
Assessing the robustness of
radiomics features in oncology PET

A thesis submitted to the University of Manchester for the degree

of

Doctor of Philosophy

in the Faculty of Science and Engineering

2022

George R. Needham
Department of Physics & Astronomy



Contents

Table of Contents, List of Figures & List of Tables 2

Table of Terms & Abbreviations 16

Abstract 19

Declaration of Authorship 20

Copyright Statement 21

List of Talks & Publications 22

Acknowledgements 23

1 Introduction 25

1.1 A Brief History of PET . . . . . . . . . . . . . . . . . . . . . . 25

1.2 The Current Landscape: Taking a PET Scan . . . . . . . . . . . 27

1.3 Data and Image-Based Research in Nuclear Medicine . . . . . . 29

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 PET Background & Theory 33

2.1 β+ Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2



2.2 Positron Emission Tomography (PET) Principles . . . . . . . . 34

2.3 PET Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Computed Tomography (CT) and PET . . . . . . . . . . . . . . 37

2.5 PET Data Corrections . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.1 Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.2 Randoms . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.3 Dead Time . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.4 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.5 Normalisation . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.6 Partial Volume Correction . . . . . . . . . . . . . . . . 46

2.6 PET Image Reconstruction . . . . . . . . . . . . . . . . . . . . 47

2.6.1 Analytic Reconstruction . . . . . . . . . . . . . . . . . 48

2.6.2 Iterative Reconstruction . . . . . . . . . . . . . . . . . 49

2.7 Quantitative PET and Radiomics . . . . . . . . . . . . . . . . . 50

2.7.1 Image Segmentation . . . . . . . . . . . . . . . . . . . 51

2.7.2 Intensity Discretisation . . . . . . . . . . . . . . . . . . 53

2.7.3 Image Features . . . . . . . . . . . . . . . . . . . . . . 53

2.7.4 IBSI Recommendations . . . . . . . . . . . . . . . . . 62

3 Motivation & Methodology 65

3.1 The Three Rs . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 The Noise-Equivalent Count Rate . . . . . . . . . . . . . . . . 67

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Creating Custom Phantoms 71

4.1 Phantom PET Scans . . . . . . . . . . . . . . . . . . . . . . . . 71

3



4.2 3D Printing Custom Phantoms . . . . . . . . . . . . . . . . . . 73

4.2.1 Isolating Geometry From Patient Data . . . . . . . . . . 73

4.2.2 Adapting Regions in 3D Design Software . . . . . . . . 76

4.2.3 Creating Phantom Inserts with 3D Printers . . . . . . . 77

4.2.4 Finishing the Insert Prints . . . . . . . . . . . . . . . . 78

4.2.5 Heterogeneous Phantom Design Principles . . . . . . . 80

4.3 Phantom Insert Selection . . . . . . . . . . . . . . . . . . . . . 80

4.4 Phantom Scanning . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 83

5 Investigation of Radiomics Features with NECR 86

5.1 NECR Measurements . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Extracting the Count Data . . . . . . . . . . . . . . . . 86

5.1.2 Uncertainty on NECR, and the Scatter Fraction . . . . . 91

5.2 NECR & Relationship with Texture Features . . . . . . . . . . . 94

5.2.1 25 Minute Cylinder Data . . . . . . . . . . . . . . . . . 94

5.2.2 Comparison to 5 Minute Cylinder Data . . . . . . . . . 97

5.2.3 NEMA IQ Phantom Data . . . . . . . . . . . . . . . . . 103

5.2.4 Custom Tumour Phantoms . . . . . . . . . . . . . . . . 105

5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.6 Assessing Robustness using Kruskal-Wallis . . . . . . . 114

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Investigation of Tumour-Specific Noise Equivalent Counts 122

6.1 Scaled Method . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4



6.2 Developing Spatially-Aware Methods . . . . . . . . . . . . . . 127

6.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 A Monte Carlo Simulation Approach 135

7.1 PET Scan Simulation . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.1 Defining a GATE Simulation of the Siemens Biograph

mCT . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.2 Creating GATE Phantoms and Sources . . . . . . . . . 138

7.1.3 Utilising GATE Output Data . . . . . . . . . . . . . . . 139

7.1.4 Validating the Simulation . . . . . . . . . . . . . . . . 140

7.2 Validation of Image Reconstruction Software . . . . . . . . . . 145

7.3 Remarks and Conclusions . . . . . . . . . . . . . . . . . . . . . 150

8 Impact of this Work & The Future of the Field 151

8.1 Recommendations from this Work . . . . . . . . . . . . . . . . 151

8.2 Caveats to this Work . . . . . . . . . . . . . . . . . . . . . . . 154

8.3 Advancements in PET . . . . . . . . . . . . . . . . . . . . . . 156

8.3.1 Total Body PET . . . . . . . . . . . . . . . . . . . . . . 157

8.3.2 Monolithic PET Systems . . . . . . . . . . . . . . . . . 159

8.3.3 AI-Based Image Reconstruction . . . . . . . . . . . . . 160

8.4 The Final Word . . . . . . . . . . . . . . . . . . . . . . . . . . 161

I Experimental Discretisation Method 179

Word Count: 34,741

5



List of Figures

1.1 A bar chart showing the total number of PET-CT scans taken in
NHS England trusts for each year of study across the previous
decade [6]. Asterisk (*) indicates years affected by COVID-19
pandemic and restrictions. . . . . . . . . . . . . . . . . . . . . 27

1.2 A bar chart showing the number of hits on Google Scholar with
titles containing “PET" & “radiomics" against publication release
year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Example spectrum of kinetic energies for emitted positrons from
an 18F nucleus [31]. . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Molecular diagrams showing the difference between glucose (left)
and FDG (right). . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 An emission event occurs within a ring of detectors. Two detector
elements fire, forming an LOR [5]. . . . . . . . . . . . . . . . . 36

2.4 Basic sensitivity diagrams for 2D & 3D PET, demonstrating the
inter-ring acquisition capability for each modality. . . . . . . . . 36

2.5 Diagram of a detector module consisting of a cut LSO block at-
tached to 4 PMTs. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Diagram of a scattered event and the erroneous LOR recorded [5]. 39
2.7 The grey region is interpolated from the tails of the given projec-

tion and is attributed to scatter. . . . . . . . . . . . . . . . . . . 40
2.8 Diagram of a random event and the erroneous LOR recorded

(adapted from [5]). . . . . . . . . . . . . . . . . . . . . . . . . 41

6



2.9 A demonstration of dead time models for non-paralyzable (mid-
dle) and paralyzable (lower) detectors when given events (upper)
within their characteristic dead time per event, td . . . . . . . . . 42

2.10 An illustration of how a single photon detection may be indicative
of attenuation in the subject medium [5]. . . . . . . . . . . . . . 44

2.11 The ‘leaking’ effect of poor spatial resolution in 2D [48]. . . . . 46
2.12 An illustration of the depth of interaction (DOI) problem, whereby

an incident photon may be detected by one of a series of detector
elements [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.13 Projecting an object onto a plane gives little information about
depth (LHS) unless further projections at a range of angles are
taken (RHS). . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.14 Flow diagram illustrating the processes associated with a radiomics
feature extraction, from image input to statistical output. . . . . 51

3.1 The NECR vs. activity curve (black) superimposed by the im-
age’s integral uniformity vs. activity curve (blue). Figure cour-
tesy of P. Julyan et al., The Christie NHS Foundation Trust. . . . 69

4.1 A photograph of the cylindrical phantom. . . . . . . . . . . . . 72
4.2 A photograph of the NEMA IQ phantom. . . . . . . . . . . . . 72
4.3 Schematic drawings for the NEMA Image Quality phantom body

(left) and spheres (right) [101]. The dimensions shown are in
millimetres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Schematic of the redesigned NEMA phantom baseplate for cus-
tom phantom inserts. The displayed measurements are in mil-
limetres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 STL geometry of one lung tumour design viewed in Blender. Left
and right show before and after the geometry is split into two,
with filling & support structures added. This design was used
to create phantom insert T3. Annotations: (1) shows the same
point in both STLs for alignment purposes; (2) shows a developed
filling platform; (3) shows the extruded lip. . . . . . . . . . . . 77

7



4.6 A photograph of the Ultimaker S5 3D printer used to produce
the custom phantom inserts in this work. The printer comprises
of two sections: the material bay underneath housing the plastic
filament reels, and above (with doors open) the printing chamber.
Objects are printed onto the glass bed in the chamber, which is
raised and lowered in relation to the nozzles which are attached
to a 2D frame at the top of the chamber. . . . . . . . . . . . . . 78

4.7 The four selected phantom inserts undergoing leak testing. L-R:
T4, T2, T3, T1. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 A photograph of T1 and T3 attached to the custom baseplate for
the NEMA IQ phantom, itself pictured to the left. . . . . . . . . 81

4.9 NEMA Phantom with custom inserts T2 & T4, filled and placed
on the scanner bed. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Example PET and CT image slices from the four phantoms used
in this work. From top-bottom: Cylinder, NEMA IQ, T1+T3,
T2+T4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Scatterplot showing the NECR from all cylinder data. The blue
dotted line represents the position of the peak NECR evaluated
from quartic fitting with the shaded region representing the un-
certainty. The red shaded region represents uncertainty in NECR
given by the reported scatter fraction. The statistical uncertainty
on any given measurement of NECR is negligible. . . . . . . . . 88

5.2 The count statistics for the cylinder data plotted against FoV ac-
tivity level. Clockwise from top left: random rate R, true rate T ,
scatter rate S and the NECR. . . . . . . . . . . . . . . . . . . . 89

5.3 A scatter plot showing the NECR for all scans performed in this
thesis. Only3 is included here for illustrative purposes but is not
explored in depth until Chapter 6. Likewise uncertainty bound-
aries as in Figure 5.1 are not shown for illustrative purposes and
functional form differences in reported scatter fraction (see Fig-
ure 5.5). Connecting dotted lines are shown for visual effect. . . 90

8



5.4 Slices from PET frames 2 (left) and 47 (right) from T1+T3. The
images are SUV-normalised and the colour scale is equivalent
in both images, demonstrating the increased visual heterogeneity
due to noise in lower NECR scans. . . . . . . . . . . . . . . . . 91

5.5 The scatter fractions reported by Siemens for all scan data in the
experiment. As in Figure 5.3, Only3 is included for illustrative
purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Four plots of texture features against FoV activity level for the 25
minute cylinder data. These are selected examples of features that
correlate strongly with NECR. Statistics quoted in the superposed
boxes are: CoV, absolute Pearson product moment correlation co-
efficient with NECR (PMCC), and the reduced chi-squared statis-
tic χ2

ν for the feature values against NECR and against activity
(‘linear’). The black dotted line and gray shaded area corresponds
to the estimated activity at which the peak of the NECR occurs,
and is included as a visual aid. Also included is a quartic fit to the
data, illustrated with a red line, to aid visual comparison to those
on the NECR curves in Figure 5.1. . . . . . . . . . . . . . . . . 95

5.7 A 1D scatterplot showing the NECR |PMCC| of the 75 texture
features for the 25 minute cylinder data. Jitter is applied in the
vertical direction to enable all data points to be seen. . . . . . . 96

5.8 A diagram showing how feature compensation factors could be
calculated. The feature value is targeted to be corrected from
A(NECRmax) (blue line) to a reasonable clinical level (approxi-
mated to 100 MBq - red line). . . . . . . . . . . . . . . . . . . 97

5.9 A 1D scatterplot showing the NECR |PMCC| of the 75 texture
features for the 5 minute cylinder data. Jitter is applied in the
vertical direction for visual aid. . . . . . . . . . . . . . . . . . . 98

5.10 Two examples of features with strong NECR correlation. (a)
25 min |PMCC| = 0.9905; 5 min |PMCC| = 0.9148 (b) 25 min
|PMCC|= 0.9633; 5 min |PMCC|= 0.7746 . . . . . . . . . . . 100

5.11 Scatterplots showing Cluster Shade (GLCM) against NECR for
the cylinder datasets. 25 min |PMCC|= 0.1102; 5 min |PMCC| = 0.1267101

9



5.12 The GLRLM Run Length Non-Uniformity (left) and the Maxi-
mal Correlation Coefficient (MCC, right) plotted against the square
of the SNRdata for all cylinder images. . . . . . . . . . . . . . . 102

5.13 The variance of voxel values plotted against the square of the
SNRdata for all cylinder images. . . . . . . . . . . . . . . . . . 103

5.14 One-dimensional scatterplots showing the correlations for the six
NEMA spheres, considering only the ten highest correlating fea-
tures from the 25 minute cylinder dataset as listed in Table 5.4,
labelled above. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.15 Feature-NECR correlations shown for all datasets in T1+T3 scan.
Strong correlation criterion of |PMCC| = 0.9 shown as dotted
grey line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.16 Feature-NECR correlations shown for all datasets in T2+T4 scan.
Strong correlation criterion of |PMCC| = 0.9 shown as dotted
grey line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.17 Feature-NECR correlations shown for background regions in T1+T3

and T2+T4 scans. Strong correlation criterion of |PMCC| = 0.9
shown as dotted grey line. . . . . . . . . . . . . . . . . . . . . . 109

5.18 Each feature’s |PMCC| plotted for each ROI in each dataset, il-
lustrating the spread of correlations across all collected data. . . 110

5.19 The average rank for all features when ranked by NECR correla-
tion strength, averaged over the 14 ROIs. . . . . . . . . . . . . . 111

5.20 A scatter plot showing the associated p-values for measured |PMCC|
between the 75 texture features and NECR in the 5 and 25 minute
cylinder datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.21 Three features which are consistently highly NECR-correlated,
plotted for the 5 minute datasets for all ROIs included in this work. 115

5.22 Similar to Figure 5.21, three features which are consistently weakly
NECR-correlated, plotted for the 5 minute datasets for all ROIs
included in this work. . . . . . . . . . . . . . . . . . . . . . . . 116

10



5.23 Examples of poorly-correlating texture features for the 25 minute
cylinder data, along with example of the poor resultant quartic
fitting (red line). |PMCC| against NECR is shown as ‘PMCC’ on
the figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Slices from PET images of T1+T3 and Only3 in coronal view. . 122
6.2 GLCM IMC1 for region T3 in both T1+T3 and Only3 scans plot-

ted against the activity in the T3 region. 5 and 25 minute data are
plotted separately. . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 A plot comparing NECR from Only3 against Scaled NECR from
T1+T3. The y axis compares units of the two metrics in kilo-
counts per second (kcps). . . . . . . . . . . . . . . . . . . . . . 126

6.4 Figures showing the method of local scatter estimation. Top left:
the scatter subtraction image. Top right: the sinogram of the scat-
ter subtraction image. Bottom left: a mask of the T3 ROI sino-
gram. Bottom right: the product of the mask sinogram and the
scatter subtraction sinogram. . . . . . . . . . . . . . . . . . . . 129

6.5 A plot comparing the adapted spatially aware method, correcting
R and S, against Only3 NECR. . . . . . . . . . . . . . . . . . . 130

6.6 Scatterplots demonstrating the differences in modelling three ra-
diomics texture features against global NECR and the adjusted
NECR using the Sp. Aware model. . . . . . . . . . . . . . . . . 134

7.1 A visualisation of the GATE-simulated mCT PET detector gantry.
The crystal blocks (yellow) can be seen, demonstrating the modu-
lar structure. The white gridlines bound the extent of the scanner,
and axes illustrating dimensions can also be seen. . . . . . . . . 137

7.2 A transaxial slice of the real T1+T3 image in PET and CT, dis-
cretised and cropped. The CT image was used for the GATE
phantom definition, and the PET image for source definition. . . 138

7.3 Plots showing the scatter fractions calculated from GATE simula-
tions of T1+T3 and T2+T4 alongside the corresponding physical
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11



7.4 Individual rates T , S and R for the simulation data (green) com-
pared to the physical scan data (pink) for T1+T3 (left) and T2+T4

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5 Plots showing the NECR calculated from the physical and simu-

lation data for T1+T3 and T2+T4. The NECR is calculated with
x = 1 for simulated data and x = 2 for physical data. . . . . . . . 144

7.6 A PET image slice of the 68Ga NEMA phantom. The seventh
sphere, diameter 5 mm, is located by the red circle. . . . . . . . 145

7.7 Violinplots showing the distribution of mean values obtained in
the ROI of S1, the largest of the NEMA spheres. Each side of
the violin compares the distribution between the scanner- and e7-
reconstructed images, and should ideally be symmetrical to show
equivalent system performance. Number of iterations and post-
filter size are also included for comparison. . . . . . . . . . . . 148

7.8 Violinplots showing the distribution of the standard deviation of
voxel values obtained in the ROI of S1. Each side of the violin
compares the distribution between the scanner- and e7-reconstructed
images, and should ideally be symmetrical to show equivalent
system performance. Number of iterations and post-filter size are
also included for comparison. . . . . . . . . . . . . . . . . . . . 149

8.1 An illustration of the difference in axial FoV between conven-
tional PET (a) and Total Body PET (b) taken from [127]. . . . . 157

I.1 The Informational Measure of Correlation 2 (IMC2) from GLCM
for the cylinder datasets, comparing all FBN discretisation proto-
cols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

I.2 The IMC2 from GLCM for the cylinder datasets, comparing all
FBS discretisation protocols. . . . . . . . . . . . . . . . . . . . 180

I.3 The range of values, in SUV, for all images in the cylinder dataset. 181

12



List of Tables

1.1 Some uses of positron-emitting radioisotopes in oncology. Also
listed for each isotope are the half-life (t1/2), maximum positron
energy and positron range (dβ+). Further examples of common
radiotracers can be found in the RCR/RCP guidelines [7]. . . . . 28

2.1 Deriving the NGTDM features si for the matrix M. . . . . . . . 61
2.2 A list of the 75 textural features included in pyradiomics [55]. . 64

3.1 Selected key properties of the Biograph mCT scanner. Values
taken from the Biograph mCT Specification Sheet [100]. . . . . 70

4.1 A table arguing the advantages and disadvantages of the most
common FDM filament materials. Cost is listed for a 750 g
reel produced by Ultimaker available from RS Components (uk.
rs-online.com) as of 27th June 2022. It should be noted that
nozzle temperatures for printing are higher than the melting tem-
peratures listed; for PLA, the nozzle should be set to ∼ 210 ◦C. . 79

4.2 Volumes of the four selected tumour phantom inserts. Volumes
were calculated from the mass of water used to completely fill the
phantom insert without air gaps; such air gaps were unable to be
completely eliminated when filling with radioactivity. . . . . . . 81

4.3 Table containing the activity at the start of scan for all phantom
arrangements, along with the activity concentrations and volumes
for the target and background regions. . . . . . . . . . . . . . . 82

4.4 Table listing the acquisition duration of the G-labelled frames for
the NEMA IQ phantom scan series. . . . . . . . . . . . . . . . 82

13

https://uk.rs-online.com
uk.rs-online.com
https://uk.rs-online.com
uk.rs-online.com


4.5 Details for the image reconstruction protocol used in this work.
The algorithm used is known as UHD in Siemens nomenclature. 85

5.1 Table detailing the activity at which peak NECR is reached for
the four main phantom acquisitions. . . . . . . . . . . . . . . . 91

5.2 Statistical uncertainty from the measured counts for the lowest
activity (7.03 MBq) cylinder acquisition. Other information pro-
vided: scatter fraction 0.280611, net trues 75578254. σ is the
Poisson square-root uncertainty of the measured counts. . . . . . 92

5.3 Count information extracted for a 5 minute blank scan performed
on the Siemens Biograph mCT. Recorded counts are due to ra-
dioisotopes of lutetium in the detector crystals. . . . . . . . . . 92

5.4 A table showing the ten radiomics features that correlate most
with NECR for the 25 minute cylindrical phantom data alongside
the respective compensation factors. . . . . . . . . . . . . . . . 98

5.5 The highest NECR-correlating features for the cylinder dataset,
listing all texture features with NECR |PMCC| greater than 0.9.
Features are listed in descending order for the 25 minute dataset,
and aligned on the right hand side for comparison. . . . . . . . . 99

5.6 The ten features with the lowest correlation with NECR for 5 and
25 minute data. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Drop in NECR correlation from the 5 minute cylinder data for the
six NEMA spheres for the 5 minute acquisitions, averaged over
the ten features listed in Table 5.4. . . . . . . . . . . . . . . . . 105

5.8 Table listing number of strongly NECR-correlated texture fea-
tures for each dataset . . . . . . . . . . . . . . . . . . . . . . . 107

5.9 Results of the Kruskal-Wallis test for an example set of suspected
highly NECR-correlating features. The features chosen are the
features from Table 5.4. . . . . . . . . . . . . . . . . . . . . . . 117

5.10 Results of the Kruskal-Wallis test for an example set of suspected
highly NECR-correlating features. The features chosen are the
ten lowest-correlating in the cylinder 25 minute data, listed in
Table 5.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

14



6.1 Table showing the correlation of texture features to Tumour-Specific
NECR models. Features chosen are the features with global NECR
|PMCC| ≤ 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Table showing the correlation of texture features to Tumour-Specific
NECR models for three high-performing examples of successful
model implementation. . . . . . . . . . . . . . . . . . . . . . . 131

7.1 A table of some relevant JSRecon_params.txt parameters . . . . 146
7.2 The weighted arithmetic means of the percentage differences be-

tween ROI statistics from equivalent reconstructions performed
on the two software. . . . . . . . . . . . . . . . . . . . . . . . . 147

I.1 A table containing the discretisation protocols used on the cylin-
der image dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 179

15



Table of Terms & Abbreviations

Name Definition

ARSAC Administration of Radioactive Substances Advisory Commit-

tee; the body that regulates the industry standards for nuclear
medicine

CASToR Customisable and Advanced Software for Tomographic Recon-

struction; an open source reconstruction software for PET data

CV/CoV coefficient of variation; the standard deviation divided by the
mean of a dataset

DICOM Digital Imaging & Communications in Medicine; a widely used
file format used to store medical images

FBN/FBS fixed bin number/size; referring to the discretisation method cho-
sen for texture matrix processing

FBP filtered back-projection; an analytical tomographic reconstruction
technique

FDG fluoro-deoxyglucose; a commonly used PET radiochemical using
the positron-emitting isotope 18F

FoV field of view; in PET, this generally refers to the axial field of view,
the depth of the PET detector cylinder

GATE GEANT4 Application for Tomographic Emission; software used
to simulate PET & SPECT scans using the GEANT4 framework

GEANT4 GEometry ANd Tracking (4); software used to simulate the inter-
actions of particles and matter

continues on next page
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GLCM gray level co-occurrence matrix; a textural analysis matrix used
to show local heterogeneity

GLDM gray level dependence matrix; a textural analysis matrix used to
show local heterogeneity

GLRLM gray level run length matrix; a textural analysis matrix used to
show local heterogeneity

GLSZM gray level size-zone matrix; a textural analysis matrix used to
show ‘regional’ heterogeneity

LOR line of response; the virtual line (or tube) connecting two
coincidentally-triggered detector elements in a PET scanner

LSO lutetium orthosilicate; a material commonly used for non-organic
scintillation crystals in PET

MLEM maximum likelihood expectation maximisation; an iterative recon-
struction technique

MRI Magnetic Resonance Imaging; a non-ionising medical imaging
technique utilising the magnetic spin response of the nucleus

NECR noise-equivalent count rate; a scanner performance metric de-
rived from raw count statistics

NEMA National Electrical Manufacturers Association; the group who
developed an image quality standard for PET - their name is often
used throughout this report to refer to their image quality phantom

NGTDM neighbourhood gray tone difference matrix; a textural analysis
matrix used to show local heterogeneity

OSEM ordered subset expectation maximisation; an implementation of
the MLEM algorithm over many subsets of the initial data

PET Positron Emission Tomography; a method of medical imaging us-
ing a radioactive tracer

continues on next page
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PMCC Pearson product-moment correlation coefficient; a statistic used
to measure linear correlation between two variables, equal to ra-
tio of the covariance between the two and the product of each
variable’s standard deviation

PMT photomultiplier tube; a device used to detect small numbers of
visible light photons

PVE/PVC partial volume effect/correction; the effect of, and corrective
methods to adjust for, spatial resolution and image sampling
degradation of data

qPET ‘PET quotient’; a metric derived to describe the SUV of an ROI
with respect to some background value

ROI region of interest; the area, or number of voxels, selected for anal-
ysis

SPECT Single Photon Emission Computed Tomography; another form of
medical imaging, using tracers that emit single gamma photons
as opposed to positrons

SUV Standardised Uptake Value; a metric used to describe the uptake
of radiotracer in a voxel or region of interest

TGV total glycolytic volume; a measure used to quantify the amount of
glucose metabolism in an ROI in an FDG scan

ToF time of flight; referring to the enhanced timing capability of mod-
ern PET detectors, where coincidences can be localised to a
smaller region in an LOR
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Abstract

Radiomics is the branch of image analysis concerned with the extraction of statis-
tics (features) concerning not just uptake and shape, but the heterogeneity of the
ROI, using spatially-aware textural features to describe the distribution of voxel
values. These texture features have shown potential for providing diagnostic and
prognostic information. This work examines the robustness of these textural fea-
tures in order to advise on their future usage in PET studies.

The signal-noise-ratio (SNR) of PET data can be approximated by the noise-
equivalent count rate (NECR), a scanner- and geometry-dependent performance
metric. An investigation was carried out to determine whether textural image
features were correlated to the NECR, achieved by acquiring data from phan-
toms filled with a high activity of 18F on a Siemens Biograph mCT TrueV over a
12 hour period. Four phantoms were utilised; a cylinder, the NEMA IQ (Image
Quality) phantom and two variants using custom-printed tumour-like inserts for
the NEMA IQ phantom. The data was recorded in successive 5 and 25 minute
frames and images were reconstructed using clinically-appropriate parameters.
Radiomics features were extracted using an IBSI (Image Biomarker Standardi-
sation Initiative) compliant method. Strong correlations (|PMCC| > 0.9) were
found with NECR for 32 out of 75 textural features for large-volume, long time
frame images, enabling their characterisation. Multiplication factors were calcu-
lated enabling correction of texture features from the value obtained at clinically-
expected activity levels to their expected value at peak NECR. Such correlations
diminish for short time frame images and when considering smaller ROIs such as
the NEMA spheres and phantom inserts. This thesis discusses these results, sug-
gesting methods for calculating a ‘tumour-specific’ noise equivalent count rate
to address the diminished textural feature correlations. In addition, work un-
dertaken towards building a Monte Carlo simulation framework to improve this
study is discussed.
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“...there is nothing in this world which says nothing. Often - it is true - the

message does not reach our soul, either because it has no meaning in and for

itself, or - as is more likely - because it has not been conveyed to the right place.

Every serious work rings inwardly, like the calm and dignified words:

‘Here I am!’"

Wassily Kandinsky
translated from Über das Geistige in der Kunst, 1911
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Chapter 1

Introduction

1.1 A Brief History of PET
Radioisotope imaging - the imaging modality covering positron emission tomog-
raphy (PET) and planar gamma camera tomography - is a functional imaging
process, generally providing information that cannot be gained by other tech-
niques such as X-ray computed tomography (CT) or nuclear magnetic resonance
imaging (MRI). By bonding radioisotopes to substances such as antibodies, treat-
ment drugs or glucose, information about the activity and performance of a range
of bodily functions can be determined.

The use of positrons in a medical context was first investigated in 1951 to lo-
calise brain tumours [1], and the first detector specified for medical imaging was
built at Massachusetts General Hospital by Brownell & Sweet [2]. It was com-
prised of two opposing NaI(Tl) scintillation detectors. The resultant images were
significantly different to the scans that are produced today, but the breakthrough
this represented cannot be understated. It took over a decade for tomographs to
be produced, requiring advances in detector technology and the groundbreaking
use of algorithms to reconstruct the images to reach this stage. The first human
tomograph was taken in 1974 by Phelps & Hoffman at Washington University on
their PET III scanner, comprising of a ring of 48 NaI(Tl) detectors [2].

The advancement of inorganic scintillation materials, especially BGO (bis-
muth germanate, Bi4Ge3O12) in the late 1970s and LSO (lutetium orthosilicate),
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discussed later, enabled increased timing precision and material workability, which
greatly helped in designing more capable PET detectors [3]. From 48 detector el-
ements in the early 1970s to 32,448 in the scanner used in this work, the increase
in precision has been significant. Likewise, faster timing in detector technology
has allowed time-of-flight resolution in modern scanners down to the picosecond-
level.

The development of PET-CT in the 1990s elevated PET beyond its widely-
regarded status as a novel research tool into a truly useful clinical device. Prior
to the introduction of the dual-modality system, the task of aligning the PET data
with a CT counterpart in order to perform corrections was computationally dif-
ficult, slow and impractical [4]. The simultaneous improvement in computing
power over the years has enabled a huge increase in data storage and increased
speed of image reconstruction [5]. Initially, each ring of detector elements in a
scanner would be separated by lead or tungsten septa1; the increase of comput-
ing power and storage enabled the removal of these septa, going from ‘2D’ to
‘3D’ PET. Faster computation has enabled better data correction methods, and
more developed image reconstruction algorithms have enabled clearer and more
quantitatively accurate images to be produced.

Positron imaging is not without its drawbacks. By its very nature, there is
always a risk to the patient caused by the administration of radioactive mate-
rial. Patient safety and dose considerations have always been at the forefront of
advancing research. However, the benefits of PET imaging have always been
felt to justify the means, and the use of clinical PET-CT is not slowing. NHS
data showed a 15 % increase in clinical PET-CT scans given across England in
2018-19 from the previous year, and the number of scans taken increased to over
200,000 in 2021-22, despite the effect of the COVID-19 pandemic [6]. Should
the rate of increase of scans return to pre-pandemic levels, research into making
PET safer, more effective and more efficient will only be more crucial in years to
come.

1These are thin blocks of material that absorb photons which approach at undesired angles,
confining the accepted range to within a defined plane.
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Figure 1.1: A bar chart showing the total number of PET-CT scans taken in NHS England trusts
for each year of study across the previous decade [6]. Asterisk (*) indicates years affected by
COVID-19 pandemic and restrictions.

1.2 The Current Landscape: Taking a PET
Scan

PET is used in clinical environments to quantify the uptake and transport of sub-
stances. Advances in chemistry have enabled positron-emitting radioisotopes to
be incorporated into many different molecules to test and examine a wide variety
of biological processes. Table 1.1 shows some commonly used PET isotopes and
associated radiochemicals. Those highlighted in this table, and by the RCR/RCP
guidelines [7], are only a few of the thousands of candidates that have been iden-
tified and investigated, and new PET radiotracer development is a sizeable area of
research. By using transport- and uptake-based radiochemicals, information can
be interpolated regarding the location of tumours and their behaviour that is of-
ten less easily obtained from density- and material-dependent imaging modalities
such as CT and MRI.

FDG is the most widely used PET radiochemical, but it is a non-specific imag-
ing process. It becomes less useful for imaging tumours which occur near areas

2Neuroendocrine tumour
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Isotope t1/2 mins Eβ+

max MeV dβ+ mm Attached to Used to study
18F 110 0.64 2.3 fluorodeoxyglucose, FDG Glucose metabolism

fluorodeoxythymidine, FLT Cell proliferation
fluoride (e.g. NaF) Bone metastases

11C 20 0.96 3.9 choline Prostate cancer detection
methionine Brain tumour detection

68Ga 68 1.9 2.2 DOTATOC / DOTATATE NET 2 detection

Table 1.1: Some uses of positron-emitting radioisotopes in oncology. Also listed for each isotope
are the half-life (t1/2), maximum positron energy and positron range (dβ+). Further examples of
common radiotracers can be found in the RCR/RCP guidelines [7].

of high natural glucose uptake such as the bladder or brain, and can be easily
compromised - for instance, by increased muscular use or digestion in the period
immediately before a scan. This is where other radiotracers, that may be targeting
specific organs or tissues, become of great importance.

In the clinic, a patient is typically given a dosage of the order of 100s of
MBq for oncological imaging. The given activity is patient- and investigation-
specific. Typically activity dosages are adjusted based on patient weight, among
other factors - further information is given in the Administration of Radioactive
Substances Advisory Committee (ARSAC) Guidelines [8]. The patient is left
to absorb this activity for an allotted period of time before the imaging process,
allowing for absorption of the radiolabelled substance in the body. This period of
time is different for every patient, substance and imaging protocol. For a typical
18F-FDG scan, the patient is left for an hour to allow for complete absorption [9].

The scan itself is, again, dependent on what is being imaged. Almost every
single modern PET scanner sold is dual-modality, with the most common joint
modality being CT. A PET-CT scanner is built with a single bore construction,
so that a patient laying on the bed is passed through the CT gantry before the
PET acquisition. The average PET scanner has an axial field of view (FoV) of
around 20 cm, requiring patients to be imaged at several bed positions, or passed
through the scanner with continuous bed motion. For a typical oncological 18F-
FDG scan, this is done from the base of the skull to the mid-thigh, with the entire
scan lasting between 15 and 30 minutes [9]. The patient is required to remain as
still as possible throughout the process, to enable better co-registration between
the CT and PET data, and preventing blurring and artifacts in the resultant PET
image.
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The images are reconstructed on a computer associated with the scanner. Each
scanner manufacturer produces software that is configured to provide the highest
quality image according to clinical needs. The resultant images are stored in the
particular trust’s PACS (Picture Archiving and Communication System). Clini-
cians are then able to access this data upon request. In order for this data to be
used in research, full security and anonymisation protocols must be followed.

1.3 Data and Image-Based Research in
Nuclear Medicine

PET can be thought of as a fully quantitative imaging process; each voxel3 value
represents the activity concentration of tracer that could be localised to that re-
gion. The resultant images therefore can be thought of as so much more than just
graphical representations of metabolic processes. The PET image is a 3D radioac-
tivity distribution matrix4, and with a full understanding of the data, analysing
patterns and emergent properties of the distribution could unlock new ways of di-
agnosing patients, improving the quality of treatment, or reducing radiation dose,
to name a few applications.

The term biomarkers refers to statistics that describe physiological character-
istics. Biomarkers can be image-based features, collected personal data - or even
genomics, data derived from genome sequencing. Reported clinical image-based
statistics, such as SUVmax

5, rely purely on first order statistics, meaning that they
are largely based on the distribution of the raw voxel values (such as the mean
and maxima). For oncology PET, this is still useful information; SUV is an eas-
ily obtainable value with a tangible relationship to physiology [12]. However,

3A voxel is the 3D equivalent of a pixel, used in medical imaging. The word is derived from
‘volume pixel’.

4Depending on the scan protocol, this can even be 4D, as scans can be gated to account for
patient breathing or movement. PET can also be used for kinetic modelling, measuring the rate
of tracer delivery; this could give more physiologically robust information on tracer uptake which
could be used to better predict treatment responses [10, 11].

5SUV, or standardised uptake value, is equivalent to the activity concentration normalised to
the injected activity. The max suffix corresponds to the maximum value in a region of interest.
This definition will developed further in Chapter 2.
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around 2010, studies were beginning to find new ways of using more complex
image-derived features to classify patient outcomes, paving the way for the more
defined field of radiomics [13, 14]. Radiomics is the term given to a higher-
throughput extraction of a large collection of image-based features, designed to
give a detailed, spatially aware statistical profile of a region of interest in an image
(for instance, the patient’s tumour) [15]. In an age where increasingly powerful
computing is more accessible, the extraction of extra data from a scan at low ad-
ditional cost is extremely valuable. Artificial intelligence and machine learning,
while regarded with a certain degree of doubt in their efficacy by a large part of
the clinical community at present, is inevitably going to affect how many clinical
processes are carried out in the future [16]. Such algorithms will require as much
data as can possibly be sourced before they can be trusted in clinical practice.

Figure 1.2: A bar chart showing the number of hits on Google Scholar with titles containing
“PET" & “radiomics" against publication release year.

Interest in radiomics is growing exponentially (see Figure 1.2) because of the
perceived use of this additional data [17, 18, 19]. Studies are returning with en-
couraging results, but the implementation of any of these research algorithms into
the clinic remains distant for several reasons. Firstly, the algorithms are gener-
ally treated as a ‘black-box approach’, lacking clear explanation as to how the
information obtained may be useful, while the datasets typically used in PET
studies are very small compared to those typically used in other AI research,
which makes results difficult to interpret [20]. Secondly, and especially in PET,
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current harmonisation and standardisation procedures that take place are not seen
as comprehensive enough to handle the sensitive and convoluted process of ra-
diomics feature extraction [21, 22]. Concerns have been raised since 2011 that
18F-FDG imaging protocols lack sufficient standardisation across the field, and
introducing higher complexity to this is likely to create a real problem for inter-
preting study results [23].

Improving harmonisation and standardisation of all PET studies is seen as
a priority across the field. The definitions of these terms is slightly different;
standardisation implies that variation in all procedures is reduced to a minimum,
whereas harmonisation relates to reporting standards, and the ability to reliably
compare results between centres often despite different equipment. Harmoni-
sation has already made an impact in the clinic, with SUV harmonised using
the EARL (European Association of Nuclear Medicine Research Ltd.) reporting
standards [24]. Initially developed in 2017, these were notably updated in 2019
to create EARL2 [25]. One beneficiary of SUV harmonisation is the Deauville
criteria, a test used in lymphoma patients to determine the likelihood of treatment
response based on SUV values in lesions in comparison to reference values [26].
There is no reason that clinically-relevant criteria such as Deauville could not be
developed using radiomics features, should they be definitively shown to predict
lesion behaviours of some kind. The process of harmonisation is dynamic, and
even the most current efforts in standardisation will become obsolete once new
scanner technology becomes implemented into the clinic. As such, developing
a harmonisation standard for radiomics feature measurements requires constant
feedback from studies which examine how these feature measurements can be
more reliably stated.

1.4 Thesis Overview
Most of the interest in radiomics surrounds the ability to powerfully quantify
and describe the heterogeneity of a tumour using detailed and nuanced features
derived from texture matrices. Considered and detailed approaches to character-
ising tumour heterogeneity has long been proposed as a way by which to better
diagnose cancer behaviour, with radiomics answering this need [27]. As shall be
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explored further in Chapter 3, many radiomics features describing textural het-
erogeneity require convoluted and complex mathematical derivations from the
original images. PET imaging by nature is difficult due to the noisy data that
is collected, and therefore radiomics texture features are notoriously difficult to
quote with reliable and accurate uncertainties.

The work in this thesis sought to investigate the robustness of these radiomics
texture features. To determine a feature’s robustness means to determine the fea-
ture’s stability given changes to the experimental conditions. It is known that PET
scanners exhibit different noise characteristics depending on the amount of activ-
ity within the scanner. This motivated an initial investigation determining texture
features’ instability when changing the total activity level in a scan, while keeping
the distribution of the activity the same. These ground truth radioactivity distri-
butions can be created from either phantom scans (plastic models with varying
degrees of anthropomorphism) or Monte Carlo computational simulations. The
work evolved to consider how novel measures of noise could be used to improve
the use of these texture features, and how the phantom study could be augmented
with further simulation techniques.

Chapter 2 will detail all of the physics theory and background information
required to interpret the results of this thesis. Following this, Chapters 3 and 4
establish the motivation behind the work and the experimental techniques. The
methods of creating a set of custom tumour phantoms is described in the latter,
detailing how a 3D printed model of patient geometries can be created. Chap-
ter 5 lays out and discusses the initial findings of the texture feature robustness
analysis, while the work done over the course of this PhD into developing new
noise metrics and creating useful Monte Carlo simulations are elaborated upon
in Chapters 6 and 7 respectively. The final chapter will describe the findings of
this work, along with recommendations to those currently working in the field
that result; finally, conclusions are made, summarising how current cutting edge
technology and research in PET could augment this work.
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Chapter 2

PET Background & Theory

In this part of the thesis, the physics theory behind the work will be laid out. It
covers the basic principles of β+ emission, PET scanning, PET data corrections,
how PET images are created, and an overview of how image-based quantitative
PET research is performed. A key reference for this chapter is the pyradiomics
documentation, in which the mathematical descriptions of all features (also listed
in Table 2.2) can be found [28].

2.1 β+ Decay
Positrons are emitted from proton-rich isotopes by random decay facilitated by
the weak nuclear interaction. Also released in this emission, displayed in Equa-
tion 2.1, is an electron neutrino.

A
ZX −→ A

Z−1Y + 0
+1e+ + 0

0ν (2.1)

The positron is emitted with a kinetic energy dependent on the dynamics of the
other 2 bodies, and as such positron energies are described by a spectrum, an
example of which can be seen in Figure 2.1. An emitted positron travels a short
but significant distance from the parent nucleus, known as the positron range

[29]. The range is dependent on the initial kinetic energy of the positron, the den-
sity and atomic number of surrounding matter, presence of magnetic field among
other factors [30]. The positron loses energy along this distance via scattering
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interactions until it is thermalised and subsequently annihilated by a nearby elec-
tron. To conserve momentum in this interaction, the product photons have equal
energy of 511 keV and are released back-to-back, or collinearly6.

Figure 2.1: Example spectrum of kinetic energies for emitted positrons from an 18F nucleus [31].

2.2 Positron Emission Tomography (PET)
Principles

PET scans are performed using radiopharmaceuticals. These are chemicals,
which may be drugs or proteins, which are radio-labelled with a positron-emitting
isotope. Some examples of these are listed in Table 1.1. One example, and the
most commonly used in PET, is FDG, shown in Figure 2.2. FDG is an analogue
of glucose, the simple sugar used by all cells in the human body for metabolism.
Hanahan & Weinberg’s 2000 study [32] laid out six ‘hallmarks of cancer’ (later
increased to ten hallmarks in a subsequent reevaluation [33]) outlining the pro-
cesses that distinguish cancerous cells from regular tissues. One of these latter
hallmarks is titled Reprogramming Energy Metabolism [33]. It is observed that
tumours have an increased metabolism compared to the surrounding tissues - a
process originally likened to fermentation in a seminal paper by Warburg in 1956
[34]. As such, glucose will have a higher uptake in cancerous tissue than the
comparative ‘normal’ tissues surrounding the tumour.

6There is in fact a slight deviation from collinearity, due to the initial positron momentum.
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(a) Glucose (b) 2-deoxy-2[18F]fluoroglucose / FDG

Figure 2.2: Molecular diagrams showing the difference between glucose (left) and FDG (right).

The metabolism process involves breaking up the glucose molecule by a se-
ries of chemical reactions - a process known as glycolysis. One of these reactions
involves the ‘OH’ group that has been removed to form FDG (hence ‘deoxy’).
As this stage of the glycolytic pathway, the FDG molecule cannot continue to be
broken apart. Consequently, FDG builds up within the cell until the 18F atom
decays into an oxygen atom, whereby glycolysis may continue.

2.3 PET Scanners
The aim of a PET detector is to locate where collinear 511 keV photons are
simultaneously detected - a coincidence event. A line of response, or LOR, is
identified by the straight line between the coincidentally-fired detectors, as seen
in Figure 2.3. The location of the emission source is realised by the overlapping
of multiple LORs. The early PET scanners used two opposing planar detector
arrays, but this approach was quickly eschewed in favour of a cylindrical array of
detectors around the subject. These cylindrical rings were originally separated by
lead septa, preventing coincidence detection across ‘slices’ - thus the technique
is referred to as 2D PET. Aided by technological advancement, modern scanners
have removed the need for septa, and as such are now dubbed 3D PET. This
mode of acquisition increases the sensitivity (more photons reach the detectors)
but increases the likelihood of random & scattered events, which will be discussed
further in later sections.

Modern scanners, such as the Siemens Biograph mCT used in this work,
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use scintillation crystal detectors made from lutetium orthosilicate, or LSO. The
mechanism behind scintillation detection is thus; a gamma photon hits the crys-
tal, exciting electrons which relax and emit photons of a lower energy - around
30 photons for each keV of incident radiation [3]. The scintillator crystal should
be transparent to these product photons, which are then measured by a photomul-
tiplier tube (PMT) and an electronic signal produced. LSO as a material meets
these criteria; it is able to transmit the visible photons easily and has a good sen-
sitivity to gamma photons (due in part to its comparatively high density). One
drawback is the material’s poor energy resolution. For PET imaging this is not
highly problematic as the only photon energy of interest is 511 keV; a reasonably
wide energy window (typically 350−650 keV) can be used to record an event

Figure 2.3: An emission event occurs within a ring of detectors. Two detector elements fire,
forming an LOR [5].

(a) 2D PET, with lead septa (b) 3D PET with lead septa removed

Figure 2.4: Basic sensitivity diagrams for 2D & 3D PET, demonstrating the inter-ring acquisition
capability for each modality.
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with the assumption that the only photons present in this range originate from
a positron annihilation. This is certainly the case for 18F, which decays via β+

with a 97% branching ratio (the other 3% through electron capture). However,
other commonly used PET isotopes, including 124I or 89Zr, have some degree of
gamma emission in their decay schemes which may add inaccuracy and noise to
the recorded data.

The Biograph mCT uses a modular system; four rings each containing 52
‘block’ detector modules. One module, illustrated in Figure 2.5, consists of
a block of LSO with a series of deep cuts into the surface filled with a light-
reflecting material, emulating a 13×13 array of crystals. This block is attached
to a 2×2 array of PMTs. The ratios

Rx =
A+B

A+B+C+D
(2.2)

Ry =
A+C

A+B+C+D
(2.3)

of the signals from the 4 PMTs (A-D) are used to determine which of the 169
individual 2D crystal elements have been triggered by the incident photon [35].

Figure 2.5: Diagram of a detector module consisting of a cut LSO block attached to 4 PMTs.

2.4 Computed Tomography (CT) and PET
X-ray computed tomography, commonly known as CT, is the method of inter-
nal 3D imaging based on the attenuation of X-rays through the subject. X-rays
interact with matter mainly via Compton scattering and the photoelectric effect,
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causing incident photon beams to attenuate. The energy deficit between the out-
going beam and the detected beam is related to a material-dependent attenuation
coefficient µ , a measure of the fractional loss in intensity per unit length. These µ

values are conventionally converted into Hounsfield units (HU), by normalising
to the attenuation coefficients of air and water,

HU = 1000× µ−µwater

µwater−µair
. (2.4)

These values can be interpreted as a measure of density of material within the
body; for instance, bone has an HU value of around 1800− 2000 while lung
tissue, for example, has a typical HU value of around 400 [36].

A CT scanner consists of a rotating gantry of an X-ray source collimated to a
fan-shaped beam opposite an arc-shaped array of detectors. A 3D projection set
of µ values are then collected and reconstructed using similar methods to those
used in PET.

The first PET-CT scanners were built in 1998, and the joint modality scan-
ners are now accepted as the industry standard in clinical practice [4]. While
having the CT scanner attached to the PET gantry there is an advantage relating
to the ease of alignment when creating attenuation maps. The main advantage to
a clinician is the contextualisation of the PET data, provided by seeing the uptake
hotspots in parallel with the material-based information provided by CT. In gen-
eral, CT images also have a higher resolution than PET images; the voxel size
in a CT image obtained from the Siemens Biograph mCT is 1 × 1 × 3 mm3

compared to 4 × 4 × 3 mm3 in the PET image.

2.5 PET Data Corrections
It is not the case that every coincidence detected by the PET scanner corresponds
to a true line of response. It is necessary to apply corrections to the recorded data
to account for the scatter and random coincidences that are recorded in addition
to these. Further corrections are applied to account for attenuation in the subject
medium, dead time in the detectors and normalisation of the detector geometry.
This section details the origins of these erroneous coincidences, and how they are
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corrected for in the data.

2.5.1 Scatter
It is common for a photon travelling through a medium to be scattered; it is esti-
mated that 15% of recorded events in 2D PET, and up to 50% of recorded events
in 3D PET, are erroneous scatter measurements [37]. This is usually through
the Compton effect, reducing the energy of the scattered photon by an amount
relative to the angle of scatter,

Eγ ′ =
Eγ

1+
(

Eγ

mec2

)
(1− cos(θ))

. (2.5)

If the angle of deviation is large enough, the energy may be reduced to an extent
such that it falls short of the energy window set by the detectors to record single
events. However should this not be the case, a false LOR will be recorded, as
shown in Figure 2.6.

Figure 2.6: Diagram of a scattered event and the erroneous LOR recorded [5].

Scatter may be accounted for in several ways. The traditional approach, and
one that is used primarily in SPECT imaging, is that of energy window manip-
ulation. If data is recorded for an energy window set below that of the expected
photopeak, the entirety of the data recorded in this lower energy window can be
attributed to scatter. This scatter fraction is then subtracted from the main energy
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window dataset. This is known as ‘dual energy window’ scatter correction, and
can also be used with two lower-energy windows (thus ‘triple energy window’
scatter correction). Energy window techniques do not tend to be used with mod-
ern LSO-based PET detectors, due in part to the poor energy resolution of the
scintillation material.

Another method of scatter correction involves estimating the total scatter by
using the recorded coincidences for LORs outside the subject, such as that shown
by Figure 2.6. These out-of-body LORs, the tails of the intensity distribution
at any projection, are trivially attributed to scatter, therefore the scatter fraction
within the subject can be interpolated from this data and removed as such (seen
in Figure 2.7).

Figure 2.7: The grey region is interpolated from the tails of the given projection and is attributed
to scatter.

A preferential method of scatter correction uses Monte Carlo-based methods,
statistically simulating the scatter fraction of data in any given system. This re-
lies on an extensive knowledge of the system that is being scanned and thus can
become very computationally expensive. This becomes complicated further by
considering phenomena such as multiple scatter, and scatter from outside of the
field of view (FOV)7.

7This is usually accounted for by shielding the outermost sides of the detectors with lead.
This does however invariably leave a small range of angles of acceptance out of the axial extent
of the scanner.
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2.5.2 Randoms
A random event also results in an erroneous coincidence being recorded, seen in
Figure 2.8. This happens when two detectors are triggered within the coincidence
timing window, but the photons do not originate from the same source. The
two ‘lost’ partner photons may have either scattered outside the detector, been
attenuated and lost within the subject, or may have travelled straight through the
PET detector without being recorded.

Figure 2.8: Diagram of a random event and the erroneous LOR recorded (adapted from [5]).

Two methods widely used for randoms correction are elementwise and de-

layed window estimation. For an elementwise estimation, the rate of random
coincidence events, Rr, between two detectors in a coincidence window τ can be
expressed as

Rr = 2τ ·R1 ·R2 (2.6)

for each detector’s singles rate R1,2. The total timing window is twice the co-
incidence window to cover the entire time (±τ) that detector 2 can be triggered
in order to be in coincidence with detector 1. The random rate for each LOR is
computed from these individual singles rates, and can thus be accounted for [38].

Delayed window estimation is the contemporarily preferred method for ran-
doms estimation. This method involves duplicating one of the data channels and
delaying it by a time period longer than the coincidence window. Any ‘coin-
cidences’ detected by the processing electronics in this delayed channel must
therefore be random, and can be removed from the data. The disadvantage of
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Figure 2.9: A demonstration of dead time models for non-paralyzable (middle) and paralyzable
(lower) detectors when given events (upper) within their characteristic dead time per event, td .

this method is the doubling of the statistical Poisson noise for each LOR from
duplicating the data, but it is commonly viewed to be a more accurate estimation
method than the alternatives [38].

2.5.3 Dead Time
Each scintillation detector element has an inherent dead time, the time after the
detection of a photon where the detector is unable to detect another incident pho-
ton. Detectors can be modelled as either paralyzable or non-paralyzable during
this time. These models are shown in Figure 2.9. A non-paralyzable detector will
not ‘see’ a subsequent event during its dead time, whereas a paralyzable detector
will have its effective dead time extended by the next event; from the six events in
Figure 2.9, the non-paralyzable detector will detect four, whereas the paralyzable
detector only detects three.

The obvious problem with dead time centres on the loss of singles in the sys-
tem. However, by predicting the behaviour of each model, the theoretical actual
count rate, n, can be estimated from the measured values, m at each detector. In
the non-paralyzable model, the detector will be rendered ‘dead’ for a period of
time m · td; the rate that singles events are therefore lost to the dead time of the
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detector is therefore n ·m · td [38]. This is hence equivalent to

n−m = nmtd (2.7)

and can be rearranged to give

n =
m

1−mtd
. (2.8)

A paralyzable detector, on the other hand, can be modelled with the Poisson
statistics that govern the interval between successive event detection. It can be
established that the probability of an event occurring in the interval dt is

F(t)dt = P(0)×ndt (2.9)

where F(t) is the distribution function, P(0) is the probability of no events oc-
curring in the interval, and n the Poisson rate of event occurrence. The measured
count rate in a paralyzable detector is thus

m = ne−ntd . (2.10)

This must be solved for n numerically [3]. Further analysis of how these equa-
tions are implemented in correction algorithms may be found in [39].

In order to use this information in correcting for dead time, the characteristic
dead time td must be found. There are many ways that this can be achieved, but
prominently used is the ‘two-source method’. Using two sources of different ac-
tivities, the dead time can be determined by the difference between the measured
rates both independently and measured together. The nonlinear response of dead
time models ensures that the measured count rate will be less than the sum of
the individual count rates [3]. In the Biograph mCT, correction for the scanner’s
inherent dead time is applied in the process of data storage, and is done on the
level of each LSO block.
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2.5.4 Attenuation
It is estimated that 60% of the 511 keV photons in any given scan are not detected
due to attenuation, the term given to the loss of radiation photon energy [37]. In
the case of photons of this energy, attenuation occurs through Compton scattering
and the photoelectric effect. The loss of energy through attenuation into a patient
is the largest concern regarding patient safety. Attenuation also plays a role in
reducing image quality; factors such as the depth through an object the photon has
to travel and the density of regions within the object will result in either photons
being completely absorbed or reaching the detector with an energy below the
window established for legitimate singles measurements.

Figure 2.10: An illustration of how a single photon detection may be indicative of attenuation in
the subject medium [5].

This loss of singles is accounted for with another applied correction factor.
Attenuation is measured by either using X-ray CT scans, or by rotating a 68Ge rod
source around the object in the PET scanner - known as transmission scanning

[40]. Using 68Ge gives the benefit of directly using 511 keV photons to measure
attenuation, a benefit not seen when using X-rays. The attenuation coefficients of
the two are related by

µ511keV = µE ·F (2.11)

where F is described as ‘the ratio of the mass attenuation for water at 511 keV to
that at E keV’ [41]. Here, the mass attenuation is simply the attenuation coeffi-
cient divided by the mass density, µ/ρm.
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A map of the attenuation factors corresponding to every voxel, or µ-map, is
created. This map, when compared to the PET data, will inform the reconstruc-
tion algorithm about the proportion of photons originating in each voxel that are
likely to go undetected. Most attenuation correction algorithms will then propor-
tionally add counts to the corresponding voxels. There are some drawbacks to
this statistical process; for instance, the presence of metal objects within a patient
may give artificially high uptake readings.

2.5.5 Normalisation
Emissions at different locations in the scanner have an inherently different proba-
bility of acceptance. Spontaneous emission and annihilation can produce collinear
photons in a 4π solid angle, but the angle of acceptance for both of these photons
in coincidence is much smaller and location dependent. Furthermore, deviations
from perfect cylindrical geometry must be accounted for; this originates not just
from the block-modular arrangement of the scanner, but also any small offsets or
alignment errors in these blocks. Other efficiency factors, such as PMT efficien-
cy/gain and the inter-ring plane efficiency, should be corrected [42].

One way of performing normalisation correction is to illuminate every single
line of response with a known uniform activity and measure the response. Tradi-
tionally this is achieved by rotating a rod 68Ge source around the circumference
of the scanner, but can also be performed using a large cylindrical phantom in the
centre of the scanner’s axis [43].

As computational power has increased over time, the normalisation correc-
tion factors are typically calculated in a componentwise manner. This was ne-
cessitated by the advent of 3D PET, and the subsequent 10-fold increase in the
number of LORs in any particular dataset [44]. Component-based normalisa-
tion reduces the number of coincidences needed to measure the correction fac-
tors. Several methods for component-based normalisation have been proposed
[44, 45, 46, 47]. These techniques use different measurements (phantoms, rod
sources, scanning line sources, etc.) in combination with similar, purely analytic,
algorithms (e.g. fan-sum algorithm to calculate inherent detector efficiencies and
the block profiles) to determine factors by which each LOR’s count rate should
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be multiplied by to give the same activity regardless of the position of emission.

2.5.6 Partial Volume Correction
The term partial volume effects (PVEs) refers to two distinct phenomena that
contribute to image quality degradation: finite spatial resolution of the detec-
tor system, and voxelised image sampling [48]. The spatial resolution of a PET
scanner is hampered by many of the effects highlighted in previous sections -
effects emanating from uncertainties in the physical processes (non-collinearity,
positron range), the finite detector element size or DOI effects [49]. The limited
spatial resolution causes ‘leaking’ of intensity values between regions. An object
of finite size will appear larger and less intense in the data, illustrated in Figure
2.11. This has the effect of the idealised ground truth data being multiplied by a
detector-specific point-spread function, or PSF [48].

Figure 2.11: The ‘leaking’ effect of poor spatial resolution in 2D [48].

Image sampling causes a further leaking effect between regions. As each
voxel has a finite size, often a single voxel contains multiple tissues with different
uptake values. The total voxel intensity is the mean of the various intensities
within.

PSF modelling is the method used to reverse this process. An approximation
of the detector’s PSF is applied to each image update before it is reprojected in
MLEM/OSEM. Subsequent expectation maximisation will then correct for this
blurring, and after an appropriate number of updates the resultant image should
converge with clearer-contrasted boundaries, as if the detector had negligible in-
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herent partial volume effects. However, while this improves the image quality
and convergence over the course of reconstruction, it has been found to artifi-
cially affect the quantitative nature of the imaging process [50].

2.6 PET Image Reconstruction
The intensity measured at each LOR is plotted against the position of the LOR
in a form of projection mapping called a sinogram - so named because a point
source becomes mapped to a sine wave. This is also known as a Radon trans-
formation. In 2D PET, the lack of inter-slice acquisition8 resulted in sinograms
being binned by slice, and therefore each slice reconstructed independently. In
3D PET, sinograms are binned by azimuthal projection angle.

Figure 2.12: An illustration of the depth of interaction (DOI) problem, whereby an incident pho-
ton may be detected by one of a series of detector elements [5].

Each acquisition dataset is typically subject to two reduction factors in order
to reduce the data storage requirements. A mashing factor can be applied which
bins together counts from LORs with small differences in crystal spacing; at the
same time, a span factor is applied which bins together inter-ring coincidence
data within a certain azimuthal projection angle. Several sources of uncertainty
allow these approximations to hold validity, particularly the non-collinearity of
photons and the depth of interaction problem. Non-collinearity refers to the phe-
nomenon by which the 511 keV photons from an annihilation event are actually

8This is a simplification, as the geometry of the septa allowed acquisition for a small span of
rings. The data for each of these small-span inter-ring coincidences were usually rebinned into
the most appropriate cross-sectional slice.
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released with a slight angular deviation (around ±0.25°) from perfect collinear-
ity; the wider the diameter of your PET rings, the more exaggerated the effect of
non-collinearity becomes. The non-collinearity is caused by the conservation of
momentum from the parent positron-electron pair. The depth of interaction prob-
lem, on the other hand, describes the scenario whereby a gamma photon may
have enough energy to travel straight through the first detector element it reaches,
and is measured instead by a nearby element, shown in Figure 2.12.

2.6.1 Analytic Reconstruction
In 2D PET, the analytic technique preferentially used to obtain the original image
from the Radon transformation is filtered back-projection (FBP). Projections of
an object at single angles, as seen in Figure 2.13, can sometimes destroy infor-
mation about relative depth. By back-projecting these projections at a range of
planar angles, it is possible to build up a complete image of the object. A ramp
filter is applied to each projection before the back-projection process to prevent
the inherent radial (1/r) blurring [37].

Figure 2.13: Projecting an object onto a plane gives little information about depth (LHS) unless
further projections at a range of angles are taken (RHS).
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2.6.2 Iterative Reconstruction
Analytic reconstruction techniques are very computationally expensive, and the
back-projection stage can take a long time to perform with a large number of pro-
jection angles. It is usually preferential to use iterative reconstruction processes,
particularly in 3D PET. One such algorithm is Maximum Likelihood Expectation
Maximisation (MLEM). The algorithm predicts the intensity of each voxel using
Poisson statistics based on the recorded LORs and the probability matrix a(i, j),
where

a(i, j) = P(event detected in LOR j | event emitted in voxel i) , (2.12)

which can be calculated from the PET detector geometry. A full description of
the MLEM algorithm can be found here [51, 52].

In order to decrease computation time and expense, the MLEM algorithm can
be run in parallel upon subsets of the recorded data. This implementation, Or-
dered Subset Expectation Maximisation (OSEM) is the algorithm mainly used to
reconstruct 3D PET data [53]. It should be noted that the ‘maximum likelihood’
prefix is dropped, as while the computed image for each subset will be calculated
in accordance to the maximum likelihood, the resultant image cannot explicitly
be said to have maximised the global likelihood. However, it has been empiri-
cally shown that the OSEM-computed image, even for a large number of subsets,
will have little or no resultant drop in quality to the MLEM computed image.

There are issues with iterative reconstruction. As the number of updates9 is
increased there is a resultant increase in convergence, but this is compromised
by an increase in background noise in the image. This is generally caused by
artifacts within the image estimation that become exaggerated as the number of
updates continues.

9One update can be considered as one iteration of the MLEM algorithm; for OSEM, this
corresponds to the number of iterations multiplied by the number of subsets, Ni×Ns.
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2.7 Quantitative PET and Radiomics
FDG PET performs exceedingly well as a metabolic imaging modality, with vi-
sual inspection alone enabling clinicians to identify cancerous material with ease
in many cases. PET was, however, developed as a quantitative tool, and over
time there has been an increased appreciation of the deeper objectivity of PET
quantification [54]. Quantifying the uptake of FDG in a region of interest has
proved useful over the years for earlier diagnosis and to determine how patients
are likely to respond to therapy [54]. Multiple conventions exist for quoting up-
take in a medical study, and these are detailed in Section 2.7.3.

Radiomics was developed to harness the power of the objectivity of quanti-
tative PET. A radiomics extraction process is described in Figure 2.14. The key
steps involve: delineating the ROI from the image (known as segmentation); dis-
cretising the image such that voxel intensities are allocated into gray level bins
for texture matrix processing; and feature extraction - the mathematical calcu-
lation of statistics from this information. In addition to these basic principles,
other pre-processing steps are required. For an individual patient, PET radiomics
is often done in conjunction with other image-based processes (for instance, ra-
diomics extraction performed on a companion CT scan); this requires resampling
and interpolation of the images into the same matrix spacing10. For PET, images
are required to be converted into voxel units of SUV (see Section 2.7.3) before
discretisation and extraction.

Several free dedicated radiomics software are available for this research. The
most popular11 of these are pyradiomics [55], LIFEx [56] and CERR [57, 58].
The output of an extraction for a single ROI is a series of numbers describing first
order, shape and texture features. Examples of these are described in this section.

10Image interpolation causes issues with segmentation - in practice, segmentation and inter-
polation are run in parallel.

11These are the most popular IBSI-compliant software; for details of what this entails, see
Section 2.7.4.

50



Figure 2.14: Flow diagram illustrating the processes associated with a radiomics feature extrac-
tion, from image input to statistical output.

2.7.1 Image Segmentation
The process of selecting the ROI in a medical image is referred to as segmen-
tation. There are three methods used to segment an image: manual delineation,
image thresholding and AI-based methods. This first step in a feature extraction
is arguably the most crucial, as inaccurate segmentation results in either analysis
of undesirable material or missing out crucial parts of the ‘true’ ROI. These out-
comes would in turn not only cause the greatest shifts in our raw metric values,
but would be harmful for a patient should these inaccurate ROIs be used to direct
radiotherapy treatment.

Manual Delineation

Originally ROIs had to be drawn by a clinician due to the capabilities of contem-
porary available software. Typically the selection process would entail clicking
around each relevant boundary pixel on a slice-per-slice basis. Such a process
is hampered mostly by the length of time the process takes, making it inefficient
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for regular and popular use. The potential upsides of this method are due to the
clinician’s specialist knowledge and ability to distinguish materials. Subjectivity
and bias, however, remains the largest problem with manual methods. Even two
expert clinicians may differ severely in selected ROIs for the same object, and
in most cases the job of delineation may not be taken on by experienced staff
due to time constraints. A single clinician may also delineate different voxels
if shown the same image multiple times. This method is also highly dependent
on the image display settings used, which is highly undesirable for standardising
any process. This intra- and inter-observer variability is highly problematic, and
the uncertainty of delineations causes serious patient safety concerns in image-
guided radiotherapy [59].

Image Thresholding and Automated Segmentation

To address the observer dependence issue with manual delineation, more objec-
tive methods of segmentation are often used. These automated procedures gen-
erally involve thresholding; including all voxels in a local region that fall above
(or below) a predetermined value. This method is fast and, to a certain extent,
reliable and repeatable; any two clinicians will obtain the same ROI using the
same threshold value on the same image, even when using different software.

The main drawback to a thresholding method lies in the selection of an appro-
priate threshold value. Thresholding may be marginally easier to standardise in
CT imaging, where a range of Hounsfield Unit values for most tissues are well es-
tablished, but in PET imaging it is required to know what activity concentration
(or SUV) constitutes background over foreground. Common methods in FDG
PET include thesholding to 40 % or 50 % of the local maximum, or thresholding
to a choice of an appropriate background level, deduced from a region such as
the liver [60]. Basic thresholding can lead to phenomena such as missing vox-
els in the resultant ROI. Techniques developing this include ‘growing’ the ROI,
where an algorithm will step radially out from a chosen voxel, including voxels
in the ROI until either a volume criteria is reached or an appropriate boundary is
hit [60]. Adaptive methods, alongside AI-based segmentation, are generally suc-
cessful, although there are concerns that more complex methodologies are less
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effective on simpler geometries [61].

2.7.2 Intensity Discretisation
Another stage before full feature extraction is intensity discretisation. The discre-
tised image is only used for texture matrix computation, and not for lower-order
image features (such as mean, standard deviation). The discretisation into ‘gray
levels’ requires the choice of using a fixed bin size (FBS) or a fixed bin number
(FBN). There is no consensus as to which is the more appropriate method for dis-
cretisation, and this is a subject that prompts discussion on a study-specific basis.
The choices involving discretisation in this work are discussed in Section 2.7.4.
There is a consensus that standardisation and harmonisation is required, and as
such further studies are required assessing and validating different discretisation
protocols to determine best approaches across the field [62].

2.7.3 Image Features

Uptake & SUV

A PET image is typically presented with voxel units of activity concentration,
usually in kBqml−1. This can cause a problem in clinical comparisons as the
activity given to any patient is subject to factors including the size and weight of
the patient, as well as the investigation being performed. As a result, images are
conventionally converted into units of the standardised uptake value, or SUV. The
SUV in any voxel i is the ratio

SUV (i) =
C(i)
Ctot

, (2.13)

of the activity concentration C divided by the total initial injected activity, Ctot .
This is often approximated by

SUV (i) =
C(i)

Atot/W
(2.14)
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where Atot is the total decay-corrected injected activity, and W is the patient’s
body mass in kg. The comparable timescales of the half-lives of PET isotopes
(110 minutes for 18F, or 68 minutes for 68Ga) are of the order of the typical
duration of a scan, necessitating this decay correction. The time point used is
typically halfway through the scan duration.

These values are voxel-specific. However, studies usually investigate the up-
take of a whole organ, tissue or other ROI; these values are more useful for com-
paring values in intra- and inter-scan studies. There are many ways that the uptake
of an ROI can be quantified:

• SUVmax: the maximum of the SUV voxel values within the ROI;

• SUVmean: the mean of the SUV voxel values;

• SUV x%
mean: the mean of the SUV voxel values that are above a x% threshold

(in literature typically x = 40 or 50) of the maximum SUV value;

• SUVpeak: a noise-corrected maximum SUV value, usually found by estab-
lishing the maximum of a fitted curve to the intensity distribution or finding
the average SUV value in a small volume (e.g. 1 cm3 proposed by Wahl
[63]) around the voxel with the largest SUV value;

• qPET: the average of the highest-SUV voxel in the ROI & its 3 highest-
SUV adjacent neighbours, divided by the average SUV value of some back-
ground reference. In clinical practice the liver is used as the reference [64];

• TGV: total glycolytic volume. This is a metric specific to FDG imag-
ing, supposedly quantifying glucose metabolism. It is equivalent to the
SUVmean multiplied by the volume, for an ROI delineating cancerous tis-
sue.

Shape

Shape metrics, in this study, can be thought of as having a dual purpose. First
and foremost, many have been used in their own right as biomarkers, diagnostic
and prognostic indicators. Features extracted include descriptors of volume and
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surface area, but also the sphericity, axis lengths and more complex shape param-
eters. The shape and size of tumours give clinically relevant information, and this
is described briefly in the following sections.

Volume & Surface Area

One of the biggest, and most intuitive, predictors of a tumour’s response to treat-
ment is the tumour’s reduction in volume. Metabolic tumour volume, the volume
of a lesion as it appears on a PET scan, is cited in many studies, but the method of
quantification is variable. The simplest method involves counting the voxels that
may be delineated as lesion material. This results in the complication of volume
measures with the delineation problems highlighted in Section 2.7.1. Not only
the significant effects mentioned previously such as PVEs and image noise, but
also image viewing parameters such as the provided contrast could result in inde-
pendent manual delineations covering significantly different volumes. Differing
methods of delineation have been shown to lead to poor repeatability of lesion
volume measures between studies [65].

Sphericity

Sphericity, Ψ , is a shape metric defined by a ratio of a body’s surface area and
the surface area of a sphere with the same volume as the body, expressed by

Ψ =
As

Ab
=

3
√

36πV 2
b

Ab
, (2.15)

where As is the surface area of the volume-equivalent sphere, and Vb and Ab are
the volume and surface area of the body respectively [66]. There have been links
drawn between the sphericity value of a tumour and the response to treatment;
more irregular shapes could be a result of cell type variation or angiogenesis12,
and consequently may make the tumours more complicated to treat [67]. Hatt et
al. (2018) demonstrated how the prognoses of a patient cohort could be stratified

12One of Hanahan & Weinberg’s hallmarks, angiogenesis is the process whereby tumours may
form their own blood vessels in order to enhance their growth to the detriment of surrounding
tissue [33].
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by the sphericity Ψ of their tumours from PET images [68].

Heterogeneity & Texture Matrices

The noteworthy aspect to radiomics is the implementation of textural analysis
using a set of derived matrices known as texture matrices. However, textural
analysis can be thought of as an extension of measuring heterogeneity of image
voxel intensity in an ROI. At a basic level, areas of an image may be described as
locally homogeneous if the pixel values are the same or similar. Texture matrices
then develop this definition by determining the relationships between neighbour-
ing voxels, as well as describing the runs and clustering behaviour of similarly-
valued voxels.

The reasons for the clinical interest in measuring the heterogeneity of an ROI
in a PET image are manyfold. Variations in glucose uptake across a tumour may
be indicative of necrosis, or fragmentation of the tumour’s main body. While
many studies have found that heterogeneity in PET images are reliable predictors
of prognosis or outcome, there is still limited knowledge from the biophysical
perspective as to why this is the case [69].

Heterogeneity itself is, however, a relatively vague concept that can have dif-
ferent manifestations of quantification. Any metric that defines the variation of
pixel values across an ROI could appropriately be described as a measure of het-
erogeneity; the statistical variance, or standard deviation, or even the range of
pixel values, for instance, all have validity. However, spatial information is lost
when considering these first-order metrics. Higher-order metrics can be used to
retain some of the information about relative position of pixel intensities. Ra-
diomics libraries typically contain many features which can appropriately define
heterogeneity. From its beginnings in CT and MRI, there is a growing interest in
the applications of radiomics to molecular imaging [15, 22, 17, 70].

There are doubts over the validity of heterogeneity measurements in PET im-
ages. The comparatively large voxel sizes (of the order of a few cubic millime-
tres) by far outscale the cellular-level changes in heterogeneity that may be of
clinical importance [71]. This is complicated by the fact that PET images are
inherently noisy even after some degree of correction is applied [22]; in addition,
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post-reconstruction blurring filters that are applied to PET images may artificially
remove some element of inherent heterogeneity in efforts to remedy the problem
of noise elsewhere in the image. As such, few heterogeneity metrics have been
found to be reproducible across studies, and studies into which of these may be
reproducible have found dissonant results [72, 73, 74, 75]. Heterogeneity also
has a complicated relationship to the with the ROI’s shape and size. A definitive
value of heterogeneity may be difficult to obtain, as a large ROI with a small vari-
ation of pixel intensities may have an equal heterogeneity value to a small ROI
with a much larger variation of pixel intensities. According to Brooks, any given
heterogeneity metric is not a valid quantification measure without prior attention
given to the size and shape of the body being measured [71]. Indeed, in Brooks
& Grigsby (2013), the heterogeneity metrics were believed to have been con-
founded by lower-order shape and volume metrics, and were as such not found
to differentiate a patient cohort by prognosis [76]. Indeed, studies such as Hatt et
al. (2011) show that tumour volume and length alone, when used in tandem with
SUV measurements, can be used as prognostic factors for survival [77].

The effect of shape on heterogeneity metrics has also been investigated; for
instance, O’Sullivan et al. (2005) were able to determine tumour progression
from metrics combining information about the 2D tumour boundary with mea-
sured heterogeneity [78]. Brooks & Grigsby (2014) determined an estimate of
a minimum comparison volume of 45 cm3 for regions for which heterogeneity
analysis may become valid [79]; many other studies only ignored lesions of sizes
below 10 cm3 [15].

This is not to say that the measurement of heterogeneity changes on this larger
scale may not still be of some import. Tixier et al. (2011) used changes in
co-occurrence matrices (as described later) to successfully distinguish between
partial- and non-responders to chemotherapy in their patient cohort [80] In both
shape-aware and shape-unaware comparisons, Brooks & Grigsby (2013) found
that higher-order heterogeneity metrics enabled a mathematical ranking of a pa-
tient cohort by the heterogeneity of their tumours that matches rankings by ex-
perts in oncology and image analysis [81]. De Heer et al. (2018) used hetero-
geneity metrics to determine which patients were benefiting from treatment in a
study of a melanoma patient cohort [82]. Success in studies such as these has
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resulted in the continued pace of research in this area; the works mentioned here
are only early examples of successes in a burgeoning field. It is apparent though
that heterogeneity measurement in PET imaging is lacking a level of standardis-
ation [83]. There is encouraging progress in the use of heterogeneity in PET, but
discrepancy between studies in the features found to be useful, and the methods
with which these features are collected, result in disagreeing conclusions as to
the value of heterogeneity.

The features that can quantify heterogeneity have here been divided into 6
separate groups for purposes of explanation: the first-order voxel intensity pa-
rameters, cumulative intensity-volume histogram parameters, size-zone matrix
features, co-occurrence-type matrix features, run-length matrix features, and de-
pendence matrix features. It is important to state that not every radiomics pack-
age uses all of these features and matrices, but all of the features described
apart from the cumulative intensity-volume histogram parameters are included
in pyradiomics. This makes pyradiomics perhaps the most comprehensive pack-
age available, motivating its use in this work. The mathematical derivations of
all features can be found in the pyradiomics documentation [55], and all texture
features are listed in Table 2.2.

A) Intensity Parameters

These metrics are extracted from the undiscretised image. Such values include:

• Standard deviation of values;

• Coefficient of variation (CV), equal to the standard deviation divided by
the mean;

• Range / interquartile range of values;

• Skewness of values.

These first-order features are included in every radiomics software, however are
not analysed in this work.
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B) Cumulative Intensity-Volume Histogram Parameters

This is a histogram with bins corresponding to intensity values, counting the num-
ber of voxels with intensity equal to or higher than the bin values. It is within
reason that the heterogeneity of an ROI will be characteristic to the shape of
this histogram. Studies using this method have taken normalised metrics from
the area under the curves of these histograms [84], and while these metrics have
shown positive test-retest repeatability in the few studies undertaken so far, there
is little literature surrounding errors and uncertainties on these parameters [85].
Features from these histograms are not included in many radiomics software, and
are not explored in this work.

C) Size-Zone Matrix Features

Each image, visualised as a 3D matrix of voxel values, can be expressed as a size-
zone matrix. The original matrix can be said to consist of ‘zones’ of identically-
valued intensities. In this new matrix, the rows i correspond to the zonal intensity
value, and the columns j correspond to the number of voxels in the zone [86].
For example, a 2D representative matrix

M =


1 2 2 2
1 4 4 3
2 2 3 3
1 1 3 4

 (2.16)

would become

M′GLSZM(i, j) =


0 2 0 0
0 1 1 0
0 0 0 1
1 1 0 0

 (2.17)

under this transformation. As with the other texture matrices, there are a series
of features that describe this matrix. For example, the High Gray Level Zone

Emphasis would have a higher value if there were more zones with high gray
levels than if there were more zones with low gray levels.

59



D) Co-occurrence-Type Matrix Features

Two matrices defined in radiomics software have been grouped together here:
the gray level co-occurrence matrix (GLCM) and the neighbourhood gray-tone
difference matrix (NGTDM). While they ostensibly show different values and
properties, they are no doubt closely related - one shows the likelihood that a
neighbouring voxel will have the same voxel intensity, while the latter shows
the difference in intensities between adjacent voxels. There is no explicit size-
dependence to the matrix definition, hence these textural matrices are grouped
apart from the size-zone matrix for this study.

The co-occurrence matrix of an image, sometimes called the Haralick matrix,
is a square matrix that determines the frequency of instances of neighbouring
voxel values. For instance, the matrix M from Equation 2.16 becomes

M′GLCM(i, j|δ = 1,θ = 0) =


1 1 1 1
1 6 1 0
1 1 2 2
1 0 2 2

 . (2.18)

Here, the number of times that an intensity value i appears at a separation of δ

voxels from a voxel of value j at an angle of θ to the horizontal is counted in
each element of the matrix. The total co-occurrence matrix is normalised over all
possible values of (δ ,θ) [87].

Another matrix can be defined that quantifies differences in adjacent voxel
values - the neighbouring gray-tone difference matrix, or NGTDM [88]. For
voxel gray levels i located at Mx,y,z, the weighted sum of the average surrounding
voxels,

si =
ni

∑ |i−Ai| (2.19)

where

Ai =
1

W

[
+δ

∑
a=−δ

+δ

∑
b=−δ

+δ

∑
c=−δ

Mx+a,y+b,z+c

]
(2.20)

is calculated. Here, W refers to the number of voxels in the ‘neighbourhood’
(extent of δ ), and ni the number of occurrences of gray level i.

Table 2.1 shows the NGTDM values for the matrix M from Equation 2.16,
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i ni pi si

1 4 0.25 4.400
2 5 0.3125 2.975
3 4 0.25 1.000
4 3 0.1875 4.250

Table 2.1: Deriving the NGTDM features si for the matrix M.

using a neighbourhood extent δ = 1. The values seem logical when analysing M;
the lowest si corresponds to a gray tone of 3, and in M the elements containing
3 are surrounded by elements of a similar value. As with the size-zone matrix,
these matrices must be derived using gray level, or gray tone, integer values.

E) Run Length Matrix Features

A fourth matrix described in radiomics software is the gray level run length ma-
trix, or GLRLM. These runs are given by the number of consecutive pixels ( j)
with the same value i along the angle θ ; the value of M′(i, j|θ) representing the
number of such runs. The matrix M from Equation 2.16, looking only at runs
across the horizontal (θ = 0) becomes

M′GLRLM(i, j|θ = 0) =


1 1 0 0
0 1 1 0
2 1 0 0
1 1 0 0

 . (2.21)

F) Dependence Matrix Features

One voxel i is dependent on its neighbour j if |i− j| ≤ α , with α a predetermined
threshold level. The dependence matrix has a value at (i, j) equal to the number of
occurrences where a gray level i has j dependent surrounding voxels at a distance
of δ away. The matrix M from Equation 2.16, applying the thresholds of α = 0
and δ = 1, becomes
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M′GLDM(i, j|α = 0,δ = 1) =


0 4 0
0 4 1
0 2 2
1 2 0

 . (2.22)

There are 75 listed textural features in pyradiomics; 24 GLCM features, 16
GLRLM and GLSZM features, 15 GLDM features, and 5 NGTDM features.
These sit alongside 19 first order features and 26 shape features (both 2D and
3D) to provide 120 total. The texture features will form the focus of this work,
and these are listed in Table 2.2.

2.7.4 IBSI Recommendations
Many different software have been developed to perform radiomics analyses. The
lack of standardisation and harmonisation of algorithm implementation between
these software packages is the subject of several active studies [89, 90]. The
Imaging Biomarker Standardisation Initiative is a collaboration that was created
to address this issue. As well as establishing agreed methods of feature deriva-
tion, the IBSI also suggests guidelines and nomenclature for reporting results of
radiomics-based analyses [91]. Software that is intended for use in radiomics-
based studies must declare its IBSI compliance. pyradiomics is IBSI compliant,
and was selected for this work for its flexibility and ease of implementation for
large datasets. The version of pyradiomics used in this work was v3.0.1, which
was the most recent update at time of writing.

All data extraction performed for this thesis was compliant to the IBSI guide-
lines for independent radiomics studies. As a consequence, in this work:

• all images were converted into units of SUV;

• all extractions used a fixed bin number of 64 (FBN:64);

• default settings for pyradiomics were otherwise used.

FBN was chosen over FBS due to the comparison in this study between ROIs of
differing size and shape, and therefore direct comparison of feature values could
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be enabled [91]. In selecting the choice of bin number, work from previous stud-
ies was consulted; evidence showed that the bin numbers outside the limits of
FBN:32 [92] and FBN:64 [15, 93] provide little informational advantage, or ease
of computation. In addition to these considerations, various methods of discreti-
sation were evaluated for an early experimental run that resulted in this selection.
A summary of the findings from this testing can be found in Appendix I.
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GLCM NGTDM GLRLM GLSZM GLDM

Autocorrelation Coarseness Short Run Emphasis Small Area Emphasis
Small Dependence

Emphasis

Joint Average Contrast Long Run Emphasis Large Area Emphasis
Large Dependence

Emphasis

Cluster Prominence Busyness
Gray Level

Non-Uniformity
Gray Level

Non-Uniformity
Gray Level

Non-Uniformity

Cluster Shade Complexity
Gray Level

Non-Uniformity
Normalised

Gray Level
Non-Uniformity

Normalised

Cluster Tendency Strength
Run Length

Non-Uniformity
Size-Zone

Non-Uniformity
Dependence

Non-Uniformity

Contrast
Run Length

Non-Uniformity
Normalised

Size-Zone
Non-Uniformity

Normalised

Dependence
Non-Uniformity

Normalised
Correlation Run Percentage Zone Percentage

Difference Average Gray Level Variance Gray Level Variance Gray Level Variance
Difference Entropy Run Variance Zone Variance Dependence Variance
Difference Variance Run Entropy Zone Entropy Dependence Entropy

Joint Energy
Low Gray Level Run

Emphasis
Low Gray Level Zone

Emphasis
Low Gray Level

Emphasis

Joint Entropy
High Gray Level Run

Emphasis
High Gray Level
Zone Emphasis

High Gray Level
Emphasis

Informational
Measure of

Correlation 1 (IMC1)

Short Run Low Gray
Level Emphasis

Small Area Low Gray
Level Emphasis

Small Dependence
Low Gray Level

Emphasis
Informational
Measure of

Correlation 2 (IMC2)

Short Run High Gray
Level Emphasis

Small Area High
Gray Level Emphasis

Small Dependence
High Gray Level

Emphasis

Inverse Difference
Moment (IDM)

Long Run Low Gray
Level Emphasis

Large Area Low Gray
Level Emphasis

Large Dependence
Low Gray Level

Emphasis

Maximal Correlation
Coefficient (MCC)

Long Run High Gray
Level Emphasis

Large Area High
Gray Level Emphasis

Large Dependence
High Gray Level

Emphasis
Inverse Difference

Moment Normalised
(IDMN)

Inverse Difference
Inverse Difference

Normalised
Inverse Variance

Maximum Probability
Sum Average
Sum Entropy

Sum of Squares

Table 2.2: A list of the 75 textural features included in pyradiomics [55].
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Chapter 3

Motivation & Methodology

The motivation for the work presented in this thesis is discussed in this chapter.
The chapter begins by explaining what is meant by robustness, and details how it
could be established. The experimental methodology underpinning the main data
collection is then given in detail.

3.1 The Three Rs
A conflict of interest exists between producing clearer images and establishing
accurate activity concentration uncertainties on a per-voxel basis. The sources of
noise in a PET acquisition are numerous and confounding; correction methods
for scatter, randoms, attenuation, partial volume effects, dead time, and post-
reconstruction filtering all aim to give a more accurate representation of the un-
derlying activity distribution, but consequently producing a picture of the voxel
uncertainty becomes ever more complex.

There is a further lack of uncertainty provision in radiomics software. In
addition to the reasons mentioned above, this is also due to the segmentation, dis-
cretisation and texture matrix manipulation applied to the images before features
are calculated. Analytical uncertainty generation for features is not feasible. It
also remains to be determined whether radiomics features could be reliably used
to represent an accurate picture of an unknown activity distribution. For clinical
medical imaging, this is problematic.
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Examination of the reproducibility, robustness, and repeatability of these ra-
diomics features, particularly those derived from texture matrices, becomes vital
for harmonisation and standardisation of their use in future studies. These terms
can be defined by

• Reproducibility: whether a feature maintains its value when the experi-
ment is performed on a separate experimental setup;

• (Test-Retest) Repeatability: whether a feature is consistent when mea-
sured under the same conditions;

• Robustness: whether a feature’s value is unaffected by perturbations in the
experimental conditions.

A radiomics feature can be said to be reproducible, repeatable and robust if
the value of the feature is dependent only on the underlying activity distribu-
tion. Determining this invariance is, however, fraught with difficulty when us-
ing clinical PET data. For instance, testing reproducibility in a meaningful way
requires multi-centre studies on rigorously defined subjects, if not the same sub-
ject. Firstly, the ethics of repeatedly dosing the same patient with high levels
of radioisotopes should be raised. Testing different patients requires accounting
for differences in size and shape of the patient, and the size, shape and location
of their tumour(s) - all of which we know affect the calculation of our texture
features.

In order to determine whether the metrics themselves are truly reproducible,
repeatable and robust, we need to determine their invariance on subjects where
we do have prior knowledge of the underlying activity duration. This forms the
motivation for this project. Two key methods are used to generate ground truth
activity distributions: phantom scans, and Monte Carlo simulation. Using these
two methods, we can perform multiple repeat acquisitions without ethical reper-
cussions, and push the boundaries of the conditions that could be possible in a
patient scan.

Three previous studies of robustness in radiomics features are cited as val-
idation for performing this study [21, 94, 95]. In [21], GLCM features were
examined for their robustness to exposure, defined there as the product of activity
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concentration and frame duration, on a 125 cm3 ROI in the centre of a 68Ge-
filled cylindrical phantom. It was found that the features generally showed poor
robustness, although some degree of dependence on exposure was evident. The
paper concludes that it may be possible to correct GLCM values to the levels
of a ‘plateau’ obtained where exposure remains approximately constant [21]. In
[94], radiomics features were tested for robustness to system, resolution and seg-
mentation method by using custom-produced phantoms, consisting of a series of
small heterogeneous cylinders placed inside the NEMA Image Quality phantom
(see Chapter 4). The study concludes that only four features (and only one tex-
ture feature) are robust to all of the above, with mixed results for robustness to
any one of the factors [94]. In [95] repeatability and reproducibility of radiomics
features was examined using 3D-printed anthropomorphic tumour phantoms on
different systems with differing reconstruction parameters and image frame du-
ration. The three phantoms exhibited a degree of heterogeneity with relatively
simple construction. Despite being a relatively comprehensive study, this paper
did not consider the effects of robustness due to activity in the scanner and the
potential noise differences that ensue. All three papers recommend further exam-
ination in this area, and while this work shall complement the work shown, the
novel methodology that was used further examines some aspects of these studies
in more detail. This methodology is explained in the following sections.

3.2 The Noise-Equivalent Count Rate
In 1990, Strother, Casey & Hoffman defined the Noise Equivalent Count Rate,
or NECR, as a metric by which to measure the signal-to-noise features of an
acquisition. The NECR is generalised by

NECR =
T 2

T +S+ x ·R
(3.1)

for the true (T ), scatter (S) and random (R) rates as determined from the raw data
[96]. The factor x by which the random rate should be multiplied is subject to
the method of random rate estimation, but is within the range 1 < x < 2. As
an approximation, x = 1 should be used for random rates estimated from the
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count rate at single detector elements, while x = 2 should be used for random
rates estimated using a delayed time window [96]. The NECR emerges from the
signal-noise ratio of the recorded PET data. As

SNRdata =
T
σT

, (3.2)

and following that T = P−S−R (P denoting ‘prompt’ coincidences, or all mea-
sured coincidences within the set coincidence window before corrections are ap-
plied) with P and R Poisson-distributed and uncorrelated, it can be shown that

SNR2
data =

[
T 2

T +S+ x ·R

]
×∆ t = NECR×∆ t, (3.3)

where ∆ t is the duration of the acquisition [97].
The NECR exhibits a characteristic curve shape when plotted against activity

present in the field of view. NECR increases with count rate, but reaches a peak
value before decreasing as activity increases further. Time resolution constraints
of the scanner are responsible for this effect. The coincidence window, system
time resolution and detector dead time effects result in the continued increase of
random coincidences where true coincidences cannot be resolved13. The scatter
fraction, (S/(S+T )), theoretically does not change as activity is increased. The
curve shape is dependent on the geometry of the activity distribution in the field
of view. In the NEMA NU-2 protocols, a set of standards is laid out for usage
of the NECR as a scanner performance metric. A standardised phantom (a 20
cm diameter and 70 cm length cylinder with an off-centred line source) is recom-
mended for this purpose; this is separate to the NEMA Image Quality phantom
which is used in this work. When the NECR is used in this work it is therefore
not equivalent to the NECR values quoted in scanner performance reviews, but is
more akin to its use in a patient-specific context14.

The relationship between SNRdata and SNRimage is complicated by image re-

13For the Siemens Biograph mCT the coincidence window is 4.1 ns, while the system time
resolution is around 540 ps

14Studies have developed patient-specific noise equivalent counts by adjusting the standard
definition of NECR to include geometric effects of different patients, with the aim of improving
dose measurements to the individual [97, 98].
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construction and data correction methods used. Despite this, image uniformity
metrics have been found to correlate well with NECR for both filtered-back pro-
jection and OSEM, although some evidence to the contrary has been presented
for the latter in certain conditions [99]. To illustrate, Figure 3.1 shows an image’s
percentage integral uniformity,

%IU = 100× Xmax−Xmin

Xmax +Xmin
, (3.4)

for image voxel values X , against the phantom activity. Xmax and Xmin represent
the maximum and minimum voxel value in the ROI. The nadir of this curve occurs
at a comparable activity as the NECR-activity curve peak.

Figure 3.1: The NECR vs. activity curve (black) superimposed by the image’s integral uniformity
vs. activity curve (blue). Figure courtesy of P. Julyan et al., The Christie NHS Foundation Trust.

This work considered whether image heterogeneity metrics correlated with
NECR. The characteristic nature of the NECR’s behaviour could promote a dis-
cussion about the influence of noise on a radiomics texture-based feature’s value
in PET. Successful findings here would supplement work done in assessing ro-
bustness by testing for robustness to different parameters. If the findings are
significant, they could also be used to suggest a framework by which to estimate
uncertainties in these features, a mechanism that is yet to be implemented suc-
cessfully anywhere in the field.
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3.3 Experimental Setup
The experiment that produced Figure 3.1 scanned a phantom of a known initial
activity of 18F over several isotope half lives for a single bed position, separat-
ing into frames to give decreasing nominal phantom activity. Each acquisition
was then reconstructed into an image and the metrics taken from this. A sim-
ilar experimental setup was performed at The Christie NHS Foundation Trust.
The ‘global’ nature of the NECR suggested that an initial experiment should be
performed analysing a uniform cylindrical phantom, a simple geometry spanning
the axial length of the scanner’s FoV. Following completion of this pilot study,
further phantoms were to be investigated to examine the effect of changing ROI
shape and size on the outcome of any discovered correlation. The development
and creation of these phantoms is laid out in Chapter 4.

The scanner used in this work is the Siemens Biograph mCT with TrueV,
a conventional modern clinical PET-CT scanner, located at The Christie NHS
Foundation Trust. Further specifications are listed in Table 3.1.

Properties
Detector element dimension 4 x 4 x 20 mm
Detector elements per block 169 (13 x 13 array)

Blocks per ring 48
Number of element rings 52 (13 x 4 block rings)
Detector ring diameter 842 mm

Transaxial FOV 700 mm
Axial FOV 216 mm

Plane spacing 2 mm
Image planes 109

Coincidence window 4.1 ns
ToF Resolution 540 ps

Energy resolution (FWHM) 12%
Energy window 435 - 650 keV

Table 3.1: Selected key properties of the Biograph mCT scanner. Values taken from the Biograph
mCT Specification Sheet [100].
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Chapter 4

Creating Custom Phantoms

In this chapter, the process of creating a 3D-printed phantom insert will be dis-
cussed. After elaborating on the benefits of phantom scans, the following sections
detail how identifying and segmenting patient geometries can be developed into
a 3D model using 3D design software and fused-deposition modelling printing
techniques. The merits of this printing methodology will be discussed. The chap-
ter will summarise by showing the phantom inserts that were created for this
work, and establishing the details of the scans that took place to provide the data
to be analysed in later chapters.

4.1 Phantom PET Scans
A phantom scan is a powerful tool for nuclear medical imaging, as it can provide
recorded data and images of previously known radioactivity distributions. The
concept of internal medical imaging in the clinic implies a lack of knowledge
about the radioactivity distribution being measured, meaning that improvements
to the imaging equipment and techniques can be done with appropriate use of
phantom scans. Recognisable industry-standard phantoms are vital for harmon-
isable, reproducible work; producing results that could be verified in similar con-
ditions at different sites. Two such phantoms were used in this work; a cylindrical
phantom and the NEMA Image Quality phantom.

The cylindrical phantom was an ideal candidate for a homogeneous volume.
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Figure 4.1: A photograph of the cylindrical phantom.

This was a perspex cylinder, 20 cm in diameter and 20 cm in length with a volume
of 6.3 l, and is pictured in Figure 4.1. The axial FoV of the Siemens Biograph
mCT was spanned by this phantom, and as such the acquisition could be taken in
single bed position mode. This was important for reducing the complexity of the
12 hour experiment.

Figure 4.2: A photograph of the NEMA IQ phantom.

The NEMA Image Quality phantom, henceforth known as the NEMA or
NEMA IQ phantom, is shown in Figure 4.2. It has a more complex geometry,
designed to measure how well different scanner systems are able to acquire and
reconstruct images on progressively smaller objects [101]. It is 20 cm long with a
total volume of around 10 l. Its use as an imaging standard began around 2001, as
more clinically-appropriate phantoms were desired for testing aspects of image
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quality (such as contrast recovery factors, visibility of small lesions etc) in 3D
PET scanners [102]. The phantom consists of a quasi-cylindrical shell designed
to approximate the human torso, with six differently-sized spheres suspended in-
side by filling tubes. The spheres are sized to approximate a range of clinically
relevant volumes. There is an additional optional ‘lung insert’, a perspex cylinder
with polystyrene filling which can be fitted in a slot between the sphere inserts.
A schematic for the phantom can be seen in Figure 4.3.

4.2 3D Printing Custom Phantoms
The standard phantoms detailed previously provide excellent examples of large
homogeneous volumes and small regular geometrical shapes. These examples
are without doubt useful, but having established that complex radiomics metrics
are highly dependent on the shape and volume of the ROI, it is of limited use to
study geometries which are extremely unlikely to manifest in a patient’s scan. In
order to create a more realistic example dataset, it was important to create a set
of custom models which could mimic the size and shapes of tumours seen in real
patient data.

A custom phantom dataset was to be subject to the same experimental con-
ditions as the other two phantoms. A 12 hour scan again required a single bed
position, and so to minimise wastage the NEMA phantom body was repurposed
and a new ‘baseplate’ created. This baseplate, the schematic of which can be
seen in Figure 4.4, featured supports for up to four new inserts. These new tu-
mour inserts were to be 3D printed and adapted to be filled with radioactivity, and
suspended in the NEMA phantom body (also filled with a solution of a known
‘background’ activity).

4.2.1 Isolating Geometry From Patient Data
Anonymised PET image data was obtained for 40 patients through The Christie
NHS Foundation Trust & The PET-CT Academy. Of these, eight had colorectal
tumours, 15 had lung tumours and 17 had oesophagael tumours. This range of
cases was chosen to provide a range of different sizes and shapes of tumour, due
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Figure 4.3: Schematic drawings for the NEMA Image Quality phantom body (left) and spheres
(right) [101]. The dimensions shown are in millimetres.
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Figure 4.4: Schematic of the redesigned NEMA phantom baseplate for custom phantom inserts.
The displayed measurements are in millimetres.

to characteristic differences typically exhibited between each disease type. One
oesophagael case and three lung tumour cases were discarded due to restrictively
small tumour volumes. The remaining 36 patients’ tumour volumes were then
considered as potential candidates for the custom phantom insert geometries.

The geometries were created by isolating relevant tumour material in a patient
PET scan using LifeX. This was achieved by setting a broad spherical ROI around
the region in question and thresholding down to 40 % of the maximum voxel
value. These ROIs were exported as binary ‘mask’ images, which could then be
opened and interpreted as 3D STL surface objects using ImageJ.

Section 2.4 explained that CT images have higher resolutions than PET im-
ages, with a CT voxel sized around 1 × 1 × 3 mm3 compared to 4 × 4 × 3 mm3

the PET voxel. Such a fine resolution for the CT data would appear to promote
its suitability for isolating a patient’s tumour geometry, but there were concerns
over the practicality of producing 3D prints with the high frequency components
that would be obtained by thresholding an ROI from a CT scan. The motivation
for the experiment required, at this stage, objects of comparable volumes and
shapes to tumours which may be obtained in a PET environment, and so any po-
tential loss of resolution was not deemed significant. Consequently, the geometry
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isolation was performed on the patient PET images.

4.2.2 Adapting Regions in 3D Design Software
It was required to manipulate the obtained tumour STLs into a suitable form for
printing, filling and mounting within the phantom. The STLs were modified and
adapted using Blender, an open-source 3D design software [103]. There was no
uniform method which performed equally well for every tumour geometry. In
many cases, prototypes were created, a print attempted and subsequently adapted
after print success or failure.

The tumour inserts were to be attached to the baseplate using M6 threaded
supports and required some mechanism through which to fill them. The surfaces
of the extracted STLs were blocky and angular, and therefore smooth surfaces had
to be created on diametrically opposing sides of the insert. These surfaces were
created using Boolean operations with separately designed ‘platform’ meshes15.
However, FDM printers struggle with printing fine threaded structures. While the
threaded holes themselves were omitted from the final designs, spaces were left
for threaded nylon nuts and spacers to be attached post-print.

It was desired for each of the tumour phantom inserts to be created as one
single printed object. This had advantages for some STL files, such as insert T1
(see Table 4.2), which contain more complex internal geometries. However, for
ease of printing and removing the PVA support structures, the STLs could be split
in two. The two sides of the structure were then joined together post-print. Figure
4.5 shows an example of how this was done, with the left hand side volume being
split across a low-dimensionality boundary to create the right hand side STLs. To
improve the adhesion, a 5 mm lip was extruded from both parts.

15A Boolean operation involves creating new objects based on the intersection or union of two
existing ones. Here, separate objects were created for the tumour and for the filling port, and the
two were joined in the most efficient way to create a stable platform with minimal adverse affect
on the tumour’s initial shape.
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1

(a) Before

2

31

(b) After

Figure 4.5: STL geometry of one lung tumour design viewed in Blender. Left and right show
before and after the geometry is split into two, with filling & support structures added. This
design was used to create phantom insert T3. Annotations: (1) shows the same point in both
STLs for alignment purposes; (2) shows a developed filling platform; (3) shows the extruded lip.

4.2.3 Creating Phantom Inserts with 3D Printers
The method used for 3D printing in this work is fixed filament fabrication (FFF)
or fused deposition modelling (FDM). These two equivalent terms refer to the
process of extruding plastic filament through a high-temperature nozzle, forming
the layers which construct the printed object. The printer used to create the phan-
tom inserts was an Ultimaker S5, pictured in Figure 4.6, a dual extrusion system
with a humidity-controlled cabinet for filament storage.

Due to the extrusion process there are a limited set of plastics which are suit-
able for FDM printing. The most widely used filament material, and the material
used in this work, is polylactic acid, or PLA. Its low print temperature and low
cost relative to the alternatives (listed in Table 4.1) have helped to create its status
as the default material for prototyping 3D printed works. ‘Dual extrusion’ refers
to the printer’s capability to handle two filaments simultaneously16, enabling a
support structure to be constructed along with the main build. PVA is primarily
used as the support structure material for PLA prints; PVA can be extruded at a
similar temperature to PLA and is water soluble, meaning that support structures

16Only one filament is extruded onto the print bed at any one time.

77



Figure 4.6: A photograph of the Ultimaker S5 3D printer used to produce the custom phantom
inserts in this work. The printer comprises of two sections: the material bay underneath housing
the plastic filament reels, and above (with doors open) the printing chamber. Objects are printed
onto the glass bed in the chamber, which is raised and lowered in relation to the nozzles which
are attached to a 2D frame at the top of the chamber.

can be printed quickly and easily alongside the main print and dissolved after the
print is complete.

4.2.4 Finishing the Insert Prints
The nylon threaded nuts and spacers were affixed to the hexagonal spaces left
on the prints using Araldite epoxy adhesive. The same adhesive was also used
to join the two halves of the split geometry designs. The printed PLA structures
were not watertight. To allow for fine detailing in the printing, the wall thick-
ness for the prints was set to 1 mm. The FDM process results in relatively weak
bonds between PLA layers, and the complicated and blocky structure of the in-
sert geometries resulted in weak points where leakages could occur. There was
no wall thickness that would have resulted in watertight prints while preserving
the volume and fine structural details of the tumour insert. Two methods are
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Material Melting Temp.,
◦C

Cost / 750 g Other Properties [104]

PLA (polylactic acid) 145−160 £32.50 Widely available, strong, and
comparatively easily-stored material.
Filament prone to snapping, and has

low heat resistance.
ABS (acrylonitrile
butadiene styrene)

225−245 £37.50 High heat resistance, although results
prone to shrinkage post-print.

Releases harmful fumes during prints.
CPE (co-polyester) > 100 £40.50 Negligible warping and smooth prints,

but material is prone to wear.
Nylon 185−195 £53.50 Tough and flexible material. High

maintenance storage (e.g. airtight, low
humidity) required.

PVA (Polyvinyl
Alcohol)

163 £83.50 Used almost exclusively as a support
material. Dissolves in water at room

temperature.

Table 4.1: A table arguing the advantages and disadvantages of the most common FDM filament
materials. Cost is listed for a 750 g reel produced by Ultimaker available from RS Components
(uk.rs-online.com) as of 27th June 2022. It should be noted that nozzle temperatures for
printing are higher than the melting temperatures listed; for PLA, the nozzle should be set to
∼ 210 ◦C.

commonly used to seal prints; gently melting the layers together with a heat gun,
or coating in an epoxy resin. The resin sealant method was chosen for this ap-
plication due to concerns over the wall size of the PLA being able to maintain
strength and structure without reinforcement. The sealant comprised of bisphe-
nol A epichlorohydrin polymer resin and a 2-ethylhexyl glycidyl ether ‘hardener’
mixed in a 3:1 ratio. This was then painted onto the surface of the print in a thin
even layer in two coats, applied 24 hours apart. Once sealed, a leak test for the
phantom inserts was required. No activity could be allowed to leak out of the
insert, for safety whilst filling and for the purpose of experimental rigour. The
completed and sealed phantom inserts were filled with coloured water and left
for three days (see Figure 4.7). The prints were inverted on the second day; this
was to ensure that the prints could be guaranteed watertight for at least twice the
duration of the desired 12-hour scan series. A phantom insert was deemed ready
if no colour was present on the surrounding paper, otherwise a second coat of
epoxy resin sealant was applied.
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4.2.5 Heterogeneous Phantom Design Principles
One aspect of phantom design that was unable to be completed was in-built het-
erogeneity. One example of how this could be achieved can be found in [95].
The authors achieved this in two ways, by bisecting the 3D design to create two
independent sections, and by creating a ‘necrotic core’ by creating an empty sec-
tion inside the 3D design. The first method could enable filling with two different
concentrations of radioisotope; the two sections would be stuck or nested together
with different filling ports. One ROI would then encapsulate two different base
concentrations. The necrotic core model would enable background activity to
be ‘seen’ within the confines of the ROI, achieving the same effect as the initial
model.

4.3 Phantom Insert Selection
Four phantom inserts were selected for scanning; prefixed with a T label, these
are listed in Table 4.2. In order to provide a variety of shape and size, and with the
NEMA Image Quality phantom forming part of the dataset, tumour geometries
were selected that were larger than the highest-volume NEMA IQ sphere. This
meant selecting from among the largest subset of the extracted data. The four
geometries were derived from lung and oesophageal tumour patients. Figure 4.8
shows two of these inserts (T1 and T3) attached to the custom baseplate.

Figure 4.7: The four selected phantom inserts undergoing leak testing. L-R: T4, T2, T3, T1.
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Figure 4.8: A photograph of T1 and T3 attached to the custom baseplate for the NEMA IQ
phantom, itself pictured to the left.

4.4 Phantom Scanning
The phantoms were filled with 18F in the form of FDG acquired commercially
and diluted on site. The systematic uncertainty17 in true activity measurement
was related to the calibration of the field instruments used, with an upper estimate
at the ±5% level [105]. The activity in each phantom scan is listed in Table 4.3.

Insert Number Insert Volume, ml
T1 229 ± 2
T2 124 ± 2
T3 71 ± 2
T4 41 ± 2

Table 4.2: Volumes of the four selected tumour phantom inserts. Volumes were calculated from
the mass of water used to completely fill the phantom insert without air gaps; such air gaps were
unable to be completely eliminated when filling with radioactivity.

17Random uncertainty of instrument measurements is monitored by daily on-site Quality Con-
trol at The Christie NHS Foundation Trust using a 137Cs source. This is found to be consistently
< 1%.
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Phantom Total Activity, Target Background Activity Conc.
MBq A. Conc., kBq/ml Volume, ml A. Conc., kBq/ml Volume, ml Ratio (BG:T)

Cylinder 612±31 - - 97±5 6280±20 -
NEMA IQ 553±28 336±20 48±7 534±27 9770±20 1:6.15

T1+T3 741±37 141±7 302±4 600±30 9470±20 1:7.34
T2+T4 728±36 61±3 167±4 657±33 9600±20 1:5.33
Only3 339±17 4690±270 72±2 - - -

Table 4.3: Table containing the activity at the start of scan for all phantom arrangements, along
with the activity concentrations and volumes for the target and background regions.

Filled phantoms were centred on the bed of the Siemens Biograph mCT
TrueV using the in-built laser alignment. All patient protocols begin with a
planar X-ray tomograph and a CT image acquisition; this was followed for all
phantoms, in order to centre the phantom in the PET axial FoV and to create
the attenuation maps. Figure 4.9 shows the T2+T4 phantom arrangement on the
scanner bed before undergoing acquisition. The protocol used for the Cylinder
and Tumour Phantom scans consisted of consecutive 5 and 25 minute frames, re-
peated 24 times for 12 hours scan time. A slightly altered protocol was created to
test the NEMA Image Quality phantom. This adjustment was done to sample as
frequently as possible around the peak of the NECR curve. The NEMA IQ pro-
tocol consisted of 24 five minute frames interspersed with 24 gap (’G-’) frames
of variable length. These are listed in Table 4.4.

Gap Frames Frame Duration, minutes
G1-8 5

G9-11 10
G12-16 30

G17 40
G18-24 30

Table 4.4: Table listing the acquisition duration of the G-labelled frames for the NEMA IQ phan-
tom scan series.

The resultant dataset consisted of 32 five minute frames, with the longer
frames differing in duration. This was not explored further in subsequent scans to
preserve the two definitive datasets (‘long’ 25 minute and ‘short’ 5 minute scans).
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Figure 4.9: NEMA Phantom with custom inserts T2 & T4, filled and placed on the scanner bed.

4.5 Image Reconstruction
A clinically appropriate image reconstruction protocol was used to reconstruct
all data used in this analysis. The reconstruction was performed on the scanner’s
associated computer system using the parameters listed in Table 4.5. The termi-
nology and nomenclature used, such as UHD for the full point-spread function
modelling capability, is specific to the Siemens architecture. Example PET and
CT images from the first four phantom scan series can be seen in Figure 4.10.
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(a) A PET (left) and CT (right) image of the cylinder phantom.

(b) A PET (left) and CT (right) image of the NEMA IQ phantom.

(c) A PET (left) and CT (right) image of the T1+T3 phantom setup.

(d) A PET (left) and CT (right) image of the T2+T4 phantom setup.

Figure 4.10: Example PET and CT image slices from the four phantoms used in this work. From
top-bottom: Cylinder, NEMA IQ, T1+T3, T2+T4.

84



Parameter Value
Algorithm OSEM + ToF + PSF (UHD)
Iterations 2
Subsets 21

Matrix Size 256 x 256 x 74
Post-smoothing filter 3D 5 mm Gaussian

Other notes CT-based Bed Removal
No zoom (set to 1)

Table 4.5: Details for the image reconstruction protocol used in this work. The algorithm used is
known as UHD in Siemens nomenclature.

85



Chapter 5

Investigation of Radiomics Features
with NECR

The following chapter details the investigation into the robustness of radiomics
texture features to the global radioactivity level. The opening sections detail how
count rate statistics were extracted from the raw data, along with a discussion
on potential sources of uncertainty and an in-depth look at the reported scatter
fractions. The image statistics are then analysed from the four main datasets in
order; the cylinder, the NEMA IQ phantom, T1+T3 and T2+T418. Correlation
with NECR is considered as a means by which these features can be more appro-
priately quoted for clinical use, and the difference between the two sub-dataset
acquisition times (25 and 5 minutes) is evaluated.

5.1 NECR Measurements

5.1.1 Extracting the Count Data
The images obtained from the scanner are in DICOM format; a medical image
standard whereby the data is exported in a series of files, generally corresponding
with an image slice (usually axial) and containing the pertinent metadata. The

18It should be noted that Only3 is included in Figures 5.3 and 5.5, yet is only introduced in the
following chapter. Its inclusion is for illustrative purposes.

86



header contains all of the image information, each statistic addressable with a tag
of the format (xxxx,xxxx) [106]. These tags are standardised and can be found
here [107]. The scatter fraction, as estimated by the Siemens scanner software
during scatter correction, can be accessed in the DICOM header with the tag
(0054,1323).

The count rate information was not found in the image DICOM headers, but
was listed in the raw data sinogram headers. This information was stored by the
scanner, but had to be restructured using Siemens’ offline image reconstruction
platform, e7 tools. The sinogram header file contained information for the total
number of prompt and random counts collected over the whole frame. Prompts,
in this instance, refers to every collected coincidence, such that

P = T +S+R, (5.1)

where P, T , S and R are the prompt, true, scattered and random coincidences. The
randoms estimate is already given in the sinogram header, calculated using the
delayed window method with the data streams directly from the scanner. Trues
and scatters are not listed in the sinogram headers, and instead these are listed as
all true timing coincidences, ‘net trues’, where

net trues = P−R = T +S. (5.2)

The scatter fraction listed in the DICOM headers, fS, refers to the fraction of the
net trues which are designated as due to scattered coincidences,

S = fS · (P−R). (5.3)

For this work, the quantities T , S and R were divided by the duration of each
frame and used as rates from this point onwards.

The NECR was established using

NECR =
T 2

T +S+2R
, (5.4)

with the method-dependent ‘x’ factor equal to 2 corresponding to the advised
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usage with a delayed window randoms estimation.
The NECR for the cylindrical phantom, plotted against the activity present in

said phantom, is shown in Figure 5.1. The red curve represents a quartic fit to
the data, chosen as the polynomial with the lowest order satisfying a minimum
χ2

ν requirement. The blue dotted line and shaded area correspond to the peak
value, NECRpeak, and the corresponding activity at which this occurs. This value,
and the associated uncertainty, was calculated using 106 iterations of randomly
selected quartic fits generated from the original fit’s covariance matrix.

Figure 5.1: Scatterplot showing the NECR from all cylinder data. The blue dotted line represents
the position of the peak NECR evaluated from quartic fitting with the shaded region representing
the uncertainty. The red shaded region represents uncertainty in NECR given by the reported
scatter fraction. The statistical uncertainty on any given measurement of NECR is negligible.

The count data, separated into trues, randoms and scatters can be found in
Figure 5.2. As expected, the trues and scatters appear to increase approximately
in a linear fashion, while randoms appear to increase quadratically over the same
activity domain. Fundamentally this agrees with what we know of a random coin-
cidence; the randoms rate can be said to be proportional to the single photon rate,
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as each random coincidence requires a single photon from two distinct emissions.
With each emission resulting in 2 photons, and therefore the potential to cause 2
randoms, the randoms can be modelled quadratically with FoV activity.

Figure 5.2: The count statistics for the cylinder data plotted against FoV activity level. Clockwise
from top left: random rate R, true rate T , scatter rate S and the NECR.

The NECR plotted for all phantoms against the equivalent total activity within
that phantom per frame can be found in Figure 5.3. This figure illustrates well
the geometric dependence of the phantom and activity distribution on the NECR;
all three phantoms based on the NEMA IQ phantom (with hot background) share
a very similar NECR peak. Details of the peak NECR for each phantom can be
found in Table 5.1. Example PET images from T1+T3 can be seen in Figure
5.4, one early frame (high activity and high NECR) and one of the last (low
activity, low NECR). The images, which are both SUV-normalised and use the
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Figure 5.3: A scatter plot showing the NECR for all scans performed in this thesis. Only3 is
included here for illustrative purposes but is not explored in depth until Chapter 6. Likewise
uncertainty boundaries as in Figure 5.1 are not shown for illustrative purposes and functional
form differences in reported scatter fraction (see Figure 5.5). Connecting dotted lines are shown
for visual effect.
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same colour scale, show the impact of the lower count statistics on the resultant
visual heterogeneity.

Experiment A(NECRpeak), MBq
Cylinder 334±71

NEMA IQ 319±121
T1+3 337±91
T2+4 318±82

Table 5.1: Table detailing the activity at which peak NECR is reached for the four main phantom
acquisitions.

Figure 5.4: Slices from PET frames 2 (left) and 47 (right) from T1+T3. The images are SUV-
normalised and the colour scale is equivalent in both images, demonstrating the increased visual
heterogeneity due to noise in lower NECR scans.

5.1.2 Uncertainty on NECR, and the Scatter
Fraction

The statistical uncertainty on any given measurement of NECR is negligible.
Consider, for example, the lowest activity cylinder acquisition. The sheer vol-
ume of counts reduces the Poisson-approximated statistical uncertainty (σ ) on
each to the 10−4 level. Examples are detailed in Table 5.2. However, the source
of error in our count information cannot be purely statistical. One consideration
made was that of background radiation. A blank scan with no activity in the FoV,
with a duration of 5 minutes, was taken in the Siemens Biograph mCT TrueV; the

91



Count Type Measured Counts σ Percentage Uncertainty
Prompts 81227490 9013 0.011 %
Randoms 5649236 2377 0.042 %

Trues 54370165 7374 0.014 %
Scatters 21208089 4605 0.022 %

Table 5.2: Statistical uncertainty from the measured counts for the lowest activity (7.03 MBq)
cylinder acquisition. Other information provided: scatter fraction 0.280611, net trues 75578254.
σ is the Poisson square-root uncertainty of the measured counts.

corresponding count statistics are listed in Table 5.3. The background counts are
caused by the presence of 176Lu in the LSO crystals of the detector. The 980±2
prompt coincidences per second of background forms a 1.8 % contribution to
our lowest rate of prompts measured and 0.015 % to the highest rate of prompts
measured in the cylinder dataset.

Prompts 294142
Delayed 291227

Net Trues 2915
Scatter Fraction 0.0466323

Prompt Rate 980.5 cps
Random Rate 970.8 cps

True Rate 9.3 cps
Scatter Rate 0.5 cps

Table 5.3: Count information extracted for a 5 minute blank scan performed on the Siemens
Biograph mCT. Recorded counts are due to radioisotopes of lutetium in the detector crystals.

Equation 5.4 can be simplified to

NECR = (1− fS)
2 (P−R)2

P+R
(5.5)

utilising Equations 5.2 and 5.3. We have assumed negligible uncertainties on P

and R. The scatter fraction, fS, is theoretically a constant value, depending only
on the geometry and physiology of the scan subject, however notable patterns
emerged when the scatter fractions for the five phantom datasets were visualised
across the scans, shown in Figure 5.5.

The first remark is the positive linear gradient tended to by all datasets. It is
known that the scatter estimation algorithm relies on the use of counts detected
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Figure 5.5: The scatter fractions reported by Siemens for all scan data in the experiment. As in
Figure 5.3, Only3 is included for illustrative purposes.
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outside the main ‘body’ of the subject, as determined by the attenuation map (µ-
map). While this is a generally successful estimation technique, it is inevitably
difficult (or impossible) to distinguish scattered and random coincidences outside
the body. As activity in the FoV is increased, and the randoms increase at a faster
rate than scatters, a higher proportion of randoms will be included in the scatter
estimation algorithm. As such, the reported value should be considered as an
‘observed’ scatter fraction, as it is unlikely that the value will be equivalent to the
true proportion of scattered coincidences.

The second remark is the behaviour of the scatter fractions for the cylinder
and T1+T3 phantoms. While at activities & 150MBq the familiar positive linear
trend is observed, at lower activities the fraction appears almost hyperbolic. After
ruling out background counts as a causal factor, the creators of the scatter estima-
tion algorithm were contacted for comment. The most likely theory is that this is
an artifact of the time recording in the scan raw data, but at the time of writing no
satisfactory solution has been found and is still under investigation.

5.2 NECR & Relationship with Texture
Features

The 25 and 5 minute data, while considered simultaneously for NECR analysis,
were to be considered separately; it can be shown that

SNRimage ∝
√

S×A×T (5.6)

where S, A and T denote the scanner sensitivity, activity scanned, and duration of
scan respectively [108].

5.2.1 25 Minute Cylinder Data
The features from the 25 minute cylinder data were each plotted against activity.
For many features, a resemblance to the characteristic NECR-activity curve shape
bore out; either directly or in an inverted fashion. Some examples can be found
in Figure 5.6.
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(a) Difference average, from the GLCM
(b) Informational measure of correlation (2), from the
GLCM

(c) Run length non-uniformity, from the GLRLM (d) Zone percentage, from the GLSZM

Figure 5.6: Four plots of texture features against FoV activity level for the 25 minute cylinder
data. These are selected examples of features that correlate strongly with NECR. Statistics quoted
in the superposed boxes are: CoV, absolute Pearson product moment correlation coefficient with
NECR (PMCC), and the reduced chi-squared statistic χ2

ν for the feature values against NECR and
against activity (‘linear’). The black dotted line and gray shaded area corresponds to the estimated
activity at which the peak of the NECR occurs, and is included as a visual aid. Also included is a
quartic fit to the data, illustrated with a red line, to aid visual comparison to those on the NECR
curves in Figure 5.1.

An initial investigation calculated coefficients of variation (CoV) and reduced
chi-squared statistics (χ2

ν ) for a linear fit; the initial hypothesis proposed that
strong linear and/or constant behaviour over the activity domain would represent
a robust metric. There were, however, some problems to consider for the use of
these values. In this case, the ROI under investigation is large (80416 voxels)
and homogeneous, and we expect to see some degree of variation in the feature
values across the activity domain. It is unclear however if this noise variation
represents a significant change in possible values of the feature when considering
all possible distributions. Secondly, as the scale of the features is different on a
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case-by-case basis (evidenced by comparing Figure 5.6b to Figure 5.6c), a com-
parison using these statistics is difficult to perform without prior normalisation.
In addition the CoV, while a more useful statistic to measure feature variation,
does not account for any functional form of the data.

Pearson product-moment correlation coefficients (PMCCs) were calculated
between each textural feature and the NECR. Only the absolute value of this
statistic was considered; strong correlations in both positive and negative senses
were equally of interest. Many features gave very strong absolute PMCC. A
threshold of |PMCC| ≥ 0.9 was set, and 32 of the 75 features surpassed this
threshold; lowering the threshold to 0.8, 42 of the features pass the threshold.
The distribution of |PMCC| is shown in Figure 5.7. These strongly-correlating
features form a set to investigate further, as their ‘NECR-dependence’ suggests
that they are heavily influenced by data noise. This is not in itself a problem for
their continued use, provided that we can successfully model the NECR.

Figure 5.7: A 1D scatterplot showing the NECR |PMCC| of the 75 texture features for the 25
minute cylinder data. Jitter is applied in the vertical direction to enable all data points to be seen.

The peak NECR, NECRpeak, was estimated from quartic fits to the data, oc-
curing at an activity of 334 ± 71 MBq within the field of view for the cylinder
data. This activity is much higher than a typical level expected at any time within
the FoV for a patient scan; ARSAC advice for 18F-FDG whole body tumour
imaging gives a National Diagnostic Reference Level (NDRL) 4.5 MBq/kg for
a patient, meaning that a 70 kg patient would be injected with only 315 MBq
total19, which is left to decay for a period prior to imaging [8]. This would be

19NDRLs are only guidelines advising safe upper limits, and The Christie NHS Foundation
Trust currently use 3.5 MBq/kg for whole body tumour imaging.
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then imaged over multiple bed positions, while our data is measured from a sin-
gle bed position. It is estimated that, even despite activity contributions partially
outside the FoV of the scanner, it is unlikely that activity over 100 MBq would be
considered typical of a clinical environment. From the NECR behaviour (Figure
5.1) it is deduced that a patient scan is performed with a much lower SNR than
here. By way of accounting for this, ‘compensation’ or ‘correction’ factors were
calculated for the strongest-correlating features. An illustration of this process is
shown in Figure 5.8. These factors would in theory enable a clinician to estimate
the ‘true’ value a feature could be expected to take at the highest possible SNR for
a given activity distribution. Such factors for the ten highest-correlating metrics
can be found in Table 5.4. The uncertainty on the correction factors listed in the
table is on average ±1.9 %.

Figure 5.8: A diagram showing how feature compensation factors could be calculated. The fea-
ture value is targeted to be corrected from A(NECRmax) (blue line) to a reasonable clinical level
(approximated to 100 MBq - red line).

5.2.2 Comparison to 5 Minute Cylinder Data
The 25 minute scans that have been considered are far longer than a typical pa-
tient scan is expected to take. Estimates using the Flow mechanism for continuous
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Feature |PMCC| p-value Compensation Factor,
100 MBq→ A(NECRmax)

IMC2 (GLCM) 0.996 3.3×10−25 1.125±0.019
Correlation (GLCM) 0.994 1.5×10−22 1.168±0.036

Gray Level Non Unif. (GLSZM) 0.991 1.8×10−20 0.656±0.018
IMC1 (GLCM) 0.985 2.2×10−18 1.679±0.086

Dependence Entropy (GLDM) 0.984 6.5×10−18 1.045±0.010
MCC (GLCM) 0.982 1.8×10−17 1.204±0.036

Small Dependence Emphasis (GLDM) 0.964 3.8×10−14 0.683±0.004
Zone Percentage (GLSZM) 0.964 3.8×10−14 0.594±0.008

Run Length Non Uniformity (GLRLM) 0.963 4.7×10−14 0.958±0.005
Inverse Variance (GLCM) 0.963 4.7×10−14 1.216±0.008

Table 5.4: A table showing the ten radiomics features that correlate most with NECR for the 25
minute cylindrical phantom data alongside the respective compensation factors.

bed motion on the Siemens Biograph mCT TrueV give an approximate 3 minute
duration in any single bed position [109]. If the 5 minute cylinder data is more
representative of a clinical setting, it requires equally as rigorous an examination.
It was observed that |PMCC| between NECR and the 75 texture features dropped
significantly on average. Using the same |PMCC| ≥ 0.9 threshold, only 7 fea-
tures are now categorised as strongly NECR-correlated. These features are listed
in Table 5.5 and a distribution similar to Figure 5.7 for the 5 minute data can be
seen in Figure 5.9. The ten highest-correlating features, listed in Table 5.4, show
a mean decrease in |PMCC| of (11.5 ± 6.6) %.

The plots in Figure 5.10 demonstrate the improved correlations as frame du-
ration is increased for two selected features. There is evidence to suggest that,
by increasing the scanning time, it is possible to achieve much better and clearer

Figure 5.9: A 1D scatterplot showing the NECR |PMCC| of the 75 texture features for the 5
minute cylinder data. Jitter is applied in the vertical direction for visual aid.
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Features with NECR |PMCC| ≥ 0.9
(25 Minute Data) |PMCC| (5 Minute Data) |PMCC|

IMC2 (GLCM) 0.9965 IMC2 (GLCM) 0.9485
Correlation (GLCM) 0.9939 Correlation (GLCM) 0.9419

GrayLevelNonUniformity (GLSZM) 0.9905 GrayLevelNonUniformity (GLSZM) 0.9148
IMC1 (GLCM) 0.9853 IMC1 (GLCM) 0.9033

DependenceEntropy (GLDM) 0.9834 DependenceEntropy (GLDM) 0.9209
MCC (GLCM) 0.9822 MCC (GLCM) 0.9370

SmallDependenceEmphasis (GLDM) 0.9640
ZonePercentage (GLSZM) 0.9640

RunLengthNonUniformity (GLRLM) 0.9633
InverseVariance (GLCM) 0.9633

Idm (GLCM) 0.9632
RunLengthNonUniformityNormalized (GLRLM) 0.9631

Id (GLCM) 0.9631
ShortRunEmphasis (GLRLM) 0.9623

RunPercentage (GLRLM) 0.9622
Strength (NGTDM) 0.9620

DependenceNonUniformityNormalized (GLDM) 0.9607
DependenceNonUniformity (GLDM) 0.9607

DependenceVariance (GLDM) 0.9595
LongRunEmphasis (GLRLM) 0.9593

SizeZoneNonUniformity (GLSZM) 0.9587
RunVariance (GLRLM) 0.9579

LargeDependenceEmphasis (GLDM) 0.9573
Coarseness (NGTDM) 0.9553

DifferenceEntropy (GLCM) 0.9545
Idn (GLCM) 0.9538

DifferenceAverage (GLCM) 0.9506
ZoneEntropy (GLSZM) 0.9469 ZoneEntropy (GLSZM) 0.9228

Idmn (GLCM) 0.9249
Contrast (GLCM) 0.9202

GrayLevelVariance (GLSZM) 0.9072
Busyness (NGTDM) 0.9022

Table 5.5: The highest NECR-correlating features for the cylinder dataset, listing all texture fea-
tures with NECR |PMCC| greater than 0.9. Features are listed in descending order for the 25
minute dataset, and aligned on the right hand side for comparison.
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noise modelling for apparently non-robust features by using NECR. However,
this is not a generic solution. If a feature does not correlate well at ‘faster’ im-
age acquisition times, it appears that such NECR correlation cannot be gained by
increasing the frame duration (see Figure 5.11).

(a) Gray Level Non-Uniformity (GLSZM) against NECR

(b) Run Length Non-Uniformity (GLRLM) against NECR

Figure 5.10: Two examples of features with strong NECR correlation. (a) 25 min |PMCC| =
0.9905; 5 min |PMCC|= 0.9148 (b) 25 min |PMCC|= 0.9633; 5 min |PMCC|= 0.7746

Whether each feature appears in a similar population location for NECR
correlation between each dataset is an interesting question. Both datasets have
17 features with |PMCC| ≤ 0.5, but only have seven of these features in com-
mon20. While there are zero features that have |PMCC| ≤ 0.5 in one dataset and

20These are Sum Squares (GLCM), Gray Level Non-Uniformity (GLDM), Gray Level Non-

100



Figure 5.11: Scatterplots showing Cluster Shade (GLCM) against NECR for the cylinder datasets.
25 min |PMCC|= 0.1102; 5 min |PMCC| = 0.1267

Features with Lowest NECR Correlation
(25 Minute Data) |PMCC| (5 Minute Data) |PMCC|

SmallAreaLowGrayLevelEmphasis (GLSZM) 0.3360 ZoneVariance (GLSZM) 0.4546
SumAverage (GLCM) 0.3232 LowGrayLevelZoneEmphasis (GLSZM) 0.4495
JointAverage (GLCM) 0.3232 LongRunLowGrayLevelEmphasis (GLRLM) 0.4257

ShortRunHighGrayLevelEmphasis (GLRLM) 0.2710 MaximumProbability (GLCM) 0.1786
ShortRunLowGrayLevelEmphasis (GLRLM) 0.2241 Contrast (NGTDM) 0.1665
LongRunLowGrayLevelEmphasis (GLRLM) 0.2120 JointEnergy (GLCM) 0.1635

LowGrayLevelRunEmphasis (GLRLM) 0.1358 ClusterShade (GLCM) 0.1267
LowGrayLevelEmphasis (GLDM) 0.1353 LargeDependenceLowGrayLevelEmphasis (GLDM) 0.1238

ClusterShade (GLCM) 0.1102 JointEntropy (GLCM) 0.1215
LowGrayLevelZoneEmphasis (GLSZM) 0.1034 SmallDependenceHighGrayLevelEmphasis (GLDM) 0.0245

Table 5.6: The ten features with the lowest correlation with NECR for 5 and 25 minute data.

|PMCC| ≥ 0.9 in the other, there are three that have |PMCC| ≤ 0.5 in 5 minute
data that have |PMCC| ≥ 0.8 in 25 minute data; these are Large Area Low Gray
Level Emphasis (GLSZM), Large Area Emphasis (GLSZM), and Zone Variance
(GLSZM).

Considering 25 and 5 Minute Data Together

Equation 3.2 states that the square of the SNRdata is equivalent to the product
of the NECR and the duration of acquisition of the image, ∆ t. NECR is used
throughout this study as a proxy for the signal noise ratio, and the subjects of

Uniformity Normalized (GLRLM), Small Area Low Gray Level Emphasis (GLSZM), Long Run
Low Gray Level Emphasis (GLRLM), Cluster Shade (GLCM) and Low Gray Level Zone Em-
phasis (GLSZM).
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the study are measures of heterogeneity that are affected by noise. By analysing
feature changes with respect to SNR2

data, the datasets could be combined.

Figure 5.12: The GLRLM Run Length Non-Uniformity (left) and the Maximal Correlation Co-
efficient (MCC, right) plotted against the square of the SNRdata for all cylinder images.

Figure 5.12 shows two examples of features plotted against SNR2
data. Both

features correlated strongly with NECR when the differing scan duration image
subsets were considered separately. By combining the image datasets, any found
correlations would be more reliable due to the greater number of data points. The
behaviour of the two chosen features show contrasting outcomes in attempting
this comparison. The Run Length Non-Uniformity plot suggests strong linear
behaviour across the combined dataset, which is supported by a strong |PMCC| of
0.9342. This behaviour is also seen when the two subsets are separately analysed,
as seen in Figure 5.10b. The behaviour of the MCC, however, suggests that the
comparison across all images might not work for all features. The two sets appear
drawn from different distributions, and certainly do not achieve acceptable inter-
set linearity.

Figure 5.13 shows how the variance of voxel values in the ROI for the cylinder
images changes with SNR2

data. The variance, a first order measurement, shows a
continuous function common to both 5 and 25 minute datasets. There is hence
evidence that, when performing the image reconstruction on the 5 and 25 minute
dataset, there is a decoupling of the SNRdata from the higher-order texture matrix
features. There are many potential sources of this, such as the potentially variant
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Figure 5.13: The variance of voxel values plotted against the square of the SNRdata for all cylinder
images.

efficiency of running the scatter estimation algorithms on a dataset with lower
numbers of counts. This is an important discovery for this work, and motivates
analysing image datasets with differing acquisition durations separately. Further
work should seek to investigate whether changing image reconstruction protocols
could preserve the feature-SNRdata trend continuity between the 5 and 25 minute
datasets.

5.2.3 NEMA IQ Phantom Data
The NEMA IQ phantom data was planned in order to maximise sampling over
NECRpeak. While this provided many more images at a single duration (31 in-
stances of a 5 minute duration acquisition), this protocol did not provide the two
well-defined and comparable image subsets as seen in the other acquisitions. The
32 five minute frames were taken as a comparable set to the 5 minute cylinder
data. The standard image reconstruction protocol, listed in Table 4.5, was fol-
lowed. The ROIs for the six spheres were established using a spherical mask
created with the known volume for each.

Figure 5.14 shows the |PMCC| against NECR for the ten features listed in
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Figure 5.14: One-dimensional scatterplots showing the correlations for the six NEMA spheres,
considering only the ten highest correlating features from the 25 minute cylinder dataset as listed
in Table 5.4, labelled above.
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Sphere (Diameter)
Mean Drop in NECR-|PMCC|

for Features of Interest
Raw |PMCC| Percentage

1 (37 mm) −0.73±0.12 −84±12 %
2 (28 mm) −0.62±0.16 −72±19 %
3 (22 mm) −0.74±0.15 −86±15 %
4 (17 mm) −0.47±0.08 −54±10 %
5 (13 mm) −0.73±0.13 −84± 9 %
6 (10 mm) −0.72±0.16 −82±15 %

Table 5.7: Drop in NECR correlation from the 5 minute cylinder data for the six NEMA spheres
for the 5 minute acquisitions, averaged over the ten features listed in Table 5.4.

Table 5.4 for each of the six spheres. There is a notable decrease for all features,
with none of the ten surpassing |PMCC|= 0.6 for any of the spheres. There is no
apparent dependence on ROI volume for the drop in feature-NECR correlations.
This information can be summarised by examining how the feature-NECR corre-
lations for the ten features detailed in Table 5.4 drop for the spheres, and can be
found in Table 5.7.

5.2.4 Custom Tumour Phantoms
The custom tumour phantom scans were performed with the same protocol as the
initial cylinder data. Images were reconstructed similarly and ROIs determined
using known volumes for the two ‘T’ inserts, with an additional background ROI
determined using a cylinder with a 428 ml volume.

T1+T3

Figure 5.15 shows the NECR |PMCC| for every textural feature for the two de-
fined ‘tumour’ ROIs in the T1+T3 phantom scan. The NECR correlations were
expected to be poor for the localised regions; instead, features show generally
strong correlations with global NECR for both 25 and 5 minute data. While for
T3 the general trend in correlation strength decreases when decreasing frame du-
ration, the same cannot be said for T1, where the 5 minute data show features
generally show a more obvious correlation.
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(a) T1 feature NECR correlations for 25 and 5 minute data.

(b) T3 feature NECR correlations for 25 and 5 minute data.

Figure 5.15: Feature-NECR correlations shown for all datasets in T1+T3 scan. Strong correlation
criterion of |PMCC|= 0.9 shown as dotted grey line.
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T2+T4

Figure 5.16 shows the equivalent to Figure 5.15 for the second custom phantom
scan, using T2+T4. The results for the T2+T4 scan are more varied; the dis-
tribution of feature correlation strength is wider, and generally located at lower
correlation coefficient values. Curiously, as in T1, the correlation coefficients are
generally higher in the 5 minute data than the 25 minute data. Table 5.8 shows
the number of texture features that fit the definition of strong correlation used in
the cylinder data; there are many in the T1+T3 scan series data, and few in the
T2+T4 scan series data.

Number of Features with |PMCC| ≥ 0.9
Region Volume 25 Minute Data 5 Minute Data

T1 229 ± 2 ml 14 46
T3 71 ± 2 ml 27 15
T2 124 ± 2 ml 0 2
T4 41 ± 2 ml 0 0

Table 5.8: Table listing number of strongly NECR-correlated texture features for each dataset

Backgrounds

Similar plots are shown for the background ROIs for T1+T3 and T2+T4 scans
in Figure 5.17. Interestingly, although these ROIs are more similar in shape and
volume to the initial cylinder data, the general texture feature NECR correlations
are much worse, with no features surpassing a |PMCC| of 0.7 for either dataset.

Initial observations of the two scan series (with six ROI datasets each with
two frame duration subsets) promote several questions.

1. Are the same features the strongest-correlating with NECR across all datasets?

2. Are the same features the weakest-correlating with NECR across all datasets?

3. Is there a link between feature correlation with NECR and the volume of
the phantom insert used?

4. Why do the background ROIs exhibit weaker NECR correlation in texture
feature values than the inserts and the cylinder datasets?

107



(a) T2 feature NECR correlations for 25 and 5 minute data.

(b) T4 feature NECR correlations for 25 and 5 minute data.

Figure 5.16: Feature-NECR correlations shown for all datasets in T2+T4 scan. Strong correlation
criterion of |PMCC|= 0.9 shown as dotted grey line.
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(a) Background of T1+T3 feature NECR correlations for 25 and 5 minute data.

(b) Background of T2+T4 feature NECR correlations for 25 and 5 minute data.

Figure 5.17: Feature-NECR correlations shown for background regions in T1+T3 and T2+T4
scans. Strong correlation criterion of |PMCC|= 0.9 shown as dotted grey line.
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The first two questions can be addressed in tandem. The list of features for each
ROI can be thought of as a ranked list, rated by their correlation with NECR.
If the same features occur in similar locations in these ranked lists for all ROIs
across all datasets, then it could be possible to begin to define a group of fea-
tures that are more suitable for NECR-led correction. The intraclass correlation

coefficient was derived and computed with pingouin, a statistical Python pack-
age, using the features as ‘targets’, the ROIs (for the cylinder and all ‘T’ scans,
separated into 25 and 5 minute data to give 14 total) as ‘raters’ and the NECR
|PMCC| as the ‘rating’ [110]. The ICC3K statistical test was used; here, the
statistic (in the domain [0,1]) is closer to 1 if the average ratings of a fixed set
of k raters are reliable. Such a test, with a corresponding high value, will indi-
cate whether the ratings are reliable, and whether features are consistently highly
NECR-correlated or weakly NECR-correlated across every dataset. The value
obtained is ICC(3,k) = 0.77740, with p ∼ 0 and a 95 % confidence interval of
[0.70,0.84]. The results show that there is evidence that features are similarly
ranked for each ROI, although it is unlikely that any features maintain the same
ranking. Further post-hoc analysis must be done to establish which features con-
sistently appear poorly-correlated, which features appear strongly-correlated, and
which features (if any) are correlated strongly or weakly depending on the dataset
and scan.

Figure 5.18: Each feature’s |PMCC| plotted for each ROI in each dataset, illustrating the spread
of correlations across all collected data.

When comparing the individual rankings, no features appear commonly in the
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top and bottom twenty for all ROIs. Even when discounting the background ROIs
for the ‘T’ scans, only one feature appears in the top twenty for the remaining
ROIs (GLCM IMC1), and one commonly for the bottom twenty (GLSZM Small
Area Low Gray Level Emphasis). Figure 5.19 shows the rank averages across

Figure 5.19: The average rank for all features when ranked by NECR correlation strength, aver-
aged over the 14 ROIs.

all 14 datasets, with the top and bottom twenty features highlighted. Consistently
highly-correlating features include the IMC1 and IMC2 from the GLCM, the Low
Dependence High Gray Level Emphasis from the GLDM and the Long Run High
Gray Level Emphasis from the GLRLM. Features with consistently weak correla-
tion include the Low Gray Level Emphasis from the GLDM, the Low Gray Level
Run Emphasis, Short Run Low Gray Level Emphasis and Long Run Low Gray
Level Emphasis from the GLRLM, and the Low Gray Level Zone Emphasis and
Small Area Low Gray Level Emphasis from the GLSZM. The spread of feature
ranks is, however, localised around the mid-range of the rankings. It should be
noted that this does not mean that features that are mid-ranking are consistently
uncorrelated with NECR; we observe (in Figure 5.18) that the rankings are often
skewed towards high correlation, meaning that even mid-ranked features display
strong correlations in some datasets.

Features are calculated on discretised ‘homogeneous’ objects. When dis-
cretising the images SUVmin and SUVmax are used as the range with a fixed bin
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number. It is known that SUVmax is an unstable measure for test-retest repeata-
bility [111]. The range boundaries are therefore sensitive to image noise, and
the bulk of image intensities are likely to lie in the mid-range for homogeneous
ROIs. The weakest-correlating features, those consistently low-ranking in the
feature NECR-correlations as in Figure 5.19, are low gray level-based features.
For ground-truth homogeneous objects, it is expected that the high and low gray
level emphasis features are likely to be unstable due to the low statistics in the
fringe intensity bins. If the NECR is a useful proxy for SNR in the data, it stands
to reason that the approximation works better in regions with a greater proportion
of the useful signal; it is not that the features are unaffected by the level of image
noise, only that the effects of this increased data noise are not as easily remedied.

Figure 5.18 demonstrates that the link between volume and general texture
feature NECR correlation is weak, although the circumstances surrounding each
ROI in particular should be taken into account. Firstly, the background regions
are larger than any of the tumour ROIs, yet exhibit consistently weak NECR
correlations. Part of the reason behind this is in the very fact that these are back-
ground regions, with fewer counts and hence a lower signal component. There
appears to be no general trends in ROI volume for feature correlation, however
it is notable that correlations are consistently weaker for ROIs smaller than T4
(volume 41 cm3). While no definitive conclusions can be made owing to the
small number of geometries under investigation, it is noteworthy that this is com-
parable to the 45 cm3 volume at which Brooks & Grigsby’s paper suggests that
GLCM-based features may no longer predict accurate measures [15, 79].

5.2.5 Discussion
The experiment began by examining images of a cylinder, filled uniformly with
18F and utilising a region of interest spanning the entire object. A ‘ground truth’
image of such an object would be completely homogeneous, but noise is imposed
onto the resultant image due to counting statistics. What we measure, in theory,
when we observe the texture of our cylinder image, is the texture provided solely
by noise. While it is not uncommon for image artifacts to manifest due to activity
diffusion patterns in phantoms, steps were taken to ensure full mixing of the 18F
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and water prior to imaging; the possibility of diffusion artifacts can be eliminated.
Such high correlations with the NECR for many texture features can be seen

as an indication of poor robustness. However, should we be able to correct for the
imaging conditions (in this case, initial activity) then there is no reason why the
measured value of such a feature should be considered unreliable. NECR forms
a useful metric which can approximate the noise that we see in our image, and
hence an appropriate platform to begin such a discussion.

We cannot discuss measures of correlation without discussing the associated
p-values at the same time. The p-value can be considered as the probability of
finding the value of the |PMCC| should the two variables in reality be completely
uncorrelated. It is observed in Table 5.4 that the highest-correlating features have
p-values calculated so small that they are virtually zero. These raw values are
not particularly useful due to the small size of the dataset and the omission of
uncertainties - which we are trying to establish in the first place. It is however
important to consider the associated p-values when lower |PMCC| is measured.
Figure 5.20 demonstrates that as lower |PMCC| is measured, it becomes more
probable that the feature is uncorrelated to the NECR; an unremarkable statement,
but it is noteworthy that for a p-value around 0.5 (indicating weak correlation) it
is unlikely that such a value would be measured without any relationship between
the feature and NECR.

We have observed that many radiomics texture features are affected by noise,
with large volume, long time acquisition phantom scans exhibiting many texture
features that correlate strongly with NECR. This appears to confirm our prior as-
sumption that image noise does affect measured feature values, while promoting
optimism that well-modelled noise can enable compensation of these features
from noisy but attainable conditions to those which are more optimal (higher
SNR). We know that the correlations between features and NECR (specifically
the NECR) become more confused when considering local ROIs within a hot
background (the NEMA IQ spheres and the custom tumour phantom inserts).
However we have been limiting ourselves to considering only the NECR as our
noise metric, which is de facto a global measure. If we were to establish some
way of quantifying the noise on a local level, correlation with this metric could
enable correction of a texture feature from any given ROI. This shall be explored
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Figure 5.20: A scatter plot showing the associated p-values for measured |PMCC| between the
75 texture features and NECR in the 5 and 25 minute cylinder datasets.

in the next chapter.

5.2.6 Assessing Robustness using Kruskal-Wallis
In this phantom data, we have determined that we cannot eliminate the possi-
bility that NECR (or an NECR-like local metric) can be used to predict how the
value of a radiomics texture feature may change with increasing base activity lev-
els. However, what is unclear is that on a case-by-case basis whether this change
would lead to a mischaracterisation by some potential future classifier. It is im-
portant to state that the textural profile of a ROI will be defined by many features
in combination as opposed to relying heavily on single values21. To simplify
the problem, we need to determine whether the change that an increase in image
noise may impose on a feature’s value is enough to confuse it with the value said
feature may take on a completely different ROI. Figures 5.21 and 5.22 illustrate
the spread of values for the three highest and lowest correlating features for the
thirteen ROIs in the dataset.

A statistical test is required to determine whether the samples for each ra-

21Many machine learning classifiers assign ‘importances’ (or weights) to each feature included
in the input data, and so strictly the importance of reliably quoting the value of some features may
be greater than others depending on the model used.
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Figure 5.21: Three features which are consistently highly NECR-correlated, plotted for the
5 minute datasets for all ROIs included in this work.

diomics feature measurement could possibly be drawn from the same distribu-
tion, despite the different ROIs on which they are measured and the spread of
measured values, which are suspected to be caused by changes in NECR. If the
radiomics statistics are truly robust, they should be independent of the activity
present in the FoV, but if the values can be corrected then the feature is still use-
ful. We shall treat our ROIs as categorical data; while the ROI volume could be
interpreted as an ordinal, the varying shapes of the ROIs and prior knowledge of
how ROI shape affects statistics imply that many covariates would need to be con-
sidered. Treating the data as categorical samples from each ROI would broaden
the statistical test. The starting point considered was an ANOVA (analysis of
variance) test, designed to determine whether the means of groups within a pop-
ulation can be significantly distinguishable. However, there is an underlying as-
sumption in ANOVA that variance in a group can be assumed to be normally
distributed, which measurements in our groups cannot be said to be drawn from.
A variation of ANOVA, the Kruskal-Wallis test, is non-parametric, meaning that
no assumptions need to be made on the underlying distribution from which the
data is drawn. The hypotheses should be set up thus:

• null hypothesis, the median across all groups is equal;

• alternate hypothesis, the medians from each group are not equal.

The Kruskal-Wallis test calculates the H statistic by ranking all data and com-
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Figure 5.22: Similar to Figure 5.21, three features which are consistently weakly NECR-
correlated, plotted for the 5 minute datasets for all ROIs included in this work.

puting H such that

H =
12

n(n+1)

C

∑
j=1

R2
j

n j
−3(n+1) (5.7)

where n is the total number of measurements, C the number of groups, n j the
number of measurements in the group j and R j the average rank of the measure-
ments in group j. The statistic is then compared to the χ2 statistic for C− 1
degrees of freedom; if H > χ2 then the null hypothesis is rejected [112]. The
Python package pingouin was used to carry out Kruskal-Wallis tests for each of
the 75 features. Listed in Tables 5.9 and 5.10 are the outputs of the Kruskal-
Wallis test for the top ten and bottom ten features that correlated best with NECR
for the cylinder dataset.

In all cases, there are 12 degrees of freedom due to the 13 ROIs used. The
χ2 value at the 0.001 significance level is 32.91 [113]. This value indicates that
if H is greater than 32.91, there is a 0.1% probability that the data is drawn from
the same distribution. For all radiomics features tested over the 13 ROIs, the null
hypothesis can be rejected, as all H values comfortably exceed this value. It can
be concluded that there is evidence to suggest that despite the spread of values
for each texture feature, the ROI groups are distinguishable.

There are some stipulations to the results of this test, however. The assump-
tions made when setting up the test demand independent observations; that is,
each measurement taken in any particular group is not dependent on any other
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Degrees of Kruskal-Wallis Two-Tailed Feature MatrixFreedom H Statistic p-value
12 336.87 0.0000 IMC2 GLCM
12 335.60 0.0000 Correlation GLCM
12 347.93 0.0000 Gray Level Non-Uniformity GLSZM
12 344.72 0.0000 IMC1 GLCM
12 340.51 0.0000 Dependence Entropy GLDM
12 339.25 0.0000 MCC GLCM
12 331.94 0.0000 Small Dependence Emphasis GLDM
12 334.83 0.0000 Zone Percentage GLSZM
12 349.79 0.0000 Run Length Non-Uniformity GLRLM
12 322.69 0.0000 Inverse Variance GLCM

Table 5.9: Results of the Kruskal-Wallis test for an example set of suspected highly NECR-
correlating features. The features chosen are the features from Table 5.4.

Degrees of Kruskal-Wallis Two-Tailed Feature MatrixFreedom H Statistic p-value
12 307.77 0.0000 Small Area Low Gray Level Emphasis GLSZM
12 315.25 0.0000 Sum Average GLCM
12 315.25 0.0000 Joint Average GLCM
12 296.04 0.0000 Short Run High Gray Level Emphasis GLRLM
12 333.96 0.0000 Short Run Low Gray Level Emphasis GLRLM
12 335.64 0.0000 Long Run Low Gray Level Emphasis GLRLM
12 334.52 0.0000 Low Gray Level Run Emphasis GLRLM
12 334.91 0.0000 Low Gray Level Emphasis GLDM
12 328.03 0.0000 Cluster Shade GLCM
12 319.60 0.0000 Low Gray Level Zone Emphasis GLSZM

Table 5.10: Results of the Kruskal-Wallis test for an example set of suspected highly NECR-
correlating features. The features chosen are the ten lowest-correlating in the cylinder 25 minute
data, listed in Table 5.6.

measurement, and that there are no repeated measurements. The validity of this
assumption can be questioned by the proposal that the value of the texture feature
can be said to be dependent on the NECR. It can easily be argued that each mea-
surement for each ROI is independent, as the each measurement is taken with a
different level of starting radioactivity. The underlying ground truth distribution
is unchanging, but the changing activity means that no measurements are strictly
repeated. The Kruskal-Wallis test is also ambiguous, as it does not give any in-
dication as to which groups can be distinguished from each other and in which
direction. For the sake of this test, we are aware that the texture feature values are
highly dependent on shape and volume, and these factors have been encapsulated
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into our categorical variable.
This test provides evidence that despite the lack of robustness for each ROI,

it could be possible to distinguish ROIs by the feature values for all texture fea-
tures. This is unlikely to be the case when further heterogeneous distributions
of different sizes are included however, and such tests should be repeated us-
ing many more sizes, shapes and heterogeneity of activity distribution for further
verification.

The use of heterogeneous phantoms, of which the possible designs are out-
lined in Section 4.2.5, would enable benchmarking of these feature values. An
identical method to that used in this work would be used, except a dual-section
design phantom would be filled with differing pre-determined activity concentra-
tion. This creates a new ground truth unseen in this work, with the discretisation
taking place over a wider range of SUV and small inter-voxel perturbations of
image noise taking lower significance. One expects the sizes of the zones and the
runs in the GLSZM and GLRLM for a heterogeneous phantoms to be more varied
than those found in the homogeneous versions presented so far. This experiment
could be repeated with differing ratios of activity concentration between sections
to provide new benchmarks. This extra data, provided potential feature-NECR
correlation, would give a similar Kruskal-Wallis test enough diversity to draw
significant conclusions.

5.3 Conclusions
This phantom study sought to determine the robustness of texture features to ac-
tivity in the field of view. It can be suggested that the fact that many features
correlate strongly with NECR demonstrates a lack of robustness, yet the strong
possibility of correcting feature values by making use of this correlation pro-
motes optimism that lacking classical ‘robustness’ need not impact their future
use, and enable uncertainty estimation for these compliant features. For features
that exhibit weak NECR correlation, the converse, that therefore these features
are robust, cannot be said to be true from this data. Drawing a consensus is dif-
ficult for two reasons. The significantly different orders of magnitude in which
these feature values lie make establishing definitive criteria (such as limits in CoV
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(a) GLRLM Low Gray Level Run Emphasis

(b) GLSZM Small Area High Gray Level Emphasis

Figure 5.23: Examples of poorly-correlating texture features for the 25 minute cylinder data,
along with example of the poor resultant quartic fitting (red line). |PMCC| against NECR is
shown as ‘PMCC’ on the figures.

119



or reduced-χ2 for linear behaviour with activity) for robustness invalid. This is
demonstrated to some extent by the plots for two features in the 25 minute cylin-
der data, shown in Figure 5.23. Secondly, the manifold of geometries on which
these tests are being done lacks variation beyond homogeneous (albeit with noise)
objects. The Kruskal-Wallis test above determined to some satisfaction that the
values between the geometries tested so far can be significantly clustered, but
these are all nominally homogeneous objects. To more rigorously determine this
second point, a much more developed and diverse set of activity distributions is
required.

The NECR has been used until this point for pragmatism, as it is an eas-
ily calculable metric with a clear and easily explainable parallel to data signal
noise ratio. Despite the strong analogy between image and data noise for analyt-
ical reconstruction such as FBP, previous work has shown that NECR is a weak
predictor for image noise in modern iterative reconstruction [99]. The strong cor-
relations displayed in the work demonstrate that the use of such a metric can be
useful, as the ratio may still be indicative of the amount of correction performed
on the data. The strong correlations motivated investigation into new definitions
of noise metrics. The NECR in its current guise is not sacrosanct to defining the
noise in the data, and it could be possible to define measures of noise more ap-
propriate to localised regions, incorporating knowledge of global activity effects
such as the dead time and randoms effects that cause the characteristic NECR
curve. The work done into defining this new tumour-specific noise equivalent

count rate is explored in the next chapter.

5.4 Summary
This chapter has demonstrated that there is some evidence of NECR correla-
tion in radiomics texture features. This correlation is seen in large volume ROIs
and long-duration acquisition frame data, but is not observed in all features. In
examples of successful correlation, a method is proposed to enable correction
of feature values from noisy low-activity clinical levels to the value expected at
peak NECR. Assessing general robustness is difficult due to the lack of variety in
the ground truth heterogeneity of the included phantoms. There is evidence that
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Low Gray Level Emphasis features across GLDM, GLRLM and GLSZM matri-
ces exhibit poor robustness, but this is complicated by the homogeneity of the
phantoms used. The size of the regions appears to affect the NECR correlation,
with smaller objects showing poor NECR correlation, yet this is complicated by
the diminished feasibility of using texture analysis on small objects. The NECR
correlation is encouraging despite the diminished effectiveness of using NECR as
a proxy for SNR in the UHD reconstruction method, motivating the development
of new tumour specific quantifications of local noise to better assess the effect of
noise on feature values.
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Chapter 6

Investigation of Tumour-Specific
Noise Equivalent Counts

The modelling to this point has considered a measure of noise which applies on
a global level. When comparing this metric to global texture for long duration
acquisitions, even features that are not classically ‘robust’ can be compensated
for. However, we know that our assumptions break down when considering small
regions within the overall image, and that NECR is a weak proxy for image SNR
when iterative reconstruction is used. Here we investigate whether a new metric
measuring ‘local noise’ could be established. Correlations between this metric
and a feature could enable a new model for correcting features for clinical data.
It should be desirable for this noise measure to be easily implementable by a
clinician or research scientist using easily accessible information.

(a) Frame 16 of T1+T3 (L-R, T3 and T1) (b) Frame 16 of Only3

Figure 6.1: Slices from PET images of T1+T3 and Only3 in coronal view22.
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Figure 6.2: GLCM IMC1 for region T3 in both T1+T3 and Only3 scans plotted against the activity
in the T3 region. 5 and 25 minute data are plotted separately.

Two scans were performed using the same phantom-insert setup. Using the
T1+T3 phantom setup but filling only T3 with activity23 a further 12 hour scan
series was taken. Example PET images of these two configurations can be seen
in Figure 6.1. Figure 6.2 shows one feature (the GLCM IMC1) for T3 across
both scans, labelled T1+T3 and Only3, considering only the activity contained in
insert T3. For 25 minute Only3 scan data there is evidence of NECR correlation
for IMC1, with |PMCC| = 0.7281 (falling to 0.6540 when considering 5 minute
data). Evidence of this NECR correlation may be obscured on the figure shown
due to choice of y-axis display, however the figure also demonstrates a weakness
with using NECR correlation to determine a feature’s robustness. Compared to
the values from T1+T3, the Only3 IMC1 measurements appear more consistent,
as any noise level correlation has a much smaller percentage effect on the value
it takes. Whether this indeed makes the feature more robust depends again on the

22The coronal view corresponds to slicing the image as if going from the tip of the nose to the
back of the head (y-axis by convention). Figure 5.4 shows examples of images sliced transaxially
along the z-axis.

23This new scan can be described as a ‘hot’ insert on a ‘cold’ background.

123



possible values that the feature may take.
The relative consistency of the Only3 feature values could be attributed to

image reconstruction convergence. When using iterative reconstruction algo-
rithms, images often converge after a number of updates, showing little apprecia-
ble change to the image as further updates are used. Should an excessive number
of algorithm updates be used, the noise in the image will become amplified. It is
therefore important in practice to use an appropriate number of updates to achieve
acceptable convergence without unnecessarily emphasising the noise. The appro-
priate number of updates depends on the algorithm used, as some point-spread
function modelling procedures can severely reduce the effect of noise amplifi-
cation due to excessive updates. It also depends on the patient or subject being
scanned. The feature values from T1+T3 are taken from images where a similar
total activity is distributed over a larger volume than the Only3 equivalent. It is
known that the OSEM algorithm converges faster for regions of high ‘uptake’
[38]. It could hence be argued that, as the two image sets are reconstructed us-
ing identical algorithms with identical numbers of OSEM updates, that the Only3

images reach convergence faster and thus may exhibit more consistent values of
noise-affected features across the set. This argument is dependent on whether it
can be accepted that 42 OSEM updates (2 iterations of 21 subsets) is sufficient to
reach acceptable convergence for the T1+T3 image set. As these settings are rec-
ommended by the manufacturer, further work is required to determine the point
of acceptable convergence. This would be achieved by reconstructing the same
two datasets with a larger variety of protocols, and performing other scans with
the other isolated phantoms T1, T2, and T4.

It can be assumed that the ground truth distribution for activity within T3 is
equivalent between the two experiments24. Consequently the difference between
the values of IMC1 in T1+T3 and Only3 can be attributed to noise contributions
from activity outside T3 itself in the T1+T3 scan. In obtaining texture features,
it should remain the goal to obtain as ‘true’ a value as possible, and evidence
suggests that feature values become more reliable (or, at least, more robust with
activity levels) when observing the hot region in isolation. Here we investigate the

24The ROIs for T3 had to be redefined between scans due to misalignment, but the exact
process was replicated for ROI definition and the resultant ROIs contained an equivalent number
of voxels.
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possibility of obtaining a measure of ‘local’ noise, such that texture feature values
could be corrected to more robust and desirable levels. Such a measure could be
used to improve the use of texture features when looking at small ROIs, such as
those used in oncology PET, where radiomics work seeks to make the biggest
impact. One area of research of particular concern is Total Body PET and longer
axial FoV scanners (see Section 8.3), where much higher-activity volumes such as
the brain and bladder will be in the FoV at the same time as the lesion, introducing
further sources of noise. The ideal measure can be thought of as a ‘tumour-
specific’ noise-equivalent count rate, and shall be referred to as such henceforth.
While this is a novel methodology, there is precedent in previous work which
determined to establish a patient-specific NECR for dose optimisation [97].

As such, the whole image NECR is a weak indicator of lesion noise. The
metric itself has great value due to its resemblance to a traditional definition of
signal-noise ratio and, as seen in the previous chapter, exhibits strong correla-
tions to some image heterogeneity measures. Nonetheless, its direct equivalence
to noise as seen in an image is tenuous unless image reconstruction is done an-
alytically and without corrections. In correcting the collected data, performing
image reconstruction and post-hoc smoothing and/or adjustment, noise is not re-
moved from an image but the level of noise will no longer relate as strongly to
the ratio of false coincidences that are deduced by the scanner.

We require a measure of the level of noise within a local ROI, yet this will
be affected in no small part by the activity present globally. A successful attempt
should seek to match the values for T3 between T1+T3 and Only3 scans. The
following sections describe methods employed to define the metric, beginning
with the most naïve assumptions and adding complexity step by step. The models
are evaluated and discussed in the final section of the chapter.

6.1 Scaled Method
The initial naïve attempt adapted the current definition of NECR (seen in Equa-
tion 5.4) to express the three terms T , S and R in terms of the activity local to the

125



insert, such that
Tinsert =

Ainsert

Atot
×Ttot, (6.1)

Sinsert =
Ainsert

Atot
×Stot. (6.2)

and

Rinsert =
A2

insert

A2
tot
×Rtot, (6.3)

This approach was labelled the Scaled Method. The values of this ‘new NECR’
will therefore be unchanged from standard NECR for the Only3 scan. The values
of this new Scaled NECR for Only3 and T3 from T1+T3 can be seen in Figure 6.3.

Figure 6.3: A plot comparing NECR from Only3 against Scaled NECR from T1+T3. The y axis
compares units of the two metrics in kilo-counts per second (kcps).

In Strother & Casey (1990) it is laid out that our standard NECR takes the
form

NECR =
T 2

T +S+ x ·R
, (6.4)

where x is defined such that 1< x < 2 as a randoms estimation method-dependent
constant [96]. Using a delayed window method, NECR is quoted as standard with
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x≈ 2. For the new method, due to the ambiguity of the approach, the assumptions
on the value x should hold were relaxed. The definition of NECR is a pragmatic
one, with factors of x = 2 and x = 1 used for delayed window and singles-based
randoms estimation due to the perceived effect this would have on the number of
random counts returned (as discussed in Section 2.5.2). By considering further
fractional apportionment of the random counts on a tumour-specific level, it was
decided to loosen these assumptions and observe the effects of changing the x

parameter. As such, the new method was ‘x-agnostic’, and the new Scaled NECR
calculated for all x where x ∈ {1.0,1.1,1.2 . . . 1.9,2.0}. Figure 6.3 shows the
x-agnostic calculation of the Scaled NECR for Only3 and for T3 from T1+T3.

6.2 Developing Spatially-Aware Methods
Consideration must be paid to whether spatially-dependent considerations should
be given to R, S and T . For the true coincidences T , the argument is less convinc-
ing. By definition a true coincidence requires the line of response to be triggered
regardless of location and matter present; the naive model therefore fits this well.
The arguments behind spatially modelling S are more complex. One approach
could be to determine the likelihood of particular LORs being triggered in rela-
tion to the underlying attenuation map, using CT scans or µ-maps already avail-
able from the PET-CT scan. The complexity, however, originates from where
the LORs from scattered coincidences appear in relation to where the scattering
happens. The formula for Compton scattering,

Eγ ′ =
Eγ

1+
(

Eγ

mec2

)
(1+ cos(θ))

, (6.5)

relates the photon energy pre- and post-scattering event (Eγ ,Eγ ′) to the angle of
scatter θ . The energy window of the Biograph mCT is set at 435− 650 keV,
and part of the reason the window is set as such is to reduce the proportion of
scattered counts that are accepted. Despite this, using the lower bound of the
energy window, any scatter up to an angle of ∼ 146◦ would still be considered
legitimate. This does, albeit by a small proportion, reduce the pool of potential
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LORs that could be triggered by scattered coincidences, preventing illumination
of LORs between closely neighbouring detector elements. The resultant distribu-
tion of scatter in projection space will result in characteristic ‘tails’ of triggered
LORs outside the scanned object - alluded to in Section 2.5.1 - which is used to
construct the whole scatter distribution. By masking this distribution in projec-
tion space using the ROI sinogram as before, it should be possible to determine
the amount of scatter noise within the ROI.

In practice this information was problematic to obtain. It was, however, pos-
sible to reconstruct images without scatter correction, using sinograms taken only
after randoms subtraction. Reconstructing the image with exactly the same proto-
col but with scatter correction disabled, and then subtracting the scatter-corrected
image from this, provided a ‘map’ of the origins of scattered counts; or, more pre-
cisely, the counts classified by the scatter correction algorithm as likely to be due
to scatter. This scatter subtraction image was then radon-transformed and masked
with the sinogram of the T3 ROI. This process is illustrated in Figure 6.4 as it was
performed for the first 25 minute frame of T1+T3. Using the relative sums over
the matrices, it was shown that∼ 11% of the total counts determined to be scatter
triggered LORs intersecting the ROI of T3. By comparison, the fraction of activ-
ity AT3/Atot was calculated to be ∼ 4.5 %, indicating that the Scaled and initial
Spatially Aware models possibly underestimate the level of scatter noise.

The fraction of scatter estimated from this image-based scatter estimation
method was incorporated into the the Scaled method, and the x-agnostic version
of this new metric, labelled Spatially Aware is plotted in Figure 6.5.

6.3 Model Evaluation
The success of Tumour Specific NECR models depends on the ability of the
model to obtain the values of radiomics features as they would appear in an iso-
lated version of the ROI. This aim is complicated by a requirement to extrapolate
beyond the data obtained. It is proposed that, should a feature correlate well with
the Tumour Specific NECR and exhibit a peak or plateau as observed in those
curves, the correction could be performed on this feature value. Consequently
it was important to establish whether feature correlations are improved by using

128



Figure 6.4: Figures showing the method of local scatter estimation. Top left: the scatter subtrac-
tion image. Top right: the sinogram of the scatter subtraction image. Bottom left: a mask of the
T3 ROI sinogram. Bottom right: the product of the mask sinogram and the scatter subtraction
sinogram.
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Figure 6.5: A plot comparing the adapted spatially aware method, correcting R and S, against
Only3 NECR.

the Tumour Specific NECR over the global NECR. |PMCC| was calculated for
all texture features against the three models proposed in the previous sections;
Scaled, and Sp. Aware (with sinogram-based S adjustment). The data used was
the T3 ROI from the 25 minute acquisitions of T1+T3. The results for features
with prior weak NECR correlations are shown in Table 6.1.

For the 14 features included in this subset, 9 show improved |PMCC| us-
ing the developed models when compared to general NECR. The spatially aware
models showed better correlations than the naive scaled models for 9 of the 14
features, justifying the decisions made in this work. The features selected were
those which previously correlated weakly with NECR, showing promise that us-
ing image-based methods could help improve models for localising PET noise.
The models do not significantly improve texture |PMCC| over 0.5. These are still
generally poor correlation strengths, and associated p-values indicate that there
is still a likelihood of no correlation.

The models generally do not improve correlations for previously strongly-
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Feature Absolute PMCC for 25 minute data Do Models Show
Global NECR Scaled Sp. Aware Improvement?

JointEnergy (GLCM) 0.48 0.28 0.26 No
RunLengthNonUniformity (GLRLM) 0.42 0.26 0.25 No

IDM (GLCM) 0.37 0.48 0.48 Yes
SmallDependenceLowGrayLevelEmphasis (GLDM) 0.37 0.50 0.51 Yes

ShortRunLowGrayLevelEmphasis (GLRLM) 0.32 0.46 0.47 Yes
LowGrayLevelRunEmphasis (GLRLM) 0.32 0.46 0.47 Yes

LowGrayLevelEmphasis (GLDM) 0.30 0.45 0.46 Yes
LongRunLowGrayLevelEmphasis (GLRLM) 0.30 0.45 0.46 Yes

ShortRunEmphasis (GLRLM) 0.30 0.15 0.13 No
LargeAreaLowGrayLevelEmphasis (GLSZM) 0.28 0.12 0.10 No
SmallAreaLowGrayLevelEmphasis (GLSZM) 0.28 0.42 0.43 Yes

LowGrayLevelZoneEmphasis (GLSZM) 0.26 0.40 0.41 Yes
RunLengthNonUniformityNormalized (GLRLM) 0.21 0.05 0.04 No

LargeDependenceLowGrayLevelEmphasis (GLDM) 0.01 0.17 0.18 Yes

Table 6.1: Table showing the correlation of texture features to Tumour-Specific NECR models.
Features chosen are the features with global NECR |PMCC| ≤ 0.5.

correlating features. Only 12 features out of 75 exhibit enhanced correlations
using these models. The three not listed in Table 6.1 are listed in Table 6.2. These
three features show potential benefits of using these local image-based techniques
on even previously strongly-correlating features.

Feature Absolute PMCC for 25 minute data Best Model
Global NECR Scaled Sp. Aware

Correlation (GLCM) 0.72 0.90 0.91 Sp. Aware
InverseVariance (GLCM) 0.74 0.78 0.77 Scaled

MCC (GLCM) 0.75 0.85 0.85 Sp. Aware

Table 6.2: Table showing the correlation of texture features to Tumour-Specific NECR models
for three high-performing examples of successful model implementation.

Figure 6.6 shows three example texture features plotted against global NECR
and the Sp. Aware model of tumour specific NECR. The figure shows the bene-
fits of enhanced linearity (GLCM Correlation) and diminished linearity (GLDM
Small Dependence High Gray Level Emphasis) when using the tumour specific
model. However, the GLDM Small Dependence Low Gray Level Emphasis is
an example of a feature where ‘enhanced correlation’ with a tumour specific
model of NECR may be disadvantageous. The feature exhibits arguably robust
behaviour with increasing NECR, with a value that could be said to be constant
at 0.006± 0.002. Applying tumour specific modelling may draw out false cor-
relations to already-robust features, which not only may be redundant but also
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misleading. There is a percentage uncertainty of 31 % in the value of the GLDM
Small Dependence Low Gray Level Emphasis, and conclusions on the feature’s
robustness can only truly be made when using more heterogeneous activity distri-
butions as part of the examination. In the homogeneous phantoms, it is expected
for the low and high gray levels to be sparsely populated, and the low statistics
may lead to discrepancies in the results of extracted feature values.

6.4 Conclusion
This chapter has detailed how models could be used to estimate localised noise in
PET images. There is evidence to suggest that these models could improve cor-
relation with texture features in comparison to regular global NECR. The model
definitions are simple and could be easily incorporated into future image analy-
sis with little additional information needed. However, the models developed to
this point are not sufficiently sophisticated to improve poorly-correlating features
to a level at which correction could be achievable. This is for two competing
reasons. Fundamentally these local models do not account for the effects of ac-
tivity in the entire FoV, which are inextricable from the noise experienced locally.
More complex and considered models are required in order to attribute the level
of noise into more localised regions. These models not only need to consider the
fractional components of T , R and S but also the effect on each of those rates
due to the environment in which they are scanned, doubtless incorporating some
manner of detector dead time modelling. In addition, if a feature exhibits poor
robustness with activity, with randomly-distributed values, it is unlikely that any
manifestation of a tumour-specific NECR could lead to value correction. It is
important to state that poor values of |PMCC| in this work are not necessarily
indications of poor robustness to activity level, but rather an indication that their
robustness is difficult to define without further examples of heterogeneous dis-
tributions included in the study. Nonetheless, this work has formed foundations
that could be built on with further modelling; the evaluation is yet to investigate
whether value correction using this method is achievable or reliable, as this would
require many more scans of isolated tumour models. Further work should aim to
repeat studies such as this on a wider phantom set.

132



Further development of a localised NECR is likely to become more necessary
with the advent of Total Body PET and long axial FoV scanners. With more ac-
tivity in the scanner from sources such as the brain or bladder, it is more likely
for ROIs to be affected by noise caused by activity in these regions. For more on
the effects that Total Body PET may have on this work, refer to Section 8.3. Fur-
thermore, as future AI-based image reconstruction and denoising becomes more
widely used, the separation between SNRdata and SNRimage will only become
more significant.
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(a) GLCM Correlation: LHS |PMCC|= 0.7153; RHS |PMCC|= 0.9113

(b) GLDM Small Dependence High Gray Level Emphasis: LHS |PMCC|= 0.8895; RHS |PMCC|= 0.7925

(c) GLDM Small Dependence Low Gray Level Emphasis: LHS |PMCC|= 0.3653; RHS |PMCC|= 0.5079

Figure 6.6: Scatterplots demonstrating the differences in modelling three radiomics texture fea-
tures against global NECR and the adjusted NECR using the Sp. Aware model.
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Chapter 7

A Monte Carlo Simulation
Approach

There are many advantages of supplementing experimental data with simulated
data. The definition of an object in simulation software provides an exactitude
that is not trivial even with physical phantoms. The extra data is of a benefit es-
pecially where scanning time is at a premium – at The Christie, the scanner can
only be used for research when not in clinical use. Furthermore, and most notably
when simulating to mimic a patient scan, the ethical concerns regarding repeated
scanning or unnecessary scanning of human subjects do not apply to the simula-
tions. Simulation is widely used in medical imaging in both research and clinical
fields. Any new detector technology must first be rigorously modelled before be-
ginning the highly expensive process of development, while in the clinic there is
already widespread adoption of simulation techniques for scatter correction and
radiation dose modelling.

This chapter details work undertaken in establishing and validating PET sim-
ulations of the Siemens Biograph mCT TrueV, henceforth referred to as the mCT.
This is followed by a simulation validation study, demonstrating difficulties as-
sociated with reconstructing simulated image data to the degree of accuracy re-
quired for implementing into reliable image studies. This validation study was
performed earlier in the PhD in order to validate the use of offline image recon-
struction, and was presented to the British Nuclear Medicine Society in 2021.
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7.1 PET Scan Simulation

7.1.1 Defining a GATE Simulation of the Siemens
Biograph mCT

Simulations were developed using GEANT4 software (GEometry ANd Tracking)
on the GATE (GEANT4 Application for Tomographic Emission) open-source
framework [114]. A simulation of the geometry of the mCT system was created,
implementing the dimensions and important coincidence-processing criteria used
on the real scanner. Some of the most important features are highlighted in Ta-
ble 3.1.

GATE provides a number of templates by which a PET geometry can be de-
scribed, two of which are appropriate in this context: cylindricalPET and ECAT.
The two templates differ only in the syntax used to describe all of the detector
gantry parts, and in the output formats provided. The syntax difference is most
evident in the labelling of the crystal detector elements, as each element is de-
scribed by the hierarchy used to define it. In cylindricalPET, the crystal element
is labelled by its radial sector (rsector), the module within that sector, the block
within that module and finally the crystal within that block. The ECAT template,
however, allocates each crystal element just a global block number and a crystal
number within each block.

ECAT takes its name from the line of PET scanners originally built by CTI,
the US-based company subsumed by Siemens in 2005. The legacy of this line
of PET scanners remains in the file format used by sinograms from subsequent
Siemens PET scanners, and the benefit of the ECAT description in GATE is the
ability to give output in this sinogram format. In addition, both cylindricalPET
and ECAT enable list-mode output in ROOT, CERN’s own data platform for visu-
alisation and storage, while cylindricalPET provides a further plain text list-mode
output option. The mCT was recreated using both of these templates.

A visualisation of the mCT PET detector geometry simulation can be seen in
Figure 7.1, here described using the cylindricalPET template. In reality, the scan-
ner comprises of additional elements. The scanner bed, the largest non-subject
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Figure 7.1: A visualisation of the GATE-simulated mCT PET detector gantry. The crystal blocks
(yellow) can be seen, demonstrating the modular structure. The white gridlines bound the extent
of the scanner, and axes illustrating dimensions can also be seen.

source of attenuation and scatter, was included in the simulation by describing the
attenuation map from a CT scan of the entire bed. In the real scanner, there are
two rings of lead forming septa, ‘capping’ the cylinder. This is to prevent scat-
tered photons from entering the detector from outside the FoV. The inclusion of
these septa was debated, as scatter from outside the FoV due to the bed was pos-
sible, yet the simulations only considered activity distributions defined entirely
within the scanner’s axial FoV. For the purpose of simulation speed, these were
omitted. Also omitted were the plastic detailing and casing structures around the
PET ring, as the additional attenuation was assumed to be small. Additional fea-
tures such as the CT gantry, which serve no purpose to the simulation of PET
acquisition, are also omitted in these simulations. These are features which can
be added later should the project require a fully realistic clinical recreation of a
PET scan, but carry little relevance to the acquisition of coincidences required at
present.

Simulations were run using the cluster computing facilities in the Nuclear
Physics group at the University. It became apparent that sinogram output from
the ECAT-defined structure would not be compatible with running the simula-
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tions on this framework, so the cylindricalPET system was selected for further
development.

7.1.2 Creating GATE Phantoms and Sources
In GATE, phantoms and sources can be defined using either standard geometrical
definitions used in Geant4 or image-based methods. While the former enables
faster running time for simulations, the basic geometric shapes are inadequate to
perform realistic simulations of clinical scenarios. Using image-based or ‘vox-
elised’ definitions, the materials describing the sources and phantoms can be im-
plemented on a level approaching realistic granularity.

(a) CT (b) PET

Figure 7.2: A transaxial slice of the real T1+T3 image in PET and CT, discretised and cropped.
The CT image was used for the GATE phantom definition, and the PET image for source defini-
tion.

Phantoms and sources were defined for the T1+T3 and T2+T4 insert arrange-
ments using the CT scan and the first 25 minute PET frame for each scan series.
First, these images were registered to the same matrix size. Using ImageJ, all im-
ages were discretised, converted to 16-bit and cropped to include only the extent
of the phantom’s outer shell using the same coordinates on both PET and CT. All
images were used in Interfile format, with headers formatted in a style compliant
with GATE’s required definitions.

In order to simplify the simulation, air, water and ‘plastic’ were the only three
materials defined for the phantom, with the physical properties of the latter taken

138



from those defined as standard in GATE for Perspex. The source was defined with
only two activity concentrations, that of the background and the insert. The ratio
between these was kept identical to that in the physical scan, and the exact per-
voxel concentration levels defined to provide a total FoV activity. The simulation
was to be run with Atot ∈ {50,100,150, . . . ,700} MBq, therefore the 14 activity
reference files were defined separately and were accessed using GATE’s macro-
based commands.

7.1.3 Utilising GATE Output Data
The GATE output data was given in ROOT format. ROOT files store data in a
hierarchical structure of trees and branches, and was developed by CERN in the
1990s [115]. Coincidences as detected by GATE are stored in a Coincidences

tree in listmode format. Source position in (x,y,z) and detected (global) position
in (x,y,z) are recorded for each photon in the coincidence, along with the labelled
crystal and block element of the detected single photon as described by the cylin-
dricalPET protocol. Also stored is the detected time and energy of each photon,
and whether either photon underwent Compton or Rayleigh scattering between
emission and detection.

This raw count rate information is incredibly important, and validation of this
output will enable interpretation of whether the GATE infrastructure can be reli-
ably used to mimic real detectors, yet obtaining reliable coincidence information
is only the first stage of an elaborate multi-step process to recreating reliable data.
Performing the various data correction and image reconstruction processes upon
the collected data in the exact same way that equivalent processes would run
on the scanner is not a solved problem, owing to the multi-levelled complexity
brought about by the various scanner manufacturers’ proprietary algorithms and
software, which are being constantly updated to remain on the cutting edge of the
field. External to the manufacturers, a number of different collaborations have
instigated open-source software for image reconstruction intended for research
purposes. The most popular of these open-source software are STIR (Software
for Tomographic Image Reconstruction) [116] and CASToR (Customizable and
Advanced Software for Tomographic Reconstruction) [117]. Two approaches
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become viable for reconstructing simulated image data: manipulating the GATE
ROOT output into a format that can be readable by the scanner manufacturer’s
software, or replicating the performance of the scanner manufacturer’s software
using open-source tools.

Siemens provide an offline version of their image reconstruction software,
traded as e7-tools. Included in this software are all of the tools required to take
raw data from the scanner and reconstruct using the same algorithms on a Win-
dows desktop in a separate research facility. The principle issue with implement-
ing ROOT data into the e7-tools framework lay in the restructuring of the raw
data. Siemens use a strategy of ‘virtual crystals’ for data storage with the mCT,
creating fake crystal element labels for inter-block and inter-ring gaps25. In addi-
tion, the use of ToF information is not well understood outside of scanner-specific
convention, evidenced by the inclusion of ToF in only the most recent updates of
both STIR and CASTOR.

Time was spent over the course of this PhD working with members of the
team at STIR in efforts to implement the virtual crystal methods for the mCT
GATE simulation into the framework. This process was ultimately successful,
with the mCT becoming included as part of the STIR-GATE Connection [118]
software package. Further work should examine this software and its suitabil-
ity for reconstructing images with ToF, as part of a wider validation study re-
constructing images with algorithms approximating those used in Siemens UHD
reconstruction.

7.1.4 Validating the Simulation
Simulations were run for T1+T3 and T2+T4, replicating one second of simulated
time. These were repeated ten times each, with each second of simulation lasting
17 hours of computation time for the 50 MBq acquisition. Count rate statis-
tics were established directly from the ROOT files, categorising a coincidence as
scattered if at least one of the Compton entries in the entry was non-zero, and
categorising a coincidence as random if the source position of the two photons

25These gaps are formed unintentionally when attempting to fit together the crystal blocks
with the attached electronics and framework.
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was not equal. From here, the scatter fraction was calculated using

fS =
S

T +S
(7.1)

to replicate the quoted value as appears in the Siemens DICOM header files.
Figure 7.3 shows the values for the two simulations against the values determined
from the physical scans.

(a) T1+T3 Scatter (b) T2+T4 Scatter

Figure 7.3: Plots showing the scatter fractions calculated from GATE simulations of T1+T3 and
T2+T4 alongside the corresponding physical data.

By the definition of what is expected from a scatter fraction, the value should
be constant regardless of the activity level, as it should depend solely on the at-
tenuation map and geometry of the subject. This is reflected by the simulation,
giving values of (27.8 ± 0.2) % and (24.5 ± 0.2) % for the T1+T3 and T2+T4

simulations respectively. It is already known, however, that there is a contri-
bution to the estimated scatter from randoms for the scatter fraction established
from the scanner software, principally evidenced by the linear gradient tended to
by the scatter fraction for the physical scan data. This simulation demonstrates,
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however, that there is an consistent overestimation of the scatter due to randoms
categorisation even at low activities tending towards zero.

Figure 7.4 shows the count rates T , S and R for the simulated and real datasets
for the T1+T3 and the T2+T4 scans. Subfigures 7.4a and 7.4b show perhaps the
clearest indication of the accuracy of the simulation in terms of simple archi-
tecture. It is clear that the T2+T4 simulation models received true coincidences
remarkably well for all FoV activities, while the T1+T3 attempt routinely un-
derestimates received trues. Most enlightening are the S and T rates; using the
raw simulation data, the scatter is routinely drastically underestimated, while the
randoms appear grossly overestimated. There are several potential reasons for
this. Firstly, as has been established priorly, the physical scanner will conflate a
proportion of randoms into the genuine scattered counts. Secondly it is possible
that dead time modelling in the simulation may not have been well aligned to the
scanner’s system. This is illustrated by the simulations appearing to match the
scattered and random coincidences well for low activities but diverge as further
activity is added.

While the differences between real and simulated systems cannot be ignored,
it should be evaluated whether the differences between R and S complement each
other. The standard definition of NECR was calculated from the count rates,
setting x = 1 for the simulation data due to the direct calculation of randoms,
and the values are shown in Figure 7.5. This figure shows the difficulty in using
the standard definition of NECR to validate the simulation, due to the pragmatic
nature of the original NECR definition. Nevertheless, at lower activities there
is a good match between simulated and scanner NECR using these definitions.
This suggests that the principle issue is in overestimation of the randoms, as the
simulations show poor agreement once the randoms exceed beyond the scale of
the trues and scatter. This reinforces the prior assumption that dead time may
not be appropriately modelled. In order to improve this work, it is imperative
that simulated data be processed in the same manner as the physical data. This
was made difficult by the lack of time of flight provision until recently at the
time of writing, yet the simulation definition and development will provide useful
material for further work in this area.
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(a) T1+T3 Trues (b) T2+T4 Trues

(c) T1+T3 Scatter (d) T2+T4 Scatter

(e) T1+T3 Randoms (f) T2+T4 Randoms

Figure 7.4: Individual rates T , S and R for the simulation data (green) compared to the physical
scan data (pink) for T1+T3 (left) and T2+T4 (right).
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(a) T1+T3

(b) T2+T4

Figure 7.5: Plots showing the NECR calculated from the physical and simulation data for T1+T3
and T2+T4. The NECR is calculated with x = 1 for simulated data and x = 2 for physical data.
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Figure 7.6: A PET image slice of the 68Ga NEMA phantom. The seventh sphere, diameter 5 mm,
is located by the red circle.

7.2 Validation of Image Reconstruction
Software

In order for meaningful comparison between images, a full validation must be
carried out between every software used in the work. As a way of demonstrating
potential problems in these studies, the following subsection details an experi-
ment performed to validate the use of Siemens e7-tools offline image reconstruc-
tion software.

A Validation Study of Siemens e7-tools
A facsimile of the NEMA Image Quality phantom was created using a 68Ge-
infused epoxy resin for a wider intercomparison project [119]. The standard
phantom features six spheres of decreasing diameter from 37 mm to 10 mm; this
version adds a seventh sphere of diameter 5 mm. For the purposes of this task,
only the six largest spheres were considered. At the time of imaging, the phantom
exhibited an activity of 22.9 kBq/ml in the seven spheres, and 5.7 kBq/ml in the
background.
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Ten single-bed position acquisitions were taken to create a core raw dataset,
each of 111-seconds. This duration was chosen to be consistent with the par-
allel intercomparison project [119]. These frames were reconstructed using the
scanner’s on-line program with all permutations of:

• 1, 2 and 3 iterations of 21 subsets of;

• standard OSEM, OSEM + time-of-flight (ToF), and OSEM + ToF + point-
spread function modelling for resolution recovery (UHD), with;

• no post-smoothing applied (0 mm), or 4 mm, and 6 mm width Gaussian
post-smoothing filters.

Using JSRecon12, part of the package supplied by Siemens that form the e7-tools
off-line framework, the raw sinogram dataset was reconstructed with the above
permutations.

Parameter Setting
zoom 1

MashFlag 1
matchctslice 0

AbsFlag 0
BedRemoval 1

CompressFlag 1

Table 7.1: A table of some relevant JSRecon_params.txt parameters

ROIs for the six largest spheres and the background were established using
the image analysis software LIFEx v5.38, according to the NEMA NU-2 stan-
dards [56, 101]. The ROIs were drawn on a UHD, 2 iteration image with a 4
mm post-filter, and re-used for every image from both systems. LIFEx was also
used to extract image metrics using its batch extraction scripting feature. For the
purposes of this study, the maximum, minimum, mean and standard deviation of
each region were compared.

A demonstration of the mean activity concentration voxel values are shown in
Figure 7.7, plotted against the number of iterations for the largest sphere (37 mm
in diameter). The colours of the distributions represent the size of the Gaussian
blurring filter applied, while the left hand side and right hand side distributions
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show the scanner and e7-tools reconstructions respectively. The figure shows
how the distribution of the sphere’s maximum values between the frames com-
pares between the scanner and the e7-tools reconstruction. It is reasonable to
claim that the e7-tools data is drawn from the same distribution as that of the
scanner, yet slight discrepancies are evident. Here we see that the mean values
are faithfully reproduced, with small percentage changes in the means of each
distribution between the systems.

However, an interesting observation can be made regarding the difference be-
tween standard OSEM and reconstruction methods involving time-of-flight con-
siderations. Figure 7.8 shows, in a similar manner to Figure 7.7, violin plots
comparing the distribution of standard deviations in different reconstructions of
the sphere. The figure demonstrates a clear distinction in the distributions of val-
ues for OSEM reconstructions that is not observed with ToF and UHD. The same
effect is also seen in the equivalent plots for the maxima and minima.

Table 7.2 demonstrates this in statistical form, taking averages across all im-
ages in a dataset which includes several different sizes of post-filter blurring ap-
plied. Taking a particular - realistic - example however, using 2 iterations of 21
subsets and blurring with a 4 mm Gaussian post-filter, the trend in these results
is clear. When these parameters are used in standard OSEM, the ROI standard
deviation differs between the scanner and e7 reconstructions by (3.79 ± 1.00) %,
compared to (0.32 ± 1.12) % for ToF and (0.27 ± 1.16) % for UHD.

Statistic Average Percentage Difference
OSEM ToF UHD

Mean (0.55 ± 0.16) % (0.37 ± 0.14) % (0.39 ± 0.14) %
Standard Deviation (5.60 ± 0.31) % (0.36 ± 0.34) % (0.30 ± 0.39) %

Maximum (3.95 ± 0.78) % (0.90 ± 0.83) % (0.93 ± 0.71) %
Minimum (3.85 ± 1.16) % (1.66 ± 1.39) % (1.41 ± 1.17) %

Table 7.2: The weighted arithmetic means of the percentage differences between ROI statistics
from equivalent reconstructions performed on the two software.

There is a good level of reproducibility of image statistics between the soft-
ware for ToF and UHD reconstructions. The results show a slight discrepancy in
how standard deviation, maximum and minimum values are measured in OSEM
compared to ToF and UHD. This will be of an academic interest for studies de-
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(a) OSEM (b) ToF

(c) UHD

Figure 7.7: Violinplots showing the distribution of mean values obtained in the ROI of S1, the
largest of the NEMA spheres. Each side of the violin compares the distribution between the
scanner- and e7-reconstructed images, and should ideally be symmetrical to show equivalent
system performance. Number of iterations and post-filter size are also included for comparison.
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(a) OSEM (b) ToF

(c) UHD

Figure 7.8: Violinplots showing the distribution of the standard deviation of voxel values obtained
in the ROI of S1. Each side of the violin compares the distribution between the scanner- and e7-
reconstructed images, and should ideally be symmetrical to show equivalent system performance.
Number of iterations and post-filter size are also included for comparison.
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pendent on heterogeneity metrics; it is unclear at present how this discrepancy
may manifest in the many higher-order metrics that rely on connectivity matri-
ces, for example. The size of the impact is, of course, inhibited by the evermore
widespread usage of ToF in PET data acquisition for these studies.

After the presentation of this data at BNMS, meetings were arranged with the
algorithm developers at Siemens Healthineers. After discussions, the differences
were attributed to the DICOM conversion process in e7 tools; subsequent up-
dates are expected to have addressed potential issues in the handling of the data.
This experiment nonetheless demonstrated the difficulty in producing equivalent
images even on softwares issued by the same supplier.

7.3 Remarks and Conclusions
The advantages of using simulation in studies such as this are clear, as the cre-
ation of a theoretically infinite set of activity distributions would enable truly
reliable assessments of feature robustness. When considering an alternative to
phantom studies, the comparative low cost, high resolution and precision, and
lack of the need for radiation exposure that is associated with simulation makes it
an attractive avenue to pursue. In order for simulations to be used effectively, full
validation must be completed. The many stages of PET data acquisition, correc-
tion and reconstruction each require separate validations, resulting in a lengthy
and convoluted process. Commercially available hardware and software often
progresses without active consultation of the research and open-source software
communities, and this is evident by the only very recent inclusion of time-of-
flight and virtual crystal capabilities into open-source reconstruction packages.
The e7 tools validation study in Section 7.2 has shown that even software by the
same manufacturer may produce variable results on the same data. It was evi-
dent in investigating this area that further investment is required into establishing
harmonised data handling processes before truly equivalent image collection and
reconstruction can be provided by simulation software.
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Chapter 8

Impact of this Work & The Future
of the Field

This chapter summarises and contextualises the results and conclusions of the
work in this thesis. Starting with Section 8.1, the conclusions of the work are
positioned as recommendations that could be argued to current researchers in the
field of clinical image-based analysis and biomarker development. These rec-
ommendations are followed by a summary of the limitations and caveats of the
work in Section 8.2. Subsequently, Section 8.3 reviews some key areas of cut-
ting edge research in PET, and discusses the impact that such technologies could
have on the field alongside the results of this work. The technologies discussed
(Total Body PET, monolithic detectors and AI implementations) have been cho-
sen for the magnitude of their perceived impact and relationship to this work, yet
represent only a fraction of the diverse and exciting areas that PET research is
exploring at the present. The final summary is given in Section 8.4, concluding
the thesis.

8.1 Recommendations from this Work
This work utilised high activity phantom scans to examine the effect of changing
activity on pyradiomics texture matrix-based features, using the NECR as a mea-
sure of characteristic noise. The results in Chapter 5 have shown that there is rea-
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son to suspect that the 75 texture features tested are not satisfactorily robust with
general radioactivity level. While the study was limited to phantom work, this
could potentially impact patient PET studies where patient size or tracer choice
will significantly affect the level of radioactivity in the FoV at any given bed po-
sition. There is reason to believe, however, that certain features such as GLCM
IMC1 and IMC2 could be corrected to model for the quantified noise in a scan.
Such a correction would take place in a feature pre-processing or normalisation
stage of a classification task. In addition, there have been concerns raised over the
stability of low gray level emphasis features. The volume of ROIs is an impor-
tant factor in accounting for noise, as traditional global measures of data signal
noise ratio (NECR) become less valid on smaller, localised observations within
the image. Efforts were made to bolster this work with Monte Carlo simulation
and image-based noise quantification, and can be progressed with further devel-
opments from collaborations working specifically in these respects.

Currently, the IBSI recommend that work in PET radiomics must include
certain information when reporting results. These required details are listed in
the IBSI guidelines. The guidelines are comprehensive within reason, requiring
disclosure of all image correction and reconstruction procedures, patient prepara-
tion details including tracer information and injected activity, and basic scanner
information. Patient studies are encouraged to verify obtained results with re-
spect to previous studies that share similarities in these respects. Constructing
the guidelines was a task undertaken after widespread concerns around much of
the early adoption of radiomics techniques without harmonisation and standardi-
sation [120, 19, 18].

As demonstrated in Chapter 5, this work suggests that quoting NECR infor-
mation alongside other, more general scan and activity information might be a
useful starting point for adopting noise correction in future work. In reality, this
solution is incomplete. It is the functional form of the NECR which is of interest
in the modelling, and more valuable information would be the activity in FoV at
the time of the scan alongside the activity in the scan at the peak NECR. This peak
information will be impossible to obtain for clinical data; for reasons pertaining
to patient safety, it will be impossible to image a patient with enough activity to
reach this peak NECR. Possible solutions to this could be in Monte Carlo sim-
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ulation, modelling NECR by recreating the patient geometry in methods similar
to those discussed in Chapter 7. This is complicated by multiple bed positions
or continuous bed motion scanning, and as the NECR link is not provably solid
or substantial, this extra work may not be deemed valuable for future studies to
carry out.

One potential parallel in PET harmonisation is the Deauville criteria. The
Deauville criteria is a 5-point scale (5-PS in literature) for categorising PET im-
ages, comparing tracer uptake in a region of interest (originally specifically in
two different types of lymphoma, Hodgkin and diffuse large B-cell) to the uptake
in the mediastinum and liver [26]. This reproducible classification system has
proved useful in many studies for patient treatment outcome reporting, despite its
deceptively simple definition [121, 122], and a similar system could be developed
for categorising images which are used in radiomics-based feature analysis. One
such way could be in analysing feature values in the liver as a form of baseline.
In FDG PET, a cancer-free liver would be a large region of a patient with an ap-
proximately homogeneous uptake distribution which would fill a majority extent
of the scanner axial FoV.

The conclusions from this work could be made more general with a wider
and more diverse range of phantom activity distributions. While there is merit
to using phantoms, homogeneous activity distributions even after imposed image
noise will likely only occupy a narrow manifold of possible texture feature val-
ues. There is precedent for other robustness studies using phantoms with in-built
ground truth heterogeneity, albeit with less anthropomorphism and a slightly dif-
ferent focus [94]. Such studies are vital in assessing true robustness, and future
studies should ensure this variety of ground truth distributions. Ideally, with the
wish to further the impact of this work, these in-built heterogeneous phantoms
should undergo similar procedures of high-activity multi-frame scanning. This
would enable more effective assessment of the impact of noise-based feature cor-
rection, and would enhance trust in the results of statistical tests to verify the
robustness of such corrections (see the Kruskal-Wallis test in Section 5.2.6).
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8.2 Caveats to this Work
The recommendations in the previous sections are provided with full knowledge
of the limitations imposed by the experimental setup and environment. This sec-
tion seeks to explain the impact of several key methodological factors, and how
these could be addressed in future work.

The use of homogeneous regions of interest limits the impact of this work.
The regions used in the study varied in shape and size; from the large and small
conventional volumes of the cylinder and NEMA spheres to the non-conventional
yet perhaps more clinically relevant shapes of the custom tumour inserts. The
values of many texture features occupy manifestly different domains for the dif-
ferent ROIs (see Figure 5.22) despite the common uniformity of these activity
distributions. This relates in part to the construction of the texture matrices; a
difference in volume results in different restrictions that (for instance) values for
Run Lengths or Size Zones may take. Suggestions for improvements here are
detailed above, as part of a recommendation for how to implement the findings
of this work into future studies.

The tenuousness of any direct relationship between NECR and image noise
complicates the establishment of definitive NECR correlations for texture fea-
tures. It is established that iterative image reconstruction imposes noise onto an
image that is unaccounted for by the NECR ratio, and while this may make for
clearer images, any resultant noise is more difficult to quantify from count in-
formation alone [99]. For this reason, similar studies to this have recommended
that perhaps more rudimentary yet analytical reconstruction methods such as FBP
should be used for data-oriented study, whereas more complex and developed it-
erative image reconstruction procedures, utilising techniques such as resolution
recovery, should be reserved for clinical use [21]. The reconstruction used in
this work used resolution recovery by point-spread function modelling, and ap-
plied a 3D Gaussian blurring filter post-reconstruction with a 5 mm width. These
are useful techniques for a clinician, lessening the effect of voxelised noise on the
ability to visually delineate potentially small-sized cancerous material. Neverthe-
less, these will significantly impact the quantification of image noise in ways that
cannot be explicitly measured when combined with OSEM-based reconstruction
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algorithms.
Image discretisation is one aspect of radiomics that requires the most fas-

tidious standardisation. This work chose to implement a fixed bin number of
64 across all regions (FBN:64 to obey IBSI nomenclature). While there is cur-
rently no agreement on whether fixed bin size or fixed bin number is a more
appropriate standardisation procedure, previous studies have found there to be no
informational advantage to be gained from bin numbers of less than 32 [92] or
greater than 64 [15, 93]. Such studies informed the choices implemented in this
work, and were maintained for consistency throughout the study. Previous studies
showed that most texture features show poor robustness to image discretisation
settings [123, 124]. This should be unsurprising, as, similarly to changing ROI
volume, this inherently impacts the potential size and shape of the resultant Har-
alick matrices. While discretisation settings have been stated here, future work
could investigate the impact of using 32 or 64 bins to determine whether the ef-
fects of image noise are alleviated by using fewer bins. It is unclear whether the
information ‘gain’ by using the additional bins is somehow complicit in amplify-
ing existing noise, and more robust feature values are attainable by using fewer
bins.

In addition to image discretisation, one possibly neglected aspect of the PET
radiomics process is image interpolation. Possibly the biggest drawback to PET
imaging is the poor spatial resolution in comparison to CT and MRI, resulting in
radiomics features being calculated over fewer voxels for the same ROI. For PET
radiomics information to be used alongside CT or MRI radiomics, image regis-
tration and interpolation has to be performed, requiring up- or down-sampling of
the original image prior to discretisation and segmentation. There are obvious
concerns to be had over potential loss of information when down-sampling, and
overconfidence in misleading data when up-sampling a noisy PET image. There
is evidence that some features are robust to interpolation whereas others exhibit
instability [125]. Interpolation was not considered in this study, but would be an
useful extension to the work in this thesis. Future work should seek to investigate
this in more depth.

Further work should implement a wider range of tumour volumes in these
studies. The breakdown in NECR correlations around 40 cm3, and the similarity
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of that volume to that at which there is a proposed breakdown in heterogeneity
calculation [79], suggests there is merit in investigating further volumes around
this value. There is merit in examining scale, printing tumours with identical
shapes but varying volumes, to test robustness of texture features to this aspect.
With the implementation of heterogeneous compartmental tumour inserts, simi-
larly to Pfaehler et al (2020) [95], the extended set would enable a more compre-
hensive conclusion of robustness to activity for radiomics texture features.

8.3 Advancements in PET
This section will describe some of the exciting research currently underway across
the cutting edge of PET research. The first advancement mentioned is that of To-
tal Body PET. The phrase ‘total body’ refers to the initial proposal of a 2 m axial
FoV PET scanner, enabling the acquisition of PET data from the entire patient
simultaneously [108]. The advantage of the increased axial FoV is an increase in
geometric sensitivity for any given emission. This has consequences on potential
noise quantification, and the links to the work done in this thesis are expanded
upon therein.

The following subsection details how ‘monolithic’ detectors are being de-
veloped to increase the spatial and energy resolution of future PET systems. A
monolithic detector replaces the cut-crystal block design (see Figure 2.5) with a
large single crystal attached to an array of silicon photomultipliers (SiPMs). The
advantage of increased spatial resolution will greatly increase the possible matrix
size of a resultant PET image, and therefore should help in reducing the possible
volume limit of PET radiomics. This is only one area where improved hardware
can improve image resolution and quality, but is one of the most exciting and
innovative.

Artificial intelligence and machine learning have an indelible link to the work
in this thesis. However the areas of patient diagnosis, treatment planning, progno-
sis, and many others that have been mentioned to this point, are not the only areas
where AI has the potential to impact nuclear medicine research. Many new algo-
rithms utilise machine learning models to reconstruct images from raw data, and
there are hopes that in years to come these will replace the contemporary iterative
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reconstruction algorithms by providing clearer images with better quantification
and, potentially, voxelised uncertainty mapping [126].

8.3.1 Total Body PET
The current standard PET ring has an axial FoV of around 20 cm, with a between-
detector diameter of around 70 cm. Using the formula for the solid angle viewed
from the centre of an open-ended cylinder Ωcyl ,

Ωcyl =
4L√

L2 +4R2
π, (8.1)

where L and R represent axial length and radius respectively, this gives Ωcyl ≈ π

(and more specifically 0.99π in the case of the Biograph mCT). There is little
that can be done with the current system architecture to account for the loss of
counts due to photons that exit from the ends of this cylinder. Further problems
come from activity outside the FoV; if one photon from outside the FoV hits the
detector, this increases the likelihood of random noise.

Figure 8.1: An illustration of the difference in axial FoV between conventional PET (a) and Total
Body PET (b) taken from [127].

A proposed method for accounting for this is Total Body PET; constructing
larger axial FoV scanners to ideally image an entire patient in a single bed po-
sition. Several such scanners have been proposed, each of varying extents. The
uExplorer system features a 1.94 m axial FoV, while Siemens’ Biograph Vision
Quadra system consists of four back-to-back PET rings from the Biograph Vision
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design, giving an axial FoV of 1.04 m [128, 129]. For the uExplorer, the solid
angle covered from the centre is ∼ 3.71π . These two detector designs represent
the two sides to current Total Body PET research. Siemens’ design is indicative
of where Total Body PET might fit into clinical practice, with the smaller FoV
bringing a more competitive cost at the expense of the extra gain in sensitivity
given by the research-focussed uExplorer machine.

If more emissions per second are detected from an activity distribution, the
same data can be acquired using either a smaller acquisition time frame, ∆ t, or
less total activity, A. The equation

SNRimage ∝
√

S×A×∆ t (8.2)

can be used to describe this effect, where S denotes the effective sensitivity of the
system [108]. This equation is particularly pertinent to results obtained in this
work. The cylinder data demonstrated that on larger time acquisition datasets,
noise in image texture statistics for large objects could be more closely modelled
by the NECR, and thus become more simple to correct. Using Equation 8.2, the
resultant effect of the 5-fold increase in ∆ t required to produce this is comparable
to the expected four-fold increase in S expected when imaging a 20 cm axial
length object in a Total Body PET scanner.

At the time of writing there are only around 20 Total Body PET systems
installed worldwide. The concept is not new, but only in recent years has the
clinical case been strong enough, detector technology been precise enough, and
construction price reduced to the point where production could be possible [130].
At the time of writing, a standard PET system could be expected to cost around
C3 million, while a Total Body system could cost C18 million. This increased
cost is not only due to the extra materials needed to create the detector, but also
the increased computing power required alongside such a scanner in order for it
to run. While this cost is likely to still be prohibitive to most PET centres, it is an-
ticipated that this increased cost could be balanced out by clinical advantages to
the sensitivity gain. Using Equation 8.2, we can deduce that to produce an image
of the same quality as a standard PET scan, either the activity or the scan duration
can be reduced. This means that the patient dose can be reduced, which is advan-
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tageous for patient safety and cost incurred at the centre. A reduced scan time
per patient would also increase the throughput of any given PET centre, enabling
more patients to be seen per day and enhancing the centre’s efficiency. Further-
more, the potential of low-dose imaging could result in the expansion of PET into
paediatrics, providing better care for a larger proportion of the population [131].

8.3.2 Monolithic PET Systems
One of the major limiting factors in PET images is spatial resolution. There are
fundamental limits set by known physics phenomena, such as acollinearity, yet
there are limits imposed by the detector hardware used [132]. Better timing res-
olution provides one way of improving spatial resolution in the resultant image
- improving ToF accuracy will impose stricter limits on possible emission loca-
tions. However, the use of pixelated detector elements will always restrict the
spatial resolution to a ‘thick’ line of response, the width and breadth of said crys-
tal pixel size. The resultant voxel sizes in PET mean that ROIs that delineate
small tumours, for instance, may only consist of a handful of voxels, and invali-
date many useful aspects of deriving texture features in the first place.

Monolithic PET systems replace the pixelated crystal block with a single uni-
form block - the eponymous monolith. This monolithic block is then connected
to a grid of semiconductor photomultipliers. The central tenet is that the physics
properties of the incoming photons can be more accurately measured and, using
well-trained classification techniques, the line of response of the incoming photon
can be restricted to a much smaller volume. There is an analogy here to the tran-
sition from 2D to 3D PET. The constant improvement in computing power and
new possibilities in backend technology enable the loosening of some restrictions
on what is possible for a PET acquisition. In addition to improved spatial reso-
lution, the lack of internal reflections caused by detector block pixelation could
potentially lead to a better timing resolution in monolithic block detectors [133].
The improved spatial and timing resolution would benefit texture analysis, reduc-
ing the volume limit for the effectiveness of Haralick matrices, while potentially
reducing the effect of noise between neighbouring voxels.
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8.3.3 AI-Based Image Reconstruction
This work to date has concentrated on improving the extraction of data from
images, largely for the betterment of future artificial intelligence processes for
computer-aided diagnosis and treatment planning. Statistical characterisation is,
however, only one way that artificial intelligence is being used in PET imaging.
Deep learning specifically is predicted to have a significant impact in the near
future on the methods by which images are produced from PET raw data. This
section will list three ways in which the impact of machine learning is likely to
be seen in the field in the near future; firstly in image denoising, secondly in full
reconstruction, and finally in establishing image uncertainty maps.

Image denoising techniques have been developed as a post-reconstruction
processing step to remove noise from a PET image. Companies such as the US-
based Subtle Medical, Inc. have developed algorithms that have been proven to
recover image quality and preserve image quantification for images reconstructed
from data with a halved acquisition frame duration [134, 135]. These algorithms
are new to the market and will likely only improve as they are able to be trained on
more data, and with Subtle Medical obtaining FDA approval for their algorithm
it is very likely that techniques similar to this could be seen in the clinic in the
coming years. The clinical advantages will be seen in the ability to scan patients
for less time or with less activity, enabling more efficient and safer clinical prac-
tice. From the research perspective, the results are more relevant for their impact
on current protocols. If degradation can be recovered from half-duration images,
there is a clear promise of better quantification for future ‘full’-duration scans.
Images with more reliable quantification and less visible noise effects would, by
extension, enable more robust texture feature calculation, with the impact of noise
on ground truth texture potentially extricable.

While denoising seeks to correct images post-reconstruction, other algorithms
are in development to replace the reconstruction process altogether. Deep learn-
ing is so-named because of the layers to the algorithm’s structure, and there have
been attempts to use the layers of this structure to replicate the iterations of an
iterative reconstruction process [126]. These algorithms can become very com-
plex, such as the Learned Primal Dual reconstruction process, with two deep
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learning networks teaching each other to improve the ‘guesses’ at each stage of
an iterative process [136]. GE have developed the TrueFidelity algorithm, which
is expected to become a clinical fixture in CT in the near future [137]. Clinical
communities generally reserve doubts about the validity of reconstructing im-
ages with algorithms trained on a restricted dataset, yet a great deal of modern
algorithm development includes a degree of in-build physics knowledge [138].

Deep-learned reconstruction is likely to make a significant impact in the wider
field with some immediacy, yet there is some conflict over whether such algo-
rithms will aid or hinder quantification of images. At present, however, OSEM
reconstructions are only able to present a ‘best guess’ after a certain number of
iterations, given very little by way of prior information. AI-based reconstruction
can provide more informed priors for the reconstruction process [126]. Possi-
bly the most exciting ways, not to mention most relevant to this work, that AI
reconstruction is different is in the possible generation of companion epistemic
uncertainty maps alongside the image [126, 138]. This has been successfully
attempted using probabilistic Bayesian methods alongside deep learning recon-
struction for brain cone beam CT [139]. If these methods could be enveloped
into PET, voxelised uncertainty maps would enable thorough development and
propagation of epistemic uncertainties for all manner of texture features. In the
author’s opinion, this is the innovation that could provide the missing piece for
wider integration of radiomics into clinical practice.

8.4 The Final Word
This work sought to provide an example methodology for assessing the robust-
ness to activity level of texture features used in radiomics for oncology PET.
Using high-activity FDG phantom scans, it was determined that many texture
features appear to lack this robustness. The NECR was used to provide a correc-
tion method for texture features, enabling an estimation of the values that texture
features could take at clinical levels. NECR is, however, weakly linked to image
SNR, and models were developed to encapsulate image-based noise into a met-
ric to enable more informed correction. A simulation framework was developed
in an attempt to model phantoms with innovative in-built heterogeneity and thus
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improve the impact of this work. Progress was made in both of these regards,
the outputs of which provide solid foundations for future work. While it appears,
from the work in this thesis and similar published studies, that radiomics texture
features are currently significantly unstable in PET images, there is great cause
for optimism. Progress in PET software and hardware is not slowing down and,
alongside persistent and continuous efforts improving harmonisation and stan-
dardisation across research and clinical fields, there can be little doubt that this
can enable radiomics to become the burgeoning success that its proponents have
always believed it could be.
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Appendix I

Experimental Discretisation Method

The discretisation method chosen for use in the experiments detailed in this thesis
was FBN:64. The evidence considered for this selection is detailed further in
Chapter 2. To test this in practice, a series of discretisation protocols were applied
to the cylinder dataset as listed in Table I.1.

Bin Widths Bin Numbers
FBS:0.005 FBN:8
FBS:0.01 FBN:16
FBS:0.05 FBN:24
FBS:0.1 FBN:32
FBS:0.2 FBN:40
FBS:0.25 FBN:48
FBS:0.5 FBN:56
FBS:1.0 FBN:64
FBS:2.0 FBN:128

FBN:256
FBN:512

Table I.1: A table containing the discretisation protocols used on the cylinder image dataset.

The purpose of this analysis was to demonstrate that there would be little to
no informational advantage gained by selecting another discretisation protocol for
analysing the phantom data. Figure I.1 demonstrates this for FBN discretisations.
The figure shows an example image feature, the GLCM IMC2, for the cylinder
images collected as detailed in Chapters 3 and 5 subject to the FBN discretisation
protocols. It was observed that for all features, the functional form of feature
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values was consistent regardless of the number of bins used, and despite any
expected offset. This lead to the conclusion that any perceived correlation of
feature values to NECR could be obtained regardless of the number of bins used,
and that the number of bins used should be chosen in order to be consistent with
the field and previous work.

Figure I.1: The Informational Measure of Correlation 2 (IMC2) from GLCM for the cylinder
datasets, comparing all FBN discretisation protocols.

While this study was not considered completely appropriate for FBS discreti-
sation, a series of different bin widths were examined for completeness. The
effect of changing FBS discretisation used on the same image set can be seen in
Figure I.2, which observes the same feature seen in Figure I.1.

Figure I.2: The IMC2 from GLCM for the cylinder datasets, comparing all FBS discretisation
protocols.
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The width of the bins must be compared to the range of values in the image
across the set. The voxel value ranges are shown in Figure I.3.

Figure I.3: The range of values, in SUV, for all images in the cylinder dataset.

The IBSI recommend a fixed bin width that guarantees between 30 and 130
bins to allow for reproducibility of image feature values [80]. From the range of
values seen in Figure I.3, this determines that a value of the order of 0.01 SUV
would enable this. Figure I.2 shows that there is likely to be no informational
advantage to bins smaller than that. There is an adverse effect on the functional
form of the feature across the dataset by increasing the bin width; the feature
response appears unpredictable with increasing bin size. This can be attributed
to loss of information by discretising into large bins. Should FBS discretisation
be used for future work, a full evaluation of bin widths around the magnitude of
0.01 SUV should be done in order to determine the most appropriate value. It
was decided that, for this work, the context did not require finding this value, and
the experiment was to continue with FBN:64.
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