
models.

2. Design for explanation evaluation: The benchmark supports the use of quantita-
tive metrics for evaluating the explanation-based inference of MRC systems, or it
is explicitly constructed to test explanation-related inference.

For a complete overview of the existing datasets in MRC, the reader is referred to
the following surveys: (Baradaran et al., 2020; B. Qiu et al., 2019; X. Zhang et al.,
2019; Z. Zhang et al., 2020). The resulting classification of the benchmarks and the
considered dimensions are described in Table 2.2.

2.3.1 Towards Abstractive MRC

In line with the general research trend in MRC, the development of explanation-
supporting benchmarks is evolving towards evaluating abstractive reasoning, testing the
models on their ability to go beyond the surface form of the text.

Explanation in early open-domain QA is framed as a single sentence selection

problem (Y. Yang et al., 2015), where the evidence supporting the final answer is
entirely encoded in a contiguous supporting passage. Subsequent work has started
the transition towards tasks requiring multi-hop reasoning. HotpotQA (Z. Yang et
al., 2018) is one of the first datasets designed to provide explicit annotation for the
selection of multiple supporting facts, allowing for the development and evaluation
of multi-hop and explanation-based inference models. The nature of HotpotQA is
still closer to extractive MRC, where the structure of the explanations can be derived
from the explicit decomposition of the questions (Min, Zhong, Zettlemoyer, et al.,
2019). On the other hand, MultiRC (Khashabi, Chaturvedi, et al., 2018) combines
multi-hop inference with various forms of abstract reasoning such as commonsense,
causal relations, spatio-temporal and mathematical operations.

The annotation of supporting facts has demonstrated benefits in interpretability,
bias reduction, and generalization in downstream tasks (Dua et al., 2020; Inoue et al.,
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2020; Reddy et al., 2019). However, the gold explanations in these benchmarks are still
expressed at the extensional level (See Fig.2.1), leaving implicit a consistent part of the
underlying mechanisms adopted to derive the answer (Schlegel et al., 2020). To enrich
the gold explanations, recent work has focused on operational interpretability, intro-
ducing explicit annotation for the decomposition of multi-hop and discrete reasoning
questions (Dua et al., 2019) into a sequence of atomic operations (R. Wang et al., 2020;
Wolfson et al., 2020).

The transition towards abstractive tasks has been supported by the development
of large-scale benchmarks in the scientific domain (Clark, 2015; Clark et al., 2018),
identified as a rich framework for evaluating explanation-based inference at the inten-
sional level (Jansen et al., 2016). Explanations in the scientific domain, in fact, naturally
mention facts about underlying regularities that require abstraction from the original
problem formulation (Boratko et al., 2018). The benchmarks in this domain provide
gold explanations for standardised science questions (Jansen et al., 2018; Mihaylov
et al., 2018; Xie et al., 2020) or related scientific tasks such as what-if questions on
procedural text (Tandon et al., 2019) and multi-hop sentence composition (Khot et al.,
2020).

Recently, a set of abstractive tasks have been proposed for the evaluation of com-
monsense explanations (C. Wang et al., 2019). Cos-E (Rajani et al., 2019) and e-SNLI
(Camburu et al., 2018) augment existing datasets for textual entailment (Bowman et
al., 2015) and commonsense QA (Talmor et al., 2019) with crowd-sourced explana-
tions, framing explanation-based inference as a natural language generation problem.
Explanation-supporting benchmarks have now extended beyond question answering to
hate speech detection (Mathew et al., 2021) and fake news detection (Dai et al., 2020).
Other commonsense tasks have been explicitly designed to test explanation-related
inference, such as causal and abductive reasoning (Huang et al., 2019). Bhagavatula
et al. (2020) propose the tasks of Abductive Natural Language Inference (αNLI) and
Abductive Natural Language Generation (αNLG), where MRC models are required to
select or generate the hypothesis that best explains a set of observations.

2.3.2 Multi-hop Reasoning and Explanation

The construction of explanations in MRC typically requires multi-hop reasoning – i.e.
the ability to compose multiple pieces of evidence to support the answer. However, the
structure of the inference can differ according to the nature of the task.

In extractive MRC (Welbl et al., 2018; Z. Yang et al., 2018), multi-hop reasoning
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often consists of identifying bridge entities or extracting and comparing information
encoded in different passages. The explanations usually take the shape of linear chains
or paths connecting distinct supporting facts via co-occurring Named Entities (e.g. Bill

Watts, Table 2.1 left).

On the other hand, multi-hop reasoning for abstractive MRC aims to identify un-
derlying rules or explanatory regularities that are not evident in the original problem.
Jansen et al. (2018) observe that explanations for science questions require the construc-
tion of sentence graphs, in which each fact plays a specific role in the identification
of core explanatory statements: grounding facts and lexical glues have the function of
connecting the specific concepts in the question with their abstract semantic categories
(e.g. a stick is a kind of object), while central facts refer to high-level explanatory
knowledge (e.g. friction causes the temperature of an object to increase, Table 2.1
right). Similarly, explanations for multiple-choice questions in OpenbookQA (Mihaylov
et al., 2018) require the retrieval of abstract scientific sentences, whose relevance can
only be estimated by performing multi-hop reasoning through external commonsense
knowledge.

Recent work suggests that the number of required hops for the explanations is
correlated with semantic drift – i.e. the tendency of composing spurious inference
chains that lead to wrong conclusions (Fried et al., 2015; Khashabi et al., 2019). The
development of explanation-supporting benchmarks represents an attempt to limit this
phenomenon by providing additional signals to learn abstract compositional schemes,
thanks to the explicit annotation of valid inference chains (Jhamtani & Clark, 2020;
Khot et al., 2020) or the extraction of common explanatory patterns to support the
construction of many-hops explanations (Xie et al., 2020).

2.4 Explanation-based MRC Architectures

This section describes the major architectural trends for Explanation-based MRC (X-
MRC). The approaches are broadly classified according to the MRC task they are
applied to – i.e. extractive or abstractive. In order to elicit architectural trends, we
further categorize the approaches as described in Table 2.3.

Figure 2.3 and 2.2 illustrate the resulting classification when considering the
underlying architectural components for explanation generation. If an approach employs
different modules for explanation generation and answer prediction, the latter is marked
as △. In some cases, an architecture can subsume a set of sub-components – e.g.
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Explanation Type (1) Knowledge-based explanation; (2) Operational-based explana-
tion

Learning method (1) Unsupervised (US): Does not require any annotated data; (2)
Strongly Supervised (SS): Requires gold explanations for training
or inference; (3) Distantly Supervised (DS): Treats explanation as
a latent variable training only on problem-solution pairs.

Generated Output Denotes whether the explanation is generated or composed from
facts retrieved from the background knowledge.

Multi-Hop Denotes whether the approach is designed for multi-hop reasoning

Table 2.3: Categories adopted for the classification of Explanation-based MRC ap-
proaches.

Transformers also includes attention networks. In cases like these, we only consider
the larger component that subsumes the smaller one. If approaches employ both
architectures, but as different functional modules, we plot them separately.

We generally observe an overall shift towards supervised methods over the years for
both abstractive and extractive MRC. We posit that the advent of explanation-supporting
datasets has facilitated the adoption of complex supervised neural architectures. More-
over, as shown in the classification, the majority of the approaches are designed for
knowledge-based explanation. We attribute this phenomenon to the absence of large-
scale datasets for operational interpretability until 2020. However, we note a recent
uptake of distantly supervised approaches. We believe that further progress can be made
with the introduction of novel datasets supporting symbolic question decomposition
such as Break (Wolfson et al., 2020) and R3 (R. Wang et al., 2020) (See Sec. 2.2).

While there are significant architectural overlaps between abstractive and extrac-
tive X-MRC, we do observe some key distinctions. Namely, we found no approaches
that provided operational explanations for Abstractive X-MRC, and no models gener-
ated explanations for Extractive X-MRC. We hypothesize that the lack of operational
explanations can be ascribed to the non-existence of Explanation-based Abstractive
Operational datasets.
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Figure 2.2: Explanation-based Extractive Machine Reading Comprehension (MRC) approaches.
Operational Explanations: (O), Knowledge-based Explanations: (K), Operational and
Knowledge-based Explanations: (K,O) Learning: Unsupervised ( ), Distantly Supervised
(#), Strongly Supervised (*). Generated Output: ( ). Multi Hop: ( ). Answer Selection
Module: (△). Architectures: WEIGHTING SCHEMES (WS): Document and query weighting
schemes consist of information retrieval systems that use any form of vector space scoring
system, HEURISTICS (HS): Hand-coded heuristics and scoring functions, INTEGER LINEAR

PROGRAMMING (LP), CONVOLUTIONAL NEURAL NETWORK (CNN), RECURRENT NEURAL

NETWORKS (RNN), PRE-TRAINED EMBEDDINGS (Emb), ATTENTION NETWORK (Att),
TRANSFORMERS (TR), GRAPH NEURAL NETWORKS (GN), NEURO-SYMBOLIC (NS).
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Figure 2.3: Explanation-based Abstractive Machine Reading Comprehension (MRC) ap-
proaches. Operational Explanations: (O), Knowledge-based Explanations: (K), Opera-
tional and Knowledge-based Explanations: (K,O) Learning: Unsupervised ( ), Distantly
Supervised (#), Strongly Supervised (*). Generated Output: ( ). Multi Hop: ( ). Answer
Selection Module: (△). Architectures: WEIGHTING SCHEMES (WS): Document and query
weighting schemes consist of information retrieval systems that use any form of vector space
scoring system, HEURISTICS (HS): Hand-coded heuristics and scoring functions, INTEGER

LINEAR PROGRAMMING (LP), CONVOLUTIONAL NEURAL NETWORK (CNN), RECURRENT

NEURAL NETWORKS (RNN), PRE-TRAINED EMBEDDINGS (Emb), ATTENTION NETWORK

(Att), TRANSFORMERS (TR), GRAPH NEURAL NETWORKS (GN), NEURO-SYMBOLIC (NS).
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2.4.1 Modeling Explanatory Relevance for Knowledge-based Ex-
planations

Capturing relevance between the question-answer and fact, i.e., explanatory rel-

evance, is imperative for knowledge-based explanations. Different approaches have
devised distinct methods to encode explanatory relevance. This section reviews the
approaches adopted for modelling explanatory relevance for knowledge-based explana-

tions. We group the models into three main categories: Explicit, Latent, and Hybrid.

Explicit Models

Explicit models typically adopt heuristics and hand-crafted constraints to encode
domain-specific hypotheses of explanatory relevance. The major architectural pat-
terns are listed below:

Integer Linear Programming (ILP) Integer Linear programming has been used for
modelling semantic and structural constraints in an unsupervised fashion. Early ILP
systems, such as TableILP (Khashabi et al., 2016), formulate the construction of expla-
nations as an optimal sub-graph selection problem over a set of semi-structured tables.
Subsequent approaches (Khashabi, Khot, Sabharwal, & Roth, 2018; Khot et al., 2017)
have proposed methods to reason over textual corpora via semantic abstraction, lever-
aging semi-structured representations automatically extracted through Semantic Role
Labeling, Open Information Extraction, and Named Entity Recognition. Approaches
based on ILP have been effectively applied for multiple-choice science questions when
no gold explanation is available for strong supervision. While ILP based formulation
has shown to provide control, they are non-differentiable and cannot be integrated as
part of a broader deep learning architecture (Paulus et al., 2021; Pogančić et al., 2019).

Weighting schemes with heuristics The integration of heuristics and weighing
schemes have been demonstrated to be effective for implementing lightweight methods
that are inherently scalable to large corpora and knowledge bases. In the open-domain,
approaches based on lemma overlaps and weighted triplet scoring function have been
proposed (Mihaylov & Frank, 2018), along with path-based heuristics implemented
with the auxiliary use of external knowledge bases (Bauer et al., 2018). Similarly,
path-based heuristics have been adopted for commonsense tasks, where Lv et al. (2019)
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propose a path extraction technique based on question coverage. For scientific and
multi-hop MRC, Yadav et al. (2019b) propose ROCC, an unsupervised method to re-
trieve multi-hop explanations that maximize relevance and coverage while minimizing
overlaps between intermediate hops.

Pre-trained embeddings with heuristics Pre-trained embeddings have the advantage
of capturing semantic similarity, going beyond the lexical overlaps limitation imposed
by the use of weighting schemes. This property has been shown to be useful for multi-
hop and abstractive tasks, where approaches based on pre-trained word embeddings,
such as GloVe (Pennington et al., 2014), have been adopted to perform semantic
alignment between question, answer and justification sentences (Yadav et al., 2020).
Silva et al. (2019), Silva et al. (2018) employ word embeddings and semantic similarity
scores to perform selective reasoning on commonsense knowledge graphs and construct
explanations for textual entailment.

Latent Models

Latent models learn the notion of explanatory relevance implicitly through machine
learning techniques such as neural embeddings and language models. The architectural
clusters adopting latent modelling are classified as follows:

Neural models for sentence selection This category refers to a set of neural ap-
proaches proposed for the answer sentence selection problem. These approaches
typically adopt deep learning architectures, such as RNN, CNN and Attention networks
via strong or distant supervision. Strongly supervised approaches (Garg et al., 2019;
Gravina et al., 2018; Min et al., 2018; Yu et al., 2014) are trained on gold supporting
sentences. In contrast, distantly supervised techniques (Raiman & Miller, 2017) indi-
rectly learn to extract the supporting sentence by training on the final answer. Attention
mechanisms have been frequently used for distant supervision (Seo et al., 2016) to
highlight the attended explanation sentence in the contextual passage.

Transformers for multi-hop reasoning Transformers implement the encoder-decoder
architecture. Given an input sequence (x1, . . . , xn) the encode module maps it a repre-
sentation z (z = (z1, . . . , zn)). The decoder then takes the representation z to generate
output sequence y z = (y1, . . . , yn)). The encoder and decoders are composed of
multiple layers composed of multi-head attention mechanism and position-wise filly
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Figure 2.4: Encoder and Decoder of a Transformer model. Figure adapted from
Vaswani et al. (2017)

connected feed-forward network. The architecture diagram of the transformer is illus-
trated in Figure 2.4.

Transformers are incapable of capturing sequence information. To alleviate this
shortcoming, positional encodings injects a vector to the inputs. These vectors are
based on specific periodic functions that the model uses to determine the position of the
individual word.

Transformers uses Scaled Dot-Product Attention, that takes as input a set of queries
Q and keys K dimension dk, and values of dimension dv:

Attention(Q, K, V ) = so f tmax(
QKT
√

dk
)V (2.1)

Here, Q, K and V are obtained from the transformation over the input. Following
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this step, multi-head attention expands this attention:

MultiHead(Q,K,V ) =Concat(head1, . . . , headh)W O (2.2)

where headi = Attention(QW Q
i , KW K

i , VWV
i ) and W Q

i ,W K
i ,WV

i are projection pa-
rameter matrices.

The first model to leverage Transformer architectures to learn natural language repre-
sentation in e Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019). BERT is pretrained on unlabeled data over two different tasks: Masked
Langauge Modeling (MLM) and Next Sentence Prediction (NSP). The model predicts a
masked word in a sentence for the MLM task. For the NSP task, the model is trained
on a binary classification task of predicting if sentence B follows sentence A. This
self-supervised learning is applied on large-scale corpora enabling the models to capture
the syntactic and semantics of a language. BERT was trained on BooksCorpus (800M
words) and English Wikipedia (2,500M words).

Different Transformer-based models have been proposed to improve on top of BERT.
For example, RoBERTa (Y. Liu et al., 2019) removes the NSP training objective and
adopts different hyperparameters achieving state-of-the-art performance over BERT.
MPNet (Song et al., 2020) is another model that predicts tokens in random order
instead of predicting tokens in sequential order enabling the capturing of bidirectional
dependencies.

Transformers-based architectures have been successfully applied to learn explana-
tory relevance in both extractive and abstractive MRC tasks. Banerjee (Banerjee, 2019)
and Chia et al. (2019) adopt a BERT model (Devlin et al., 2019) to learn to rank ex-
planatory facts in the scientific domain. Shao et al. (2020) employ transformers with
self-attention on multi-hop QA datasets (Z. Yang et al., 2018), demonstrating that the
attention layers implicitly capture high-level relations in the text. The Quartet model
(Rajagopal et al., 2020) has been adopted for reasoning on procedural text and producing
structured explanations based on qualitative effects and interactions between concepts.
In the distant supervision setting, Niu et al. (2020) address the problem of lack of gold
explanations by training a self-supervised evidence extractor with auto-generated labels
in an iterative process. Banerjee and Bara (Banerjee & Baral, 2020) propose a semantic
ranking model based on BERT for QASC (Khot et al., 2020) and OpenBookQA (Mi-
haylov et al., 2018). Transformers have shown improved performance on downstream
answer prediction tasks when applied in combination with explanations constructed
through explicit models (Valentino et al., 2021; Yadav et al., 2019b, 2020).
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Attention networks for multi-hop reasoning Similar to transformer-based approaches,
attention networks have also been employed to extract relevant explanatory facts. How-
ever, attention networks are usually applied in combination with other neural modules.
For HotpotQA, Z. Yang et al. (2018) propose a model trained in a multi-task setting
on both gold explanations and answers, composed of recurrent neural networks and
attention layers. Nishida et al. (2019) introduce a similarly structured model with
a query-focused extractor designed to elicit explanations. The distantly supervised
MUPPET model (Feldman & El-Yaniv, 2019) captures the relevance between question
and supporting facts through bi-directional attention on sentence vectors encoded using
pre-trained embedding, CNN, and RNN. In the scientific domain, Trivedi et al. (2019)
re-purpose existing textual entailment datasets to learn the supporting facts relevance
for multi-hop QA. Khot et al. (2019) propose a knowledge gap-guided framework to
construct explanations for OpenBookQA.

Language generation models Recent developments in language modelling, along
with the creation of explanation-supporting benchmarks, such as e-SNLI (Camburu et al.,
2018) and Cos-E (Rajani et al., 2019), have opened up the possibility to generate seman-
tically plausible and coherent explanation sentences automatically. Language models,
such as GPT-2 (Radford et al., 2019), have been adopted for producing commonsense
explanations, whose application has demonstrated benefits in terms of accuracy and
zero-shot generalization (Latcinnik & Berant, 2020; Rajani et al., 2019). e-SNLI (Cam-
buru et al., 2018) present a baseline based on a Bi-LSTM encoder-decoder with attention.
Lukasiewicz et al. (2019) enhance this baseline by proposing an adversarial framework
to generate more consistent and plausible explanations.

Hybrid Models

Hybrid models adopt heuristics and hand-crafted constraints as a pre-processing step to
impose an explicit inductive bias for explanatory relevance. The major architectural
patterns are listed below:

Graph Networks The relational inductive bias encoded in Graph Networks (Battaglia
et al., 2018) provides viable support for reasoning and learning over structured repre-
sentations. This characteristic has been identified as particularly suitable for supporting
facts selection in multi-hop MRC tasks. A set of graph-based architectures have been
proposed for multi-hop reasoning in HotpotQA (Z. Yang et al., 2018). Ye et al. (2019)
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build a graph using sentence vectors as nodes and edges connecting sentences that
share the same named entities. Similarly, Tu et al. (2019) construct a graph connecting
sentences that are part of the same document, share noun phrases, and have named
entities or noun phrases in common with the question. To improve scalability, the
Dynamically Fused Graph Network (DFGN) (L. Qiu et al., 2019) adopts a dynamic
graph construction, starting from the entities in the question and gradually selecting the
supporting facts. Similarly, Ding et al. (2019) implement a dynamic graph exploration
inspired by the dual-process theory (Evans, 1984, 2003; Sloman, 1996). The Hierar-
chical Graph Network (Fang et al., 2020) leverages a hierarchical graph representation
of the background knowledge (i.e. question, paragraphs, sentences, and entities). In
parallel with extractive MRC tasks, Graph Networks are applied for answer selection
on commonsense reasoning, where a subset of approaches have started exploring the
use of explanation graphs extracted from external knowledge bases through path-based
heuristics (B. Y. Lin et al., 2019; Lv et al., 2019).

Explicit inference chains for multi-hop reasoning A subset of approaches have
introduced end-to-end frameworks explicitly designed to emulate the step-by-step
reasoning process involved in multi-hop MRC (J. Chen et al., 2019; Jiang et al.,
2019; Kundu et al., 2019). The baseline approach proposed for Abductive Natural
Language Inference (Bhagavatula et al., 2020) builds chains composed of hypotheses
and observations and encodes them using transformers to identify the most plausible
explanatory hypothesis. Similarly, Das et al. (2019) embeds the reasoning chains
retrieved via TF-IDF and lexical overlaps using a BERT model to identify plausible
explanatory patterns for multiple-choice science questions. In the open domain, Asai
et al. (2019) build a graph structure using entities and hyperlinks and adopt recurrent
neural networks to retrieve relevant documents sequentially. Nie et al. (2019) introduces
a step-by-step reasoning process that retrieves the relevant paragraph, the supporting
sentence, and the answer. Dhingra et al. (2020) propose an end-to-end differentiable
model that uses Maximum Inner Product Search (MIPS) (Johnson et al., 2019) to query
a virtual knowledge-base and extract a set of reasoning chains. Feng et al. (2020)
propose a cooperative game approach to select the most relevant explanatory chains
from a large set of candidates. In contrast to neural-based methods, Weber et al. (2019)
propose a neuro-symbolic approach for multi-hop reasoning that extends the unification
algorithm in Prolog with pre-trained sentence embeddings.
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Neuro-Symbolic Reasoning A growing line of neuro-symbolic models focuses on
adopting Transformers for interpretable reasoning over text (Clark et al., 2021; Gontier
et al., 2020; Saha et al., 2020; Tafjord et al., 2021). For example, Saha et al. (2020)
introduced the PROVER model that provides an interpretable transformer-based model
that jointly answers binary questions over rules while generating the corresponding
proofs. These models are related to the proposed framework for exploring hybrid
architectures. Clark et al. (2021) proposed “soft theorem provers” operating over explicit
theories in language. This hybrid reasoning solver integrates natural language rules
with transformers to perform deductive reasoning. Saha et al. (2020) improved on top
of it, enabling the answering of binary questions along with the proofs supporting the
prediction. The multiProver (Saha et al., 2021) evolves on top of these conceptions
to produce an approach that is capable of producing multiple proofs supporting the
answer. While these hybrid reasoning approaches produce explainable and controllable
inference, they assume the existence of natural language rules and have only been
applied to synthetic datasets.

2.4.2 Operational Explanation

Operational explanations provide interpretability by exposing the set of operations
adopted to arrive at the final answer. This section reviews the main architectural patterns
for operational interpretability that focus on the problem of casting a question into an
executable program.

Neural and Symbolic Programs Liu and Gardner (J. Liu & Gardner, 2020) propose
a multi-step inference model with three primary operations: Select, Chain, and Predict.
The Select operation retrieves the relevant knowledge; the Chain operation composes
the background knowledge together; the Predict operation selects the final answer.
Jiang and Bansel. (Jiang & Bansal, 2019b) propose the adoption of Neural Module
Networks (Andreas et al., 2016b) for multi-hop QA by designing four atomic neural
modules (Find, Relocate, Compare, NoOp) that allow for both operational explanation
and supporting facts selection. Similarly, N. Gupta et al. (2020) adopt Neural Module
Networks to perform discrete reasoning on DROP (Dua et al., 2019). In contrast, X.
Chen et al. (2019) propose an architecture based on LSTM, attention modules, and
transformers to generate compositional programs. While most of the neuro-symbolic
approaches are distantly supervised, the recent introduction of question decomposition
datasets (Wolfson et al., 2020) allows for direct supervision of symbolic program
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generation (Subramanian et al., 2020).

Multi-hop question decomposition The approaches in this category aim at breaking
multi-hop questions into single-hop queries that are simpler to solve. The decomposition
allows for the application of divide-et-impera methods where the solutions for the
single-hop queries are computed individually and subsequently merged to derive the
final answer. Perez et al. (2020) propose an unsupervised decomposition method
for the HotpotQA dataset. Min, Zhong, Zettlemoyer, et al. (2019) frame question
decomposition as a span prediction problem adopting supervised learning with a small
set of annotated data. Qi et al. (2019) propose GOLDEN Retriever, a scalable method
to generate search queries for multi-hop QA, enabling the application of off-the-shelf
information retrieval systems to select supporting facts.

2.5 Evaluation

The development of explanation-supporting benchmarks has allowed for a quantitative
evaluation of the explanation-based inference in MRC. In open-domain settings, Exact
Matching (EM) and F1 scores are often employed for evaluating the supporting facts
(Z. Yang et al., 2018), while explanations for multiple-choice science questions have
been evaluated using ranking-based metrics such as Mean Average Precision (MAP)
(Jansen & Ustalov, 2019; Xie et al., 2020). In contexts where language models produce
the explanations, natural language generation metrics have been adopted, such as BLEU
score and perplexity (Papineni et al., 2002; Rajani et al., 2019).

Evaluating explanation-based inference through multi-hop reasoning still presents
several challenges (J. Chen & Durrett, 2019; H. Wang, Yu, et al., 2019). Recent works
have demonstrated that some of the questions in multi-hop QA datasets do not require
multi-hop reasoning or can be answered by exploiting statistical shortcuts in the data (J.
Chen & Durrett, 2019; Jiang & Bansal, 2019a; Min, Wallace, et al., 2019). In parallel,
other works have shown that a consistent part of the expected reasoning capabilities for a
proper evaluation of reading comprehension is missing in several benchmarks (Kaushik
& Lipton, 2018; Schlegel et al., 2020). A set of possible solutions have been proposed,
including the creation of evaluation frameworks for the gold standards (Schlegel et al.,
2020), the development of novel metrics for multi-hop reasoning (Trivedi et al., 2020),
and the adoption of adversarial training techniques (Jiang & Bansal, 2019a). Schuff
et al. (2020) show that current models and evaluation metrics, such as the F1 score,
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do not correlate with human experience, limiting the ability of the user to leverage the
explanations for assessing the correctness of the system. The authors propose techniques
to reinforce answer-explanation coupling with novel evaluation metrics better correlated
with human judgment.

Regarding the evaluation of multi-hop program generation, Subramanian et al.
(2020) observe that some of the modules in compositional neural networks (Andreas
et al., 2016b), particularly suited for operational explanation-based inference, do not
perform their intended behaviour, posing the problem of evaluating the faithfulness
of the generated explanations. This problem can be alleviated by combining novel
architectural design choices and auxiliary supervision.

2.6 Challenges and Opportunities

Benchmarks design and evaluation. Research on explanation-supporting bench-
marks is progressing towards the design of abstractive tasks, with the inclusion of
intensional elements in the gold explanations, such as generalized inference patterns
for knowledge-based explanation inference (Jhamtani & Clark, 2020), and symbolic
programs for operational-based explanation (Wolfson et al., 2020). However, it is
essential to overcome the challenges regarding the evaluation of explanation-based
inference (See Sec. 2.5). A gold standard evaluation should accompany the release of
novel benchmarks, improving some of the emerging frameworks for the assessment of
the reasoning capabilities involved in the MRC task (Kaushik & Lipton, 2018; Schlegel
et al., 2020), together with the definition of evaluation metrics for the explanation-based
inference that go beyond F1-score, and correlates with human judgment (Schuff et al.,
2020; Trivedi et al., 2020). To this end, it is necessary to reinforce the connection
with the field of Human-computer Interaction for the formalization and evaluation of
different types of explanations (Miller, 2019; Sales et al., 2020). Additionally, verifying
that it requires multi-step inference when proposing a new multi-hop reasoning bench-
mark is crucial. This verification can be achieved by testing the performance of strong
one-hop baselines on the dataset (Min, Wallace, et al., 2019).

Scaling up annotated corpora. Additional research should be invested in the evalua-
tion of semantic drift (Khashabi et al., 2019). Most of the existing multi-hop datasets
only require the integration of up to 2 supporting sentences or paragraphs (Khot et al.,
2020; Z. Yang et al., 2018). Empirical work has shown that semantic drift emerges
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with long inference chains involving more than 2 hops (Fried et al., 2015). Therefore,
developing additional datasets supporting the generation of long explanations is crucial.
However, building corpora of explanations is costly as the annotators require approx-
imately 60 hours of training for explanation authoring, in addition to the annotation
and review process (≈15 mins per training example) (Jansen et al., 2018). A possible
direction to alleviate this problem is adopting a top-down approach by first defining a set
of explanation templates representing common inference patterns and then re-using the
templates for the annotation of gold explanations (Xie et al., 2020). A similar process
with domain experts can help extend the creation of explanation supporting datasets in
real-world scenarios such as medical, legal and regulatory settings.

Impact on inference and generalization. Integrating extracted explanations with
downstream neural models has demonstrated promising results in performance and
generalization across different domains (Rajani et al., 2019; Valentino et al., 2020;
Yadav et al., 2019b). However, it is still unclear what aspect of the explanations helps
downstream models achieve better performance. A crucial research direction, therefore,
is the semantic probing of how different representations, knowledge categories and
levels of abstraction impact downstream models and which types of explanations are
useful to maximize the performance across different MRC tasks (Mitra et al., 2019;
Tenney et al., 2019).

Knowledge-based architectures for knowledge-based explanations As observed
in Section 2.4.1, integrating external knowledge bases is critical for explanation-based
inference. A promising direction is using Graph Networks (Fang et al., 2020; L. Qiu
et al., 2019) and end-to-end differentiable architectures over knowledge bases (Dhingra
et al., 2020). However, most of these approaches are still limited to extractive MRC.
An opportunity for future work is to extend these approaches to common sense and
scientific reasoning tasks using recently developed resources such as GenericKB (Bhak-
thavatsalam et al., 2020).

Semantic control. Current language models are still limited by the generation of
single-sentence explanations, lacking the semantic control to produce long inference
chains, which are particularly important for abstractive MRC. Therefore, an open
research question is whether new models, such as GPT-3 (Brown et al., 2020), can
produce plausible and coherent multi-sentence explanations. A potential direction
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to support the generation of multi-hop explanations is the adoption of explanation
prototypes retrieved from training examples (Guu et al., 2018) or the learning of
disentangled representations via Variational Auto Encoders (Norouzi et al., 2020).

Machine learning and symbolic reasoning. A promising direction for addressing
explanation-based inference is the integration of neural models with symbolic reasoners.
Recent approaches, such as NLProlog (Weber et al., 2019), have demonstrated that
this integration is possible for multi-hop reasoning in MRC. These approaches are still
limited to a maximum of two-hop reasoning, exhibiting lower performance when com-
pared to state-of-the-art neural approaches. Therefore, additional research is required to
improve the robustness of neuro-symbolic models and extend their applicability to more
complex reading comprehension tasks. In this context, a promising research direction
is adopting explanation corpora to learn the representation of generalized inference
rules and integrate them with existing symbolic frameworks (Jhamtani & Clark, 2020)
including ILP-based solvers (Khashabi, Khot, Sabharwal, & Roth, 2018; Khot et al.,
2017).

2.7 Conclusion

Research Objective 1: Identify challenges and opportunities within explanation-based

multi-hop inference

This survey analyzed existing benchmarks and models for explanation-based infer-
ence in Machine Reading Comprehension. We identified the emerging research trends
and architectural design for explanation-based systems, highlighting challenges and
opportunities for future work.

• RQ1.1: What types of inferences are required in multi-hop inference?

In Section 2.2, we categorised the explanation-based on its function in inference
into knowledge-based and operational-based. In addition to this categorization,
we also presented how abstraction has emerged as a requirement for multi-hop
inference solvers.

• RQ1.2: How have explanation-based benchmarks evolved to support multi-hop
inference?

In Section 2.3, we introduced a taxonomy to qualify explanation supporting
benchmarks according to the domain, format and properties. We observe that
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the development of explanation-supporting benchmarks is evolving towards eval-
uating abstractive reasoning and testing the models’ ability to go beyond the
surface form of the text. Our survey also identified semantic drift and how the
development of explanation-supporting benchmarks represents an attempt to limit
this phenomenon by providing additional signals to learn abstract compositional
schemes, thanks to the explicit annotation of valid inference chains (Jhamtani &
Clark, 2020; Khot et al., 2020), or the extraction of common explanatory patterns
to support the construction of many-hops explanations (Xie et al., 2020).

• RQ1.3: How did explanation-based multi-hop inference models evolve?

In Section 2.4, we selected a list of explanations providing multi-hop models
and how the architectures used have changed. We also broadly classified these
approaches into Explicit, Latent and Hybrid. We generally note a shift towards
supervised methods over the years for both abstractive and extractive MRC.
We note that hybrid models yield better performance on the knowledge-based
explanation inference approaches. The current SOTA space of explanation-based
inference is mainly composed of transformer-based models aided by hand-crafted
constraints as a pre-processing step.

• RQ1.4: What are the gaps in the explanation-based multi-hop inference bench-
marks and models?

Finally, in Section 2.6, we presented some challenges and opportunities. We
identified the effectiveness of hybrid approaches that combines latent represen-
tation with structural representation. We also identified the lack of semantic
control and the need for neuro-symbolic models. In Section 2.4, we identified that
constraint-based solvers based on ILP can provide semantic control and symbolic
reasoning. However, little work has been done to integrate it with latent models.
We also identified that these models have not explicitly addressed the perennial
problem of semantic drift. These shortcomings formed the core motivation for
the approaches and experiments in this thesis.

2.8 Scope and Limitations

Our survey was limited to the papers from ACL, EACL, NAACL, EMNLP, AAAI and
Neurips. We also limited our survey to papers from the past five years. We imposed
this scope to limit the number of research papers and enable the ease of filtering out a



50 CHAPTER 2. EXPLANATION-BASED INFERENCE IN MRC

high volume of highly cited research papers under one venue. We also omitted from
analyzing the impact of explanations on generalisability as this was not the focus of the
thesis.



Chapter 3

Explanation-based Inference Over
Grounding-Abstract Chains

This Chapter is based on the paper “Explainable Inference Over Grounding-Abstract
Chains for Science Questions”. The current version can be found in https://aclanthology.
org/2021.findings-acl.1/ and has been accepted and published in Findings of the Associ-

ation for Computational Linguistics: ACL-IJCNLP 2021.

3.1 Introduction

Answering science questions remains a fundamental challenge in Natural Language
Processing and AI as it requires complex forms of inference, including causal, model-
based and example-based reasoning (Clark et al., 2018; Clark et al., 2013; Jansen,
2018; Jansen et al., 2016). Current state-of-the-art (SOTA) approaches for answering
questions in the science domain are dominated by transformer-based models (Devlin et
al., 2019; Sun et al., 2019). Despite remarkable performance on answer prediction, these
approaches are black-box by nature, lacking the capability of providing explanations

for their predictions (Biran & Cotton, 2017; Jansen et al., 2016; Miller, 2019).

Explanation-based Science Question Answering solvers typically treat explanation
generation as a multi-hop graph traversal problem. Here, the solver attempts to com-
pose multiple facts that connect the question to a candidate answer. These multi-hop

approaches have shown diminishing returns with an increasing number of hops (Jansen,
2018; Jansen et al., 2018). Fried et al. (2015) conclude that this phenomenon is due to
semantic drift – i.e., as the number of aggregated facts increases, so does the probability

51

https://aclanthology.org/2021.findings-acl.1/
https://aclanthology.org/2021.findings-acl.1/


52 CHAPTER 3. EXPLANATIONLP

[✓]:   Explanatory Facts
[✕]:   Non-Explanatory Facts

What is an example of force producing heat?

Candidate Answer (C1):
Two sticks getting warm when rubbed together

Grounding Facts:

[✓] a stick is an object: FG1
[✓] friction is a force: FG2
[✕] a pull is a force: FG3
[✓] to rub together means to move against: FG4
[✕] rubbing against something is kind of  
    movement: FG5

Abstract Facts:

Abstract Facts:

[✓] friction occurs when two object's surfaces 
    move against each other: FC1
[✓] friction causes the temperature of an object
    to increases: FC2
[✕] magnetic attraction pulls two objects 
    together: FC3

Question(Q):

Relevant Facts Retrieval

Bayesian
Optimisation

Candidate Answers

Answer Selection

Correct Answer

H1

FG1

stick
FG2

force force

FG3
force

FG5

rub

FG4

rub 
together

FC1

object

friction

move
against

FC2
friction

FC3
together

pull

: Cohesion : Diversity

Grouding

: Relevance

together

(Two sticks getting warm when rubbed together)

For each Candidate Hypothesis:

: Explanatory Facts : Non-Explanatory Facts

(A) (B) (C)

rub

cv
Abstract
Facts KB

cv
Grounding
Facts KB

Hypothesis (H1):
Two sticks getting warm when rubbed together
is an example of force producing heat

Abstract

Fact Graph Construction

Subgraph extraction with Linear
Programming Optimization

Extract Subgraph:

Fact Graph Construction:

Question

Figure 3.1: Overview of our approach: (A) Depicts a question, answer and formulated
hypothesis along with the set of facts retrieved from a fact retrieval approach (B)
Illustrates the optimization process behind extracting explanatory facts for the provided
hypothesis and facts. (C) Details the end-to-end architecture diagram.

of inference drifting out of context. Khashabi et al. (2019) propose a theoretical frame-
work, empirically supported by Fried et al. (2015) and Jansen et al. (2018), attesting
that ongoing efforts with very long multi-hop reasoning chains are unlikely to succeed,
emphasizing the need for a richer representation with fewer hops and higher importance
to abstraction and grounding mechanisms.

Consider the example in Figure 3.1A where the central concept the question exam-
ines is the understanding of friction. Here, an inference solver’s challenge is to identify
the core scientific facts (Abstract Facts) that best explain the answer. To achieve this
goal, a QA solver should be able first to go from force to friction, stick to object and
rubbing together to move against. These are the Grounding Facts that link generic or
abstract concepts in a core scientific statement to specific terms occurring in question
and candidate answer (Jansen et al., 2018). The grounding process is followed by the
identification of the abstract facts about friction. A complete explanation for this ques-
tion would require the composition of five facts to derive the correct answer successfully.
However, it is possible to reduce the global reasoning in two hops, modelling it with
grounding and abstract facts.

In line with these observations, this work presents a novel approach that explicitly
models abstract and grounding mechanisms. The contributions of the Chapter are:

1. We present a novel approach that performs explanation-based reasoning via
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grounding-abstract chains combining Integer Linear Programming with Bayesian
optimization for science question answering (Section 3.2).

2. We obtain comparable performance when compared to transformers, multi-hop
approaches and previous Integer Linear Programming models despite having a
significantly lower number of parameters (Section 3.3.1).

3. We demonstrate that our model can generate plausible explanations for answer
prediction (Section 3.3.2) and validate the importance of grounding-abstract
chains via ablation analysis (Section 3.3.4).

3.2 ExplanationLP: Explanation-based Inference with
Integer Linear Programming

ExplanationLP answers and explains multiple-choice science questions via explanation-
based inference. Specifically, the task of answering multiple-choice science questions
is reformulated as the problem of finding the candidate answer that is supported by the
best explanation. For each Question Q and candidate answer ci ∈C, ExplanationLP
converts to a hypothesis hi and attempts to construct a plausible explanation.

Figure 3.1C illustrates the end-to-end framework. From an initial set of facts selected
using a retrieval model, ExplanationLP constructs a fact graph where each node is a fact,
and the nodes and edges have a score according to three properties: relevance, cohesion

and diversity. Subsequently, an optimal subgraph is extracted using ILP, whose role
is to select the best subset of facts while preserving structural constraints imposed via
grounding-abstract chains. The subgraphs’ global scores computed by summing up the
nodes and edges scores are adopted to select the final answer. Since the subgraph scores
depend on the sum of nodes and edge scores, each property is multiplied by a learnable
weight optimized via Bayesian optimization to obtain the best possible combination
with the highest accuracy for answer selection. To the best of our knowledge, we are
the first to combine a parameter optimization method with ILP for inference. The rest
of this section describes the model in detail.

3.2.1 Relevant facts retrival

Given a question (Q) and candidate answers C = {c1, c2, c3, ..., cn} we convert them to
hypotheses {h1, h2, h3, ..., hn} using the approach proposed by Demszky et al. (2018).
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For each hypothesis hi we adopt fact retrieval approaches (e.g: BM25, Unification-
retrieval (Valentino et al., 2021)) to select the top m relevant abstract facts Fhi

A =

{ f hi
1 , f hi

2 , f hi
3 , ..., f hi

m } from a knowledge base containing abstract facts (Abstract Facts

KB) and top l relevant grounding facts Fhi
G = { f hi

1 , f hi
2 , f hi

3 , ..., f hi
l } from a knowledge

base containing grounding facts (Grounding Facts KB) that at least connects one abstract
fact with the hypothesis, such that Fhi = Fhi

A ∪Fhi
G and l +m = k.

3.2.2 Fact graph construction

For each hypothesis hi we build a weighted undirected graph Ghi = (V hi , Ehi , ωv, ωe)

with vertices V hi ∈ {{hi}∪Fhi}, edges Ehi , edge-weight function ωe(ei;θ1) and node-
weight function ωv(vi;θ2) where ei ∈ Ehi , vi ∈ V hi and θ1,θ2 ∈ [0,1] is a learnable
parameter which is optimized via Bayesian optimization.

The model scores the nodes and edges based on the following three properties (See
Figure 3.1B):

1. Relevance: We promote the inclusion of highly relevant facts in the explanations
by encouraging the selection of sentences with higher lexical relevance and
semantic similarity with the hypothesis. We use the following scores to measure
the relevance and the semantic similarity of the facts:

Lexical Relevance score (L): Obtained from the upstream facts retrieval model
(e.g: BM25 score/ Unification score (Valentino et al., 2021)).

Semantic Similarity score (S): Cosine similarity obtained from neural sentence
representation models. For our experiments, we adopt Sentence-BERT (Reimers
et al., 2019) since it shows state-of-the-art performance in semantic textual
similarity tasks.

2. Cohesion: Explanations should be cohesive, implying that grounding-abstract
chains should remain within the same context. To achieve cohesion, we encourage
a high degree of overlaps between different hops (e.g. hypothesis-grounding,
grounding-abstract, hypothesis-abstract) to prevent the inference chains from
drifting away from the original context. The overlap across two hops is quantified
using the following scoring function:

Cohesion score (C): We denote the set of unique terms of a given fact f hi
i as

t( f hi
i ) after being lemmatized and stripped of stopwords. The overlap score of
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two facts f hi
j and f hi

j is given by:

C( f hi
j , f hi

k ) =
|t( f hi

j )∩ t( f hi
k )|

max(|t( f hi
j )|, |t( f hi

k )|)
(3.1)

Therefore, the higher the number of term overlaps, the higher the cohesion score.

3. Diversity: While maximizing relevance and cohesion between different hops,
we encourage diversity between facts of the same type (e.g. abstract-abstract,
grounding-grounding) to address different parts of the hypothesis and promote
completeness in the explanations. We measure diversity via the following func-
tion:

Diversity score (D): We denote the overlaps between hypothesis hi and the fact
f hi
i as thi( f hi

i ) = t( f hi
i )∩ t(hi). The diversity score of two facts f hi

j and f hi
j is given

by:

D( f hi
j , f hi

k ) =−1
|thi( f hi

j )∩ thi( f hi
k )|

max(|thi( f hi
j )|, |thi( f hi

k )|)
(3.2)

The goal is to maximize diversity and avoid redundant facts in the explanations.
Therefore, if two facts overlap with different parts of the hypothesis, they will
have a higher diversity score compared to two facts that overlap with the same
part.

Given these premises, the weight functions of the graph is designed as follows:

ωe(v j,vk;θ1) =



θggD(v j,vk) v j,vk ∈ Fhi
G

θaaD(v j,vk) v j,vk ∈ Fhi
A

θgaC(v j,vk) v j ∈ Fhi
G ,vk ∈ Fhi

A

θqgC(v j,vk) v j ∈ Fhi
G ,vk = hi

θqaC(v j,vk) v j ∈ Fhi
A ,vk = hi

(3.3)

ωv(v
hi
i ;θ2) =


θlrL(v j,hi)+θssS(v j,hi) v j ∈ Fhi

A

0 vi ∈ Fhi
G

0 vi = hi

(3.4)

where θgg, θaa, θga, θgq, θqa ∈ θ1 and θlr, θss ∈ θ2.
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3.2.3 Subgraph extraction with Integer Linear Programming (ILP)
optimization

The construction of the explanation graph has to be optimized for the downstream
answer selection task. Specifically, from the whole set of facts retrieved by the upstream
retrieval models, we need to select the optimal subgraph that maximizes the performance
of answer prediction. To achieve this goal, we adopt an ILP approach.

The selection of the explanation graph is framed as a rooted maximum-weight
connected subgraph problem with a maximum number of K vertices (R-MWCSK).
This formalism is derived from the generalized maximum-weight connected subgraph
problem (Loboda et al., 2016). R-MWCSK has two parts: objective function to be
maximized and constraints to build a connected subgraph of explanatory facts. The
formal definition of the objective function is as follows:
Definition 1. Given a connected undirected graph G= (V ,E) with edge-weight function
ωe : E→ IR, node-weight function ωv : V → IR , root vertex r ∈V and expected number
of vertices K, the rooted maximum-weight connected subgraph problem with K number
of vertices (R-MWCSK) problem is finding the connected subgraph Ĝ = (V̂ , Ê) such
that r ∈ V̂ , |V | ≤ K and

Ω(Ĝ;θ3) = θvw ∑
v∈V̂

ωv(v;θ1)+θew ∑
e∈Ê

ωe(e;θ2)→ max (3.5)

where θvw, θew ∈ θ3, θ3 ∈ [0,1] and θ3 is a learnable parameter optimized via Bayesian
optimization. The LP solver will seek to extract the optimal subgraph with the highest
possible sum of node and edge weights. Since the solver seeks to obtain the highest
possible score, it will avoid negative edges and prioritize high-value positive edges
resulting in higher diversity, cohesion and relevance. We adopt the following binary
variables to represent the presence of nodes and edges in the subgraph:

1. Binary variable yv takes the value of 1 iff v ∈V hi belongs to the subgraph.

2. Binary variable ze takes the value of 1 iff e ∈ Ehi belongs to the subgraph.

In order to emulate the grounding-abstract inference chains and obtain a valid
subgraph, we impose the set constraints described as follows:

Chaining constraint: Equation 3.6 states that the subgraph should always contain the
question node. Inequality 3.7 states that if a vertex is to be part of the subgraph, then at
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least one of its neighbours with a lexical overlap should also be part of the subgraph.
Equation 3.6 and Inequality 3.7 restrict the LP system to construct explanations that
originate from the question and perform multi-hop aggregation based on the existence
of lexical overlap. Inequalities 3.8, 3.9 and 3.10 state that if two vertices are in the
subgraph then the edges connecting the vertices should be also in the subgraph. These
inequality constraints will force the LP system to avoid grounding nodes with high
overlap regardless of their relevance.

yvi = 1 if vi = hi (3.6)

yvi ≤ ∑
j

yv j ∀v j ∈ NGhi (vi) (3.7)

zvi,v j ≤ yvi ∀e(vi,v j) ∈ E (3.8)

zvi,v j ≤ yv j ∀e(vi,v j) ∈ E (3.9)

zvi,v j ≥ yvi + yv j −1 ∀e(vi,v j) ∈ E (3.10)

Abstract fact limit constraint: Equation 3.11 limits the total number of abstract facts
to M. By limiting the abstract facts, we dictate the need for grounding facts based on
the number of entities present in the question and the abstract facts.

∑
i

yvi ≤M ∀vi ∈ Fhi
A (3.11)

Grounding neighbour constraint: Inequality 3.12 states that if a grounding fact
is selected, then at least two of its neighbours should be either both abstract facts or
a question and an abstract fact. This constraint ensures that grounding facts play the
linking role in connecting question-abstract or abstract-abstract.

∑
v j

yvi−2≥−2(1− yv j) ∀vi ∈ NGhi (v j),

vi ∈ {Fhi
A ∪hi},

v j ∈ Fhi
G

(3.12)
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3.2.4 Bayesian optimization for Answer Selection

Given Question Q and choices C = {c1, c2, c3, ..., cn}we extract the optimal explanation
graphs ĜQ = {Ĝc1 , Ĝc2 , Ĝc3 , ..., Ĝcn} for each choice. We consider the hypothesis with
the highest relevance, cohesion and diversity to be the correct answer. Based on this
premise we define the correct answer as cans = argmaxhi

(Ω(Ĝhi)).

In order to automatically optimize the Integer Linear Programming model (i.e,
θ1, θ2, θ3) we use Bayesian optimization.

Bayesian optimization is a branch of machine-learning-based optimization. Bayesian
optimization is applied to optimize objective functions that are expensive to evaluate.
It builds a surrogate function with a Gaussian prior for the objective function. The
uncertainty in the surrogate function is quantified using Bayesian machine learning
techniques and Gaussian regression. It uses the acquisition function to decide which
space to sample next to maximize the performance of the objective function (Frazier,
2018). Bayesian optimization has been applied for hyperparameter tuning for machine
learning (Klein et al., 2017; Snoek et al., 2012), reinforcement learning (Brochu et al.,
2010; Wilson et al., 2014) and algorithm configuration (Hutter et al., 2011).

Bayesian optimization (BayesOpt) is focused on solving the following problem:

x̂ = argmax
x∈X

f (x) (3.13)

where the aim is to find x̂ that maximizes the function f (x) over some domain X.
Bayesian optimization attempts to find the maximum point with a minimum number
of evaluations. f (x) is usually “expensive-to-evaluate”, and the number of iterations is
usually limited to a few hundred.

BayesOpt is composed of two main components:

• Probabilistic model of the function: to model the objective function. The
probabilistic model is widely represented by the Gaussian process. With each
observation (xt , f (xt)), we learn the distribution and obtain the posterior.

• Acquisition function: to decide where to sample next in order maximise the
function f . The function samples the next point based on its definition and might
favour exploration or exploitation.

Overall, the Bayesian optimization algorithm can be defined as follows:
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Algorithm 1: Bayesian optimization Algorithm
Define Gaussian Prior (GP ) to model f
Evaluate f at n0 points
n = n0
while n ≤ N do

Update the posterior probability of GP based on the n data point evaluations
Get the next exploration point xn from the acquisition function, where the
acquisition function is computed using the current posterior distribution.

yn = f (xn).
n = n+1

end
Return a solution: either the point x̂ evaluated with the largest f (x)

Gaussian process regression Gaussian process is used for modelling functions in
Bayesian statistics. Given a finite collection of points x1, x2, x3, · · · , xk ∈ Rd we can
collect the function scores along these points as [ f (x1), f (x2), · · · , f (xk)]. Gaussian
regression assumes that these points were drawn from a prior multivariate normal
distribution with a particularly mean and covariance matrix.

The mean vector is calculated by executing the mean function µ0 at each point xi.
On the other hand, the covariance matrix is constructed by a covariance function or
kernel Σ0 at each point (xi, x j). The covariance function is chosen so that two closer
points have a high positive correlation. Additionally, the covariance matrix is also
expected to be positive semi-definite.

Given these assumptions, the prior distribution of [ f (x1), f (x2), · · · , f (xk)] is
defined as,

f (x1:k) ∼ Normal(µ0(x1:k), Σ0(x1:k,x1:k)) (3.14)

Based on this assumption, given that we have observed f (x1:n) without noise and
try to infer the value of the function at a new point x, the conditional distribution (i.e:
posterior probability distribution) can be calculated as:

f (x) | f (x1:n) = Normal(µn(x2),σ2(x))

µn(x) = Σ0(x,x1:n)Σ0(x1:n,x1:n)
−1( f (x1:n)−µ0(x1:n))+µ0(x)

σ
2(x) = Σ0(x,x)−Σ0(x,x1:n)Σ0(x1:n,x1:n)

−1
Σ0(x1:n,x)

(3.15)

Given three points x, x
′
, x
′′
, with the property ∥x−x

′∥< ∥x−x
′′∥, the kernel function
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should have the property Σ0(x,x
′
)> Σ0(x,x

′′
). Following are some widely used kernels:

• RBF Kernel: Σ0(xi,x j) = exp
(
−d(xi,x j)

2

2l2

)
where l is the length scale of the

kernel and d is the Euclidean distance.

• Mattern Kernel: Σ0(xi,x j) =
1

Γ(ν)2ν−1

(
√

2ν

l d(xi,x j)

)ν

Kν

(
√

2ν

l d(xi,x j)

)
where

where d is the Euclidean distance, Kν is a modified Bessel function and Γ is the
gamma function.

• Rational Quadratic Kernel: Σ0(xi,x j) =
(

1+ d(xi,x j)
2

2αl2

)−α

where α is the scale
mixture parameter, l is the length scale of the kernel and d is the Euclidean
distance

Acquisition Functions The next part of the optimization is to define the acquisition
function. The acquisition function decides the next exploration point. The acquisition
function’s challenge is finding the trade-off between exploration and exploitation.

Below are some of the popular acquisition functions:

• Upper Confidence Bound (UCB) (Srinivas et al., 2009)

UCB(x
′
) = µ(x

′
)+β

1
2 σ(x

′
) (3.16)

UCB selects regions with larger µ for exploitation and large σ for exploration.
The parameter β is used to balance between the two.

• Probability of Improvement (PI) (Kushner, 1964):

PI(x
′
) =

∫
∞

f (x̂)
Norm f (x′)(µ(x

′
),σ(x

′
))d f (x

′
) (3.17)

PI computes the likelihood at x
′

so that it will result in higher than the current
maximum f (x̂).

• Expected Improvement (EI) (Močkus, 1975):

EI(x
′
) =

∫
∞

f (x̂)
( f (x

′
)− f (x̂))Norm f (x′)(µ(x

′
),σ(x

′
))d f (x

′
) (3.18)
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Unlike PI, EI prefers larger improvements over smaller and highly likely improve-
ments. The expectation improvement f (x

′
)− f (x̂) is calculated of the normal

distribution that is above the current maximum.

For our approach, we empirically found that RationalQuadratic Kernel for Gaussian
Process and Expected Improvement acquisition function yield the best results.

Given the details above, the algorithm to select the correct answer with Bayesian
Optimization is defined below.

Algorithm 2: Bayesian optimization for Answer Selection.
θ1,θ2,θ3 = initRandom(seed)
GQ = fact-graph-construction(ωe(θ

′
1), ωv(θ

′
2))

ĜQ = LP(GQ, Ω(θ3))
X = evaluate-accuracy(GQ)
model = GP (X ,{θ1,θ2,θ3})
iteration = 0
while iteration ≤ N do

θ
′
1,θ

′
2,θ

′
3 = get-next-exploration-point()

GQ
′

= fact-graph-construction(ωe(θ
′
1), ωv(θ

′
2))

ĜQ
′

= LP(GQ′ ,Ω(θ
′
3))

X
′
= evaluate-accuracy(GQ

′
)

model.update(X
′
,{θ′1,θ

′
2,θ

′
3})

iteration = iteration + 1
end
Result: Best accuracy for model and respective parameters θ1,θ2,θ3

3.3 Empirical Evaluation

Background Knowledge: We construct the required knowledge bases using the
following sources.

1. Abstract KB: Our Abstract knowledge base is constructed from the WorldTree
Tablestore corpus (Jansen et al., 2018; Xie et al., 2020). The Tablestore corpus
contains a set of common sense and scientific facts adopted to create explana-
tions for multiple-choice science questions. The corpus is built for answering
elementary science questions encouraging possible knowledge reuse to elicit
explanatory patterns. We extract the core scientific facts to build the Abstract KB.
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Core scientific facts are independent from the specific questions and represent
general scientific and commonsense knowledge, such as Actions (friction occurs

when two object’s surfaces move against each other) or Affordances (friction

causes the temperature of an object to increase).

2. Grounding KB: The grounding knowledge base consists of definitional knowl-
edge (e.g., synonymy and taxonomy) that can take into account lexical variability
of questions and help it link it to abstract facts. To achieve this goal, we select the
is-a and synonymy facts from ConceptNet (Speer et al., 2017) as our grounding
facts. ConceptNet has high coverage and precision, enabling us to answer a wide
variety of questions.

Question Sets: We use the following question sets to evaluate ExplanationLP’s
performance and compare it against other explainable approaches:

1. WorldTree Corpus (Jansen et al., 2018): The 2,290 questions in the WorldTree
corpus are split into three different subsets: train-set (987), dev-set (226) and test-

set (1,077). We use the dev-set to assess the explanation selection performance and
robustness analysis since the explanations for test-set are not publicly available.

2. ARC-Challenge Corpus: ARC-Challenge is a multiple-choice question dataset
consisting of questions from science exams from grade 3 to grade 9 (Clark et al.,
2018). We only consider the Challenge set of questions, and these questions have
proven to be challenging to answer for other LP-based question answering and
neural approaches.

Relevant Facts Retrieval (FR): We experiment with two different fact retrieval
scores. The first model – i.e. BM25 Retrieval, adopts a BM25 vector representation
for hypothesis and explanation facts. We apply this retrieval for both Grounding and
Abstract retrieval. We use the IDF score from BM25 as our downstream model’s
relevance score. The second approach – i.e. Unification Retrieval (UR), represents the
BM25 implementation of the Unification-based Reconstruction framework described in
Valentino et al. (2021). The unification score for a given fact depends on how often the
same fact appears in explanations for similar questions.

Baselines: The following baselines are replicated on the WorldTree corpus to compare
against ExplanationLP:
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1. Bert-Based models: We compare the ExplanationLP model’s performance
against a set of BERT baselines. The first baseline – i.e. BERTBase/BERTLarge, is
represented by a standard BERT language model (Devlin et al., 2019) fine-tuned
for multiple-choice question answering. Specifically, the model is trained for
binary classification on each question-candidate answer pair to maximize the
correct choice (i.e., predict 1) and minimize the wrong choices (i.e., predict 0).
During inference, we select the choice with the highest prediction score as the
correct answer. BERT baselines are further enhanced with explanatory facts re-
trieved by the retrieval models. BERT + BM25 and BERT + UR, is fine-tuned for
binary classification by complementing the question-answer pair with grounding
and abstract facts selected by BM25 and Unification retrieval, respectively.

2. PathNet (Kundu et al., 2019): PathNet is a neural approach that constructs a
single linear path composed of two facts connected via entity pairs for reasoning.
PathNet also can explain its reasoning via explicit reasoning paths. They have
exhibited strong performance for multiple-choice science questions while adopt-
ing a two-hop reasoning strategy. Similar to BERT-based models, we employ
PathNET with the top k facts retrieved utilizing Unification (PathNet + UR) and
BM25 (PathNet + BM25) retrieval.

Further details regarding the hyperparameters and code used for each model, along
with information concerning the knowledge base construction and dataset information,
can be found in the Supplementary Materials.

3.3.1 Answer Selection

WorldTree Corpus: We retrieve the top l relevant grounding facts from Grounding KB
and the top m relevant abstract facts from Abstract KB such that l +m = k and l = m.
To ensure fairness across the approaches, the same amount of facts are presented to
each model. We experimented with k = {10, 20, 30, 40, 50} and reported the accuracy
across Easy and Challenge split of the best performing setting in Table 3.1. We draw
the following conclusions:

1. Despite having a smaller number of parameters to train (BERTBase: 110M pa-
rameters, BERTLarge: 340M parameters, ExplanationLP: 9 parameters), the
best performing ExplanationLP (#10) overall outperforms all the BERTBase and
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# Model Accuracy
Easy Challenge

1 BERTBase 51.04 28.75
2 BERTLarge 54.58 29.39

3 BERTBase + BM25 (k=10) 53.92 42.72
4 BERTLarge + BM25 (k=10) 54.05 43.45
5 BERTBase + UR (k=10) 52.87 42.17
6 BERTLarge + UR (k=10) 58.50 43.72

7 PathNet + BM25 (k=20) 43.32 36.42
8 PathNet + UR (k=15) 47.64 33.55

9 Ours + BM25 (k=30) 63.82 48.24
10 Ours + UR (k=30) 66.23 50.15

Table 3.1: Accuracy on Easy (764) and Challenge split (313) of WorldTree test-set
corpus from the best performing k of each model

BERTLarge models on both Challenge and Easy split. We outperform the best-
performing BERT model with facts (BERTLarge (#6)) by 7.74% in Easy and
6.43% in Challenge. We also outperform best performing BERT without facts
(BERTLarge (#2)) by 11.66% in Easy and 20.76% in Challenge.

2. BERT is inherently a black-box model, not being entirely possible to explain
its prediction. By contrast, ExplanationLP is fully explainable and produces a
complete explanatory graph.

3. Similar to ExplanationLP, PathNet is also explainable and demonstrates robust-
ness to noise. ExplanationLP also outperforms PathNet’s best performance setting
(#8) by 18.59% in Easy and 16.60% in Challenge.

4. ExplanationLP consistently exhibits better scores on both BM25 and UR than
BERT and PathNet, demonstrating independence of the upstream retrieval model
for performance.

ARC-Challenge : We also evaluated our model on the ARC-Challenge corpus (Clark
et al., 2018) to evaluate ExplanationLP on a more extensive general question set and
compare against contemporary approaches that provide explanations for an inference
that has only been trained on ARC corpus. Table 3.2 reports the results on the test-

set. We compare ExplanationLP against published approaches that are fully/partly
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# Model Explainable Accuracy

1 BERTLarge No 35.11

2 IR Solver (Clark et al.,
2016)

Yes 20.26

3 TupleInf (Khot et al.,
2017)

Yes 23.83

4 TableILP (Khashabi et
al., 2016)

Yes 26.97

5 DGEM (Clark et al.,
2016)

Partial 27.11

6 KG2 (Y. Zhang et al.,
2018)

Partial 31.70

7 ET-RR (Ni et al., 2019) Partial 36.61
8 Unsupervised AHE (Ya-

dav et al., 2019a)
Partial 33.87

9 Supervised AHE (Ya-
dav et al., 2019a)

Partial 34.47

10 AutoRocc (Yadav et al.,
2019b)

Partial 41.24

11 Ours + BM25 (k=40) Yes 40.21
12 Ours + UR (k=40) Yes 39.84

Table 3.2: ARC challenge scores compared with other Fully or Partially explainable
approaches trained only on the ARC dataset.
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CASE I: All the selected facts are in the gold explanation (Frequency: 33%)

Question: A company wants to make a game that uses a magnet that sticks to a board.
Which material should it use for the board? Answer: steel
Explanations: (1) steel is a metal (Grounding), (2) if a magnet is attracted to a metal
then that magnet will stick to that metal (Abstract), (3) a magnet attracts magnetic
metals through magnetism (Abstract),

CASE II: At least one selected facts are in the gold explanation (Frequency: 58%)

Question: A large piece of ice is placed on the sidewalk on a warm day. What will
happen to the ice? Answer: It will melt to form liquid water.
Explanations: (1) drop is liquid small amount (Grounding), (2) forming something
is change (Grounding), (3) ice wedging is mechanical weathering (Grounding), (4)
melting means changing from a solid into a liquid by adding heat energy (Abstract),
(5) weathering means breaking down surface materials from larger whole into smaller
pieces by weather (Abstract),

CASE III: No retrieved facts is in the gold explanation (Frequency: 9%)

Question: Wind is a natural resource that benefits the southeastern shore of the
Chesapeake Bay. How could these winds best benefit humans? Answer: The winds
could be converted to electrical energy
Explanations: (1) renewable resource is natural resource (Grounding), (2) wind is
a renewable resource (Abstract), (3) electrical devices convert electricity into other
forms of energy (Abstract)

Table 3.3: Case study of explanation extracted by ExplanationLP

explainable. Here explainability indicates if the model produces an explanation/evidence
for the predicted answer. A subset of the approaches produces evidence for the answer
but remains intrinsically black-box. These models have been marked as Partial.

As depicted in the Table 3.2, we outperform the best performing fully explainable
(#4 TableILP) model by 13.28%. We also outperform specific neural approaches
with larger parameter sets (#5 - #9) that provide explanations for their inference and
BERT (#1). Despite having a smaller number of training parameters, we also exhibit
competitive performance with a state-of-the-art Bert-based approach (#10) that do not
use external resources to train the QA system.

3.3.2 Explanation Selection

Table 3.4 shows the Precision, Recall and F1Macro score for explanation retrieval for
PathNet and ExplanationLP. These scores are computed using gold abstract explanations
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Approach Precision Recall F1

PathNet + UR (k=20) 21.56 36.55 29.06
Ours + UR (k=30) 57.96 49.92 48.13

Table 3.4: Explanation retrieval performance on the WorldTree Corpus dev-set.

from WorldTree corpus. We outperform PathNet across all spectrums by a significant
margin.

Table 3.3 reports three representative cases that show how explanation generation
relates to correct answer prediction. The first example (Case I) represents the situation
in which all the selected sentences are annotated as gold explanations in the WorldTree
corpus (dev-set). The second example (Case II) shows the case in which at least
one sentence in the explanation is labelled as gold. Finally, the third example (Case
III) represents the case in which the explanation generated by the method does not
contain any gold fact. We observe Case I and Case II occur over 91% of the questions,
demonstrating that the correct answers are mostly derived from plausible explanations.

3.3.3 Robustness

Distracting knowledge Table 3.5 reports the analyzes carried out with BERT, PathNet
and ExplanationLP on the WorldTree test-set for varying top k relevant facts to measure
the robustness towards increasing distractors. These scores, along with an overall steady
drop in performance with increasing k indicate that BERT struggles with the increasing
number of distracting knowledge. In contrast, ExplanationLP can operate on a higher
amount of distracting information and still obtain better scores, displaying resilience
towards the noise. The lowest drop in performance of ExplanationLP with BM25 is
1.33% (#9 k=30→ k=10) and UR is 1.12% (#10 k=30→ k=10). On the other hand, the
lowest drop in performance for BERTLarge with BM25 is 24.32% (#5 k=10,→ k=50)
and UR is 27.95% (#6, k=10→ k=50). While PathNet also exhibits resilience to noise,
our approach still outperforms it by a significant margin across all settings.

Hypothesis complexity Figure 3.2 presents the change in accuracy as the number of
unique terms increases in hypothesis and answer. Our approach demonstrates lower
degradation in performance when compared to PathNet. While the drop in BERT
performance is lower than ours, we still outperform BERT across the entire spectrum.
These observations show the robustness of our approach with regard to hypothesis
complexity.
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# Model Accuracy
k=10 k=20 k=30 k=40 k=50

3 BERTBase + BM25 50.92 43.63 37.97 31.56 32.68
4 BERTBase + UR 49.76 42.14 31.84 30.36 31.29
5 BERTLarge + BM25 51.25 43.36 32.86 35.46 26.92
6 BERTLarge + UR 54.50 42.98 27.39 24.88 26.55

7 PathNet + BM25 41.02 41.61 41.98 40.11 41.79
8 PathNet + UR 42.36 43.58 40.76 41.22 42.83

9 ExplanationLP + BM25 58.00 58.23 59.33 59.21 59.05
10 ExplanationLP + UR 60.25 60.63 61.37 61.28 61.00

Table 3.5: Overall answer selection performance on the WorldTree test-set. k represents
the number of retrieved facts by the respective retrieval approaches.

Semantic Drift To validate the performance across an increasing number of hops, we
plot the accuracy against explanation length as illustrated in Figure 3.3. As demonstrated
in explanation regeneration (Jansen & Ustalov, 2019; Valentino et al., 2021), the
complexity of a science question is directly correlated with the explanation length
– i.e. the number of facts required in the gold explanation. Unlike BERT, PathNet
and ExplanationLP use external background knowledge, addressing the multi-hop
process in two main reasoning steps. However, in contrast to ExplanationLP, PathNet
combines only two explanatory facts to answer a given question. This assumption has a
negative impact on answering complex questions requiring long explanations. This is
evident in the graph, where we observe a sharp decrease in accuracy with increasing
explanation length. Comparatively, ExplanationLP achieves a more stable performance,
showing a lower degradation with an increasing number of explanation sentences. These
results crucially demonstrate the positive impact of grounding-abstract mechanisms on
semantic drift. We also exhibit consistently better performance when compared with
BERT as well.

3.3.4 Ablation Study

In order to understand the contribution lent by different components, we choose the best
setting (WorldTree: ExplanationLP + UR (k=30) and ARC: ExplanationLP + BM25
(k=40)) and drop different components to perform an ablation analysis. We retain the
ensemble after removing each component. The results are summarized in Table 3.6.
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Figure 3.2: Change in accuracy of answer prediction the development set varying across
different models with increasing unique terms in hypothesis for WorldTree dev-set. Red
dashed line represents ExplanationLP + UR (k=30), blue line represents BERTLarge +
UR (k=10) and green dotted line represents PathNet + UR (k=20)

1. The grounding-abstract chains (#2) play a significant role, particularly in the
reasoning mechanism on a challenging question set like ARC-Challenge.

2. As observed in #3, #4 removing node weights and edge weights lead to a dramatic
drop in performance. This drop indicates that both are fundamental for the final
prediction, highlighting the role of graph structure in explainable inference.

3. The importance of cohesion varies across different types of facts. We observe
that Hypothesis-Abstract cohesion (#5) is significantly more important than the
others. We attribute this to the fact that without Hypothesis-Abstract cohesion,
multi-hop inference can quickly go out of context.

4. From the ablation analysis, we can see how lexical relevance and semantic
similarity (#10, 11) complement each other towards the final prediction. For the
WorldTree corpus, the relevance score has a higher parameter score translating
into a higher impact and vice-versa for ARC.

5. Diversity plays a more minor role when compared to cohesion and relevance. The
impact of diversity in ARC is higher than that of WorldTree.
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Figure 3.3: Change in accuracy of answer prediction the development set varying across
different models with increasing explanation length for WorldTree dev-set. Red dashed
line represents ExplanationLP + UR (k=30), blue line represents BERTLarge + UR
(k=10) and green dotted line represents PathNet + UR (k=20)

3.4 Related Work

Our approach broadly falls into Integer Linear Programming based approaches for
science question answering. ILP-based approaches perform inference over either semi-
structured tables (Khashabi et al., 2016) or structural representations extracted from the
text (Khashabi, Khot, Sabharwal, & Roth, 2018; Khot et al., 2017). These approaches
treat all facts homogeneously and attempt to connect the question with the correct answer
through long hops. While they have exhibited good performance with no supervision,
the performance tends to be lower when answering complex questions requiring long
explanatory chains. In contrast, our approach performs inference over unstructured text
by imposing structural constraints via grounding-abstract chains, lowering the hops,
and combining parametric optimization to extract the best-performing model.

The other class of approaches that provide explanations are graph-based approaches.
Graph-based approaches have been successfully applied for open-domain question
answering (Fang et al., 2020; L. Qiu et al., 2019) where the question only requires only
two hops. PathNet (Kundu et al., 2019) operates within the same design principles and
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# Approach Accuracy
WT ARC

1 ExplanationLP (Best) 61.37 40.21

Structure
2 Grounding-Abstract Categories 58.33 35.13
3 Edge weights 43.78 29.45
4 Node weights 42.80 27.87

Cohesion
5 Hypothesis-Abstract cohesion 38.71 30.37
6 Hypothesis-Grounding cohesion 59.33 38.73
7 Grounding-Abstract cohesion 59.12 38.14

Diversity
8 Abstract-Abstract diversity 60.16 37.62
9 Grounding-Grounding diversity 60.44 37.71

Relevance
10 Hypothesis-Abstract semantic similarity 55.38 35.49
11 Hypothesis-Abstract lexical relevance 54.68 36.01

Table 3.6: Ablation study, removing different components of ExplanationLP. The scores
reported here are accuracy for answer selection on the WorldTree (WT) and ARC-
Challenge (ARC) test-set.

has been applied to the OpenbookQA science dataset. As indicated in the empirical
evaluation, it struggles with long-chain explanations since it relies only on two facts.
Graph-based approaches have also been employed for mathematical reasoning (Ferreira
& Freitas, 2020a, 2020b) and textual entailment (Silva et al., 2019; Silva et al., 2018).

The third category of partially explainable approaches employs black-box neural
models in combination with a retrieval approach. The SOTA model for Science Ques-
tion (Khashabi et al., 2020) answering is pretrained across multiple datasets and is not
explainable. The current partially explainable SOTA approach that does not rely on
external resource (Yadav et al., 2019b) employs a large parameter BERT model for
question answering resulting. In contrast, with a low number of parameters, we have
introduced a model that demonstrates competitive performance and leaves a smaller car-
bon footprint in terms of energy consumption (Henderson et al., 2020). Other methods
construct explanation chains by leveraging explanatory patterns emerging in a corpus
of scientific explanations (Valentino et al., 2020, 2021).



72 CHAPTER 3. EXPLANATIONLP

3.5 Conclusion

Research Objective 2:Propose a novel explanation-based multi-hop inference method

which reduces semantic drift

This Chapter presented an efficient science question answering model that performs
explanation-based inference. We also presented an in-depth systematic evaluation
demonstrating the impact on various design principles via an in-depth ablation analysis.
Despite having a significantly lower number of parameters, we demonstrated compet-
itive performance compared with contemporary explanation-based approaches while
showcasing its robustness and interpretability.

• RQ2.1: Does the encoding of grounding-abstract mechanisms reduce semantic
drift?

In Section 3.3.1, we demonstrated that our model outperforms Transformer-
based models - BERT (Devlin et al., 2019) (≈ 7%) and graph-based model-
PathNet (Kundu et al., 2019) (≈ 17%). In Section 3.3.4, we showed that Expla-
nationLP showed a lower degradation with an increasing number of explanation
sentences. Demonstrating the positive impact of grounding-abstract mechanisms
on the semantic drift. We also exhibit consistently better performance when com-
pared with BERT as well. In Section 3.3.4 we also showed grounding-abstract
chains play a significant role in answer selection performance (improvement by≈
5% for ARC-Challenge). With these observations, we can conclude that encoding

of grounding-abstract mechanisms reduce semantic drift.

3.6 Scope and Limitations

As noted by Jansen et al. (2018) elementary science questions require an average
of 4 facts to answer and explain, with some questions requiring over 20 pieces of
information. However, empirically we found M = 2 of abstract facts to provide the best
answer selection results. The central aim of the approach was to answer the question
and not reconstruct the entire explanation chain. The impact of this method can be
seen in the low F1 score in the explanation selection task. This design choice can
also be attributed to the degradation of answer selection performance with increasing
explanation sentences.

ExplanationLP relies on the existence of a corpus of core scientific statements
(abstract facts). In our case, we were aided by the existence of WorldTree corpus (Jansen



3.7. REPRODUCIBILITY 73

et al., 2018).

As a framework, ExplanationLP is limited to multiple-choice question answering.
If we were to adopt this approach to span-selection, one possible way is to convert
span-selection questions into multiple-choice by extracting potential answer spans from
the text (Du & Cardie, 2018).

This model was also limited to fine-tuning only nine parameters as it is intractable
to fine-tune large models using Bayesian optimization.

3.7 Reproducibility

This section consists of all the hyperparameters, code and libraries used in our approach.

3.7.1 Integer Linear Programming Optimization

The components of the Integer Linear Programming system is as follows:

• Solver: CPLEX Solver - CPLEX optimization studio V12.9.0 https://www.ibm.
com/products/ilog-cplex-optimization-studio

The hyperparameters used in the LP constraints:

• Maximum number of abstract facts (M): 2
• Average time per epoch: 6 minutes for train-set
• Number of Epochs: 200

Infrastructures used:

• CPU Cores: 32
• CPU Model: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
• Memory: 128GB
• OS: Ubuntu 18.04 LTS

3.7.2 Parameter tuning

Our work employed Bayesian optimization with a Gaussian process for hyperparam-
eter tuning. We used the https://github.com/fmfn/BayesianOptimization: Bayesian-
Optimization python library to implement the code. These parameters are as follows:

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/fmfn/BayesianOptimization
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• Gaussian Kernels:

– https://scikit-learn.org/stable/modules/generated/sklearn.gaussian process.kernels.
RationalQuadratic.html: RationalQuadratic Kernel with default parameters

• Number of iterations: 200
• alpha (α): 1e-8
• random state: 1

3.7.3 Sentence-BERT for Semantic Similarity Scores

We use: roberta-large nli-stsb-mean-tokens model to calculate the semantic
similarity scores.

3.7.4 BERT model

The BERT model was taken from the Hugginface Transformers(https://github.com/
huggingface/transformers) library and fine-tuned using 4 Tesla V100 GPUs for 10
epochs in total with batch size 16 for BERTLarge and 32 for BERTBase.

We experiment with a range of hyperparameters and pick the hyperparameters with
the best performance. The hyperparameter value range tested:

• learning rate: {1e−4, 5e−5, 1e−6}
• warmup steps : {0,5, 10, 20}
• weight decay: {0.0, 1e−3, 1e−6}

The hyperparameters adopted for BERT are as follows:

• gradient accumulation steps: 1
• learning rate: 1e-5
• weight decay: 0.0
• adam epsilon: 1e-8
• warmup steps: 0
• max grad norm: 1.0
• seed: 42

3.7.5 PathNet

We use the code and dependencies provided by the PathNet GitHub repository (https://
github.com/allenai/PathNet). We used the training config provided for OpenBookQA as

https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/allenai/PathNet
https://github.com/allenai/PathNet
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a baseline: https://github.com/allenai/PathNet/blob/master/training configs/config obqa.
json.

3.7.6 Relevant facts retrieval

The code for BM25 and Unification retrieval approaches were adopted from the
Unification Explanation Retrieval GitHub repository (https://github.com/ai-systems/
unification reconstruction explanations).

3.7.7 Code

The code for reproducing the ExplanationLP and the experiments described in this
chapter are attached with the code appendix and will be available at the following
GitHub repository (with a Dockerized container): https://anonymous-url.com.

3.7.8 Data

WorldTree Dataset: The 2,290 questions in the WorldTree corpus are split into three
different subsets: train-set (987), dev-set (226), and test-set (1,077). We only considered
questions with explanations for our evaluation. The reasoning behind omitting questions
without explanations was to ensure fact coverage for all questions. For AbstractKB
building, we excluded facts from ’KINDOF’ and ’SYNONYMY’ table, as these are the
ones primarily composed of grounding facts.
ARC-Challenge Dataset: https://allenai.org/data/arc. Only used the Challenge split.

https://github.com/allenai/PathNet/blob/master/training_configs/config_obqa.json
https://github.com/allenai/PathNet/blob/master/training_configs/config_obqa.json
https://github.com/ai-systems/unification_reconstruction_explanations
https://github.com/ai-systems/unification_reconstruction_explanations
https://anonymous-url.com
https://allenai.org/data/arc


Chapter 4

Diff-Explainer: Differentiable Convex
Optimization for Explanation-based
Multi-hop Inference

This Chapter is based on the paper “Diff-Explainer: Differentiable Convex Optimization
for Explainable Multi-hop Inference”. This can be found in https://arxiv.org/pdf/2105.
03417.pdf and has been accepted for Transactions of the Association for Computational

Linguistics, 2022.

4.1 Introduction

Explanation-based Question Answering (QA) in complex domains is often modelled
as a multi-hop inference problem (Jansen et al., 2021; Valentino et al., 2022). In this
context, the goal is to answer a given question through the construction of an explanation,
typically represented as a graph of multiple interconnected sentences supporting the
answer (Figure 4.1) (Jansen, 2018; Khashabi, Khot, Sabharwal, & Roth, 2018; Kundu
et al., 2019).

However, Explanation-based QA models exhibit lower performance when compared
to state-of-the-art approaches, which are generally represented by Transformer-based
architectures (Devlin et al., 2019; Khashabi et al., 2020; Khot et al., 2020). While
Transformers are able to achieve high accuracy due to their ability to transfer linguistic
and semantic information to downstream tasks, they are typically regarded as black-
boxes (Liang et al., 2021), posing concerns about the interpretability and transparency
of their predictions (Guidotti et al., 2018; Rudin, 2019).
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https://arxiv.org/pdf/2105.03417.pdf
https://arxiv.org/pdf/2105.03417.pdf
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To alleviate the aforementioned limitations, this chapter proposes Diff-Explainer
(∂-Explainer), a novel hybrid framework for multi-hop and explanation-based QA that
combines constraint satisfaction layers with pre-trained neural representations, enabling
end-to-end differentiability.

Recent works have shown that certain convex optimization problems can be rep-
resented as individual layers in larger end-to-end differentiable networks (Agrawal,
Barratt, et al., 2019; Agrawal, Amos, et al., 2019; Amos & Kolter, 2017), demonstrating
that these layers can be adapted to encode constraints and dependencies between hidden
states that are hard to capture via standard neural networks.

In this chapter, we build upon this line of research, showing that convex optimization
layers can be integrated with Transformers to improve explanation-based inference
and robustness in multi-hop inference problems. To illustrate the impact of end-to-end
differentiability, we integrate the constraints of existing ILP solvers (i.e., TupleILP (Khot
et al., 2017), ExplanationLP) into a hybrid framework. Specifically, we propose a
methodology to transform existing constraints into differentiable convex optimization
layers and subsequently integrate them with pre-trained sentence embeddings based on
Transformers (Reimers et al., 2019).

To evaluate the proposed framework, we perform extensive experiments on complex
multiple-choice QA tasks requiring scientific and commonsense reasoning (Clark et al.,
2018; Xie et al., 2020). In summary, the contributions of the chapter are as follows:

1. A novel differentiable framework for multi-hop inference that incorporates con-
straints via convex optimization layers into broader Transformer-based architec-
tures.

2. An extensive empirical evaluation demonstrating that the proposed framework
allows end-to-end differentiability on downstream QA tasks for both explanation
and answer selection, leading to a substantial improvement when compared to
non-differentiable constraint-based and transformer-based approaches.

3. We demonstrate that Diff-Explainer is more robust to distracting information in
addressing multi-hop inference when compared to Transformer-based models.
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Answer: 

Question:

Explanations: 

to rub together means to move against

friction is a force

a stick is an object

Two sticks getting warm when rubbed together

What is an example of force producing heat

friction occurs when two object's surfaces 
move against each other

friction causes the temperature of an object
to increases

Figure 4.1: Example of a multi-hop QA problem with an explanation represented as a
graph of multiple interconnected sentences supporting the answer (Jansen et al., 2018;
Xie et al., 2020).

4.2 Differentiable Convex Optimization Layers

Our work is in line with previous works that have attempted to incorporate optimiza-
tion as a neural network layer. These works have introduced differentiable mod-
ules for quadratic problems (Amos & Kolter, 2017; Donti et al., 2017), satisfiability
solvers (P.-W. Wang et al., 2019) and submodular optimizations (Djolonga & Krause,
2017; Tschiatschek et al., 2018). Recent works also offer differentiation through convex
cone programs (Agrawal, Barratt, et al., 2019; Busseti et al., 2019).

Given the primal(Equation 4.1)-dual(Equation 4.2) form of a cone program as
follows:

minimize cT x

s.t. Ax+ s = b

x ∈K

(4.1)

minimize bT y

s.t. AT y+ c = 0

y ∈K ∗
(4.2)

Here

• x ∈ Rn: primal variable

• y ∈ Rm: dual variable

• s ∈ Rm: primal slack variable
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• K ⊆ Rm: nonempty, closed, convex cone

• K ∗ ⊆ Rm: dual cone of K

Conic solver as a function can be seen as ψ : Rm×n×Rm×Rn→ Rn+2m mapping
the problem data (A,b,c) to a solution (x,y,s).

ψ can be expressed as φ◦ s◦Q (Agrawal, Barratt, et al., 2019; Amos, 2019), where

• Q : Rm×n×Rm×Rn→ RN×N maps the problem data to Q, given by:

Q =

 0 AT c

−A 0 b

−cT −bT 0

 . (4.3)

• s :RN×N→RN is differentiable and solves the homogeneous self-dual embedding

• φ : RN → Rn×Rm×Rm maps z to the primal-dual pair, given by:

(x,y,s) = (u,ΠK ∗(v),ΠK ∗(v)− v)/w, (4.4)

The adjoint of the derivative of ψ at (A,b,c) applied to the vector (dx,dy,ds), or

(dA,db,dc) = DT
ψ(A,b,c)(dx,dy,ds) = DT Q(A,b,c)DT s(Q)DT

φ(z)(dx,dy,ds)

(4.5)
As the only interest is in the the primal solution x, they set dy = ds = 0. Hence

based on Equation 4.4 they define:

dz = DT
φ(z)(dx,0,0) =

 dx

0
−xTdx

 (4.6)

Ds(Q) is further calculated by implicitly differentiating the normalized residual
map:

Ds(Q) =−(DzN (s(Q),Q))−1DQN (s(Q),Q). (4.7)

Resulting in
dQ = DT s(Q)dz =−(M−Tdz)Π(z)T , (4.8)

where M = (Q− I)DΠ(z)+ I. In order to calculate g = M−Tdz efficiently the LSQR
Krylov method (Paige & Saunders, 1982) is used.
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Figure 4.2: Overview of our approach: Illustrates the end-to-end architectural diagram
of Diff-Explainer for the provided example.

dQ is calculated as

dQ =

dQ11 dQ12 dQ13

dQ21 dQ22 dQ23

dQ31 dQ32 dQ33

 , (4.9)

Finally, obtain
dA = −dQT

12 +dQ21

db = −dQ23 +dQT
32

dc = −dQ13 +dQT
31

(4.10)

Since every convex problem can be cast into a cone problem, these models can
be used to define convex optimization problems. In this work, we use the differen-
tiable convex optimization layers proposed by Agrawal, Amos, et al. (2019). These
layers provide a way to abstract away from the conic form, letting users define convex
optimization in natural syntax.

4.3 Diff-Explainer: Explanation-based Multi-Hop In-
ference via Differentiable Convex Optimization

The problem of Explanation-based Multi-Hop Question Answering can be stated as
follows (Restated from Chapter 1):

Definition 3 (Explanations in Multi-Hop Question Answering). Given a question Q,
answer a and a knowledge base Fkb (composed of natural language sentences), we say
that we may infer hypothesis h (where hypotheses h is the concatenation of Q with a) if
there exists a subset (Fexp) of supporting facts { f1, f2, . . .} ⊆ Fkb of statements which
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would allow to arrive at h from { f1, f2, . . .}. We call this set of facts an explanation for
h.

Given a question (Q) and a set of candidate answers C = {c1, c2, c3, ..., cn} ILP-
based approaches (Khashabi et al., 2016; Khot et al., 2017) convert them into a list
of hypothesis H = {h1, h2, h3, . . . , hn} by concatenating question and candidate
answer. For each hypothesis hi these approaches typically adopt a retrieval model (e.g:
BM25, FAISS (Johnson et al., 2019)), to select a list of candidate explanatory facts
F = { f1, f2, f3, . . . , fk}, and construct a weighted graph G = (V ,E,W ) with edge
weights W : E → R where V = {{hi} ∪ F}, edge weight Wik of each edge Eik denote
how relevant a fact fk is with respect to the hypothesis hi.

Based on these definitions, ILP-based QA can be defined as follows (Restated from
Chapter 1):

Definition 4 (ILP-Based Multi-Hop QA). Find a subset Ṽ ⊆V , h ∈ Ṽ , Ṽ \{h}= Fexp

and Ẽ ⊆ E such that the induced subgraph G̃ = (Ṽ , Ẽ) is connected, weight W [G̃ =

(Ṽ , Ẽ)] := ∑e∈Ẽ W (e) is maximal and adheres to set of constraints Mc designed to
emulate multi-hop inference. The hypothesis hi with the highest subgraph weight
W [G̃ = (Ṽ , Ẽ)] is selected to be the correct answer cans.

The ILP-based inference has two main challenges in producing convincing explana-
tions. First, design edge weights W , ideally capturing a quantification of the relevance
of the fact to the hypothesis. Second, define constraints that emulate the multi-hop
inference process.

4.3.1 Limitations with Existing ILP formulations

In previous work, the construction of the graph G requires predetermined edge-weights
based on lexical overlaps (Khot et al., 2017) or semantic similarity using sentence
embeddings, on top of which combinatorial optimization strategies are performed sep-
arately. From those approaches, ExplanationLP proposed in Chapter 3 is the only
approach that modifies the graph weight function by optimizing the weight parame-
ters θ by fine-tuning them for inference via Bayesian Optimization over pre-trained
embeddings.

In contrast, we posit that learning the graph weights dynamically by fine-tuning the
underlying neural embeddings towards answer and explanation selection will lead to
more accurate and robust performance. To this end, the constraint optimization strategy
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should be differentiable and efficient. However, Integer Linear Programming based
approaches present two critical shortcomings that prevent achieving this goal:

1. The Integer Linear Programming formulation operates with discrete inputs/outputs
resulting in non-differentiability (Paulus et al., 2021). Consequently, it cannot be inte-
grated with deep neural networks and trained end-to-end. Making ILP differentiable
requires non-trivial assumptions and approximations (Paulus et al., 2021).

2. Integer Programming is known to be NP-complete, with the special case of 0-1
integer linear programming being one of Karp’s 21 NP-complete problems (Karp,
1972). Therefore, as the size of the combinatorial optimization problem increases,
finding exact solutions becomes computationally intractable. This intractability is a
strong limitation for multi-hop QA in general since these systems typically operate
on large knowledge bases and corpora.

4.3.2 Subgraph Selection via Semi-Definite Programming

Differentiable convex optimization (DCX) layers (Agrawal, Amos, et al., 2019) provide
a way to encode constraints as part of a deep neural network. However, an ILP
formulation is non-convex (Schrijver, 1998; Wolsey, 2020) and cannot be incorporated
into a differentiable convex optimization layer. The challenge is to approximate ILP
with convex optimization constraints.

In order to alleviate this problem, we turn to Semi-Definite programming (SDP) (Van-
denberghe & Boyd, 1996). SDP is non-linear but convex and has shown to efficiently
approximate combinatorial problems.

A semi-definite optimization is a convex optimization of the form:

minimize C ·X (4.11)

s.t A ·X = bi, i = 1,2, · · · , m, (4.12)

X ⪰ 0, (4.13)

Here X ∈ Sn is the optimization variable and C,A1, . . . ,Ap ∈ Sn, and b1, . . . ,bp ∈ R.
X ⪰ 0 is a matrix inequality with Sn denotes a set of n×n symmetric matrices.

SDP is often used as a convex approximation of traditional NP-hard combinatorial
graph optimization problems, such as the max-cut problem, the dense k-subgraph
problem and the quadratic {0−1} programming problem (Lovász & Schrijver, 1991).



83

Specifically, we adopt the semi-definite relaxation of the following quadratic {0, 1}
problem:

maximize yTWy (4.14)

y ∈ {0,1}n (4.15)

Here W is the edge weight matrix of the graph G and the optimal solution for this
problem ŷ indicates if a node is part of the induced subgraph G̃.

We follow Helmberg (2000) in their reformulation and relaxation of this problem.
Instead of vectors y ∈ {0,1}n, we optimize over the set of positive semidefinite matrices

satisfying the SDP constraint in the following relaxed convex optimization problem1:

maximize ⟨W ,Y ⟩ (4.16)

s.t Y −diag(Y )diag(Y )T ⪰ 0 (4.17)

where ⟨W ,Y ⟩= trace(WY ), Y = yyT , diag(Y ) = y.

The optimal solution for Y in this problem Ê ∈ [0, 1] indicates if an edge is part
of the subgraph G̃. In addition to the semi-definite constraints, we impose Multi-hop
inference constraints Mc. These constraints are introduced in Section 4.3.6 and the
Appendix.

This reformulation provides the tightest approximation for the optimization with the
convex constraints. Since this formulation is convex, we can now integrate it with dif-
ferentiable convex optimization layers. Moreover, the semi-definite program relaxation
can be solved by adopting the interior-point method (De Klerk, 2006; Vandenberghe &
Boyd, 1996) which has been proved to run in polynomial time (Karmarkar, 1984). To
the best of our knowledge, we are the first to employ SDP to solve a natural language
processing task.

4.3.3 Diff-Explainer: End-to-End Differentiable Architecture

Diff-Explainer is an end-to-end differentiable architecture that simultaneously solves
the constraint optimization problem and dynamically adjusts the graph edge weights
for better performance. We adopt differentiable convex optimization for the optimal

1See (Helmberg, 2000) for the derivation from the original optimization problem.
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subgraph selection problem. The complete architecture and setup are described in the
subsequent subsections and Figure 4.2.

We transform a multi-hop question answering dataset into a multi-hop QA dataset
by converting an example’s question (q) and the set of candidate answers C = {c1, c2,
c3, . . . , cn} into hypotheses H = {h1, h2, h3, . . . , hn} (See Figure 4.2A) by using
the approach proposed by Demszky et al. (2018). To build the initial graph, for the
hypotheses set H we adopt a retrieval model to select a list of candidate explanatory
facts F = { f1, f2, f3, . . . , fk} to construct a weighted complete bipartite graph G =

(H, F , E, W ), where the weights Wik of each edge Eik denote how relevant a fact fk is
with respect to the hypothesis hi. Departing from traditional ILP approaches (Khashabi
et al., 2016; Khashabi, Khot, Sabharwal, & Roth, 2018), the aim is to select the correct
answer cans and relevant explanations Fexp with a single graph.

In order to demonstrate the impact of Diff-Explainer, we reproduce the formalization
introduced by previous ILP solvers. Specifically, we approximate the two following
solvers:

• TupleILP (Khot et al., 2017): TupleILP constructs a semi-structured knowledge
base using tuples extracted via Open Information Extraction (OIE) and performs
inference over them. TupleILP uses Subject-Predicate-Object tuples for aligning
and constructing the explanation graph. As shown in Figure 4.3C, the tuple graph
is constructed and lexical overlaps are aligned to select the explanatory facts. The
constraints are designed based on the position of text in the tuple.

• ExplanationLP: ExplanationLP classifies facts into abstract and grounding facts.
Abstract facts are core scientific statements. Grounding facts help connect the generic
terms in the abstract facts to the terms in the hypothesis. For example, in Figure 4.2A,
F1 is a grounding fact and helps to connect the hypothesis with the abstract fact F7.
The approach aims to emulate abstract reasoning.

We have also presented Figure 4.3B for reference to show how ExplanationLP acts
compared to TupleILP.

To demonstrate the impact of integrating a convex optimization layer into a broader
end-to-end neural architecture, Diff-Explainer employs a transformer-based sentence
embedding model. Figure 4.2B describes the end-to-end architectural diagram of
Diff-Explainer. Specifically, we incorporate a differentiable convex optimization layer
with Sentence-Transformer (STrans) (Reimers et al., 2019), which has demonstrated
state-of-the-art performance on semantic sentence similarity benchmarks.
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Figure 4.3: ILP-Based Multi-hop Inference.

STrans is adopted to estimate the relevance between hypothesis and facts during
the construction of the initial graph. We use STrans as a bi-encoder architecture to
minimize the computational overload and operate on a large number of sentences. The
semantic relevance score from STrans is complemented with a lexical relevance score
computed considering the shared terms between hypotheses and facts. We calculate
semantic and lexical relevance as follows:

Semantic Relevance (s): Given a hypothesis hi and fact f j we compute sentence vectors
of h⃗i = STrans(hi) and f⃗ j = STrans( f j) and calculate the semantic relevance score
using cosine-similarity as follows:

si j = S(h⃗i , f⃗ j ) =
h⃗i · f⃗ j

∥h⃗i ∥∥ f⃗ j ∥
(4.18)

Lexical Relevance (l): The lexical relevance score of hypothesis hi and f j is given by
the percentage of overlaps between unique terms (here, the function trm extracts the
lemmatized set of unique terms from the given text):

li j = L(hi, f j) =
|trm(hi)∩ trm( f j)|

max(|trm(hi)|, |trm( f j)|)
(4.19)

Given the above scoring function, we construct edge weights matrix (W ) as follows:

Wi j = [θs
1, θ

s
2, . . . ,θs

n] · [s
D1
i j , sD2

i j , . . . ,sDn
i j ]

+ [θl
1, θ

l
2, . . . ,θl

n] · [l
D1
i j , lD2

i j , . . . , lDn
i j ] (4.20)

Here relevance scores are weighted by weight parameters (θ) with θ clamped to
[0,1]. sDk

i j (or lDk
i j ) is si j (or li j) if (i, j) satisfy condition Dk or 0 otherwise.
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4.3.4 Objective Function

In this section, we explain how to design the objective function for TupleILP and
ExplanationLP to adopt with Diff -Explainer.

Given n candidate hypotheses and k candidate explanatory facts, A represents an
adjacency matrix of dimension ((n+ k)× (n+ k)) where the first n columns and rows
denote the candidate hypotheses, while the remaining rows and columns represent
the candidate explanatory facts. The adjacency matrix denotes the graph’s lexical
connections between hypotheses and facts. Specifically, each entry in the matrix Ai j

contains the following values:

Ai j =


1, i≤ n, j > n, |trm(hi)∩ trm( f j−n)|> 0

1, j ≤ n, i > n, |trm(h j)∩ trm( fi−n)|> 0

0, otherwise

(4.21)

Given the relevance scoring functions, we construct edge weights matrix (W ) via a
weighted function for each approach as follows:

TupleILP The weight function for Diff -Explainer with TupleILP constraints is:

Wi j = (θsrSi j +θlrLi j)×Ai j ∀i, j ∈V (4.22)

ExplanationLP Give Abstract KB (FA) and Grounding KB (FG), the weight function
for Diff -Explainer with Explanation LP is as follows:

Wi j =



−θggLi j v j,vk ∈ FG

−θaaLi j v j,vk ∈ FA

θgaLi j v j ∈ FG,vk ∈ FA

θqglLi j +θqgsSi j v j ∈ FG,vk = hi

θqalLi j +θqalSi j v j ∈ FA,vk = hi

(4.23)

4.3.5 Constraints with Disciplined Parameterized Programming
(DPP)

In order to adopt differentiable convex optimization layers, the constraints should be de-
fined following the Disciplined Parameterized Programming (DPP) formalism (Agrawal,
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Amos, et al., 2019), providing a set of conventions when constructing convex optimiza-
tion problems. DPP consists of functions (or atoms) with a known curvature (affine,
convex or concave) and per-argument monotonicities. In addition to these, DPP also
consists of Parameters which are symbolic constants with an unknown numerical value
assigned during the solver run.

TupleILP We extract SPO tuples f t
i = { f S

i , f P
i , f O

i } for each fact fi using an Open
Information Extraction model (Stanovsky et al., 2018). From the hypothesis hi we
extract the set of unique terms hht

i = {thi
1 , thi

2 , thi
3 , . . . , thi

l } excluding stopwords.

In addition to the aforementioned constraints and semidefinite constraints specified
in Equation 4.17, we adopt part of the constraints from TupleILP (Khot et al., 2017).
In order to implement TupleILP constraints, we extract SPO tuples f t

i = { f S
i , f P

i , f O
i }

for each fact fi using an Open Information Extraction model (Stanovsky et al., 2018).
From the hypotheses H we also extract the set of unique terms Ht = {t1, t2, t3, . . . , tl}
excluding stopwords. The constraints are described in Table 4.1.

ExplanationLP ExplanationLP constraints are described in Table 4.1.

4.3.6 Answer and Explanation Selection

Given edge variable Y and node variable y (diag(Y ) = y) (See Section 4.3.2) where 1
means the edge/node is part of the subgraph and 0 otherwise, we design the the answer
selection constraint is defined as follows:

∑
i ∈ H

Yii = 1 (4.24)

Each entry in the edge diagonal represents a value between 0 and 1, indicating whether
the corresponding node in the initial graph should be included in the optimal subgraph.

Explanation selection is done via the following constraint that limits the number of
nodes in the subgraph to be m.

∑
i ∈ V

Yii = m+1 (4.25)

Besides these functional constraints, ILP-based methods also impose semantic and
structural constraints. For instance, ExplanationLP places explicit grounding-abstract
fact chain constraints to perform efficient abstractive reasoning and TupleILP enforces
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constraints to leverage the SPO structure to align and select facts. See the Appendix on
how these constraints are designed and imposed within Diff-Explainer.

The output from the DCX layer returns the solved edge adjacency matrix Ê with
values between 0 and 1. We interpret the diagonal values of Ê as the probability of the
specific node being part of the selected subgraph. The final step is to optimize the sum
of the L1 loss l1 between the selected answer and the correct answer cans for the answer
loss Lans:

Lans = l1(diag(Ê)[h1, h2, . . . , hn], cans) (4.26)

As well as the binary cross entropy loss lb between the selected explanatory facts
and true explanatory facts Fexp for the explanatory loss Lexp:

Lexp = lb(diag(Ê)[ f1, f2, . . . , fk], Fexp) (4.27)

We add the losses to backpropagate to learn the θ weights and fine-tune the sentence
transformers. The pseudo-code to train Diff-Explainer end-to-end is summarized in
Algorithm 3.
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Algorithm 3: Training Diff-Explainer.
Data: Mc←Multi-hop inference constraints
Data: Ansc← Answer selection constraint
Data: Expc← Explanation selection constraint
Data: fw← Graph weight function
G← fact-graph-construction(H, F);
l← L(H, F);
θ← clamp([0, 1]);
epoch← 0;
while epoch ≤ max epochs do

F⃗ ← STrans(F);
H⃗← STrans(H);
s← S(H⃗, F⃗);
W ← fw(s, l; θ);
Ê← DCX(W , {Mc, Ansc, Expc});
V̂ ← diag(Ê);
Lans← l1(V̂ [h1, h2, . . . , hn], cans);
if Fexp is available then

Lexp← lb(V̂ [ f1, f2, . . . , fk], Fexp);
loss = Lans +Lexp;

else
loss = Lans;

end
update θ, STrans using AdamW optimizer by minimizing loss;
epoch← epoch+1;

end
Result: Store best θ and STrans
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Description DPP Format Parameters

TupleILP
Sub graph must have≤w1 ac-
tive tuples

∑i ∈ F Eii ≤ w1 +1 -

Active hypothesis term must
have ≤ w2 edges

Hθ[:, :, i]⊙E ≤ w2 ∀i ∈ Ht Hθ is populated by hypothesis term ma-
trix H with dimension ((n+ k)× (n+
k)× l) and the values are given by:

Hi jk =



1, ∀ k ∈ Ht , i ∈ H, j ∈ F ,
tk ∈ trm(hi), tk ∈ trm( f j)

1, ∀ k ∈ Ht , i ∈ F , j ∈ H,
tk ∈ trm(h j), tk ∈ trm( fi)

0, otherwise
(4.28)

Active tuple must have active
subject

E⊙T S
θ
>= E⊙Aθ Aθ populated by adjacency matrix A, T S

θ

by subject tuple matrix T S with dimen-
sion ((n+ k)× (n+ k)) and the values
are given by:

T S
i j =



1, i ∈ H, j ∈ F ,
|trm(hi)∩ trm( f S

j )|> 0
1, i ∈ F , j ∈ H,
|trm(h j)∩ trm( f S

i )|> 0
0, otherwise

(4.29)

Active tuple must have ≥ w3
active fields

E⊙T S
θ
+E⊙T P

θ
+E⊙T O

θ
≥

w3(E⊙Aθ)
Aθ populated by adjacency matrix A and
T S

θ
, T P

θ
, T O

θ
populated by subject, pred-

icate and object matrices T S, T P, T O

respectively. Predicate and object tu-
ples are converted into T P, T O matrices
similar to T S

Active tuple must have an
edge to some hypothesis term

Implemented during graph
construction by only considering
tuples that have lexical overlap
with a hypothesis

-

ExplanationLP
Limits the total number of ab-
stract facts to w4

diag(E) ·FAB
θ
≤ w4 FAB

θ
is populated by Abstract fact matrix

FAB, where:

FAB
i j =

®
1, i ∈ H, j ∈ FA

0, otherwise
(4.30)

Table 4.1: Adopting TupleILP and ExplanationLP constraints in DPP format. For this
work we set the hyperparameters w1=2, w2=2, w3=1 and w4=2.
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4.4 Empirical Evaluation

Question Sets: We use the following multiple-choice question sets to evaluate the
Diff-Explainer.

1. WorldTree Corpus (Xie et al., 2020): The 4,400 question and explanations in
the WorldTree corpus are split into three different subsets: train-set, dev-set and
test-set. We use the dev-set to assess the explanation selection performance since
the explanations for test-set are not publicly available.

2. ARC-Challenge Corpus (Clark et al., 2018): ARC-Challenge is a multiple-
choice question dataset which consists of question from science exams from
grade 3 to grade 9. These questions have proven to be challenging to answer for
other LP-based question answering and neural approaches.

Experimental Setup : We use all-mpnet-base-v2 model as the Sentence Transformer
model for the sentence representation in Diff-Explainer. The motivation to choose this
model is to use a pre-trained model on natural language inference and MPNetBase (Song
et al., 2020) is smaller compared to large models like BERTLarge, enabling us to encode
a larger number of facts. Similarly, for fact retrieval representation, we use all-mpnet-

base-v2 trained with gold explanations of WorldTree Corpus to achieve a Mean Average
Precision of 40.11 in the dev-set. We cache all the facts from the background knowledge
and retrieve the top k facts using MIPS retrieval (Johnson et al., 2019). We follow a
similar setting used in Chapter 3 for the background knowledge base by combining
over 5000 abstract facts from the WorldTree table store (WTree) and over 100,000 is-a

grounding facts from ConceptNet (CNet) (Speer et al., 2017). Furthermore, we also set
m=2 in line with the previous configurations from TupleILP and ExplanationLP.

Baselines: In order to assess the complexity of the task and the potential benefits
of the convex optimization layers presented in our approach, we show the results for
different baselines. We run all models with k = {1, . . . ,10,25,50,75,100} to find the
optimal setting for each baseline and perform a fair comparison. For each question, the
baselines take as input a set of hypotheses, where each hypothesis is associated with k

facts, ranked according to the fact retrieval model.

1. IR Solver (Clark et al., 2018): This approach attempts to answer the questions
by computing the accumulated score from all k obtained from summing up the
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retrieval scores. In this case, the retrieval scores are calculated using the cosine
similarity of fact and hypothesis sentence vectors obtained from the STrans model
trained on gold explanations. The hypothesis associated with the highest score is
selected as the one containing the correct answer.

2. BERTBase and BERTLarge (Devlin et al., 2019): To use BERT for this task, we
concatenate every hypothesis with k retrieved facts, using the separator token
[SEP]. We use the HuggingFace (Wolf et al., 2019) implementation of BertForSe-

quenceClassification, taking the prediction with the highest probability for the
positive class as the correct answer.

3. PathNet (Kundu et al., 2019): PathNet is a graph-based neural approach that
constructs a single linear path composed of two facts connected via entity pairs
for reasoning. It uses the constructed paths as evidence of its reasoning process.
They have exhibited strong performance for multiple-choice science questions.

4. TupleILP and ExplanationLP: Both replications of the non-differentiable solvers
are implemented with the same constraints as Diff-Explainer via SDP approxima-
tion without fine-tuning end-to-end; instead, we fine-tune the θ parameters using
Bayesian optimization and frozen STrans representations. This baseline helps us
to understand the impact of the end-to-end fine-tuning.

4.4.1 Answer Selection

WorldTree Corpus: Table 4.2 presents the answer selection performance on the
WorldTree corpus in terms of accuracy, presenting the best results obtained for each
model after testing for different values of k. We also include the results for BERT
without explanation in order to evaluate the influence extra facts can have on the final
score. We also present the results for two different training goals, optimizing for only
the answer and optimizing jointly for answer and explanation selection.

We draw the following conclusions from the empirical results obtained on the
WorldTree corpus (The performance increase here are in expressed absolute terms):

1. Diff-Explainer with ExplanationLP and TupleILP outperforms the respective
non-differentiable solvers by 13.3% and 8.91%. This increase in performance
indicates that Diff-Explainer can incorporate different types of constraints and
significantly improve performance compared with the non-differentiable version.

2. It is evident from the performance obtained by a large model such as BERTLarge

(59.32%) that we are dealing with a non-trivial task. The best Diff-Explainer
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Model Acc

Baselines
IR Solver 50.48

BERTBase (Without Retrieval) 45.43
BERTBase 58.06
BERTLarge (Without Retrieval) 49.63
BERTLarge 59.32

TupleILP 49.81
ExplanationLP 62.57

PathNet 43.40

Diff-Explainer
TupleILP constraints
- Answer Selection only 61.13
- Answer and explanation selection 63.11
ExplanationLP constraints
- Answer selection only 69.73
- Answer and explanation selection 71.48

Table 4.2: Answer selection performance for the baselines and across different configu-
rations of our approach on WorldTree Corpus.

setting (with ExplanationLP) outperforms the best transformer-based models with
and without explanations by 12.16% and 21.85%. Additionally, we can also
observe that both with TupleILP and ExplanationLP, we obtain better scores over
the transformer-based configurations.

3. Fine-tuning with explanations yielded better performance than only answer selec-
tion with ExplanationLP and TupleILP, improving performance by 1.75% and
1.98%. The increase in performance indicates that Diff-Explainer can learn from
the distant supervision of answer selection and improve in a strong supervision
setting.

4. Overall, we can conclude that incorporating constraints using differentiable con-
vex optimization with transformers for multi-hop QA leads to better performance
than pure constraint-based or transformer-only approaches.

ARC Corpus: Table 4.3 presents a comparison of baselines and our approach with
different background knowledge bases: TupleInf, the same as used by TupleILP (Khot
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Model Background KB Acc

TupleILP
(Khot et al., 2017)

TupleInf 23.83

ExplanationLP WTree & CNet 40.21

TupleILP (Ours) TupleInf 29.12
ExplanationLP (Ours) WTree & CNet 37.40

Diff-Explainer
TupleILP Constraints TupleInf 33.95
ExplanationLP Constraints WTree & CNet 42.95

Table 4.3: Answer Selection performance on ARC corpus with Diff-Explainer fine-tuned
on answer selection.

et al., 2017), and WorldTree & ConceptNet as used by ExplanationLP. We have also
reported the original scores reported by the respective approaches.

For this dataset, we use our approach with the same settings as the model applied
to WorldTree, and fine-tune for only answer selection since ARC does not have gold
explanations. Models employing Large Language Models (LLMs) trained across
multiple question answering datasets like UnifiedQA (Khashabi et al., 2020) and
AristoBERT (Xu et al., 2021) have demonstrated strong performance in ARC with an
accuracy of 81.14 and 68.95 respectively.

To ensure a fair comparison, we only compare the best configuration of Diff-

Explainer with other approaches that have been trained only on the ARC corpus and
provide some form of explanations in Table 4.4. Here the explainability column indi-
cates if the model delivers an explanation for the predicted answer. A subset of the
approaches produces evidence for the answer but remains intrinsically black-box. These
models have been marked as Partial.

1. Diff-Explainer improves the performance of non-differentiable solvers regardless
of the background knowledge and constraints. With the same background knowl-
edge, our model improves the original TupleILP and ExplanationLP by 10.12%
and 2.74%, respectively.

2. Our approach also achieves the highest performance for partially and fully ex-
plainable approaches trained only on ARC corpus.

3. As illustrated in Table 4.4, we outperform the next best fully explainable base-
line (ExplanationLP) by 2.74%. We also outperform the state-of-the-art model
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Model Explainable Accuracy

BERTLarge No 35.11

IR Solver (Clark et al.,
2016)

Yes 20.26

TupleILP (Khot et al.,
2017)

Yes 23.83

TableILP (Khashabi et al.,
2016)

Yes 26.97

ExplanationLP Yes 40.21
DGEM (Clark et al., 2016) Partial 27.11
KG2 (Y. Zhang et al., 2018) Partial 31.70
ET-RR (Ni et al., 2019) Partial 36.61
Unsupervised AHE (Yadav
et al., 2019a)

Partial 33.87

Supervised AHE (Yadav
et al., 2019a)

Partial 34.47

AutoRocc (Yadav et al.,
2019b)

Partial 41.24

Diff-Explainer
(ExplanationLP)

Yes 42.95

Table 4.4: ARC challenge scores compared with other Fully or Partially explainable approaches
trained only on the ARC dataset.

AutoRocc (Yadav et al., 2019b) (uses BERTLarge) that is only trained on ARC
corpus by 1.71% with 230 million fewer parameters.

4. Overall, we achieve consistent performance improvement over different knowl-
edge bases (TupleInf, Wordtree & ConceptNet) and question sets (ARC, WorldTree),
indicating the robustness of the approach.

4.4.2 Explanation Selection

Table 4.5 shows the Precision@K scores for explanation retrieval for PathNet, Explana-
tionLP/TupleILP and Diff-Explainer with ExplanationLP/TupleILP trained on answer
and explanation selection. We choose Precision@K as the evaluation metric as the
design of the approaches is not to construct full explanations but to take the top k=2
explanations and select the answer.

As evident from the table, our approach significantly outperforms PathNet. We also
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Model Precision@1 Precision@2

TupleILP 40.44 31.21
ExplanationLP 51.99 40.41

PathNet 19.79 13.73

Diff-Explainer
TupleILP (Best) 40.64 32.23
ExplanationLP
(Best)

56.77 41.91

Table 4.5: F1 score for explanation selection in WorldTree dev-set .

improved the explanation selection performance over the non-differentiable solvers
indicating the end-to-end fine-tuning also helps improve the selection of explanatory
facts.

4.4.3 Answer Selection with Increasing Distractors

As noted by previous works (Yadav et al., 2019b, 2020), the answer selection perfor-
mance can decrease when increasing the number of used facts k for Transformer. We
evaluate how our approach stacks compared with transformer-based approaches in this
aspect, presented in Figure 4.4. As we can see, the IR Solver decreases in performance
as we add more facts, while the scores for transformer-based models start deteriorating
for k > 5. Such results might seem counter-intuitive since it would be natural to expect
a model’s performance to increase as we add supporting facts. However, in practice,
that does not apply as by adding more facts, there is an addition of distractors that such
models may not filter out.

We can prominently see this for BERTLarge with a sudden drop in performance
for k = 10, going from 56.61 to 30.26. Such a drop is likely caused by substantial
overfitting; with the added noise, the model partially lost the ability for generalization.
A softer version of this phenomenon is also observed for BERTBase.

In contrast, our model’s performance increases as we add more facts, reaching a
stable point around k = 50. Such performance stems from our overlap and relevance
scores and structural and semantic constraints. The obtained results highlight our
model’s robustness to distracting knowledge, allowing its use in data-rich scenarios,
where one needs to use facts from extensive knowledge bases. PathNet is also exhibiting
robustness across increasing distractors, but we consistently outperform it across all k
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Figure 4.4: Comparison of accuracy for different number of retrieved facts.

configurations.

On the other hand, for smaller values of k our model is outperformed by transformer-
based approaches, hinting that our model is more suitable for scenarios involving large
knowledge bases such as the one presented in this work.

4.4.4 Qualitative Analysis

We selected some qualitative examples that showcase how end-to-end fine-tuning
can improve the quality and inference and presented them in Table 4.6. We use the
ExplanationLP for non-differentiable solver and Diff-Explainer as they yield higher
performance in answer and explanation selection.

For Question (1), Diff-Explainer retrieves both explanations correctly and be able
to answer correctly. Both PathNet and ExplanationLP has correctly retrieved at least
one explanation but performed incorrect inference. We hypothesize that the other two
approaches were distracted by the lexical overlaps in question/answer and facts, while
our approach is robust towards distractor terms. In Question (2), our model was able
only to retrieve one explanation correctly and was distracted by the lexical overlap to
retrieve an irrelevant one. However, it still was able to answer correctly. In Question
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(3), all the approaches answered the question wrong, including our approach. Even
though our approach was able to retrieve at least one correct explanation, it was not
able to combine the information to answer and was distracted by lexical noise. These
shortcomings indicate that more work can be done, and different constraints can be
experimented with for combining facts.
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Question (1): Fanning can make a wood fire burn hotter because the fanning: Correct Answer: adds
more oxygen needed for burning.
PathNet
Answer: provides the energy needed to keep the fire going. Explanations: (i) fanning a fire increases the
oxygen near the fire, (ii) placing a heavy blanket over a fire can be used to keep oxygen from reaching a
fire
ExplanationLP
Answer: increases the amount of wood there is to burn. Explanations: (i) more burning causes fire to be
hotter, (ii) wood burns
Diff-Explainer ExplanationLP
Answer: adds more oxygen needed for burning. Explanations: (i) more burning causes fire to be hotter,
(ii) fanning a fire increases the oxygen near the fire

Question (2): Which type of graph would best display the changes in temperature over a 24 hour period?
Correct Answer: line graph.
PathNet
Answer: circle/pie graph. Explanations: (i) a line graph is used for showing change ; data over time
ExplanationLP
Answer: circle/pie graph. Explanations: (i) 1 day is equal to 24 hours, (ii) a circle graph; pie graph can
be used to display percents; ratios
Diff-Explainer ExplanationLP
Answer: line graph. Explanations: (i) a line graph is used for showing change; data over time, (ii) 1 day
is equal to 24 hours

Question (3): Why has only one-half of the Moon ever been observed from Earth? Correct Answer:
The Moon rotates at the same rate that it revolves around Earth..
PathNet
Answer: The Moon has phases that coincide with its rate of rotation. Explanations: (i) the moon
revolving around ; orbiting the Earth causes the phases of the moon, (ii) a new moon occurs 14 days after
a full moon
ExplanationLP
Answer: The Moon does not rotate on its axis. Explanations: (i) the moon rotates on its axis, (ii) the
dark half of the moon is not visible
Diff-Explainer ExplanationLP
Answer: The Moon is not visible during the day. Explanations: (i) the dark half of the moon is not
visible, (ii) a complete revolution; orbit of the moon around the Earth takes 1; one month

Table 4.6: Example of predicted answers and explanations (Only CENTRAL explana-
tions) obtained from our model with different levels of fine-tuning.
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4.5 Conclusion

Research Objective 3: Build a hybrid framework for multi-hop inference that combines

constraint-based optimization layers with pre-trained neural representations, enabling

end-to-end differentiability for explanation-based inference with optimization-based

solvers

We presented a novel framework for encoding explicit and controllable assumptions
as an end-to-end learning framework for question answering. We empirically demon-
strated how incorporating these constraints in broader Transformer-based architectures
can improve answer and explanation selection. The presented framework adopts con-
straints from TupleILP and ExplanationLP, but Diff-Explainer can be extended to encode
different constraints with varying degrees of complexity.

Diff-Explainer is the first work investigating the end-to-end integration of constraint-
based solvers and latent neural representations for explanatory inference to the best of
our knowledge.

• RQ3.1: Do incorporating constraint solvers with transformers improve perfor-

mance when compared to the non-differentiable solver?

In Section 4.4.1 we demonstrated that Diff -Explainer with ExplanationLP and
TupleILP outperforms the respective non-differentiable solvers by 13.3% and
8.91% for answer selection for WorldTree corpus and 10.12% and 2.74% for ARC
corpus. Additionally, in Section 4.4.2, we also showed improved performance for
explanation selection performance over the non-differentiable solvers. In sum-
mary, we can conclude that incorporating constraint solvers with transformers

via Differentiable Convex Optimization Solvers approximated by Semi-definite

relaxations improve performance compared to the non-differentiable solver.

• RQ3.2: Does incorporating constraint solvers with transformers demonstrate bet-

ter robustness in inference to increasing distracting noise compared to transformer-

based models?

As shown in Section 4.4.3, there is a sudden drop for BERTLarge and BERTBase

with k = 10. In contrast, our model’s performance increases as we add distracting
information. These results indicate our model’s robustness to distracting knowl-
edge. In addition, Diff -Explainer has demonstrated improved performance in
answer selection (See Table 4.2). The best Diff-Explainer setting (with Explana-
tionLP constraints and fine-tuned on both answer and explanations) outperforms
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the best transformer-based models with and without explanations by 12.16% and
21.85%. In summary, we can conclude that incorporating constraint solvers with

transformers via Differentiable Convex Optimization Solvers approximated by

Semi-definite relaxations leads to robust reasoning when compared to transformer-

based only models.

4.6 Scope and Limitations

We noticed that fine-tuning the approach with explanations were not yielding the same
level of performance increase in explanation selection as it did for answer selection. We
hypothesize that the semi-definite approximation of the ILP formulation is leading to
sub-optimal predictions for node selection.

Similar to ExplanationLP, Diff-Explainer is limited to multiple-choice question
answering. If we were to adopt this approach to span-selection, one possible way is to
convert span-selection questions into multiple-choice by extracting potential answer
spans from the text (Du & Cardie, 2018).

Moreover, the best performing configuration of Diff-Explainer results from integrat-
ing ExplanationLP constraints. As noted in Section 3.6, ExplanationLP relies on the
existence of a corpus of core scientific statements (abstract facts). In our case, we were
aided by the existence of WorldTree corpus (Jansen et al., 2018).

4.7 Reproducibility

The rest of the section details the hyper parameters, code bases and datasets used in our
approach to reproduce our experiments.

4.7.1 Diff -Explainer

External code-bases

• Differentiable convex optimization code-base:
https://locuslab.github.io/2019-10-28-cvxpylayers/

• Sentence Transformers code-base:
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://locuslab.github.io/2019-10-28-cvxpylayers/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Hyperparameters

We experiment with a range of hyperparameters and pick the hyperparameters with the
best performance. The hyperparameter value range tested:

• learning rate: {1e−4, 5e−5, 1e−6}
• warmup steps : {0,5, 10, 20}
• weight decay: {0.0, 1e−3, 1e−6}

Hyperparameter values chosen are as follows:

• gradient accumulation steps: 1
• learning rate: 1e-5
• weight decay: 0.0
• adam epsilon: 1e-8
• warmup steps: 0
• max grad norm: 1.0
• seed: 42

We fine-tuned using 4 Tesla V100 GPUs for 10 epochs in total with batch size 32.

Code

The code for reproducing the Diff -Explainer and the experiments described in this
chapter are attached with the code appendix and will be available at the following
GitHub repository: https://anonymous-url.com.

4.7.2 Approx-TupleILP

We employed Bayesian optimization with the Gaussian process to find the optimal
values for w1, w2, w3. We used the https://github.com/fmfn/BayesianOptimization:
Bayesian-Optimization python library to implement the code. These parameters are as
follows:

• Gaussian Kernels:

– https://scikit-learn.org/stable/modules/generated/sklearn.gaussian process.kernels.
RationalQuadratic.html: RationalQuadratic Kernel with default parameters

https://anonymous-url.com
https://github.com/fmfn/BayesianOptimization
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
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– https://scikit-learn.org/stable/modules/generated/sklearn.gaussian process.kernels.
WhiteKernel.html: WhiteKernel with noise level of 1e-5, noise level bounds
(1e-10, 1e1) and rest of the default parameters

• Number of iterations: 30
• alpha (α): 1e-8
• random state: 42

4.7.3 Empirical Evaluation

The BERT model was taken from the Hugginface Transformers(https://github.com/
huggingface/transformers) library and fine-tuned using 4 Tesla V100 GPUs for 10
epochs in total with batch size 16 for BERTLarge and 32 for BERTBase.

The hyperparameters adopted for BERT are as follows:

• gradient accumulation steps: 1
• learning rate: 1e-5
• weight decay: 0.0
• adam epsilon: 1e-8
• warmup steps: 0
• max grad norm: 1.0
• seed: 42

4.7.4 Data

WorldTree Dataset: Data can be obtained from: http://cognitiveai.org/explanationbank/
ARC-Challenge Dataset: https://allenai.org/data/arc. Only used the Challenge split.

https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.html
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
http://cognitiveai.org/explanationbank/
https://allenai.org/data/arc


Chapter 5

Diff-Comb Explainer: Differentiable
Blackbox Combinatorial Solvers for
Explanation-based Multi-hop Inference

This chapter is based on the paper “Going Beyond Approximation: Encoding Con-
straints for Explainable Multi-hop Inference via Differentiable Combinatorial Solvers”.
The current version of the paper can be found in https://arxiv.org/abs/2208.03339.

5.1 Introduction

In an attempt to combine the best of both worlds, in Chapter 4 proposed a novel neuro-
symbolic framework (Diff-Explainer) that integrates explicit constraints with neural
representations via Differentiable Convex Optimization Layers (Agrawal, Amos, et al.,
2019). Diff-Explainer combines constraint optimization solvers with Transformers-
based representations, enabling end-to-end training for explanation-based multi-hop
inference. The non-differenitability of ILP solvers is alleviated by approximating the
constraints using Semi-Definite programming (Helmberg, 2000). This approximation
usually requires non-trivial transformations of ILP formulations into convex optimiza-
tion problems.

Since constraint-based multi-hop inference is typically framed as an optimal sub-
graph selection problem achieved via a binary optimization (0,1), The semi-definite re-
laxation employed in Diff-Explainer necessitates a continuous relaxation of the discrete
variables (from {0,1} to [0,1]). While this process can provide tight approximations for
ILP problems, this relaxation can still lead to sub-optimal results in practice (Thapper

104

https://arxiv.org/abs/2208.03339
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& Živný, 2017; Yoshida, 2011) leading to erroneous answer and explanation prediction.

To improve on these limitations, we propose Diff-Comb Explainer, a novel neuro-
symbolic architecture based on Differentiable BlackBox Combinatorial solvers (Pogančić
et al., 2019). The proposed algorithm transforms a combinatorial optimization solver
into a composable building block of a neural network. Differentiable BlackBox Com-
binatorial solvers (DBCS) achieves this by leveraging the minimization structure of
the combinatorial optimization problem, computing a gradient of continuous interpo-
lation to address the non-differenitability of ILP solvers. In contrast to Diff-Explainer,
DBCS makes it possible to compute exact solutions for the original ILP problem under
consideration, approximating the gradient.

Our experiments on multi-hop question answering with constraints adopted from
ExplanationLP yielded an improvement of 11% over non-differentiable solvers and
2.08% over Diff-Explainer. Our approach also produces accurate inference chains with
Diff-Comb Explainer outperforming the non-differentiable solver and Diff-Explainer by
8.41% and 3.63% for explanation selection, respectively.

In summary, the contributions of the chapter are as follows:

1. A novel constrained-based natural language solver combines the differentiable
black box combinatorial solver with transformer-based architectures.

2. Empirically demonstrates that differentiable combinatorial solvers combined with
transformer architectures provide improved performance for explanation and an-
swer selection compared to the differentiable and non-differentiable counterparts.

3. Demonstrate that Diff-Comb Explainer better reflects the underlying inference pro-
cess for the answer prediction compared to differentiable and non-differentiable
counterparts.

5.2 Differentiable Blackbox Combinatorial Optimiza-
tion Solver

Given the following bounded integer problem:

min
x∈X

c · x subject to Ax≤ b, (5.1)

where X ∈ Zn, c ∈ Rn, x are the variables, A = [a1, . . . ,am] ∈ Rm×n is the matrix of
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Figure 5.1: End-to-end architectural diagram of Diff-Comb Explainer. The integration
of Differentiable Blackbox Combinatorial solvers will result in better explanation and
answer prediction.

constraint coefficients and b ∈Rm is the bias term. The output of the solver g(c) returns
the argminx∈X of the integer problem.

Differentiable Combinatorial Optimization Solver (Pogančić et al., 2019) (DBCS)
assumes that A, b are constant and the task is to find the dL/dc given global loss function
L with respect to solver output x at a given point x̂ = g(ĉ). However, a small change in
c is typically not going to change the optimal ILP solution resulting in the true gradient
being zero.

In order to solve this problem, the approach simplifies by considering the linearisa-
tion f of L at the point x̂.

f (x) = L(x̂)+
dL
dx

(x̂) · (x− x̂) (5.2)

to derive:
d f (g(c))

dc
=

dL
dc

(5.3)

By introducing the linearisation, the focus is now on differentiating the piecewise
constant function f (g(c)). The approach constructs a continuous interpolation of
f (g(c)) by function fλ(w). Here the hyper-parameter λ > 0 controls the trade-off
between informativeness of the gradient and faithfulness to the original function.
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5.3 Diff-Comb Explainer: Differentiable Blackbox Com-
binatorial Solver for Explanation-based Multi-Hop
Inference

As illustrated in Figure 5.1, Diff-Comb Explainer has 3 major parts: Graph Construction,
Subgraph Selection and Answer/Explanation Selection. In Graph Construction, for each
candidate answer ci we construct graph Gi = (V i, E i, W i) where the V i = {hi}∪{F}
and weights W i

ik of each edge E i
ik denote how relevant a fact fk is with respect to the

hypothesis hi. These edge weights (W i
ik) are calculated using a weighted (θ) sum of

scores calculated using transformer-based (STrans) embeddings and lexical overlap.

In the Subgraph Selection step, for each Gi Differentiable Blackbox Combinatorial
Solver (DBCS) with constraints are applied to extract subgraph G̃. In this approach, we
adopt the constraints proposed for ExplanationLP.

Finally, in Answer/Explanation Selection the model is to predict the correct answer
cans and relevant explanations Fexp. During training time, the loss is calculated based
on gold answer/explanations to fine-tune the transformers (STrans) and weights (θ).

The rest of the section explains each of the components in detail.

5.3.1 Graph Construction

In order to facilitate grounding abstract chains, the retrieved facts F are classified into
grounding facts FG = { f g

1 , f g
2 , f g

3 , ..., f g
l } and abstract facts FA = { f a

1 , f a
2 , f a

3 , ..., f a
m} such

that F = FA∪FG and l +m = k.

Similarly to Diff-Explainer, we use two relevance scores: semantic and lexical scores,
to calculate the edge weights. We use a Sentence-Transformer (STrans) (Reimers et
al., 2019) bi-encoder architecture to calculate the semantic relevance. The semantic
relevance score from STrans is complemented with the lexical relevance score. The
semantic and lexical relevance scores are calculated as follows:

Semantic Relevance (s): Given a hypothesis hi and fact f j we compute sentence vectors
of h⃗i = STrans(hi) and f⃗ j = STrans( f j) and calculate the semantic relevance score
using cosine-similarity as follows:

si j = S(h⃗i , f⃗ j ) =
h⃗i · f⃗ j

∥h⃗i ∥∥ f⃗ j ∥
(5.4)

Lexical Relevance (l): The lexical relevance score of hypothesis hi and f j is given by
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the percentage of overlaps between unique terms (here, the function trm extracts the
lemmatized set of unique terms from the given text):

li j = L(hi, f j) =
|trm(hi)∩ trm( f j)|

max(|trm(hi)|, |trm( f j)|)
(5.5)

Given the above scoring function, we construct the edge weights matrix (W ) as
follows:

W i
jk =



−θggl jk ( j,k) ∈ FG

−θaal jk ( j,k) ∈ FA

θgal jk j ∈ FG,k ∈ FA

θqgll jk +θqgss jk j ∈ FG,k = hi

θqall jk +θqals jk j ∈ FA,k = hi

(5.6)

Here relevance scores are weighted by θ parameters which are clamped to [0,1].

5.3.2 Subgraph Selection via Differentiable Blackbox Combinato-
rial Solvers

Given the above premises, the objective function is defined as:

min −1(W i ·Y i) (5.7)

We adopt the edge variable Y i ∈ {0,1}(n+1)×(n+1) where Y i
j,k ( j ̸= k) takes the value

of 1 iff edge E i
jk belongs to the subgraph and Y i

j j takes the value of 1 iff V i
j belongs to

the subgraph.

Given the above variable, the constraints are defined as follows:

Answer selection constraint The candidate hypothesis should be part of the induced
subgraph:

∑
j ∈ {hi}

Y i
j j = 1 (5.8)

Edge and Node selection constraint If node V i
j and V i

k are selected then edges E i
jk

and E i
k j will be selected. If node V i

j is selected, then edge E j j will also be selected:
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Y i
jk ≤ Y i

j j ∀ ( j,k) ∈ E (5.9)

Y i
jk ≤ Ykk ∀ ( j,k) ∈ E (5.10)

Y i
jk ≥ Yj j +Ykk−1 ∀ ( j,k) ∈ E (5.11)

Abstract fact selection constraint Limit the number of abstract facts selected to M:

∑
i

Y i
j j ≤M ∀ j ∈ FA (5.12)

5.3.3 Answer and Explanation Selection

The solved adjacency variable Ŷ i represents the selected edges for each candidate
answer choice ci. Not all datasets provide gold explanations. Moreover, even when the
gold explanations are available, they are only available for the correct answer with no
explanations for the wrong answer.

In order to tackle these shortcomings and ensure end-to-end differentiability, we use
the softmax (σ) of the objective score (W i · Ŷ i) as the probability score for each choice.

We multiply each objective score W i · Ŷ i value by the temperature hyperparameter
(T ) to obtain soft probability distributions γi (where γi = (W i · Ŷ i) ·T ). The aim is for
the correct answer cans to have the highest probability.

In order to achieve this aim, we use the cross entropy loss lc as follows to calculate
the answer selection loss Lans as follows:

Lans = lc(σ(γ1, γ
2, · · · γ

n), cans) (5.13)

If gold explanations are available, we complement Lans with explanation loss Lexp.
We employ binary cross entropy loss lb between the selected explanatory facts and gold
explanatory facts Fexp for the explanatory loss as follows:

Lexp = lb(Ŷ ans[ f1, f2, . . . , fk], Fexp) (5.14)

We calculate the total loss (L) as weighted by hyperparameters λans, λexp as follows:
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L = λansLans +λexpLexp (5.15)

The pseudo-code to train Diff-Comb Explainer end-to-end is summarized in Algo-
rithm 4.

Algorithm 4: Training Diff-Comb Explainer.
Data: A, b←Multi-hop Inference Constraints
Data: fw← Graph weight Function
Data: λ← Hyperparameter for DBCS interpolation
epoch← 0;
while epoch ≤ max epochs do

foreach hi ∈ H do
Gi← fact-graph-construction(hi, F);
li← L(hi, F);
θ← clamp([0, 1]);
F⃗ ← STrans(F);
h⃗i← STrans(hi);
si← S(h⃗i, F⃗);
W i← fw(si, li; θ);
Ŷ i← DBCS(−W i, A, b;λ);
γi← (W · ŷ) ·T ;

end
Lans = lc(σ(γ1, γ2, · · · γn), cans);
if Fexp is available then

Lexp = lb(Ŷ ans[ f1, f2, . . . , fk], Fexp);
L = λansLans +λexpLexp;

else
L = Lans;

end
update θ, STrans using AdamW optimizer by minimizing loss;
epoch← epoch+1;

end
Result: Store best θ and STrans
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5.4 Empirical Evaluation

5.4.1 Answer and Explanation Selection

We use the WorldTree corpus (Xie et al., 2020) for training the evaluation of explanation
and answer selection. The 4,400 question and explanations in the WorldTree corpus are
split into three different subsets: train-set, dev-set and test-set. We use the dev-set to
assess the explanation selection performance since the explanations for test-set are not
publicly available.

Model
Explanation Selection (dev) Answer

Selection
(test)

Precision Explanatory
Consistency Faithfulness

@2 @1 @3 @2 @1

Baselines
BERTBase - - - - - - 45.43
BERTLarge - - - - - - 49.63

Fact Retrieval (FR)
Only

30.19 38.49 21.42 15.69 11.64 - -

BERTBase + FR - - - - - 52.65 58.06
BERTLarge + FR - - - - - 51.23 59.32

ExplanationLP 40.41 51.99 29.04 14.14 11.79 71.11 62.57
Diff-Explainer 41.91 56.77 39.04 20.64 17.01 72.22 71.48

Diff-Comb Explainer
- Answer selection only 45.75 61.01 49.04 29.99 18.88 73.37 72.04
- Answer and explana-
tion selection

47.57 63.23 43.33 33.36 20.71 74.47 73.46

Table 5.1: Comparison of explanation and answer selection of Diff-Comb Explainer
against other baselines. Explanation Selection was carried out on the dev set as the test
explanation was not public available.

Baselines: We use the following baselines to compare against our approach for the
WorldTree corpus:

1. BERTBase and BERTLarge (Devlin et al., 2019): To use BERT for this task, we
concatenate every hypothesis with k retrieved facts, using the separator token [SEP].
We use the HuggingFace (Wolf et al., 2019) implementation of BertForSequence-

Classification, taking the prediction with the highest probability for the positive class
as the correct answer.
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2. ExplanationLP: Non-differentiable version of ExplanationLP. Using the constraints
stated in Section 5.3, we fine-tune the θ parameters using Bayesian optimization
and frozen STrans representations. This baseline aims to evaluate the impact of
end-to-end fine-tuning over the non-differentiable solver.

3. Diff-Explainer: Diff-Explainer has already exhibited better performance over other
explanation-based multi-hop inference approaches, including ILP-based approaches
including TableILP (Khashabi et al., 2016), TupleILP (Khot et al., 2017) and graph-
based neural approach PathNet (Kundu et al., 2019). Similar to our approach, we
use ExplanationLP constraints with Diff-Explainer. We use similar hyperparameters
and knowledge base used in Chapter 4.

Experimental Setup: We follow the similar experimental setup used in Diff-Explainer
as follows:

• Sentence Transformer Model: ALL-MPNET-BASE-V2 (Song et al., 2020).
• Fact retrieval representation: ALL-MPNET-BASE-V2 trained with gold explanations

of WorldTree Corpus to achieve a Mean Average Precision of 40.11 in the dev-set.
• Fact retrieval: FAISS retrieval (Johnson et al., 2019) using pre-cached representations.
• Background knowledge: 5000 abstract facts from the WorldTree table store (WTree)

and over 100,000 is-a grounding facts from ConceptNet (CNet) (Speer et al., 2017).
• The experiments were carried out for k = {1,2,3,5,10,20,30,40,50} and the best

configuration for each model is selected.
• The hyperparameters λ,λans,λexp,T were fine-tuned for 50 epochs using the Adpative

Experimentation Platform.
• M=2 for ExplanationLP, Diff-Explainer and Diff-Comb Explainer.

Metrics The answer selection is evaluated using accuracy. For evaluation of explana-
tion selection, we use Precision@K. In addition to Precision@K, we introduce two new
metrics to evaluate the truthfulness of the answer selection to the underlying inference.
The metrics are as follows:

Explanatory Consistency@K: Question/answer pair with similar explanations indi-
cates similar underlying inference (Atanasova et al., 2022). The expectation is that
similar underlying inference would produce similar explanations (Valentino et al.,
2021). Given a test question Qt and retrieved explanations Et we find set of Questions
Qs

t = {Q1
t , Q2

t , . . .} with at least K overlap gold explanations along with the retrieved
explanations Es

t = {e1
t , e2

t , . . .}. Given this premise, Explanatory Consistency@K is

https://ax.dev/
https://ax.dev/
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defined as follows:
∑ei

t∈Es
t
[ei

t ∈ Et ]

∑ei
t∈Es

t
|ei

t |
(5.16)

Explanatory Consistency measures out of questions/answer pairs with at least K similar
gold explanations and how many of them share a common retrieved explanation.

Faithfulness: The aim is to measure how much percentage of the correct prediction is
derived from correct inference and wrong prediction is derived from wrong inference
over the entire set. Let’s say that the set of questions correctly answered as AQc ,
wrongly answered questions AQw , set of questions with at least one correctly retrieved
explanation as AQ1 and set of questions where no correctly retrieved explanations AQ0 .
Given this premise, Faithfulness is defined as follows:

|AQw ∩AQ0 |+ |AQc ∩AQ1 |
|AQc ∪AQw|

(5.17)

A higher faithfulness implies that the underlying inference process is reflected in the
final answer prediction.

Table 5.1 illustrates the explanation and answer selection performance of Diff-Comb
Explainer and the baselines. We report scores for Diff-Comb Explainer trained for only
the answer and optimized jointly for answer and explanation selection.

Since BERT does not provide explanations, we use facts retrieved from the fact
retrieval for the best k configuration (k = 3) as explanations. We also report the scores
for BERT without explanations.

We draw the following conclusions from the results obtained in Table 5.1 (The
performance increase here are expressed in absolute terms):

1. Diff-Comb Explainer improves answer selection performance over the non-
differentiable solver by 9.47% with optimizing only on answer selection and
10.89% with optimizing on answer and explanation selection. This observation
underlines the impact of the end-to-end fine-tuning framework. We can also ob-
serve that strong supervision with optimizing explanation selection yields better
performance than weak supervision with answer selection.

2. Diff-Comb Explainer outperforms the best transformer-based model by 14.14%
for answer selection. This increase in performance demonstrates that integrating
constraints with transformer-based architectures leads to better performance.

3. Diff-Comb Explainer outperform the best Diff-Explainer configuration (answer
and explanation selection) by 0.56% even in the weak supervision setting (answer
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only optimization). Diff-Comb Explainer also outperform Diff-Explainer by
1.98% in the best setting.

4. Diff-Comb Explainer is better for selecting relevant explanations over the other
constraint-based solvers. Diff-Comb Explainer outperforms the non-differentiable
solver at Precision@K by 8.41% (k =1) and 6.05% (k =2). Diff-Comb Explainer
also outperforms Diff-Explainer by 3.63% (k =1) and 4.55% (k =2). The improve-
ment of Precision@K over the Fact Retrieval only (demonstrated with BERT
+ FR) by 16.98% (k =1) and 24.74% (k =2) underlines the robustness of our
approach to noise propagated by the upstream fact retrieval.

5. Diff-Comb Explainer also exhibits higher Explanatory Consistency over the other
solvers. This performance shows that the optimization model is learning and
applying consistent inference across different instances.

6. Answer prediction by black-box models like BERT do not reflect the explanation
provided. This fact is indicated by the low Faithfulness score obtained by both
BERTBase/BERTLarge. In contrast, the high constraint-based solver’s Faithfulness
scores emphasize how the underlying inference reflects on the final prediction.
In particular, Diff-Explainer and Diff-Comb Explainer approach performs better
than the non-differentiable model.

In summary, even though Diff-Explainer and Diff-Comb Explainer approaches use
the same set of constraints, Diff-Comb Explainer model yields better performance, indi-
cating that ILP solvers generate those accurate predictions are better than approximated
sub-optimal results.

5.4.2 Knowledge aggregation with increasing distractors

One of the key characteristics identified by Diff-Explainer is the robustness of Diff-

Explainer to distracting noise. In order to evaluate if Diff-Comb Explainer also exhibits
the same characteristics, we ran Diff-Comb Explainer for the increasing number of
retrieved facts k and plotted the answer selection accuracy for WorldTree in Figure 5.2.

As illustrated in the Figure, similar to Diff-Explainer, our approach performance re-
mains stable with increasing distractors. We also continue to outperform Diff-Explainer
across all sets of k.

BERT performance drops drastically with increasing distractors. This phenomenon
is in line with existing work (Yadav et al., 2019b). We hypothesize that with increasing
distractors, BERT overfits quickly with spurious inference correlation. On the other
hand, our approach circumvents this problem with the inductive bias provided by the



5.4. EMPIRICAL EVALUATION 115

Figure 5.2: Comparison of accuracy for different number of retrieved facts.

constraint optimization layer.

5.4.3 Comparing Answer Selection with ARC Baselines

Table 5.2 presents a comparison of publicly reported baselines on the ARC Challenge-
Corpus (Clark et al., 2018) and our approach. These questions have proven to be
challenging to answer for other LP-based question answering and neural approaches.

While models such as UnifiedQA (Khashabi et al., 2020) and AristoBERT (Xu et al.,
2021) have demonstrated performance of 81.14 and 68.95, they have been trained on
other question-answering datasets, including RACE (Lai et al., 2017). Moreover, despite
its performance, UnifiedQA does not provide explanations supporting its inference.

In Table 5.2, to provide a rigorous comparison, we only list models that have been
trained only on the ARC corpus and provide explanations supporting its inference to
ensure a fair comparison. Here the explainability column indicates if the model delivers
an explanation for the predicted answer. A subset of the models produces evidence for
the answer but remains intrinsically black-box. These models have been marked as
Partial.

As illustrated in the Table 5.2, Diff-Comb Explainer outperforms the best non-
differentiable constraint-solver model (ExplanationLP) by 2.8%. We also outperform a
transformer-only model AutoRocc by 1.97%. While Diff-Comb Explainer improvement
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Model Explainable Accuracy

BERTLarge No 35.11

IR Solver (Clark et al.,
2016)

Yes 20.26

TupleILP (Khot et al.,
2017)

Yes 23.83

TableILP (Khashabi et al.,
2016)

Yes 26.97

ExplanationLP Yes 40.21
DGEM (Clark et al., 2016) Partial 27.11
KG2 (Y. Zhang et al., 2018) Partial 31.70
ET-RR (Ni et al., 2019) Partial 36.61
Unsupervised AHE (Yadav
et al., 2019a)

Partial 33.87

Supervised AHE (Yadav
et al., 2019a)

Partial 34.47

AutoRocc (Yadav et al.,
2019b)

Partial 41.24

Diff-Explainer
(ExplanationLP)

Yes 42.95

Diff-Comb Explainer
(ExplanationLP)

Yes 43.21

Table 5.2: ARC challenge scores compared with other Fully or Partially explainable approaches
trained only on the ARC dataset.

over Diff-Explainer is small, we still demonstrate performance improvements for answer
selection. On top of performances obtained for explanation and answer selection with
WorldTree corpus, we have also established better performances than leaderboard
approaches.

5.4.4 Qualitative Analysis

Table 5.3 illustrates some of the answers and explanations extracted for ExplanationLP,
Diff-Explainer and Diff-Comb Explainer. Both explanations and answer predictions
in Question (1) are entirely correct for Diff-Comb Explainer. In this Example, both
ExplanationLP and Diff-Explainer have failed to retrieve any correct explanations or
predict the correct answer. Both the approaches are distracted by the strong lexical
overlaps with the wrong answer.
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Question (2) at least one explanation is correct and a correct answer prediction for
Diff-Comb Explainer. In the Example provided, Diff-Explainer provides the correct
answer prediction with both the retrieved facts not being explanatory. Diff-Explainer
arrives at the correct answer prediction with no explanation addressing the correct
answer.

In Question (3), both Diff-Comb Explainer and Diff-Explainer provide the correct
answer but with both facts not being explanations. The aforementioned qualitative
(Question 1 and 2) and quantitative measures (Explanatory Consistency@K, Faithful-
ness) indicate how the underlying explanatory inference results in the correct prediction;
there are cases where false inference still leads to the correct answer with Diff-Comb
Explainer as well. In this case, the inference is distracted by the strong lexical overlaps
irrelevant to the question.

However, from the qualitative analysis, we can conclude that the explanation-based
inference that happens with Diff-Comb Explainer is more robust and coherent when
compared to the Diff-Explainer and non-differentiable models.
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Question (1): Which measurement is best expressed in light-years?: Correct Answer: the
distance between stars in the Milky Way.
ExplanationLP
Answer: the time it takes for planets to complete their orbits. Explanations: (i) a complete
revolution; orbit of a planet around its star takes 1; one planetary year, (ii) a light-year is
used for describing long distances
Diff-Explainer
Answer: the time it takes for planets to complete their orbits. Explanations: (i) a light-year
is used for describing long distances, (ii) light year is a measure of the distance light travels
in one year
Diff-Comb Explainer
Answer: the distance between stars in the Milky Way. Explanations: (i) light years are a
astronomy unit used for measuring length, (ii) stars are located light years apart from each
other

Question (2): Which type of precipitation consists of frozen rain drops?: Correct Answer:
sleet.
ExplanationLP
Answer: snow. Explanations: (i) precipitation is when snow fall from clouds to the Earth,
(ii) snow falls
Diff-Explainer
Answer: sleet. Explanations: (i) snow falls, (ii) precipitation is when water falls from the
sky
Diff-Comb Explainer
Answer: sleet. Explanations: (i) sleet is when raindrops freeze as they fall, (ii) sleet is made
of ice

Question (3): Most of the mass of the atom consists of?: Correct Answer: protons and
neutrons.
ExplanationLP
Answer: neutrons and electrons. Explanations: (i) neutrons have more mass than an electron,
(ii) neutrons have more mass than an electron
Diff-Explainer
Answer: protons and neutrons. Explanations: (i) the atomic mass is made of the number of
protons and neutrons, (ii) precipitation is when water falls from the sky
Diff-Comb Explainer
Answer: protons and neutrons. Explanations: (i) the atomic mass is made of the number of
protons and neutrons, (ii) precipitation is when water falls from the sky

Table 5.3: Example of predicted answers and explanations (Only CENTRAL explana-
tions) obtained from Diff-Comb Explainer with different levels of fine-tuning.
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5.5 Conclusion

Research Objective 3: Build a hybrid framework for multi-hop inference that combines

constraint-based optimization layers with pre-trained neural representations, enabling

end-to-end differentiability for explanation-based inference with optimization-based

solvers

This Chapter proposed a novel framework for encoding explicit and controllable
assumptions as part of an end-to-end learning framework for explanation-based multi-
hop inference using Differentiable Blackbox Combinatorial Solvers (Pogančić et al.,
2019). We empirically demonstrated improved answer and explanation selection per-
formance compared with the Diff-Explainer. We also demonstrated performance gain
and increased robustness to noise when combining constraints with transformer-based
architectures. In this Chapter, we adopted the constraints of ExplanationLP, but it is
possible to encode more complex inference constraints within the model.

Diff-Comb Explainer builds on the previous Chapter and investigates the combina-
tion of symbolic knowledge (expressed via constraints) with neural representations.

• RQ3.1: Do incorporating constraint solvers with transformers improve perfor-

mance when compared to the non-differentiable solver?

In Section 5.4.1, we demonstrated Diff-Comb Explainer improves answer selec-
tion performance over the non-differentiable solver by 9.47% with optimizing
only on answer selection and 10.89% with optimizing on answer and explanation
selection. In addition, Diff-Comb Explainer outperforms the non-differentiable
solver at Precision@K by 8.41% (k =1) and 6.05% (k =2). Our model also
exhibits higher Explanatory Consistency (by 20%, 19.22%, 8.92% for k = 3,2,1
respectively) and Faithfulness (by 3.36%) over non-differentiable solver. Based
on this evidence, we can conclude that incorporating constraint solvers via Differ-

entiable Blackbox Combinatorial Solver with transformers improves performance

compared to the non-differentiable solver.

• RQ3.2: Does incorporating constraint solvers with transformers demonstrate bet-

ter robustness in inference to increasing distracting noise compared to transformer-

based models?

In Section 5.4.1, we showed that Diff-Comb Explainer outperforms the best
transformer-based model by 14.14% for answer selection. The low faithfulness
obtained by BERTBase/BERTLarge also showed black-box models like BERT do
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not reflect the explanation provided. In contrast, with our approach, we got
significantly better faithfulness scores (an increase of over 21.82%). In summary,
we can conclude that incorporating constraint solvers via Differentiable Blackbox

Combinatorial Solver with transformers leads to robust reasoning compared to

transformer-based only models.

5.6 Scope and Limitations

Similar to ExplanationLP, Diff-Comb Explainer is limited to multiple-choice question
answering. If we were to adopt this approach to span-selection, one possible way is to
convert span-selection questions into multiple-choice by extracting potential answer
spans from the text (Du & Cardie, 2018).

The experiments showed us that the approach is highly dependent on the λ parameter;
we might need to experiment with approaches with no need for this hyperparameter-
dependent gradient smoothing, such as CombOptNet (Paulus et al., 2021). However,
adopting this module would require non-trivial changes in the architecture.

Moreover, the best performing configuration of Diff-Comb Explainer results from
integrating ExplanationLP constraints. As noted in Section 3.6, ExplanationLP relies
on the existence of a corpus of core scientific statements (abstract facts). In our case,
we were aided by the existence of WorldTree corpus (Jansen et al., 2018).

5.7 Reproducibility

The rest of the section details the hyperparameters, code bases and datasets used in our
approach to reproduce our experiments.

5.7.1 External code-bases

• Differentiable Blackbox Combinatorial Solvers Examples: https://github.com/
martius-lab/blackbox-differentiation-combinatorial-solvers

• Sentence Transformer code-base: https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

5.7.2 Integer Linear Programming Optimization

The components of the linear programming system is as follows:

https://github.com/martius-lab/blackbox-differentiation-combinatorial-solvers
https://github.com/martius-lab/blackbox-differentiation-combinatorial-solvers
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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• Solver: Gurobi Optimization https://www.gurobi.com/products/gurobi-optimizer/

The hyperparameters used in the ILP constraints:

• Maximum number of abstract facts (M): 2

Infrastructures used:

• CPU Cores: 32
• CPU Model: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
• Memory: 128GB

5.7.3 Hyperparameters

For Diff-Comb Explainer we had to fine-tune hyperparameters λ,λans,λexp,T . We
fine-tune for 50 epochs using the Adpative Experimentation Platform with the seed of
42.

The bounds of the hyperparameters are as follows:

• λ: [100,300]
• λexp: [0.0,1.0]
• λans: [0.0,1.0]
• T : [1e−2,100]

The hyperparameters adopted for our approach are as follows:

• λ: 152
• λexp: 0.72
• λans: 0.99
• T : 8.77
• max epochs: 8
• gradient accumulation steps: 1
• learning rate: 1e-5
• weight decay: 0.0
• adam epsilon: 1e-8
• warmup steps: 0
• max grad norm: 1.0
• seed: 42

https://www.gurobi.com/products/gurobi-optimizer/
https://ax.dev/
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The hyperparameters adopted for BERT are as follows:

• gradient accumulation steps: 1
• learning rate: 1e-5
• weight decay: 0.0
• adam epsilon: 1e-8
• warmup steps: 0
• max grad norm: 1.0
• seed: 42

We fine-tuned using 4 Tesla V100 GPUs for 10 epochs in total with batch size 32
for Base and 16 for Large.

5.7.4 Data

WorldTree Dataset: Data can be obtained from: http://cognitiveai.org/explanationbank/
ARC-Challenge Dataset: https://allenai.org/data/arc. Only used the Challenge split.

http://cognitiveai.org/explanationbank/
https://allenai.org/data/arc


Chapter 6

Conclusion & Future Work

6.1 Summary and Conclusions

The central research problem stated in Chapter 1 is as follows:

Given a question (Q) and candidate answers C = {c1, c2, c3, ..., cn}, the aim is to build
a differentiable constraint-based optimization model Diff constrained robust to semantic
drift that combines constraint-based solvers and transformers to select the correct an-
swer cans and explanation Fans that supports the answer.

As underlined in the research problem, in this thesis, we set out to integrate
constrained-based optimization solvers with deep learning models and address the
problem of semantic drift. Our contributions focused on two dimensions: design con-
straints that alleviate the problem of semantic drift and address the problem of ILP
non-differentiability.

Our motivation to address this challenge was derived from the survey carried out in
Chapter 2. In Chapter 2, we presented a survey of benchmarks and models proposed
in Machine Reading Comprehension. We first categorized explanations based on their
function in the inference into knowledge-based and operational-based (See Section 2.2).
We also identified that explanation-based inference is now more evolving towards
training in evaluating abstractive reasoning. Based on the analysis we performed
in explanation-supporting benchmarks and explanation-based inference models (See
Section 2.6), we identified the effectiveness of hybrid approaches that combines latent
representation with structural representation. In particular, constraint-based models
based on ILP solvers can provide a mechanism to encode explicit and controllable

123
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assumptions about the structure of the inference. However, these approaches were
limited due to their susceptibility to semantic drift and inability to be incorporated with
broader deep learning frameworks. These two challenges formed the core motivation of
the thesis and the central research problem. The contributions of this Chapter are as
follows (Restated from Chapter 2):

Contributions:

1. Provide an analysis of existing benchmarks and models for explanation-based
inference in Machine Reading Comprehension

2. Identify the emerging research trends and architectural design for an explainable
system

3. Highlight set of challenges and opportunities for future work

In order to address the challenge of semantic drift, Chapter 3 presented a model (Ex-
planationLP) that reduces the number of hops to two and introduces explicit grounding-
abstract chains to perform inference. This approach addresses the first part of the central
research problem: build a constraint-based optimization model robust to semantic drift

Our experiments on Answer and Explanation selection demonstrated that our model
outperforms Transformer-based models - BERT (Devlin et al., 2019) and graph-based
model- PathNet (Kundu et al., 2019) (See Section 3.3.1). ExplanationLP also demon-
strated a lower degradation with an increasing number of explanation sentences (See
Section 3.3.4). The contributions of this Chapter are as follows (Restated from Chap-
ter 3):

Contributions:

1. We present a novel approach that performs explanation-based inference via
grounding-abstract chains combining Linear Programming with Bayesian opti-
mization for science question answering.

2. We obtain comparable performance compared to transformers, multi-hop ap-
proaches and previous Linear Programming models despite having a significantly
lower number of parameters.

3. We demonstrate that our model can generate plausible explanations for answer
prediction and validate the importance of grounding-abstract chains via ablation
analysis.
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In Chapter 3, we employed Bayesian Optimization to fine-tune the parameters in Ex-
planationLP. However, Bayesian Optimization is intractable to fine-tune the large neural
model. Constraint-solvers based on Integer Linear Programming are non-differentiable
and cannot be directly integrated with transformer networks to build a broader learning
framework. In order to alleviate this problem, we came up with two different solutions:

• In Chapter 4, we introduced Diff-Explainer that approximated the ILP formulation
using Semi-definite programming, casting the problem as a convex optimization
problem. Consequently, allowing us to integrate them into a deep learning network
using differentiable convex optimization layers.

• In Chapter 5, we introduced Diff-Comb Explainer that employed the Differ-
entiable Blackbox Combinatorial Optimization Solver (DBCs). Introduced
by Pogančić et al. (2019), DBCs solve the non-differentiability by introducing a
gradient approximation method.

This approach addresses the second part of the central research problem: build a

differentiable constraint-based optimization model.
Diff-Explainer and Diff-Comb Explainer demonstrated better answer and explanation

selection performance over non-differentiable solvers (See Section 4.4.1, Section 5.4.1).
We also showed that these models are more robust to distractors (See Section 5.4.2) and
better reflect the underlying inference than transformer-only models (See Section 5.4.1).

With Diff-Explainer, We also noticed that fine-tuning the approach with explanations
was not yielding the same level of performance increase in explanation selection as it
did for answer selection. We hypothesize that the semi-definite approximation of the
ILP formulation is leading to sub-optimal predictions for node selection.

We tried to alleviate this problem by incorporating Differentiable Blackbox Combi-
natorial Solvers for Diff-Comb Explainer. Compared to Diff -Explainer, we achieved
better answer and explanation selection performance with Diff-Comb Explainer.

The contributions of these Chapters are as follows (Restated from Chapter 4 and
Chapter 5):
Contributions:

1. A novel differentiable framework for multi-hop inference that incorporates con-
straints via convex optimization layers into broader Transformer-based architec-
tures for Diff-Explainer and via black box combinatorial solver with transformer-
based architectures for Diff-Comb Explainer
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2. An extensive empirical evaluation demonstrates that the proposed frameworks
allow end-to-end differentiability on downstream QA tasks for both explanation
and answer selection, leading to a substantial improvement compared to non-
differentiable constraint-based and transformer-based approaches.

3. We demonstrate that Diff-Explainer and Diff-Comb Explainer are more robust
to distracting information in addressing multi-hop inference when compared to
Transformer-based models. Additionally, both models better reflect the underlying
inference process for the answer prediction compared to Transformer-based
models.

In summary, this thesis presented differentiable constraint-based optimization mod-
els Diff -Explainer and Diff -Comb Explainer robust to semantic drift (with Explana-
tionLP constraints) that combines constraint-based solvers and transformers to select
the correct answer cans and explanation Fans that supports the answer.

6.2 Opportunities for Future Research

Differentiable constraint-based models to other facets of Natural Language Pro-
cessing As underlined in the conclusion of Chapter 4, constraint-based solvers have
been used not only for natural language inference but also relation extraction (L. Chen
et al., 2014; Y. Choi et al., 2006; Roth & Yih, 2004), semantic role labeling (Koomen
et al., 2005; Punyakanok et al., 2004), sentiment analysis (Y. Choi & Cardie, 2009)
and explanation regeneration (A. Gupta & Srinivasaraghavan, 2020). We could adopt
the constraints from these approaches to integrate with differentiable constraint layers
leading to explainable and robust models across various spectrums of tasks in Natural
Language Processing.

Moving beyond multiple-choice question answering Current formulations of constraint-
based solvers and the ones we have introduced are also limited to multiple-choice
question answering. While the underlying reasoning mechanisms remain universal
across all question-answering tasks, moving towards span selection (Z. Yang et al.,
2018) or text generation (Reddy et al., 2019) requires a non-trivial adoption of how
the framework is designed. The integration could be achieved by following similar
ideas used by graph-based (Ding et al., 2019; L. Qiu et al., 2019) or explicit-path-based
inference (Dhingra et al., 2020; Nie et al., 2019) approaches.
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Experimenting with abstraction and compositionality constraints This work has
shown that explicit abstraction can lead to better performance and alleviate the problems
arising from semantic drift. Another facet of artificial general intelligence we require is
the need for compositionality (Fodor, 1975; Schneider, 2011). Constraint-based solvers
have expressive power where it would be possible to define compositional inference as
constraints. If abstraction and compositionality could be achieved, this would lead to
more robust and generalisable performance when compared to a purely connectionist
approach.

Control and debugging deep learning models In our work, we had shown that the
control obtained by better domain-specific priors leads to better overall performance.
However, our research has not explicitly evaluated the control obtained via the solvers
and how control can be improved. If we can establish a method to impose control
into deep learning networks for natural language inference via the solvers, this can
potentially lead to debugging the black box models.
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Pogančić, M. V., Paulus, A., Musil, V., Martius, G., & Rolinek, M. (2019). Differentia-
tion of blackbox combinatorial solvers. International Conference on Learning

Representations.
Punyakanok, V., Roth, D., Yih, W.-t., & Zimak, D. (2004). Semantic role labeling

via integer linear programming inference. COLING 2004: Proceedings of the

20th International Conference on Computational Linguistics, 1346–1352. https:
//aclanthology.org/C04-1197

Qi, P., Lin, X., Mehr, L., Wang, Z., & Manning, C. D. (2019). Answering complex open-
domain questions through iterative query generation. Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the

9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), 2590–2602.

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/C04-1197
https://aclanthology.org/C04-1197


140 BIBLIOGRAPHY

Qiu, B., Chen, X., Xu, J., & Sun, Y. (2019). A survey on neural machine reading
comprehension. arXiv preprint arXiv:1906.03824.

Qiu, L., Xiao, Y., Qu, Y., Zhou, H., Li, L., Zhang, W., & Yu, Y. (2019). Dynamically
fused graph network for multi-hop reasoning. Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, 6140–6150.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language

models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Raiman, J., & Miller, J. (2017). Globally normalized reader. arXiv preprint arXiv:1709.02828.
Rajagopal, D., Tandon, N., Clarke, P., Dalvi, B., & Hovy, E. (2020). What-if i ask

you to explain: Explaining the effects of perturbations in procedural text. arXiv

preprint arXiv:2005.01526.
Rajani, N. F., McCann, B., Xiong, C., & Socher, R. (2019). Explain yourself! leveraging

language models for commonsense reasoning. Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, 4932–4942.
Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions

for machine comprehension of text. arXiv preprint arXiv:1606.05250.
Reddy, S., Chen, D., & Manning, C. D. (2019). Coqa: A conversational question answer-

ing challenge. Transactions of the Association for Computational Linguistics, 7,
249–266.

Reimers, N., Gurevych, I., Reimers, N., Gurevych, I., Thakur, N., Reimers, N., Daxen-
berger, J., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using
siamese bert-networks. Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing.
Robertson, S., Zaragoza, H. et al. (2009). The probabilistic relevance framework: Bm25

and beyond. Foundations and Trends® in Information Retrieval, 3(4), 333–389.
Ross, A. S., Hughes, M. C., & Doshi-Velez, F. (2017). Right for the right reasons:

Training differentiable models by constraining their explanations. Proceedings

of the 26th International Joint Conference on Artificial Intelligence, 2662–2670.
Roth, D., & Yih, W.-t. (2004). A linear programming formulation for global inference in

natural language tasks. Proceedings of the Eighth Conference on Computational

Natural Language Learning (CoNLL-2004) at HLT-NAACL 2004, 1–8. https:
//aclanthology.org/W04-2401

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence,
1(5), 206–215.

https://aclanthology.org/W04-2401
https://aclanthology.org/W04-2401


BIBLIOGRAPHY 141

Saha, S., Ghosh, S., Srivastava, S., & Bansal, M. (2020). Prover: Proof generation
for interpretable reasoning over rules. Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), 122–136.
Saha, S., Yadav, P., & Bansal, M. (2021). Multiprover: Generating multiple proofs for

improved interpretability in rule reasoning. Proceedings of the 2021 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 3662–3677.
Sales, J. E., Freitas, A., & Handschuh, S. (2020). A user-centred analysis of expla-

nations for a multi-component semantic parser. International Conference on

Applications of Natural Language to Information Systems, 37–44.
Schlegel, V., Valentino, M., Freitas, A., Nenadic, G., & Batista-Navarro, R. (2020). A

framework for evaluation of machine reading comprehension gold standards.
arXiv preprint arXiv:2003.04642.

Schneider, S. (2011). The language of thought: A new philosophical direction. Mit
Press.

Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.
Schuff, H., Adel, H., & Vu, N. (2020). F1 is not enough! models and evaluation towards

user-centered explainable question answering.
Seo, M., Kembhavi, A., Farhadi, A., & Hajishirzi, H. (2016). Bidirectional attention

flow for machine comprehension. arXiv preprint arXiv:1611.01603.
Shao, N., Cui, Y., Liu, T., Wang, S., & Hu, G. (2020). Is graph structure necessary for

multi-hop reasoning? arXiv preprint arXiv:2004.03096.
Sharp, R., Surdeanu, M., Jansen, P., Valenzuela-Escárcega, M. A., Clark, P., & Ham-

mond, M. (2017). Tell me why: Using question answering as distant supervision
for answer justification. Proceedings of the 21st Conference on Computational

Natural Language Learning (CoNLL 2017), 69–79.
Silva, V. S., Freitas, A., & Handschuh, S. (2019). Exploring knowledge graphs in an

interpretable composite approach for text entailment. Proceedings of the AAAI

Conference on Artificial Intelligence, 33, 7023–7030.
Silva, V. S., Handschuh, S., & Freitas, A. (2018). Recognizing and justifying text

entailment through distributional navigation on definition graphs. Thirty-Second

AAAI Conference on Artificial Intelligence.
Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological

bulletin, 119(1), 3.



142 BIBLIOGRAPHY

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization
of machine learning algorithms. Advances in neural information processing

systems, 25, 2951–2959.
Song, K., Tan, X., Qin, T., Lu, J., & Liu, T.-Y. (2020). Mpnet: Masked and permuted pre-

training for language understanding. Advances in Neural Information Processing

Systems, 33, 16857–16867.
Speer, R., Chin, J., & Havasi, C. (2017). Conceptnet 5.5: An open multilingual graph of

general knowledge. Thirty-First AAAI Conference on Artificial Intelligence.
Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2009). Gaussian process

bandits without regret: An experimental design approach. CoRR, abs/0912.3995.
http://arxiv.org/abs/0912.3995

Stanovsky, G., Michael, J., Zettlemoyer, L., & Dagan, I. (2018). Supervised open infor-
mation extraction. Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), 885–895. https://doi.org/10.18653/v1/
N18-1081

Subramanian, S., Bogin, B., Gupta, N., Wolfson, T., Singh, S., Berant, J., & Gardner, M.
(2020). Obtaining faithful interpretations from compositional neural networks.
arXiv preprint arXiv:2005.00724.

Sun, K., Yu, D., Yu, D., & Cardie, C. (2019). Improving machine reading comprehension
with general reading strategies. Proceedings of the 2019 Conference of the North.
https://doi.org/10.18653/v1/n19-1270

Swanson, K., Yu, L., & Lei, T. (2020). Rationalizing text matching: Learning sparse
alignments via optimal transport. arXiv preprint arXiv:2005.13111.

Tafjord, O., Dalvi, B., & Clark, P. (2021). Proofwriter: Generating implications, proofs,
and abductive statements over natural language. Findings of the Association for

Computational Linguistics: ACL-IJCNLP 2021, 3621–3634.
Talmor, A., Herzig, J., Lourie, N., & Berant, J. (2019). Commonsenseqa: A question

answering challenge targeting commonsense knowledge. Proceedings of the

2019 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), 4149–4158.

http://arxiv.org/abs/0912.3995
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/n19-1270


BIBLIOGRAPHY 143

Tandon, N., Dalvi, B., Sakaguchi, K., Clark, P., & Bosselut, A. (2019). Wiqa: A dataset
for ?what if...? reasoning over procedural text. Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the 9th Inter-

national Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
6078–6087.

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N., Van Durme,
B., Bowman, S., Das, D., et al. (2019). What do you learn from context? probing
for sentence structure in contextualized word representations. 7th International

Conference on Learning Representations, ICLR 2019.
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Reasoning with weak unification for question answering in natural language.
arXiv preprint arXiv:1906.06187.

Welbl, J., Stenetorp, P., & Riedel, S. (2018). Constructing datasets for multi-hop reading
comprehension across documents. Transactions of the Association for Computa-

tional Linguistics, 6, 287–302.
Williams, A., Nangia, N., & Bowman, S. R. (2017). A broad-coverage challenge corpus

for sentence understanding through inference. https://doi.org/10.48550/ARXIV.
1704.05426

Wilson, A., Fern, A., & Tadepalli, P. (2014). Using trajectory data to improve bayesian
optimization for reinforcement learning. The Journal of Machine Learning

Research, 15(1), 253–282.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,

T., Louf, R., Funtowicz, M., & Brew, J. (2019). Huggingface’s transformers:
State-of-the-art natural language processing. CoRR, abs/1910.03771. http://
arxiv.org/abs/1910.03771

https://doi.org/10.48550/ARXIV.1704.05426
https://doi.org/10.48550/ARXIV.1704.05426
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


BIBLIOGRAPHY 145

Wolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg, Y., Deutch, D., & Berant, J.
(2020). Break it down: A question understanding benchmark. Transactions of

the Association for Computational Linguistics, 8, 183–198.
Wolsey, L. A. (2020). Integer programming. John Wiley & Sons.
Xie, Z., Thiem, S., Martin, J., Wainwright, E., Marmorstein, S., & Jansen, P. (2020).

WorldTree v2: A corpus of science-domain structured explanations and infer-
ence patterns supporting multi-hop inference. Proceedings of the 12th Language

Resources and Evaluation Conference, 5456–5473. https://www.aclweb.org/
anthology/2020.lrec-1.671

Xu, W., Zhang, H., Cai, D., & Lam, W. (2021). Dynamic semantic graph construction
and reasoning for explainable multi-hop science question answering. Findings of

the Association for Computational Linguistics: ACL-IJCNLP 2021, 1044–1056.
Yadav, V., Bethard, S., & Surdeanu, M. (2019a). Alignment over heterogeneous embed-

dings for question answering. Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), 2681–2691.
Yadav, V., Bethard, S., & Surdeanu, M. (2019b). Quick and (not so) dirty: Unsu-

pervised selection of justification sentences for multi-hop question answering.
Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), 2578–2589. https://doi.org/10.18653/v1/D19-1260
Yadav, V., Bethard, S., & Surdeanu, M. (2020). Unsupervised alignment-based it-

erative evidence retrieval for multi-hop question answering. arXiv preprint

arXiv:2005.01218.
Yang, Y., Yih, W.-t., & Meek, C. (2015). Wikiqa: A challenge dataset for open-domain

question answering. Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, 2013–2018.
Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., & Manning,

C. D. (2018). Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600.

Ye, D., Lin, Y., Liu, Z., Liu, Z., & Sun, M. (2019). Multi-paragraph reasoning with
knowledge-enhanced graph neural network. arXiv preprint arXiv:1911.02170.

Yoshida, Y. (2011). Optimal constant-time approximation algorithms and (uncondi-
tional) inapproximability results for every bounded-degree csp. Proceedings of

the forty-third annual ACM symposium on Theory of computing, 665–674.

https://www.aclweb.org/anthology/2020.lrec-1.671
https://www.aclweb.org/anthology/2020.lrec-1.671
https://doi.org/10.18653/v1/D19-1260


146 BIBLIOGRAPHY

Yu, L., Hermann, K. M., Blunsom, P., & Pulman, S. (2014). Deep learning for answer
sentence selection. arXiv preprint arXiv:1412.1632.

Zhang, X., Yang, A., Li, S., & Wang, Y. (2019). Machine reading comprehension: A
literature review. arXiv preprint arXiv:1907.01686.

Zhang, Y., Dai, H., Toraman, K., & Song, L. (2018). Kgˆ 2: Learning to reason science
exam questions with contextual knowledge graph embeddings. arXiv preprint

arXiv:1805.12393.
Zhang, Z., Zhao, H., & Wang, R. (2020). Machine reading comprehension: The role of

contextualized language models and beyond. arXiv preprint arXiv:2005.06249.
Zhao, C., Xiong, C., Rosset, C., Song, X., Bennett, P., & Tiwary, S. (2020). Transformer-

xh: Multi-evidence reasoning with extra hop attention. International Conference

on Learning Representations. https://openreview.net/forum?id=r1eIiCNYwS

https://openreview.net/forum?id=r1eIiCNYwS

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Constrained Optimization for Multi-hop Inference
	Problem Formulation
	Research Objectives and Questions
	Thesis Outline
	Other Publications

	Explanation-based Inference in Machine Reading Comprehension
	Introduction
	Dimensions of Explanation-based Inference
	Explanation and Abstraction

	Explanation-supporting Benchmarks
	Towards Abstractive MRC
	Multi-hop Reasoning and Explanation

	Explanation-based MRC Architectures
	Modeling Explanatory Relevance for Knowledge-based Explanations
	Operational Explanation

	Evaluation
	Challenges and Opportunities
	Conclusion
	Scope and Limitations

	Explanation-based Inference Over Grounding-Abstract Chains
	Introduction
	ExplanationLP: Explanation-based Inference with Integer Linear Programming
	Relevant facts retrival
	Fact graph construction
	Subgraph extraction with Integer Linear Programming (ILP) optimization
	Bayesian optimization for Answer Selection

	Empirical Evaluation
	Answer Selection
	Explanation Selection
	Robustness
	Ablation Study

	Related Work
	Conclusion
	Scope and Limitations
	Reproducibility
	Integer Linear Programming Optimization
	Parameter tuning
	Sentence-BERT for Semantic Similarity Scores
	BERT model
	PathNet
	Relevant facts retrieval
	Code
	Data


	Diff-Explainer: Differentiable Convex Optimization for Explanation-based Multi-hop Inference
	Introduction
	Differentiable Convex Optimization Layers
	Diff-Explainer: Explanation-based Multi-Hop Inference via Differentiable Convex Optimization
	Limitations with Existing ILP formulations
	Subgraph Selection via Semi-Definite Programming
	Diff-Explainer: End-to-End Differentiable Architecture
	Objective Function
	Constraints with Disciplined Parameterized Programming (DPP)
	Answer and Explanation Selection

	Empirical Evaluation
	Answer Selection
	Explanation Selection
	Answer Selection with Increasing Distractors
	Qualitative Analysis

	Conclusion
	Scope and Limitations
	Reproducibility
	Diff-Explainer
	Approx-TupleILP
	Empirical Evaluation
	Data


	Diff-Comb Explainer: Differentiable Blackbox Combinatorial Solvers for Explanation-based Multi-hop Inference
	Introduction
	Differentiable Blackbox Combinatorial Optimization Solver
	Diff-Comb Explainer: Differentiable Blackbox Combinatorial Solver for Explanation-based Multi-Hop Inference
	Graph Construction
	Subgraph Selection via Differentiable Blackbox Combinatorial Solvers
	Answer and Explanation Selection

	Empirical Evaluation
	Answer and Explanation Selection
	Knowledge aggregation with increasing distractors
	Comparing Answer Selection with ARC Baselines
	Qualitative Analysis

	Conclusion
	Scope and Limitations
	Reproducibility
	External code-bases
	Integer Linear Programming Optimization
	Hyperparameters
	Data


	Conclusion & Future Work
	Summary and Conclusions
	Opportunities for Future Research


