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Abstract

UNCOVERING TRANSCRIPTIONAL BURSTING DYNAMICS FROM

SPATIALLY RESOLVED SINGLE-CELL MICROSCOPY DATA

Jonathan R. Bowles
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2022

Recent advances in live imaging technology, such as the MS2-GFP system, have
enabled the recording of transcriptional data at the single-cell level at ever-greater tem-
poral and spatial resolution. Whereas previously researchers had to rely on static ‘snap-
shots’ of developing embryos, such as those provided by Single Molecule Fluorescence
in situ Hybridisation (smFISH), it is now possible to record fluorescence microscopy
movies of developing embryos in the laboratory.

An example of one such live imaging technique is the MS2-GFP system, where
gene editing is used to insert a transgene into a gene of interest. When the gene is tran-
scribed, a noisy fluorescent time series is generated which acts as a proxy for transcrip-
tional activity. The dorsal-ventral patterning system in the early Drosophila embryo
provides an ideal system for studying transcription using live imaging. In this system,
a single input, a member of the Bone Morphogenetic Protein (BMP) family, controls
multiple target genes, each of which exhibit transcriptional bursting, where transcripts
are produced stochastically in discrete ‘bursts’ of activity, rather than as a constant,
Poissonian process.

The aim of analysing these movies is to gain insight into transcriptional regulation
in the early embryo, i.e. the relation between the dynamics of mRNA production and
cell developmental fate. BMP signalling is of particular interest due to the known in-
volvement of misregulated BMP signalling in developmental defects and cancer. A key
problem is how to process and analyse MS2 datasets in order to answer this question.

The main output of the thesis is the development of a novel type of Hidden Markov
Model (HMM) for extracting kinetic parameters from MS2 movies, with the aim of
establishing the relationship between BMP signalling and transcriptional bursting. We
first provide an overview of BMP Signalling in Drosophila, followed by a summary of
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previous theoretical definitions of biological noise and transcriptional bursting in the
literature.

We then outline the details of the implementation of our algorithm. The algorithm
demonstrates a significant improvement in computational efficiency relative to the cur-
rent state of the art model for MS2 analysis, the Compound State Hidden Markov
Model (cpHMM), while allowing for the inference of single-cell transcriptional param-
eters. Results are shown comparing our algorithm to the original algorithm in terms of
computational speed and accuracy, using synthetic and experimental Drosophila data.

Finally, we present the in-depth results from using our algorithm to investigate the
bursting dynamics of the Drosophila ush and hnt genes. We have been able to estab-
lish that regulation of bursting dynamics in this system is achieved through frequency
modulation, i.e. by regulating the frequency of bursts, rather than burst duration or am-
plitude; burst frequency decreases as a function of distance from the embryo midline.
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Chapter 1

Introduction

1.1 Modelling Stochastic Gene Expression

Proper regulation of gene expression, the process of transmitting genetic information
from DNA to RNA and from RNA to proteins, is of fundamental importance to all
living things, as misregulation of this process can lead to far-ranging negative conse-
quences for both developing and adult organisms. Tight regulation of gene expression
is necessary for determining where and when genes are expressed during develop-
ment, thereby playing a crucial role in determining cell fate (Lee and Young, 2013).
Although gene expression is tightly regulated, phenotypical heterogeneity does still
occur; this phenomenon is referred to as biological ‘noise’ and has been identified as
having multiple sources (Raser and O’Shea, 2005).

Biological noise has been theorised to play a number of possible roles in both em-
bryonic development and evolutionary biology. Biological noise has been found to
confer a possible evolutionary advantage through small fluctuations in protein levels
(Raser and O’Shea, 2005), to allow for stochastic expression in a monoallelic popu-
lation (Raser and O’Shea, 2005), to confer a fitness advantage in yeast populations
through the ability to switch stochastically between metabolic states (Raj and van
Oudenaarden, 2008), and to play a role in Drosophila eye development (Balázsi et al.,
2011).

Mathematical frameworks have been developed (Swain et al., 2002; Paulsson, 2004;
Raser and O’Shea, 2004) to formalise the description of noise in biological systems.
The simplest possible model of transcription would describe mRNA production as a
Poissonian process, where transcripts are produced stochastically at a constant rate.
However, for many genes, this model is inadequate - the distribution of transcripts is

13



14 CHAPTER 1. INTRODUCTION

‘Super-Poissonian’, with the measured variance greater than the mean (Nicolas et al.,
2017; Lenstra et al., 2016). One possible explanation for Super-Poissonian mRNA
production is transcriptional bursting, whereby genes produce transcripts in discrete,
stochastically distributed bursts of activity, rather than as a continuous process. Tran-
scriptional bursting has been the subject of intense research, but there are still unan-
swered questions about how bursting is regulated and the nature of the relationship
between bursting and tissue patterning. The so-called ‘random telegraph’ model (Pec-
coud and Ycart, 1995; Friedman et al., 2006) offers a simple mathematical framework
for modelling transcriptional bursting, but improved imaging techniques have raised
the possibility of more sophisticated models, given the high temporal and spatial reso-
lution of live imaging data.

New imaging technologies have made possible the analysis of transcriptional dy-
namics in the developing embryo at the single-cell level (Munsky et al., 2012; Gregor
et al., 2014). Imaging techniques fall into two broad categories: static fluorescence mi-
croscopy images and live imaging, where movies are recorded of transcription in vivo.
Single Molecule Fluorescence in situ Hybridization (smFISH) allows for visualisation
of single transcripts within fixed tissue at single-cell resolution through the attach-
ment of short, fluorescently labelled DNA oligonucleotide probes to a complementary
mRNA sequence (Trcek et al., 2017; Lyubimova et al., 2013). smFISH has been used
successfully to visualise transcription in a wide range of different systems and applica-
tions (Boettiger and Levine, 2013; So et al., 2011; Skinner et al., 2013; Corrigan et al.,
2016; Bahar Halpern and Itzkovitz, 2016). Mapping from static mRNA distributions
to kinetic parameters is computationally challenging; software packages such as Bay-
Fish (Gómez-Schiavon et al., 2017) have been developed for analysis of static smFISH
‘snapshots’.

Live imaging techniques, such as the MS2-GFP system, offer an alternative to
inferring kinetic parameters from static snapshots of mRNA in fixed tissue. The MS2-
GFP system, now widely adopted by developmental biology researchers, involves the
insertion, through genetic modification, of a reporter transgene into a gene of interest.
This transgene codes for a sequence of stem loops which bind to a protein fused to
Green Fluorescent Protein when the gene is transcribed, generating a fluorescent time
series that acts as a proxy for transcriptional activity (Gregor et al., 2014). Originally
developed in 1998 (Bertrand et al., 1998) and optimised in 2004 (Golding and Cox,
2004), the MS2 system has since been used in a wide range of biological systems,
including Drosophila (Boettiger and Levine, 2013; Corrigan et al., 2016; Garcia et al.,
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2013; Bothma et al., 2014; Desponds et al., 2016; Fukaya et al., 2016; Berrocal et al.,
2018). While earlier attempts at modelling MS2 data involved fitting relatively simple
mathematical models to the data (Fukaya et al., 2016; Bothma et al., 2014), machine
learning has more recently been used to extract kinetic parameters from time series
data (Corrigan et al., 2016; Berrocal et al., 2018; Lammers et al., 2020).

1.2 Motivation and Objectives

Understanding transcriptional regulation is of fundamental importance due to the cen-
tral role of disordered transcriptional regulation in both birth defects and disease in
the adult organism; misregulation of Bone Morphogenetic Protein signalling, the ex-
perimental system focussed on in this thesis, is known to play a central role in cancer
biology (Blanco Calvo et al., 2009; Bach et al., 2018). Live imaging offers a chance to
observe transcriptional dynamics in vivo, but modelling MS2 data presents a number
of computational challenges (Gregor et al., 2014).

One key difficulty involved in analysing MS2 data is the presence of a kind of
persistence, or lag, in the recorded time series (Berrocal et al., 2018; Lammers et al.,
2020). When the gene becomes active and transcription initiates, polymerase begins to
travel down the gene body. After a certain period of time, the gene becomes inactive
and transcription ceases. At this point, however, the MS2 fluorescence does not imme-
diately drop to zero, as the polymerase that already initiated transcription are still in
transit down the gene body, causing the MS2 signal to slowly fall. This persistence in
an already noisy signal complicates inference, as there is no longer a direct correspon-
dence between promoter activity and the recorded signal at a given time point.

This particular kind of system, where an underlying stochastically switching state
generates an observed signal, lends itself well to analysis with Hidden Markov Mod-
els (HMMs). Standard HMMs, however, are not able to deal with the fluorescence
persistence problem. Lammers et al. (2020) developed an adapted form of HMM, the
Compound State Hidden Markov Model (cpHMM), which introduced the concept of
compound states in order to model this specific system. In the Lammers model, al-
though the transitions between promoter states are still Markovian, i.e. probability of
the promoter being active or inactive depends only on the previous time state, the ob-
servations are dependent upon each other. The cpHMM introduced the concept of a
compound promoter state, where the current observation at time t depends upon the
previous W promoter states and W , or window size, depends upon factors such as
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gene length and elongation rate. The model was used successfully to analyse anterior-
posterior patterning in Drosophila.

A key drawback with the Lammers model, however, is the exponential relationship
between gene length and computational time, as an exponentially increasing number
of compound states is required by the model as the gene length is increased - inference
of the current most likely promoter state requires an ever-larger window size as gene
length increases. This makes use of the algorithm infeasible for many systems, includ-
ing the Drosophila dorsal-ventral patterning system that is the focus of this thesis. In
order to circumvent these computational problems, we have developed a dynamic form
of the Lammers model, which uses a truncated state space, removing the exponential
relationship between gene length and computational time. The dynamic model is able
to provide similar results to the full model while greatly reducing computational time
for longer genes. After validating the model on synthetic data, we have applied it to the
dorsal-ventral patterning system in Drosophila (Hoppe et al., 2020)) focussing on the
relationship between a member of the Bone Morphogenetic Protein family, Decapen-
taplegic, and two of its target genes, u-shaped (ush) and hindsight (hnt).

The main objective of the thesis is to develop a computationally efficient algorithm
for inferring kinetic parameters from MS2 imaging data. The example biological sys-
tem used in this thesis is the dorsal-ventral patterning system in Drosophila, but the
the aim is for the algorithm we have developed to be applicable to other systems, as
our truncated model can in theory be applied to much longer genes than the original
model. The list of aims can be summarised as follows:

• Develop a scalable algorithm for inferring kinetic parameters from MS2 data.
The running time of the algorithm should not depend upon gene length.

• Implement the algorithm in software and publish the code in an Open Source
repository, with documentation, for other researchers to use.

• Apply the algorithm to the dorsal-ventral system in Drosophila. The early Drosophila

embryo represents an ideal experimental system due to highly reproducible de-
velopmental boundaries, a shared signalling medium and the presence of a single
layer of syncytial nuclei just beneath the egg cortex (Gregor et al., 2014).

• Extend the software package to include scripts for inferring single-cell kinetic
parameters. To our knowledge, the is the first time that kinetic parameters have
been calculated on a single-cell basis.
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1.3 Thesis outline

In Chapter Two, an outline of BMP Signalling and dorsal-ventral Patterning in the early
Drosophila embryo is given, followed by a review of previous research in the field of
transcriptional dynamics. Details of research into both mathematical modelling and
experimental techniques used for quantifying biological noise, such as smFISH and
MS2-GFP, are given. Finally, a mathematical overview of Hidden Markov Models,
with a particular focus on Lammers et al.’s cpHMM is included.

Chapter Three includes the mathematical details of the dynamic Hidden Markov
Model, along with results from applying the model to both synthetic and experimental
Drosophila data. This chapter is based upon the Bowles et al. (2022) methods paper.
The final section includes details of the burstInfer Python software package imple-
menting the model.

In Chapter Four, based upon Hoppe et al. (2020), details are provided of the ap-
plication of the algorithm to modelling MS2 data from the Drosophila ush and hnt

genes. burstInfer was used in this paper to establish the key regulated parameter in the
Drosophila dorsal-ventral patterning system through determining which model param-
eters varied significantly as one moves away from the embryo dorsal midline. Exam-
ples are given of the algorithm’s ability to infer single-cell transcriptional parameters.
Further applications from a different signalling system, using data still being collected
in the lab, are also shown.

Chapter Five contains the discussion along with suggestions for further work. Specif-
ically, suggestions are made for extending the model to take into account temporal as
well as spatial variations in transcription into account, for generalising the model and
for developing a model based upon Mean Field Variational Bayes Methods.



Chapter 2

Background

In this chapter we first describe the details of signalling and developmental patterning
in the early Drosophila embryo, followed by an overview of theoretical and experimen-
tal tools for quantifying biological noise. We then focus on techniques for analysing
MS2-GFP data. The theory of Hidden Markov Models is then outlined, along with the
mathematical details of Lammers et al.’s Compound State Hidden Markov Model. The
algorithm described in the remainder of the thesis extends and adapts this model.

2.1 Drosophila Early Development

The following sections provide an outline of patterning of the Drosophila embryo dur-
ing early development (up to nuclear cycle 14), including the signal transduction mech-
anisms responsible for coordination of development.

2.1.1 Dorsal-Ventral Patterning

Following fertilisation, spatially varying gradients of maternal transcription factors de-
posited within the egg during oogenesis establish dorsal-ventral (DV) and anterior-
posterior polarity through activation of a number of signal transduction pathways within
the developing embryo (Belvin and Anderson, 1996; Kanodia et al., 2009; Levine and
Davidson, 2005). These signalling pathways then act to subdivide the embryo into sev-
eral different tissue types independently along the dorsal-ventral and anterior-posterior
axes. DV polarity in Drosophila is established by the NF-kB-like (Belvin and Ander-
son, 1996) maternal transcription factor Dorsal, which forms a nuclear concentration
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gradient along the DV axis, with peak levels in the ventral-most region of the em-
bryo (O’Connor, 2005; Umulis et al., 2010; Hill, 2009; Raser and O’Shea, 2005). The
graded distribution of Dorsal is established through differential activation of the toll
signalling pathway arising from events prior to egg-laying (Umulis et al., 2010; Hill,
2009). Intermediate levels of Dorsal enter nuclei in lateral regions of the embryo,
whereas Dorsal is absent in the dorsal-most region of the embryo (O’Connor, 2005;
Umulis et al., 2010). This graded distribution of Dorsal leads to the differential ex-
pression of nearly 50 target genes in the DV system (Hill, 2009).

The thresholded response of the Dorsal target genes snail (sna), short gastrulation

(sog) and decapentaplegic (dpp) to this smooth concentration gradient partitions the
embryo into three basic tissue types – the mesoderm, the neurogenic ectoderm and
the dorsal ectoderm (Hill, 2009). The dorsal ectoderm is further subdivided into two
tissues types, the dorsal epidermis and the amnioserosa (Kanodia et al., 2009; Hill,
2009). The mesoderm is specified in the ventral-most regions of the embryo by sna,
where levels of Dorsal are highest (Kanodia et al., 2009; O’Connor, 2005). Activation
of sog by low levels of Dorsal specifies the neuro-ectoderm (Belvin and Anderson,
1996; Levine and Davidson, 2005; Hill, 2009), whereas the absence of Dorsal (and
subsequent absence of the Dpp inhibitor Sog) in the dorsal-most regions of the embryo
specifies, through the activation of a graded distribution of the bone morphogenetic
protein (BMP) dpp, the dorsal epidermis and the amnioserosa, a contractile extraem-
bryonic membrane (Levine and Davidson, 2005) believed to play a role in germ band
elongation and dorsal closure.

Each of these genes act within their respective regions of expression to further sub-
divide these areas into different tissue types. This process is aided by the absence of
cellular membranes in the early Drosophila embryo; for the first two hours following
egg-laying, the embryo does not possess cell membranes, forming a syncytial blasto-
derm (Chalancon et al., 2012; Raj and van Oudenaarden, 2008). In addition to their
role during early development, many of these genes have an additional role in later
stages of development and tissue maintenance in the adult organism (Elowitz et al.,
2002).

2.1.2 BMP Signalling in Drosophila

BMPs are a member of the TGF-B family of growth factors – in addition to Dpp, two
other members of the BMP family are present in Drosophila – Glass Bottom Boat
(Gbb) and Screw (Scw) (Meyers and Kessler, 2017; Deignan et al., 2016; Sutherland,
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2003). Dpp is the functional orthologue of BMPs 2 and 4 in vertebrates, whereas
Gbb is a member of the BMP 5, 6, 7 subgroup (O’Connor, 2005). BMPs in the early
Drosophila embryo are secreted from a broad region in the upper 40% of the embryo
and are then dynamically concentrated into a narrow region at the dorsalmost region of
the embryo (O’Connor, 2005; Umulis et al., 2010). Dpp and Scw exist in three differ-
ent forms in the early embryo – as a Dpp homodimer, as a Scw homodimer, and as a
Dpp/Scw heterodimer (O’Connor, 2005). A complex formed of laterally secreted Sog
and dorsally secreted Twisted Gastrulation (Tsg) preferentially transports Dpp/Scw
heterodimers (the form of Dpp in this system with greatest signalling potency) to the
dorsalmost region of the embryo (Hill, 2009).

Cleavage of the Sog/Tsg complex by the protease Tolloid (Tld) releases Dpp for
signalling, resulting in a smooth gradient of free Dpp-Scw peaking at the midline
of embryo (Lacy and Hutson, 2016). Binding of Dpp/Scw heterodimers to heterote-
trameric Punt / Saxophone (Sax) receptors produces an intracellular signalling cascade
through the phosphorylation of the transcription factor Mad. Phosphorylated Mad
(pMad) associates with the co-Smad Medea before translocating to the nucleus and
activating epidermal target genes such as U-shaped (ush) and hindsight (hnt) (Umulis
et al., 2010). Additionally, binding of the pMad / Medea complex to the zinc finger
protein Schnurri represses expression of neuronal genes – this dual action of BMP sig-
nalling results in the requirement of a much higher signalling threshold for epidermal
genes rather than neuronal genes (Levine and Davidson, 2005).

2.2 Transcriptional Dynamics

The following sections summarise research into the underlying biology behind sources
of biological noise, control of transcriptional bursting, mathematical modelling of tran-
scription bursting and laboratory techniques for data acquisition.

2.2.1 Heterogeneity in Biological Systems

The so-called central dogma of molecular biology may be summarised as stating that
the process of gene transcription and translation is essentially a question of information
flow – genetic information encoded in DNA base sequences is transferred to messenger
RNA in a process known as transcription; this information is then transferred to pro-
teins through the process of translation (Crick, 1970). This overall process is known
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as gene expression. Gene expression is of fundamental importance to the organism, as
both correct development and the proper functioning of the adult organism require the
ability to control which genes are expressed, the location of the expressed gene and
the amount of gene product ultimately created. Gene regulation is therefore a question
of not only spatial, but also temporal, control of gene activity (Balázsi et al., 2011;
Gregor et al., 2014). The process of gene expression must therefore be tightly con-
trolled by the organism; misregulation of gene expression is commonly found both in
developmental disorders and in diseases of the adult organism (Lee and Young, 2013).

However, despite this apparent requirement to strictly control gene expression, phe-
notypic variation, or biological heterogeneity, is ubiquitous in biology; remarkable
phenotypic diversity may be found even within a population of genetically identical
cells (Swain et al., 2002). Research over the last fifteen years has focussed on at-
tempting to discover the source of and to model this phenotypic variation between
isogenic cells within a shared environment, which is commonly described as biolog-
ical ‘noise’ (Munsky et al., 2012). Raser and O’Shea (2005) identified four possible
sources of variation in gene expression: i) the inherent stochasticity in biochemical
systems involving a small number of individual molecules, and therefore infrequent
reaction events; (ii) variation in gene expression within a population of cells due to
predictable changes in global processes such as the cell cycle; (iii) environmental vari-
ation due to signalling cues such as a morphogen gradients and (iv) genetic mutation.
Each of these possible sources of noise contributes to the recorded noise within a cell
population.

Further research, as summarised by Chalancon et al. (2012), has established mul-
tiple biological sources for both extrinsic and intrinsic noise. Factors contributing
to intrinsic noise include transcriptional bursting (including variation in promoter se-
quence, nucleosome occupancy and positioning, along with the degree of transcrip-
tional pausing), nuclear architecture, chromatin epigenetics and rates of translation,
mRNA degradation and protein degradation. Factors contributing to extrinsic noise
include the availability of basic gene expression machinery within the cell, pathway-
specific propagation of noise, microfluctuations in the cellular environment and asym-
metries arising from cell division. Additionally, noise propagation within a population
of cells may also be considered from the perspective of gene regulatory network archi-
tecture (Chalancon et al., 2012).

In addition to attempting to mathematically model and characterise the biological
mechanisms underlying biological noise, research has focussed on possible functional
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roles for noise in areas such as evolutionary theory and developmental biology. Small
fluctuations in protein levels may confer either a biological advantage or disadvantage
to the organism (Raser and O’Shea, 2005). Heterozygous individuals may express
neither alleles, either allele or both alleles of a given gene due to fluctuations in pro-
tein count arising from intrinsic noise. A period of intrinsic expression noise followed
by negative feedback has been theorised to allow for stochastic expression in a stable
monoallelic population (Raser and O’Shea, 2005). The ability to utilise intrinsic noise
to stochastically switch between states has also been theorised to lie behind switch-
ing between metabolic states in yeast, where a fitness advantage arises from part of a
population being able to activate metabolic networks in anticipation of food (Raj and
van Oudenaarden, 2008); sacrificing part of a given population to sub-optimal growth
while retaining fast response times may be preferable to consuming energy through re-
lying on activation of the sensing apparatus instead (Raj and van Oudenaarden, 2008).
Intrinsic noise has also been associated with the stochastic switching of B. subtilis

from a vegetative to a ‘competent’ state (Raj and van Oudenaarden, 2008), the onset of
meiosis in yeast (Raj and van Oudenaarden, 2008) and frequency-modulated stochastic
nuclear localisation of the transcription factor Crz1 in yeast (Eldar and Elowitz, 2010).

A notable example of a role for stochastic gene expression in development is the
proposed model for odorant receptor choice in olfactory neurones. Murine olfactory
neurones express a single allele of an odorant receptor gene out of a possible selection
of around 1500 odorant receptor genes; expression of odorant receptors is mutually
exclusive (Raj and van Oudenaarden, 2008). Developing a regulatory network capable
of computing the optimal choice of odorant receptor to express has been theorised to be
too complex, so a ‘Monte Carlo’-type strategy is instead adopted where each neurone
randomly expresses a given odorant receptor. Noise is also believed to play a role in
photoreceptor development in the Drosophila eye, where the decision by optical units
known as ommatidia to express one of two possible pairs of photoreceptors has been
shown to be stochastic, and in haematopoiesis, where commitment of stem cells to
either an erythroid or myeloid lineage has been demonstrated to be dependent upon
stochastic fluctuations in levels of the stem cell marker Sca-1 (Balázsi et al., 2011; Raj
and van Oudenaarden, 2008).

2.2.2 Quantifying Biological Noise

A classic paper by Elowitz et al. (2002) outlined both a formal system for classifica-
tion of biological noise, which was separated into extrinsic and intrinsic noise, and an
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experimental method for disentangling these two sources of noise. The authors defined
the noise present in the distribution of the amount of protein produced by a given cell
as ηtot , the standard deviation divided by the mean, and that the noise could be divided
into two components – extrinsic noise, ηext , fluctuations in the amount or activity of
regulatory polymerases and proteins, and intrinsic noise, ηint , inherent stochasticity
within the system arising from the ‘discrete nature of the biochemical process of gene
expression’ (Elowitz et al., 2002). Intrinsic noise represents a fundamental limit on the
precision of gene regulation – even in the presence of a carefully managed extracellu-
lar environment, fluctuations in the Brownian motion of individual molecules within
a given cell place limits on the similarity of two genetically identical cells within the
same population. Experiments designed to disentangle extrinsic and intrinsic noise
outlined in the paper involved introducing two identical copies of a promoter into Es-

cherichia Coli, each regulating a distinct fluorescent reporter gene producing either
cyan fluorescent protein or yellow fluorescent protein. The use of fluorescent reporter
genes allowed the authors to visualise cell-to-cell variability in fluorescence and there-
fore gene activity; extrinsic sources of noise, such as limited availability of Pol II,
would be expected to affect both promoters within a given cell equally, generating cor-
related noise between the two promoters. Intrinsic sources of noise, however, would
be expected to vary in extent between the two promoters and therefore generate un-
correlated sources of noise. The authors found that both sources of noise could be
significant, depending upon the exact experimental conditions. This work built upon
earlier work by the main author in the field of synthetic biology (Elowitz and Leibier,
2000), where biological noise was initially encountered as a potential confounding
variable when designing the repressilator – a synthetic network of repressors design-
ing to induce oscillations in gene expression of programmable duration. The periodic
oscillations generated by the repressilator network were found to contain significant
levels of biological noise, which was conjectured to emanate from biological noise
within the individual components of the system. From this initial beginning as an
unexplained source of noise in a pioneering synthetic biology experiment biological
noise and stochasticity have become substantial fields of active research.

Swain et al. (2002) built upon Elowitz et al.’s landmark study by deriving analyt-
ical expressions for intrinsic and extrinsic noise, which were then validated through
simulation of a repressor protein. The derived expressions allowed quantification of
deviation from Poisson statistics. Transcription was found to dominate the intrinsic
noise when the average number of proteins produced per mRNA transcript was greater
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than 2; below this level, translational effects had to be taken into account. Experimen-
tal validation of the source of intrinsic noise was provided by Ozbudak et al. (2002),
who varied the rate of transcription and translation of a single fluorescent reporter gene
in Bacillus Subtilus; transcription rates were modified through the use of an inducible
promoter, whereas translation rates were controlled through the introduction of a num-
ber of mutations into the ribosomal binding site. Changes in phenotype were recorded
while the rates of transcription and translation were varied. The results obtained indi-
cated that measured noise depended inversely upon the rate of transcription but was not
dependent on the rate of translation; this provided early evidence for the production of
proteins in stochastic bursts.

Theoretical work by Paulsson (2004) further expanded the mathematical descrip-
tion of noise in biological systems by providing a single unified equation for extrinsic
and intrinsic noise. Raser and O’Shea (2004) introduced the concept of a two-state
transcriptional model, allowing both permissive and non-permissive transcriptional
states, into a flow cytometry study of noise in budding yeast. They hypothesised that
the phenotypical heterogeneity permitted by the presence of biological noise in a given
population of cells may provide an evolutionary advantage, promoting adaptation to a
variable environment through allowing a heterozygous population to express a wider
range of phenotypes than otherwise possible.

The concept of transcriptional bursting as an important source of biological noise
has since become increasingly central to our understanding of the physical mechanisms
underpinning intrinsic noise; more recent work (summarised by Munsky et al. (2012)
and expanded upon below) has focussed on using laboratory imaging techniques (such
as Single Molecule Fluorescence in situ Hybridisation and the MS2-GFP system) to
generate in vivo datasets for computational analysis, with the aim of extracting the ki-
netic parameters of transcriptional bursting from the data. While transcriptional burst-
ing is now accepted as a key source of intrinsic noise within the cell, the exact details
of the spatio-temporal regulation of bursting remain unclear.

2.2.3 Experimental Methodologies

Localisation and quantification of individual mRNA transcripts on a single-cell ba-
sis within the Drosophila embryo requires accurate, high-resolution microscopy data
derived from imaging of both fixed and living embryos. New techniques for com-
putational image analysis, along with refined wet-lab data acquisition protocols, have
allowed for the generation of static microscopy images and videos capable of resolving
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individual transcripts and transcription foci within the developing embryo. The follow-
ing sections outline these experimental and computational techniques. Live imaging,
in particular, is capable of providing insights into bursting dynamics at high temporal
and spatial resolution. The algorithm and modelling results presented in the following
two chapters focus on the MS2 system, a particular type of real-time imaging system.

Single Molecule Fluorescence in situ Hybridization

Visualisation of individual mRNA transcripts in fixed tissue can be achieved through
Single Molecule Fluorescence in situ Hybridization (smFISH), allowing for localisa-
tion and quantification of transcripts at the single-cell level (Gregor et al., 2014; Trcek
et al., 2017; Lyubimova et al., 2013). Conventional FISH allows visualisation of the
spatial distribution of mRNA transcripts within fixed tissue; however, limited image
contrast and dynamic range limits this approach to being non-quantitative. Develop-
ment of the smFISH protocol by Femino et al. (1998) and subsequent refinement by
Raj et al. (2008) allowed for visualisation at the single-cell level.

The technique involves hybridisation of 50-100 (Lyubimova et al., 2013) short,
singly-labelled DNA oligonucleotide probes to a complimentary mRNA sequence of
interest. Each of the probes is fluorescently labelled, allowing for detection of as little
as a single mRNA transcript per cell using automated image analysis software (Trcek
et al., 2017). The full image acquisition pipeline requires multiple stages of sample
preparation and data analysis; an smFISH protocol for use with Drosophila published
by Trcek et al. (2017) outlines four stages of preparation – embryo collection and
fixation, embryo hybridization with commercial Stellaris probes, imaging and single-
mRNA detection and counting. Crucially, the technique does not require genetic modi-
fication, greatly reducing the time required for data acquisition relative to live imaging
techniques such as MS2-GFP (Lyubimova et al., 2013). Staining of the cell and nuclear
membranes allows for binning of the detected fluorescent mRNA dots into individual
cells, providing an estimate of transcriptional activity on a single-cell basis.

smFISH has been utilised across a wide range of published research, both in Drosophila

and other organisms – investigation of the invagination of the mesoderm during Drosophila

gastrulation (Boettiger and Levine, 2013), quantification of transcriptional bursting in
Escherichia Coli (So et al., 2011; Skinner et al., 2013), quantification of mRNA degra-
dation rates (Horvathova et al., 2017; Bahar Halpern and Itzkovitz, 2016), quantifica-
tion of transcription bursting in Dictyostelium (Corrigan et al., 2016), measurement of
mRNA nuclear retention in the mouse liver, gut and Beta cells (Bahar Halpern et al.,
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2015a) and quantification of transcriptional bursting in Drosophila (Garcia et al., 2013;
Zoller et al., 2018; Little et al., 2013). Automated processing of smFISH images poses
numerous challenges, as outlined by Mueller et al. (2013), Trcek et al. (2017), Ba-
har Halpern and Itzkovitz (2016), Gregor et al. (2014) and others. Despite these com-
putational challenges, smFISH images provide a rich source of data for researchers
wishing to infer the kinetic parameters of transcription.

MS2-GFP

While it is possible to infer kinetic parameters relating to transcriptional bursting from
static snapshot images, the application of live imaging techniques, such as the use of
the MS2-GFP system, allows for the visualisation of transcription in living cells in
real-time. The technique involves introduction of a reporter transgene into a gene of
interest through genetic modification; the transgene codes for a sequence of repeated
stem loops which bind to a protein fused to Green Fluorescent Protein (GFP) (Gregor
et al., 2014). A widely-adopted specific implementation of this technique utilises the
MS2 bacterial stem loop and corresponding GFP-tagged MS2 coat protein. Transcrip-
tion of the gene containing the transgene construct generates nascent mRNA bound to
GFP tags, allowing for automated computational detection of transcription foci through
analysis of fluorescence microscopy images (Gregor et al., 2014). Example MS2 data
is show in Figures 2.2 and 2.1.

The use of GFP for live imaging in Saccharomyces cerevisiae was originally imple-
mented by Bertrand et al. (1998) and optimised by Golding and Cox (2004); Golding
et al. (2005). The technique has been used to investigate Pol II dynamics (Darzacq
et al., 2007; Fukaya et al., 2017), transvection (Lim et al., 2018), co-ordination of gas-
trulation (Boettiger and Levine, 2013; Lim et al., 2017) and control of transcriptional
dynamics in Drosophila (Corrigan et al., 2016; Garcia et al., 2013; Bothma et al., 2014;
Desponds et al., 2016; Fukaya et al., 2016; Berrocal et al., 2018), among other applica-
tions. Recent work by Lammers et al. (2020) and Berrocal et al. (2018) has highlighted
the suitability of MS2 data for machine learning-based computational modelling of the
regulation of transcription in Drosophila, allowing for a quantitative, rather than purely
phenomenological, approach to understanding transcription in eukaryotes.

Analysis of MS2 images provides measurements in units of arbitrary fluorescence
per transcription foci, rather than absolute measurements in terms of individual tran-
scripts, as with smFISH. In addition to allowing for snapshot quantification of the
distribution of mRNA transcripts at the single-cell scale, smFISH images may be used



2.2. TRANSCRIPTIONAL DYNAMICS 27

160 180 200 220
Embryo anterior-posterior position (au))

20

40

60

80

100

120

Em
br

yo
 la

te
ra

l p
os

iti
on

 (a
u)

)

A

20 40 60 80 100 120
Embryo lateral position (au))

0

25000

50000

75000

100000

125000

150000

175000

200000

M
ea

n 
Fl

uo
re

sc
en

ce
 (a

u)
)

B

0 5 10 15 20 25 30
Time into nuclear cycle 14 (min)

0

50000

100000

150000

200000

250000

300000

350000

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (a
u)

C

0 5 10 15 20 25
Time into nuclear cycle 14 (min)

0

50000

100000

150000

200000

250000

300000

350000

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 (a
u)

D

Figure 2.1: Experimental MS2 data from the Drosophila ush gene, which is discussed
in details in chapters 3 and 4. A: Two-dimensional plot of the posterior portion of
the embryo. Each point represents a transcription site. Microscope co-ordinates are in
arbitrary units. The heatmap corresponds to the mean fluorescence for each trace. B:
Plot of mean fluorescence for each trace as a function of lateral position. The peaked
stripe of expression corresponds to peak levels of Decapentaplegic signalling at the
embryo midline. C: Five example traces from the dataset, plotted as a function of
time into nuclear cycle 14. These traces have been selected from around the embryo
midline, where BMP signalling, and therefore transcriptional levels, are at their peak.
The noisiness of the data is apparent. D: Example traces from the outermost region of
the embryo, where signalling levels are at their weakest.
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to calibrate MS2 imaging data (Gregor et al., 2014; Bothma et al., 2014; Berrocal et al.,
2018; Lammers et al., 2020). Computational processing of MS2 videos generates time
series data quantified in terms of arbitrary fluorescence as a function of time; while
this allows for visualisation of transcriptional activity, inference of Pol II production
requires conversion of the MS2 data into Pol II production as a function of time, rather
than arbitrary fluorescence. Fluorescence data extracted from smFISH images may be
used to calibrate MS2 videos to provide an estimate of Pol II production at the single-
cell level; MS2 data can then simply be divided by a conversion coefficient to provide
an estimate of Pol II production as a function of time for each cell. This technique,
originally pioneered by Garcia et al. (2013), has since been used in a number of other
studies (Berrocal et al., 2018; Lammers et al., 2020; Bothma et al., 2014).

Two variants have been described in the literature. In the original version described
by Garcia et al. (2013), the obtained smFISH profile is overlaid with the total amount
of mRNA produced inferred from the normalised MS2 profile. The integrated fluo-
rescence intensity corresponding to the transit of one polymerase molecule along the
gene is then inferred. Dividing the calculated integrated fluorescence intensity by the
elongation time provides a value for the average fluorescence intensity per polymerase.
The MS2 traces may then be calibrated in terms of the number of polymerase per tran-
scription site. However, the systematic error associated with this approach may be as
high as 29%.

Lammers et al. (2018) have provided an alternative expression for the MS2 cali-
bration factor, given by:

FRNAP =
velongFMS2

NFISH

1
(LI +LII)

(2.1)

Where velong is the elongation time, FMS2 is the total fluorescence per nucleus, NFISH

is the number of mRNA per nucleus, LI is the length of the MS2 loops and LII is the
distance between the end of the MS2 cassette and the 3’ end of the gene. The au-
thors provide an estimate of the calibration error as 13% and a calibration factor of 13
AU/RNAP ± 1.7 using their equipment. This technique was used to calibrate the MS2
data shown in Chapters 3 and 4, where AirLocalize (Trcek et al., 2017) analysis of sm-
FISH data was used to determine the mRNA output for a single allele. Combining this
with the measured mean integrated MS2 fluorescent signal from nuclei at the embryo
midline allowed for calculation of FRNAP. See Hoppe et al. (2020) for further details.
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Figure 2.2: Experimental MS2 data from the Drosophila hnt gene. A: Two-
dimensional plot of the posterior portion of the embryo. Each point represents a tran-
scription site. Microscope co-ordinates are in arbitrary units. The heatmap corresponds
to the mean fluorescence for each trace. B: Plot of mean fluorescence for each trace
as a function of lateral position. The peaked stripe of expression corresponds to peak
levels of Decapentaplegic signalling at the embryo midline. Note the reduced mean
fluorescence levels relative to ush. C: Five example traces from the dataset, plotted as
a function of time into nuclear cycle 14. D: Example traces from the outermost region
of the embryo.
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2.3 Mathematical Modelling of Transcriptional Bursting

In the simplest possible model of gene expression transcripts would be produced and
degraded at a constant rate, described by a first-order reaction with production and
degradation rate constants. In a system with many molecular components, averaging
effects would be expected to smooth out the stochastic creation and degradation of
transcripts and proteins. However, in many systems, the limited number of individual
components of transcription within a given cell – potentially less than ten transcripts
or proteins per cell for a given gene (Paulsson, 2004) – means that molecular reactions
must instead be modelled as discrete events, where the averaging effect no longer holds
(El Samad et al., 2005).

Mathematically, the continuous production and degradation of mRNA transcripts
at random intervals would result in a Poisson distribution of mRNA transcripts; the
mean of the distribution would be expected to be equal to the variance (Gregor et al.,
2014). Waiting times between the production of individual transcripts would be ex-
ponentially distributed, with a most likely time interval of zero and the long tail of
distribution representing less likely longer waiting times (Lenstra et al., 2016). While
this model has been reported to successfully describe a number of systems such as sev-
eral housekeeping genes in yeast (Chen and Larson, 2016), the temporal distribution of
mRNA transcripts for many genes in both prokaryotes and eukaryotes is not well ex-
plained by this particular model. For many genes, snapshot measurements of transcript
number have indicated that the distribution of transcripts is ‘Super-Poissonian’ – the
measured variance is greater than the mean (Lenstra et al., 2016; Nicolas et al., 2017).
The Super-Poissonian distribution of transcripts indicates that many genes do not pro-
duce transcripts as a continuous process – the molecular machinery of transcription
must be behaving in such a way so as to explain the Super-Poissonian distribution of
transcripts. Additionally, live imaging of transcription has provided direct evidence for
discontinuous transcript production in many genes (Fukaya et al., 2016).

An alternative model to Poissonian transcript production is therefore required. A
simple alternative model is the so-called random telegraph model (Peccoud and Ycart,
1995; Friedman et al., 2006). In this model, the promoter stochastically switches be-
tween active and inactive transcriptional states; a number of molecular mechanisms,
such as changes in chromatin structure, have been proposed to biologically explain
these changes in state (Nicolas et al., 2017). While in the active state, Pol II elonga-
tion commences and mRNA transcripts are produced at a constant rate. While in the
inactive state no transcription takes place. This model, while simple, has been used to
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describe the dynamics of transcription in a number of different systems; crucially, the
distribution of transcripts produced by a system behaving according to the random tele-
graph model is non-Poissonian; the model is able to generate temporal transcriptional
distributions following a wide range of different profiles.

Fitting a mathematical model of transcription, such as the random telegraph model,
involves inference of the model parameters through training using biological data. In-
ference techniques typically focus either on inferring model parameters from mRNA
distributions generated using techniques such as Single Molecule Fluorescence in situ
Hybridisation or from live imaging approaches, such as the MS2-GFP system, as de-
scribed in section 2.2.3. In the case of a model of transcriptional dynamics, such as the
random telegraph model, inference of the model parameters directly corresponds to
inference of the kinetic parameters of the molecular machinery of transcription itself,
such as the rate of changes in promoter state and Pol II loading rate; calculation of
these parameters may then give insight into both the regulation of transcription within
the system and the response of the system to genetic and environmental perturbations.

Research in regulation of transcriptional dynamics has uncovered a range of possi-
ble physical parameters under regulatory control. Molecular processes occurring prior
to recruitment of Pol II to the promoter, the formation of the transcriptional complex
and elongation of Pol II may all be regulated steps (Lenstra et al., 2016; Coulon et al.,
2013). Bentovim et al. (2017) identified three broad categories of transcriptional reg-
ulation, each consisting of separate sub-categories: the location of transcription (com-
binatorial control by cis-acting elements and regulation of boundary formation), the
level of transcriptional activity (burst size and frequency modulation, physical inter-
action of regulatory elements and shadow enhancers) and the timing of transcription
(promoter synchronisation via promoter-proximal pausing, temporal co-ordination of
enhancers and alteration of chromatin structure via pioneer factors). Each of these par-
ticular factors may contribute to the transcriptional dynamics of a given gene, which in
turn shapes the temporal and spatial characteristics of the gene’s expression domain.
Quantification of these parameters via statistical inference provides an insight into reg-
ulatory control of a given gene.

Three parameters are necessary to completely specify the characteristics of the ran-
dom telegraph model: kon, the rate of promoter activation, koff, the rate at which the
promoter enters the inactive state and r, the polymerase loading rate while in the active
state. Transcriptional regulation may be achieved through modulation of any combi-
nation of these parameters; research in both prokaryotes and eukaryotes has indicated
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regulation via burst frequency (regulation of kon), burst size (regulation of koff) and
burst amplitude (regulation of r). A range of different mechanistic interpretations have
been proposed for each of these regulatory strategies. Nicolas et al. (2017) have pro-
posed seven physical parameters which may play a role in modulating burst size and
frequency: the local chromatin environment, nucleosome occupancy, histone modi-
fications, the number and binding affinity of cis-regulatory elements, DNA looping
and transcription factor availability. The extent to which each of these parameters is
responsible for regulation of transcriptional bursting for both a given organism and a
given gene is unclear. Determination of the regulatory strategy employed for a given
gene requires accurate quantification of transcriptional activity; quantitative analysis of
individual mRNA transcripts and transcription foci extracted from imaging data offers
a relatively new opportunity to infer transcriptional activity.

2.3.1 Inferring Kinetic Parameters from mRNA Distributions

Zenklusen et al. (2008) used FISH to provide exact mRNA counts in Saccharomyces

cerevisiae for the first time, demonstrating transcriptional bursting for a key gene in-
volved in pre-ribosomal processing. So et al. (2011) proposed a novel theoretical per-
spective based on Shannon’s mutual information function to analyse transcriptional
bursting in S. cerevisiae, concluding that transcriptional time series contained infor-
mation transmitted from an outside stimulus, such as the extracellular concentration of
inducer molecules. Additionally, they concluded that the mRNA expression level was
modulated through varying the gene ‘off’ rate. Garcia et al. (2013) pioneered the use
of smFISH in calibration of MS2 videos in terms of polymerase molecules (discussed
at length in the MS2 and image analysis sections). Little et al. (2013) focussed on us-
ing FISH to measure intrinsic noise relating to transcription of the hunchback gene in
the early Drosophila embryo, concluding that precise developmental boundaries were
achieved through simple spatio-temporal averaging in the absence of feedback, despite
the presence of intrinsic noise in the system.

Jones et al. (2014) constructed a set of synthetic promoters in Escherichia coli

and used FISH to evaluate the effect of varying promoter strength, transcription factor
binding strength and transcription factor copy number on variability in gene expres-
sion, concluding that the ability of their model to predict the observed variability in
gene expression indicated that transcription noise is tuneable and therefore represents
an evolutionarily accessible parameter. Senecal et al. (2014) investigated the control
of transcriptional bursting of the proto-oncogene c-Fos in human U2OS cells, using
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the FISH-quant protocol originally developed by Mueller et al. (2013). MAPK induc-
tion was found to control the frequency of transcriptional bursts through variation in
transcription factor concentration levels. Synthetic transcription factors were used to
tune the parameters of the transcriptional bursts, implying a role for the strength of the
transactivation domain in regulation of polymerase initiation frequency and transcrip-
tion factor lifetime in controlling burst duration.

In a key paper Xu et al. (2015) combined smFISH and immunofluorescence to
analyse the relationship between the hunchback gene and the bicoid transcription fac-
tor in the Drosophila embryo. Analysis of transcription factor binding revealed a Hill
function-type relationship between hunchback and bicoid, uncovering the gene reg-
ulation function linking the gene and its activator. Maximum likelihood estimation
of the kinetic parameters of the random telegraph model indicated that regulation of
the activation rate alone, i.e. burst frequency, was able to explain the observed dis-
tribution of mRNA. This particular form of analysis may be relevant in determining
the relationship between Dpp and genes in the ush group involved in dorsal-ventral
patterning, although the practical difficulties involved in estimating the distribution of
Dpp (Umulis et al., 2010) may limit its application.

Bahar Halpern et al. (2015b) concluded from analysis of smFISH images of mam-
malian liver tissue that genes with short mRNA lifespans were associated with an in-
creased burst fraction, allowing a rapid transcriptional response while reducing ‘burst-
associated noise’. They also noted that bursting may reduce the statistical likelihood of
transcription factor misbinding events. The lab protocol associated with the same pa-
per has since been published as a separate methodology (Bahar Halpern and Itzkovitz,
2016), allowing estimation of mRNA degradation (in addition to production) rates.
Labelling of introns was used to identify transcription sites, as introns are generally
spliced co-transcriptionally; labelling of exons was used to calculate average Pol II oc-
cupancies. Taken in conjunction, the average number of cytoplasmic mRNA molecules
per cell and the average polymerase occupancy of a transcription site were used to cal-
culate the mRNA degradation rate.

Bartman et al. (2016) revealed, through FISH experiments, that increasing the fre-
quency of chromatin contact through forcing of enhancer contact using an LCR-β-
globin promoter chromatin loop increased burst fraction, but not burst size in mam-
malian cells, providing further evidence for enhancer control of transcriptional burst
frequency. A recent paper has integrated Pol II ChIP-seq with smFISH to argue for
a ‘multi-step’ regulatory process, where transcriptional burst frequency is the main
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parameter under control (Bartman et al., 2019). Zoller et al. (2018) advanced an ele-
gant mathematical argument for transcriptional burst frequency regulation in anterior-
posterior patterning of the Drosophila embryo, offering a re-parameterisation of the
standard formulation of transcriptional kinetic parameters. The authors analysed the
effect of solving the master equation for the anterior-posterior system while allow-
ing each of kini, ko f f and kon to vary. In this manner, they were able to compare the
measured noise to the predicted noise levels from varying each of the inputs.

2.3.2 Inferring Kinetic Parameters from Live Imaging

As an alternative to the inference of the kinetic parameters of transcription from static
snapshots of the distribution of mRNA transcripts within fixed tissue, live imaging may
be used to infer kinetic parameters in vivo through the use of the MS2-GFP system. As
described in section 2.2.3, this technique involves the use of fluorescence microscopy
to quantify fluorescent light emitted from Green Fluorescent Protein bound to hair-
pin loops contained within transcripts of a genetically edited gene of interest. Ap-
proaches to extracting kinetic parameters from MS2 data have typically focussed on
either manual fitting of simple mathematical models to recorded data (Fukaya et al.,
2016; Bothma et al., 2014) or the inference of the parameters of the random telegraph
model through maximum likelihood methods (Suter et al., 2011). In recent years, tech-
niques from machine learning have been applied to MS2 data with promising results
(Corrigan et al., 2016; Berrocal et al., 2018; Lammers et al., 2020).

Early work by Golding et al. (2005) utilised MS2-GFP to provide evidence of tran-
scriptional bursting in Escherichia coli. Following induction, the mRNA count within a
population of cells was recorded at 30 second intervals. mRNA production within each
cell was found to scale as a Poisson process, but with larger fluctuations than expected
for a simple Poisson process (larger variance than the mean), consistent with transcrip-
tional bursting. Kinetic parameters were compared to the random telegraph model,
where superposition of exponential waiting times between periods of transcript pro-
duction and Poissonian production of transcripts during a period of activity results in a
geometrically distributed number of transcripts produced during each ‘on period’. Ob-
served data was found to be consistent with the random telegraph model, as measured
through comparison of observed data with data simulated using a Gillespie Algorithm
formulation of the random telegraph model.

Darzacq et al. (2007) used MS2-GFP to measure kinetic parameters of transcrip-
tion in a mammalian cell line, allowing quantification of not only promoter initiation,
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dissociation and escape constants but also the dynamics of transcriptional pausing.
Muramoto et al. (2010) investigated the role of methylation of H3K4 in inheritance of
activate transcriptional states between mother and daughter cells through imaging of
transcription in Dictyostelium. Both transcriptional pulse length and firing rate were
found to be inherited through epigenetic mechanisms, providing direct evidence of
transcriptional burst and frequency modulation. Evidence of frequency modulation of
transcriptional bursting was provided by Larson et al. (2013) through light-sensitive
control of a single steroid-responsive gene in human U2-OS cells; the duration of on
and off-times was inferred using a Hidden Markov Model originally developed by Lee
(2009).

A key paper by Garcia et al. (2013) (discussed in more detail later in this sub-
section, see also Lucas et al. (2013)) introduced the use of MS2 to quantification of
transcription in the Drosophila embryo, allowing for association of transcriptional ac-
tivity with formation of the expression domain of the hunchback gene. smFISH was
used to calibrate MS2 fluorescence traces, allowing estimation of the number of Pol
II on a single-cell basis. The authors concluded that not only the mRNA content of a
given cell, but also the time period of transcriptional activity were key in determining
cellular developmental decisions, introducing an averaging effect over space and time
into expression domain formation. Calibration using smFISH allowed for estimation
of the rate of polymerase loading, in addition to estimation of the length of promoter
on and off-periods. Bothma et al. (2014) also investigated transcriptional dynamics
in the Drosophila embryo; specifically, the dynamics of the formation of eve stripe 2
during nuclear cycle 14. The spatial distribution of mRNA transcripts on a single-cell
basis was calculated through integration of MS2 fluorescent traces. The authors ob-
served a highly dynamic pattern of transcription; burst cycles were estimated to last
4-10 minutes, with 20-100 mRNA transcripts produced during a single burst. Estima-
tion of Pol II loading rates through integration of the M2 fluorescent signal produced a
surprising result – the rate of Pol II loading appeared to be temporally regulated, with
rates of Pol II loading ranging from 4 to 14 Pol II complexes per minute. The authors
argued that this provided evidence against a simple two-state model, with the promoter
instead adopting a multi-state model through switching between multiple rates of Pol
II loading.

smFISH was used in conjunction with MS2 by Ochiai et al. (2014) to investigate
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regulation of Nanog, a transcription factor associated with pluripotency, in mouse em-
bryonic stem cells. The authors wished to understand the association between cell-to-
cell heterogeneity in Nanog expression and embryonic stem cell fate decisions. Nanog
was found to be transcribed in a pulsatile and stochastic fashion. The authors found
statistically significant variation in both transcriptional burst frequency and duration.
Super-Poissonian variability in the distribution of Nanog mRNA was observed, con-
sistent with transcriptional bursting. The transcriptional response of β-actin to pertur-
bation of extracellular signalling factors in mouse embryonic fibroblasts was analysed
by Kalo et al. (2015), with the aim of establishing the relationship between signal-
ing factor levels and transcriptional pulse fidelity. Inference of promoter transition
times through maximum likelihood estimation of the parameters of a binomial mix-
ture model trained using MS2 data revealed that the transition rate from an inactive to
active transcriptional state was modified following serum induction.

An insight into the molecular processes underlying transcriptional bursting was
provided by Tantale et al. (2016), who revealed the formation of ‘convoys’ of Pol
II during transcriptional bursts in both synthesis of HIV-1 and cellular transcription.
Analysis of MS2 data revealed bursts of Pol II separated by several hundred nu-
cleotides, with the promoter activity regulated by two separate processes – minute-
scale fluctuations in transcription regulated by Mediator and TBP-TATA box regulated
fluctuations on a timescale of hours. Additional evidence of the structural phenomena
behind transcriptional bursting has been provided by research in Drosophila by Fukaya
et al. (2016), who examined the role of enhancer-promoter communication in the reg-
ulation of transcription. Insertion of different enhancers downstream of synthetic re-
porter genes was used to investigate the effect of varying enhancer ‘strength’ on tran-
scriptional activity. Strong enhancers were found to increase the frequency of tran-
scriptional bursting, with the amplitude and duration of bursts remaining unchanged.
Insertion of insulators into the genome resulted in a reduction in burst frequency, sug-
gesting a role for enhancer modulation of transcriptional bursting via frequency con-
trol. However, further validation outside of this specific synthetic application may be
necessary.

The application of machine learning to the inference of promoter activity from
MS2 data was pioneered by Corrigan et al. (2016), building upon earlier work by Lee
(2009). A Hidden Markov Model was used to characterise transcription of the actin
housekeeping gene in Dictyostelium. Due to the persistence of the fluorescence of
Pol II while still in transit during elongation, a two-layer model was constructed with
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the hidden states of the Hidden Markov Model corresponding to the Pol II initiation
rate and number of Pol II initiated at a given time point, uncoupling the modelling of
the rate of Pol II initiation from inference of gene state. Following maximum likeli-
hood training on synthetic data, application of the Akaike Information Criterion (AIC)
model comparison technique indicated the presence of a ‘continuum’ of transcriptional
states, rather than a small, discrete number of transcriptional states. A ‘ladder’ of pos-
sible transcriptional states was proposed by the authors to describe this continuum of
initiation rates. Autocorrelation analysis of initiation rates revealed fluctuations in ini-
tiation rate on a timescale of 5-6 minutes. The introduction of point mutations in the
TATA box of the act5 gene was used to investigation the effect of perturbations on tran-
scriptional parameters inferred using the model; significant changes in Pol II initiation
rate were found, whereas changes in burst frequency and duration were absent.

Two companion papers (Berrocal et al., 2018; Lammers et al., 2020) adapting and
extending the Hidden Markov Model approach of Corrigan et al. for application to
modelling MS2 data collected from the early Drosophila embryo have provided a the-
oretical basis for computational modeling of DV patterning in Drosophila. Lammers
et al. outlined a computational pipeline for analysis of MS2 movies of the transcrip-
tional activity of stripe 2 of the even-skipped (eve) gene in the Drosophila embryo,
with the aim of establishing if regulation of transcriptional burst frequency alone is
sufficient to explain formation of the eve expression domain, i.e. if spatial modulation
of burst frequency alone is able to re-create the formation of eve stripe 2. The authors
used their Compound State Hidden Markov Model (cpHMM) to infer promoter state,
along with Pol II loading rate, burst frequency and burst duration for different spatial
regions of the eve expression domain and concluded that while burst frequency is the
main regulated parameter, variation of burst frequency alone is insufficient to re-create
the distribution of mRNA across the expression domain – instead, the duration of tran-
scriptional activity, i.e. when which cells are active and for how long, is varied across
the expression domain, resulting in a kind of ‘digital’ on-off control in conjunction
with the analogue control provided by mRNA count – the so-called ‘binary control’ in
the title of the paper.

The basic model of mRNA dynamics proposed in the paper is relatively simple.
The mean rate of transcription is given by the product of the fraction of time spent in a
transcriptionally active state and the rate of Pol II loading while in the active state:

⟨transcription rate⟩(x, t) = r(x, t)
kon(x, t)

kon(x, t)+ koff(x, t)
(2.2)
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In order to fully describe the accumulation of mRNA at the single-cell scale, the model
must also incorporate mRNA degradation. Incorporating the rate of mRNA degrada-
tion leads to the following equation:

dmRNA
dt

(x, t) = r(x, t)
kon(x, t)

kon(x, t)+ koff(x, t)
− γmRNA(x, t) (2.3)

The authors then follow convention in assuming that the rate of bursting does not vary
during the nuclear cycle, equivalent to assuming steady-state conditions (setting the
derivative to zero), resulting in:

mRNA(x) =
1
γ

r(x)
kon(x)

kon(x)+ koff(x)
(2.4)

This equation can then be used to compare model predictions to the actual amount of
recorded mRNA. Note the presence of the three kinetic parameters: r(x), kon and koff,
corresponding to Pol II loading rate, burst frequency and burst duration. The cpHMM
described in the paper performs inference over these three parameters.

The authors used the MS2 system to measure the rate of transcription of an eve

reporter construct in multiple Drosophila embryos. smFISH was used to calibrate the
MS2 video in terms of Pol II, rather than arbitrary fluorescence. The cpHMM was
designed with a specific architecture – the ability to take persistence, or memory, in
the data into account – due to the lack of one-to-one correspondence between the MS2
signal and the hidden variable of interest (promoter state); the recorded signal is the
aggregate of all of fluorescent Pol II currently in transit down the gene. Validation us-
ing synthetic data indicated that the cpHMM was capable of carrying out inference on
MS2 data. The authors specified a three-state model, where either allele, both alleles
or neither alleles of a given pair could be active; the extra state was included so as
to model the presence of sister chromatids in the imaging data. Parameter inference
using the cpHMM indicated that while Pol II loading rate and the rate of transitions to
an inactive state (burst duration) were not modulated across the width of the expres-
sion domain, the rate of transition from an inactive to active state (burst frequency)
was significantly up-regulated in the centre of the expression domain, resulting in an
increase of time spent in the active state in the centre of the expression domain; the
authors conclude that this indicates that transcription factors regulate burst frequency
in the developing embryo, consistent with Xu et al. (2015) and Fukaya et al. (2016).

The model in the paper assumes that the promoter may be in one of K possible
states. Transitions between states at a given time point are assumed to be Markovian,
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i.e. the current promoter state at a given time point is dependent only upon the pro-
moter state at the previous time point. The probability of transitioning between the K

possible states is encoded by a K ×K transition probability matrix A. Each effective
promoter state, zK , is associated with a polymerase initiation rate, r. The persistence
of fluorescence generated by Pol II in transit down the length of the gene is modelled
through the inclusion of a window variable, W . The observed fluorescence y at a given
time point is the combination of fluorescence from polymerase initiated in the previous
W time steps, resulting in a dependence not only on the current hidden promoter state
zt , but also the hidden states in the previous W time steps (zss). The authors introduce
the concept of a compound state, st , to model this dependency on previous time steps
without violating the Markov condition, in conjunction with the set of model parame-
ters, θ. We describe the cpHMM in greater detail in section 2.3.5 after first introducing
Hidden Markov Models in the following section.

2.3.3 Hidden Markov Modelling of MS2 Data

The following sections give a general overview of the theory of Hidden Markov Mod-
els, followed by a more detailed analysis of the Compound State Hidden Markov
Model proposed by Lammers et al. (2020). In the next chapter we introduce a new
approximate inference scheme that allows the cpHMM to be applied to longer genes
than the original formulation.

2.3.4 Markov Models

In many cases, data can be effectively described as independent and identically dis-
tributed (i.i.d). For many situations this assumption is sufficient, but it may not be
appropriate for dealing with sequential data, where the time-dependence of the data
should be taken into account. Many different types of model have been described in
the scientific literature for modelling time series data. These models generally fall into
into two main classes: deterministic and stochastic models (Murphy, 2012; Bishop,
2006; Durbin, 2006; Rabiner, 1989). For deterministic models, it can be assumed that
the properties of the underlying signal can be captured by calculating the parameters
of the signal, such as the amplitude, wavelength and phase of a sinusoidal signal. For
stochastic models, on the other hand, a statistical approach is taken instead, with the
aim of inferring the statistical parameters of the random process assumed to have gen-
erated the recorded signal.
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State1

State2 x1 x2 x3 x4

Figure 2.3: A simple first-order Markov Chain of observations xt .

One relatively simple way of capturing time dependence in a series of observations
is to consider a Markov Model. For a series of observations x1, ...,xT , the product rule
can be used to express the joint distribution of the observations as

p(x1, . . . ,xT ) =
T

∏
t=1

p(xt |x1, . . . ,xt−1) (2.5)

If the conditional distributions on the right-hand side of equation 2.5 are assumed to
be independent of all previous distributions apart except from xt−1 then a First-Order

Markov Chain is obtained. A simple example of a first-order Markov Chain is shown
in Figure 2.3. The system alternates stochastically between State 1 and State 2 at each
time point t. An observation, xt , is associated with each time point t.

The joint distribution of T observations under this model is then given by

p(x1, . . . ,xT ) = p(x1)
T

∏
t=2

p(xt |xt−1) (2.6)

Due to the product rule of probability, the conditional distribution for observation xt

given all observations up to time t is given by

p(xt |x1, . . . ,xt−1) = p(xt |xt−1) (2.7)

This equation implies that when predicting the next observation in a sequence, only the
immediately preceding observation is taken into account; all previous observations are
discounted. While this involves making strong assumptions about the time dependency
characteristics of the data, Markov Models have been used successfully in practice to
model time series data with simple short-range time dependencies. Longer-range time
dependencies can be incorporated into the model by allowing xt to be conditionally
dependent upon observations further back in time. For example, allowing xt to depend
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Off

On

p(x|z = Off)

p(x|z = On)

z1 z2 z3 z4

x1 x2 x3 x4

Figure 2.4: Ergodic and Trellis diagrams for a simple 2-state Hidden Markov Model,
which cycles between ‘Off’ and ‘On’ latent states. The emission generated at each
time point xt is conditioned upon the latent state.

upon xt−1 and xt−2 results in a Second-Order Markov Chain. In practice, this can
be be extended up to an Mth order Markov Chain, where the conditional distribution
for a given variable depends upon the previous M variables. The penalty paid for
introducing longer-range time dependencies is the increased complexity of the model
- the exponential growth in the number of parameters as M increases results in this
approach becoming computationally infeasible for large values of M.

Another approach to attempting to capture complexity in the data is to introduce
the concept of latent variables, or hidden states. For each observation xt there is a
corresponding latent variable zt . While the latent variables do satisfy the Markov as-
sumption, the observations do not, as the observations are not conditionally indepen-
dent. This general class of model is known as a State Space Model. When the latent
variables are discrete, the term Hidden Markov Model, or HMM, is used. A simple
example HMM is shown in Figure 2.4. The following sections describe the structure
and algorithmic detail of HMM’s.

The Structure of Hidden Markov Models

A standard HMM can be described by a number of essential elements. Firstly, the num-
ber of states of the model, or K. K generally has some kind of physical significance
in relation to the data being modelled; for example, a HMM describing the sequence
of DNA base pairs may have four states, corresponding to the four nucleotides. In
the model described in following sections, K represents the state of the promoter at
a given time point, which may be in either an ‘active’ or ‘inactive’, or ‘on’ and ‘off’
configuration, resulting in a 2-state model. The latent variables of the model at step t
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take the form of a 1×K sequence zt = [zt1,zt2 . . .ztK] with K − 1 zeros and one ele-
ment ztk = 1 indicating which state is occupied at time t. The probability of switching
between the hidden states of the model is described by a transition matrix, or A. A is
a K ×K matrix of transition probabilities. A corresponds to the conditional distribu-
tion p(zt |zt−1), which describes the dependence of the probability of the current latent
state zt on the previous latent state zt−1. The transition probabilities may be written as
A jk ≡ p(ztk = 1|zt−1, j = 1), allowing the conditional distribution of latent states to be
written as

p(zt |zt−1,A) =
K

∏
k=1

K

∏
j=1

Azt−1, jztk
jk (2.8)

The transition matrix has a physical significance in that the transition probabilities
can be converted to rates. For the 2-state promoter model, the transition probabilities
describe the probability of the promoter switching between active and inactive states,
as shown in equation 2.9. For example, ko f f→on describes the rate, or frequency, at
which the promoter switches from an inactive or active state, and can be expressed in
terms of transitions min−1.

A =

[
a00 a10

a01 a11

]
=

[
ko f f→o f f kon→o f f

ko f f→on kon→on

]
(2.9)

The vector of initial states, πk, describes the probability of the hidden states starting in
one of K configurations. πk takes the form of a vector of probabilities representing the
marginal distribution p(z1), such that

p(z1|π) =
K

∏
k=1

π
z1k
k (2.10)

with ∑k πk = 1.

An observation model, p(xt |zt ,φ), is required to describe the probability of the ob-
served data, where φ is a set of parameters belonging to the conditional distribution of
observed variables. Many different probability distributions may be used as observa-
tion models, with both discrete and continuous observations being a possibility. These
probabilities are known as emission probabilities, which may be represented as

p(xt |zt ,φ) =
K

∏
k=1

p(xt |φk)
ztk (2.11)
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The complete set of parameters describing the model are given by X = {x1, . . . ,xT},
Z = {z1, . . . ,zT}, θ = {π,A,φ}. Combining each of these components, the joint prob-
ability function over latent and observed variables for a standard HMM may therefore
be given by

p(X ,Z|θ) = p(z1|π)

[
T

∏
t=2

p(zt |zt−1,A)

]
T

∏
t=1

p(xt |zt ,φ) (2.12)

For the Compound State Hidden Markov model described in following sections, a
Gaussian observation model was used, parameterised by a mean (µ) and noise (σ)
parameter. While many different variations upon the basic HMM template are possible,
such as left-to-right and non-ergodic models (Rabiner, 1989), a HMM must include
these basic components.

Determining the Likelihood of an Observation Sequence

Applying a HMM to real-world data involves solving three basic problems: how to
quantify the likelihood of a given observation sequence, how to train the HMM so as
to infer the most likely model parameters, and how to infer the most likely sequence of
hidden states for a particular observation sequence, given the model parameters (Ra-
biner, 1989). The simplest way to determine the likelihood of a particular observation
sequence would be to sum over all possible state sequences that could produce a par-
ticular observation sequence. However, such an approach would be computationally
infeasible, as it would require KT calculations for a HMM with K hidden states and
observation sequences of length T .

A much more computationally efficient approach is therefore required. This is
the forward algorithm, a form of dynamic programming. Rather than summing over
all possible state sequences, an intermediate variable known as the forward variable,
α(zt), is used instead. α(zt), the joint probability of observing x1, . . . ,xT and being in
state zt , may be defined as

α(zt)≡ p(x1, . . . ,xt ,zt) (2.13)

Starting from an initial condition given by

α(z1) = p(x1,z1) = p(z1)p(x1|z1) (2.14)

A recursive process, based on conditional independence properties, and dependent
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Figure 2.5: Calculation of the forward variable, α(zt). At each time point t, α(zt) is
calculated by summing up the previous α(zt−1) values, weighted by their associated
observation likelihoods and transition probabilities.

upon the sum and product rules, can be used to express α(zt) in terms of α(zt−1):

α(zt) = p(xt |zt) ∑
zt−1

α(zt−1)p(zt |zt−1) (2.15)

Starting from the initial state, forward variables are calculated as part of an iterative
process (Figure 2.5) which can be expressed as a form of message passing (Bishop,
2006). Computing the forward variables in this manner takes O(K2T ) time, rather
than KT time, making calculation of the observation sequence likelihood much more
computationally efficient.

Training Hidden Markov Models

In a similar manner to the forward algorithm, it is possible to define the backward

algorithm, the conditional probability of a future observation xt+1, . . . ,xt , given that
the hidden state is currently zt (Figure 2.6). Through a similar recursive process to the
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Figure 2.6: Calculation of the backward variable, β(zt). In a similar manner to the
forward algorithm, β(zt) is calculated by summing over the contribution of all input
β(zt+1) terms, weighted by the observation and transition probabilities.

forward algorithm, we can define a backward variable β(zt)

β(zt)≡ p(xt+1, . . . ,xT |zt) (2.16)

Starting this time from the initial condition

β(zT ) = 1 (2.17)

β(zt) is expressed in terms of β(zt +1) as

β(zt) = ∑
zt+1

p(xt+1|zt+1)p(zt+1|zt) (2.18)

Taken in conjunction, the forward and backward algorithms can be used to train
a HMM through the forward-backward algorithm, or Baum-Welch algorithm, a form
of Expectation Maximisation (Bishop, 2006). The likelihood for the HMM can be
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formulated as

p(X |φ) = ∑
Z

p(X ,Z|φ) (2.19)

Following marginalisation over the latent variables Z. This expression does not fac-
torise over t, preventing summations over zt being carried out independently. In ad-
dition, performing all of the summations involved would involve a total of KT terms.
This exponential growth in computational time, similar to the problem faced when
calculating the likelihood of a particular state sequence explicitly, requires that an al-
ternative approach to be taken.

Expectation Maximisation (EM) is an iterative process, beginning with an initial
estimate for the model parameters, designated Qold . In the E-step, the posterior distri-
bution over the latent variables, p(Z|X ,θold) is found. In the M-step, the parameters
are updated using the values inferred during the E-step. This process is repeated until
the change in likelihood calculated as part of the E-step falls below a certain threshold.
Formally, the E-step involves evaluation of the Q-function, given by

Q(θ,θold) = ∑
Z

p(Z|X ,θold) ln p(X ,Z|θ) (2.20)

Two intermediate terms are commonly defined, γ(zt) and ζ(zt−1,zt), such that

γ(zn) = p(zt |Xold
θ ) (2.21)

ζ(zt−1,zt) = p(zt−1,zt |X ,θold) (2.22)

Substituting these expressions (represented graphically in Figures 2.7 and 2.8) into
the definition for the joint distribution, the Q-function can be written as

Q(θ,θold) =
K

∑
k=1

γ(z1k) lnπk +
T

∑
t=2

K

∑
j=1

K

∑
k=1

ζ(zt−1, j, j,ztk) lnA jk +
T

∑
t=1

K

∑
k=1

γ(ztk) ln p(xt |φk)

(2.23)
For a HMM, this expression has a closed form and can be evaluated explicitly using
Expectation Maximisation. During the E-step, γ(zt) and ζ(zt−1,zt) are evaluated, fol-
lowed by the M-step, where Q(θ,θold) is maximised with respect to the model param-
eters. In terms of γ(zt) and ζ(zt−1,zt), the model parameters π and A can be expressed
as
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Figure 2.7: Calculation of the joint probability, ζ(zt−1,zt), the probability of being in
state i at time t and state j at time t +1, given the observation sequence and the model.
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Figure 2.8: Calculation of γ(zt). γ(zt) represents the probability of being in state j at
time t.
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πk =
γ(z1k)

∑
K
j=1 γ(z1 j)

(2.24)

A jk =
∑

T
t=2 ζ(zt−1, j,ztk)

∑
K
l=1 ∑

T
t=2 ζ(zn−1, j,ztl)

(2.25)

Assuming a Gaussian observation likelihood, the mean and covariance of the emission
density are given by

µk =
∑

T
t=1 γ(ztk)xt

∑
T
t=1 γ(ztk)

(2.26)

∑
k
=

∑
T
t=1 γ(ztk)(xt −µk)(xt −µk)

T

∑
T
t=1 γ(ztk)

(2.27)

It is now possible to write γ(zt) and ζ(zt−1,zt) in terms of α(zt) and β(zt)

γ(zt) =
α(zt)β(zt)

p(X)
(2.28)

ζ(zt−1,zt) =
α(zt−1)β(zt)p(zt |zt−1)p(xt |zt)

p(X)
(2.29)

Along with the model parameters, θ

πk =
α(z1k)β(z1k)

∑
K
j=1 α(z1 j)β(z1 j)

(2.30)

A jk =
∑

T
t=2 α(zt−1, j)β(ztk)p(xt |φk)A jk

∑
K
l=1 ∑

T
t=2 α(zt−1, j)β(ztl)p(xt |φl)A jl

(2.31)

φik =
∑

T
t=1 α(ztk)β(ztk)xti

∑
T
t=1 α(ztk)β(ztk)

(2.32)

α(zt) and β(zt) are inferred using the forward and backward algorithms. The whole
process is then as follows: following an initial estimate of the model parameters, carry
out the forward and backward algorithm during the E-step to estimate α(zt) and β(zt).
These estimates are then used to update the model parameters during the M-step until
the change in likelihood with each successive pass of the algorithm falls below a certain
threshold.
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State Sequence Decoding

The final problem associated with HMM’s is the decoding problem: finding the op-
timal sequence of observations associated with a particular sequence of states. This
may be expressed as two similar problems: finding the most probable sequence of
latent states and finding the set of states that are individually most probable. The lat-
ter problem is known as posterior decoding, and is solved by maximising the latent
variable marginals γ(zt) inferred using the forward-backward algorithm. The former
problem can be solved efficiently through the use of the Viterbi algorithm, a form of
dynamic programming algorithm (Figure 2.9). As with attempting to determine the
likelihood of a given state sequence, attempting to quantify the probability of all pos-
sible paths of latent states would be computationally too expensive. A backtracking
approach is taken instead, using the emission and transition probabilities calculated
during the forward-backward algorithm. At each time step t, only a record of the state
associated with highest Viterbi probability needs to be stored. At the end of each pass
of the algorithm these records, or backpointers, can be used to find the most likely
sequence of hidden states. Formally, the problem is that given X , we wish to find Z∗,
the overall most likely explanation of X, such that Z∗ = argmaxZ p(X ,Z|θ). p(X ,Z∗)

can be expressed as

p(X ,Z∗) = max
Z

p(X ,Z) = max
z1,...,zT

p(x1, . . . ,xT ,z1, . . . ,zT )

= max
ZT

max
z1,...zT−1

p(x1, . . . ,xT ,z1, . . . ,zT )

= max
ZT

ω(zT )

z∗N = argmax
zN

ω(zN)

(2.33)

Where ω(zN = maxz1,...,zT p(x1, . . . ,xT ,z1, . . . ,zT ) is the probability of the most likely
sequence of states z1, . . . ,zt ending in zt generating the observations x1, . . . ,xt .

2.3.5 The Compound State Hidden Markov Model

In the Lammers model, the promoter at time point t may be in one of K effective
states. Transitions between effective promoter states zt at time point t are assumed to
be Markovian and are modelled by the K ×K transition matrix A = p(zt |zt−1). Due
to the persistence in the MS2 signal, the observation yt at time t depends upon not
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Figure 2.9: Outline of the Viterbi algorithm. At each time point, a variable known as
a backpointer is stored, allowing for computation of the most likely path through the
state trellis.
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only upon the current hidden promoter state zt , but also on the previous w hidden
promoter states {zt ,zt−1, . . . ,zt−w+1}, where w=

τelong
∆τ

is the window size of the model.
τelong is the polymerase elongation time and ∆τ is the time resolution of the system.
τelong depends upon the Pol II elongation rate and the gene length. ∆τ depends upon
the experimental setup, but was 20s for both the results presented in Lammers et al.
(2020) and in Chapters 3 and 4. Estimates of the elongation rate vary broadly between
different organisms (Zenklusen et al., 2008; Gómez-Schiavon et al., 2017). Garcia
et al. (2013) estimated the elongation rate in Drosophila to be 1.5 kb min-1. More
recent work has estimated an elongation rate of 2.4 - 3 kb min-1 (Fukaya et al., 2017).
Lammers et al. used autocorrelation analysis to calculate an elongation rate of 2.8 kb
min-1, which is consistent with this estimate. In the results presented in Chapters 3 and
4 we have used 2.8 kb min-1 to calculate the window size.

To describe the system Lammers et al. introduced the concept of a compound state
st = {zt ,zt−1, . . . ,zt−w+1}, where each compound state can take on one of Kw different
values. The set of all possible compound states st ∈ {1, . . . ,Kw} is Kw in size. At each
time point the most recent w−1 promoter states are passed from one compound state
to the next, resulting in the last w− 1 promoter states in st+1 = {zt+1,zt , . . . ,zt−w+2}
being included in st . This deterministic passing of the previous promoter states results
in only K different transitions being allowed between each compound state at time t.

The emission probabilities associated with each hidden compound state are mod-
elled using Gaussian distributions with standard deviation σ. ν represents a K × 1
vector, with each row of the vector corresponding to the emission associated with a
particular effective state. The model noise parameter, σ, is a scalar (Lammers et al.,
2020). The joint probability of hidden compound states and fluorescence values is
given by:

p(y,s|θ) = p(s1)|π)
T

∏
t=1

p(yt |st ,ν,σ)
T

∏
t=2

p(st |st−1,A) (2.34)

Training the model requires finding an estimate of the model parameters, θ̂, which
maximise the likelihood of observing the MS2 fluorescence data:

θ̂ = argmax
θ

p(y|θ) (2.35)

The likelihood may be calculated through marginalisation of the joint probability dis-
tribution, i.e. summing over compound states:
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p(y|θ) = ∑
s={s1,s2,.....sT }

p(y,s|θ) (2.36)

Exact inference in this situation is intractable, due to the very large number of sum-
mations required to manually sum-out the hidden state variable. Instead, as is com-
mon with Hidden Markov Model inference, the authors instead use the Expectation-
Maximisation (EM) algorithm (or Baum-Welch algorithm in the context of Hidden
Markov Models) to train the model, based on the following expression for the loga-
rithm of the joint probability distribution:

log p(y,s|θ) = log p(s1|π)+
T

∑
t=1

log p(yt |st ,ν,σ)+
T

∑
t=2

log p(st |st−1,A) (2.37)

Inferred model parameters may then be used to calculate transcriptional kinetic pa-
rameters within a given spatial region. While there is a clear conceptual link between
the Hidden Markov Model framework and the underlying physical process of an un-
observed binary promoter state generating continuous fluorescence time series data, a
key limitation of the cpHMM as implemented in this paper is the scaling of compu-
tational cost with the W window size variable. W increases with gene length, as the
variable is responsible for capturing the length of time needed for Pol II to travel down
the length of the gene. The eve reporter construct used in the paper is of a relatively
short length, resulting in a window size of 7. Many other Drosophila genes, however,
such as ush, would require a much larger window size – 19 in the case of ush. This
is computationally intractable using the model as published in the paper, due to the
exponential scaling of the algorithm with window size. While the underlying mathe-
matics is sound, re-formulating the algorithm to scale less severely (ideally linearly)
with gene length would allow for inference of promoter state in any gene of interest in
Drosophila, and may also form the basis of a general computational tool for inference
in other organisms. Initial modelling results using the Matlab code published with the
paper have indicated that while the algorithm is effective at modelling dorsal-ventral
patterning, the scaling of computational cost with window size is a factor prohibiting
use with other genes.

Calculating the likelihood involves solving equation 2.37. In order to break the
problem down into its constituent parts, Lammers et al. introduced several notations:
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⟨si
t⟩= ∑

{s=s1,s2,...,sT }
si
t p(s|y, θ̂k) (2.38)

⟨si
t ,s

j
t−1⟩= s j

t−1 p(s|y, θ̂k) (2.39)

With these additional terms, equation 2.37 can be rewritten as:

log p(s1|π) =
Kw

∑
i=1

K

∑
k=1

si
1Cki logπk (2.40)

log p(yt |St ,µ,σ) =
1
2

Kw

∑
i=1

si
t(logλ− log(2π)−λ(yt −Vi(µ))2) (2.41)

log p(st |st−1,A) =
Kw

∑
i, j=1

K

∑
k,l=1

Bi jsi
ts

j
t−1CkiCl j logAkl (2.42)

Where Vi(v) represents the aggregate fluorescence and λ = 1
σ2 represents the precision

of the gaussian observation distribution. In these equations Bs′,s = 1 if and only if the
transition s → s′ is allowed and Czs = 1 if and only if ∆(s,1) = z. A is the transition
matrix introduced in equation 2.9. The authors introduced the concept of aggregate
fluorescence in order to describe the dependence of the fluorescence contribution of
each polymerase on its position on the gene body. Following initiation of transcription,
a finite amount of time is taken for the polymerase to transit along the MS2 probe. The
fluorescent contribution of each polymerase is therefore dependent upon its position
within the time window, W . The aggregate fluorescence is calculated as

Vi(v) = Fi,: (2.43)

F is a KW ×K matrix, where the ith row of F represents the number of times each
promoter state is present in the ith compound state, weighted by the position of the
polymerase within the time window W .

The terms defined in equations 2.40, 2.41 and 2.42, along with equations 2.38 and
2.39, allow the log likelihood to be written as:
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L(θ|y, θ̂k) =
Kw

∑
i=1

K

∑
k=1

si
1Cki logπk

+ log p(yt |St ,µ,σ) =
1
2

Kw

∑
i=1

si
t(logλ− log(2π)−λ(yt −Vi(µ))2)

+ log p(st |st−1,A) =
Kw

∑
i, j=1

K

∑
k,l=1

Bi jsi
ts

j
t−1CkiCl j logAkl

(2.44)

The terms p(st |y, θ̂k) and p(st−1,st |y, θ̂k) may be expressed in terms of the α and β

HMM forward-backward algorithm parameters mentioned in the earlier section as:

p(st |y, θ̂k) =
αt(st)βt(st)

p(y| ˆθ)k
(2.45)

p(st−1,st |y, θ̂k) =
αt=1(st−1)p(yt |st , θ̂k)p(st |st−1, θ̂k)βt(st)

p(y|θ̂k)
(2.46)

With αt(i) and βt(i) representing the joint probability of being in the ith compound
state at time step t while observing the emission values in the first t time steps and the
conditional probability of observing emission values from time point (t +1) up to the
end of the time series, given that the compound state at time t is i, respectively:

αt(i) = p(yl, . . . ,yt ,st = i|θ̂k) (2.47)

βt(i) = p(yt+1, . . . ,yT |st = i, θ̂k) (2.48)

Collecting these terms together, the parameters of the cpHMM may finally be ex-
pressed as:

π̂m =
∑

Kw
i=1⟨si

1⟩Cmi

∑
K
k=1 ∑

Kw

i=1⟨si
1⟩Cki

(2.49)

µ̂ = M−1b (2.50)

Mmn =
T

∑
t=1

Kw

∑
i=1

⟨si
t⟩FinFim (2.51)
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bm =
T

∑
t=1

Kw

∑
i=1

⟨si
t⟩ytFim (2.52)

1

λ̂
= σ̂

2 =
∑

T
t=1 ∑

Kw

i=1⟨si
t⟩(yt −Fi,:µ̂)2

∑
T
t=1 ∑

Kw

i=1⟨si
t⟩

(2.53)

Âmn =
∑

T
t=1 ∑

Kw

i, j=1 Bi j⟨si
ts

j
t−1⟩CmiCn j

∑
K
k=1 ∑

T
t=1 ∑

Kw

i, j=1⟨Bi jsi
ts

j
t−1⟩CkiCn j

(2.54)

These parameters are inferred and updated at each step of the EM algorithm until
convergence. In the original cpHMM formulation of the model, the forward-backward
algorithm scales as T K2w, in contrast to the standard HMM forward-backward scaling
of T K2. This represents a significant increase in computational time, particularly for
longer genes, which require longer window sizes.

2.4 Conclusion

Mathematical and computational modelling of gene expression has received extensive
attention in the scientific literature. While several approaches have been proposed for
extracting kinetic parameters from gene expression datasets, the most recent proposed
model for modelling MS2 data would become computationally infeasible for analysing
many Drosophila genes involved in dorsal-ventral patterning. The following chapter
outlines an approach allowing for inference of kinetic parameters using genes of arbi-
trary length.



Chapter 3

Scalable Inference of Transcriptional
Dynamics

In this chapter we present an algorithm for efficient inference of transcriptional kinetic
parameters from MS2 data. The algorithm has been published in the Oxford University
Press Bioinformatics journal (Bowles et al., 2022) and is available online as part of the
burstInfer Python software package. The algorithm represents an improvement over
the original cpHMM implementation in that it is possible to infer kinetic parameters
for a gene of arbitrary length, as the problem with exponential scaling of computational
time with gene length has been resolved. Examples are given of parameter inference
using both synthetic and experimental Drosophila MS2 data.

3.1 Introduction

Recent advances in in vivo live imaging technologies (Pichon et al., 2018) have created
a pressing need for algorithms capable of analysing large, complex biological datasets.
Live imaging techniques, such as the MS2-MCP system, have been of particular inter-
est to the developmental biology community due to the ability to visualise transcription
at single-cell resolution in vivo. As correct spatial and temporal control of gene expres-
sion is of fundamental importance during both normal development and disease, the
ability to analyse the rich datasets generated by live imaging approaches is vital.

The MS2-MCP system allows for the quantification of transcription in real-time
through the introduction of hairpin structures into a gene of interest (Pichon et al.,
2018). Following the entry of the promoter into an active state, elongation of RNA
Polymerase II (Pol II) along the gene body results in the production of nascent mRNA

56
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transcripts containing hairpin stem-loops. Binding of the MCP fluorescent protein to
this hairpin structure allows for detection of the resulting fluorescent signal by fluo-
rescence microscopy (Bertrand et al., 1998; Qureshi et al., 1978; Lucas et al., 2013).
Quantification of this fluorescent signal results in a fluorescent time series, which acts
as a proxy for transcriptional output at each transcription site (Lucas et al., 2013;
Qureshi et al., 1978; Bertrand et al., 1998). The ability to track the fluorescence of ac-
cumulated nascent mRNA at transcription foci (and therefore levels of transcriptional
activity) over time and at single-cell resolution opens up the possibility of investigat-
ing spatial and temporal transcriptional dynamics in model organisms, in addition to
the response of tissue culture cells to external stimuli (Pichon et al., 2018). The use
of the MS2-MCP system allows for the collection of temporal transcriptional data, an
advantage over the static ‘snapshots’ of transcription generated using techniques such
as single molecule fluorescent in situ hybridisation (smFISH) (Pichon et al., 2018).

Transcription is now understood to be a highly dynamic process, with many genes
producing transcripts in discrete pulses, or ‘bursts’, of transcriptional activity (Coulon
et al., 2013; Raj and van Oudenaarden, 2008; Chubb et al., 2006; Golding et al., 2005).
Transcriptional bursting has been observed in organisms ranging from Drosophila to
vertebrates and is implicated in both normal development and disease (Raj and van
Oudenaarden, 2008; Eldar and Elowitz, 2010); bursting is of particular interest to
the gene regulation community, as many key developmental genes appear to exhibit
bursting-like behaviour (Lenstra et al., 2016). Mathematical modelling of transcrip-
tional bursting may be described by a set of kinetic parameters which report the fre-
quency, amplitude and duration of transcriptional bursts (Zoller et al., 2018; Li et al.,
2018; Dar et al., 2012; Raj et al., 2006; Fukaya et al., 2016; Corrigan et al., 2016).
Previous work on mathematical modelling of transcriptional bursting has focused on
inference of these transcriptional parameters through analysis of either static smFISH
snapshots (Mueller et al., 2013; Bahar Halpern et al., 2015a; So et al., 2011; Gómez-
Schiavon et al., 2017) or MS2-MCP time series data (Corrigan et al., 2016; Qureshi
et al., 1978; Fukaya et al., 2016; Berrocal et al., 2018; Lammers et al., 2020; Tantale
et al., 2016; Bothma et al., 2014). The ability to infer these kinetic parameters opens
up the possibility of providing a deeper insight into the spatio-temporal regulation of
bursting at single-cell resolution.

While MS2-MCP time series data allows for visualisation of nascent transcrip-
tion at single-cell resolution in real-time, inference of kinetic parameters from MS2-
MCP data presents a number of unique challenges (Gregor et al., 2014). Crucially,
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the presence of persistent fluorescence within the signal complicates inference of tran-
scriptional kinetic parameters (Corrigan et al., 2016; Lammers et al., 2020). Upon the
promoter entering an active state, RNA Polymerase (Pol II) commences elongation
along the gene body, leading to a fluorescent signal through MCP-fluorescent protein
binding. When the promoter becomes inactive, the fluorescent signal does not immedi-
ately cease. Pol II molecules are still in transit along the gene body and the incomplete
mRNA transcripts are bound by MCP-fluorescent proteins. Inference of kinetic param-
eters therefore requires an algorithm capable of taking this persistence into account.

Lammers et al. (2020) incorporated the persistence of the MS2 signal through im-
plementing a compound state hidden Markov model (cpHMM), building on an earlier
hidden Markov model for MS2-GCP parameter inference (Corrigan et al., 2016). The
transition probabilities and emission values of the model correspond to the promoter
switching frequencies and Pol II loading rate, respectively, which together are suffi-
cient to describe the bursting dynamics of the system. The promoter switches between
active and inactive states according to the transition matrix, loading polymerase onto
the gene while in the active state at a rate determined by the model emission parameter
(Figure 3.1 A). Persistence in the signal is dealt with through the inclusion of a window
parameter, W , that models the dependence of the recorded fluorescence on the previous
W promoter states, each of which may take one of K (here 2) values. The inclusion
of the window parameter results in KW compound states to fully describe the system.
This exponential scaling becomes problematic when dealing with long genes, as the
dependence of the window parameter on elongation time (and therefore gene length)
may lead to infeasible computational times.

In this chapter we present a modified form of the cpHMM referred to as burstInfer,
for fast inference of kinetic parameters from MS2-MCP data. This new method can
model genes of arbitrary length through the use of a time-adaptive truncated compound
state space. The truncated state space provides a good approximation to the full state
space by retaining the most likely set of states at each time during the forward pass
of the algorithm. The algorithm represents a significant speed boost over the original
cpHMM technique when applied to long genes, removing the exponential time-scaling
of the technique with gene length. Results indicate that the use of a reduced compound
state space is sufficient to accurately infer kinetic parameters relative to the original
model, while significantly reducing computational time for longer genes, making in-
ference of kinetic parameters for genes of all sizes feasible.
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3.2 Implementation of Algorithm

3.2.1 Model Formulation

Following insertion of the MS2 stem-loop sequences into the gene of interest, elonga-
tion of Pol II along the length of the gene body results in the generation of a fluorescent
time series signal. We intend to model the dynamics of these recorded fluorescent sig-
nals, with the aim of extracting the kinetic parameters driving expression of the target
gene. Following the cpHMM formulation derived by Lammers et al. (2020), whose
method this chapter extends, we denote an individual fluorescent signal (correspond-
ing to one transcription foci) as y = {y1,y2...,yT}, with T denoting the number of time
points within the individual trace (Figure 2). We assume that the promoter may be in
one of K = 2 effective states, i.e. active or inactive. The promoter switches between
hidden states z at time step t according to the K ×K transition matrix, A = p(zt |zt−1).
Akl represents the probability of making the transition from hidden promoter state k

to hidden promoter state l during time step t. Transitions between hidden promoter
states zt are assumed to satisfy the Markov property, i.e. the hidden promoter state at
a given time point depends only upon the hidden promoter state at the previous time
point (Lammers et al., 2020).

Each effective state zt is associated with a polymerase initiation rate, r(k), repre-
senting the number of Pol II molecules loaded onto the gene in a given minute. The
fluorescence data presented here are shown in terms of arbitrary units of fluorescence.
Quantification of the transcriptional output of cells using smFISH may be used to cali-
brate the signal in terms of Pol II number instead (Qureshi et al., 1978; Lammers et al.,
2020; Hoppe et al., 2020). The fluorescence emission per time step t for each effective
state is defined as v(k) = Fr(k), where F is a calibration factor used to convert the units
of arbitrary fluorescence to units of Pol II (Lammers et al., 2020).

The recorded fluorescence intensity at a given time point (Figure 3.1 B) depends
upon not only the fluorescence generated during the previous time step, but also the cu-
mulative fluorescence generated by Pol II in transit along the length of the gene during
previous time steps. To model this dependence upon previous time steps the concept
of a sliding window, W , is introduced into the model. This window, or memory, rep-
resents the dependence of the observation yt at time point t on not only the hidden
promoter state zt at the current time point but also the previous W hidden promoter
states (depicted in Figure 3.2). The value of W is gene-dependent and is calculated as
W =

τelong
∆τ

, where τelong is the elongation time and ∆τ is the size of an individual time
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A B C
Experimental transcrip. trace Inferred promoter traceII

Active

InactivemRNA

Figure 3.1: The model structure and basic principle behind burstInfer. A: Dynamic
compound state hidden Markov model state diagram. At the beginning of the time
sequence the promoter is in either the active or inactive state (π). Over the course of the
time series the promoter switches stochastically between the active and inactive states
according to the kon and koff burst parameters. While in the active state Pol II molecules
are loaded onto the gene and mRNA transcripts are produced at a rate determined by
the model emission parameter. B: Example MS2 fluorescence time series trace for
a single nucleus in a Drosophila embryo showing nascent ush transcription. C: The
promoter sequence inferred by the model corresponding to the fluorescent trace in B.
These promoter traces can be used to generate single-cell parameters.

step, i.e. the time resolution of the data. Hidden promoter states falling outside the
previous W time points can be assumed not to contribute to the recorded fluorescence
at time point t, as Pol II initiated at that particular time point is no longer in transit
along the gene.

To model this dependency of the observed fluorescence at time point t on the previ-
ous W hidden promoter states zt , the concept of a compound state st = {zt ,zt−1, ...,zt−W+1}
is introduced. st , a 1 × W vector, encodes the sequence of W hidden promoter states
up to and including the current hidden promoter state at time point t. At each given
time point the previous W −1 promoter states are deterministically passed to the new
compound state, becoming the 1 . . .W −1 elements of the new compound state vector,
with the W th compound state at time point t being determined stochastically by the
state transition matrix A. In the original cpHMM model, each compound state takes
one of KW different values, as each of W hidden promoter states may take one of K

values (Lammers et al., 2020). This exponential scaling with window size W imposes a
significant computational burden. How our model addresses this is detailed in the fol-
lowing section. As in the original cpHMM model, the emissions of the Hidden Markov
Model are described by a Gaussian distribution with mean µ and standard deviation σ.
The initial hidden promoter states at time t = 0 are given by a 1×K vector π. The joint
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distribution of compound states and observed fluorescence values is given by:

p(y,s|θ) = p(s1|π)
T

∏
t=1

p(yt |st ,µ,σ)
T

∏
t=2

p(st |st−1,A) (3.1)

Expectation Maximisation is used to infer the Hidden Markov Model parameters,
θ̂ = {π̂, µ̂, Â, σ̂}. The use of an approximate inference technique renders inference of
the model parameters computationally tractable. However, the exponential scaling of
computation time with window size represents a significant problem for longer genes.

3.2.2 Dynamic State Space Truncation

In order to circumvent the exponential scaling of the algorithm with window size we
propose a dynamic reduced state space variant of the cpHMM, which uses a truncated
state space to avoid exponential scaling in computational time. We illustrate the advan-
tages of this approach using a specific example implementation of the cpHMM model
with K = 2 promoter states and a window size of 19, as would be required to model
the Drosophila melanogaster gene u-shaped (ush), which is 16825 base pairs in length
(isoform C). Nascent transcription was captured at 20s time resolution. This results in
a compound state which may take on KW = 219 = 524288 values. Repeated manipu-
lation of the resulting KW × t state matrix while performing expectation maximization
requires a significant amount of computational time, which cannot be improved signif-
icantly by increasing available computational power.

The required computational time may be reduced by observing that although 524288
possible compound state values are required to fully specify the model, the majority
of these compound states will have very low (often negligible) associated probability
values, and can therefore be excluded from the model without impacting predictive
performance. For example, during portions of the fluorescence signal recorded dur-
ing the initiation of a transcriptional burst, compound states associated with inactive
promoter states during the initial part of the compound state and active promoter states
during the latter part of the compound state would be much more likely than compound
states with sequences of promoter states associated with a very different observed flu-
orescence pattern, e.g. falling fluorescence levels or sustained inactivity.

Truncation in the model is enforced through the use of an allowed memory, M,
with M < Kw. M is selected so as to reduce computational time without significantly
impacting the performance of the algorithm. The use of M results in a reduced pro-
moter state space, Φt , replacing s and reducing the scaling of the forward algorithm
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Figure 3.2: Diagram illustrating the dependence of the measured fluorescent signal at
the present time, t, on both the present promoter state and previous promoter states
falling within the observation time window, W. This time-dependence arises due to the
persistence in the MS2 signal caused by Pol II still being in transit down the gene body
following the promoter becoming inactive. The example shown here is for window
size W=3.

with window size from exponential to linear scaling. To select a set of M likely com-
pound states at time t + 1 the forward algorithm is used to rank the 2M next possible
states starting from M at time t. The forward algorithm computes the probability of the
data up to the current time and being in each state, therefore the most likely states can
be prioritized and the least likely are removed from the model until M distinct com-
pound states remain. In practice, it is best to choose the maximum value of M that is
computationally feasible, given the size of the dataset and the resources available. The
state space will expand with Φt = 2t until Φt = M. Testing the model on synthetic data
provides an indication of parameter estimation accuracy for given M and gene size.

An example of model truncation using a single trace of ush MS2 data is shown
in Figure 3.3, with an allowed memory of 4 states specified for illustration purposes.
Each box represents an individual state, with the leftmost number giving the binary
representation of the promoter state (1 for on and 0 for off) and the rightmost number
giving the log forward variable associated with each state. The state space expands
during the forward algorithm until the allowed value of M is reached at t = 1 (for this
particular example with a very small value of M). Forward variables are calculated
for each allowed transition (the previous promoter state with either a 0 or 1 inserted
at the rightmost bit) and are ranked. The least likely forward variables are eliminated
(red outline), with the most likely states becoming the new reduced state space (blue
outline). The process is repeated until the end of the trace (here t = 3).
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Figure 3.3: Example illustrating state-space truncation carried out as part of the HMM
forward algorithm, using example data derived from the Drosophila ush gene. Each
oblong bubble represents a compound promoter state at a particular time point with the
number on the left representing the binary representation of the promoter state and the
number on the right showing the log probability associated with each forward variable.
The promoter starts at time t = 0 in either the inactive (0000) or active (0001) state
(the rightmost bit indicates the current state). At time t = 1, the promoter can switch
to either of two states from each of these two states, causing the state space to expand
from 2 to 4 possible compound states (i.e. inactive to inactive, inactive to active, active
to inactive, active to active). At time t = 2, the possible state space doubles again to
8 compound states. At this point, truncation is carried out — the compound states are
ranked according to probability and the least likely states are eliminated. The number
of eliminated/retained states is set to M = 4 here so that elimination can be visualised.
In practice, the highest number of allowed states that is computationally feasible is
used instead. This process of truncation and elimination is carried out until the end of
each trace contained in the entire dataset. This truncated graph then becomes the state
space for the entire model.
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3.2.3 Inferring Single-cell Transcriptional Parameters

In addition to inferring ‘global’ model estimates for burst amplitude, frequency and
duration for a given dataset, our model can be used to infer single-cell transcriptional
parameters, i.e. burst parameters for each individual cell within the expression domain,
rather than a global estimate for the entire expression domain or region of interest.
Although single-cell parameter estimates are associated with high levels of uncertainty,
they can provide a useful view of how bursting parameters vary across the spatial
domain.

Training the model using the forward-backward algorithm yields estimates of αt(i)=

p(y1, ...,yt ,st = i|θ̂k), the joint estimate of the observed fluorescence up to time t and
the compound hidden promoter state at time t and βt(i) = p(yt+1, ...,yT |st = i, θ̂k), the
conditional probability of the observations from (t +1) to the end of each trace, given
the current hidden promoter state. Combining these variables with the expression for
the likelihood of the observed fluorescence values given the model parameters, p(y|θ̂k),
gives the following:

p(st |y, θ̂k) =
αt(st)βt(st)

p(y|θ̂k)
(3.2)

where p(st |y, θ̂k) denotes the probability of the promoter being in an active or inactive
state at a given time point t, given the observed fluorescence and inferred model param-
eters. Taking the argmax of Equation (3.2) at each time point gives a sequence of the
most likely promoter states at each observed time step. As previously mentioned, the
Drosophila gene ush is used here as an example. MS2 stem-loops were inserted into
the endogenous ush gene 5’UTR region, allowing us to visualise transcription in the
form of nascent MCP-GFP fluorescence (Figure 3.1 B). The inferred promoter trace
calculated using Equation (3.2) corresponding to this time series is shown in Figure 3.1
C.

In addition to providing a way of visualising the model fit, these inferred promoter
traces may be used to calculate single-cell transcriptional parameters, so that in addi-
tion to giving single maximum likelihood parameters estimates for a given dataset, i.e.
a kon, koff and emission term for the set of traces used to train the model, each cell in
the expression domain is assigned each of these parameters.

The calculation of the transition parameters is achieved through a simple counting-
based technique, where the number of normalised on-to-off and off-to-on transitions is
counted from the inferred promoter traces. These counts are used to create transition
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matrices for each trace, which are then converted to transition rates (in a similar way
to the calculation of the global parameters). The single-cell emission term is a reduced
form of the emission term from the global model (see Lammers et al., 2020):

ν̂ = M−1b (3.3)

Mmn =
N

∑
h=1

Th

∑
t=1

Kw

∑
i=1

⟨si
t(h)⟩FinFim (3.4)

bm =
N

∑
h=1

Th

∑
t=1

Kw

∑
i=1

⟨si
t(h)⟩yt(h)Fim (3.5)

where the ⟨si
t(h)⟩ term becomes a delta function due to the state probabilities already

being known.

Parameter estimates for single cells are much more uncertain than global estimates
for an entire dataset. The aim, however, is to be able to visualise broad spatial trends
across the expression domain. The supplementary material gives an example of in-
ferred single-cell parameters for the ush gene. LOESS smoothing was used to smooth
the data, allowing general spatial changes in expression level to be shown - in this
case, a more peaked distribution in the probability of the promoter becoming active
than inactive. Calculating confidence intervals for a binomial proportion revealed that
while there was high uncertainty associated with the parameter estimates, particularly
towards the edges of the expression domain, the general spatial trend for the parameters
could still be detected.

3.3 Results

3.3.1 Visualising Inferred Promoter Traces

An example of the model output is show in Figure 3.4. A Markov Chain was used to
generate two synthetic datasets of promoter sequences. Each dataset consisted of 100
traces of 100 time points each. A Python script was then used to convert each promoter
sequence into a corresponding fluorescent signal, by specifying the emission and noise
parameters. Two different window sizes of 5 and 13 were selected, resulting in a ‘short’
gene dataset and a ‘long’ gene dataset. The model was then trained on these datasets.
Subfigures A and B show example fluorescent traces (black) and inferred model fit
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(red) for the short and long genes, respectively, along with the 95% confidence intervals
(shaded red). Subfigures C and D show the ‘true’ promoter sequence (black) and
inferred promoter sequence (red) corresponding to the signals above. Overall, the
inferred signal corresponds well to the original signal, with some small errors in the
inferred promoter sequence.

Further comparisons are shown in Figures 3.4 and 3.5. In Figure 3.4, two synthetic
datasets were generated, using the same transcriptional parameters (emission, noise,
transition parameters) but different window sizes (W = 5 and W = 13 ). After training
the model on these datasets, the inferred most likely promoter sequences were com-
pared to the synthetic promoter sequences used to generate the MS2 training dataset.
The short and long gene are plotted on the left and right sides of the figure, respectively.
In Figure 3.5, a similar comparison has been carried out between low and high noise
conditions for the long gene. Although the performance of the algorithm is reduced
for the very noisy dataset, inference of the promoter sequence is still possible.
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Figure 3.4: Visualising the model fit using synthetic MS2 data. A: Synthetic ’short’
gene (Window Size 5) MS2 data generated using a Markov Chain (black) with the
model fit overlaid in red. B Synthetic data and model fit for a ‘long’ gene (Window
Size 13). C: Synthetic promoter sequence used to generate the ‘long’ gene data cor-
responding to the signal above. D: Synthetic promoter sequence for the ‘short gene’.
There is a small mismatch in the final inferred burst.
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Figure 3.5: Visualising the model fit for synthetic genes with the same bursting param-
eters, but different window sizes. A: Plot of model fit (blue) and original synthetic ‘low
noise’ MS2 data (black) for a synthetic gene with window size W = 5. B Fitted model
for a dataset with the same bursting parameters as A, but with window size W = 13. C:
Synthetic promoter trace used to generate fluorescence trace in A (black) and promoter
sequence fitted by model (blue). D: Same as C, but corresponding to B. E: Agreement
between promoter traces in training set and promoter traces inferred by model (Sum of
number of times PromoterIn f erred ≡ PromoterOriginal/T ) for the short gene. F: Same
as E, for the long gene.
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Figure 3.6: Visualising the model fit in low and high noise conditions for the long gene.
A: Plot of model fit (blue) and original synthetic ‘low noise’ MS2 data (black). B Fitted
model for a synthetic dataset identical to that in A, but with the noise increased. C:
Synthetic promoter trace used to generate fluorescence trace in A (black) and promoter
sequence fitted by model (blue). D: Same as C, but high noise condition. E: Agreement
between promoter traces in training set and promoter traces inferred by model (Sum of
number of times PromoterIn f erred ≡ PromoterOriginal/T ) for low noise condition. F:
Same as E, for high noise condition.
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3.3.2 Assessing the model fit

To demonstrate the ability of the truncated model to approximate the results obtained
using the full hidden Markov model, we created synthetic fluorescent traces for a gene
of window size 11 and tested convergence between the truncated and full models for
this dataset (Figure 3.7 A). Fifty different initialisations of the model were created
using random HMM parameters, selecting the EM run with the highest likelihood as
the most likely model. The relative error between the full and truncated models falls
smoothly as the state space of allowed states is increased, with the relative error falling
to less than 1% at M = 128 where the size of the full model here would be 211 = 2048
compound states.

8 16 32 64 128 256
Number of Allowed States (M)

0

5

10

15

20

25

30

35
Noise
koff

kon

Emission

A

1
0
0
|θ̂

−
θ̂ M

|/
θ̂

8 16 32 64 128 256
Number of Allowed States (M)

0

2

4

6

8

10

12

14 Noise
koff

kon

Emission

B

1
0
0
|θ̂

−
θ̂ M

|/
θ̂

8 16 32 64 128 256 512 1024 2048
Number of Allowed States (M)

0

5

10

15

20

25

30
Noise
koff

kon

Emission

C

1
0
0
|θ̂

M
−

θ̂
M

=
2
0
4
8
|/
θ̂
M

=
2
0
4
8

8 16 32 64 128 256 512 1024 2048
Number of Allowed States (M)

0

5

10

15

20
Noise
koff

kon

Emission

D

1
0
0
|θ̂ M

−
θ t
ru
e
|/

θ t
ru
e

7 8 9 10 11 12 13 14 15 16 17 18 19
Window Size

0

400

800

1200

1600

2000

2400

R
un

ni
ng

 T
im

e 
(s

ec
on

ds
)

Truncated Model (Python)
Full Model (Matlab)

E

Figure 3.7: Assessing the model fit and running time on real and synthetic datasets. A:
Relative difference between the maximum likelihood parameter estimates for the trun-
cated θ̂M and full model θ̂ as a function of increasing M for data from the Drosophila
gene hnt. This gene is short and only requires 512 compound states in the full model.
B: Relative difference between the model parameters for the truncated and full model
as a function of increasing M for synthetic data with window size 11. In this case
211 = 2048 compound states are necessary for the full model. C: Relative change in
model parameters for the Drosophila ush gene as M is increased, compared to the value
for M = 2048. For this gene 219 = 524288 compound states are required to specify the
full model. D: Relative error in the model parameters between the truncated model and
true model as a function of increasing M for synthetic data with window size 20. In
this case 220 = 1048576 compound states would be necessary for the full model. E:
Running time for a single EM step for both models.
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To test the model on experimental MS2-MCP data where is it possible to fit the full
model, both the full and truncated models were trained on a dataset of MS2 fluorescent
traces for the Drosophila melanogaster gene hindsight (hnt). The hnt gene has length
of 7441 base pairs between the MS2 probe and the end of the gene body, in conjunction
with an MS2 cassette length of 1290 base pairs, a window size of 9 was specified. The
results of training the model using both the full and truncated models can be seen
in Figure 3.7 B, a plot of relative error between the truncated and full (‘true’) model
parameters as a function of increasing number of allowed states. Each curve represents
a separate parameter of the model. The model was trained specifying 50 separate runs
of expectation-maximisation for each value of M. The convergence of the truncated
model parameters to the full model parameters is apparent from the diagram.

We then applied the model to datasets of MS2 traces recorded from longer genes,
using both synthetic and real data. The change in model parameters as M is increased,
compared to the parameter values at M = 2048, can be seen in 3.7 C for the Drosophila

gene ush. Although 524288 compound states would be required for the full model, the
parameters are converging with a much smaller subset of allowed states. The relative
error between the inferred and true parameters as M is increased for a synthetic gene
with window size 20 are shown in 3.7 D. Although 1048576 compound states would be
used for the full model, with a subset of 2048 states the relative errors for the noise, koff,
kon and emission parameters are 0.064%, 3.208%, 6.029% and 0.579%, respectively,
showing that accurate parameter inference is still possible using the reduced model.

3.3.3 Computation Time

Next, we compared the scaling of computational time for a single step of the expec-
tation maximisation algorithm for the truncated model and the full, original model
(Matlab implementation). The dataset used in the comparison is a set of 50 MS2 flu-
orescence traces of the ush gene in a Drosophila embryo, where active transcription
occurs during a 30 minute time window. A window size of 19 is required to model the
fluorescence traces. The curve plotted in blue shows the result of increasing the win-
dow size upon the computational time required for a single expectation-maximisation
step for the full model; the exponential scaling of the algorithm with window size is
apparent. The computational time for the truncated model (red, M = 128 compound
states, 90s per step) is essentially de-coupled from window size / gene length, allow-
ing for application of the truncated model to a much wider set of window sizes (Figure
3.7 E). For short genes, the original version model is faster due to less computational
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overhead associated with truncation, e.g. calculating and eliminating least likely states
etc. The benefits of the truncated version of the model become apparent at longer gene
lengths, where exponentially increasing computation time makes inference impracti-
cal. A window size of 30+ may be needed for both much longer Drosophila genes and
vertebrate genes, making use of the full model infeasible.

3.3.4 Analysing EM Parameter Convergence

In order to validate the use of EM to train the algorithm, we have plotted the results
of training the truncated model on synthetic data using 50 random restarts in Figure
3.8. Each panel shows a plot of the log likelihood against the relative error between
the ’true’ and inferred values. The same ‘long gene’ (W = 13) dataset from Figure
3.6 was used to train the model. The maximum likelihood parameter is highlighted
in red. For po f f → pon and the noise parameter, the maximum likelihood solution is
clearly separated from low likelihood, high relative error results in the bottom right
of the subfigures. For the emission parameter and pon → po f f , however, some results
had relatively high likelihood despite also having high relative error. These results,
however, were not chosen as the ML solution - for both parameters, there is a large
cluster of overlapping datapoints in the top left that are near the ML solution, so the
global optimum was still found. These results indicate the need to do a large number
of random restarts in order to find the global optimum, as local optima appear to be a
problem.

3.3.5 Estimating single-cell parameters

The burstinfer toolbox provides the ability to infer single-cell transcriptional parame-
ters, as opposed to only a single set of parameters for an entire dataset or large subsets
of cells. A model is initially trained using the whole dataset or subsets of the data (e.g.
spatial domains). The learned parameters are then used to infer the most likely se-
quence of promoter states for each cell, i.e. the sequence of 1’s and 0’s that generated
the observed data. Inferring single-cell parameters involves high levels of uncertainty,
since very little data is available to estimate the transition frequencies for one cell.
However, the aim is to help visualise the spatial trend at the single-cell level that may
not be apparent from looking at a single spatial region or a small number of spatial
regions side-by-side. This can be achieved by spatial smoothing of the single-cell esti-
mates to infer the mean parameter change trend.
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Figure 3.8: Plots of inferred EM parameters for the ‘high noise’ synthetic dataset from
Figure 3.6. The log likelihood is plotted against relative error between the true and
inferred parameters. Fifty random EM restarts were used. The Maximum likelihood
parameter is highlighted in red. A: Relative error for the emission parameter. The top-
left corner of the plot contains many overlapping points with similar log likelihood /
relative error. B: Relative error for the noise parameter. C: Relative error for po f f →
pon. D: Relative error for pon → po f f .
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To give an example of how the single-cell parameters can be used to visualise
spatial trends, Figure 3.9 shows the result of smoothing single-cell parameters for the
Drosophila gene ush. Three separate models were trained for the outer, intermediate
and central spatial regions of the embryo. These were then used to generate single-
cell parameters. The left and right panels show poff→on and pon→off, respectively: the
probability of off-to-on and on-to-off transitions across the entire trace for each cell.
The loess function from the Python scikit-misc library was used to smooth the data, as
shown by the red curves. While there are large variations associated with the single-
cell estimates, it is possible to visualise general spatial trends in the data, such as the
decrease in the probability of promoter activation in cells further from the embryo
midline as well as the flatter distribution of pon→off in the central region.
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Figure 3.9: LOESS fit to inferred single-cell transition probability parameters for the
ush gene against embryo lateral position.

In order to quantify the uncertainty associated with the parameter estimate for each
cell, the confidence interval for a binomial proportion was calculated for each cell
using the proportion confint function from the Python statsmodels library. Figure 3.10
shows these error bars plotted on the same single cell data as the previous figure. While
there is very large uncertainty associated with these estimates, the general spatial trend
in the estimates can still be detected.

3.4 The burstInfer Software Package

burstInfer has been implemented in Python and is available on GitHub at https://
github.com/ManchesterBioinference/burstInfer. While the original cpHMM
model was written in Matlab, the decision was taken to use Python for the truncated

https://github.com/ManchesterBioinference/burstInfer
https://github.com/ManchesterBioinference/burstInfer
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Figure 3.10: 95% confidence intervals for inferred single-cell transition probability
parameters for the ush gene against embryo lateral position.

model due to the open source and non-proprietary philosophy of Python. The software
package on GitHub includes examples using both synthetic MS2 data and data from
Hoppe et al. (2020).

Figure 3.11 shows the basic structure of the software package. The main data
folder (left) contains the MS2 data file, the main script and scripts containing auxiliary
functions. Functions within the main.py and the auxiliary scripts call functions from
the burstInfer library (right). main.py takes the csv file of raw MS2 data as input.
process raw data.py is used to reshape the raw MS2 data into a usable format. Training
is carried out via creation of a HMM object. The HMM class contains functions to
randomly initialise parameters, run expectation maximisation and infer the single cell
promoter traces. Several variants of expectation maximisation are included.

initialise parameters provides initial estimates for the HMM parameters, based
upon the raw MS2 data. The methods chosen are based upon those used by Lammers
et al. for the cpHMM. The initial value for the emission parameters depends upon the
maximum fluorescence value in the raw MS2 data, multiplied by a number drawn from
a uniform distribution, whereas the noise parameter depends upon the mean fluores-
cence. The initial state estimate and transition parameters are drawn from a uniform
distribution.

Following this initialisation, several options are available for training. Running
em fixed uses a variant of EM that fixes the transition parameters but allows the emis-
sion and noise parameters to vary, as is used in the original cpHMM implementation.
This gives a more accurate estimate of the noise and emission parameters before run-
ning the full model (em with priors). This estimation step can be skipped by simply
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main.py

HMM.py
initialise_parameters
em
em_fixed
em_with_priors
em_exact
get_promoter_traces
get_promoter_traces_exact

burstInfer Library

MS2 Data

Inferred 
Parameters

process_model_output.py

single_cell_calculations.py

show_model_fit.py

Data Folder

process_raw_data.py

export_em_parameters.py

forward_backward
exact_forward_backward
compute_dynamic_F
get_adjusted
log_sum_exp
ms2_loading_coefficient
v_log_solve
calcObservationLikelihood
get_single_cell_emission
calculate_single_cell_transition_rates

Figure 3.11: Structure of the burstInfer software package. Data files, the main script
and data processing / visualisation scripts are kept together inside a data folder. Run-
ning main.py uses functions and class definitions contained inside the burstInfer library
to create a HMM object, which infers and returns the kinetic parameters.



76 CHAPTER 3. INFERRING TRANSCRIPTIONAL DYNAMICS

running em instead. em exact runs a Python version of the non-truncated original
model. Each of these functions uses external library functions containing the forward-
backward algorithm (forward backward, exact forward backward) along with a range
of different helper functions designed to be computationally efficient (log sum exp,

v log solve) or implement the observation model (compute dynamic F, get adjusted,

ms2 loading coefficient, calcObservationLikelihood). After the threshold for the min-
imum change in parameters with each EM step is met, the parameters are returned to
main.py and exported as a csv by export em parameters.py.

Typically, the package is run on a computing cluster so as to allow for multiple
instances of EM with random restarts to be run simultaneously. Once the results
are ready for analysis, process model output.py is used to find the maximum likeli-
hood parameters. Once these have been calculated, single cell calculations.py, which
uses get single cell emission and calculate single cell transition rates, is run to infer
the single cell transcriptional parameters. The model fit can then be visualised using
show model fit.py.

A key novel feature of our dynamic version of the algorithm is the use of binary
encoding to store and calculate the promoter state. In the original model, the promoter
state is represented as a Matlab array of ‘0’s and ’1’s, indicating the position of pro-
moter inactive and active states in the model sliding window. We chose to implement
the promoter state as a binary number instead, allowing for the use of computationally
efficient bitwise operations to calculate the next promoter state following a transition.

3.5 Conclusion

In this chapter we have presented the details of the theoretical background and soft-
ware implementation of our scalable algorithm. The original cpHMM algorithm scales
poorly due to the exponential relationship between gene length and the number of com-
pound states necessary to model the data. Our implementation uses a form of dynamic
state space truncation, whereby the model state space is allowed to expand until it
reaches a pre-set allowed memory size, M. Only the most likely M compound states
are retained at each time step. In this way the exponential scaling problem is avoided
(Figure 3.3). We have shown, using both synthetic and experimental Drosophila data,
that the truncated model provides a good approximation to the full model (Figure 3.7).
In addition to inferring kinetic parameters for a given region of an embryo, the algo-
rithm is able to infer single-cell transcriptional parameters, as shown in Figure 3.9.
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The ability to visualise and statistically analyse these single-cell parameters can pro-
vide additional insight into the spatial regulation of bursting dynamics for a given gene.



Chapter 4

Inferring BMP Signalling Dynamics in
Drosophila

The early Drosophila embryo represents an ideal system for gathering imaging data.
In this chapter we outline the application of burstInfer to MS2 data derived from de-
veloping Drosophila embryos. The results from modelling dorsal-ventral patterning
during Nuclear Cycle 14 have been published in Developmental Cell (Hoppe et al.,
2020). The ability of the algorithm to infer single-cell transcriptional parameters was
of key importance in this paper, allowing for inference of the key parameters regu-
lating the Dorsal-Ventral system. The algorithm was also successfully used to model
transcription in mutant Drosophila embryos.

4.1 Introduction

An example of using the model to infer single-cell parameters is shown in Figure 4.1,
using example data from Hoppe et al. (2020) (different embryo to that highlighted
in the original paper). The aim of the paper was to use the parameters inferred by
burstInfer to investigate regulatory control of Bone Morphogenetic Protein (BMP) tar-
get genes in the early Drosophila embryo, focussing on dorsal-ventral patterning of
the dorsal ectoderm and amnioserosa. MS2 imaging was used to generate movies of
transcriptional activity of one of the BMP target genes studied in the paper, ush, dur-
ing nuclear cycle 14. The expression domain of ush forms a broad stripe down the
anterior-posterior axis on the dorsal side of the embryo (Ashe et al., 2000), which mir-
rors the expression levels of the BMP Decapentaplegic (Dpp) (Figure 4.1 A) (Bier and
De Robertis, 2015; Deignan et al., 2016; Eldar et al., 2002; Umulis et al., 2010). Cells

78
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falling within the Dpp gradient express Dpp target genes in a concentration-dependent
manner - intermediate levels of signalling are sufficient to activate ush, for example.

To investigate spatial regulation of Dpp target genes, MS2 movies were recorded in
the embryo during nuclear cycle 14. Each embryo was divided into three separate re-
gions corresponding to different signalling levels, determined by either distance from
the midline or through the use of a clustering-based approach. burstInfer was then
trained on each of these three regions, giving estimates of kon, koff and Pol II loading
rate (emission) for each section of the embryo. These regional parameters were then
used to infer single-cell parameters (Figure 4.1 B) and promoter traces (Figure 4.1 C)
for each cell within the expression domain (see Section 4.2.1 for further details). Fig-
ure 4.1 B shows heatmaps of mean expression and three example single-cell parameters
for ush - the region shown here represents a subset of the expression domain shown
in the cartoon in Figure 4.1 A. Mean expression corresponds to the mean recorded
fluorescence for each cell, with the arbitrary fluorescence signals converted into num-
ber of Pol II. The single cell occupancy, kon and koff parameters were calculated using
burstInfer. From these heatmaps the strong similarity between mean expression and
occupancy is immediately apparent, along with the slightly weaker similarity between
expression levels and kon (Figure 4.1 B). In order to quantify the dependency of ex-
pression levels on each of these three ’kinetic’ parameters (along with derived bursting
parameters, such as burst duration and frequency), correlation analysis was carried out
on the single-cell expression data and inferred parameters. The bursting parameters
derived from the model kinetic parameters (kon, koff and the Pol II loading rate, kini)
are shown below in Table 4.1.

Parameter Definitions

Promoter switching on rate kon

Promoter switching off rate koff

Pol II loading rate kini

Burst frequency konkoff
kon+koff

Burst size kini · 1
koff

Burst duration 1
koff

Promoter off period 1
kon

Promoter occupancy kon
kon+koff

Table 4.1: Table of bursting parameter definitions. Adapted from (Zoller et al., 2018).
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Figure 4.1: Example inferred single-cell parameter using Drosophila ush data from
Hoppe et al. (2020). A: The expression domain of the ush gene shown in the cartoon
was divided into three separate regions, corresponding to high, medium and low levels
of expression, with the model trained separately on each of these three regions. The
inferred global parameters for each region were used to infer the most likely promoter
path corresponding to each fluorescent trace. B: Heatmaps of the measured mean
expression level, along with the kon, koff and occupancy ( kon

kon+koff
) parameters for each

cell are shown. Analysis of single-cell parameters in this case revealed kon as the main
determinant of expression level. C: Example fluorescent traces and corresponding
inferred promoter paths for each of the three regions. See Hoppe et al. (2020) and
Bowles et al. (2022) for further details.
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This analysis revealed a very strong correlation between expression levels and oc-
cupancy, with effectively no correlation between expression and koff (Hoppe et al.,
2020). Pol II loading rate (the HMM emission parameter) was flat across the expres-
sion domain Figure (4.1 B). As occupancy depends upon both kon (which did exhibit
strong correlation) and koff, the results indicated that expression levels were regulated
through modulation of kon, the promoter activation rate. Representative single cell
fluorescence and promoter traces for each region show that nuclei experiencing high
signalling produce more transcriptional bursts compared to other regions (Figure 4.1
C). The single-cell parameters extracted from quantification of traces like these were
used to create the heatmaps shown in Figure 4.1 B. Code to re-create these figures is
included in the burstInfer GitHub repository.

4.2 Modelling Results

4.2.1 Inferring Global Transcriptional Parameters

The following subsection gives further details of the application of the burstInfer algo-
rithm to Drosophila embryonic development data, as outlined in Hoppe et al. (2020).
Figures have been reproduced from Hoppe et al. (2020) where appropriate. burstIn-

fer was used in this paper to investigate the relationship between BMP signalling and
mRNA levels in the early Drosophila embryo. As stated in the introduction, Dorsal-
Ventral patterning in the early Drosophila embryo is determined by a member of the
BMP family known as decapentaplegic, or Dpp. Graded levels of BMP signalling act
to partition the embryo into different tissue subtypes - cells respond to varying levels
of BMP signalling by producing varying levels of mRNA.

In Hoppe et al. (2020), MS2 live imaging was used to visualise transcription in
Drosophila embryos during Nuclear cycle 14. CRISPR gene editing allowed for visu-
alisation of two Dpp target genes, u-shaped (ush) and hindsight (hnt). The datasets
generated from visualisation of transcription of these genes was used to train the
burstInfer algorithm, with the aim of understanding which kinetic parameters were
responsible for regulation of bursting of BMP target genes, i.e. whether burst fre-
quency, duration or amplitude were responsible for modulation of target gene bursting
dynamics.

The results of training the model using ush and hnt data can be seen in Figure 4.2.
Embryos were divided into three (ush) and two (hnt) regions corresponding to different
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levels of BMP signalling. K-means clustering was used to divide the ush data, whereas
the hnt embryos were divided based upon distance from the embryo midline. The
model was then trained on each of these regions, giving ‘global’ parameter estimates
for each region corresponding to kon, koff and the emission parameter. Figure 4.2 A and
B show example traces from the central high signalling region for both ush and hnt.
Inferred promoter traces (calculated by taking the argmax of p(st |y, θ̂k), the probability
of the promoter being in an active or inactive state at time point t on a trace-by-trace
basis) can be seen in the lower panel. The inferred global parameters for the two
genotypes are shown in Figure 4.2 C and D (three replicates per genotype). Carrying
out a one-way ANOVA revealed which parameters were varying significantly between
high and low signalling regions.

For both genotypes, kon was found to be the main regulated parameter, contributing
to significant differences in the promoter occupancy ( kon

kon+ko f f
) between high and low

signalling regions. Differences in loading rate (emission) and ko f f were not found to
be statistically significant. These results indicated that burst frequency, not burst am-
plitude or duration, was the key regulated parameter. Although only three biological
replicates were used, these results seem to indicate a strong decrease in kon between the
Medium and Low signalling regions. Figure 4.2 E gives a representation of simulated
bursts using the inferred parameters. The two genes respond to high BMP signalling
levels at the midline in different ways: ush is transcribed in less frequency, low am-
plitude, longer duration bursts, whereas hnt is transcribed in shorter, high amplitude,
high frequency bursts.

4.2.2 Inferring Single Cell Transcriptional Parameters

The inferred global parameters were then used to produce single-cell transcriptional
parameters. The single-cell promoter traces corresponding to p(st |y, θ̂k), as shown in
Figure 4.2 A & B, were used to calculate single-cell values of kon, koff by counting
the normalised number of o f f → on transitions in each inferred promoter sequence.
These counts were then converted to a rate, giving values for kon and koff for each cell
in the expression domain. Values for the single-cell occupancy and burst frequency
were calculated from these parameters. The single-cell loading rate was calculated by
applying the emission section of the main burstInfer algorithm on a per-cell basis.

Figure 4.3 details the results of the single cell analysis for ush and hnt. Each cell in
the expression domain (Figure 4.3 A) is allocated an inferred single-cell parameters, as
shown by the heatmaps in Figure 4.3 B. The correspondence between mean expression
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Figure 4.2: Inferred promoter traces and global bursting parameters using burstInfer.
A: Example MS2 fluorescence trace from the high signalling region in an ush embryo
at the embryo midline, along with inferred promoter sequence for the same cell. A:
equivalent MS2 trace and inferred promoter sequence for hnt. C: Inferred global pa-
rameters for ush. Three biological replicates are shown. Whisker bars show mean ±
sd. ∗ = p < 0.05, ∗∗ = p < 0.01, ns = not significant. A one-way ANOVA with a
Dunnett’s multiple comparisons test was carried out to test for significant differences
relative to the high signalling region. D: Equivalent global parameters for hnt. Stu-
dent’s t test was used to test for significant changes in signalling relative to the midline.
E: Simulated transcriptional bursts using inferred mean global parameters for ush and
hnt. Adapted from Hoppe et al. (2020)

.
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and occupancy can be seen in the heatmaps, as can the flatter distribution of the koff

parameters. In order to quantify the relationship between the single cell parameters the
observed expression data, a correlation analysis was carried out between each of the
parameters and the observed fluorescence, normalised to the mean number of Pol II
engaged on the gene for ush (Figure 4.3 C).

This analysis revealed a strong correlation between kon and mean number of Pol II
engaged (r = 0.84) and a very strong correlation between the occupancy and number
of Pol II (r = 0.99). The loading rate (r = 0.07) and koff (r = −0.62) were found to
be poorly correlated. This strong correlation between kon and mean number of Pol II
was found to also occur with hnt (Figure 4.3 D and E). These results further indicated
that BMP signalling was responsible for regulation of target gene bursting through
modulation of kon.

4.2.3 Applying the Algorithm to Mutant Embryos

Experiments were then carried out to investigate the effect of additional BMP sig-
nalling on bursting (Figure 4.4). Ectopic signalling was introduced at the embryo
midline through the insertion of a single copy of the st2-dpp transgene, which acts to
misexpress dpp (Ashe et al., 2000). The inclusion of the transgene leads to a broader
expression domain than ush wild type embryos (Figure 4.4 A). Compared to wild type
embryos, st2-dpp embryos show an earlier onset time of transcription (Figure 4.4 B)
and a higher number of Pol II on the gene body, although the time of peak transcription
is similar to ush wild type embryos (Figure 4.4 C).

After dividing the embryos into four separate spatial regions based on distance
from the midline (three regions equivalent to those used in wild type embryos, and
an additional one due to the broader expression domain), burstInfer was used to infer
global and single cell transcriptional parameters. Single cell parameters were separated
into bins of one cell width, moving out from the dorsal midline (Figure 4.4 D). Plotting
the data in single cell width bins indicated that kon at the dorsal midline (cell widths
1 - 3) was not significantly altered by the addition of the ectopic Dpp. In rows 4 - 10,
however, kon was significantly increased relative to the wild type embryos, along with
an accompanying increased in occupancy and Burst Frequency. koff and Loading rate
were not significantly altered, however.

These results indicate that kon is close to saturation at the embryo midline, in agree-
ment with previous research (Dorfman and Shilo, 2001; Mizutani et al., 2005), and that
loading rate and koff are not sensitive to changes in changes in Dpp levels, consistent
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Figure 4.3: Visualisation and analysis of single-cell parameters inferred using burstInfer. A: Example
cartoon of a Drosophila embryo with the ush expression domain overlaid in orange. Single-cell analysis
allows for transcriptional parameters to be assigned to each cell in the expression domain, rather than
on a ‘global’, or regional, basis. B: Heatmaps of the ush expression domain showing inferred single-cell
parameters. Colour ‘temperature’ corresponds to single cell Mean expression, occupancy, kon and koff.
C: Plots of single-cell parameters as a function of distance from the midline (left) and Mean number of
Pol II engaged (right) for a representative ush embryo. The red line and shared region shows the results
of a linear regression with ± 95% confidence intervals. Pearson correlation coefficient is also shown.
D: Equivalent heatmaps from B for hnt Mean expression and kon. E: Single-cell hnt kon for a single
representative embryo. Adapted from Hoppe et al. (2020).
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with the findings shown above. smFISH was also used to measure mRNA levels in wild
type and st2-dpp embryos (Figure 4.4 E), revealing that while peak numbers of mRNA
at the dorsal midline were similar between st2-dpp and wild type embryos, a drop
in mRNA levels in wild type embryos further away from the midline were observed.
These results provide further evidence that target gene mRNA levels are determined
through decoding of Dpp signalling levels via changes in kon.

4.2.4 Model Verification

In order to verify the model, the distribution of ‘on’ and ‘off’ times extracted from
inferred promoter traces (waiting times) was plotted for ush (Figure 4.5 D). As ex-
pected, the distribution of waiting times corresponds to a geometric distribution (fitted
red line).

4.3 Discussion

We have presented an algorithm for efficient inference of transcriptional kinetic pa-
rameters, with the aim of improving upon an existing compound state Hidden Markov
model (Lammers et al., 2020) by reducing the computational time required for infer-
ence. A method has also been provided for inferring single cell transcriptional parame-
ters. The algorithm allows for the inference of burst amplitude, duration and frequency
from MS2 data, which we expect to be of interest to researchers working on transcrip-
tional regulation. The MS2-MCP system has provided researchers with high-quality
data relating to transcriptional activity in individual cells, and has been used to provide
insight into the dynamics of transcription. However, the persistence present within
the MS2 signal presents a challenge when attempting to infer kinetic parameters using
these particular datasets. Our algorithm allows efficient inference of kinetic parameters
for longer genes than is currently possible.

A comparison of the running time for a single step of the expectation maximi-
sation algorithm for both the full and truncated models demonstrated the reduction
in computational time while using the truncated model on the Drosophila gene ush,
which would require a window size of 19 for inference. The time taken for a single
expectation-maximisation step at window size 19 ( 42 minutes) would render inference
using the full model for this particular gene computationally infeasible, particularly if
repeated likelihood computations, e.g. for statistical approaches such as bootstrapping
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Figure 4.5: Distribution of model On and Off times. A: Diagram of the basic two state
(random telegraph) transcriptional model, where the promoter alternates between an
ON and OFF state according to kon and koff, producing mRNA transcripts at a rate kini
while in the active state (i). The random telegraph model can be described using a set
of six transcriptional parameters (ii). B: Representative ush MS2 fluorescence traces
from the Medium and Low signalling regions, along with inferred promoter sequences.
C: Equivalent representative trace and inferred promoter for hnt. D: Distribution of
promoter On and Off times for ush embryo 3, along with fitted geometric distribution
derived from the inferred transition matrix. Adapted from Hoppe et al. (2020).
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or MCMC sampling, are required. The truncated model, in comparison, does not scale
significantly with gene length and is instead primarily limited by a dependence on the
size of the training dataset. This ability to model genes of arbitrary length should
allow the model to be applied to more complex organisms, with longer genes, than
Drosophila.

A limitation of the current implementation of the model is the restriction to K = 2
states. It has been observed in Drosophila that for some genes the transcriptional dy-
namics is better described by two rate-limiting steps (Pimmett et al., 2021) resulting
in a model with three states. An additional limitation is that our model does not cur-
rently take into account the fact that the time series may be non-stationary. In our MS2
time series datasets typically there is an initial silent period (which may be truncated),
followed by a rapid ramping up of fluorescence / transcriptional activity, followed by
a period of sustained bursting. A non-stationary model would better capture these
temporal dynamics. We are working on a non-stationary approach that takes this into
account by fitting separate models to different sections of the time series. This requires
sharing the emission parameter between different time sections but allowing the kinetic
parameters to vary.

In order to further investigate the significance of the model parameters, burstInfer

was used to infer single-cell values for kon, ko f f , the loading rate and promoter occu-
pancy, along with the derived parameters burst frequency and burst size (Figure 4.3).
Using the inferred global parameters to infer promoter traces on a cell-by-cell basis
allowed for the degree of correlation between the inferred single cell parameters and
the observed MS2 fluorescence to be calculated (Figure 4.3 C). The single-cell occu-
pancy for ush was found to be almost perfectly correlated with the mean fluorescence
(Pearson correlation coefficient = 0.99). While kon was found to be strongly positively
correlated (r = 0.84), burst frequency and ko f f were less strongly correlated (r = 0.53
and -0.63, respectively), while the loading rate was weakly correlated (r = 0.07), es-
sentially appearing flat when plotted as a function of position across the midline. A
similar relationship was found for hnt (kon r = 0.74). These results, taken as a whole,
provide further evidence for the role of the promoter activation rate in regulating the
DV system.

In order to gain further insight into regulation of the DV system, experiments were
carried out to introduce ectopic signalling at the embryo midline through the insertion
of the st2-dpp transgene. Introduction of the transgene results in a broader ush expres-
sion domain, relative to wild type, along with an earlier onset time of transcription but
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similar time to peak transcription as a wild type. In a similar manner to wild type,
burstInfer was used to infer global and single-cell transcriptional parameters (Figure
4.4). Single cell parameters were divided into bins of single cell width and significance
testing was carried out between the wild type and mutant embryo parameters in each
bin (4.4 D). kon was not found to be significantly different from wild type near the
embryo midline. However, in rows 4-10 kon was found to be significantly increased in
the mutant embryos relative to wild type, along with significantly increased occupancy
and burst frequency, while kon and loading rate were not found to be significantly al-
tered. These results, taken in conjunction with previous research showing that BMP
signalling is saturated at the dorsal midline, provided further evidence for the role of
Dpp signalling in regulating transcriptional dynamics through the promoter activation
rate. Experimental evidence for these findings was provided by smFISH experiments
that showed increased mRNA output in mutant embryos in the regions corresponding
to rows 4-10 relative to wild type.



Chapter 5

Conclusion

5.1 Discussion

In this thesis we have presented an algorithm for efficient inference of transcriptional
parameters from MS2 imaging data, along with results showing the application of
the algorithm to Drosophila embryonic development. The algorithm presented builds
upon previous work by Lammers et al. (2020), who developed a computational model
(the compound state hidden Markov model, or cpHMM) that, while a significant step
forward in the field, scaled poorly with gene length due to the exponential relationship
between gene length and the number of compound states required.

Transcription has been extensively described in the scientific literature as a random
telegraph process, whereby the state of the promoter cycles stochastically between
active and inactive states, with no long-range time dependency between states. Many
biological systems, including BMP target genes in Drosophila, exhibit transcriptional
bursting, whereby genes are transcribed in discrete bursts, rather than as a continuous
process. This particular type of system, involving stochastic switching between states
(promoter activity) that are not directly observed, each of which is associated with an
observation (the recorded MS2 fluorescence), suggests the use of a hidden Markov
model (HMM).

Lammers et al. developed a custom implementation of a HMM, the compound-
state HMM, or cpHMM, which was designed specifically for modelling transcriptional
bursting during early Drosophila development. A custom implementation was required
due to the nature of the time series data generated by the MS2 system. As polymerase
transits down the gene following promoter activation, a noisy fluorescent waveform
is generated. When the promoter becomes inactive, the fluorescent signal does not
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immediately disappear, but instead falls gradually, due to polymerase still in transit
down the gene body following promoter deactivation. A conventional HMM is not
able to capture this time dependency, as while the (in reality, continuous) transition
between promoter states is Markovian, the fluorescence level, or observation at time
point t, depends upon previous promoter states.

Lammers et al. introduced two innovations to deal with this time dependency: the
window size, controlled by the parameter W , and the concept of compound states. W ,
determined by the gene length, time resolution of the system and assumed polymerase
elongation rate, determines how many previous time points are taken into account at
the current time point t. The concept of compound states was introduced in order to
implement the window size as part of the model. Rather than simply 2 or 3 states, the
cpHMM includes an expanded state space of 2W compound states.

At the beginning of the time series, t0, only two system configurations are possible:
either the promoter is active or inactive. At the next time step, the state space doubles
to 4 possible compound states, as the promoter may switch to either inactive or active
from each initial state. At each subsequent time step the state space doubles in size until
it reaches 2W compound states in size. This process is repeated with each successive
pass of the forward and backward algorithms.

It is straightforward to see that the number of compound states, and therefore com-
putational time, increases exponentially with the number of compound states. For the
specific set of relatively short genes that Lammers et al. studied, this did not represent
a problem. However, the cpHMM approach quickly becomes intractable when dealing
with longer genes.

The dynamic HMM (dHMM) algorithm presented in this thesis was developed as
an attempt to build upon the Lammers model by allowing for much more efficient in-
ference of transcriptional parameters from systems involving genes of arbitrary length.
This was done by introducing a truncated state space. In the dynamic model, the state
space expands at each time point until it reaches a pre-selected threshold size, which
may be a fraction of the size of the original model. The state space stored at each
subsequent time point does not exceed this size. This is possible due to the very small
probability associated with a large number of transitions; discarding these states does
not significantly alter the inferred parameters. Truncating the model in this way re-
moves the exponential scaling, at the cost of increased computational time at smaller
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window sizes relative to the original model due to increased overhead costs from sort-
ing and removing compound states. We have demonstrated that, as the number of com-
pound states increases, the truncated model converges towards to the original model.
In fact, 128-256 compound states were found to be sufficient to approximate a model
that requires 219 = 524288 compound states in the original model. Following valida-
tion on synthetic data, the algorithm has been published and released as an open source
software package, burstInfer.

Another innovative feature of burstInfer, as outlined in Chapter 4, is the ability to
infer single-cell transcriptional parameters. In addition to inferring kinetic parameters
for the entire embryo, or for a particular region of the embryo, burstInfer allows for
estimates of ko f f ,kon, loading rate and promoter occupancy for each cell in the ex-
pression domain. This is done through a simple counting-based approach, whereby
the posterior state probability inferred as part of the forward-backward algorithm is
used to generate a sequence of most likely promoter states for each cell. Counting
the normalised number of off → on and on → off transitions allows for an estimate
of ko f f and kon, which in turns allows for the single-cell occupancy to be estimated.
The single-cell emission is calculated on a cell-by-cell basis, rather than for an entire
dataset. The aim of including single-cell calculations is to reveal insights into bursting
dynamics from the data that may not be obvious when looking at global parameters
that are averaged across the entire expression domain or across the entire embryo.

As demonstrated in Chapter 4, burstInfer was used by Hoppe et al. (2020) to reveal
bursting dynamics in BMP target genes in the early Drosophila embryo. Dorsal-ventral
(DV) patterning in Drosophila is regulated by Decapentaplegic, or Dpp, a member of
the Bone Morphogenetic Protein (BMP) family. Dpp has a number of target genes
in the DV system, such as u-shaped (ush) and hindsight (hnt), that act to partition
the embryo into different tissues types during nuclear cycle 14 . The exact regulatory
mechanism underlying the relationship between Dpp, its target genes and cell fate has
remained elusive for some time.

Following partitioning of the embryo into different regions based upon distance
from the midline and clustering of the MS2 data, burstInfer was used to infer global
transcriptional parameters for the genes ush and hnt (Figure 4.2). Carrying out sig-
nificance testing on the inferred ko f f , kon, and emission (polymerase loading rate) pa-
rameters revealed that kon was the key regulated parameter in the system. ko f f and
the emission term did not show significant changes between the intermediate and out
regions. The promoter occupancy, given by kon

kon+ko f f
, also showed a significant change



94 CHAPTER 5. CONCLUSION

between the intermediate and outer regions of the embryo. As ko f f was not found to
be a regulated parameter, this relationship must depend upon kon. Additional evidence
for this conclusion was provided by the single cell modelling results, where kon was
found to be strongly positively correlated with with expression (r=0.84).

5.2 Future Work

5.2.1 Non-Stationary Hidden Markov Models

A potential limitation of our dynamic model is the inability to capture temporal, aswell
as spatial, changes in transcriptional dynamics. The model has allowed us to investi-
gate spatial regulation of transcriptional dynamics across the expression domain, but
there may also be temporal changes in transcription. In the time series data used in this
thesis, transcription typically exhibits a ’ramp-up’ period of around ten minutes, before
settling into a more consistent bursting pattern. The parameters we have inferred do
not reflect this, as a single parameter is inferred for the entire time series - the model is
a form of homogeneous Hidden Markov Model.

The most simple extension to the model would be to use a sliding window to di-
vide the time series into different sections, training the model on each section. A more
sophisticated approach would be to assume a shared rate of polymerase loading rate
(emission), but allow ko f f and kon to vary between different segments of the time se-
ries. Still more sophisticated approaches are possible, such as modelling the temporal
parameter changes as an underlying stochastic process.

5.2.2 Multi-State Models

Our HMM implementation only considers two transcriptional states - active and inac-
tive. Previous work in the literature has raised the possibility of needing multi-state
models to properly model transcription. Corrigan et al. (2016) included multiple states
with different initiation rates, as they concluded that a 2-state model was insufficient to
explain their data. Lammers et al. included both 2-state and 3-state models in their pa-
per (Lammers et al., 2018) due to each fluorescent MS2 spot in their data including two
transcriptional loci. Extending the model to include 3 states could involve significant
work, as our binary encoding system would no longer be appropriate. Computational
time may also be significantly increased.
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5.2.3 Hidden semi-Markov Models

Hidden semi-Markov Models are an extension to a standard HMM where the under-
lying hidden states are allowed to be of variable duration, with each hidden state out-
putting a variable number of observations. The chance of leaving a given hidden state
depends upon the time spent in the state - the underlying stochastic process is assumed
to be semi-Markovian. This relaxation of the Markov assumption leads to a more flex-
ible model, which may be, in theory, more capable of capturing variable data. The
biological process underlying our model, i.e. promoter state, is arguably represented
in quite a rigid way in the existing model, as the promoter is not actually switching
every 20 seconds or so between states. Relaxing the Markov assumption may lead to a
model that better describes the data.

5.2.4 Mean Field Variational Bayes Methods

Other algorithms have also been developed for efficient inference in intractable prob-
abilistic models. A popular class are variational Bayesian inference algorithms and
these have previously been applied to generalised versions of hidden Markov models
(Murphy, 2022).

A limitation of the approximation developed in this thesis is that while inference
is drastically sped up for very long genes, relative the original approach, the computa-
tional time taken still scales linearly with the number of allowed states in the truncated
model approximation. As the number of allowed states is increased, the truncated
model converges to the true values, but the computational time also increases (Figure
3.7). Therefore it is possible that the inference results will be inaccurate for some very
long genes.

Unpublished work in our group has investigated the use of Mean Field Variational
Bayes Methods instead, where the model likelihood is approximated using the Ev-
idence Lower Bound (ELBO). A mean-field assumption is used to approximate the
posterior distribution of the latent state variables by a factorised distribution. This
approach offers a more computationally efficient alternative to sampling-based tech-
niques and does not suffer from the scaling issue we have when we increase our number
of allowed states. Initial results indicate that the model is able to infer kinetic param-
eters reasonably well after being trained on MS2 data. However, further experiments
are required to determine whether the factorisation of the variational approximation is
able to provide a good approximation to the state variable posterior distribution.
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