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Abstract 
 
Introduction: Epithelial ovarian cancer affects more than 7,000 women each year in the UK, and 
approximately 70% of patients present with advanced disease. Treatment involves one of the following 
options: initial primary debulking surgery (PDS) followed by chemotherapy; initial chemotherapy followed 
by interval debulking surgery (IDS); or palliative management. Removing all visible disease at the time of 
surgery (complete cytoreduction) is the most important prognostic marker in these patients, and it is 
important that the treatment option that is most likely to result in complete cytoreduction is chosen. 
Complete cytoreduction at the time of PDS holds a survival advantage over IDS. Failing to achieve complete 
cytoreduction equates to reduced overall survival, increased morbidity and delayed chemotherapy start. 
Under the current decision-making process 9 - 67% of patients suffer residual disease, which highlights a 
significant area for improvement. Many clinical, biochemical, genomic and radiological predictors have 
been linked with surgical outcome. Despite this, there is no accepted tool or guideline to aid clinicians in 
this decision-making process. This thesis aims to review currently published models predicting surgical 
outcome, externally validate a pre-existing model, explore new predictors and create a new prognostic 
model combining all available predictors.  
 
Methods: A systematic review of all published multimodal prognostic models predicting outcome of PDS 
in patients with stage II-IV epithelial ovarian cancer was performed. Data extraction was performed using 
the checklist for critical appraisal method (CHARMS) and risk of bias was assessed using the prediction 
model study assessment tool (PROBAST). The external validation of a three-protein signature was 
performed via immunohistochemistry (IHC) on a validation cohort from the ICON5 trial. The association 
between homologous recombination (HR) and surgical outcome was assessed in two separate cohorts. The 
cancer genome atlas (TCGA) cohort had HR status assessed using an established gene panel, and the 
Manchester database cohort via a functional assay. Both logistic regression and random forest models 
were developed combining multiple predictors including operating surgeon to predict surgical outcome at 
the time of PDS. 
 
Results: The systematic review included 26 publications describing 27 prognostic models. Predictors 
included clinical, biochemical, genomic and radiological features. All but one model was developed by 
logistic regression. Validated performance measured by AUC ranged between 0.50 and 0.89, with low 
levels of external validation. The majority of models showed high risk of risk of bias. The three-protein 
signature was validated via IHC on a cohort of 238 HGSOC tumour samples. Staining intensity scores from 
each protein were combined to create a combined prognostic model. Validation failed, with AUC dropping 
from 0.866 in the original cohort to 0.593 in the validation cohort. Two patient cohorts were used to assess 
association between HR status and surgical outcome. The TCGA cohort (n=258) assessed via a 14 gene 
panel demonstrated association between HR status and surgical outcome (p=0.033). The Manchester 
cohort (n=38) assessed via a functional assay did not show any association (p=0.5205). Finally, the 
developed prognostic prediction models developed on a cohort of stage III-IV HGSOC patients (n=100) 
incorporated 18 predictors. When internally validated, they performed with AUC values of 0.688 and 0.734 
for logistic regression and Random Forest models, respectively. 
 

Conclusions: Models incorporating single modalities rarely show accurate prediction upon external 
validation and there are currently no prognostic models validated successfully enough for use in clinical 
practice.  Models combining multiple predictors including surgeon heterogeneity show the most promise, 
and further validation would be the next step to progress these models with a view to apply them in 
clinical use.  
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Figure 1.1 Map of the world demonstrating the wide geographical variation of OC incidence. 

1 Introduction 
 

1.1 Ovarian cancer 
 

1.1.1 Background 
 
Ovarian cancer accounts for an estimated 239,000 new cases and 152,000 deaths annually 

worldwide (Reid et al., 2017). It is the cause of more deaths in women in the developed world 

than any other gynaecological cancer (Colombo et al., 2019), with over 7,000 women 

diagnosed per year in the United Kingdom (UK) (CRUK, 2018). These statistics highlight that 

ovarian cancer is a significant cause of both morbidity and mortality to women globally.  

 

The incidence of ovarian cancer varies with geographical area, the highest age-adjusted 

incidence being observed in the developed world. In North America and Europe, rates exceed 

8 per 100,000, with lower rates seen in Asia and Africa (Webb & Jordan, 2017).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure source (Reid et al., 2017). 

 

A woman’s lifetime risk of ovarian cancer in the UK stands between 1 in 50 and 1 in 75 with 

risk increasing with age. The majority of cases present in women over 55 years of age, peaking 

between 75 – 79 years (CRUK, 2018; Reid et al., 2017). Survival of women with ovarian cancer 

has improved only slightly since the 1980s (Lisio et al., 2019). The overall ten year survival for 
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all histological subtypes and stages of ovarian cancer currently stands at just 35% (CRUK, 

2018).  Survival rates are significantly decreased by a more advanced stage at the time of 

presentation (CRUK, 2018). 

 

Table 1.1 Breakdown of the five-year survival rates by FIGO stage for ovarian cancer 

 

 

 

 

 

(CRUK, 2018), see table 1.5 for breakdown of FIGO stage 

 

As approximately 65 – 70% of ovarian cancer cases present at FIGO stage III or IV (CRUK, 2018), 

Table 1.5, the majority of patients face very poor survival rates. 

 

The most significant risk factor for developing ovarian cancer is family history of the disease. 

Women with a first-degree relative with a history of ovarian cancer have an increased risk of 

3- to 7-fold. Mutations in the BRCA1 and BRCA2 genes account for approximately 10 – 15% of 

all ovarian cancer cases and represent a lifetime risk of 44% and 27%, respectively. This 

mutation is mainly associated with high grade serous ovarian cancer (HGSOC). Other genetic 

associations with ovarian cancer include mutations in BRIP1 and RAD51D genes (Reid et al., 

2017) as well as mismatch repair genes (MMR) as is seen in Lynch syndrome (Fotopoulou et 

al., 2017). 

 

Nulliparity, infertility (Reid et al., 2017), polycystic ovarian syndrome (PCOS)  (Schildkraut et 

al., 1996), endometriosis (Sayasneh et al., 2011), pelvic inflammatory disease (PID) (Lin et al., 

2011), first birth after 35 years, early menarche and late menopause (Fotopoulou et al., 2017) 

all carry an increased risk of developing ovarian cancer. There is conflicting evidence 

surrounding an increase risk with the use of an intrauterine device (IUD) (Huang et al., 2015; 

Tworoger et al., 2007), hormone replacement therapy (HRT) (Danforth et al., 2007), obesity 

and poor diet (Reid et al., 2017). The combined oral contraceptive pill (COCP) is protective, 

with this effect increasing with longer duration of use (Beral et al., 2008). Pregnancy, 

Stage at time of presentation Five-year survival rate 

Stage I 95% 

Stage II 70% 

Stage III 25% 

Stage IV 15% 
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sterilisation/tubal ligation and hysterectomy are also recognised protective factors 

(Fotopoulou et al., 2017).  

 

1.1.2  Histopathology 

 

Ovarian cancer is represented by multiple distinct histological entities, with tumours most 

commonly originating histologically from epithelial, stromal or germ cells. 90% of malignant 

tumours originate from epithelial cells (Reid et al., 2017). Epithelial ovarian cancer (EOC) is in 

itself a very heterogenous disease, made up of several histological subtypes all with differing 

origins, namely: high grade serous ovarian cancer (HGSOC), low grade serous ovarian cancer 

(LGSOC), mucinous, clear cell and endometrioid (Reid et al., 2017).  

 

 

Figure 1.2 Breakdown of the histological subtypes of ovarian cancer 

Demonstrating its wide histological heterogeneity, with epithelial cells being the most common cellular origin and HGSOC 
accounting for 75% of all new cases overall. 

 

In an attempt to more clearly categorise epithelial ovarian cancer, and in turn to study the 

disease from a molecular and genetic basis, two distinct groups have been introduced and 

accepted by the World Health Organisation (WHO). The histological subtypes are grouped 

based upon their clinical behaviour alongside frequently observed genetic mutations (Kurman 

& Shih Ie, 2010). Type one tumours describe those that tend to grow locally, metastasize late, 

and behave in a more indolent fashion. Type two tumours describe a more aggressive tumour 

type that often present at a more advanced stage (Terada et al., 2016). Type two tumours can 

be characterised by P53 mutations and often display genomic instability due to defects in 

pathways in deoxyribonucleic acid (DNA) repair such as homologous recombination (HR) 

(Kurman & Shih Ie, 2016; Reid et al., 2017). 

OVARIAN CANCER

NON - EPITHELIALEPITHELIAL

HGSOC SEX CORD - STROMAL LGSOC CLEAR CELL MUCINOUS ENDOMETRIOID GERM CELL OTHERS 

75% OVERALL

90% 10% 
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Table 1.2 Breakdown of OC histological subtype by group 

 Histological subtype Associated mutations 

Type one tumour LGSOC, endometrioid, clear cell, 

clear cell 

KRAS, ARID1A, PIK3CA, PTEN, 

BRAF 

Type two tumour HGSOC, carcinosarcoma, 

undifferentiated carcinomas 

TP53, defects in HR  

Adapted from (Kurman & Shih Ie, 2010, 2011)   

 

HGSOC is the most prevalent histological subtype of ovarian cancer, with the highest mortality 

rate. It accounts for 75% of all ovarian cancer diagnoses (Reid et al., 2017). Histologically, 

HGSOC can be defined by one or more of five main histological features (Table 1.3/Figure 1.3). 
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Figure 1.3 Corresponding images to illustrate table 1.3 

Table 1.3 Breakdown of the heterogeneity of HGSOC histopathological architecture 

Histological feature of HGSOC Corresponding image in figure 1.3 

Solid architecture A 

Glandular architecture ‘slit like’ fenestrations B 

Papillary architecture C 

Solid architecture with ‘geographical’ necrosis D 

Solid architecture with tumour infiltrating lymphocytes E 

Adapted from (Reid et al., 2017) 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Original magnification A x 20, B x5, C x10, D x5, E x20  

 

From a cytological perspective, HGSOC can be characterised by high-grade nuclear atypia, and 

can be differentiated from other subtypes of ovarian cancer by the positive staining for 

several immunological markers, such as P53, WT1, P16, Ki-67, CK7, and PAX 8 (Reid et al., 

2017) 

1.1.3 Natural history 
 
Most epithelial ovarian cancers have disease localised to the ovary in the early stages. It is 

therefore unsurprising that the disease was originally assumed to be ovarian in origin. More 

recently this theory has been questioned. Histological sub types such as endometrioid and 

clear cell cancers develop upon a background of endometriosis, which would suggest that the 
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origin is in fact endometrial (Terada et al., 2016), whilst mucinous tumours often derive from 

metastatic intestinal tumours (Riopel et al., 1999). 

 

For many years HGSOCs did not have a well understood pre-cancerous lesion (Webb & Jordan, 

2017). It was originally believed that HGSOC originated from the surface epithelium of the 

ovary (Lengyel, 2010). The ovarian epithelial cells originate embryonically from the coelomic 

mesoderm and are closely related to the peritoneum covering the peritoneal cavity. As early 

as 1971, Fathalla described the ‘incessant ovulation’ theory; continued ovulation throughout 

a woman’s reproductive life resulted in the continual damage of surface epithelial cells. This 

cycle of damage and repair repeated until the damage became irreparable, resulting in the 

formation of a malignant process (Fathalla, 1971). According to this theory, the more 

ovulatory cycles a woman was exposed to, the greater her risk of developing HGSOC. This 

theory supported the protective nature of the COCP and multiple pregnancies and therefore 

maintained widespread acceptance for many years. However, it did not explain the fact that 

histologically, HGSOC closely resembles tissues derived of Mullerian duct origin, and raises 

the question how ovarian cells of coelomic origin could have differentiated as such. 

 

An alternative argument was proposed; that HGSOC originated from cells of Mullerian duct 

origin found in structures such as the fallopian tubes (Dubeau, 1999; Piek et al., 2001). This 

explained the origin of primary fallopian tube and primary peritoneal cancers, both of which 

arise with no ovarian involvement but behave as, and are treated in parallel with, HGSOC 

(Dubeau, 1999). 

 

There is now widespread acceptance for the presence of HGSOC pre-cursors known as serous 

tubular intra-epithelial carcinomas (STIC lesions), first described in the fallopian tubes of 

patients with inherited BRCA mutations (Kuhn et al., 2012). These small dysplastic lesions 

made up of secretory cells are found in the distal ciliated end of the fallopian tubes and have 

led to the belief that HGSOC originates as STIC lesions in the fallopian tubes. From the 

fallopian tube epithelium, the STIC lesions appear to seed the ovary and progress to spread 

throughout the peritoneal cavity (Reade et al., 2014).    
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1.1.4  Screening programmes in ovarian cancer 
 

There are currently no successful screening programmes for ovarian cancer. Both the UK 

Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) and The American Prostate, Lung, 

Colorectal and Ovarian (PLCO) cancer screening have undertaken large randomised 

controlled trials (RCTs) to establish the viability of screening programmes. UKCTOCS 

randomised 202,000 women to either observation alone or screening, however showed no 

reduction in mortality in the screened women in their primary analysis (Jacobs et al., 2016). 

PLCO screened asymptomatic postmenopausal women, and despite 13 years follow up did 

not show a reduction in mortality in their screened group (Buys et al., 2011).  

 

1.1.5 Dissemination  

In many cases, HGSOC does not utilise blood or lymphatics for its spread, instead it either 

undergoes local spread to organs in its proximity, or through the detachment of cells from 

the primary tumour migrating throughout the peritoneal cavity and to the surface of the 

visceral organs within this cavity, the transcoelomic route. Although HGSOC can metastasise 

to any organ within the peritoneal cavity, it shows a particular affinity for the omentum 

(Lengyel, 2010). Generally, the spread of HGSOC is made up of surface lesions of distal organs, 

and often stays within the peritoneal cavity. Extraperitoneal spread and deeper organ 

involvement is more rarely seen (Lengyel, 2010). These lesions can be thought of as 

disseminated primary disease, rather than true metastasis, which may explain the role for 

surgery in advanced disease. 

 

1.1.6. Symptoms of HGSOC 

 

Presentation with advanced disease has frequently been attributed to a lack of symptoms. 

HGSOC is often termed ‘the silent killer’ or described as ‘insidious’ in nature (Jasen, 2009). It 

is now recognised that symptoms do occur in all stages, with as few as 5 – 10% of women 

being asymptomatic at the time of diagnosis (Bankhead et al., 2005). A large case control 

study in England reported 85% of women were suffering symptoms that had been reported 

to their GP up to several months before a diagnosis was achieved (Bankhead et al., 2005). 
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This would suggest that education of common red flag symptoms for both patients and 

physicians would be of benefit. 

 

Unfortunately, even the most commonly reported symptoms of HGSOC such as abdominal 

distension, loss of appetite and urinary frequency do not display high positive predictive 

values (PPV) for a diagnosis (Bankhead et al., 2005).  

 

Advice regarding concerning symptoms varies greatly throughout guidelines. A recent 

systematic review assessing the variation in the initial assessment and investigation for 

ovarian cancer in symptomatic women described that in eighteen different guidelines, 

between four and fourteen symptoms were described as cause for concern, however only 

one symptom (abdominal distension) was consistent across all (Funston et al., 2019).  

 

The National Institute for Health and Clinical Excellence (NICE) guidelines advise further 

investigation for any women, but especially over the age of 50, presenting with the red flag 

symptoms listed in table 1.4. These symptoms are concerning if persistent, particularly more 

than twelve times per month (National Collaborating Centre for, 2011). Once a red flag has 

been identified, the patient is then commenced on the ovarian cancer investigation pathway 

(figure 1.5), and further treatment will be dependent upon individual results.  

 

 

Table 1.4 Red flag symptoms prompting further investigation by NICE 

Red flag symptoms 

Persistent abdominal distension (bloating) 

Feeling full (early satiety) and/or loss of appetite 

Pelvic or abdominal pain 

Increased urinary urgency and/or frequency 

New onset Symptoms of IBS (if over 50 years) 

Unexplained weight loss, fatigue or changes in bowel habit 

Concerns of pelvic malignancy on physical examination 

Adapted from (National Collaborating Centre for, 2011) 
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1.2 Initial referral and diagnostic pathway 
 
Once a patient presents to a clinician with red flag symptoms suggestive of ovarian cancer, 

table 1.4, UK guidelines recommend an initial serum test for Cancer Antigen 125 (CA 125) 

levels. CA 125 is widely distributed in adult tissues and is well established as part of initial 

investigations (Jacobs et al., 2016). The upper level cut off of 35 IU/ml is based on the 

distribution of values in 99.7% of 888 healthy men and women (Bast et al., 1983). CA 125 is 

raised in over 80% of epithelial ovarian cancer cases (Bast et al., 1983) and has a diagnostic 

sensitivity of 81% and specificity of 75% when a cut off of 35 IU/ml is used (Jacobs et al., 1990). 

Other tumour markers such as human epididymis protein 4 (HE4), carcinoembryonic antigen 

(CEA), CDX2, cancer antigen 72-4 (CA72-4), cancer antigen 19-9 (CA 19-9), alphafetoprotein 

(AFP), lactate dehydrogenase (LDH) and beta-human chorionic gonadotrophin (-HCG) have 

been suggested as biomarkers, and have shown varying promise in the initial assessment for 

the diagnosis of ovarian cancer. However, the evidence does not currently support their 

routine use (Abdel-Azeez et al., 2010; Huhtinen et al., 2009; Montagnana et al., 2009; Moore 

et al., 2008; Moore et al., 2009; National Collaborating Centre for, 2011; Nolen et al., 2010; 

Shah et al., 2009; Urban et al., 2012).  

 

If the CA 125 level is <35 IU/ml then the patient should be reassessed by the clinician. If 

symptoms persist, other causes should be considered. If symptoms resolve without 

intervention, no further investigation is required (National Collaborating Centre for, 2011). If 

CA 125 result is  35 IU/ml, the patient should proceed through the pathway and undergo a 

transvaginal ultrasound scan of the abdomen and pelvis (TVUSS abdomen pelvis). Patients 

under the age of 40 years should have additional serum levels of AFP and hCG to identify any 

non-epithelial lesions (National Collaborating Centre for, 2011). 

 

If initial physical examination identifies ascites and/or an pelvic or abdominal mass which is 

not obviously uterine fibroids, the patient should not undergo initial tests but instead be 

referred urgently to secondary care (National Collaborating Centre for, 2011). 

 

Ultrasound is the preferred modality for first line investigation of ovarian cancer, with TVUSS 

being preferable over abdominal ultrasound scanning. If a large pelvic mass is present both 
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scans should be undertaken ("ACOG Practice Bulletin. Management of adnexal masses," 2007; 

Leibman et al., 1988). 

 

Once a TVUSS has been undertaken, a risk of malignancy index (RMI) should be calculated. 

There are currently four published RMI scores (RMI I, RMI II, RMI III and RMI IV), however RMI 

I remains the most utilised, widely available and validated scoring system, with a sensitivity 

of 70% and specificity for malignancy  of 90% with an RMI cut off of 250 (Geomini et al., 2009). 

 

The RMI I combines three features: CA 125 level; the patient’s menopausal status; and a score 

calculated from the TVUSS (Jacobs et al., 1990), figure 1.4. If the RMI score is <250, the patient 

can be treated in a secondary care setting. However, if the RMI is >250, the patient must be 

referred for discussion at a specialised tertiary level multidisciplinary team (MDT) meeting 

(National Collaborating Centre for, 2011). 

 

If the RMI and clinical status suggest malignancy, further radiological staging by way of a 

computerised tomography (CT) scan of the abdomen and pelvis should be performed to 

establish the extent of the disease, with the thorax included if clinically indicated (National 

Collaborating Centre for, 2011). Neither magnetic resonance imaging (MRI), nor positron 

emission tomography/computed tomography (PET CT) are currently recommended as part of 

the standard diagnostic or staging pathway in the NHS (Fotopoulou et al., 2017). 
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Figure 1.4 Components and methods of calculating the risk of malignancy index 

Adapted from (Jacobs et al., 1990). 

 

If malignancy is suspected following all preliminary investigations, the patient should proceed 

for treatment. Pre-operative staging is undertaken radiologically via CT scan, however 

histological diagnosis is not mandatory, and often not achieved prior to upfront surgical 

treatment (Fotopoulou et al., 2017). As such, staging is often not fully completed until surgical 

treatment has been undertaken.  

 

Histological diagnosis should be confirmed before the commencement of chemotherapy, 

unless it would be inappropriate to do so. If a histological diagnosis is not achievable, 

chemotherapy can be commenced based upon a cytological diagnosis as an alternative 

(Fotopoulou et al., 2017). 

 

Overall summary of treatment pathway can be seen in figure 1.5.  

 

RMI = U x M x CA125
U = Ultrasound score

M = Menopausal status
CA125 = Measured in iu/ml

Ultrasound score
Score 1 point for each of;

Multilocular cysts

Solid areas
Metastases

Ascites
Bilateral lesions

U = 0 (Ultrasound score of 0)
U = 1 (Ultrasound score of 1)

U = 3 (Ultrasound score of 2-5)

Menopausal status
Premenopausal = 0

Postmenopausal = 1

Malignancy risk

RMI score < 25 = 3%
RMI score 25-250 = 20%

RMI score > 250 = 75%
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Figure 1.5 Summary of the initial treatment pathways for investigation and diagnosis of ovarian cancer 

Adapted from (National Collaborating Centre for, 2011). 
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1.3 Staging of ovarian cancer  
 

The final staging of ovarian cancer is achieved via a combination of radiological, histological, 

cytological and surgical investigation and management. For this reason, the final staging and 

diagnosis is often not known until treatment has been commenced. The International 

Federation of Gynaecology and Obstetrics (FIGO) staging system is routinely used in the UK, 

table 1.5. First published in 1973, the system was updated in 1988 and 2014 (Prat, 2015). 

 

Table 1.5 Summary of FIGO staging for ovarian cancer 

Adapted from (Prat, 2015) 

 

1.4 The role of the Multidisciplinary Team Meeting 
 

Multidisciplinary team (MDT) working was first introduced in the NHS in 1995 following the 

publication of the Calman-Hine report (Haward, 2006), and is defined as a ‘group of 

professionals from one or more clinical disciplines who together make decisions regarding 

recommended treatment of individual patients’ (Scott et al., 2020). MDT meetings provide a 

platform for discussion of patients’ results of radiological, histological and cytological 

investigations and decide upon best care with the benefit of all available information that 

might influence any decisions. MDT working is associated with increased survival rates, as 

well as increased recruitment into clinical trials (Fleissig et al., 2006). 

 

The make-up of a typical gynaecological oncology MDT, alongside patient information usually 

available for discussion, is shown in figure 1.6. Despite the plethora of patient and tumour 

FIGO Stage Disease distribution 

IA 
IB 
IC1/2 
IC3 

Limited to one ovary/fallopian tube 
Limited to both ovaries/fallopian tube 
Surgical spill/capsule rupture 
Malignant cells in ascites/peritoneal washings 

II  
 

Tumour involves one or both ovaries or fallopian tubes with pelvic extension  
(below pelvic brim/primary peritoneal cancer) 

III 
 
IIIA 
IIIB 
IIIC 

Tumour involves one or both ovaries or fallopian tubes or primary peritoneal cancer,  
with cytologically or histologically confirmed spread to the peritoneum outside of the pelvis 
+ microscopic extra-pelvic lymph node involvement 
+ macroscopic peritoneal metastasis beyond pelvis >2cm 
+ extension of tumour to capsule of liver or spleen, with no parenchymal involvement 

IV 
IVA 
IVB 

Distant metastasis excluding peritoneal metastasis 
Pleural effusion with positive cytology 
All other distant metastasis 
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factors available to aid this decision, the final treatment pathway is often decided based upon 

CT images and input from the radiologist (Scott et al., 2020). National guidance stresses that 

CT scans are not reliable markers for the prediction of surgical outcome and therefore should 

not be used in isolation (Fotopoulou et al., 2017). MDT discussion should be undertaken and 

documented prior to decision to operate for patients with suspected cancer in all but 

exceptional circumstances (Fotopoulou et al., 2017). 

 

 

Figure 1.6 Members of the MDT and available information at time of treatment decision. 

Left circle demonstrates commonly frequent members of the MDT and right circle the common patient and tumour 
information available to guide treatment decision making. 

 

1.5 Treatment of HGSOC 

 

The treatment for HGSOC is now a well-established combination of both surgical 

management, platinum-based and taxane chemotherapy, and targeted therapies. These 

treatments vary depending on the stage of the cancer at the time of presentation.  

 
 

1.5.1  A historic perspective of surgical management in ovarian cancer 
 
In 1685, the first oophorectomy to remove a necrosed ovary was described, the first time this 

procedure was used as a medical intervention (Bristow et al., 2016). In Glasgow in 1710, 

Surgeon Robert Houstoun described the case of a patient with a distended abdomen and his 
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subsequent removal of a large ovarian mass through an abdominal incision. However, 

Houstoun claimed to have only removed the mass, not the ovary itself. Inspired by Houstoun, 

surgeons Hunter and Bell, also in Glasgow, described the principles of oophorectomy for 

ovarian disease in the 1700s, although there is no evidence either actually performed the 

procedure (Bristow et al., 2016). In 1809, a 46-year-old mother of four, Jane Todd Crawford, 

sought help from American-born Glasgow-trained surgeon Ephraim McDowell. Jane was 

suffering with abdominal distension and was diagnosed with a large ovarian mass (Bristow et 

al., 2016). In a time before anaesthetic and much awareness of aseptic technique, McDowell 

performed what was known as an ‘ovariotomy’ to remove the mass on his own kitchen table 

with little more than a dose of opium for analgesia and sedation (Barnett, 2016).  

 

At this time any surgery, not least intra-abdominal surgery, came with very high mortality 

rates. However, Lister’s discovery of carbolic acid as an antiseptic, alongside the development 

of anaesthetic in the late 1800s (Robinson & Toledo, 2012; Worboys, 2013) opened many 

doors for progress in surgery, with the 100 years following known as ‘the century of the 

surgeon’ (american cancer society: evolution of cancer treatments:surgery.; Robinson & 

Toledo, 2012).  

 

By the 1870s, surgical technique had developed and procedures entering the abdominal 

cavity were significantly less perilous. However, at this time, surgery was not the mainstay of 

treatment for ovarian cancer, as it was not believed to confer any survival benefit to the 

patient. Tait challenged this resistance, and championed the surgical approach proposing the 

‘exploratory laparotomy’ as a method to determine if an ovarian mass was cancerous, an idea 

that was met with opposition.  

 

This resistance to surgical management of ovarian cancer continued until the 1900s, when 

with the establishment of chemotherapy, Meig proposed that there may be benefits to 

removing as much tumour as possible in order to enhance the benefits of post-operative 

chemotherapy, a concept that became known as cytoreduction (Bristow et al., 2016).  

 

The principles of cytoreductive surgery that we know today, to remove all residual disease, 

often with surrounding lymph nodes and other tissue, was originally developed by 
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Halsted(american cancer society: evolution of cancer treatments:surgery.)(american cancer 

society: evolution of cancer treatments:surgery.) with his work into the development of the 

radical mastectomy for breast cancer (Newmark, 2016). The transfer of these principles to 

the care of ovarian cancer was developed and by the 1970s, the established treatment for 

advanced ovarian cancer included a total abdominal hysterectomy, bilateral salpingo-

ophrectomy and omentectomy, and additional procedures such as bowel surgery to achieve 

cytoreduction (surgical resection). However, this treatment combination was not universally 

accepted (FA., 1949; Munnell, 1968).  

 

Radical and extensive surgery pre-chemotherapy to increase survival continued to be 

developed. In 1968, Munnell released the first study reporting the beneficial effects of 

cytoreduction and tumour volume in ovarian cancer patients (Munnell, 1968). This was 

echoed in 1975, when Griffiths published his landmark study which convincingly 

demonstrated an inverse relationship between residual tumour mass and patient 

survival,(Bristow et al., 2016; Griffiths, 1975). This was further supported by Hunter’s meta-

analysis in 1992, showing that whilst removal of tumour mass is related to survival, this 

benefit is significantly maximised when followed by platinum-based chemotherapy (Hunter 

et al., 1992), something also demonstrated by Bristow in 2002 (Bristow et al., 2002). These 

landmark studies paved the way for the goal of surgical treatment for HGSOC to be to leave 

no disease behind at the time of surgical intervention. 

  

Summary of development of surgical management over time can be seen in figure 1.7.  
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Figure 1.7 Timeline of the development of the surgical management of ovarian cancer 

 

1.5.2 A historic perspective of medical management in ovarian cancer 
 
Ovarian cancer was one of the first malignancies to be successfully treated with cytotoxic 

chemotherapy, reviewed in (Markman, 2008). Prior to 1970, alkylating agents, anthracyclines 

and antimetabolites such as melphalan, thiotepa and cyclophosphamide were the mainstay 

of treatment for ovarian cancer (Markman, 2003). It was during this time that the concept of 

multiple drugs being administered alongside each other and work synergistically originated 

(Markman, 2008).  

 

The 1970s saw the development of platinum-based therapy, with the discovery of cisplatin 

(Markman, 2008). During the 1980s, carboplatin was developed and proved itself to be not 
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only equally effective to cisplatin, but with a more favourable side-effect profile (Alberts et 

al., 1992).  

 

Alongside the development of carboplatin came the discovery of taxanes, with paclitaxel 

being the prototype. Early studies hoped that taxanes could play a role in women whose 

disease displayed platinum resistance (Markman, 2003). In 1996, a landmark trial reported 

cisplatin-paclitaxel combination therapy was superior to cisplatin-cyclophosphamide 

(McGuire et al., 1996). Further trials have confirmed this benefit with carboplatin-paclitaxel 

("Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent 

carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: 

the ICON3 randomised trial," 2002). This combination is still used in the majority of patients 

with HGSOC today. 

 

More recent years have seen the development of the administration of carboplatin via the 

intraperitoneal route (IP) as well as hyperthermic intraperitoneal chemotherapy (HIPEC), 

which shows promise alongside surgical management for disease affecting the peritoneal 

cavity (Riggs et al., 2020). The RCT GOG 172 (Armstrong et al., 2006) led to the 

recommendation that IP chemotherapy can be considered in the treatment of FIGO stage II-

III epithelial ovarian cancer following surgical treatment in some instances (Ledermann et al., 

2013). Despite promising results, IP chemotherapy and HIPEC are still considered 

experimental treatments by many, and further RCTs are needed. Their use is exceptional in 

the UK. 

 

Most recently, cancer treatments have become more focussed towards the development of 

targeted therapies. These therapies aim to specifically target the pathways abnormal in a 

particular cancer cell, and in turn spare the healthy cells from the cytotoxic effects. One of 

the most developed targeted therapies for HGSOCs are poly ADP ribose polymerase (PARP) 

inhibitors. The mode of action of PARP inhibitors relies upon the fact that approximately 50% 

of HGSOCs have a fault in the DNA repair pathway, homologous recombination (HR). Half of 

these tumours will present in patients with BRCA 1 and BRCA 2 mutations. As these tumours 

cannot repair via HR, and the drug inhibits their alternative method of repair, tumour cell 

death results.  
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Several RCTs have demonstrated the efficacy of PARP inhibitors as first-line maintenance in 

stage III/IV HGSOC in patients with germline or somatic BRCA mutations (Mahmood et al., 

2020; Moore et al., 2018). The SOLO-1 trial led to the recommendation that all patients 

presenting with HGSOC undergo germline and somatic BRCA testing, with maintenance 

Olaparib recommended for those whose tumour harboured mutant BRCA1/2 ((NICE), August 

2019). 

 

 

Figure 1.8 Timeline of the development of chemotherapy and its use in ovarian cancer 

Adapted from (Reid et al., 2017). 

 
 

These studies lead us to the standard of care for the treatment stage II-IV HGSOC recognised 

today; cytoreductive (disease debulking) surgery followed by chemotherapy (Wright et al., 

2016). Observational studies spanning over the last 50 years have consistently confirmed that 

overall survival in stage II-IV HGSOC is inversely proportional to residual disease at the end of 

a surgical procedure (Bristow et al., 2002; Griffiths, 1975; Hunter et al., 1992; Winter et al., 
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2008). Each 10% increase in complete surgical cytoreduction, confers an estimated increase 

of 5.5% in median survival (Bristow et al., 2002).   

 

The most desirable outcome from a cytoreductive procedure is to leave no visual disease, as 

this translates to maximum survival (Horowitz et al., 2015). Following cytoreductive surgery 

for HGSOC, the lead surgeon records the outcome of the surgery. This outcome is recorded 

as one of the following; complete cytoreduction (no visible/macroscopic disease remains), 

optimal cytoreduction (visible disease remains <1cm), or suboptimal cytoreduction (visible 

disease remains >1cm) (Horowitz et al., 2015; Vergote et al., 2010; Wright et al., 2016), table 

1.6. This decision is made by visual observation, rather than objective measurement or 

photographic evidence, leading to variation in assessment of residual tumour size between 

clinicians (Chi et al., 2007). 

 

Table 1.6 Outcome definitions depending on residual disease at the time of cytoreductive procedure 

 

  

 

 

 

The outcome of surgery depends on many factors, including patient selection, distribution of 

tumour deposits and surgical expertise and practice (Schorge et al., 2010). There is often 

debate regarding whether achieving a complete cytoreduction is reliant mainly on tumour 

biology or surgical technique (Eisenkop et al., 2003). The clear survival advantage of complete 

cytoreduction has led to increasingly aggressive surgical techniques in many units, with the 

rates of bowel resections, splenectomies, liver resections and diaphragmic stripping 

increasing significantly over the years (Jones et al., 2018). This increase in trends towards 

extensive surgery has led to concerns as to whether the associated morbidity is warranted. 

Increased morbidity in patients undergoing extensive procedures is reported to be as high as 

54.9%, compared with 22.8% in patients undergoing standard cytoreductive surgery (Rausei 

et al., 2019). Despite this, overall survival is increased in patients achieving complete 

cytoreduction, despite their increased morbidity (Rausei et al., 2019).   

  

Cytoreductive outcome Remaining disease 

Complete cytoreduction No macroscopic visible disease 

Optimal cytoreduction Macroscopic disease <1cm 

Suboptimal cytoreduction Macroscopic disease 1cm 
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1.5.3 Treatment of stage I HGSOC 

 

Patients with disease confined to the ovaries, see table 1.5., should undergo a full staging 

procedure, including a midline laparotomy to allow thorough assessment of the abdomen 

and pelvis, a total abdominal hysterectomy, bilateral salpingo-oophrectomy and infra-colic 

omentectomy, random biopsies of the pelvic and abdominal peritoneum and a 

retroperitoneal lymph node assessment (National Collaborating Centre for, 2011). Women 

with stage I disease that is deemed high risk (high grade or stage Ic) should be offered 

adjuvant chemotherapy consisting of six cycles of carboplatin (Colombo et al., 2003; National 

Collaborating Centre for, 2011).  

 

Depending upon histological stage and subtype, up to 30% of the patients with apparently 

early epithelial ovarian cancer will be upstaged following full surgical staging (Fotopoulou et 

al., 2017). Despite this, recommendations suggest that in young women, fertility sparing 

surgery can be considered following thorough discussion with the patient regarding the risk 

of recurrence (Fotopoulou et al., 2017). 

 

1.5.4 Treatment of stage II-IV HGSOC 

 

Currently, cytoreductive surgery for stage II-IV HGSOC should be performed as a midline 

laparotomy, and include the removal of the uterus and cervix (total hysterectomy), both 

fallopian tubes and ovaries (bilateral salpingo-oophrectomy), removal of the infra-colic 

omentum (omentectomy), removal of any other visible disease that is safe to remove, 

including bowel related disease, peritoneal disease and upper abdominal disease, and a full 

assessment of pelvic and para-aortic lymph nodes, figure 1.9. The routine removal of lymph 

nodes is not currently recommended, however any clinically enlarged or abnormal nodes 

should be removed in order to achieve complete cytoreduction (Fotopoulou et al., 2017). 
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Figure 1.9 Standard procedure for cytoreductive surgery in stage II-IV HGSOC 

 

The combination of primary debulking surgery (PDS), defined as cytoreductive surgery as the 

first line treatment, followed by 6 cycles of platinum based ± taxane chemotherapy ± 

maintenance therapy, remained the mainstay of treatment for many years. However, despite 

best surgical effort, a proportion of cases remain in which complete cytoreduction is deemed 

impossible. This often occurs when the perceived morbidity and mortality risks of the surgery 

are thought to outweigh the benefits. In response to these cases, the concept of neoadjuvant 

chemotherapy (NACT) with interval debulking surgery (IDS) was developed. This treatment 

pathway sees the patient first undergoing 3 cycles of platinum based ± taxane chemotherapy, 

followed by a cytoreductive surgery. When the surgery occurs following 3 cycles of 

chemotherapy it is termed interval debulking surgery (IDS). The IDS consists of the same 

procedures and objectives as PDS: complete cytoreduction. In patients with large disease bulk, 

chemotherapy is potentially not always effective due to limited tumour blood supply, and 

therefore interval surgery is essential (van der Burg et al., 1995). Following IDS, the patient 

completes the remaining 3 cycles of chemotherapy ± maintenance therapies. A small 

proportion of patients undergo delayed IDS, that being surgery following 5 cycles of 

chemotherapy. However, these patients appear to have worse outcomes than with standard 

IDS, and for that reason surgery is not currently recommended following >4 cycles of 

chemotherapy(Thomas et al., 2022). 

 

The introduction of NACT/IDS as an alternative treatment pathway to PDS raised questions 

as to which pathway was superior. A meta-analysis of 835 patients in 2006 to compare 

outcomes between treatments concluded that patients undergoing NACT/IDS were 
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associated with worse outcomes (Bristow & Chi, 2006). This study then prompted two 

multicentre randomised phase III trials to adequately compare the two treatment options 

(Kehoe et al., 2015; Vergote et al., 2010). 

 

The first of these trials (carried out by the ‘European Organisation for Research and Treatment 

of Cancer’ (EORTC) group) recruited 670 late stage HGSOC patients between 1998 – 2006 and 

randomised between PDS and NACT/IDS, with the primary endpoint of overall survival (OS). 

The OS in the two groups were largely equivalent (hazard ratio 0.98 CI 90% and 1.01 CI 90% 

for NACT/IDS and PDS, respectively), although there did appear to be a slight (but not 

statistically significant) increase in post-operative morbidity in the PDS group (Vergote et al., 

2010).  

 

The second RCT (the CHORUS trial) recruited 550 women with late stage HGSOC between 

2004 – 2010, randomising between PDS and NACT with the primary end point of OS. They 

again concluded that OS in patients undergoing NACT was non-inferior to primary surgery 

(Kehoe et al., 2015). However, it was also reported that treatment related morbidity and 

mortality was significantly higher in the PDS patients (Kehoe et al., 2015).  

 

Both trials concluded that NACT/IDS is an acceptable alternative to PDS in women with 

advanced ovarian cancer. It is worth noting that any difference seen between groups in both 

these trials was very small, with both having very low ten year survival rates, as well as low 

complete cytoreduction rates (Narod, 2016). Inclusion into these trials was dependent upon 

the treating clinicians and patients were likely only included when treatment management 

was unclear. Therefore, patients who would very obviously been suited to one group rather 

than the other may not have been included, potentially leading to a skewed patient 

population. Due to this limited patient selection, extrapolation of the results of these trials 

across the entire ovarian cancer population warrants caution.  

 

Further analysis of EORTC data suggested that if patients have stage IIIc disease with less 

extensive metastasis, then they were likely to have better outcomes with primary surgery. 

However, those with stage IV disease or more extensive metastasis gained more survival 

benefit from NACT/IDS. Patients for whom a complete cytoreduction was not possible at the 
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time of PDS may live longer undergoing IDS (Gill et al., 2017; Horowitz et al., 2015). These 

findings led to the established treatment pathway; PDS should be the standard treatment of 

care, however if complete cytoreduction is thought to be unlikely, NACT/IDS should be 

considered as an alternative (Fagotti et al., 2013; Gill et al., 2017; Horowitz et al., 2015; van 

Meurs et al., 2013).  

 

In the UK, the decision as to the most appropriate first line treatment is currently made at the 

time of tertiary referral at the MDT meeting. NICE state that histological confirmation is not 

required if the patient is to undergo PDS (National Collaborating Centre for, 2011). If NACT is 

being considered as first line treatment, histological diagnosis should be sought, with biopsy 

the most common method. Tissue is obtained by way of radiologically guided, laparoscopic 

omental or peritoneal disease biopsy before the commencement of NACT (National 

Collaborating Centre for, 2011). If histological biopsy is not obtainable, then cytological 

diagnosis can be used, and is most often achieved through ascitic drainage or pleural effusion 

drainage. 

 

There remains no set guidance to aid this decision-making progress in the UK. A recent 

national audit comparing the treatment of stage II-V Ovarian cancer of over 13,000 patients 

in England between 2016 - 2018 highlighted significant discrepancies between cancer 

alliances. It revealed surgical rates varied between alliances (61.8% - 73.6%), that between 

29.6% and 20.7% of patients received no treatment at all. Five-year net survival rates varied 

between 28.6% and 49.6%, with patients who were statistically less likely to undergo surgery 

demonstrating lower than average survival. This audit highlights the heterogeneity in the UK 

of treatment for ovarian cancer, the impact this heterogeneity has upon patient outcomes, 

and the need for more uniform care.(Sundar et al., 2020) 

 

The summarised treatment pathway options adapted from current UK guidance can be seen 

in figure 1.10.  
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Figure 1.10 Flowchart outlining possible treatment pathways for stage II-IV HGSOC 

 

1.6 Factors affecting overall survival in HGSOC stage III/IV 
 
High grade serous ovarian cancer carries the poorest survival rates for all the subtypes of 

ovarian cancer, with an estimated 36% of patients dying of their disease within the first year 

of diagnosis (Barclay et al., 2016). Although 60% of HGSOC patients will have advanced 

disease that has extended outside of the pelvis at the time of diagnosis (CRUK, 2018), the 
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presentation of each patient is different. The disease biology and distribution will differ, as 

will the patient’s symptoms, and the physiological effect the tumour will demonstrate, 

biochemically, haematologically and physically.  

 

Outcome at the time of PDS and IDS has been well established as the most important 

independent prognostic markers of survival in late stage OC since Griffiths’ ground-breaking 

paper in 1975 (Griffiths, 1975; Romanidis et al., 2014; Marianne Jetske Rutten et al., 2015). A 

surgery resulting in minimal or no visible tumour equates to improved overall outcomes, with 

an increase in overall survival of over 60 months being achieved with a complete (no visible 

disease) cytoreduction compared to suboptimal outcomes (Bast et al., 1983; Delgado et al., 

1984; Griffiths, 1975; Griffiths et al., 1979; Hacker et al., 1983; Hacker & Rao, 2017; Piver et 

al., 1988).  

 

More radical surgery, including more extensive upper abdominal surgery, is associated 

with increased debulking rates, and in turn increased overall survival (Aletti, Dowdy, et al., 

2006; Chi et al., 2009). It is well established that surgical heterogeneity exists, not only on 

an individual level within units, but also between units, and even countries (Aletti, Gostout, 

et al., 2006; J. M. Janco et al., 2015; Jones et al., 2018). The tendency of the surgeon 

towards performing radical procedures has been found to be associated with optimal 

cytoreduction (Aletti, Gostout, et al., 2006). Range of debulking rates between surgeons 

can be marked (42-67%) depending upon their surgical tendencies (Aletti, Dowdy, et al., 

2006). Over time, the radicality of surgery for ovarian cancer has increased, and surgery 

including bowel surgery, peritoneal and diaphragmatic stripping being described as ultra-

radical (Baxter et al., 2019; Lheureux et al., 2019). Ultra-radical surgery performed by sub-

speciality trained gynaecological oncology surgeons increases mean survival and 

progression free survival, however can be offset by an increase in post-operative morbidity 

(Baxter et al., 2019).   

 

Aside from surgical outcome, there are many other factors that have demonstrated an effect 

on survival or predict treatment response. These factors can be helpful to guide treatment 

pathway decisions and design an individualised treatment plan for each patient. 
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1.6.1 Geographical and socioeconomic factors 
 

Survival in HGSOC varies greatly on a worldwide scale. However, when compared with other 

countries, patients treated in the UK have lower survival (Doufekas & Olaitan, 2014). This 

geographical variation could reflect the UK’s lower optimal surgical cytoreductive rates when 

compared to other European countries (Doufekas & Olaitan, 2014), or could also be 

attributed to the increasing financial pressure within the NHS. 

 

Socioeconomic background has also been linked with ovarian cancer survival. A recent UK 

study assessing survival in relation to a patients’ Index of Multiple Deprivation (IMD), defined 

by postcode and addressing factors such as access to healthcare, education, financial state, 

reported that patients from a more deprived background had on average poorer survival rates. 

Patients from this group were also more likely to refuse intervention for their disease (Phillips 

et al., 2019). These findings were echoed by the National Cancer Intelligence Network in the 

UK, who showed that patients who presented as an emergency and who had poor 

socioeconomic status suffered poorer survival (NCIN, cited 2018). As well as emergency 

presentation, access to healthcare has also been linked to poor survival. Patients who were 

unable to access specialist care had worse outcomes in the United States of America (USA) 

(Urban et al., 2016). However as this was in the USA, this observation was not seen within a 

comprehensive universal care system such as the NHS. As well as access to care, treating 

patients in hospitals with National Cancer Centre status leads to better adherence to 

guidelines and is also reported to improve outcomes (Bristow et al., 2015; Khoja et al., 2016).  

 

Despite a widespread belief that rapid decline and poor outcome is associated with delays in 

diagnosis or commencement of treatment, there is sparse evidence in the literature to 

support this, with only a few small studies reporting outcomes reflecting this viewpoint 

(Kirwan et al., 2002; Urban et al., 2016). A case control cohort study recently disputed this, 

demonstrating that treatment delays were not associated with poor short-term survival 

(Hawarden et al., 2021). Prompt referral to specialist care from primary care following the 

presentation of a patient experiencing red flag symptoms is linked to survival (Rose et al., 

2015). 
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1.6.2 Patient pre-morbid state  
 

In common with many cancers, survival for patients with ovarian cancer is inversely 

associated with age; women aged 75 – 99 years at the time of diagnosis display the lowest 3 

year age specific survival of between 20 – 34% (Cabasag et al., 2020; Chang et al., 2018; 

Macnab, 2018; NCIN, cited 2018; O'Malley et al., 2012; Urban et al., 2016). Older women are 

also more likely to present with advanced disease (Cabasag et al., 2020), and this, alongside 

the increasing co-morbidities seen in older patients (Janssen-Heijnen et al., 2005) could be 

further compounding this effect.  

 

Increasing age is associated with increasing co-morbidities, however the presence of 

significant co-morbidities in women, when age, stage and socioeconomic factors are adjusted 

for, can increase this risk of death by as much as 40% (O'Malley et al., 2012). There is 

conflicting evidence as to the association between increased body mass index (BMI) and 

mortality in ovarian cancer, with a large systematic review and meta-analysis suggesting a link 

between obesity and increased mortality (Yang et al., 2011). However, Zhou et al reported 

that although increased activity levels pre-diagnosis could decrease ovarian cancer specific 

mortality by 26%, BMI itself had no effect on mortality (Zhou et al., 2014). 

 

1.6.3 Distribution of disease at time of presentation  
 
Histological type of ovarian cancer plays a large role in a patient’s survival, with the majority 

of type I tumours, excluding clear cell cancer, displaying overall significantly better survival 

than type II tumours. Of all the histological subtypes, HGSOC and clear cell tumours appear 

to have the worst outcomes. Clear cell tumours affect a proportionately younger cohort, 

usually at an earlier stage, and HGSOC an older cohort and at a later stage. Tumour cell type 

is the most useful histological prognostic marker for ovarian cancer (Ezzati et al., 2014).  

 

It is well recognised that increasing stage of disease at the time of presentation has a negative 

effect on survival. The FIGO staging system used in ovarian cancer has been extensively 

studied (Benedet et al., 2000) and is well recognised as a surrogate marker for survival (Ezzati 

et al., 2014), with five year survival falling from 95% for stage I down to just 15% for stage IV 

disease (CRUK, 2018). The presence of ascites at the time of diagnosis, even with early stage 
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disease, is associated with significantly worse mortality than those where ascites is not 

present  (Ezzati et al., 2014). This effect remains when early stage cancers are excluded from 

analysis, with presence of ascites alongside stage III and IV disease remaining as an 

independent marker of poor survival (Puls et al., 1996).  

 

Whilst FIGO staging describes the anatomical position of the tumour distribution, it does not 

address volume of disease, termed ‘disease burden’. A high pre-operative disease burden is 

an independent negative prognostic indicator, even when complete cytoreduction is achieved 

at the time of surgery (Horowitz et al., 2015). 

 
 

1.6.4 Pre-treatment haematological markers 
 

Many pre-treatment serum blood parameters have been associated with survival in ovarian 

cancer. Low serum albumin at the time of presentation is a surrogate marker for poor 

nutritional status, and has been associated with poor OS and progression free survival (PFS), 

as well as increased rates of surgical site infection and prolonged post-operative hospital stay 

(Ge & Wang, 2018; Koirala et al., 2020). A raised pre-operative fibrinogen level and platelet 

count are associated with worse outcomes, with a pre-operative platelet count above 289 

x109/L demonstrating a significantly shorter OS (37.3 VS 46.1 months, HR 1.14 95% CI 0.89 – 

1.46, P=0.306) (Feng et al., 2016; Wahner Hendrickson et al., 2015). A high neutrophil-

lymphocyte ratio (NLR) has also been associated with increased survival (Ashrafganjoei et al., 

2016; Feng et al., 2016; Zhou et al., 2017). A low haemoglobin (Hb) (<120g/L) pre-operatively 

has also been linked to worse overall survival and a higher risk of recurrence (Obermair et al., 

2000; Warner et al., 2013). Correction of this anaemia with a blood transfusion has been 

shown to worsen rather than improve OS, which may be a reflection of the initial low Hb being 

a marker of more advanced disease (Pergialiotis et al., 2020). 

 

CA 125 has been extensively studied in ovarian cancer and plays a role in the diagnostic 

pathway, monitoring of chemotherapy response as well as detection of relapse (Chang et al., 

2016; Chen et al., 2019). A review assessing the role of CA 125 in predicting survival in ovarian 

cancer described an inverse relationship between level at diagnosis and OS. The prognostic 
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value was stronger for levels in response to treatment than pre-treatment levels (Gupta & Lis, 

2009). The same findings are echoed for HE4, which displays some prognostic value at pre-

treatment levels, the change to levels in response to treatment have a higher predictive value 

(Chudecka-Glaz et al., 2014). 

 

1.7 Genomics in ovarian cancer 
 

Following advances in and decreasing costs of sequencing technologies, understanding of the 

molecular basis of ovarian cancer has improved. While surgery and platinum-based 

chemotherapy remain the backbone of ovarian cancer treatment,  platinum resistant cancers 

recur in approximately 25% of patients within six months, creating the urgent need for 

alternative therapies (Miller et al., 2009).  

The Cancer Genome Atlas Programme (TCGA) analysed messenger ribonucleic acid (RNA) 

expression, microRNA expression, promoter methylation and DNA copy number in 489 

HGSOC tumour samples, and performed exon sequencing on 316 of the tumours (TCGA, 2011). 

Almost all tumours contained TP53 mutations as well as extensive copy number variation 

(TCGA, 2011). Approximately half of HGSOC tumours are associated with a deficiency in the 

homologous recombination (HR) pathway, with approximately half of these tumours (20% 

overall) containing a mutation in the BRCA 1 and BRCA 2 genes (Hudson et al., 2010; 

"Integrated genomic analyses of ovarian carcinoma," 2011; Mukhopadhyay et al., 2012; TCGA, 

2011). These mutations can be germline (identified in the patient serum sample), and 

therefore contribute to an inherited pre-disposition, or are somatic (identified in the tumour 

sample only) in origin. 

Chromosomal instability is the hallmark of a HGSOC cell. Cell DNA damage occurs as either a 

single strand or double strand break, and mammalian cells utilise one of five mechanisms to 

identify and repair DNA damage. Single strand breaks are repaired by mismatch repair (MMR), 

base excision repair (BER) and/or nucleotide excision repair (NER). Double strand breaks are 

repaired by HR and/or non-homologous end joining (NHEJ). It is likely that all HGSOC contain 

a defect in at least one of these pathways (Gee et al., 2018). 

At present only a defect in the HR pathway has been utilised as a predictor of response to 
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therapies (Gee et al., 2018). Patients who harbour a defect in their HR pathway (HRD) have a 

better overall survival, and better response to treatment with platinum based chemotherapy, 

as well as PARP inhibitors (Macintyre et al., 2018). This survival advantage was at first thought 

to be limited to patients with a BRCA mutations, but it is now accepted that this advantage 

holds true for all HRD tumours (González-Martín et al., 2019). 

In order to establish whether a patient or tumour has a deficiency in the HR pathway, one of 

three methods is used: 

1. Gene panels - detection of germline or somatic mutations in genes in the HR pathway; 

2. Surrogate tests - detecting genomic scars or mutational signatures representing 

patterns of genomic instability; or 

3. Functional tests - checking the function of RAD51 localisation to sites of DNA damage 

(Chiang et al., 2021). 

The most commonly included genes in panels for HRD are BRCA 1 and BRCA 2, with 17% of 

HGSOC patients carrying a germline mutation in these genes. It is important to test for both 

germline and somatic BRCA mutations, as a further approximately 6 - 7% of patients with a 

negative germline test will have a somatic mutation (Chiang et al., 2021). Although an isolated 

somatic mutation does not have the inherited implications for the patient and their family, 

these patients would be suitable for PARP inhibitor therapy, and it is therefore important to 

identify them. Although BRCA 1 and BRCA 2 are the most common gene defects, 

approximately 28% of patients will have aberrations in other genes involved in the HR 

pathway (Chiang et al., 2021). The TCGA devised a gene signature of 16 genes involved in the 

HR pathway, to be assessed to determine HR status (BRCA1 BRCA2 C11of30 PTEN RAD51 ATM 

ATR PALB2 FANCA FACCI FANCL FANCD2 FANCE FANCG FANCM). The inclusion of PTEN was 

noted to be contentious as its exact role in the HR pathway remains controversial, a belief 

supported by several other recent studies (Bian et al., 2018; Huang et al., 2018; Hunt et al., 

2012; TCGA, 2011). A major challenge in using gene panels to test for HR status is the 

annotation of variants of uncertain significance (VUS). In the broader gene panel tests, the 

functional and clinical impacts of most individual mutations in the genomic loci have not been 

well characterized (Chiang et al., 2021). For this reason, there is currently no single agreed 

gene panel for HRD. 
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Surrogate tests identify permanent genomic scars or mutational signatures caused by the 

genetic variations as a result of defects in the HR pathway (Lord & Ashworth, 2012). These 

genetic variations generally consist of either copy number variants, single nucleotide variants, 

and small insertions and deletions (Chiang et al., 2021). The myChoice CDx (Myriad Genetics) 

and Foundation Focus CDx BRCA LOH (Foundation Medicine) are the two most commonly 

available next-generation sequencing (NGS) assays (Frampton et al., 2013; Telli et al., 2016). 

 

With ever-increasing evidence highlighting the importance of HRD status in predicting a 

patient’s response to treatment, a faster, cheaper and more widely available functional assay 

would be beneficial. There are currently two commercially available functional HRD tests 

(Pellegrino et al., 2019), with many groups publishing their own methods. The majority of 

these tests include inducing DNA-damage ex vivo and detecting the nuclear localisation of 

RAD51 to assess HR status (Graeser et al., 2010; Mukhopadhyay et al., 2010; M. Tumiati et al., 

2018).  

1.8 Existing predictors of surgical outcome in ovarian cancer 

 
Complete cytoreduction is the overriding goal of surgical treatment, with OS being 

compromised if this is not achieved (Horowitz et al., 2015; Rose et al., 2004). If complete 

cytoreduction is not likely to happen at the time of PDS then IDS holds a survival advantage 

(Chern & Curtin, 2016; van Meurs et al., 2013). Therefore, the clinical need exists to develop 

a method or tool with the ability to predict the cytoreductive outcome of surgery. In current 

clinical practice, the rate of suboptimal cytoreduction ranges broadly between 9 – 65% 

(Horowitz et al., 2014; J. M. Janco et al., 2015). The patients suffering suboptimal 

cytoreduction at the time of PDS may have had improved survival and lower morbidity if they 

had undergone IDS and may have not benefitted from a surgery at all. Any pre-operative 

prognostic tool developed would need to reduce this percentage.  

 

There have been many studies investigating the predictive ability of multiple modalities, both 

individually, and combined to create prediction models. Many have sought to predict those 

patients who will have suboptimal outcomes at the time of surgery, in the hope that if these 
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patients are identified pre-operatively, they can be instead redirected towards NACT/IDS. 

Other models have attempted to predict those patients who will have complete outcomes, 

as a way to direct those patients strongly towards PDS. The models incorporate a variety of 

modalities including patient characteristics, biochemical markers, radiological findings and 

disease distribution at the time of laparoscopy.  

 

1.8.1 Biochemical predictors 
 

The ability of serum biological predictors, taken via a relatively non-invasive low risk blood 

test, as a tool for prediction of optimal cytoreduction would be an attractive concept. CA 

125 is a marker routinely tested as part of the standard diagnostic pathway in patients with 

suspected ovarian cancer (Ledermann et al., 2013) and therefore is a marker widely 

available for assessment. CA 125 is therefore the most commonly investigated marker in 

the literature.  

 

A meta-analysis performed by Kang et al (2010) summarised findings of CA 125 as a marker 

for OC, identifying 14 studies incorporating 2,192 patients. They found that none of the 

investigated CA 125 cut off levels were able to predict the success of optimal cytoreduction 

and concluded that the sole use of CA 125 to aid the clinical decision of treatment route 

was inappropriate (Kang et al., 2010).   

 

There have been multiple small studies investigating many other clinical variables, and 

their use as predictors of surgical cytoreductive status, with limited success. These include 

gene expression data (Abdallah, Chon, et al., 2015; Berchuck et al., 2004), biological 

markers such as YKL-40, bcl-2, cathepsin L (Chudecka-Glaz et al., 2014), ADH 1B and FABP4 

(Tucker et al., 2014), peritoneal vascular endothelial growth factor burden (Diniz Bizzo et 

al., 2010), the use of proteomic panelling (Risum et al., 2009), the neutrophil-lymphocyte 

ratio (Wang et al., 2015), as well as simple haematological markers such as albumin (de 

Jong, Eijkemans, Lie Fong, et al., 2007). Of the above, albumin and the biological markers 

ADH 1B and FABP4 show the most promise, although both studies incorporated only very 

small numbers, and are yet to be validated. 
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1.8.2 Radiological predictors 
 

The most frequently investigated modality in the prediction of surgical outcome is 

radiology. This is likely owing to the fact that patients have a CT scan as routine pre-

operative management. There have been 30 studies investigating imaging in the last 20 

years, with all but two focussed upon computerised tomography (CT) as the modality of 

choice.  

 

A systematic review of models created to predict cytoreductive surgery outcomes in 

patients with FIGO stages III and IV ovarian cancer using CT imaging variables (M. J. Rutten 

et al., 2015) identified 11 models that had been developed before this date. Only one 

model maintained its predictive accuracy when internally validated (C. G. Gerestein et al., 

2011). None were successfully externally validated.  

 

1.8.3 Diagnostic laparoscopic prediction 
 

The principle of diagnostic laparoscopy as a predictor of surgical outcome combines the 

advantage of real-time assessment with the ability to obtain tissue biopsy to establish a 

definitive histological diagnosis. It is not currently part of the treatment pathway used in 

the UK, however patients do on occasion have a pre-debulking surgery laparoscopy to 

obtain a histological biopsy, although only usually if treatment is leaning towards NACT 

and IDS.  

 

There have been significant concerns raised regarding the safety of laparoscopies in 

gynaecological cancer surrounding the occurrence of port site metastasis (PSM) 

(Manvelyan et al., 2016). There are several hypotheses that attempt to explain the cause 

of PSM, including immune response, spread by pneumoperitoneum, and wound 

contamination (Manvelyan et al., 2016). It is accepted that in general, oncology patients 

who develop PSMs are associated with poor outcomes (Manvelyan et al., 2016). Although 

a meta-analysis of 11,027 patients with a malignancy found the rate of PSM to be low (<2%) 

(Manvelyan et al., 2016), it is suggested that patients who are at highest risk are those with 

disease of ovarian or peritoneal origin, the presence of ascites, and biologically aggressive 



 48 

disease (Manvelyan et al., 2016). Vergote et al studied rates of PSM in 173 patients with 

ovarian cancer undergoing laparoscopy in 2005. They found an increased rate of  PSM in 

this cohort, although did not find this to be associated with poorer outcomes (Vergote et 

al., 2005). 

 

An economic analysis to evaluate the cost-effectiveness of diagnostic laparoscopies was 

conducted in 2017. This measured both direct medical costs alongside health outcomes by 

way of quality-adjusted life-years. They concluded that the rates of futile laparotomies 

could be reduced, without increasing direct medical health care costs or adversely affecting 

complication rates or quality of life (van de Vrie et al., 2017). 

   

1.8.4 Inclusion of surgeon heterogeneity in prediction 
 

Several studies have demonstrated that more radical surgery, including more extensive 

upper abdominal surgery, is associated with improved cytoreduction rates, and in turn 

increased overall survival (Aletti, Dowdy, et al., 2006; Chi et al., 2009). It is well established 

that surgical heterogeneity exists, not only on an individual level within units, but also 

between units, and even between countries (Aletti, Gostout, et al., 2006; J. M. Janco et al., 

2015; Jones et al., 2018). Multiple prediction models have been developed, incorporating 

a wide variety of clinical data. However only two studies incorporate and address the issue 

of surgeon heterogeneity. It has been suggested that in excluding this factor, all prediction 

models will be unsuccessful, as cytoreduction rates rely so heavily on surgical practice 

(Aletti, Dowdy, et al., 2006). 

 

1.9 Summary 
 
Patients diagnosed with HGSOC face bleak survival outcomes. Their cytoreductive outcome 

is an important prognostic marker of survival. There are two well-established treatment 

pathways in the treatment of advanced stage HGSOC; PDS and NACT/IDS. Both pathways 

are a combination of both surgery and chemotherapy, and it is widely accepted that 

patients who achieve complete surgical cytoreduction benefit from an improved OS, 

especially if this is achieved at primary surgery.  
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For this reason, there have been a plethora of prediction scores and models developed 

aiming to predict both good and bad surgical outcomes in order to correctly triage each 

patient towards the treatment pathway that will give them the best survival chance. 

However, despite being widely researched there have to date been no robustly, externally 

validated models that would be of use in clinical practice. Therefore, at present clinical 

acumen remains the mainstay of treatment decision-making in UK practice. Despite this, 

there are a consistent percentage of patients that undergo only optimal or suboptimal 

cytoreduction, and therefore potentially have their survival outcome compromised due to 

the course of treatment they received. 

 

A limitation of existing prediction models is the failure to be successfully externally 

validated on a cohort that differs to the one on which they were developed. It is possible 

that developing a model that has been built using very locally specific patient 

demographics and surgical practice heterogeneity renders it non-transferrable to a 

different population. There has been promising work utilising immunohistochemistry as a 

predictor, as well as laparoscopic scoring systems. Additionally, models appear to increase 

in their accuracy as more modalities are introduced. Despite dramatic advancements in 

genomic medicine over recent years including the recent completion of the 100K Genome 

Project in the UK, there have been very few prediction models utilising genomic data. 

 

An ideal surgical outcome prediction tool should have the ability to accurately predict 

surgical outcome, whilst being transferable between different patient populations, 

regardless of surgical practice or patient demographic. It should include data that is readily 

available to clinicians, with minimal increased procedures. It should be quick to perform, 

to avoid the delay of initiating treatment.  

 

Such tool could be further enhanced by the incorporation of artificial intelligence (AI). AI 

would allow a prediction tool to be adaptive, and learn and develop from its own dataset, 

as patient demographics change and surgical trends develop. Therefore, increasing in 

accuracy over time as the dataset increases in number. By developing a tool that is multi-
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modal and self-adapting depending upon individual patient characteristics and current 

surgical practice, emphasis shifts from a ‘one tool fits all’ towards ‘individualised’ medicine.  
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2 Hypothesis, aims and objectives 
 

2.1 Hypotheses 
 

1. There is currently a dearth of surgical prognostic models which correctly and accurately 

predict cytoreduction in PDS in HGSOC patients. Models which have been validated are 

unlikely to further validate when applied to populations with differing surgical practice.  

 

2. The improved survival of patients with a defective homologous recombination pathway 

may be further accounted for by improved surgical outcome.  

 

3. By combining all available patient, tumour and surgeon data, a prognostic surgical tool will 

improve predictive accuracy and allow successful validation.  

 
 

2.2  Aims 
 

1. Comprehensively assess all currently existing surgical prediction tools in high grade 

serous ovarian cancer. 

2. Develop biological predictors to predict surgical outcome in high grade serous ovarian 

cancer. 

3. Develop a novel surgical prediction tool in HGSOC. 

 

2.3 Objectives 
 

1. Perform a systematic review of all pre-existing published surgical prediction models. 

2. Externally validate a published three protein surgical prediction gene panel using 

immunohistochemistry using a separate large cohort of tumour samples. 

3. Explore the surgical predictive value of HR status in high grade serous ovarian cancer 

tumours. 

4. Develop novel multimodality surgical prediction model for patients with stage III and 

IV HGSOC.  
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3 Materials and methods 
 

3.1 General laboratory practice 
 
All experiments were performed to university standards for safe working with chemical 

substances in laboratories, which comply with the Control of Substances Hazardous to Health 

(COSHH) Regulations 2002.   

 

3.2 Systematic review 

 
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines 

were followed to ensure transparency and quality of reporting in the systematic review 

(Liberati et al., 2009). The research question was formulated and defined using the following 

PICOS strategy (Eriksen & Frandsen, 2018):  

 

• Population: Patients of any age, with suspected/confirmed epithelial ovarian cancer 

FIGO stage I-IV who are being considered for PDS;  

• Intervention/Exposure: Primary debulking surgery;  

• Comparator: Not applicable; 

• Outcome: Prediction of surgical debulking status using definitions as set out in table 

1.5 (complete - no macroscopic disease, optimal - 1cm disease, suboptimal - >1cm 

disease);  

• Study design: Pre-surgical prognostic prediction models incorporating more than one 

predictor.  

 

The goal of the review was to systematically search and summarise all available multi-

predictor prognostic models aimed at pre-operatively predicting cytoreduction status in stage 

II-IV epithelial cancer in primary debulking surgery. 

 

3.2.1 Literature search strategy 
 
The original literature search was undertaken in February 2020 and included the databases 

MEDLINE, EMBASE and Web Of Science. Full search strategy is outlined in figure 3.1. 
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Figure 3.1 Search strategy to identify relevant studies 

Performed February 2020  

3.2.2 Inclusion and exclusion criteria 
 
Pre-specified inclusion criteria were set out to determine the inclusion of abstracts and 

articles. Inclusion criteria were peer-reviewed original studies presenting models for the pre-

operative prediction of surgical outcome (complete, optimal or suboptimal) at the time of 

primary debulking surgery in newly diagnosed epithelial ovarian cancer stage II-IV. Models 

were required to include more than one predictor. Models or studies evaluating the 

predictive ability of individual predictors were excluded. English language was required, and 

the publication date considered was from 1 January 2010 to 1 February 2020. Models 

included could be at the development stage and internally or externally validated, either by 

the original developers or external groups. Studies reporting amendments or improvements 

to previously reported studies were also included. 

 

3.2.3 Selection of studies 
 
Titles and abstracts of references identified by the search strategy above were independently 

reviewed by two reviewers, A. Hawarden (AH), thesis author and B. Russell (BR), post-

doctorate researcher, according to the aforementioned eligibility criteria. This was followed 

by a full-text review by AH. 

 

 

EMBASE search MEDLINE search Web of science search
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3.2.4 Data extraction 
 

A standardised data extraction spreadsheet was developed, and data were collated in excel. 

Data extraction of the first reference was first performed to assess the relevance of the data 

extraction spreadsheet. Following this, relevant data were extracted by AH. The extraction 

was performed according to the Checklist for critical Appraisal and data extraction for 

systematic Reviews of prediction modelling Studies (CHARMS) (Moons et al., 2014). Data 

collected therefore included manuscript general information, population description, 

characterisation of predictors and outcome, model development, model performance, results 

and conclusions. 

 

3.2.5 Risk of Bias 
 
Quality and risk of bias of each study was assessed by AH using the Prediction Model study 

Risk Of Bias Assessment Tool (PROBAST) (Wolff et al., 2019). This tool is designed specifically 

for systematic reviews of prediction models. Risk of bias was assessed through questions 

regarding several domains: participants, predictors, outcome and analysis. The questions 

were answered as either ‘high risk of bias’, ‘low risk of bias’, or ‘unclear risk of bias’.  

 

3.2.6 Data collation 
 
Data were collated in excel, and all analysis performed using Prism 9 for macOS version 0.2.0.  
 

3.3 External validation of a three-protein signature 
 
Permissions for the replication of data from the original paper were sought and secured. 

Ethics approval for the use of tissue samples and corresponding clinical data from the ICON5 

study were also in place at the start of the study appendix B. 

 

Examples of patient consent forms allowing the procurement of patient samples included in 

the Manchester ovarian cancer homologous recombination (MOCHR) database, as well as 

collection of clinical data can be found in appendix C. 
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All lab practice including immunohistochemistry (IHC) protocol, antibody concentrations and 

scoring were performed in keeping with the original paper.  

 

We applied to gain access to the biorepository associated with the ICON5 study, a large 

number of original tumour slides from UK recruiting centres, along with a limited amount of 

demographic data and surgical outcomes. The tissue samples made available to our group 

consisted of pre-cut plated and paraffin fixed samples that were collected at the time of 

surgery within the trial. These samples were stored at room temperature. 

 

Clinical data corresponding to tissue samples were provided by the Medical Research Council 

Clinical Trials Unit (MRC CTU) as an excel spreadsheet. All clinical data including surgical 

outcomes remained unknown to the author until the time of data analysis. 

 

3.3.1 Immunohistochemistry 
 
All antibodies used were in line with working concentrations used in the original paper by 

Riester et al (Riester et al., 2014) whenever possible and were as follows; Anti- POSTN 

1.25g/mL Oxford biosystems (RD18104050), Anti- CXCL 14 2.5g/mL ab46010, abcam, 

Cambridge, UK, Anti- phosphor- Smad2, cell signalling Tech (3108S). All primary antibodies 

were raised in rabbit.  

 

The initial antibody concentration optimisation was performed by hand by AH. The IHC 

staining of slides for the final validation was performed by the lab group led by Garry Ashton 

in the Cancer Research UK Manchester institution using the BOND-III automated IHC stainer. 

The automation resulted in greater standardisation and is the preferred method for large 

sample numbers. 

 

Slides were stored at room temperature, pre- cut and paraffin fixed since the time of inclusion 

in ICON5 study (2001 - 2004). 

 

The three-layer avidin–biotin technique was used. Each slide was stripped of paraffin by 

immersion in Histoclear for 30 minutes and rehydrated through graded concentrations of 
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ethanol for 3 minutes at 100%, 100% and 70%. Endogenous peroxidase was quenched with 

3% hydrogen peroxide. The slides were washed in phosphate-buffered saline prior to heat-

induced epitope retrieval by boiling covered samples in 400ml 0.01% sodium citrate buffer 

pH 6.0 in a microwave for 2 x 5 minutes, cooled for 20 minutes and washed for 5 minutes. To 

reduce background staining, the slides were blocked with 5% bovine serum albumin in Tris 

buffered saline for 30 minutes at room temperature. Primary antibodies, diluted in 

phosphate-buffered saline and used at optimisation concentrations were applied overnight 

at 4C. As a negative control, primary antibody was substituted with non-immune rabbit IgG.  

 

The slides were washed in phosphate-buffered saline to remove excess primary antibody and 

a concentration 1g/ml of secondary antibody applied to the slides for 30 minutes at room 

temperature. After washing off secondary antibody, slides were incubated with avidin biotin 

complex (50l avidin, 50l biotinylated horseradish peroxidase, 2.5ml phosphate buffered 

saline) for 30 minutes before being washed with phosphate-buffered saline. Slides were then 

further incubated with 1-3 drops of peroxidase substrate (1.6ml distilled H2O, 5 drops 10x 

substrate buffer, 1 drop 50 x 3,3’–Diaminobezidine Tetrachloride, 1 drop 50x peroxidase 

substrate) for 30 seconds–10 minutes during which time a brown colour change was observed. 

The slides were counterstained with Harris’ formulation 2 hematoxylin for 5 -10 seconds, 

de-stained with acid alcohol and bluing reagent and washed with tap water. Finally, slides 

were dehydrated through graded alcohol 70%, 95%, 100% to xylene, agitated in Histoclear 

and coverslips were fixed using p-xylene bis-pyridinium bromide. 

 

Hand stained slides were examined with a microscope and a single power field of each core 

examined at 200 - 400 times magnification.  

 

Slides stained on BOND-III were digitally scanned and images captured using Leica SCN 400.  

All scanned images were accessed remotely for scoring using QuPath–0.2.0–m8 software. All 

images were scored at 20 times magnification. 
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Table 3.1 Antibody concentrations and suppliers 

Antibody Working concentrations Supplier 

Anti- POSTN 1.25g/mL Oxford biosystems (RD18104050) 

Anti- CXCL 14 25g/mL ab46010, abcam, Cambridge, UK 

Anti- phosphor- Smad2 Not specified cell signalling Tech (3108S) 

 

3.3.2 Immunohistochemistry slide scoring system 
 
The slide scoring system followed that described by Riester et al (Riester et al., 2014). All slides 

were scored by two independent scorers AH, M. Price (MP) lab technician, and any 

discrepancies between scores settled by an independent scorer G. Wilson (GW), Consultant 

histopathologist specialising in gynaecologic oncology. Before scoring, AH, MP and GW 

determined examples for varying percentages of positive cells, as well as examples of the 

staining intensities for each of the three proteins stained, for reference. As in the original 

study, three separate area regions of interest (ROIs) were scored. These ROIs were pre-

selected by AH and MP to be representative of the staining for each slide and both scorers 

scored the same ROIs. The scoring system is illustrated in figure 3.2. The total score (0 - 12) 

was calculated by multiplying the average percentage of positive cells score (0 - 4) by the 

average intensity of staining score (1 - 3). Consistency of scores was checked for quality 

control following the first 50 slides scored before proceeding with the remaining slides. 
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Figure 3.2 Slide scoring system used for IHC stained slides 

 

3.3.3 Sample size calculation 
 
The sample number required in order to gain statistical significance for the independent 

validation of a pre-existing prediction model is only sparsely described in the literature. 

However, general consensus dictates that sample size can be calculated based on number of 

events and that a number of events > 100 was optimal. In the case of the three-protein 

signature, an event is defined as a suboptimal cytoreductive outcome  (Collins et al., 2014). 

However in a review of 78 studies, 45% of studies had < 100 events, 21% of studies did not 

report the number of events, and the range of events was between 6 – 42,408 (Collins et al., 

2014). Although a number of events greater than 100 is optimal, this may not always be 

possible in practice.  

 
An event in this external validation is defined as a suboptimal cytoreduction outcome. The 

ICON5 study reported a suboptimal debulk rate of 30% overall. Therefore, in order to achieve 

100 suboptimal outcome events, a sample size of 333 patient samples would be required to 

achieve statistical significance. 

 

3.3.4 Statistical analysis 
 

A p value of <0.05 was used to determine significance for all statistics. 

IHC scoring system

% of positive cells score (0-4)

The percentage of positive 
cells in each section is scored 
as follows

0 = <5% positive 

1 = 5-25% positive 

2 = 26-50% positive 

3 = 50-75% positive

4 = >75% positive

Intensity of staining (1-3)

The intensity of the staining in 
each section is scored as 
follows

1 = weak staining 

2 = moderate staining 

3 = intense staining

PERCENTAGE POSITIVE CELL SCORE AVERAGE x INTENSITY SCORE AVERAGE = OVERALL SLIDE SCORE MAX 12

3 x scores per slide- average taken

3 x scores per slide- average taken
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Data were collated using excel, and for description of demographic data a mean and range 

was used for normalised data, and a median and range for non-normalised data. Inter-

variability was determined by calculating Spearman’s Rank Coefficient, and differences in 

cohorts when data was not paired was determined using Mann-Whitney-U test, both 

performed using Graphpad Prism version 8.4.3 (471).  

 

Validation of both individual proteins predictive value, and combined score value was firstly 

calculated via simple logistic regression in Graphpad Prism version 8.4.3 (471). The original 

paper contained access to the original R code. The code was run in R (BR), inputting the 

validation dataset to ensure consistency of results. 

 

The multivariable prediction model was created using logistic regression in WEKA, an open 

source machine learning software. 

 

3.4 Homologous recombination functional assay 
 

All tissue samples included for HR status testing were collected from theatres at Saint Mary’s 

Hospital, Manchester following resection, or diagnostic biopsy. Suitable patients were 

identified at the time of the MDT. Characterisation and functional HR assay was undertaken 

by MP. Samples categorised as either homologous recombination repair competent (HRC), 

homologous recombination repair deficient (HRD), or homologous recombination repair 

heterogenous (HRH). HRH was reserved for those patients who harvested samples from 

multiple sites at the time of collection, and there was discordance between the HR status of 

the samples. 

 

Cells were cultured from resected tumour tissue over a period of two weeks in a 

175cm2 adherent tissue culture flask (Sarstedt AG & Co), until fully confluent.  80,000 cells 

were isolated and immunofluorescently stained for CA 125, PAX8, Vimentin, and a Pan-

Cytokeratin marker (Abcam PLC), in order to ensure cultured cells were epithelial and likely 

representative of the patient’s cancer. 
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40,000 cells from the above culture were then divided into UV treated and Control / non-UV 

treated slides.  The UV treated slides were subjected to UV type C irradiation equivalent to 

200J/m2.  

 

Slides were returned to the incubator for 2 hours under fresh complete media.  At +2 hours 

all slides were fixed in ice cold methanol for 20 minutes. Cellular and nuclear membranes 

were permeabilized using 0.5% (v/v) Triton 100 in PBS for 5 minutes and a 5% (v/v) Goat 

serum (Sigma Aldrich) block applied for 1 hour.   

 

Cells were stained with mouse anti-gH2AX antibody (merk-millipore) and rabbit anti- RAD51 

antibody (abcam PLC), both at 2µg/ml. Goat anti-mouse, Alexafluor 546 conjugate, and Goat 

anti-rabbit, Alexafluor 488 conjugate (Invitrogen) antibodies were applied at 1µg/ml. Slides 

were then mounted with Vectashield H100 with DAPI. Slides were imaged using a Zeiss Axio 

Observer microscope at x40 magnification and Zen Software. 

  

Images were imported into imageJ (FIJI distribution) and an automated script was used to 

count the number of nuclei and measure the average number of Alexafluor 546 / gH2AX foci 

and the number of Alexafluor 488 / RAD51 foci across both the UV treated and Control 

slides. A greater than 2-fold increase in the number of gH2AX foci from control to UV 

treatment represented successful damage induction from irradiation.   

 

A greater than 2-fold increase in RAD51 foci from control to UV treatment was taken to 

represent a Homologous recombination repair competent sample (HRC), and a less than 2-

fold increase was taken to represent a Homologous recombination repair deficient (HRD) 

sample. 

 

3.5 Manchester data base composition 
 

3.5.1 Patient identification 
 
All patient data were pulled from the Manchester database, which holds data for all patients 

diagnosed with ovarian cancer between 2013 – 2018 who were discussed at                    the 

MDT meeting at St Mary’s Hospital, Manchester.  
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The database was compiled via retrospective data collection over several years. Patient NHS 

numbers (unique identifiers) were identified by searching the SOMERSET database for a 

diagnosis of ‘ovarian cancer’, ‘fallopian tube cancer’, or ‘primary peritoneal cancer’. The 

original histology reports were checked for all included patients to confirm the diagnosis of 

ovarian/fallopian/primary peritoneal cancer. All cytological and histological samples were 

assessed by two independent consultant histopathologists, one being a specialist in 

gynaecological cancers. All histological samples were assessed macroscopically, 

microscopically and underwent immunohistochemistry staining for p53, WT-1, oestrogen 

receptor, PAX-8, CK7 and CK20. In patients where histology was not available, cytology was 

used to make a diagnosis (from ascites or pleural effusions) and diagnostic methods included 

immunocytochemistry with the panel outlined above. In cases where the patient died before 

any samples were obtained, the diagnosis was made on clinical grounds by consensus 

between consultant radiologists, gynaecological-oncologists and clinical oncologists, based 

upon imaging. 

 

Patients included in the MOCHR cohort were identified and recruited prospectively at the 

time of the MDT if they fulfilled the criteria set out in figure 3.3. Tumours that were harvested 

at the time of both PDS and IDS were included, and were categorised as either HRD, HRC or 

HRH using the functional assay. Tumours with a histology other than HGSOC, as well as 

patients with an HRH status were excluded.  

 

3.5.2 Data collection 
 
Data were collected at a basic level for all patients, and then with additional more in-depth 

fields for the Manchester high grade serous ovarian cancer (MHGSOC) patients and the 

Manchester ovarian cancer homologous recombination (MOCHR) patients, figure 3.3. All 

fields were collected manually, by mining several electronic patient record systems including: 

SOMERSET (MDT decision making documentation, date of diagnosis, performance score, 

dates of MDTs, CT scan expert radiologist review); PACS (CT scan general radiologist 

reporting); ICE (blood parameters, histology reports); and Christie web portal (CWP) 
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(chemotherapy and medical treatment information, BRCA status, co-morbidities, BMI, 

survival data). 
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Figure 3.3 Development of Manchester database and its sub-cohorts 

Key- MOCHR- Manchester ovarian cancer homologous recombination database, MHGSOC- Manchester high grade serous ovarian cancer database, ACE-27- score of comorbidities, BMI- body 
mass index, FBC- full blood count 
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3.5.2.1 Patient co-morbidities and baseline clinical characteristics  
 

Patient’s age, body mass index (BMI), Adult comorbidity evaluation-27 index (ACE-27) and 

index of multiple deprivation score (IMD), were collected as correct at the time of 

presentation and first discussion at the MDT. These factors were chosen to represent 

surrogate markers of general health before onset of disease, generally defined as “individual 

effects’’. Although BMI can be effected by the presence of ascites or cachexia, it remains a 

useful marker, especially for extremes of weight categories. The ACE-27 score quantifies co-

morbidities present at the time of diagnosis. The score ranges from grade 0 (no comorbidities) 

to 3 (severe comorbidities) (Kallogjeri et al., 2014). This score does not take into account the 

current acute state of the patient, but instead acts as a background marker of fitness. The 

IMD score provides a decile ranking of deprivation for each geographical area of 1,500 

residents in the UK, where 1 is the most deprived and 10 is the least deprived. The score 

encompasses income, employment, education, health, including access to healthcare, crime, 

barriers to housing and services, and living environment to give an overall marker of 

deprivation (Ministry of housing, 2015).   

 

3.5.2.2 Treatment received  
 

The treatment decision as an intention to treat (ITT) at the time of the MDT was recorded.  

This was defined as either primary debulking surgery (PDS) with adjuvant chemotherapy, 

neoadjuvant chemotherapy (NACT) with interval debulking surgery (IDS), or no treatment. 

For PDS and IDS, the date of operation, operation received, extra procedures deviating from 

standard staging procedure, intra operative complications and cytoreductive outcomes were 

recorded. For medical therapy, date of commencing treatment, chemotherapy regime, 

number of cycles completed, and any additional medical management such as PARP inhibitors 

were recorded. 

 

In order to create a ‘patient timeline’, the dates of first MDT, ITT decision MDT, date 

treatment commenced, date diagnosis confirmed, and date of death were recorded. 
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3.5.2.3 Disease effect  
  

To ascertain the stage of disease, the disease burden at the time of presentation, and the 

effect this disease manifested on the clinical state of the patient, we recorded the FIGO stage 

of disease (Prat, 2015), patient blood parameters, and Eastern Cooperative Oncology Group 

performance status (ECOG-PS). These factors were chosen to represent surrogate markers of 

disease burden generally defined as “tumour effects”.  

  

ECOG-PS is a WHO recognised tool widely used as a measure of fitness for treatment in 

oncology patients. It is useful to assess the acute fitness of a patient but does not take into 

account co-existing co-morbidities. It is graded between 0 – 5, 0 being fully active and 5 being 

deceased (Su et al., 2015).   

  

The blood parameters (haemoglobin, platelet, lymphocyte, neutrophil, albumin and CA 125) 

were recorded for both groups at initial presentation, to avoid any bias created by clinical 

intervention, such as blood transfusion. Although median albumin and haemoglobin levels 

decrease in an aging population (Vásárhelyi, 2017), these effects are small. Given that both 

groups had very similar age ranges, no adjustment was made. These bloods were also 

selected as they are a routine part of the established treatment pathway. 

  

There remains a lack of consensus upon an accurate way to assess tumour volume or 

distribution pre-operatively. Therefore, the diagnostic CT scan reports, generated by 

specialist radiologists at the time of the MDT, were mined to generate a radiology score, 

based on presence or absence of disease in up to 30 anatomical sites, adapted from (M. J. 

Rutten et al., 2015; Son et al., 2017; Suidan et al., 2017).  

 

3.5.3 TCGA patient cohort development 
 

The cBio cancer genomics portal (cBioportal) is an open access web resource developed for 

exploring, visualising and analysing multidimensional cancer genomics data. It contains 

genomics information on over 5,000 tumour samples from over 20 cancer studies, including 
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316 HGSOC patients from the cancer genome atlas database. (Cerami et al., 2012; Gao et al., 

2013; "Integrated genomic analyses of ovarian carcinoma," 2011).  

 

In 2011, Nature published a comprehensive overview of the genomics of ovarian cancer, 

which included full exome DNA sequencing data for 316 HGSOC patients, the same patients 

that are contained within the cBioportal ("Integrated genomic analyses of ovarian 

carcinoma," 2011). All patients were assigned a unique TCGA patient identifier, and surgical 

outcome for a large percentage of the 316 patients was included in the supplementary data 

("Integrated genomic analyses of ovarian carcinoma," 2011).  

 

The cBioportal was searched to identify the unique identifiers for the 316 patients who 

demonstrated a defect in one of the 13 genes identified in the HR panel (BRCA1, BRCA2, 

RAD51, ATM, ATR, PALB2, FANCA, FACCI, FANCL, FANCD2, FANCE, FANCG, FANCM). The 

inclusion of PTEN was noted to be contentious as its exact role in the HR pathway remains 

controversial, a belief supported by several other recent studies (Bian et al., 2018; Huang et 

al., 2018; Hunt et al., 2012; "Integrated genomic analyses of ovarian carcinoma," 2011). For 

this reason, PTEN was excluded from the HR panel. Patients who showed a germline or 

somatic defect in one of the 13 genes were defined as being HRD, and patients who showed 

no defected in the genes included in the panel were defined as HRC. 

 

The unique identifiers for all 316 patients were cross referenced with the clinical data 

provided in the supplementary materials to access patient demographics, surgical outcome 

and survival data for included patients. Patients for whom surgical data was not available 

were excluded from the analysis. 

 

3.6 Prognostic Model to predict suboptimal surgical outcome 
 

3.6.1 Patient and disease data collection 
 
Patient and disease data were drawn from the MHGSOC database as per methods section, 

figure 3.3. All data were collected retrospectively using pre-defined definitions and data 

collection methods, as set out in the data collection guide, see appendix D. Data included 

patients operated on in a single centre tertiary unit between 2013 – 2018 (inclusive) by sub-



 67 

specialty trained gynaecological oncology surgeons. All CT scans were interpreted by 

consultant radiologists specialising in gynaecological oncology. 

 

All predictors previously shown to have association with debulking rate or patient survival in 

the literature as demonstrated in chapter 4, that were also available in the MHGSOC database 

(figure 3.3) were collated for inclusion in the analysis. Predictor data fields were collected as 

per data collection guide in appendix D.  

 

All continuous predictors were kept as continuous for analysis. Categorical predictors were 

kept as per their categories apart from IMD and ECOG-PS and ACE-27 which were grouped as 

per table 3.2.  

 

Surgical outcome was defined by the lead surgeon at the end of the procedure as either 

complete (no macroscopic disease), optimal (disease <1cm remains), or suboptimal (disease 

1cm remains). For the purpose of model development, the binary outcome of either good 

(complete cytoreduction) or bad (optimal and suboptimal cytoreduction) was used. All 

surgical procedures were performed as primary debulking procedures before the 

administration of any chemotherapy.  

 

All included patients had HGSOC diagnosed post operatively by histopathologists specialising 

in gynaecological oncology after samples were assessed macroscopically, microscopically and 

had undergone immunohistochemistry staining for p53, WT-1, oestrogen receptor, PAX-8, 

CK7 and CK20.  
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ECOG-PS (Oken et al., 1982; Su et al., 2015), ACE-27 (Kallogjeri et al., 2014), IMD (Ministry of housing, 2015) 

Predictor Definition
Data 
type

Data fields Grouped variables

Age Age of patient at time of presentation Continuous NA NA

ECOG-PS

(Eastern co-operative 

Oncology Group 
Performance Status)

Patient fitness at time of presentation Categorical
0 (No fitness restrictions)-5 (patient 

deceased)

Fit 0,1

Unfit 2,3,4 

BMI

(Body mass Index)

BMI at time of presentation

(Height, weight and BMI all calculated)
Continuous NA NA

ACE-27

(Adult co-morbidity 

evaluation-27 index)

ACE-27 at time of presentation excluding diagnosis of HGSOC Categorical 0 (no comorbidities)-3 (severe 

comorbidities)
NA

IMD

(Indices of Deprivation)
IMD based upon patient postcode at time of  presentation Categorical 1 (most deprived)- 10 (least deprived)

Low 1-5

High 6-10

Stage of disease
FIGO Stage confirmed following completed staging taken from 

histology report and MDT summary
Categorical IIIa, IIIb, IIIc, IVa, IVb

III- IIIa, IIIb, IIIc

IV- Iva, IVb

CA125 (kU/L) Level of CA125 first recorded in notes before any active 

treatment

Continuous NA NA

Hemoglobin count (g/L)

All blood parameter levels taken from time of pre-operative 

bloods

i.e. blood test closest to, but before any active treatment 
commences

Platelet count (109/L)

Lymphocyte count 

(109/L)

Neutrophil count (109/L)

Albumin level (g/L)

Operating surgeon The lead surgeon as per the operation notes Categorical

1-5 

one number assigned to each of the 

five consultant 
surgeons operating over this time 

scale

NA

CT scan disease 

distribution

CT scan taken from time of diagnostic work up closest to, but 

before any active treatment commences
Categorical

Chest disease (Yes,No)

Includes all sites of disease above the 

diaphragm including thrombus

NA

Unremovable disease (Yes, No)

Includes hydroureter and disease 

sites; gallbladder, root of SMA,
adrenal, renal, pancreatic, liver, 

gastrosplenic ligament, lesser sac 

Nodal disease (Yes, No)

Includes pelvic lymph nodes, para-

aortic lymph nodes,
inguinal lymph nodes

Ascites

Table 3.2 Predictor data fields collected for use in model 
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3.6.2 Statistical analysis 
 

3.6.2.1  General statistics 
 
All statistical analyses were performed using Prism 9 for Mac OS (version 9.2.0), WEKA (open 

source machine learning software), and R software package. Continuous variables with 

normal distribution are presented as mean and standard deviation, and non-normally 

distributed as median and inter-quartile (IQ) ranges. Comparisons between groups were 

performed using Students-t test for continuous data with normal distribution, Mann Whitney 

for non-normalised data and Fishers exact test for categorical data. All missing data were 

accounted for using multiple imputation. Univariable logistic regression was used to 

determine individual predictor association with surgical outcome. A p-value <0.05 was 

deemed significant throughout. 

All models were generated with the aim of predicting bad outcome. Thus, specificity was 

defined as the number of patients achieving bad surgical outcome who were correctly 

identified divided by the total number of good surgical outcome patients. Positive predictive 

value corresponded to the number of true positives (bad surgical outcome) divided by the 

total number of patients predicted to have good surgical outcome, and Negative predictive 

value corresponded to the number of true negatives (good surgical outcome) divided by the 

total number of patients predicted to have bad surgical outcome. Accuracy was calculated as 

the sum of the true positives and true negatives divided by the total number of patients in 

the study.  

3.6.2.2  Multivariable logistic regression model development 
 

Logistic regression model was developed using multivariable logistic regression using Prism 

and WEKA with the inclusion of all pre-determined predictors, table 3.2. Following 

development, internal validation was performed using leave-one-out cross validation to 

account for overfitting of data. The area under the curve (AUC) for the ROC curve and 95% CI 

were used as model discrimination method. The Hosmer-Lemeshow (H-L) goodness of fit test 

was used to evaluate the calibration performance. The sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), and accuracy were calculated as 

above.  
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3.6.2.3 Machine learning model development 
 

The Random Forest model was developed using WEKA with the inclusion of all pre-

determined predictors, table 3.2. Both development and internal validation via leave-one-out 

cross validation were performed simultaneously to account for overfitting of data. The AUC 

was used as model discrimination method. The sensitivity, specificity, PPV, NPV, and accuracy 

were calculated as above to measure model calibration performance.  
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4 A systematic review of models predicting cytoreductive outcome of 
primary debulking surgery in HGSOC. 

 

4.1 Introduction 
 
The volume of remaining residual disease at the end of debulking surgery is well established 

as the most important independent prognostic marker of survival in advanced stage OC 

(Griffiths, 1975; Romanidis et al., 2014; Marianne Jetske Rutten et al., 2015). Surgery that is 

performed before chemotherapy (PDS) with no residual disease remaining translates to the 

best rates of overall survival, and this is reflected in the national guidance and treatment 

pathway. PDS should be the standard of care, with NACT/IDS reserved for cases where 

complete cytoreduction is unlikely (Fagotti et al., 2013; Gill et al., 2017; Horowitz et al., 2015; 

van Meurs et al., 2013).  

 

Conversely, it is well recognised that patients who undergo PDS whose surgical outcome is 

suboptimal suffer significantly worse overall survival and increased morbidity when 

compared to those undergoing NACT/IDS (Gill et al., 2017; Horowitz et al., 2015). This means 

that not only does a bad surgical outcome negatively impact survival, it also increases 

morbidity and becomes a detrimental procedure. In order to reduce the morbidity and 

mortality of unsuccessful surgery, it is of utmost importance to achieve correct pathway 

selection for all patients. 

 

The treatment pathway decision is currently made following discussion at the MDT. Current 

available data in the UK when following the national diagnostic pathway include patient co-

morbidities, clinical state, biochemistry and CA 125 alongside TVUSS pelvis and CT of chest 

abdomen and pelvis. Although a large amount of data is available, decision-making relies 

heavily upon radiology, with patient factors often underrepresented in discussions (Scott et 

al., 2020). Despite this, tertiary led decision-making process, rates of suboptimal surgical 

outcome are very varied worldwide, and a large number of women undergo potentially non-

beneficial major surgery with its associated morbidity. 
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Therefore, it is unsurprising that many prediction models have been proposed to help 

improve this decision-making process and reduce the increased morbidity and mortality 

associated with suboptimal surgical outcomes at the time of primary surgery. However, to 

date, none have achieved adequate external validation to justify their use in routine clinical 

practice.  

 

Prediction models are increasingly gaining a place for routine use in many branches of clinical 

medicine (Bernard, 2017). Clinical prediction models act as adjuncts to help better inform 

decision-making. They are in common usage in many branches of medicine, but the most 

commonly used risk prediction model in ovarian cancer is the RMI, see figure 1.4. Their uses 

are varied, from predicting likelihood a patient may develop a disease in the future, or 

predicting the current likelihood they have the disease currently, to helping decide between 

multiple treatments based on predicted survival, or predict specific outcomes of treatment, 

such as surgical outcome (Chen, 2020). In healthcare, prediction models use predictors to 

estimate for an individual the probability that a condition or disease is already present 

(diagnostic model) or will occur in the future (prognostic model) (Moons, Kengne, Woodward, 

et al., 2012). 

 

Steyerberg proposed a checklist for the development of prediction models, including three 

domains: general considerations, modelling steps, and validation (Chen, 2020). The prediction 

must have adequate clinical value, target a clear patient population and be easy to apply using 

ideally readily available clinical data in order to avoid increasing morbidity or delaying 

treatment with further testing. Prediction models in medicine can be developed using a 

variety of both traditional statistics and machine learning. For prognosis and prediction, 

regression models are the most commonly used and include linear, logistic and cox regression. 

A systematic review and meta-analysis comparing the use of machine learning with traditional 

statistics in prediction models concluded that one technique was not superior above the 

other (Christodoulou et al., 2019).  

 

Before being considered for use in clinical practice, a model must be successfully validated. A 

true external validation should involve a fully separate patient cohort, to ensure the 
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predictive ability of the model translates across different populations and was not a result of 

overfitting of data in the original dataset (Moons, Kengne, Grobbee, et al., 2012).  

Powering of studies in prediction models varies between the development and validation 

stages. When developing a prediction model, the minimum number of events per predictor 

parameter (EPP) is suggested to decide whether the sample size is enough. For models 

utilising logistic regression an EPP of ideally >20 has been suggested, but should as an absolute 

minimum be >10 (Moons, Kengne, Woodward, et al., 2012; Peduzzi et al., 1996). The sample 

number required in order to gain statistical significance for the independent validation of a 

pre-existing prediction model can be calculated based on number of events. The event is 

defined as the prediction outcome. A number of events >100 is considered optimal (Collins et 

al., 2014). However, in a review of 78 studies, 45% of studies had <100 events, 21% of studies 

did not report the number of events, and the range of events was between 6 – 42,408 (Collins 

et al., 2014). Although a number of events greater than 100 is optimal, this may not always 

be possible in practice.  

 

There are three main frameworks that exist to determine the risk of bias in risk prediction in 

medicine. If the study is predictor finding i.e. identifying individual predictive or prognostic 

factors, then the Quality in Prognosis Studies (QUIPS) tool should be used (Hayden et al., 

2013). If the study is prediction model development, then either the revised Risk of Bias in 

Nonrandomised Studies of Interventions tool (ROBINS-1) (Sterne et al., 2016) or the  

Prediction model risk of Bias Assessment Tool (PROBAST) should be used (Wolff et al., 2019). 

The PROBAST was developed specifically for assessing the risk of bias in models that combine 

multiple predictors to estimate risk for the presence of a particular condition, or the 

occurrence of a certain event in the future (Wolff et al., 2019). The tool includes the domains 

participants, predictors, outcome and analysis, as well as 20 signalling questions in order to 

comprehensively assess all steps in the development and validation of prediction models 

(Moons et al., 2019). 

 

There are many published prognostic models in the literature to predict surgical outcomes in 

primary debulking surgery in advanced stage ovarian cancer. These models utilise a variety of 

modalities as predictors including clinical (age, BMI, ASA grade, ECOG-PS), biochemical (Hb, 
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platelet count, WCC, albumin CA 125), genomic and histological factors, as well as radiological 

(volume or distribution of disease on CT scan). 

 

Despite the number of published models, none are routinely in usage in clinical practice. This 

review serves to systematically collate and compare all currently published prognostic models 

and attempt to identify limitations to these models, in order to make recommendations for 

future research. 

 

4.2 Results 
 

4.2.1 Study identification 
 
Of 214 abstracts reviewed, 57 publications were identified for full text screening. 

Subsequently, 26 publications met eligibility criteria and were included in the final review 

(Abdallah, Chon, et al., 2015; Arab et al., 2018; Borley et al., 2015; Chesnais et al., 2017; Chong 

et al., 2019; Enshaei et al., 2015; Fago-Olsen et al., 2014; Feng et al., 2020; Feng et al., 2018; 

Fujwara et al., 2011; C. G. Gerestein et al., 2011; B. Gu et al., 2020; Y. Gu et al., 2020; Heitz et 

al., 2020; Horowitz et al., 2018; J. M. T. Janco et al., 2015; Karlsen et al., 2016; Kumar et al., 

2019; Llueca et al., 2018; MacKintosh et al., 2014; Petrillo et al., 2015; Riester et al., 2014; 

Rutten et al., 2016; Son et al., 2017; Stashwick et al., 2011; Suidan et al., 2014). 

 



 75 

 

Figure 4.1 PRISMA flow diagram showing selection of included studies 

 

The 26 publications all included the development and internal validation, as well as external 

validation of models predicting the debulking status at the time of primary surgery in patients 

with epithelial ovarian cancer. The publications describe the initial development of 27 

prediction models, with 15 of these including internal validation and five external validation, 

as well as the external validation of 14 pre-existing models.  

 

4.2.2 Patient and disease characteristics 
 

The characteristics of patients and their disease included in the models can be seen in table 

4.1. The majority of models were developed using data collected retrospectively in single 

centre cohort studies, with patient numbers varying vastly between 31 and 668.  Fago-Olsen 

et al and Heitz et al used data from pre-existing RCTs, and Abdallah et al from data registries. 

Patient ages were well reported in the studies, ranging between 15 and 92 years. All patients 

included in all models had a diagnosis of primary FIGO stage I-IV epithelial ovarian cancer, 

with HGSOC being the most common histological subtype, and the majority of patients having 

stage III disease. All surgeries were performed by specialist gynae-oncology surgeons and 

 

 
 

 
 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

 
 
 

 

 
 

 

 
 
 

 

 

 

 
 

 

 
 
 
 

 

 

 
 

 

 

26 publications were included for 

inclusion in final review 

 

31 excluded after full-text review for 
the following reasons 

• Included both PDS and IDS 

• No definitive model created 

• No measure of prediction given 

• Abstracts only 

 publications were excluded after title 
and abstract review 

• 154 did not meet criteria 

• 28 Duplicates 

57 potentially relevant publications 
for full-text review 

214 publications from primary literature 
search of models from MEDLINE, EMBASE 

and web of science after de-duplication 

25 publications included from citations   
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dates of procedures ranged between 1995 and 2020. Suboptimal cytoreduction rates varied 

widely between models with Janco et al reporting rates as low as 9% and Horrowitz et al as 

high as 76%.  
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Table 4.1 General characteristics of included patient cohorts in systematic review 

  

Study n

Age Stage (FIGO) Number 

of 

centers

Dates of 

surgery

Rates of 

suboptimal 

debulkingMedian Range
Mean 

(SD)

Stages 

included

Stage III 

(%)

Stage 

IV (%)

Abdallah 2015 124 62 (10) III/IV 51% 49% 2 48%

Abdallah 2015 468 III/IV 29%

Abdallah 2015 190 III/IV 41%

Arab 2018 129 20-80 50 (12) I-IV 54% 6% 1 2007-2017 28%

Borley 2014 181 63 22-92 III/IV 66% 34% 1 2001-2012 43%

Chesnais 2017 247 62 (12) I-IV 49% 31% 1 2008-2013 62%

Chesnais 2017 47 59 (13) I-IV 27% 7% 1 2009-2015

Chong 2019 51 58 37-74 III/IV 72% 28% 1 33%

Enshaei 2015 668 67 I-IV 56% 10% 1 1995 - 2005 24%

Fago-Olsen 2014 238 65 55-74 III/IV 80% 20% 1 2004-2012 42%

Feng 2018 (Suidan) 161 57 27-77 III/IV 81% 19% 1 2015-2017 18%

Feng 2018 (Aletti) 110 57 27-78 III/IV 81% 19% 1 2015-2018 18%

Feng 2018 (PCI) 110 57 27-79 III/IV 81% 19% 1 2015-2019 18%

Feng 2018 (Eisenkop) 110 57 27-80 III/IV 81% 19% 1 2015-2020 18%

Feng 2018 (Fagotti) 39 57 27-81 III/IV 81% 19% 1 2015-2021 18%

Feng 2020 83 53 (10) III/IV 89% 11% 1 2012-2018 38%

Fujwara 2011 Model 1 98 33-79 54 I-IV 30% 5% 1 12%

Fujwara 2011 Model 2 98 33-80 54 I-IV 30% 5% 1 12%

Gerestein 2011 115 62.4 15-83 III/IV 81% 18% 6 2005-2008 54%

Gu 2020 (Suidan) 31 57 38-76 III/IV 70% 30% 1 2016-2017 65%

Gu 2020 296 54 III/IV 9 2016-2019 15%

Heitz 2020 (Reister) 266 39-73 59 III/IV 78% 22% multiple 61%

Heitz 2020 (Liu) 266 39-74 59 III/IV 78% 22% multiple 61%

Heitz 2020 (Tucker) 266 39-75 59 III/IV 78% 22% multiple 61%

Heitz 2020 266 39-76 59 III/IV 78% 22% multiple 61%

Horowitz 2018 148
0

24-87 58 III/IV 73 2001-2004 76%

Janco 2015 279 64 III/IV 75% 25% 1 2003-2008 9%

Janco 2015 279 64 III/IV 75% 25% 1 2003-2009 9%

Karlsen 2016 150 65 41-89 III/IV 79% 21% 1 2004-2010 59%

Kumar 2019 (Suidan) 276 64 21-91 I-IV 93% 0% 1 2003-2011 51%

Llueca 2018 (PCI) 80 59 30-84 III/IV 69% 31% 1 2013-2016 13%

Mackintosh 2014 91 62 25-83 III/IV 79% 21% 1 1995-2003 65%

Mackintosh 2014 35 62 38-84 III/IV 85% 14% 1 2005-2007 65%

Petrillo 2015 234 57 25-84 III/IV 82% 18% 1 2007-2014 43%

Reister 2015 179 III/IV 1 24%

Rutten 2016 (Ferrandina A) 151 63 30-88 III/IV 79% 21% 7 2000-2009 53%

Rutten 2016 (Ferrandina B) 151 63 30-89 III/IV 79% 21% 7 2000-2009 53%

Rutten 2016 (Gerestein) 151 63 30-90 III/IV 79% 21% 7 2000-2009 53%

Son 2017 327 57 25-70 III/IV 80% 20% 1 2007-2015 35%

Stashwick 2011 106 39-82 61 III/IV 73% 27% 1 2005-2010 43%

Suidan 2014 350 61 34-86 III/IV 73% 27% multiple 2001-2012 25%
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4.2.3 Modalities and predictors included in models 
 

The models included in the review utilised different modalities as predictors, outlined in detail 

in table 4.2. The majority of predictors included would be available pre-operatively as part of 

the UK diagnostic pathway: patient age, BMI, ECOG PS, serum platelet count, albumin and CA 

125 levels and sites of disease seen on CT scan. Other predictors used would not be routinely 

available in the UK under current guidelines but could be achieved without invasive testing: 

HE4, transferrin and 2-macroglobulin serum levels, specific germline gene panels and PET 

CT scanning. Some models utilised predictors that would require pre-operative biopsy of 

tumour: tumour protein panels, histology type and somatic gene panels. Petrillo et al 

developed their model based upon a scoring system at the time of laparoscopy to be 

performed as a triaging procedure before a debulking laparotomy, and the Aletti, Eisenkop 

and PCI models externally validated by Feng et al can only be performed at the time of 

laparotomy.  

 

The majority of models (71%) aimed to predict suboptimal cytoreduction at the time of 

surgery, with only 12 models predicting a favourable outcome of complete cytoreduction. All 

models defined suboptimal cytoreduction as disease 1cm remaining at the end of the 

procedure. Of the 12 models predicting the favourable outcome at the time of surgery, all but 

two models defined complete cytoreduction as no remaining macroscopic disease. Gu et al 

and Stashwick et al defined a favourable outcome as residual disease <1cm.  
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Study
Modalities 

included

Number of 

predictors in model
Final predictors used

Surgical outcome 

predicted

Abdallah 2015 Genomic 58 gene expression data (58 genes included*) suboptimal

Abdallah 2015  Genomic 58 gene expression data (58 genes included*) suboptimal

Abdallah 2015 Genomic 58 gene expression data (58 genes included*) suboptimal

Arab 2018 Biomarker, 
radiology

3 CA125>420, CT-ascites, liver metastasis  suboptimal

Borley 2014 Radiology 2 CT-ascites, mesentery upper abdominal disease suboptimal

Chesnais 2017 Biomarker, 
radiology

3 CA125 >100 BMI >30 CT- parenchymal metastasis suboptimal

Chesnais 2017 Biomarker, 
radiology

3 CA125 >100 BMI >30 CT- parenchymal metastasis suboptimal

Chong 2019 Clinical, Radiology 2 ECOG status, FDG PET/CT metabolic uptake score suboptimal

Enshaei 2015 Clinical, 
biomarker

5 age, stage, grade, histological type, CA 125 suboptimal

Fago-Olsen 2014 Clinical, 
biomarker

4 Transferrin, β2- macroglobulin,  age,  CA 125 complete

Feng 2018 (Suidan)

Clinical, 
biomarker, 

radiology
9

Age, CA 125, ASA, CT- aortic lymph nodes, small 
bowel thickening, small bowel mesenteric disease, 

mesenteric artery disease, peri-splenic disease, 
lesser sac disease

complete

Feng 2018 (Aletti)
Surgical-

laparotomy 1 Surgical complexity score at laparotomy complete

Feng 2018 (PCI)
Surgical-

laparotomy 1 Tumour bulk at laparotomy complete

Feng 2018 (Eisenkop)
Surgical-

laparotomy 1 Tumour bulk at laparotomy complete

Feng 2018 (Fagotti)
Surgical-

laparoscopy 1 Laparoscopy score complete

Feng 2020 Clinical, 
biomarker

3 Age, HE4, CA 125 suboptimal

Fujwara 2011 Model 1 Radiology 3
CT-pelvic lymph, cul-de-sac tumours, 

retroperitoneal tumours
suboptimal

Fujwara 2011 Model 2 Radiology 3
CT- DPT, bowel mesenteric tumours, bowel 

encasement
suboptimal

Gerestein 2011 Clinical, radiology 3 Platelets, CT- DPT, ascites suboptimal

Gu 2020 (Suidan) Clinical, radiology 9

Age, CA 125 ASA PET CT- aortic lymph nodes, small 
bowel thickening, small bowel mesenteric disease, 

mesenteric artery disease, peri splenic disease, 
lesser sac disease

suboptimal

Gu 2020 Clinical, radiology 6
Age, BMI, CT- bowel metastasis, spleen metastasis, 

diaphragmatic metastasis, lymph nodes
complete

Heitz 2020 (Reister) Genomic 7
gene expression data (POSTN, CXCL14, FAP, NUAK1, 

PTCH1, TGFBR2, TNFAIP6)
suboptimal

Heitz 2020 (Liu) Genomic 11
gene expression data (POSTN, FAP, TIMP3, 
COL11A1, EDNRA, CTSK, COL5A2, TNFAIP6, 

TMEM158, MMP11, CXCL14)
suboptimal

Heitz 2020 (Tucker) Genomic 2 gene expression data (FABP4 ADH1B) suboptimal

Heitz 2020 Genomic 126 gene expression data (126 genes included*) suboptimal

Horowitz 2018 Clinical, radiology 5 disease score, stage, age, CA 125, CT- ascites complete

Janco 2015 Clinical, radiology 4 Age, CT- no ascites, omental cake, DPT complete

Janco 2015 Clinical, radiology 3 ECOG >2, CT- DPT, lymphadenopathy suboptimal

Karlsen 2016 Clinical, 
biomarker

3 HE4, age, PS complete

Kumar 2019 (Suidan) Clinical, radiology 9

Age, CA 125 ASA PET CT- aortic lymph nodes, small 
bowel thickening, small bowel mesenteric disease, 

mesenteric artery disease, peri splenic disease, 
lesser sac disease

suboptimal

Llueca 2018 (PCI) Radiology 1 Tumour bulk score at CT suboptimal

Mackintosh 2014 Radiology 3 CT- para aortic nodes, liver surface disease suboptimal

Mackintosh 2014 Radiology 3 CT- para aortic nodes, liver surface disease suboptimal

Petrillo 2015 Surgical-
laparoscopy

1 Score at laparoscopy complete

Riester 2015 Biomarker 3
protein signature (POSTN, CXCL14, phosphorylated 

Smad2/3)
Suboptimal

Rutten 2016 (Ferrandina
A) Clinical, radiology 5

PS, CT- bowel mesentery disease, diaphragmatic 
metastasis, aortic lymph npdes, DPT

suboptimal

Rutten 2016 (Ferrandina

B) Clinical, radiology 5
PS, CT- bowel mesentery disease, diaphragmatic 

metastasis, liver disease, omental disease 
suboptimal

Rutten 2016 (Gerestein) Clinical, radiology 3 Platelet count, CT- DPT, ascites suboptimal

Son 2017 Clinical, radiology 5
PS, CT- DPT, bowel mesentery, lymph nodes, pleural 

effusion
suboptimal

Stashwick 2011 Clinical, radiology 4
Albumin, CT- DPT, lymph nodes, splenic disease, 

bowel mesentery 
complete

Suidan 2014 Clinical, radiology 9

Age, CA 125 ASA PET CT- aortic lymph nodes, small 
bowel thickening, small bowel mesenteric disease, 

mesenteric artery disease, peri splenic disease, 
lesser sac disease

suboptimal

*full list of genes included in gene panel provided in appendix

Table 4.2 Modalities and predictors used in included models 
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Predictors included in models can be grouped as patient and tumour characteristics, 

biochemical markers, radiological predictors, or surgical predictors. 

 

4.2.3.1 Patient and disease characteristics 
 
Age was the most common patient characteristic utilised in models, demonstrating significant 

association with surgical outcome by many studies. The majority of models kept this predictor 

as a continuous variable, however Gu et al and Feng et al dichotomised the predictor by 

defining cut off points of 60 and 69 years, respectively. ECOG PS was shown to be associated 

with both suboptimal and complete cytoreduction and was included in four models, with BMI 

also utilised by Chesnais et al who again dichotomised this continuous variable. 

 

Table 4.3 Patient characteristics individually associated with surgical outcome 

Patient characteristic Study p value Associated debulking 

outcome 

Age Janco 0.003 Complete 

Age Karlsen <0.002 Complete 

Age Fago-Olsen 0.005 Suboptimal 

Age Horowitz 0.01 Suboptimal 

Age >60 Gu 0.016 Suboptimal 

Age >69 Feng 0.042 Suboptimal 

ECOG PS >2 Chong 0.052 Suboptimal 

ECOG PS >2 Janco 0.004 Suboptimal 

ECOG PS >2 Son 0.025 Suboptimal 

ECOG PS ≤3 Karlsen <0.001 Complete 

BMI >30 Chesnais <0.01 Suboptimal 

Stage Horowitz 0.009 Suboptimal 

 

Tumour characteristics were utilised most commonly in models focussing on gene expression 

data, with Abdallah et al and Heitz et al developing gene panels, and Riester et al developing 

a three-protein panel based upon a gene panel. Two models used stage of disease as 

predictors and only one model developed by Enshaei et al included the tumour histology and 

grade in their model. 
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4.2.3.2  Biochemical biomarkers 
 
 
Table 4.4 Biochemical biomarkers individually associated with surgical outcome 

Biochemical marker Study p value Associated debulking 
outcome 

CA125 Horowitz <0.001 Suboptimal 

CA125 Fago-Olsen 0.014 Suboptimal 

CA125 Gerestein 0.199 Suboptimal 

CA125> 420 Arab <0.001 Suboptimal 

CA125> 100 Chesnais <0.01 Suboptimal 

CA125 > 800 Gu 0.033 Suboptimal 

CA125 > 313 Feng 0.037 Suboptimal 

HE4 Karlsen <0.001 Complete 

HE4> 777 Feng 0.007 Suboptimal 

Transferrin Fago-Olsen 0.0014 Suboptimal 

−macroglobulin  Fago-Olsen 0.046 Suboptimal 

platelet count Gerestein 0.033 Suboptimal 

 

 

CA 125 is the most commonly included biochemical biomarker in the models, with four of the 

models dichotomising this continuous variable, with cut off levels varying between 100 – 800. 

Two models included HE4 as a predictor, Karlsen et al keeping this as a continuous variable 

and Feng et al using 777 as a cut off value. Fago-Olsen et al found transferrin and 2- 

macroglobulin to be associated with surgical outcome and included these in their model. Only 

Gerestein et al used the common haematological marker of platelet count as a predictor in 

their model. All studies specify that biochemical markers are to be taken via serum samples 

pre-operatively as close to the time of the surgical procedure as is practical, however only 

Suidan et al and Karlsen et al set a definitive time scale, both specifying their samples were 

collected within 14 days of surgery.    
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4.2.3.3 Radiological predictors 
 
Table 4.5 Disease sites on CT and PET-CT individually associated with surgical outcome 

CT disease site Study p value Associated debulking 
outcome 

Ascites  Arab 0.01 Suboptimal 
Ascites  Gerestein 0.0385 Suboptimal 
Ascites  Horowitz <0.001 Suboptimal 
Diffuse peritoneal thickening Janco 0.003 Suboptimal 
Diffuse peritoneal thickening Gerestein 0.0074 Suboptimal 
Diffuse peritoneal thickening Gu 0.046 Suboptimal 
Diffuse peritoneal thickening Son 0.01 Suboptimal 
Diffuse peritoneal thickening Fujwara 0.006 Suboptimal 
Omental metastasis Chesnais <0.01 Suboptimal 
Omental metastasis Gu 0.008 Suboptimal 
Omental metastasis Janco <0.001 Suboptimal 
Diaphragmatic metastasis Chesnais <0.01 Suboptimal 
Diaphragmatic metastasis Gu 0.014 Suboptimal 
Diaphragmatic metastasis Son 0.004 Suboptimal 
Pelvic bowel metastasis Gu 0.007 Suboptimal 
Abdominal bowel metastasis Gu 0.034 Suboptimal 
Bowel mesenteric metastasis Son 0.007 Suboptimal 
Bowel encasement tumours Fujwara 0.002 Suboptimal 
Liver surface disease Mackintosh <0.0001 Suboptimal 
Parenchymal liver metastasis Arab 0.041 Suboptimal 
Parenchymal liver metastasis Gu 0.005 Suboptimal 
Parenchymal metastasis Chesnais <0.01 Suboptimal 
Liver surface metastasis Gu <0.001 Suboptimal 
Splenic metastasis Gu <0.001 Suboptimal 
cul-de-sac metastasis Fujwara 0.005 Suboptimal 
Lymphadenopathy above 
inferior mesenteric artery 

Gu <0.001 Suboptimal 

Lymphadenopathy  Janco 0.03 Suboptimal 
Pelvic lymph nodes Fujwara 0.007 Suboptimal 
Supra renal lymphadenopathy Son 0.008 Suboptimal 
Para-aortic lymphadenopathy Mackintosh 0.0065 Suboptimal 

Pleural effusion Son 0.02 Suboptimal 
 

 

Radiology was the most commonly included modality across all studies, with 20/41 (49%) 

including the findings of pre-operative CT scans in their models and four studies including 

findings of PET-CT scans. All studies specified that scans were to be performed pre-operatively 

and were interpreted by radiologists trained in gynae-oncology. Scan-surgery time scales 

were often not reported, with only eight studies giving definitive timings, ranging from as long 

as 3 months (Rutten et al) to 21 days pre-operatively (Son et al). Table 4.5 demonstrates the 

different disease sites reported on CT found to have an association with surgical outcome, 

with diffuse peritoneal thickening being the most commonly included site in 12% of models.  
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4.2.3.4 Surgical predictors 
 

Surgical predictors by way of triaging laparoscopy were described in by Feng et al and Petrillo 

et al. Both these models describe a scoring system (Predictive index value- PIV) at time of 

laparoscopy, calculated by the presence or absence of: omental cake, extensive peritoneal 

metastasis, diaphragmatic metastasis, bowel disease, stomach and/or spleen and/or lesser 

omentum metastasis and superficial liver metastasis. The scoring system is then used to triage 

patients towards either the PDS or NACT/IDS treatment pathways. Feng et al also describes 

three surgical scoring systems all performed at the time of staging laparotomy: Eisenkop score, 

peritoneal cancer index (PCI) and Aletti score. The Eisenkop score and the PCI both aim to 

quantify tumour bulk, and Aletti surgical complexity at the start of the procedure and at this 

point triage whether completion of surgery would result in good surgical outcome or not. All 

surgical scoring in all models was performed by specialist gynae-oncologists in tertiary level 

centres.  

 

4.2.4 Model development and performance 
 
  

4.2.4.1 Model development and reporting methods 
 

Table 4.6 demonstrates the method of model development, their level of validation and 

methods alongside model performance. Of the 27 developed models identified by the review, 

all were developed via multivariable logistic regression modelling techniques, with the 

exception of one (Enshaei et al., 2015), who used the non-logistic artificial neural network 

(ANN) method. All but two (Borley et al., 2015; Heitz et al., 2020) of the 26 models selected 

the final included predictors for their models by applying univariable analysis to all candidate 

predictors prior to the multivariable analysis. Overfitting and model optimism were 

accounted for in all validated models, using a variety of techniques including bootstrapping, 

cross validation, splitting of data sets and the leave-one-out method.  

 

Model discrimination was described in the majority of cases as area under the curve (AUC) of 

receiver-operating characteristic (ROC) curve. Three models (Chesnais et al., 2017; Fujwara et 

al., 2011; MacKintosh et al., 2014) did not report an AUC but instead reported the specificity 
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and sensitivity of their models. Model calibration was discussed and reported less commonly, 

however of the eight studies reporting its usage all demonstrated good concurrence using 

Hosmer-Lemeshow goodness-of-fit test (Abdallah, Chon, Zgheib, et al., 2015; Chesnais et al., 

2017; Fago-Olsen et al., 2014; Feng et al., 2020; Y. Gu et al., 2020; J. M. T. Janco et al., 2015; 

Karlsen et al., 2016; Riester et al., 2014).  
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Model Validation Development method AUC
95% CI

Sensitivity Specificity
Lower Upper

Arab 2018 Development logistic regression 0.874 0.815 0.934

Gu 2020 Development logistic regression 0.788 0.72 0.856 89.10% 52.40%

Stashwick 2011 Development logistic regression 0.9 0.87 0.93 94% 75%

Suidan 2014 Development logistic regression 0.758

Chong 2019 Development logistic regression 0.775 0.64 0.88 82.40% 64.70%

Fujwara 2011 model 1 Development logistic regression 96.5%% 50%

Fujwara 2011 model 2 Development logistic regression 98.80% 50%

Abdallah 2015 Internal logistic regression 0.73 73% 66%

Borley 2014 Internal logistic regression 0.721 0.594 0.857 50%% 68%

Chesnais 2017 Internal logistic regression 0.79 0.73 0.86 93.50% 91.4

Enshaei 2015 Internal Artificial Neural network 0.75

Fago-olsen 2014 Internal logistic regression 0.64 70% 68%

Feng 2020 Internal logistic regression 0.71 0.54 0.88 100% 44%

Gerestein 2011 Internal logistic regression 0.67

Horowitz 2018 Internal logistic regression 0.73 0.79 0.88 80% 76%

Janco 2015 Internal logistic regression 0.748 88.50% 45.80%

Janco 2015 Internal logistic regression 0.685

Karlsen 2016 Internal logistic regression 0.839

Riester 2014 Internal logistic regression 0.89 0.84 0.93

Son 2017 Internal logistic regression 0.758 0.685 0.809 70% 73%

Heitz 2020 Internal logistic regression 0.54

Mackintosh 2014 Internal logistic regression 91.4% 59.4%

Abdallah 2015 External 0.57

Abdallah 2015 External 0.62

Feng 2018 
Suidan validation

External 0.548 0.436 0.659

Gu 2020 
Suidan validation

External 0.79 0.633 0.961

Kumar 2019 
Suidan validation

External 0.653 0.532 0.773

Heitz 2020 
Reister validation

External 0.5

Heitz 2020 
Liu validation

External 0.62

Heitz 2020 
Tucker validation

External 0.53

Rutten 2016 
Ferrandina A validation

External 0.59

Rutten 2016 
Ferrandina B validation

External 0.58

Rutten 2016 
Gerestein validation

External 0.66

petrillo 2015 External 0.885

Feng 2018 
Aletti validation

External 0.524 0.413 0.634

Feng 2018 
PCI validation

External 0.797 0.713 0.882

Feng 2018 
Eisenkop validation

External 0.808 0.728 0.887

Feng 2018 
Fagotti validation

External 0.713 0.527 0.9

Chesnais 2018 External

Mackintosh 2014 External 41.70% 73.90%

Llueca 2018 
PCI validation

External

Table 4.6 Model development methods and performance   
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4.2.4.2 Model performances and validation 
 

Model performance varied greatly between studies. Figure 4.2 demonstrates the varying AUC 

values between models, and the performance of models not reporting AUC values are also 

shown in table 4.6. The models at development stage reported AUC values between 0.73 and 

0.90, models that had been internally validated demonstrated AUC values between 0.54 and 

0.89, and models externally validated demonstrated AUC values between 0.50 and 0.88. 

Figure 4.2 demonstrates a general trend of decreasing AUCs with increasing levels of 

validation. Suidan et al demonstrated an AUC of 0.75 with a CT based model when originally 

developed and was externally validated twice, once successfully by Gu et al (AUC 0.79) and 

once unsuccessfully by Feng et al (AUC 0.54). Reister et al reported the most successful 

internally validated model with their three-protein signature, based upon a gene panel (AUC 

0.89). The gene panel was validated unsuccessfully by Heitz et al (AUC 0.53), however the 

three-protein signature has not yet been externally validated. Although most models do show 

a decrease in performance with an increasing level of validation, the surgical based models 

demonstrate this less so. Petrillo et al demonstrate the highest-level performance with their 

externally validated laparoscopic scoring system (AUC 0.88). However, although Petrillo et al 

reported a good performance, when the same scoring system was externally validated by a 

separate surgical team, Feng et al, performance of the model dropped to an AUC of 0.71. The 

second and third best performing surgical models (Feng et al validation of Eisenkop and PCI 

scoring systems, AUC 0.79 and 0.80, respectively) both aimed to quantify disease bulk at the 

time of laparotomy, and therefore require major surgery for their usage.
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Figure 4.2 Box plot illustrating performance of all models included in review 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AUC- area under curve, CI- confidence intervals. 95% confidence intervals shown when provided by studies. Figure excludes six models whose AUCs are not reported.    
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4.2.5 Risk of Bias assessment 
 
The risk of bias (ROB) for all studies was assessed using the Prediction model risk Of Bias 

Assessment Tool (PROBAST). This tool is designed specifically for prediction models in health 

and is suitable to assess prognostic models. The PROBAST guides the systematic assessment 

of ROB by assessing all aspects of the model separately (participants, predictors, outcome, 

analysis) then combining to give an overall ROB. All areas are scored as either low ROB (L), 

high ROB (H) or unclear ROB (U). Figure 4.3 outlines the PROBAST assessment for each of the 

models included in this review.    
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Figure 4.3 Risk of Bias (ROB) for all included models using PROBAST assessment 

Each domain is assessed for ROB; Low ROB (L), High ROB (H), Unclear ROB (U) as well as applicability in practice and given 
an overall score. Each model is shown along with the level of validation of the model; Development (D), Internal validation 
(IV), External validation (EV). 

  

STUDY ROB APPLICABILITY OVERALL

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Abdallah 2015 (D) L L L H L L L H L

Abdallah 2015 (EV) L L L U L L L U L

Abdallah 2015 (EV) L L L U L L L U L

Arab 2018 (D) L L L H L L L H L

Borley 2014 (IV) L L L H L L L H L

Chesnais 2017 (IV) L L L H L L L H L

Chesnais 2017 (EV) L L L H L L L H L

Chong 2019 (D) L L L H L L L H L

Enshaei 2015 (IV) L L L U L L L U L

Fago-Olsen 2014 (IV) L L L H L L L H L

Feng 2018 (Suidan EV) L L L H L L L H L

Feng 2018 (Aletti EV) L H L H L H L H H

Feng 2018 (PCI EV) L H L H L H L H H

Feng 2018 (Eisenkop EV) L H L H L H L H H

Feng 2018 (Fagotti EV) L L L H L L L H L

Feng 2020 (IV) L L H H L L H H H

Fujwara 2011 (D) L L L H L L L H L

Fujwara 2011 (D) L L L H L L L H L

Gerestein 2011 (IV) L L L H L L L H L

Gu 2020 (D) L L L H L L L H L

Gu 2020 (Suidan EV) L L L H L L L H L

Heitz 2020 (Reister EV) L L L L L L L L L

Heitz 2020 (Liu EV) L L L L L L L L L

Heitz 2020 (Tucker EV) L L L L L L L L L

Heitz 2020 (IV) L L L L L L L L L

Horowitz 2018 (IV) L L L H L L L H L

Janco 2015 (IV) L L L L L L L L L

Janco 2015 (IV) L L L H L L L H L

Karlsen 2016 (IV) H L L L H L L H H

Kumar 2019 (Suidan EV) L L L H L L L H L

Llueca 2018 (PCI EV) L L L H L L L H L

Mackintosh 2014 (IV) L L L H L L L H L

Mackintosh 2014 (EV) L L L H L L L H L

Petrillo 2015 (EV) L L L L L L L L L

Riester 2015 (IV) L L L L L L L L L

Rutten 2016 (Ferrandina A EV) L L L L L L L L L

Rutten 2016 (Ferrandina B EV) L L L L L L L L L

Rutten 2016 (Gerestein EV) L L L L L L L L L

Son 2017 (IV) H L L H H L L H H

Stashwick 2011 (D) L L L H L L L H L

Suidan 2014 (D) L L L H L L L H L
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4.2.5.1 Domain one: Participants 
 
All models included in the review had appropriate sources of data for their patient selection. 

The majority used data from cohort studies, with two models using patient data from RCTs 

(Abdallah, Chon, et al., 2015; Fago-Olsen et al., 2014; Heitz et al., 2020) and one model from 

data registries (Abdallah, Chon, et al., 2015). The majority of models had appropriate inclusion 

and exclusion criteria for their patient inclusion and therefore scored low risk of bias for this 

category. Karlsen et al scored high risk however, as they excluded all patients with an ECOG-

PS 4, and Son et al also scored high risk as they excluded patients with an ECOG-PS 2 and 

patients over the age of 80 years. These exclusions potentially eliminate the sickest patients 

from their models which could potentially create bias and affect the applicability of the study 

as in practice these patients are not always excluded as surgical candidates. 

 

4.2.5.2 Domain two:  Predictors 
 
All models both defined and assessed the predictors in a similar way for all participants and 

made predictor assessments without knowledge of the outcome. For the majority of models, 

the predictors would be available at the time the models are designed to be used, i.e. pre-

operatively. As already discussed, some predictors used require additional testing not 

routinely performed under current UK guidance, such as additional tumour biopsy or serum 

blood sample testing. However, image guided biopsy or laparoscopic assessment is 

occasionally undertaken in current clinical practice. Three of the surgical prediction models 

undertaken by Feng et al: the external validation of the PCI, Aletti and Eisenkop scores, 

require laparotomy in order for the prediction to be made. This would suggest additional 

morbidity and mortality and therefore the three models were scored as high ROB and high 

ROB for applicability in clinical practice. 

 

4.2.5.3 Domain three: Outcome 
 
Outcome was well defined in all models included. As discussed, the majority of the models 

aimed to predict suboptimal surgical outcome, with 12/41 predicting complete debulking. All 

models gave clear definitions for surgical outcome except one (Feng et al., 2020), which whilst 
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did clearly state the aim of the model to be prediction suboptimal debulking, did not define 

the surgical outcome clearly. For this reason, this model has a high ROB in this category. 

 

4.2.5.4 Domain four: Analysis 
 

Statistical analysis is a critical part of prognostic prediction model development and validation. 

Model development and validation studies can include many steps where flawed methods 

can distort results. As part of the PROBAST assessment models must show the following: 

robust methodology in sample size; appropriate handling of categorical and continuous 

predictors and missing data; appropriate selection of predictors; use of relevant performance 

measures; and account adequately for overfitting and optimism. Ten models demonstrated 

robust methodology in all categories and were therefore deemed low ROB in this area  (Heitz 

et al., 2020; J. M. T. Janco et al., 2015; Karlsen et al., 2016; Petrillo et al., 2015; Riester et al., 

2014; Marianne Jetske Rutten et al., 2015). The remaining 31 models were all deemed high 

risk for ROB.  

 

With respect to sample size, model development ideally requires >20 events per predictor 

(EPP), with >10 events adequate if 20 is not achievable. Eight of the development models did 

not provide information to assess the number of EPV (Abdallah, Chon, et al., 2015; Chesnais 

et al., 2017; Chong et al., 2019; Fago-Olsen et al., 2014; Heitz et al., 2020; MacKintosh et al., 

2014; Riester et al., 2014; Stashwick et al., 2011), and three showed <10 EPV for the included 

predictors (Fujwara et al., 2011; Son et al., 2017). Of the remaining development models, five 

demonstrated >20 EPV for all predictors (Feng et al., 2020; Cornelis G. Gerestein et al., 2011; 

Y. Gu et al., 2020; Karlsen et al., 2016), with the remainder of models having between 10 – 20 

EPV. 

 

The handling of categorical and continuous predictors was assessed. A large number of 

studies demonstrated dichotomisation of continuous predictors such as age, BMI, CA 125 and 

HE4. Dichotomisation of continuous predictors requires choosing an arbitrary cut off point 

above which values are classified as high and below which values are classified as low. 

Although this is often carried out to aid clinical interpretation, dichotomisation can lead to 

the loss of information and therefore the introduction of bias (Moons et al., 2019). The most 
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appropriate handling of missing data in prediction models is the use of multiple imputation, 

leading to a reduced level of bias in results (Moons, Kengne, Woodward, et al., 2012). Of the 

assessed models, 34 studies did not address missing data. When not addressed, the most 

common explanation was that patients with missing data were excluded from analysis, as 

many statistical packages automatically exclude patients with missing data fields (Moons et 

al., 2019). Six models specified that patients with missing data were excluded from analysis 

(Chesnais et al., 2017; Y. Gu et al., 2020; Rutten et al., 2016), and only one model specified 

the use of multiple imputation to account for missing data (Cornelis G. Gerestein et al., 2011). 

When a model is developed using a small data set, or if the EPP is not adequate, the model 

has high ROB due to overfitting of the data (Moons et al., 2019). To reduce this risk, all models 

require internal validation. Of the development models, seven (Arab et al., 2018; Chong et al., 

2019; Fujwara et al., 2011; Y. Gu et al., 2020; Stashwick et al., 2011; Suidan et al., 2014) were 

not internally validated and therefore present with high ROB.  

 

Most models sourced data using cohort studies, therefore datasets were likely to include 

desirable features to be used as candidate predictors. To allow for ease in clinical practice, 

many researchers aim to reduce the number of predictors required during model 

development, to produce a simplified model. Researchers often use univariable analysis of 

predictors as a triage step in model building, by only including predictors that reach a 

statistically significant univariable association. This approach can lead to incorrect predictor 

selection, as predictors are chosen on the basis of their statistical significance as a single 

predictor, rather than in context with other predictors (Moons et al., 2019). The method of 

selection of predictors was well described by all included development models. As discussed, 

all but one model (Enshaei et al., 2015) used multivariable logistic regression for model 

development. Of these models only two (Borley et al., 2015; Heitz et al., 2020) avoided the 

use of univariable analysis as a triage step. 

 

When assessing the performance of a prognostic prediction model, both model calibration 

and discrimination must be assessed. The most common methods used for calibration is the 

Hosmer-Lemeshow test and for discrimination the AUC of ROC curve (Moons, Kengne, 

Woodward, et al., 2012). All included models provided a method of model discrimination, 
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with AUC most commonly employed (table 4.6). However, only nine models provided 

information on method of model calibration. 

 

Taking all described domains into consideration, only 10 of the included models were deemed 

to have an overall low ROB when assessed with PROBAST. 

 

4.3 Discussion 
 
The ability to determine pre-operatively which patients will undergo complete debulking at 

the time of primary surgery would allow for the correct treatment pathway for each patient 

and in turn reduce morbidity and mortality as well as increasing survival. For a prediction 

model to be successful in clinical practice it must be clinically required, easy to use with the 

reliance upon readily available data and be successfully validated to allow it to be applicable 

across different populations. Despite many published models in this field, none are currently 

used in routine clinical practice. 

 

This systematic review identified 26 publications describing varying levels of development 

and validation of 27 prognostic prediction models, and the external validation of 14 pre-

existing models. The publications included differing predictors in their models including 

patient characteristics such as age, BMI and ECOG-PS, biochemical markers including tumour 

markers, CT scan findings, and laparoscopy.  

 

The majority of models displayed a good ability to predict surgical outcome at the 

development and internal validation stage, however failed to replicate this predictive ability 

when externally validated on a separate patient cohort. The failure to externally validate 

models may due to differences between patient populations, differing surgical practice and 

surgical effort or using different methods to develop prediction models leading to overfitting 

to the described population. The majority of models included relied heavily upon CT findings, 

as CT images are the largest influence in clinical decision making in MDTs in current practice 

(Scott et al., 2020). However, the sensitivity and specificity of CT scans for identifying intra-

abdominal metastasis range from 25 - 93% and 57 - 96%, respectively, casting some doubt 
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upon the current heavy reliance of this modality (Altman et al., 2012; Bailly et al., 2009; 

Coakley et al., 2002; Gemer et al., 2009). 

 

Although a variety of modalities were included in the models, none addressed surgical 

heterogeneity. More radical surgery, including more extensive upper abdominal surgery, is 

associated with increased debulking rates, and in turn increased overall survival (Aletti, 

Dowdy, et al., 2006; Chi et al., 2009). It is well established that surgical heterogeneity exists, 

not only on an individual level within units, but also between units, and even countries 

(Aletti, Gostout, et al., 2006; J. M. Janco et al., 2015; Jones et al., 2018). The tendency of 

the surgeon towards performing radical procedures has been found to be associated with 

optimal cytoreduction (Aletti, Gostout, et al., 2006). Range of debulking rates between 

surgeons can be marked (42-67%) depending upon their surgical tendencies (Aletti, Dowdy, 

et al., 2006). It has been suggested that in excluding this factor, all prediction models will 

be unsuccessful, as debulking rates rely so heavily on surgical practice (Aletti, Dowdy, et 

al., 2006).  

 

Although many models used a variety of modalities as predictors, all but three used 

univariable analysis to streamline the number of predictors before proceeding to the 

multivariable analysis and model development. This method is not recommended, as it can 

lead to incorrect predictor selection, as included predictors are selected based on their 

individual association with debulking, which excludes any significance that might occur when 

combined with other predictors. It is instead recommended that methods based on existing 

knowledge of previously established predictors in combination with statistical methods be 

used. It is not recommended that the number of predictors be reduced but instead to allow 

all clinically credible predictors to be retained in a model regardless of statistical significance 

(Harrell et al., 1996; Moons, Kengne, Woodward, et al., 2012; Sun et al., 1996). 

 

The most successfully externally validated models relied upon laparoscopic triaging of 

patients (Feng et al., 2018; Petrillo et al., 2015). This method has received criticism in the past, 

as laparoscopy is not currently routinely performed as part of the diagnostic pathway. There 

were concerns that this procedure may introduce a time delay, increase morbidity due to 

complications and port site metastasis (PSMs) as well as have a monetary implication. On 
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systematic review of laparoscopy as a triage tool, it was found that the procedure does not 

increase healthcare costs, adversely affect complication rates or negatively impact on quality 

of life (van de Vrie et al., 2019). In addition, a large meta-analysis concluded that although 

rates of PSMs did increase following diagnostic laparoscopy, patient outcome was not 

negatively affected. The advantages to using laparoscopy as a triage tool could be twofold; 

firstly, it would allow for the completion of the prediction score, and secondly would allow 

for the pre-operative attainment of tissue via biopsy. By routinely achieving tissue pre-

operatively, predictors requiring tissue biopsy such as protein panels and genomic markers 

could also be included. 

 

The majority of models displayed high risk of bias, mainly due to the methods of model 

development and lack of successful validation. For this reason, none of the currently 

published models would be appropriate to be used in clinical practice in their current form. 

Some models do show promise when internally validated, and it would be beneficial for these 

models to be validated further. The use of all available predictors in a model, including 

laparoscopy, as well as incorporating the heterogeneity of surgical practice, may well improve 

model performance and should therefore be explored further.   
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5 External validation of a three-protein surgical prediction signature. 

 

5.1 Introduction 

 
The systematic review in chapter 4 demonstrates the many published models that aim to 

predict poor surgical outcome at the time of primary surgery. As shown, none validate 

sufficiently enough to be of use in clinical practice. Often, external validation is not performed 

due to a lack of suitable databases large enough to perform a significant validation.   

 

External validation to this point has mainly been confined to radiological and surgical models, 

with few of the newer biological models being validated. One such published model was 

described by Riester et al, in 2014. They developed a model to predict suboptimal debulking, 

firstly using genomic screening to create a gene panel, and then translating this to a three-

protein signature (POSTN, CXCL 14 and pSmad2/3). The model utilised the presence of the 

three proteins in stage III and IV high grade epithelial ovarian cancer tumours to predict 

suboptimal surgical debulking status with a sensitivity of 92.8% and an AUC of 0.89 (Riester 

et al., 2014). Despite showing promise, this protein signature has yet to be externally 

validated on an independent cohort.  

 

The model utilises IHC, a method that is commonly used in histopathology labs in the UK as 

part of the diagnostic pathway in ovarian cancer (Shah et al., 2012). IHC is readily available, 

fast and relatively cheap (Raab, 2000) when compared to alternative techniques such as 

genomic analysis. As our current treatment pathway includes a tissue biopsy for patients 

having NACT and IDS, if this model were to successfully validate, it could become routine for 

all patients to undergo a tissue biopsy pre-first line treatment.  

 

The development of the protein signature is outlined in figure 5.1. The team collated data 

from eight different genomic databases and applied univariable logistic regression to 

identify 200 genes demonstrating association with suboptimal surgical debulking. The 

genes were analysed using Pathway Studio 7.1 software (Ariadne Genomics, Rockville, MD) 

to identify relationships between the genes, and resulted in the isolation of a panel of six 

genes: POSTN, CXCL 14, FAP, TGFBR2, NUAK1 and PTCH1.  
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To assess the six gene signature on a functional, rather than genomic level, three proteins 

were selected to act as surrogate biomarkers to represent the aforementioned six gene panel. 

Three proteins, POSTN, CXCL 14 and pSmad2/3 were selected, whose expression in tumour 

cells would represent the hyperactivation of the three pathways. This protein panel was 

internally validated on a separate cohort of 179 tumour samples with an AUC of 0.866. 

 

 

Figure 5.1 Development and internal validation of the three-protein model 

(Riester et al., 2014). AUC- area under curve. 

 

The three proteins identified in the protein signature (POSTN, CXCL 14 and pSmad2/3) all have 

precedent in the literature for having a role in the encouragement of migration, as well as 

increasing vascularity of tumours in high grade epithelial ovarian cancer tumours. POSTN, 

(periostin, OSF-2) is a protein expressed in tumour stroma (Kujawa et al., 2020) , encoded by 

the POSTN gene in humans. POSTN encodes an extracellular matrix protein that functions in 

tissue development and regeneration, including wound healing. It functions as a ligand 

for alpha-V/beta-3 and alpha-V/beta-5 integrins to support adhesion and migration of 

epithelial cells (Gillan et al., 2002). In ovarian cancer, it is believed tumours associated 

macrophages contribute to tumour progression, and POSTN has been reported to be an 

important factor in macrophage recruitment in the tumour microenvironment through 

involvment in the interactions between macrophages and ovarian cancer cells (Tang et al., 
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2018). POSTN can be overexpressed in cancer stroma in epithelial ovarian cancer (EOC) 

patients, with immunohistochemistry analysis showing that the overexpression of stromal 

POSTN was a powerful independent poor prognostic predictor for EOC patients associated 

with platinum resistance. POSTN also regulates ovarian cancer cell adhesion and motility 

(Choi et al., 2011; Gillan et al., 2002). High expression of POSTN in tumour stroma has been 

associated with a worse prognosis (Karlan et al., 2014). 

 

Chemokine (C-X-C motif) ligand 14 (CXCL 14), is an antimicrobial gene belonging to the CXC 

chemokine family, and encodes for CXCL 14, a protein involved in immunoregulatory and 

inflammatory processes (Li et al., 2020). In ovarian cancer, CXCL 14 leads to multi-effects in 

tumorigenesis and development (Li et al., 2020), and is preferentially expressed in ovarian 

cancer (Bedognetti et al., 2013). CXCL 14 regulates several different biological processes in 

the body, including inflammatory immune responses, angiogenesis in cancer, host‐specific 

tumour‐specific immunity activation and autocrine tumour growth regulation (Lu et al., 2016). 

In vitro and in vivo experiments have both confirmed that the overexpression of CXCL 14 

promotes ovarian cancer cell proliferation. The upregulation of CXCL 14 is associated with 

poor survival outcomes and promotes ovarian cancer cell proliferation. CXCL 14 expression is 

disproportionately increased in patients with metastatic disease (Li et al., 2020).  

 

The SMAD gene codes for the protein pSmad 2/3, a member of a family of proteins acting as 

signal transducers and transcriptional modulators that mediate multiple signalling pathways. 

The protein also mediates the signal of the transforming growth factor (TGF) beta, and 

therefore regulates several cellular processes, such as cell proliferation, apoptosis, and 

differentiation. The disruption of TGF-beta has been strongly linked with ovarian cancer, 

leading to increased levels of pSmad 2/3 being expressed in cells (Alsina-Sanchís et al., 2017). 

TGF-beta signalling plays a role in ovarian cancer physiology as well as acting as a tumour 

promotor controlling proliferation (Alsina-Sanchís et al., 2017). 

All three proteins promote the proliferation of ovarian cancer and have been associated with 

poor outcomes. Although these poor outcomes have been mainly attributed to 

chemotherapy resistance, there may be a surgical element to this. If a tumour is more 

disseminated, with extensive vasculature, it may well be more difficult to remove surgically. 
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The ICON5 trial; a trial conducted by the International Collaborative Ovarian Neoplasm (ICON) 

group, aimed to determine if the incorporation of an additional cytotoxic agent improved 

overall survival and progression free survival for women with advanced stage high grade 

epithelial ovarian carcinoma and primary peritoneal carcinoma who received carboplatin and 

paclitaxel (Bookman et al., 2009). The patients recruited for ICON5 were identified as an 

appropriate test bed for the external validation of the three-protein panel, as it was 

multicentred, included relevant data, and was a negative trial, so chemotherapy was not a 

confounder for the results.  

 

5.2 Hypothesis and aim 
 

5.2.1 Hypothesis 
 
The three-protein signature originally developed by Riester et al. will successfully predict 

suboptimal cytoreduction in the ICON5 cohort of patients. 

 

5.2.2 Aim 
 

Using the ICON5 cohort of patients’ tumour samples, validate the three-protein panel 

developed by Riester et al. via immunohistochemistry. 

 

5.3 Results 
 

5.3.1 Patient demographic and tumour samples comparison between original and validation 
cohorts 

 

5.3.1.1 Original cohort 
 
The original prediction model was developed in a cohort of 179 patients. Patients originated 

from a single centre and had all undergone PDS between 1993 and 2009. All patients were 

diagnosed with stage III and IV HGSOC. Suboptimal was defined as residual tumour 1cm and 

optimal as residual tumour <1cm. 

 

5.3.1.2 Validation cohort 
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In total, 357 paraffin fixed high grade epithelial cancer patient samples from the ICON5 trial 

were identified. A minimum of three sections per tumour sample were required for the 

validation, and surgical outcome information was required. Of the 357 slides, 265 patient 

samples were identified as fitting the criteria for inclusion, figure 5.2.  

 

 

Figure 5.2 CONSORT diagram showing final selection of samples for analysis 

 

Of the 265 patient samples included, all were histologically proven high-grade epithelial 

cancer and originating from stage III and IV tumours. In total, 85% of patients underwent 

primary debulking surgery, and the overall suboptimal rate was 46%, a higher percentage 

than reported for the whole trial cohort (30%). Suboptimal was defined as residual tumour 

1cm and optimal as residual tumour <1cm. 

n = 357 patient 
samples

48 samples excluded as < 3 
sections available

n = 309 patient 
samples

44 samples excluded as 
surgical outcome unknown

n = 265 patient samples to be included 
in study.

All ≥ 3 available sections
All surgical outcomes known
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Table 5.1 Differences in patient and tumour characteristics between cohorts 

 Demographic Original dataset 

n= 178 

Validation dataset 

n= 238 

p value 

Patient age  unknown  unknown   

Stage at diagnosis n (%) 

III 

IV 

  

142 80% 

36 20% 

 unknown   

Primary debulking surgery n (%) 100% 85%   

Suboptimal debulking rates n (%)  43 (24%) 112 (47%)  p <0.0001 

Dates surgeries performed 

Age of samples at time of IHC 

1993 - 2009 

4 – 20 years 

2001 - 2004 

15 – 18 years 

  

Single or multicentre  single multi 
 

 

As both models were created on cohorts developed for other purposes, the known 

demographic data was limited. Patient age, BMI, deprivation status, or the co-morbidities was 

not known about either cohort. The original geographic location of the first dataset was 

unknown, although this was a single centre study. Conversely, the validation data set included 

patient tumours from multiple different centres internationally. 

 

Both datasets were made up entirely of high grade stage III and IV epithelial ovarian cancer 

tumours. The original dataset was split between stage III and stage IV respectively, however 

the breakdown of stages was unknown for the validation dataset. All tumours from the 

original dataset were taken at the time of primary surgery, however in the validation cohort 

85% of tumours were taken at the time of primary surgery, and 15% at the time of interval 

debulking surgery.   

 

The original dataset contained tumour samples that were between 4 – 20 years old at the 

time of IHC, and the validation dataset contained tumours between 15 – 18 years old at the 

time of IHC being performed. 

 

5.3.2 Optimisation of antibody concentrations for validation 
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Optimisation of the antibody concentrations required for both for hand staining and then for 

automated staining on the BOND-III was performed. The concentrations used in the original 

study including for the negative control of Rabbit IgG are shown below in table 5.2. Details of 

brand and working concentrations used are described in methods section 3.3.1.  

 

Table 5.2 Antibody concentrations in original study 

Protein staining Antibody concentrations 

POSTN 1:800 

CXCL 14 1:400 

pSmad 2/3 1:200 

Rabbit IgG 1:500 

 

Firstly, optimisation by hand staining was performed by AH. A range of concentrations both 

more and less concentrated than the concentrations in the original study was performed. 

Three separate slides were stained for each concentration to ensure consistency of results, 

as shown in figure 5.3. Once stained, slides were reviewed by AH with GW to ensure adequate 

staining had been achieved. Adequate staining was achieved with the same antibody 

concentrations as the original study, as highlighted below in figure 5.3.  

 

Further optimisation via automated staining on BOND III was performed. A range of 

concentrations both more and less concentrated than the original paper was used. Three 

sections were stained per antibody concentration to ensure consistency of staining. The 

concentrations used in the original paper produced adequate staining for the POSTN, CXCL 

14 and negative control of Rabbit IgG. However, the concentration of 1:200 produced under-

stained sections for the pSmad 2/3. For this reason, a further optimisation for the pSmad 2/3 

in isolation was performed at the concentrations shown in figure 3. Review of confirmed 

adequate staining for pSmad 2/3 at the concentration 1:50.  
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Figure 5.3 Optimisation of antibody pathway- hand and automated staining 

Step one- demonstrates concentrations both used in original study and achieving adequate staining. Step two- bold text 
demonstrates adequate staining with automated staining. Red text highlights inadequate staining with both 1:200 
concentration and more concentrated 1:100. Step three demonstrates further optimisation- green text representing adequate 
staining. Step four- final chosen antibody concentrations 

 

Before scoring the full cohort, examples of percentage positive slides and intensity of staining 
were agreed, figure 5.4.  
 

Optimisation of antibody concentrations

POSTN CXCL 14 pSmad 2/3 Rabbit IgG

1:400 1:200 1:100 1:250

1:800 1:400 1:200 1:500

1:1600 1:800 1:400 1:1000

1. Manual initial optimisation (x3 each)

2. BOND III initial optimisation (x3 each)

Slides reviewed by consultant histopathologist specialising in 
gynae-oncology

POSTN CXCL 14 pSmad 2/3 Rabbit IgG

1:400 1:200 1:100 1:250

1:800 1:400 1:200 1:500

1:1600 1:800 1:400 1:1000

Slides reviewed by consultant histopathologist specialising 
in gynae-oncology

pSmad 2/3

1:50

1:100

Slides reviewed by 
consultant 

histopathologist 
specialising in 

gynae-oncology

POSTN CXCL 14 pSmad 2/3 Rabbit IgG

1:800 1:400 1:50 1:500

4. Final antibody concentrations to be used

3. BOND III second optimisation (x 3 each)
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Figure 5.4 Range of staining intensities 

Viewed using QuPath at 20 times magnification. Figure 5.4a demonstrating cytoplasmic staining of POSTN protein, figure 
5.4b and 5.4c demonstrating nucleic staining of CXCL 14 and pSmad 2/3 respectively. 
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A sample of 50 slides were scored independently to ensure adequate agreement between 

scorers before the entire cohort was assessed. Correlation between the two scorers was very 

strong (Spearman r 0.8549 95% CI 0.7516 – 0.9173 p<0.001), figure 5.5.  

 

 

Figure 5.5 Scatter graph demonstrating very strong correlation between two independent scorers 

p = <0.001 

 

As very strong correlation between scores was demonstrated, the full completion of scoring 

of all 265 stained samples for each of the three proteins was next performed by both 

independent scorers.  

 

5.3.3 External validation 
 

5.3.3.1  Final sample size 
 
Final scoring was completed for all 265 stained samples for each of the three samples, 

resulting in 795 slides scored per scorer. The tissue on a small number of slides had folded 

during the IHC process deeming them un-scorable, and a small number of slides had been 

scanned inadequately resulting in blurred images. The final number of tumour samples 

included in analysis was 238, figure 5.6. 
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Figure 5.6 CONSORT diagram demonstrating final number of samples in external validation 

 

Of the 238 tissue samples included for the final external validation, 46% had a surgery 

resulting in suboptimal debulking. This resulted in a number of events n=109 for the validation 

cohort.  

 

5.3.3.2 Inter-scorer variability 
 

Each scorer independently scored the 238 slides for each of the three proteins (795 slides in 

total). The slides were scored in three areas and a final score was calculated by averaging the 

scores for the three sections, described in section 3.3.2. To ensure agreement between 

scorers, inter scorer variability was assessed. Good correlation of scores was achieved for all 

three proteins, figure 5.7.  
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Figure 5.7 Scatter graphs showing inter-scorer variability 

Corresponding R2 and p values seen in table 

 

 

Correlation between both scorers in pSmad 2/3 and POSTN were very strong, however 

correlation between scorers for CXCL 14 was slightly weaker. Figure 5.7 demonstrates the 
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 R2 value (95% CI) p value 
POSTN 0.749 (0.68 – 0.80) <0.001 

CXCL 14 0.700 (0.62 – 0.76) <0.001 

pSmad 2/3 0.836 (0.79 – 0.87) <0.0001 
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wider variation in scores for CXCL 14 when compared to POSTN and pSmad 2/3, which could 

explain the slightly lower correlation for this protein.  

 

 
Figure 5.8 Box and whisker chart showing breakdown of combined scores 

476 slides for each protein. The scores for CXCL 14 demonstrate a much wider variation than the other two proteins. 
 

The three individual scores were combined to give an overall score between 0 – 36 for each 

tissue sample. Figure 5.9 demonstrates very similar distribution of total scores between the 

two independent scorers. Spearman’s rank correlation coefficient demonstrated a strong 

positive correlation between the two independent scorers with an R2 value of 0.8025 (95% CI 

0.7506 – 0.8445) and p < 0.0001.  
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Figure 5.9 Box and whisker chart showing ranges of scores between scorers 

 

 

 

Scorer two scores were used to externally validate the original three-protein signature. These 

scores demonstrate a wider range and therefore will represent our cohort more 

comprehensively than either scorer one or an average of the two scorers combined together. 

 
All slide scores from the validation cohort along with clinical data including surgical outcome 

were consolidated to allow the external validation of the three-protein signature 

 
The original three-protein validation model described the ability to predict suboptimal 

surgical outcome. This predictive ability was present for each three proteins individually, in 

addition when the scores for all three proteins were combined. 

 

5.3.3.3 Comparison of methods    
 
Methods between the two studies were replicated as closely as possible, however some 

variations did occur. The source of some antibodies varied, however for the anti-POSTN and 

the anti-pSmad 2/3, both the working antibody concentrations and the dilution of antibodies 

used in the IHC methods remained consistent across the two studies. As the working 
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concentrations of the CXCL 14 in the original study was unknown, this may have differed in 

the validation study, and may also be reflected in the difference in the optimisation of 

antibody concentrations in the validation study (1:400 original vs 1:50 validation).  

 

The original study conducted the IHC entirely by hand, and slides were scored through 

visualisation through a light microscope. Conversely the validation study used a combination 

of hand staining and automated staining techniques for IHC, and all slides were scanned and 

scored manually on digital images. 

 

The scoring system for each study was replicated exactly, as was the main statistical analysis. 

 

5.3.3.4 Comparison of scores 
 
Both models were created based on slides of high grade epithelial ovarian cancer tumour 

samples. All the slides were stained under very similar IHC conditions as above and scored 

using the same scoring system. Despite this, when the scores for each individual protein were 

compared between the two studies, they varied significantly in distributions between the two 

cohorts, figure 5.10. The scores for both POSTN and pSmad 2/3 showed significantly greater 

variation in standard deviation in the original cohort. Conversely, CXCL 14 showed a greater 

variation in standard deviation in the validation cohort.  

 

Table 5.3 demonstrates the difference between the scoring of slides in the two cohorts. There 

are significant differences between both cohorts, when comparing them as a whole, and 

when broken down by surgical cytoreductive status. 
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Table 5.3 Comparison of mean scores for each protein 

 
Cohorts 

 
Original dataset 

Median score 

(IQ range) 

Validation dataset 

Median score 

(IQ range) 

p value 

Complete cohort 

  

CXCL 14 5 (4 - 7) 8 (5 - 12) <0.0001* 

PSMAD 2/3 5 (3 - 7) 0 (0 - 2) <0.0001* 

POSTN 4 (1 - 7) 1 (0 - 3) <0.0001* 

Combined score 15 (9 - 19) 11 (7 - 14) <0.0001* 

Suboptimal 

cytoreduction 

  

CXCL 14 7 (6 - 9) 7 (4 – 10.75) 0.548 

PSMAD 2/3 7 (6 - 8) 0 (0 - 2) <0.0001* 

POSTN 8 (6 - 10) 1 (0 - 4) <0.0001* 

Combined score 23 (17 - 26) 11 (7 - 13) <0.0001* 

Optimal 

cytoreduction 

CXCL 14 5 (3 - 7) 9 (7 - 12) <0.0001* 

PSMAD 2/3 5 (3 - 6) 0 (0 - 2) <0.0001* 

POSTN 3 (1 - 5) 1 (0 - 3) <0.0001* 

Combined score 12 (8 - 16) 12 (8 - 16) 0.557 

p values calculated by Mann-Whitney U test, p <0.05 considered significant 
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Figure 5.10 Box and whisker chart showing variation of scores between datasets 

Plots showing mean and standard deviation of scores. Significantly different distributions between the two cohorts for all 
three proteins. P values calculated using Mann-Whitney U test. 
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Figure 5.11 ROC curves demonstrating AUC of original and validation cohorts for three proteins individually and combined 
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POSTN AUC p value 

Original 0.811 <0.0001**** 

Validation 0.551 0.174 

CXCL 14 AUC p value 

Original 0.793 <0.0001**** 

Validation 0.621 0.0012** 

pSmad 2/3 AUC p value 

Original 0.786 <0.0001**** 

Validation 0.529 0.4371 

Combined AUC p value 

Original 0.866 <0.0001**** 

Validation 0.593 0.0131** 
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5.3.3.5 POSTN validation 
 
In the original model, POSTN was predictive for suboptimal surgical outcome on a dataset of 

178 high grade ovarian cancer tumour samples with an AUC of 0.811 and p value of <0.0001. 

When validated on our cohort of 238 high grade ovarian cancer tumour samples the 

predictive affinity was poor, with an AUC of only 0.551 and a p value of 0.174, figure 5.11.  

 

5.3.3.6 pSmad 2/3 validation 
 
In the original model, pSmad 2/3 was predictive for suboptimal surgical outcome on a dataset 

of 178 high grade ovarian cancer tumour samples with an AUC of 0.786 and p value of <0.0001. 

When validated on our cohort of 238 high grade ovarian cancer tumour samples the 

predictive affinity was again poor, with an AUC of only 0.529 and a p value of 0.3471, figure 

5.11.  

 

5.3.3.7 CXCL 14 validation 
 
In the original model, CXCL 14 was predictive for suboptimal surgical outcome on a dataset of 

178 high grade ovarian cancer tumour samples with an AUC of 0.793 and p value of <0.0001. 

When validated on our cohort of 238 high grade ovarian cancer tumour samples the 

predictive affinity was again poor, with an AUC of only 0.621 and a p value of 0.0012, figure 

5.11.  

 

5.3.3.8 Combined scores 
 
In the original model, when the scores of all three proteins were added together to create a 

combined score, this score was predictive for suboptimal surgical outcome on a dataset of 

178 high grade ovarian cancer tumour samples with an AUC of 0.866 and p value of <0.0001. 

When validated on our cohort of 238 high grade ovarian cancer tumour samples the 

predictive affinity was again poor, with an AUC of only 0.593 and a p value of 0.0131, figure 

5.11.  

 

5.3.3.9 Further exploratory analysis 
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As the four models above (three individual proteins and one combined score) all utilise 

univariable analysis, further analysis was performed using data from the original paper to 

explore whether the three protein scores could each be used as a separate predictor in a 

multivariable model. When a logistic regression multivariable mode was applied to the 

original dataset (n = 179), an AUC of 0.889 was achieved. However, when this was externally 

validated using the ICON5 dataset (n = 238), AUC dropped to 0.429.  

 

The original prediction model was built on PDS patients only. The validation cohort was mainly 

PDS patients (85% n = 202), however, there were a small cohort of tumours taken at the time 

of interval debulking surgery (15%, n = 36). When the 36 patients who underwent IDS were 

excluded from analysis, the predictive affinity of each of four models remained largely 

unchanged (POSTN AUC 0.56, pSmad 2/3 AUC 0.54, CXCL 14 AUC 0.63, combined AUC 0.58). 

 

5.4 Discussion 

 
Despite showing promise and achieving successful internal validation, the successful 

predictive performance of the original model was not replicated when applied to an external 

cohort of patients. 

 

There are no set parameters for prediction models in medicine required to be reached to 

declare the model successful and suitable for clinical practice. Instead, success can be 

measured by achieving an accuracy that is superior to existing methods designed to 

accomplish the same task (Myers et al., 2020). Although there are no currently successfully 

externally validated prediction models able to predict suboptimal surgical outcome published 

in the literature, the performance of this model when validated was poor. The accuracy levels 

achieved (AUC  0.621) for all models were not significant, therefore this model would not be 

acceptable for use in clinical practice based upon this validation.  

 

The selection of the three proteins used in the original model was a complex process and 

involved somewhat opaque transitions between genomic analysis and functional level 

analysis. Although the presence of the three proteins in an ovarian cancer tumour do have 



 116 

some scientific rationale as to the removability of the disease, the combination of the three 

proteins used has no precedence in the literature. 

 

The original model was validated via IHC on a cohort of 179 patient samples, with a reported 

suboptimal debulking rate of 24%. Therefore, the number of events (number of patients 

undergoing suboptimal debulking) in the cohort was 43. The literature recommends at least 

100 events for the validation of a clinical prediction model (Moons, Kengne, Grobbee, et al., 

2012), and therefore the original model validation was underpowered. This could have 

resulted in overfitting of the model to the data and could account for the high reported 

accuracy in the original model. Conversely, the external validation was performed on a cohort 

of 238 patient samples with a much higher reported suboptimal debulking rate of 46%. 

Therefore, the number of events stands at 109, which allows greater confidence for the 

reliability of the failed external validation. 

 

There are many previously published surgical prediction models that have also failed to 

successfully validate when applied to external cohorts, often attributed to the differences 

between the cohorts, and this study is no exception. Although all tumours in both cohorts 

were epithelial ovarian cancers of the same grade, and all late stages, there remain 

differences between the two groups. The most notable differences are the timing and the 

locations of the surgery performed. The original study contained tumours with surgery dates 

between 1993 – 2009, whereas the tumours in the validation cohort were removed in 

surgeries between 2001 – 2004. Although there is some time overlap between the groups, it 

is possible that surgical practice has changed over time. Furthermore, the original study 

cohort were operated upon within a single centre, whereas the validation cohort were made 

up of patients from multiple different centres internationally. Variation in surgical practice 

within centres is well established, and surgeon heterogeneity between centres is vast (Aletti, 

Gostout, et al., 2006; J. M. T. Janco et al., 2015; Jones et al., 2018). This variation in practice 

could contribute to the failed external validation of this model. If a tumour was deemed 

operable by the surgeons operating on the original cohort, this may well not be the case for 

a surgeon in one of the validation centres, deeming the model unreproducible anywhere 

other than the centre in which it was developed. The initial cohort contained 100% patients 

undergoing PDS, whereas the validation cohort included 15% of patients who had undergone 
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IDS. The patients undergoing IDS would no longer have chemotherapy naïve tumours, and 

this could affect results. There is an argument for excluding IDS patients from this analysis 

completely. 

 

External validation was performed with care to ensure the techniques used to create the 

original model were replicated as closely as possible in the validation set. The conditions in 

which the IHC were undertaken were as similar as possible, although the original model 

utilised hand staining, and the validation used automated staining for the main part. Despite 

this difference, hand staining was also successfully performed for the optimisation of 

antibodies in the validation model and all other materials and methods were kept consistent, 

however, the concentrations of the antibody anti-pSmad 2/3 did differ between the two 

studies. However, the working concentrations of anti-pSmad 2/3 used in the original study 

were unknown. Therefore, if the original study was undertaken using a more concentrated 

batch, this could account for the discrepancy, as a higher concentration would be required 

for the validation study to achieve adequate staining. 

 

There was very strong positive correlation between the two scorers in the validation cohort 

for both the POSTN and pSmad 2/3 staining, which gives confidence in the consistency of the 

scoring. Although there was still good positive correlation between scorers for the CXCL 14 

staining, there was slightly more discrepancy than with the other two proteins. This was 

despite a learning period between the two scorers with a consultant histopathologist before 

scoring began. Due to the statistically proven strong correlation between the two scorers, the 

decision was made not to re-score the CXCL 14 slides. Re-scoring could introduce scoring bias, 

as the slides had been previously viewed, and the outcomes of both scorers known, and 

therefore a re-score would no longer be blinded. Differences were also identified in the 

scoring patterns between the two cohorts for each of the three proteins. Given that the two 

cohorts were made up of tumours removed in varying time and place, as well as varying 

storage ties, this is not surprising.  

 

Both studies used historical slides that had been stored between 4 – 20 years before IHC was 

undertaken. The validation cohort were stored at room temperature in a pre-cut paraffin 

fixed state. The method of storing used in the original study was not known. There are very 
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few studies exploring the relationship between the time fixed slides are stored and the 

accuracy of IHC results. Some studies have suggested that longer storage time may be 

detrimental to antigenicity in tumour samples, resulting in false negative findings (Economou 

et al., 2014). Conversely, other studies have contradicted this theory, with Forse et al 

reporting adequate staining of breast cancer tissue via IHC following 12 years of storage 

(Forse et al., 2019), although these slides were stored at -80C and not at room temperature. 

There is literature agreement that if slides are to be stored over prolonged periods, they must 

be paraffin fixed, as they were in the validation study. Both studies also included successful 

negative controls, suggesting that a positive result was indeed a true positive. Staining was 

also reviewed by an experienced consultant histopathologist, who confirmed that despite 

their age, the slides has stained adequately. 

 

This external validation was conducted with adequate power, with the methods and materials 

followed as closely as possible. Despite this, the three-protein prediction model failed to 

accurately predict suboptimal surgical outcome in an external cohort. Without successful 

external validation, this model is not suitable for progression forward and consideration for 

use in clinical practice. Although future work could include the repeated validation on a 

separate cohort, the failed validation presented here would still stand, and therefore doubts 

for the efficacy of the model would remain, and further biomarkers are therefore needed. 
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6 Cancer genomics as predictors of surgical outcome 
 

6.1 Introduction 
 
The  genomic landscape of ovarian cancer has been refined over recent years with data from 

the Cancer Genome Atlas (TCGA) and other consortia outlining classifications based on DNA 

damage repair status (Mukhopadhyay et al., 2012; TCGA, 2011) mutation profiling (TCGA, 

2011) gene expression (Tothill et al., 2008), and copy number changes (Cerami et al., 2012; 

Macintyre et al., 2018).   

 

To date, only the HR repair status of tumour has been identified to be a prognostic marker 

for progression free survival (PFS) and overall survival (OS) (Gee et al., 2018).  A patient 

carrying a germline or somatic mutation in the HR pathway rendering the tumour HR deficient 

(HRD) demonstrates increased PFS and OS when compared to patients with tumours with 

functioning (competent) HR pathway (HRC). This survival advantage is attributed to an 

increased sensitivity to both platinum-based chemotherapy and PARP inhibitors (Macintyre 

et al., 2018; TCGA, 2011; M. Tumiati et al., 2018). 

 

In 2011, the TCGA published a comprehensive overview of their findings of the genomics of 

ovarian cancer. They describe the full exome sequencing findings for 316 HGSOC patients 

(TCGA, 2011). HR status of both patient and tumour was recognised as playing an important 

role in both OS and response to medical treatment. HR defects were present in over half of 

all HGSOC cases. The most common gene defect involved in the HR pathway were BRCA1 and 

BRCA2 (20%). After analysis of over 72 genes thought to be involved in the HR pathway, 16 

other genes were identified to be relevant. The study defined a unique HR gene panel, 

comprising of the genes identified to utilise HR for DNA repair in HGSOC; BRCA1, BRCA2, 

C11of30, PTEN, RAD51C, ATM, ATR, PALB2, FANCA, FANCC, FANCCI, FANCL, FANCD2, FANCE, 

FANCG, FANCM.   

 

The correlation between HR status and surgical outcome has not been explored to date. If a 

patient’s HR status was found to correlate with surgical outcome, this could become a 

valuable part of prediction tools to guide surgical decision making and increase the rate of 
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good surgical outcomes. It is estimated that approximately 90% of all HR mutations in ovarian 

cancer are germline, with the majority also being carried through into the tumour as somatic 

mutations, and approximately 10% being isolated somatic mutations (Capoluongo et al., 2017; 

Pennington et al., 2014).  

 

Next generation sequencing (NGS) genomic testing and functional HR assays are becoming 

more commonplace in clinical practice, as well as becoming increasingly cheaper and faster 

to process. The testing for somatic germline testing via a small tumour sample at the time of 

diagnosis is becoming part of routine practice (Capoluongo et al., 2017; Konstantinopoulos et 

al., 2020).  
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6.2 Hypothesis 
 

Patients who harbour a germline or somatic mutation rendering them HRD will be more likely 

to have favourable surgical outcomes than those who are HRC.  

 

6.3 Aims 
 

Determine correlation between tumour HR status and surgical outcome in MOCHR patient 

cohort utilising a functional HR assay. 

 

Determine correlation between HR status and surgical outcome in the TCGA patient cohort 

utilising the HR gene panel identified by the TCGA. 

 

  



 122 

6.4 Results 
 

6.4.1 Patient cohorts 
 

6.4.1.1 Manchester ovarian cancer homologous recombination cohort (MOCHR) 
 
The MOCHR database currently comprises 101 HGSOC patient samples. Surgical debulking 

status is known for 46 of these samples. Of the 46 patients, eight were defined as being 

homologous recombination heterogenous (HRH) and were excluded from the analysis as 

further outlined in methods section 3.4. This resulted in a final n=38 MOCHR patients, all 

HGSOC. 

 

 
Figure 6.1 CONSORT diagram illustrating patient selection for inclusion 
 
All included patients were HGSOC, had undergone surgical resection with debulking status available, and were defined as 
HRC or HRD by way of the HR functional assay. 
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Patient tumour samples included in this cohort all originated from a single tertiary UK cancer 

centre, collected between 2013 – 2018. The formal histology reports for all patients were 

reviewed to ensure disease was of HGSOC subtype, and tissue samples were characterised to 

ensure they were representative of the patient’s disease. HR status was determined via a 

functional HR assay, and described as HRD or HRC, see section 3.4.  

 

A full breakdown of demographics for both cohorts can be found in table 6.1. Patient mean 

age was 72 years with a range between 42 – 91 years. Samples originated from a variety of 

anatomical sites including omentum (41%), ascites (25%), ovarian tumour (24%) and 

peritoneal disease (10%). The majority of tumours were from stage III disease (74%), with the 

remaining classified as stage IV disease (26%). Half of the patients (n=19) underwent PDS, 

with the other half undergoing IDS following neo-adjuvant chemotherapy. At the time of 

surgery, 22/38 (58%) patients achieved complete cytoreduction (no macroscopic disease 

remaining), 9/38 (24%) achieved optimal cytoreduction (<1cm visible disease remaining), and 

7/38 (18%) achieved suboptimal cytoreduction (1cm disease remaining). Median survival in 

the MOCHR cohort was 42 months (SEM 1.1), with survival data correct as of July 2020. Of 

the 38 tumours, 21 (55%) were categorised as homologous recombination repair deficient 

(HRD) with the remainder homologous recombination repair competent (HRC).  

 

6.4.1.1.1 Homologous recombination functional assay 
 
All 38 included tumours underwent HR characterisation by way of the functional assay. All 

functional assays were performed by MP, section 3.4. Sufficient damage to promote DNA 

repair was confirmed if 100% increase in H2AX foci was observed between control and UV 

treated cells. Samples were categorised as HRC if cells displayed 100% increase in Rad51 foci 

over the control. Samples were categorised as HRD if cells displayed <100% increase in rad51 

foci, figure 6.2 

 

A breakdown of all 38 patient samples showing average number of H2AX and Rad foci as an 

average over 100 cells before and after UV treatment with percentage increase can be seen 

in table 6.1. All samples demonstrated >100% increase in H2AX foci indicating sufficient DNA 

damage. Of the competent tumours, percentage increase in Rad51 foci ranged between 614.8% 
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in MOCHR sample number 157 and 103.6% in MOCHR sample number 49. In the deficient 

tumours Rad51, percentage increase ranged between -91.0% in MOCHR sample number 126 

and 83.4% in MOCHR sample number 61.  
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Table 6.1 Number of H2AX and Rad51 foci in MOCHR sample cells pre and post UV exposure 

HR status MOCHR 

number 

H2AX foci 

number 

Control 

H2AX foci 

number 

Post UV 

exposure 

Percentage 

increase in 

H2AX foci 

number 

Rad51 

Foci number 

control 

Rad51 Foci 

number post 

UV exposure 

Percentage 

increase in 

H2AX foci 

number 

HRC 
19 

32 

49 

69 

71 

74 

78 

120 

127 

138 

140 

142 

153 

156 

157 

160 

172 
 

2.2 

0.3 

1.1 

0.5 

1.2 

0.8 

1.1 

0.4 

1.7 

0.5 

0.9 

0.8 

3.5 

0.6 

0.8 

1.3 

1.5 
 

22.3 

11.6 

2.4 

2.3 

10.2 

7.7 

6.7 

1.1 

7.5 

6.0 

7.3 

8.6 

10.1 

3.6 

10.7 

5.6 

17.4 
 

903.9% 

3360.7% 

123.5% 

330.4% 

739.3% 

862.5% 

537.3% 

164.5% 

328.2% 

1211.9% 

679.0% 

1043.7% 

184.9% 

480.9% 

1276.3% 

330.8% 

1082.8% 
 

2.1 

0.2 

0.3 

0.6 

1.6 

2.4 

0.2 

0.6 

1.6 

2.9 

2.6 

2.5 

5.1 

0.5 

0.2 

1.7 

10.0 
 

4.2 

1.5 

0.7 

1.9 

4.0 

5.3 

1.3 

1.9 

4.6 

8.3 

5.4 

6.5 

11.4 

2.0 

1.6 

6.3 

23.2 
 

104.3% 

586.9% 

103.6% 

231.0% 

146.0% 

124.0% 

474.1% 

223.0% 

188.0% 

182.9% 

109.0% 

161.5% 

122.4% 

308.0% 

614.8% 

271.5% 

132.7% 
 

HRD 
16 

34 

61 

62 

67 

75 

77 

107 

108 

124 

125 

126 

136 

137 

146 

155 

161 

169 

173 

178 

179 
 

2.5 

0.4 

0.6 

3.1 

1.2 

0.7 

1.9 

1.7 

6.1 

1.1 

1.5 

3.3 

0.9 

3.3 

0.5 

0.1 

1.1 

1.2 

0.7 

3.4 

2.3 
 

6.7 

0.9 

3.7 

11.9 

7.0 

3.4 

4.0 

11.5 

15.1 

5.6 

11.1 

13.8 

7.1 

19.5 

1.7 

0.2 

5.9 

5.9 

9.7 

8.1 

8.2 
 

163.7% 

118.7% 

479.3% 

283.6% 

499.9% 

368.6% 

108.7% 

555.3% 

147.7% 

417.1% 

623.7% 

316.0% 

723.9% 

488.4% 

257.8% 

296.0% 

437.8% 

404.3% 

1260.5% 

141.8% 

253.5% 
 

1.8 

1.6 

8.7 

6.6 

5.1 

3.4 

3.6 

2.2 

5.7 

2.5 

2.2 

1.1 

0.6 

24.3 

2.5 

9.6 

1.4 

7.4 

6.0 

6.6 

8.6 
 

1.4 

1.0 

15.9 

9.1 

6.8 

3.5 

1.5 

3.3 

7.1 

2.1 

1.9 

0.1 

0.3 

19.2 

1.4 

11.0 

1.1 

8.1 

9.3 

4.6 

9.2 
 

-23.6% 

-41.4% 

83.4% 

38.1% 

35.2% 

2.0% 

-57.4% 

48.9% 

25.1% 

-17.1% 

-13.7% 

-91.0% 

-45.4% 

-20.8% 

-43.9% 

14.9% 

-21.2% 

9.4% 

54.7% 

-30.8% 

7.7% 
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Figure 6.2 - Zeiss Axio Observer microscope images of MOCHR samples 142 and 179 

Figure A showing untreated (A1) and treated (A2) MOCHR 142 cells. The increase of H2AX foci (red) and Rad51 foci (green) 
demonstrates a competent HR pathway.  
Figure B showing untreated (B1) and treated (B2) MOCHR 179 cells. The smaller increase (<100%) of H2AX foci (red) and 
Rad51 foci (green) demonstrates a deficient HR pathway.  

 
 

6.4.1.2 The Cancer Genome Atlas cohort (TCGA) 
 
Following the mining of the cBioportal online database and the corresponding data in the 

TCGA database, as per section 3, 258 patients were identified for inclusion in the study. All 

patient tumours were HGSOC, and surgical outcome and survival data was available for all 

included patients. 

 

A1

B1 B2

A2
HRC 
MOCHR 
142

HRD 
MOCHR
179
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Figure 6.3 CONSORT diagram demonstrating patient selection for inclusion in the TCGA cohort 

All included patients were HGSOC, had undergone surgical resection with debulking status available, and were defined as 
HRC or HRD by way of the gene panel. 

 
 

Patient tumour samples included in this cohort were collected as part of the cancer genome 

atlas project between 2005 – 2009, from multiple different centres. A stringent quality control 

process was applied in order to ensure all tumours were HGSOC in nature, as per section 3. 

HR status was determined, and a tumour classified as HRD if any mutation was detected 

(germline or somatic) in any of the 14 genes included in the HR gene panel, see section 3. If 

no mutation was detected in the selected genes, a tumour was classified as HRC. 

 

Patient mean age was 60 years with a range between 28 – 87 years. All specimens were 

primary HGSOC tumours, however the exact anatomical site of origin for all samples was 

unknown. The majority of tumours were from stage III disease (79%), with the remaining 

stage IV disease (21%). All samples were collected at the time of primary debulking surgery, 

before the patients received any chemotherapy. At the time of surgery 56/258 (22%) patients 

achieved complete cytoreduction, 137/258 (53%) achieved optimal cytoreduction and 65/258 

(25%) achieved suboptimal cytoreduction. Median survival in the TCGA cohort was 41.4 

months (SEM 1.0), with survival data correct as of August 2010. 

 

Of the 258 tumours, 114 (44%) were categorised as HRD with the remainder categorised as 

HRC.  

 
The pattern of gene mutations involved in the HR pathway for each of the 114 patient samples, 

as well as a breakdown of their surgical outcome can be seen in figure 6.4. Of the HRD 
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tumours, the genetic alterations included missense mutations, truncating mutations, 

germline mutations, amplifications and deep deletions.  The most commonly mutated genes 

were BRCA 1 (12%) and BRCA 2 (12%). 

 

 
Figure 6.4 Genetic alterations in the 114 HRD tumours in the TCGA cohort 

Figure created using software available on cBioportal (Cerami et al., 2012)  

 

6.4.1.3 Cohort comparisons 
 
Both databases were analysed separately to determine any association between tumour HR 

status and surgical resection rates. However, when directly compared, some notable 

similarities and differences can be seen between the two cohorts, table 6.2.  
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Table 6.2 Demographics comparison of MOCHR and TCGA cohorts 

 MOCHR (%) TCGA (%) p value (RR 95% CI) 

n 38 258 - 
Age mean (SD) 
Range 

72.6 (12.1) 
45 - 91 

60.2 (11.4) 
28 - 87 

*<0.0001 

Histology HGSOC (%) 38 (100) 258 (100) - 

Sample source (%) Ovary 
Ascites 
Omentum 
Peritoneum 

9 (24) 
10 (25) 
15 (41) 
4 (10) 

- 
- 
- 
- 

- 
- 
- 
- 

FIGO (%) Stage III 
Stage IV 

28 (74) 
10 (26) 

204 (79) 
54 (21) 

**0.526 (0.772 0.408-1.511) 

Surgery (%) PDS 
                                            IDS 

19 (50) 
19 (50) 

258 (100) 
0 (0%) 

**<0.0001 (0.068 0.044-0.140) 

Surgical outcome (%) complete 
optimal 
suboptimal 

22 (58) 
9 (24) 
7 (18) 

56 (22) 
137 (53) 
65 (25) 

***<0.0001 

HR status (%) HRD 
                                           HRC 

21 (55) 
17 (45) 

114 (44) 
144 (56) 

**0.2245 (1.473 0.817-2.657) 

Median survival months (SE) 42 (1.1) 41.4 (1.0) ****0.793 (0.932 0.552-1.574) 
 n- number, * Mann-Whitney test, **fishers exact test, ***Chi-sq test SD standard deviation, ****log rank test. SE standard 
error, RR risk ratio, CI confidence intervals 

 

Both cohorts contained tumours of FIGO stage III and IV disease only, with a HGSOC 

histological subtype. They have similar distributions of stages with the majority of tumours 

being from stage III disease, as well as having a similar split between HRD and HRC tumours.  

 
The median survivals between the two cohorts are similar 42 vs 41.4 months for HRD vs HRC, 

respectively, with no statistical difference between survival curves found (p=0.793 log rank 

test HR 0.9362 95% CI 0.5596 – 1.1787), as seen in figure 6.5. 
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Figure 6.5 Kaplan-Meier survival curve comparing MOCHR and TCGA cohorts 

 

The TGCA cohort were on average older (p<0.0001), and represented all primary surgery 

tumours, making all tumours chemotherapy naïve. Conversely, the MOCHR cohort were 

evenly split between PDS and IDS and therefore only half of the cohort was chemo naïve, with 

the other half having been exposed to three cycles of platinum-based chemotherapy before 

resection.  

 

A greater number of patients in the MOCHR compared to the TCGA cohort underwent a 

complete cytoreductive procedure, with more of the TCGA cohort achieving an optimal 

cytoreduction. Both groups defined complete cytoreduction as no macroscopic disease 

remaining, optimal as <1cm disease and suboptimal as disease remaining 1cm. Differences 

between surgical resection rates in the two cohorts can be seen in figure 6.6. 
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Figure 6.6 Bar chart showing differences between resection rates 

Chi sq. analysis p <0.0001. 

 

HRD status has previously translated to increased patient survival when compared to HRC 

tumours, a difference that is reflected in the TCGA cohort (p=0.0047 log rank test HR 1.577 

95% CI 1.148 - 2.165), where the HRD tumours had a median survival of 51.7 vs 37.9 months 

when compared to HRC tumours. The tumours in the MOCHR cohort however did not display 

this same survival advantage for the HRD tumours, figure 6.7.  
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Figure 6.7 Kaplan-Meier survival curves showing difference in survival by HR status 

Figure 6.7a. Illustrates slightly worse non-significant survival in the HRC group compared to the HRD group in the MOCHR 
cohort.  
Figure 6.7b. Illustrates significantly increased survival in the HRD group when compared to the HRC group in the TCGA cohort. 
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6.4.2 Determining a binary outcome 
 
In both cohorts, surgical outcome was recorded as complete, optimal or suboptimal 

cytoreduction in line with international guidance.  

 

Overall survival is well documented to be inversely correlated with residual disease at the end 

of surgical debulking. In the MOCHR cohort complete, optimal and suboptimal outcomes 

showed an inversely proportional correlation with survival (median survival 50, 33 and 15 

months, respectively, p=0.0014), see figure 6.8a. The same correlation was seen also in the 

TCGA dataset with median survival for complete, optimal and suboptimal increasing as 

residual tumour volume decreased (58, 41, 32 months, p=0.0002), see figure 6.9a.   

 

Figure 6.8 and figure 6.9 demonstrate that in both cohorts, complete cytoreduction 

significantly increased survival over optimal and suboptimal debulking. However, there was 

no significant survival difference between optimal and suboptimal debulking. 

 

These findings suggest that in both cohorts, patients gained a survival advantage if no visible 

disease remained (complete cytoreduction). However, if any visible disease remained, even 

<1cm (optimal and suboptimal cytoreduction), there was limited further survival advantage.  

Therefore, the three surgical outcomes, complete, optimal and suboptimal were combined 

to create a binary outcome of good or bad, as shown in table 6.3.  

 

Table 6.3 Binary cytoreduction outcomes 

Cytoreduction outcome Binary outcome 

Complete (no macroscopic disease) Good outcome 

Optimal (macroscopic disease <1cm) Bad outcome 

Suboptimal (macroscopic disease  1cm) Bad outcome 
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Figure 6.8 Kaplan-Meier curves demonstrating survival between surgical outcomes in MOCHR cohort 

n=38 (6.7a), complete vs optimal (6.7b), complete vs suboptimal (6.7c), optimal vs suboptimal (6.7d).    
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Figure 6.9 Kaplan-Meier survival curves showing survival difference between surgical outcomes in the TCGA cohort 

n=258 (6.8a), complete vs optimal (6.8b), complete vs suboptimal (6.8c), optimal vs suboptimal (6.8).    
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6.4.3 Correlation between HR status and surgical outcome 
 

6.4.3.1 MOCHR cohort 

  
Of the 38 patients included in the MOCHR cohort, 17 were classified as HRC and 21 as HRD by 

the HR functional assay. The hypothesis suggests that the 21 patients in the HRD group would 

be more likely to achieve a favourable (complete) surgical outcome, and that the 17 patients 

in the HRC group would be less likely to achieve a favourable (therefore optimal/suboptimal) 

surgical outcome.  

 

In the MOCHR cohort, the most common surgical outcome regardless of HR status was good 

surgical outcome (22 vs 16 patients). Of these 22 patients, 50% were HRD and 50% HRC, as 

demonstrated in figure 6.10b. 

 

 

Figure 6.10 Bar charts showing distribution of binary surgical outcome by HR status 

when surgical outcome is defined as complete, optimal, suboptimal in 9a, and as a binary outcome of good and bad outcome 
in 9b. 

 

The contingency table (table 6.4) highlights the even split between HR status in the good 

surgical outcome group. There were a higher number of patients in the bad surgical outcome 

group who were HRD (10/16, 63%) compared to HRC. 
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Table 6.4 Contingency table of HR status vs surgical outcome in MOCHR cohort 

n= 38 Good surgical outcome Bad surgical outcome  

HRC 11 6 

HRD 11 10 

 

When the correlation between the data was assessed via Fisher’s exact test, table 6.5, there 

was no statistical correlation between HR status and surgical outcome (p=0.5205). PPV and 

NPV were low (0.6471 and 0.4762, respectively), suggesting HR has no predictive value for 

surgical outcome in this cohort. 

 

Table 6.5 Correlation results between HR status and surgical outcome MOCHR cohort 

p value (OR 95% CI) PPV (95% CI) NPV (95% CI) 

0.5205 (1.667 0.4516 – 5.433) 0.6471 (0.4130 – 0.8269) 0.4762 (0.2834 – 0.6763) 

Key- OR odds ratio, CI- confidence intervals, PPV- positive predictive value, NPV- negative predictive value  

 

6.4.3.2 TCGA cohort 

  
Of the 258 patients included in the TCGA cohort, 144 were classified as HRC and 114 as HRD 

via the HR gene panel. The hypothesis suggests that the 114 patients in the HRD group be 

more likely to achieve a favourable (complete) surgical outcome, and that the 144 patients in 

the HRC group would be less likely to achieve a favourable (therefore optimal/suboptimal) 

surgical outcome.  

 

In the TCGA cohort, the most common surgical outcome regardless of HR status was bad 

surgical outcome (202 vs 56 patients). Of these 202 patients, 59% were HRD and 41% HRC, as 

demonstrated in figure 6.11b. 
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Figure 6.11 Bar chart showing distribution of surgical outcome by HR status 

Surgical outcome is defined as complete, optimal, suboptimal in 10a, and as a binary outcome of good and bad outcome in 
10b. 

 

The contingency table (table 6.6) highlights there were a higher number of HRD patients who 

achieved a good surgical outcome compared to HRC patients. Conversely, more patients with 

HRC achieved a bad surgical outcome compared to HRD patients.  

 

Table 6.6 Contingency table of HR status vs surgical outcome for TCGA cohort 

n= 258 Good surgical outcome Bad surgical outcome  

HRC 24 120 

HRD 32 82 

 

 

Fisher’s exact test, table 6.7, demonstrated there was a statistical correlation between HR 

status and surgical outcome (p=0.0332). PPV was low (0.1667), suggesting HRD has limited 

predictive value for determining good surgical outcome. However, the NPV was relatively high 

(0.7193), which suggests that an HRC status could be more predictive of a bad surgical 

outcome.  
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Table 6.7 Correlation between HR status and surgical outcome in TCGA cohort 

p value (OR 95% CI) PPV (95% CI) NPV (95% CI) 

0.0332 (1.91 1.071 – 3.492) 0.1667 (0.1146 – 0.2360) 0.7193 (0.6307 – 0.7936) 

OR odds ratio, CI- confidence intervals, PPV- positive predictive value, NPV- negative predictive value  

  

6.5 Discussion 
 
The ability to accurately predict surgical debulking outcome for HGSOC based upon a patient’s 

germline or somatic HR status established at the time of diagnosis would be of significant 

clinical benefit. This predictive ability could be utilised as a stand-alone variable, or as part of 

a larger, multivariable model. It would facilitate triaging of patients to the best first line 

treatment on an individual basis. The HR status would be best established via somatic testing, 

to ensure inclusion of all mutations. A tissue biopsy could be performed either radiologically 

or during a diagnostic laparoscopy. With the recent introduction of PARP inhibitors to the 

routine first-line treatment algorithm in HGSOC (Banerjee et al., 2020), a patient’s HR status 

is now extremely clinically relevant at the time of diagnosis, and therefore a part of initial 

diagnostic investigations.  

 

Analysis of the TCGA cohort indicated a statistically significant correlation between HR status 

and surgical outcome. This analysis defined HRD as a defect in one of the 14 genes included 

in the TCGA HR gene panel using next generation sequencing (NGS) analysis. NGS holds the 

advantage of screening for defects within a wide variety of genes, however when a specific 

gene panel is applied, the interpretation is limited to the genes of the panel (Frey & Pothuri, 

2017). NGS does not evaluate HRD due to other aetiologies such as epigenetic modifications 

(Frey & Pothuri, 2017). The 14 genes included in the gene panel used in this study is 

comparable to panels described in the literature (Matondo et al., 2017; van Wijk et al., 2020; 

Vanderstichele et al., 2017). Each panel identifies a slightly different array of genes utilising 

HR as their method of repair. This analysis should be repeated on all available HR gene panels 

to ensure consistency of results with respect to HR status. Ideally this analysis should be 

performed on a separate patient cohort.  

 

The patients and tumour samples included in the TCGA analysis originated from between 

2005 – 2009. The large size of the study (n=258) gives confidence in the statistical significance 
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of the results. Patient selection included multiple different geographical sites and therefore 

allowed for selection from a wide variety of patient cohorts. The historic nature of the 

samples could present difficulties replicating the results on more recent patient cohorts, 

however when primary surgery is considered, management has been relatively consistent 

across this time period with the exception of the advocating for more radical surgical 

management (Lheureux et al., 2019).  

 

Analysis of the MOCHR cohort did not show statistically significant correlation between HR 

status and surgical cytoreduction. Only a small number of patient samples were available for 

analysis, and therefore the negative outcome of this study may be attributed to a lack of 

power, rather than a true clinical finding. The MOCHR cohort underwent functional analysis 

of their tumour. This method offers the advantage of determining HR status regardless of the 

underlying genetic or epigenetic mechanism, and can therefore be preferable over NGS (Frey 

& Pothuri, 2017; Manuela Tumiati et al., 2018). This cohort also contained patients who had 

undergone IDS as well as PDS. The inclusion of the IDS cohort could skew results as these 

tumours would no longer be chemotherapy naïve, which could alter their ability to be 

surgically removed. Future studies should exclude IDS and focus purely on PDS patients. 

 

The TCGA cohort were comprised solely of patients who underwent primary surgery and 

therefore were all chemotherapy naive. The MOCHR cohort were split evenly between PDS 

and NACT/IDS, exposing 50% of the cohort to three cycles of chemotherapy prior to testing. 

Exposure to chemotherapy can alter the HR status of tumour cells in HGSOC (Damia & 

Broggini, 2019) which could account for the lack of correlation in this cohort. To exclude the 

IDS/NACT patients from the analysis would require reduction of the already small cohort to a 

number where useful statistical analysis would not be possible. Further analysis with a larger 

cohort would be required. 

 

Analysis from the TCGA cohort is promising, and further validation of these findings on an 

external large cohort is essential. The 100K genome project hold germline and somatic 

genomic data for 316 HGSOC patients collected from multiple centres across England, and 

analysis is underway. Further work is currently in progress to collect relevant clinical data 
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fields to complement the available genomic data. Once complete this dataset would be ideally 

placed for the external validation of the TCGA panel. 

7 A prognostic model to predict suboptimal surgical outcome 
 

7.1 Introduction 
 
The importance of reducing rates of suboptimal cytoreduction in advanced HGSOC by 

improving treatment pathway selection is paramount. A suboptimal surgical outcome 

translates to reduced overall survival, increased morbidity and a delay in commencing 

chemotherapy treatment (Bristow et al., 2002; Chi et al., 2009; Fagotti et al., 2006; M. J. 

Rutten et al., 2015). In cases where suboptimal debulking is thought to be likely at the time 

of MDT, NACT and consideration of IDS is appropriate (Kehoe et al., 2015; van Meurs et al., 

2013; Vergote et al., 2010; Wright et al., 2016). The accurate and reproducible prediction of 

surgical outcome allows for better treatment pathway selection. However, as described in 

chapter four many published pre-existing models have failed when validation is attempted. 

With the exception of laparoscopic models, those utilising single modalities have to this point 

been unsuccessful, as demonstrated in chapters five and six. 

 

There are currently no universally accepted indications for NACT in clinical practice. Decisions 

are made based mainly upon radiological imaging and clinician opinion, with additional 

available information not part of the decision process (Scott et al., 2020). The rates of 

suboptimal debulking vary greatly but have been reported between 9% - 76% (Horowitz et al., 

2018; J. M. Janco et al., 2015), highlighting the urgent clinical need for a tool to guide decision 

making in this field. 

 

There are many patient and tumour factors that have been associated with surgical outcome, 

including: age, BMI, ECOG-PS, Hb, platelet count, albumin levels, WCC, CA 125, HE4, tumour 

protein and gene panels, tumour stage and histology, as well as disease distribution at the 

time of CT scan and laparoscopy (Abdallah, Chon, et al., 2015; Chesnais et al., 2017; de Jong, 

Eijkemans, Fong, et al., 2007; Enshaei et al., 2015; Fagotti et al., 2006; C. G. Gerestein et al., 

2011; Horowitz et al., 2018; Riester et al., 2014; Wang et al., 2015).  
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Multiple prognostic prediction models have attempted to combine the above features in 

order to accurately identify which patients will have both good and bad outcomes at the time 

of primary surgery. However, to date, none have been validated for use in clinical practice. 

When assessed via the PROBAST tool, the majority of models show high risk of bias, see figure 

4.3. Although many researchers consider a wide variety of predictors to feature in their 

models, most significantly reduce the number included by using univariable analysis as a 

triaging tool before performing multivariable analysis and creating the final model. Although 

it is important to have a tool that is clinically easy to use, performing univariable analysis may 

limit model performance (Moons, Kengne, Woodward, et al., 2012).  

 

Prediction models in medicine can be developed using a variety of both traditional statistics 

and machine learning. For prognosis and prediction, regression models are the most 

commonly used and include linear, logistic and Cox regression. A systematic review and meta-

analysis comparing the use of machine learning with traditional statistics in prediction models 

concluded that one technique was not superior above the other (Christodoulou et al., 2019).  

 

The description of residual disease following PDS has varied slightly over time. Current UK 

practice is to define surgical success as one of three outcomes; complete: no macroscopic 

disease remaining; optimal: disease remaining <1cm; suboptimal: disease remaining 1cm 

(Winter et al., 2008). It is now widely accepted that an outcome of complete debulking, where 

no macroscopic disease remains confers the highest survival benefit (Chi et al., 2006; Eisenkop 

et al., 2003; Hamilton et al., 2011). For this reason, the majority of prognostic models define 

good outcome as no macroscopic disease (complete debulking), and bad outcome as 

macroscopic disease of any size (optimal and suboptimal debulking). 

 

Survival rates and good surgical outcomes have been shown to significantly improve with the 

introduction of radical procedures such as upper abdominal surgery and peritoneal stripping. 

(Aletti, Dowdy, et al., 2006; Aletti et al., 2009; Chi et al., 2009; Dowdy et al., 2008; Eisenhauer 

et al., 2006; Jones et al., 2018). However, rates of maximum surgical efforts vary between 

units, and even between individual surgeons, which is reflected in the range of debulking 

rates reported (Jones et al., 2018). Despite this clear association between surgical 

heterogeneity and debulking rates, very few researchers have considered ‘performing 
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surgeon’ as a predictor in their models (Jung et al., 2013). It is unlikely that a model would be 

transferrable between patient populations, unless this factor is addressed.  

 

A significant proportion of patients with advanced HGSOC undergo surgery which results in 

residual disease at the time of PDS. Although multiple models exist to predict outcome, 

attempts to translate the research into clinical practice have failed at the validation stage. For 

this reason, there is a valid clinical need remaining in this area. 

 

7.2 Hypothesis 
 
The combining of multiple predictors associated with surgical outcome into a single 

prognostic model will allow the accurate prediction of surgical outcome at the time of primary 

debulking surgery in patients with advanced HGSOC. 

 

7.3 Aims 
 

To develop an internally validated multi-predictor prognostic model to predict residual 

disease at the time of primary surgery in stage III and IV HGSOC patients using logistic 

regression.  

 

To develop an internally validated multi-predictor prognostic model to predict residual 

disease at the time of primary surgery in stage III and IV HGSOC patients using machine 

learning techniques.  
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7.4 Results 
 

7.4.1 Cohort characteristics 
 
Between 2013 and 2018, 100 patients within the Manchester Database met the inclusion 

criteria and therefore were included in the model development (figure 7.1).  

 

 
 

Figure 7.1 Flow diagram demonstrating identification of patients included in model 

MHGSOC- Manchester high grade serous ovarian cancer database IDS- interval debulking surgery, PDS- primary debulking 
surgery. 

 

7.4.1.1 Patient characteristics 
 

Good surgical outcome (complete cytoreduction) was achieved in 59% (59/100) of the 

patients with stage III and IV HGSOC. The clinical characteristics of the patients and disease 

are shown in tables 7.1 and 7.2. 

 

573

357

308

100
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MHGSOC Stage III IV 

Other histology

Stage I II
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216

49

111
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Table 7.1 Comparative patient and disease characteristics for whole cohort 

 
*Indicates p<0.05, normally distributed data presented as mean and SD and non-normally distributed data as median and 
range.  

Demographic Whole cohort
n= 100

Good surgical outcome
n=  59

Bad surgical outcome
n=  41

p value

Age (years)
Mean

SD
64.5
11.3

63.6
11.6

65.9
10.7

0.315

BMI 
Mean

SD
25.9
4.8

26.8
5.6

24.8
4.0

0.113

Stage
III
IV

82 (82%)
18 (18%)

54 (92%)
5 (8%)

28 (68%)
13 (32%)

0.003*

ACE-27 (0-5) 
n (%)

Low (0-1)
High (2-5)

79 (79%) 
21 (21%)

44 (75%)
15 (25%)

31 (76%)
10 (24%)

0.999

IMD centile (1-10) n (%)
Low (1-5)

High (6-10) 65 (65%)
35 (35%)

41 (69%)
18 (31%)

23 (56%)
18 (44%)

0.2060

PS (0-4)
n (%)

Fit (0,1)
Unfit (2,3,4)

77 (77%)
23 (23%)

51 (86%)
8 (18%)

28 (68%)
13 (32%)

0.044*
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Table 7.2 Comparison serum blood values for whole cohort 

 
*indicates p<0.05, IQ- interquartile, median and IQ range presented for non-normally distributed data 

 
 

The mean age of the patients was 64.5 ± 11.5 years, and BMI 25.9 ± 4.8m2 with no significant 

difference between surgical outcome groups. There was no statistical difference between 

ACE-27 or IMD between the two groups, however patients in the bad surgical outcome group 

were less fit with more unfit patients in the good outcome group (13/41 (32%) vs 8/59 (18%) 

p=0.044). 

 

There were several significant differences in the haematological markers between the two 

groups, with the bad surgical outcome group having lower haemoglobin levels (p=0.002), 

lymphocyte count (p=<0.001) and albumin (p=0.014), and a higher platelet count (p=0.002). 

There was no difference between neutrophil levels between the two groups. CA 125 was 

significantly higher in the bad surgical outcome group (median 721kU/L vs 319kU/L p=0.001).   

 

7.4.1.2 Disease characteristics 
 
All patients included in the study were diagnosed via histological analysis with high grade 

serous ovarian cancer of FIGO stage III and IV. The majority of patients (82/100, 82%) were 

FIGO stage III, with proportionately more stage IV patients in the bad than the good surgical 

outcome group (32/41, 32% vs 5/59, 8%, p=0.003). 

Blood value Whole cohort
n = 100

Good surgical outcome
n=  59

Bad surgical outcome
n=  41

p value

Haemoglobin
Median

IQ Range

(g/L)
127
117 - 136

132
123 – 138

122
112 - 131

0.002*

Platelet
Median

IQ Range

(109/L)
337
272  - 418

312
264 - 397

381
283 - 500

0.002*

Neutrophil
Median

IQ Range

(109/L)
5.42
4.21 – 7.00

5.29
4.08 – 7.04

5.45
4.55 – 7.06

0.521

Lymphocyte
Median

IQ Range

(109/L)
1.65
1.17 – 2.18

1.93
1.36 – 4.18

1.30
0.96 – 1.74

<0.001*

Albumin
Median

IQ Range

(g/L)
37
35 - 39

37 
35- 40

36
28 - 38

0.014*

CA 125
Median

IQ Range

kU/L
445
193 - 1262

319
94 - 798

721
316 - 2443

0.001*
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Presumed disease distribution, defined from specialist radiologist reports at the time of pre-

operative CT following MDT review is shown in table 7.3 and is similar between the two 

groups. The patients in the good surgical outcome group were more likely to have ascites 

reported on scan (85% vs 51%, p=<0.0001), and patients in the bad surgical group had slightly 

more “un-removable” disease noted on scan, although this was not statistically significant.  

 
Table 7.3 Comparison of reported disease distribution for whole cohort 

 
 

 

7.4.1.3 Surgical debulking rates and surgeon heterogeneity 
 

Over the period of 2013 – 2018, 100 patients underwent PDS for stage III and IV HGSOC, with 

five specialist gynaecological oncology surgeons operating over this time period. All surgeons 

attended the same MDT, and on the whole operated independently of each other. Debulking 

status was defined by the lead surgeon at the end of the procedure and recorded on operative 

notes as per national guidance. Surgical outcome was recorded as either complete, optimal 

or suboptimal.  

 

Survival of this cohort, stratified by surgical outcome, is shown in figure 7.3. Patients achieving 

complete debulking survived significantly longer than those with disease remaining (median 

survival of 69.4 months vs 38.7 months vs 23.1 months for complete debulk vs optimal vs 

Positive mention on CT Whole cohort
n=100

Good surgical outcome
n=59

Bad surgical outcome
n=41

p value

Removable disease
n (%)

71 (71%) 42 (71%) 29 (71%) 0.820

Ascites
n (%)

71 (71%) 50  (85%) 21 (51%) <0.0001*

Bowel disease
n (%)

18 (18%) 9 (15%) 9 (22%) 0.601

Nodal disease
n (%)

20 (20%) 11 (19%) 9 (22%) 0.802

Unremovable disease
n (%)

20 (20%) 9 (15%) 11 (27%) 0.210

Chest disease
n (%)

22 (22%) 10 (17) 12 (29%) 0.223
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suboptimal, p=<0.0001). Patients with complete debulking rates survived significantly longer 

than those with optimal and suboptimal debulking (p=0.0187 vs p<0.0001), however there 

was no significant survival difference between optimal and suboptimal outcomes (p=0.0510). 

This could be attributed to small numbers in the cohorts. The three surgical outcomes were 

therefore separated into two distinct groups: good outcome (complete debulking) and bad 

outcome (optimal and suboptimal debulk).  

 

The number of surgeries performed by surgeon and their surgical debulking rates 

demonstrated heterogeneity, figure 7.2, table 7.4. Good outcomes ranged between 71% 

(surgeon one) to 50% (surgeon two and three).  

 

 

Figure 7.2 Bar graph illustrating heterogeneity between surgeons 

Includes data for 5 operating surgeons over 100 surgeries. 
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Table 7.4 Varying surgical outcome rates between surgeons 

Surgeon Total surgeries 

n=100 

Good outcome 

n= 59 (% per surgeon) 

Bad outcome 

n= 41 (% per surgeon) 

1 28 20 (71%) 8 (29%) 

2 18 9 (50%) 9 (50%) 

3 20 10 (50%) 10 (50%) 

4 24 13 (54%) 11 (46%) 

5 10 7 (70%) 3 (30%) 
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Figure 7.3 Kaplan-Meier survival curve comparing median survival between surgical outcomes 

Log rank tests used for median survival comparison 
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7.4.2 Model building  
 

7.4.2.1 Included predictors 
 
The multivariable logistic regression model and the random forest model (machine learning) 

were built by applying the same 19 predictors, which included patient characteristics (age, 

BMI, PS, IMD, ACE-27), patient haematological markers (Hb, plt, lymphocyte and neutrophil 

count, albumin, CA 125), tumour characteristics (FIGO stage, CT disease distribution) and 

operating surgeon, table 7.5. Both models used the binary outcome of good or bad surgical 

outcome and aimed to predict bad surgical outcome. All continuous variables remained 

continuous and categorical variables were grouped as per table 7.1.  

 

Within the categorical variables, event per predictor (EPP) number ranged between 3 events 

for surgeon 5, and 32 events for no nodal disease and no bowel disease. Despite this range, 

76% of EPP were above the proposed minimum standard of EPP=10.  

 

Of all selected predictors, higher levels of CA 125 (p<0.0001) and platelet count (p=0.0036) 

and lower levels of haemoglobin (p<0.0001), leucocyte count (p=0.0003) and albumin 

(p=0.0144) were associated with bad surgical outcome when univariable logistic regression 

was applied. There was no statistically significant association shown between any of the other 

included predictors.   
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Table 7.5 Breakdown of al predictors included 

 

*indicates p<0.05 

  

Predictor p value (95% CI) Variable outcomes Event per predictor
(bad surgical outcome)

Age 0.476 NA

ECOG- PS
0.138

Fit
Unfit

28
13

BMI 0.085 NA

ACE-27 score
0.699

Low
High

31
10

Indices of multiple deprivation score 
(IMD)

0.353
Low
High

23
18

FIGO stage
0.670

III
IV

28
13

CA 125 kU/L <0.0001* NA

Haemoglobin (Hb) (g/L) <0.0001* NA

Platelet count (plt) (109/L) 0.0036* NA

Lymphocyte count  (109/L) <0.0001* NA

Neutrophil count (109/L) 0.524 NA

Albumin (g/L) 0.006* NA

un-removable disease
0.435

Yes
No

11
30

removable disease
0.957

Yes
No

29
12

Nodal disease
0.668

Yes
No

9
32

Bowel disease
0.460

Yes
No

9
32

Ascites
0.291

Yes
No

21
20

Surgeon

0.367

1
2
3
4
5

8
9

10
11
3
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7.4.2.2 Multivariable logistic regression model for predicting bad surgical outcome 
 
A logistic model was constructed to predict bad surgical outcome, using the data shown in 

table 7.5 for the 100 patients included in our cohort, incorporating 19 predictors and a binary 

surgical outcome of good or bad.  

 

During initial development, the model demonstrated good calibration with a non-significant 

Hosmer-Lemeshow goodness of fit test of p=0.8920, indicating the model fits the data well. 

The model discrimination performance demonstrated an area under the curve of receiver 

operating characteristic curve (AUC ROC curve) to be 0.882 (95% CI 0.818 – 0.947). Sensitivity 

and specificity of the model were 79.4% and 79.6%, respectively. NPV and PPV of the model 

were 85.5% and 72%. The model demonstrated an overall accuracy of 79.5%.   

 

When internal validation was applied to the model by way of leave-one-out cross validation 

to account for overfitting, model performance reduced, with an AUC of 0.688 (95% CI 0.611 

– 0.712). Sensitivity and specificity also reduced to 61.5% and 70.1%, respectively, as did NPV 

and PPV (72.7% and 58.5%). Post internal validation, the overall accuracy of the model was 

66.6%, figure 7.4. 
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Figure 7.4 ROC curve demonstrating calibration and discrimination performance measures of logistic regression prognostic 
model 
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7.4.2.3 Random Forest Tree model for predicting bad surgical outcome 
 
A Random Forest was constructed to predict bad surgical outcome for the 100 patients 

included in our cohort, incorporating 19 predictors and a binary surgical outcome of good or 

bad.  

 

Following initial development and internal validation by way of leave-one-out cross validation 

to account for overfitting, the model discriminative performance demonstrated an AUC of 

0.734, sensitivity and specificity of 75.8% and 71.6%, respectively, NPV and PPV of 87.2% and 

53.6%, respectively, and an overall accuracy of 72.9%, figure 7.5. 

 

 

Figure 7.5 ROC curve demonstrating calibration and discrimination performance measures of Random Forest prognostic 
model 
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7.5 Discussion 
 

7.5.1 PROBAST assessment 
 

As discussed in the systematic review, 4.2.5 a high risk of risk of bias exists in the majority of 

these published models in the current literature. Therefore, both presented multi-predictor 

prognostic models were assessed with the PROBAST tool. 

 

7.5.1.1 Participants 
 
Participants for both models were selected from a pre-existing database. Data were collected 

retrospectively, which is less desirable than prospectively collected data, however data 

collection was performed with the use of a pre-defined data dictionary and data collection 

guide in order to maintain consistency. There were no excluded patients, and the cohort of 

patients included were reflective of the target population for this tool. 

 

7.5.1.2 Predictors 
 
All selected predictors were defined and assessed in a consistent manner. As all patients were 

from a single centre, all haematological markers were assessed in the same lab, with the 

exclusion of CA 125. All CT scan assessments were performed by the same radiologists. All 

predictor assessments were performed without knowledge of outcome data, and all included 

predictors would be freely available to clinicians at the time of the model’s intended use. All 

predictors included had clinical rationale or had been shown to be associated with surgical 

outcome in previous studies. Univariate analysis was avoided during predictor selection.  

 

7.5.1.3 Outcome 
 
Bad surgical outcome was clearly rationalised and defined and was applied in a similar way 

for all participants. However, at the time the outcome was determined by the surgeons, they 

may have been completely blind to all included predictors. 

 

7.5.1.4 Analysis 
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The sample size for the model development was limited at 100 patients. Despite this, the 

majority of predictors had appropriate EPP numbers. However, a small number of predictors 

had an EPP <10, which increases the risk of bias due to overfitting. Data were handled 

appropriately with no dichotomization of continuous predictors. Several categorical 

predictors were grouped in order to increase EPP numbers. There was no exclusion of data, 

with all enrolled participants included in the analysis. All missing data was handled 

appropriately by way of multiple imputation. Model performance was analysed both by 

calibration and discrimination in both models, and overfitting was accounted for by internal 

validation using leave-one-out cross validation.  

 

Overall both models were at high risk of risk of bias, mainly due to the small sample size and 

number of predictors with EPP <10, figure 7.6. However, this could be overcome by externally 

validating both models with a sample size of >100.  

 

 

Figure 7.6 PROBAST assessment for both prognostic models 

 
Two prediction models were developed. The first, developed via machine learning methods, 

performed well post internal validation (AUC 0.73, accuracy 73%). The second, developed 

using more traditional statistical methods, had a poorer performance post internal validation 

(AUC 0.68, accuracy 66%). Other than superseding current practice, there is no agreed level 

at which a model must perform to be of clinical use, however it is widely agreed that external 

validation is vital. The machine learning model outperformed the logistic regression model. 

However, it is possible that due to the small sample size, despite internal validation, the 

Random forest model may be overfitted to the data. For this reason, external validation of 

both models is a vital next step.  

 

STUDY ROB APPLICABILITY OVERALL

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Manchester 
logistic regression

L L L H L L L H L

Manchester

Random Forest

L L L H L L L H L

ROB- risk of bias, L- Low, H- high 
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Patients included in the prediction model had already been assessed via the MDT decision 

making process, and therefore were patients selected for PDS. Consequently, this cohort of 

patients were thought to have a high chance of achieving complete cytoreduction, otherwise 

would have been put forward for NACT/IDS. This cohort is therefore a selected sub-cohort of 

the HGSOC population.  

 

If these tools were to be externally validated, and used in clinical practice, they would need 

to be applied to the same population on which it was developed. Therefore, they should be 

applied after the original MDT decision has been made, as a separate triage step. For this 

reason, the tools would only act to reduce the number of patients operated on. However, if 

their implementation led to a reduced number of bad surgical outcomes, a reduction in 

morbidity and improvement in OS could occur.  

 

Both developed models incorporated all data that would be available to clinicians at the time 

of discussion at MDT in the UK, in order to be as individualised as possible. However, the most 

successful currently published models rely on diagnostic laparoscopy. Neither of the two 

developed models incorporate surgical predictors. It is possible that the combination of our 

developed models with a laparoscopic scoring system might further improve model 

performance. Conversely to currently published models, our models attempt to address 

surgeon heterogeneity, with the aim of improving the chances of successful external 

validation.  

 

Although our random forest model performed well following internal validation, it is not 

currently suitable for use in clinical practice. Firstly, external validation, ideally in multiple 

centres across multiple populations would need to be implemented successfully. Secondly, a 

prospective study to investigate the model as a pre-evaluation before diagnostic laparoscopy 

should also be considered. Notwithstanding these limitations, the concept of a multifactorial 

prediction tool is promising.  
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8 Discussion 
 

8.1 Predicting surgical outcomes in ovarian cancer 
 
Ovarian cancer is responsible for more deaths in women of the developed world than any 

other gynaecological cancers (Colombo et al., 2019). It is well established that surgical 

outcome is the most important surrogate marker of survival in advanced HGSOC (Griffiths et 

al., 1979; Marianne Jetske Rutten et al., 2015). It is of the utmost importance that the correct 

treatment pathway is selected for each patient in order to achieve the best surgical outcomes. 

Not only does this reduce morbidity and mortality, but also allows patients to commence 

medical treatment in a timely manner. 

 

The treatment pathway decision is currently being made at the time of MDT, using mainly CT 

images, a modality known to have sensitivity and specificity for identifying intra-abdominal 

metastasis as low as 25% and 57%, respectively (Altman et al., 2012; Scott et al., 2020). With 

the current decision making process in clinical practice, rates of poor outcome at surgery 

stand between 9% and 76%, implying there are a large number of patients for whom PDS may 

not have been the correct pathway. These patients may have gained better survival benefit 

from NACT/IDS, or even no surgical management at all.  

 

There are currently no clear guidelines, or validated prediction models to aid decision making 

in clinical use, and therefore decision trends vary nationally. 

 

At present it is not routine for patients with suspected HGSOC to undergo a tissue biopsy prior 

to surgery. With the improved survival of patients with BRCA mutations and HRD tumours 

following treatment with PARP inhibitors proven, tissue samples pre-operatively may become 

more commonplace for better treatment planning (Banerjee et al., 2020; Moore et al., 2018). 

A tissue sample would also allow for analysis of gene panels, immunohistochemistry and 

further analysis of tissue biology, something that is often missed in the patients with the 

poorest outcome, as they die before undergoing surgery (Hawarden et al., 2021). 
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This thesis aimed to summarise current modalities used to predict surgical outcome at the 

time of PDS in HGSOC, as well as investigate possible future modalities and methods that may 

progress the field. 

 

8.2 Summary of results 
 

Chapter 4 outlined a systematic review identifying multiple different prognostic models with 

the goal of accurately predicting surgical outcome at the time of PDS. The models 

incorporated a wide range of predictors including clinical, biochemical, genomic, radiological 

and surgical markers. Many models demonstrated promise at the development stage, 

however when the PROBAST tool was applied, the majority of models displayed a high risk of 

bias. High risk of bias was most commonly attributed to model development, and the 

univariable logistic regression triage step in the predictor selection process. Only models 

utilising surgical markers at the time of laparoscopy were successfully externally validated. 

Absence of validation in the remaining models could be attributed to differing patient 

populations, as well as a lack of inclusion of surgical heterogeneity as a predictor. 

 

Chapter 5 described the external validation of a promising three-protein signature that aimed 

to predict surgical outcome. The validation was performed using a large patient cohort from 

an RCT. The use of a protein signature to determine surgical outcome would be very appealing. 

Although a tissue biopsy would be required, once achieved, IHC could have been performed 

quickly, cheaply and readily. Unfortunately, the external validation failed, which may have 

been as a result of overfitting in the original model, alongside use of widely differing patient 

populations. The samples used for validation were also historic, and although stored 

appropriately, this could have affected the results. 

 

Chapter 6 investigated the association between genotype (by gene panel) and phenotype (by 

HR assay) HR status, and surgical outcome. The TCGA is currently the largest readily available 

database where both debulking status and HR status are known. By determining HR status 

using an established gene panel and NGS, association with surgical outcome was shown in 

the TCGA cohort. However, this finding was not replicated in the MOCHR cohort. Absence of 



 161 

correlation in the MOCHR cohort could be attributed to a smaller sample size, a combination 

of PDS and IDS samples being used, or the use of functional assay to determine HR status. 

 

Chapter 7 discussed the development of two novel prognostic models to predict surgical 

outcome at the time of PDS. Two models were developed, one via logistic regression and one 

via machine learning techniques, and internally validated. The models were developed 

without the univariate analysis triage step and incorporated all available data available at the 

time of MDT discussion, including operating surgeon. The machine learning model out-

performed the logistic regression model, which may have been due to overfitting of the 

logistic regression model. Validation using a larger cohort could help clarify the reasons for 

poorer model performance. Both models were developed on a sub cohort of all MDT patients, 

as they had been selected for PDS. Therefore, further validation and subsequent use of the 

model would need to be implemented following initial MDT discussion.  

 

8.3 Significance of results presented 
 
 
The systematic review presented in chapter 4 is the first to compile all PDS prognostic models 

and compare their risk of bias and validation status. The results and analysis will allow future 

developers to learn from predictors and methods used. The review also highlighted the 

models with the most promise, in order for them to be targeted for external validation, and 

forward movement towards use in clinical practice.  

 

The three-protein panel was a model that had been identified as showing promise. Chapter 5 

demonstrated a definitive failure of the model to externally validate when applied to a large 

cohort taken from multiple centres. This negative result is important, as it allows elimination 

of these predictors as future candidates.   

 

Chapter 6 described the first reported assessment of HR status and surgical outcome. The 

result using the TCGA cohort shows definite promise. With the establishment of PARP 

inhibitors into routine clinical pathway, the BRCA and HR status of a patient will have 

enhanced relevance, which should allow for further cohorts to be available for validation.  



 162 

 

The novel prediction models developed demonstrated the improved performance in a 

machine learning model over traditional statistics. The developed model avoided the 

elimination of any predictors prior to model building, and also factored in the operating 

surgeon. This allows for greater granularity, and therefore the model could be more likely to 

successfully validate on external cohorts. If successfully validated, the machine learning 

model could be used alongside clinician decision-making, as well as laparoscopic assessment.   

 

8.4 Future work 
 
Patients with an HRD status have shown improved surgical outcomes in the TCGA cohort. For 

this reason, further validation would be a good next step. The 100K genome project hold 

germline and somatic genomic data for 316 HGSOC patients collected from multiple centres 

across England, and analysis is underway. Work is currently ongoing to collect relevant clinical 

data fields to complement the available genomic data. Once complete, this dataset would be 

ideally placed for the external validation of the TCGA panel, as well as others available. 

 

The machine learning prediction model described performed well when internally validated. 

External validation on a large multi-centre cohort is now required to progress its development 

towards clinical practice. The IMPRESS grant has been awarded by Ovarian Cancer Action as 

part of their IMPROVE programme which secures funding to take this project forward.  

 

At present, all work described in this thesis focusses solely on predicting surgical outcome at 

the time of PDS. However, it would be of interest to broaden the prediction parameters to 

include overall survival, morbidity (of surgery and medical treatment) and quality of life. It is 

possible that future prediction tools will use predicted surgical outcome as one of a number 

of predictors, rather than as the outcome (figure 8.1). This would require a multi-step tool, 

likely incorporating laparoscopy and tissue biopsy. This tool would allow discussion with 

patients, to ascertain which factors hold most importance to them, with the treatment 

pathway being decided upon by all involved parties.  
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Figure 8.1 Future aspirations of patient outcome prediction model 

QOL- Quality of life 

 

8.5 Final conclusion 
 
 
There are currently a significant proportion of patients undergoing major surgery and 

suffering suboptimal outcomes. These patients may be being subjected to increased 

morbidity, mortality and delay in commencing medical treatment. At present there is no 

established, or adequately validated tool to help make this decision.  

 

Many modalities have shown promise, however the systematic review highlights the issue 

that models with single modalities often fail to validate. Models incorporating all available 

predictors including the operating surgeon require further validation. Future efforts should 

focus on the validation of promising models on large multi-centre cohorts as well as 

incorporating overall survival, morbidity and quality of life into models. Combining all of the 

above may allow for reduced suboptimal outcomes, improved mortality, morbidity and 

quality of life in patients with HGSOC.  

  

OS MORBIDITY QoL

Stoma- 90%, 50% 0% 0%
Ongoing pain 20% 10% 50% 40%
Ongoing toxicity 10% 40% 90% 0%
Number of operations 2 1 0 0
Ongoing Chemo 50% 20% 100% 0%

Patient Triggers stage 
III/IV pathway

Pre-morbid state
ECOG-PS
CT scan
Bloods- CA 125, Plt, Hb, Alb
Germline BRCA/other

Look in laparoscopy
Predict operability
Histology
HR/BRCA

Variable options
PDS

NACT/IDS
NACT

Nil
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10 Appendices 
 

10.1 Appendix A. Publication resulting from this project 
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10.2 Appendix B. Ethics permissions and patient consent from ICON 5 trial 

 
Consent form allowing further study of trial data  
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10.3 Appendix C. Patient consent form for inclusion in MOCHR database 
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10.4 Appendix D. Data collection guide 
 
Introduction 
 
Over the last few years we have compiled a comprehensive dataset for all patients with a 
diagnosis of Ovarian cancer at St Mary’s, Manchester between 2013-2018 inclusive. This 
guide aims to help the replication of this dataset in other units, to allow for comparison and 
combination of data for analysis. 
 
Also attached with this guide; 
• An Excel spreadsheet with the required headers 
• An excel spreadsheet with some data collected for reference 
• A PDF with the ACE-27 calculator 
 
Please be sure to fill your spreadsheet in the required format- this takes no extra time for 
the collector but means a lot of time saved when it comes to data comparison and 
interpretation. 
 
Any questions regarding any data collection in this guide please direct to 
 
Amy.hawarden@manchester.ac.uk OR 
Richard.edmondson@manchester.ac.uk 
 
The guide is in order of the data collection on the spreadsheet. 
 
If a data field has been searched for, and the data is not available please fill the field with 
NA, rather than leaving it blank. This will inform that the data is not available, rather than 
incompletely collected. 
 
General patient information 
 
NHS number 
 
10 digit NHS number 
 
DOB 
 
Date of birth dd/mm/yyyy 
 
DOD 
 
Date of death dd/mm/yyyy 
 
Postcode 
 
The post code of the current registered address the hospital holds.  
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IMD centile 
 
The IMD score provides a decile ranking of deprivation for each geographical area of 1500 
residents in the UK, where 1 is the most deprived and 10 is the least deprived. The score 
encompasses income, employment, education, health, including access to healthcare, 
crime, barriers to housing and services, and living environment to give an overall marker of 
deprivation 1. The decile is calculated by inputting the postcode into the tool as shown 
below. Tool can be accessed via the following link; 
 
IMD calculator 
  
It is possible to input several postcodes at the same time by copy and pasting the list 
straight from excel.  
Click on ‘get deprivation data’ and the tool then outputs an excel sheet with lots of 
information- the column that is required is the column highlighted below and will be a 
number between one and ten. 
 
Height, weight and BMI  
 
Height must be measured in meters not cm, and weight collected in kg. 
BMI can be calculated by inputting the formula =(weight/height^2) into the first cell in the 
BMI column. If this cell is then clicked on it will be surrounded by a green box. By clicking 
the small green box in the bottom left of the cell and dragging down to include all required 
cells the formula will be applied to all cells highlighted. 
 
  
WHO Performance Status (PS) 
 
Performance status (PS) is a WHO recognised tool widely used as a measure of fitness for 
treatment in oncology patients. It is useful to assess the acute fitness of a patient, but does 
not take into account co-existing co-morbidities. It is graded between 0-5, 0 being fully 
active and 5 being dead. 2 
 
The required performance status is the one at the time of presentation. This is the earliest 
recorded PS that can be found in the patient notes. This is to attempt to gain an idea of 
fitness as soon in the patient journey as possible. For our data set this was often recorded 
on the referral letter, or on the MDT discussion on Somerset cancer registry. 
 
  
Adult comorbidity evaluation-27 index (ACE-27) 
 
The ACE-27 score quantifies co-morbidities present at the time of diagnosis. The score 
ranges from grade 0 (no comorbidities) to 3 (severe comorbidities)3. This score does not 
take into account the current acute state of the patient, but instead acts as a background 
marker of fitness. 
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The required ACE score is the one at the time of presentation. This is the earliest recorded 
ACE that can be found in the patient notes. For our data set this was often recorded on the 
referral letter, the outpatient letter with the gynae-oncology surgeon, or on the oncology 
outpatient review discussion. If the ACE score was not recorded, but the co-morbidites had 
been recorded free hand, then this was calculated by the data collector, using the tool 
attached as a PDF alongside this guide. 
 
It is important to note that when calculating for our oncology patients, as it is used as a 
marker of non-cancer related fitness, our patient will not score for their CURRENT cancer. 
They will however score for previous diagnoses of cancer not related to the current episode. 
 
In the first column please record the numerical score (between 0 and 3) and in the next 
column named ‘comorbidities’ please record in free text the condition that resulted in the 
score (the highest scoring condition). 
 
Genetic test, material tested and Mutation 
 
For these three columns, we are interested in genetic testing for BRCA mutations mainly, 
however if testing for other mutations have been undertaken for any reason please record 
these also.  
 
Genetic test Meaning 
Yes Testing has been performed, regardless of the outcome. This includes both germline 
and somatic testing. 
No Recorded evidence that no test has been performed OR no mention of genetic 
testing in patient notes- this can then be assumed as a no. 
 
 
Material tested Meaning 
Germline The patient themselves have been tested 
Somatic The patient’s tumour itself tested 
NA ‘no’ recorded in previous column 
 
Mutation Meaning 
BRCA 1  
BRCA 2  
Other Other mutation 
None Testing was performed but NO mutation was identified. 
NA ‘no’ recorded in previous column 
 
Evidence of testing at any point along the patient’s journey can be recorded here. Often this 
was found in our dataset in the oncology notes, as well as outpatient letters with the 
genetics team. 
 
Tumour information- Histology, grade, stage, substage, diagnosis date, method of diagnosis. 
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Histology and grade to be recorded as per the histology report. High grade serous and low 
grade serous can be recorded as HGS and LGS but for all other diagnoses please write in full. 
Grade should be recorded as high or low, again as per the histology report. 
 
Stage is to be recorded as I-IV and substage as per the most up to date 2014 FIGO staging. 
Current link found below. 
 
FIGO staging 
 
It is the final staging of the cancer that is required, once all investigations are completed. 
 
The date of diagnosis (dd/mm/yyyy) is the first recorded evidence that the patient has an 
ovarian cancer, but the following hierarchy applies; 
 
1. Histology report- includes both biopsy results (either radiologically or via 
laparoscopy) and post operative histology reports. Record method of diagnosis as 
HISTOLOGY 
2. If no histology available, cytology reports- earliest available. Record method of 
diagnosis as CYTOLOGY 
3. If no histology or cytology and the diagnosis is made on a clinical basis then the date 
that this assumed diagnosis is recorded. Record method of diagnosis as CLINICAL. 
 
MDT dates 
 
Date of referral to MDT (dd/mm/yyyy)- The date that the referral was received by the 
tertiary team. This referral can be either from primary or more likely secondary care. 
This information is often recorded in Somerset cancer registry. 
 
Date of first discussion at MDT (dd/mm/yyyy)- The date that the first MDT discussion of this 
patient took place. This is regardless of the outcome, for example even if if no treatment 
decision was made this date should still be recorded. 
 
Date of MDT treatment decision (dd/mm/yyyy)- The date that the MDT decided which 
treatment pathway to send the patient down (i.e. surgical management, neoadjuvant 
chemotherapy, palliative treatment). 
 
 
Blood parameters 
 
Blood tests are required for collection at up to two different time points (P and PN as 
described below) depending on the clinical scenario (see table below). CA 125 is required 
only for time point P for all patients. 
 
Clinical scenario Bloods required 
Primary surgery P only 
NACT and IDS P and PN 
NACT no IDS P only 
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No surgery or chemo P only 
 
Two time points of bloods are required 
 
1. Presentation bloods (Hb P, Alb P etc)- should be the earliest recorded bloods for the 
period of illness attributed to the Ovarian cancer diagnosis. The aim is to identify the blood 
tests taken as early into the patient journey as possible i.e before interventions. During our 
data collection it was sometimes required to contact DGH units to access these. This was 
done via the Macmillan cancer team. 
If test results are only available after interventions such as blood transfusions, albumin 
infusions, or ascitic drains, then the earliest bloods that are available should be used. 
ALL diagnosis blood tests should be before the primary main treatment (primary surgery or 
starting neoadjuvant chemo therapy). 
If no bloods are available pre-primary treatment then please input NA into the appropriate 
cells. 
2. Post Neo-adjuvant chemotherapy bloods (PN Hb, PN alb etc)- should be the last set 
of bloods taken AFTER completion of the 3 cycles of chemotherapy, but BEFORE having 
Interval debulking surgery. 
 
CT scan results 
 
The CT scan referred to in the CT scan performed before primary surgery or neo-adjuvant 
chemotherapy. If a CT scan report is available before the primary treatment state yes, if not 
state no. 
If no CT scan pre-primary treatment is available please do not include CT scans done post 
operatively, or done after chemotherapy. 
In our unit our pre-treatment CT scans are reviewed by a consultant radiologist who 
specialises in gynae-oncology. Please try to use a report by a radiologist with a specialism in 
gynae oncology. 
The suggestion of disease at any of the listed sites is denoted with a 1 in the corresponding 
cell. Absence of a suggestion of disease is denoted with a 0. If no CT was available please 
populate these cells with NA. This will make it clear which patients do not have a scan, and 
those who do not have disease reported in that site. 
 
Surgical treatment 
 
Surgical treatment refers to an operation that is performed for the treatment of the ovarian 
cancer.  
 
It can be recorded as; 
• Primary- Primary debulking surgery- any surgery performed before chemotherapy.  
• IDS- interval debulking surgery- any surgery performed after chemotherapy, 
regardless of the number of cycles this was 
• None- No surgery performed 
• NA- unknown as to whether surgery was performed 
 
Surgeries not to be included; 
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• look-in/diagnostic laparoscopies  
• palliative procedures- such as defunctioning ileostomies where the main aim of the 
surgery was not to remove disease but to symptom relieve in the palliative setting  
• Return to theatres- this should be recorded as a complication in the complication 
column. 
 
Please state the name of the consultant surgeon who performed/supervised the procedure. 
 
Please record the outcome of the surgery as one of the following definitions. This 
information should be found on the operative note. If not recorded by the surgeon, can be 
surmised using the definitions below if the appropriate information is available in the free 
text of the operative note. 
 
Surgical outcome to be recorded Meaning 
Complete No  macroscopically visual residual disease 
Optimal Disease remains largest site 1cm 
Suboptimal Disease remains largest site >1cm 
NA No surgery performed/information not available 
 
 
 
 
 
Chemotherapy treatment  
 
In the column ‘had chemo’, ‘yes’ denotes that the patient has received chemotherapy of any 
kind for their ovarian cancer. ‘No’ denotes that they received no chemotherapy. ‘NA’ 
denotes that this is not clear from the patient notes. 
 
If the patient has completed 6 cycles of chemotherapy this is recorded as yes, if the patient 
has received <6 cycles then this is recorded as no. If the number of cycles is known this is 
recorded as NA. 
 
If the patient received PARP inhibitor at any point this is recorded. If it is unknown whether 
this is received this is recorded as NA. 
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10.5 Appendix E. Full list of genes included in study, see table 4.2 
 
Taken from (Abdallah, Chon, et al., 2015b) 
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