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This thesis consists of three self-contained essays that analyse two important subjects in Empir-
ical Finance: the Conditional Capital Asset Pricing Model (CCAPM) and out-of-sample equity
premium prediction. The first two essays concern the CCAPM model and analyse the choice of
variables used to capture the time variation in the risk loadings. The lack of a theory to guide
the choice of conditioning variables, and the rather large pool of potential variables that have
been identified in the CCAPM literature, creates an empirical dilemma over how to optimally
parameterise the model.

The first essay considers a dynamic model selection (DMS) approach where the choice of condi-
tioning variables, selected from a large pool of state variables, is allowed to vary through time
rather than remaining fixed. We find that estimating the CCAPM using the DMS method can
improve the performance in some asset pricing tests, however, it still fails to explain the value
and momentum anomalies. Using bootstrap methods to quantify the model uncertainty and
instability, we find that the DMS selection of conditioning variables is subject to considerable
estimation error. This provides strong motivation for our second essay, where we consider al-
ternative forecasting approaches which try to address this variable-selection uncertainty (VSU).
We implement combination of forecasts (CF), and combination of information (CI) approaches
to capture the beta dynamics. CF combines forecasts generated from simple models, each incor-
porating a part of the whole information set, while CI brings the entire or selected information
set into one single model to generate an ultimate forecast. Our findings suggest that CF ap-
proaches dominate the CI approaches in explaining the cross-section of assets returns. However,
we also demonstrate that further improvements in results are possible by combining the CI and
CF methods.

The topic of the third essay concerns the predictability, or otherwise, of the equity premium. In
this essay, we use some of the techniques developed in earlier chapters of the thesis, such as CF
and CI methods, in order to select the best conditioning variables for predicting market excess
returns. In particular, we focus on the issue of parameter instability (PI) in predictive models
caused by abrupt changes in financial market conditions which result in structural breaks in the
underlying relationship between the variables in the model. Since standard forecasting models
assume that the relationship between these variables remains constant over the entire period,
any parameter instability, therefore, can lead to poor out-of-sample performance (e.g., Rapach
and Wohar, 2006; Paye and Timmermann, 2006; Rapach et al., 2010). Here, we introduce a
novel approach to predicting returns which uses a combining forecasts (CF) approach with a
variance-covariance (VC) method that addresses PI and VSU. The essay has two main find-
ings: i) by taking into account the correlation structure among forecast errors through our VC
approach, the forecasting accuracy of univariate prediction of the equity premium significantly
improves, and ii) by addressing PI and VSU simultaneously the VC approach can substantially
improve the forecasting accuracy compared to existing approaches in equity premium such as
CF (Rapach et al., 2010), CI approaches such as dimension reduction methods (Neely et al.,
2014 and Kelly and Pruitt, 2013) and shrinkage methods such as Least Absolute Shrinkage and
Selection Operator (LASSO), (Tibshirani, 1996), adaptive LASSO (Zou, 2006), and Elastic Net
(Zou and Hastie, 2005).
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Chapter 1

Introduction

1.1 Motivation

A predictive regression is an extensively used econometric tool to assess the predictability of
economic or financial variables by past values of one or more variables. An example of such
a predictive regression is given in equation (1.1) which can be used to assess whether current
information (Xt) can predict future stock returns (rt+1).

rt+1 = α+ βXt + ut+1 (1.1)

When applied to aggregate market returns, these models provide forecasts of the equity pre-
mium. Such forecasts are extensively used in various empirical finance areas, most notably in
leading asset pricing models (e.g., Campbell & Cochrane 1999, Bansal & Yaron 2004, Frazzini
& Pedersen 2014).

In addition to directly providing estimates of the time-variation in the equity premium, the
ever-growing literature on predictor variables has provided researchers with a large pool of po-
tential conditioning variables to use in other asset pricing tests.1 Relevant to this thesis is the
case of the conditional CAPM (CCAPM), which is studied in Chapters 2, and 3. The primary
requirement in this type of analysis is to accurately model time-varying betas (systematic risk,
β) as a linear function of observable conditioning variables (Xt), where βt = b0 + b1Xt. As a
result, the following regression model emerges:2

Rt+1 = α0 + b0Rm,t+1 + b1Rm,t+1Xt + ut+1 (1.2)

where E(ut+1) = E(ut+1[XtRm,t+1]) = 0. The CCAPM implies that α0 = 0. This version of
CCAPM given in equation (1.2) is also called CCAPM-IV because it uses predictor variables
or instrumental variables (IVs). As mentioned, the CCAPM-IV approach draws heavily on the
same predictors that have been reported as predictors of aggregate stock returns, the predictors
identified by Goyal & Welch (2008) being a common choice.

A literature review evaluating the performance of predictive regressions suggests that using
equity premium predictors can be criticised given the identification of predictor variables is
econometrically challenging, leading to spurious identification of conditioning variables. These

1See Goyal & Welch (2008) for traditional predictor variables and some of the new predictors include technical
indicators (Neely et al. 2014), investor sentiment and attention (Huang et al. 2015, Chen 2017), the short interest
index (Rapach et al. 2016), and credit quality (Chava et al. 2015), among others.

2The conditional alpha (intercept) is also time-varying in some studies, as αt = α0+α1Xt (e.g., Christopherson
et al. 1998). As a result, the following regression model emerges, which makes the model, Rt+1 = α0 + α1Zt +
b0Rm,t+1 + b1Rm,t+1Xt + ut+1.
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challenges include the issues with persistence leading to bias (Stambaugh 1999), inability to pre-
dict out-of-sample (Goyal & Welch 2008), model instability (Paye & Timmermann 2006, Rapach
& Wohar 2006) and data mining and overfitting (Ferson et al. 2003). Moreover, recent advances
in information technology allow hundreds of economic variables to be obtained in real-time.
Using multiple economic predictors to forecast a target variable has become a recent trend in
econometric research that seeks to exploit such data-rich environments (Wang et al. 2020). The
lack of theoretical guidance on which subset of variables should be chosen from the prethora of
predictors creates an empirical dilemma over how to optimally parameterise the model. We refer
to this problem as variable-selection uncertainty (henceforth VSU). The VSU issue is important
to address in the presence of many predictors because some recent studies have stressed that
too many predictors can adversely affect a model’s forecasting performance (e.g., Boivin & Ng
2006).3

Our strategies to address the issue of VSU from the CCAPM-IV perspective in Chapters 2
and 3 are motivated by equity premium prediction (EPP) literature. In the fourth chapter, I
apply some of the techniques developed in Chapters 2 and 3 to make a contribution to the EPP
literature. In the EPP literature review, I identify a significant research gap in out-of-sample
EPP concerning the selection of both the predictor variables and optimal estimation window in
out-of-sample forecasting regressions. Our motivation is based on the findings of some studies in
macroeconomics and finance, relating the parameter instability to forecast failure (e.g., Stock &
Watson 1996, Pesaran et al. 2006, Inoue & Rossi 2011). Parameter instability is due to structural
breaks triggered by various factors like extreme events, significant changes in financial market
conditions, presidential elections, regime switches in monetary policies, business changes, new
technology, and significant changes in government regulations. In particular, in the predictive
relationship between different economic variables and stock returns, Rapach & Wohar (2006)
find clear evidence of structural breaks. As shown by Pesaran & Timmermann (2007) the per-
formance of a forecasting model when structural breaks are present depends on the number of
observations (window length) used to estimate the out-of-sample forecast. However, there is no
clear consensus in the literature on the number of observations to be used in estimation, which is
usually referred as estimation window uncertainty (EWU) (Pesaran & Timmermann 2007). Due
to this issue, it is recommended rather than including all available observations for estimating
the parameters, only the most recent observations be used (the so-called “rolling estimation”
method). However, most of the existing forecasting strategies in EPP use an expanding win-
dow method, for example, Rapach et al. (2010) use combining forecast (CF) technique, whereas
Neely et al. (2014) use combining information (CI) approach. Both of these strategies use a
recursive expanding window, which uses all the observations available and, as a result, will be
non-optimal in the presence of structural breaks. There are few studies which use rolling window
approach, for example, most recently Li & Tsiakas (2017) and Yin (2020) use rolling window in
implementing the shrinkage approaches such as Least Absolute Shrinkage and Selection Opera-
tor (LASSO) and Elastic Net (ENet) to predict equity premium.

In most of the above literature, the rolling window size is arbitrarily selected or supported
by the results of past studies. However, the forecasting accuracy of the rolling window approach
is found to be sensitive to the choice of window size (e.g., Pesaran & Timmermann 2007, Inoue
et al. 2017). This implies that though the existing forecasting strategies (such as combining
forecasts, combining information, and shrinkage methods) using either expanding window or
rolling window approaches account for VSU but do not choose the window optimally, as a re-

3There are a variety of reasons why a model should be limited to a small number of predictor variables. The
most apparent is that every single variable cannot explain the target variable, so any variable that is not related
to it should be omitted (ontological sparsity). Second, even though all variables may explain the target variable, it
is preferable to remove variables with minor effects, either to improve the final model’s interpretability (epistemic
sparsity) or to improve the model’s predictive ability through reducing variance (predictive sparsity).
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sult, fail to address the issue of EWU. In Chapter 4, we address this by using techniques to
choose both the optimal variables and optimal window. Therefore our new forecasting approach
addresses both VSU (choice of variable) and EWU (choice of window) simultaneously to improve
the out-of-sample forecasts of the equity premium.

1.2 Contribution

This thesis contributes to the literature on explaining the cross-section of returns (Chapters 2
and 3) and forecasting the equity premium (Chapter 4). The following subsections provide an
overview of each of the three studies.

1.2.1 Chapter 2: Conditional CAPM with Dynamic Model Selection (DMS)
Approaches

In the first essay, we introduce a CCAPM model where the choice of conditioning variables, used
to capture the variation in conditional betas, is allowed to vary through time and is selected
from a large pool of potential state variables.4 Under our approach, the subset of conditioning
variables selected at time t is based on a pre-test procedure that uses past information to decide
whether a predictor is ‘in’ or ‘out’. Specifically, this approach selects the beta models that
perform the best based on standard asset pricing criteria on past data at each point in time.
We call this approach as dynamically selected beta model (DSBM).

In addition to our DSBM, we also apply some of the popular variable selection approaches
found in the mainstream literature but to the best of our knowledge have not been applied
to CCAPM-IV. These methods include: i) best subset selection, ii) sequential selection, and
iii) shrinkage methods. For best subset selection the variables are chosen using various criteria
including, adjusted R2, Akaike information criterion (Akaike 1973), Bayesian information cri-
terion (Schwarz 1978), and Mallows’s CP (Mallows 1973). The sequential selection approaches
include forward selection, backward elimination, and stepwise regression. The shrinkage meth-
ods include the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani 1996),
Adaptive LASSO (Zou 2006), and Elastic Net (ENet) (Zou & Hastie 2005). To test the valid-
ity of CCAPM-IV using dynamic model selection approaches, we examine whether CCAPM-IV
models based on time-varying conditioning information explain the cross-section of asset returns
of 25 Size and Value portfolios. We use the two-pass regression framework of Fama & MacBeth
(1973).

By evaluating conditional versions of the CAPM (CCAPM) through modelling a new type
of time variation in conditional betas, our first essay contributes to the empirical asset pric-
ing literature. Specifically, we complement the existing CCAPM literature that has focused on
capturing beta dynamics using state variables to explain several patterns in the cross-section of
stock returns like size, value, and momentum anomalies.5 Our work is also closely related to
studies such as Harvey (2001), and Cooper & Gubellini (2011), who find that the estimation of
CCAPM is sensitive to choosing state variables. We also complement the literature by provid-
ing evidence against CCAPM (e.g., Lewellen & Nagel 2006) for its failure to explain the value
and momentum anomalies. Finally, using bootstrap methods to quantify the model uncertainty
and instability, we find that the DMS approaches of selecting conditioning variables are subject
to considerable estimation error. This finding provides strong motivation for our second essay,

4We use 14 variables of Goyal & Welch (2008) for which monthly data are available from July 1926 to December
2018.

5A partial list includes Jagannathan & Wang (1996), Ferson & Harvey (1999), Lettau & Ludvigson (2001),
Petkova & Zhang (2005), Cederburg & O’Doherty (2016) and others.
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where we consider alternative forecasting approaches which try to address this variable-selection
uncertainty (VSU).

1.2.2 Chapter 3: Conditional CAPM under Variable-selection Uncertainty
(VSU)

In the literature on forecasting we generally find three approaches to account for VSU: the com-
bination of forecasts (CF) (e.g., Bates & Granger 1969), the combination of information (CI)
(e.g., Kelly & Pruitt 2013), and one that combines both CF and CI (e.g., Huang & Lee 2010).
CF combines forecasts obtained from simple models where each incorporates a part of the whole
information set, CI, on the other hand, brings the entire information set into one single model
to generate a single optimal forecast (Huang & Lee 2010).6 After reviewing the literature, I
find that there are many alternative approaches to implement CI and CF. However, there is no
clear consensus on which method is the best. Most studies are concerned with equity premium
and macroeconomic prediction, but none of them examines the optimal approach suitable for
modelling the time variation of betas in the CCAPM framework. Therefore we aim to compare
various CI, CF, and a hybrid of CI and CF approaches in explaining the cross-section of asset
returns within a CCAPM-IV framework. More specifically, the CF analysis combines point
forecasts of betas estimated from univariate predictor-based regressions from a large pool of
conditioning variables. At each point in time, these beta forecasts are weighted in various ways,
including simple equally-weighted average and weighting schemes based on some criteria such
as mean squared forecast error (MSFE).

In our CI approach, we use dimension reduction methods which include Principal Components
(PCs) (Bai & Ng 2002) and Kelly & Pruitt (2013) three pass filter based on partial least squares
(PLS). These approaches take the original pool of predictors and reduce it down to a small
subset of variables known as factors. These factors are then used to fit the time-varying beta
model. In approaches that combine CI and CF, our approaches include principal component
combinations of Chan et al. (1999) and Huang & Lee (2010), variable selection and combination
through shrinkage methods (Rapach & Zhou 2020). Moreover, we also consider the bootstrap
aggregation (bagging or BAGG) technique which creates new training sets through bootstrap
(e.g., Rapach & Strauss 2010). We draw B random samples with replacement from the original
training set. For each bootstrap sample, we apply various CI, CF, and combinations of CI and
CF approaches and obtain a forecast, and finally, we take an equally weighted average across B
forecasts to obtain the final forecast.

Our second essay contributes to the literature in the following ways. First, to our knowledge,
this is the first research to include a detailed comparison of various well-known approaches to
dealing with VSU from a CCAPM perspective. Our out-of-sample results suggest that CF ap-
proaches dominate the CI approaches in explaining the cross-section of assets returns. Finally,
consistent with studies as Hirano & Wright (2017) and Rapach & Zhou (2020), we show that
a combination of conventional econometric methods and machine learning methods can outper-
form the individual methods. For example, we find the evidence on improved performance of
CCAPM-IV with BAGG method where, in each pseudo sample, we first select the subset of
variables based on the mean squared forecasting error (MSFE) in cross-validation sample, and
then take a simple average of beta estimates across all pseudo samples. This method performs

6CI, is generally referred to dimension reduction, which is the transformation of data from a high dimensional
space into a low-dimensional space such that any meaningful properties of the original data are preserved in the
low-dimensional representation. However, we also include model selection approaches from Essay 1 under this
category because either subset variable selection or dimension reduction would ultimately result in one model to
generate the final forecast. The CF approach, on the other hand, always generates multiple forecasts for the same
target variable and combines them into a composite forecast.
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as well as the Fama & French (1993) three-factor model in explaining the cross-sectional returns
of 25 Size-B/M, 30 industry and 10 momentum portfolios.

1.2.3 Chapter 4: Equity Premium Prediction under Variable-selection Un-
certainty (VSU) and Parameter Instability (PI)

In the third essay, we propose a new combining forecasts (CF) approach based on a variance-
covariance method that addresses estimation window uncertainty (EWU) and variable-selection
uncertainty (VSU) simultaneously to improve the out-of-sample forecasts of the equity premium.
A common strategy to handle EWU in the presence of structural breaks is to estimate breaking
dates and use post-break observations for parameter estimation and forecast generation (see Bai
& Perron 1998). However, Pesaran & Timmermann (2007) criticise this approach and show
that due to limited post-break data, this approach introduces high estimation uncertainty which
adversely affects the forecast accuracy measured as MSFE. They emphasise the importance of
pre-break data in producing accurate forecasts and demonstrate that it can be useful to consider
combining forecasts generated by the same model but over different estimation windows (Pe-
saran & Timmermann 2007, Pesaran et al. 2013, Tian & Anderson 2014, Tian & Zhou 2018).
Despite improved forecasting performance, these approaches do not consider the correlation
among forecasting errors and simply combine forecasts using simple average or weighted by
MSFE. In chapter 4, we consider the possibility that a variance-covariance (VC) combination
method which has been widely used in the CF literature (e.g., Bates & Granger 1969, Newbold
& Granger 1974, Figlewski 1983, Cang & Yu 2014, and others), may improve forecasts of the
equity premium.

The VC approach emphasises the consideration of correlation among forecasting errors, and
the optimal weights are obtained as a solution to minimising the error variance-covariance ma-
trix. It has been shown that VC can provide diversification effect and improve forecast accuracy
(Bates & Granger 1969). Therefore, we aim to contribute to the literature by implementing the
VC approach to obtain the optimal out-of-sample forecast for a particular economic predictor-
based model based on multiple windows.

Moreover, Pesaran et al. (2013) show that estimation window uncertainty (EWU) and variable-
selection uncertainty (VSU) are relevant problems for predicting macroeconomic and financial
variables and introduced a new approach called average-average (AveAve). They argue that the
two differently used approaches based on a simple average for accounting VSU (forecasts from
various models, all estimated on a single window, are averaged, AveM) and EWU (calculated
as the averages of forecasts generated from the same model over multiple windows, AveW) can
be combined into one (AveAve). They show that out-of-sample “AveAve” forecasts outperform
the AveM as well as the AveW forecasts. However, most of the equity premium literature con-
siders the VSU and EWU as two different issues. For example, Rapach et al. (2010) account
for VSU by taking a simple average across individual predictive models (AveM) and ignores
EWU as all individual models were estimated using an expanding window. On the other hand,
Tian & Zhou (2018) apply five alternative methods for directly dealing with EWU for various
univariate and multivariate models based on Goyal & Welch (2008) predictors to forecast the
equity premium; however, they do not consider VSU. This provides us with an opportunity to
contribute the existing literature by implementing the VC approach to address the VSU and
EWU issues simultaneously in forecasting out-of-sample equity premium.

Hence our third essay contributes to the existing literature by complementing the existing liter-
ature on methods for directly dealing with EWU in forecasting such as Pesaran & Timmermann
(2007), Rossi (2013), Wang et al. (2020) and others. This is the first study to the best of our
knowledge, to apply the VC approach for combining estimation windows of individual models.
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We show that considering the correlation among forecast errors across estimation windows can
significantly improve the forecasting accuracy of individual models. Secondly, for the first time in
the forecasting literature, we introduce a panel combination approach based on VC approach to
address the model uncertainty and parameter instability simultaneously. Based on out-of-sample
forecasting results of the equity premium, we show that our new model not only outperforms
the existing AveAve approach of Pesaran et al. (2013) but also existing approaches in equity
premium such as CF (Rapach et al. 2010), dimension reduction methods (Kelly & Pruitt 2013,
Neely et al. 2014) and shrinkage methods (Zhang et al. 2020).

1.3 Thesis structure

The thesis follows the journal format structure accepted by the Manchester Accounting and
Finance Group, Alliance Manchester Business School, at the University of Manchester, United
Kingdom. It facilitates the integration of chapters into a format acceptable for submission and
publication in peer-reviewed scholarly journals. This thesis is therefore based around three
empirical essays containing original studies in chapters 2, 3 and 4 on “Conditional CAPM
(CCAPM) and Equity Premium Prediction.” The chapters are self-contained, i.e. each chapter
has a separate examination of literature, addresses distinct and original questions. There are
independent equations, footnotes, charts, and figures and are numbered from each chapter’s
beginning. Throughout the thesis, page numbers, titles, and subtitles have a sequential order.

The thesis continues as follows. Chapter 2 presents empirical tests of the conditional CAPM,
where we implement dynamic model selection approaches to capture the beta dynamics of assets.
Chapter 3 extends Chapter 2 by implementing combining information (CI), combining forecasts
(CF), and a hybrid of CI and CF approaches to capture beta dynamics. Chapter 4 introduces a
new combing forecasts (CF) approach based on the variance-covariance (VC) method to address
EWU and VSU issues for improving out-of-sample forecasts of the equity premium. Finally,
Chapter 5 concludes and provide future directions for further research. The first person plural
(we, our) is used in Chapters 2 to 4 instead of the first person singular (I, my), since I plan to
consider some of the work for publication with my supervisor.
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Chapter 2

Conditional CAPM with Dynamic Model
Selection (DMS) Approaches

2.1 Introduction

2.1.1 Background

The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) has long been a
foundation of asset pricing theory and practice. It is, however, proven that the unconditional
(or static) version of the CAPM does not explain the expected portfolio returns based on firm
characteristics.1 Despite the fact that the unconditional CAPM fails empirically, a conditional
CAPM (CCAPM) that allows betas to vary over time might be able to explain the cross-section
of average return (see Jagannathan & Wang 1996). Empirically, the performance of such a
method relies on an excellent econometric framework that captures the time-variation of condi-
tional betas (Ghysels 1998).

In the finance literature, estimating the time-varying betas have already been thoroughly studied
by several different approaches.2 However, to date, there is no convincing argument for either
approach. In this paper, we follow Jagannathan & Wang (1996), Ferson & Harvey (1999), Let-
tau & Ludvigson (2001), Petkova & Zhang (2005), Cederburg & O’Doherty (2016) and others,
and define the beta of an asset as a linear function of some observable conditioning informa-
tion variables (CIVs). Since this approach uses predictor variables or instrumental variables
(IVs), it is also referred to as CCAPM-IV. This essay contributes to the current literature by
introducing a CCAPM-IV model where the choice of conditioning variables, used to model the
time-varying betas, is allowed to vary through time and is selected from a large pool of potential
state variables.

2.1.2 Motivation

The primary motivation for this study comes from the fact that the CCAPM-IV method relies
heavily on the same predictors that are being reported as aggregate stock return predictors
(Cooper & Gubellini 2011). The ever-growing literature on predictor variables has provided re-
searchers with a large pool of possible conditioning variables in addition to explicitly providing

1This forms the basis of the anomalies literature. Well-known anomalies include size, book-to-market, mo-
mentum, beta, liquidity, profitability, growth, and others (e.g., Banz 1981, Fama & French 1992, Carhart 1997,
Amihud 2002, Fama & French 2015, Hou et al. 2019).

2Some of the famous approaches include those using data-driven filters such as beta calculated from a 60-
month rolling window as in Fama & MacBeth (1973), or a short window approach (Lewellen & Nagel 2006) and
high-frequency data (Andersen et al. 2003), multivariate GARCH (Bollerslev et al. 1988), dynamic conditional
correlation (DCC) (Engle 2002, Bali & Engle 2010), regime-switching model (Vendrame et al. 2018), mean-
reverting stochastic process (Jostova & Philipov 2005), Kalman filter (Adrian & Franzoni 2009), and others.
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estimates of the time-varying equity premium.3

However, using equity premium predictors can be criticised given the identification of predictor
variables is econometrically challenging, leading to spurious identification of conditioning vari-
ables. These challenges include the issues with persistence leading to bias (Stambaugh 1999),
inability to predict out-of-sample (Goyal & Welch 2008), model instability (Paye & Timmer-
mann 2006, Rapach & Wohar 2006) and data mining and overfitting (Ferson et al. 2003, Harvey
et al. 2016). The lack of theoretical guidance on which subset of variables should be chosen
from the plethora of predictors creates an empirical dilemma over how to optimally parame-
terise the model. We refer to this problem as variable-selection uncertainty (henceforth VSU).
The VSU issue is important to address because some recent studies have stressed that too many
predictors can adversely affect a model’s forecasting performance (e.g., Boivin & Ng 2006, Bai
& Ng 2008).4 The other motivation for including the small number of predictors is based on a
practical viewpoint, provided that the collection and processing of information are often expen-
sive and therefore contributes to rational inattention (e.g., Sims 2003, Abel et al. 2013, Luo &
Young 2016, Gabaix 2019). This implies that rational investors only consider the most effective
predictor variables as a consequence of rational inattention and neglect the rest. Given this mo-
tivation, we believe it is worth considering the approaches that can select a subset of predictors
at a given time for forecasting asset betas.

2.1.3 Research Gaps and Objectives

The problem of variable-selection uncertainty (VSU) also applies to the tests of CCAPM-IV
when predictors from the equity premium prediction (henceforth EPP) literature are used to
model the time-variation in factor loadings. This is also evident from the standard CCAPM-IV
approach, which generally uses a predetermined set of predictors. The dividend yield (DY),
the short-term Treasury bill rate (TBL), the default premium (DEF), and the term premium
(TMS) are four common variables used in several studies (e.g., Ferson & Harvey 1999, Petkova
& Zhang 2005, Cai et al. 2015). Such an approach of using a fixed number of conditioning
variables from a broad set of predictors to represent the information set has been criticised. For
example, studies such as Ghysels (1998), Harvey (2001) and Cooper & Gubellini (2011) find
that the performance of CCAPM-IV is sensitive to the researcher’s selection of variables. This
suggests that the existing CCAPM-IV approach faces the issue of VSU, which can be addressed
by applying some of the strategies used in forecasting literature, in particular, EPP literature.

A review of forecasting literature suggests there have been many advances, especially in the
area of EPP, that address the empirical challenges in using predictive regressions, in particular
dealing with VSU. In the presence of various predictors, one of many approaches is the variable
selection (henceforth VS) which directly selects the best predictors to carry out the forecast at
each point in time.5 VS approach implies that only subset of predictors are important at a point
in time and all other predictors have weak prediction power to the target variable. Thus, it is
interesting to apply some of these methods to the CCAPM-IV to address the issue of VSU. This
study, therefore, aims to introduce a CCAPM model where the choice of conditioning variables,

3See Goyal & Welch (2008) for traditional predictor variables and some of the new predictors include technical
indicators (Neely et al. 2014, Lin 2018), investor sentiment and attention (Huang et al. 2015, Ni et al. 2015,
Coqueret 2020, Zhang et al. 2021), manager sentiment (Jiang et al. 2019), the short interest index (Rapach et al.
2016), bitcoin prices (Salisu et al. 2019), credit quality (Chava et al. 2015), among others.

4There are a variety of reasons why a model should be limited to a small number of predictor variables. The
most apparent is that every single variable cannot explain the target variable, so any variable that is not related
to it should be omitted (ontological sparsity). Second, even though all variables may explain the target variable, it
is preferable to remove variables with minor effects, either to improve the final model’s interpretability (epistemic
sparsity) or to improve the model’s predictive ability through reducing variance (predictive sparsity).

5See Zhang (2016) and Wang et al. (2020) for more details on VS approaches.
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used to capture the variation in conditional betas, is allowed to vary through time and is selected
from a large pool of potential state variables. Under our approach, the subset of conditioning
variables selected at time t is based on a pretest procedure that uses past information to decide
whether a predictor is ‘in’ or ‘out’. Therefore, the main research question is whether conditional
CAPM based on VS approaches can explain the cross-section of average returns. As this has
been a challenge from previous implementations of the CCAPM (e.g., Harvey 2001, Cooper &
Gubellini 2011).

Some of the popular VS approaches in linear models include the sequential selection, best subset
selection, and shrinkage methods. These methods are also known as dynamic model selection
(henceforth DMS) approaches where selected variables at a given time are used in a single model
for estimation and forecasting. The sequential selection approach includes the methods such as
forward selection, backward elimination, and stepwise regression (e.g., Efroymson 1960, Draper
& Smith 1966, Smith 2018, Xu & Zhang 2001).6 Under this approach, the candidate variables
are evaluated at each step, one by one, usually using the t-statistics for the coefficients of the
considered variables. The best subset variable selection approach tests all possible combination
of the predictor variables and then select the best model according to some statistical crite-
ria. Historically simplified criteria such as the determination coefficient (R2), and its modified
variant that penalises models with more parameters have been widely used. However, these
methods have been shown to experience manifold weaknesses, particularly in a predictive con-
text, where more advanced metrics are standard nowadays, such as information criteria, for
instance, Akaike Information Criterion (AIC) (Akaike 1973), Bayesian Information Criterion
(BIC) (Schwarz 1978), and Mallows’s CP (Mallows 1973).7 To overcome the computational
difficulties of the best subset problem, computationally convenient convex optimisation based
shrinkage methods, also called penalised regression, have been proposed.8 The most common
shrinkage methods include the Least Absolute Shrinkage and Selection Operator (LASSO) (Tib-
shirani 1996), Adaptive LASSO (Zou 2006), and Elastic Net (ENet) (Zou & Hastie 2005).

In addition to these standard methods, we also consider each model by its performance in
pricing the assets. We call this approach as the dynamically selected beta model (henceforth
DSBM). More specifically, this approach selects the beta models that perform the best based on
standard asset pricing criteria on past data at each point in time. More precisely, our approach
to select the optimal subset of variables at time t is as follows: i) we consider all possible sets
of conditioning variables, ii) using past data (i.e. a training sample of data prior to time t),
the set of variables that perform best in an asset pricing test is selected. Various asset pricing
criteria are considered for selection of the optimal set, including time-series and cross-sectional
tests. Our approach’s natural consequence is that the conditioning information, as represented
by the optimal subset of conditioning variables, will change over time as variables become more
or less important.

2.1.4 Overview of Methodology

We use out-of-sample analysis to estimate time-varying betas with various dynamic model selec-
tion (DMS) approaches to prevent look-ahead bias. Our analysis examines whether the CCAPM
model based on DMS approaches explains the cross-section of average asset returns. We use
Fama & MacBeth (1973) two-step method, in which the factor loadings for each asset, i.e. the
estimates of conditional betas in CCAPM, are obtained in the first step using time-series regres-
sions. The first step involves regressing monthly excess asset returns on the market risk factor,
in a model where the market beta varies with conditioning variables (see, e.g., Shanken 1990,

6See Morozova et al. (2015) for more details on sequential selection methods.
7See Kadane & Lazar (2004), Raffalovich et al. (2008), and Zhang (2016) for more details.
8See Kuhn & Johnson (2013) and Hastie et al. (2017) for more details on shrinkage methods.
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Ferson & Harvey 1999, Cederburg & O’Doherty 2016). More specifically, βt = f(Xt), where
X represents the subset of the full information set of investors (I), Xt ⊂ It. In our approach,
we first select the subset of predictors, X∗t , at each period based on some performance criteria,
X∗t ⊂ Xt and then define βt = f(X∗t ). After obtaining the out-of-sample betas, we test the model
by running a cross-sectional regression at each time t of the evaluation period, with the first-step
betas obtained through different approaches serving as an explanatory variable. Our CCAPM
cross-sectional tests are based on mainstream literature that evaluates the pricing abilities of a
given model by looking at the significance of Fama & MacBeth (1973) parameter estimates.9 In
addition, we assess the performance of each model through various performance metrics such as
sum of squared pricing errors (SSPE) (Adrian & Rosenberg 2008), and cross-sectional adjusted
R2 (Jagannathan & Wang 1996), and composite pricing errors (CPE) (Campbell & Vuolteenaho
2004).

2.1.5 Principal Results

We use the monthly excess returns on 25 size and value portfolios of Fama & French (1993)
to perform the tests for a sample period from July 1926 to December 2018. The conditioning
information variables used in this study are taken from Goyal & Welch (2008), we select the 14
variables for which monthly data are available from July 1926 to December 2018. The cross-
sectional results for out-of-sample periods August 1936 to December 2018 and August 1968 to
December 2018 show that all the DMS approaches do not handle the equity premium properly
since the excess return on the zero-beta portfolio (constant from Fama & MacBeth (1973) sec-
ond stage regression) is significant and large in magnitude. In addition, these approaches yield
significant pricing errors measured as composite pricing errors (CPE). However, in terms of
explaining cross-sectional variation measured as R2, DSBM outperforms all the standard DMS
approaches including sequential selection, best subset selection, and shrinkage methods.

Lewellen & Nagel (2006) criticise the cross-sectional tests and argue in favour of time-series
tests for testing the suitability of CCAPM by directly evaluating the ability of a model in ex-
plaining the anomalies unexplained by unconditional CAPM. Following them, we use time-series
analysis to assess the performance of DMS approaches compared to the unconditional CAPM.
Specifically, our time-series tests compare the unconditional and conditional performance of size,
value, and momentum portfolios.10 Consistent with the findings of Lewellen & Nagel (2006),
results show that the size premium is insignificant at 5% for all the models, including both DMS
and unconditional CAPM. However, the average pricing errors for ‘VMG’ and ‘WML’ are sig-
nificant for all the models, including DSBM, implying a failure of DMS approaches in explaining
the value and momentum anomalies.

Finally, to test the robustness of DMS approaches, we follow mainstream literature and use
the bootstrap method, which is the standard approach for quantifying the model uncertainty
and instability (see, e.g., Sauerbrei & Schumacher 1992, De Bin et al. 2016, Petropoulos et al.
2018). Results show that the selection of conditioning variables under all approaches is subject
to considerable estimation error. In other words, DMS approaches in our application fail to fully
address the issue of VSU. These findings are consistent with recent criticism of DMS approaches
regarding their inability to properly address the variable-selection uncertainty and to achieve
model stability (Smith 2018, Petropoulos et al. 2018, Makridakis et al. 2020, and others).

9We use t-statistics to test the significance using Newey & West (1987) heteroskedasticity and autocorrelation
consistent standard errors.

10The test portfolios are from Kenneth R. French’s database. ‘Small’ (‘Big’) indicates the average of the five
low (high) portfolios sorted by market-cap, and the difference of ‘Small’ and ‘Big’ is denoted as ’SMB’. Likewise,
‘Growth’ (‘Value’) is the average of the five low (high) portfolios sorted by book-to-market, and ‘VMG’ indicates
the returns on ‘Value’ minus ‘Growth’ portfolio. ‘Losers’ (‘Winners’) are the bottom (top) decile of Fama-French
momentum sorted portfolios, and ‘Winners minus Loosers (WML)’ is their difference.
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2.1.6 Contribution

This essay contributes to the current empirical asset pricing literature by evaluating conditional
versions of the CAPM (CCAPM) through modelling a new form of time variance in conditional
betas. More specifically, we complement the existing CCAPM literature that has focused on
capturing beta dynamics using state variables to explain unconditional alphas for portfolios
sorted by firm characteristics such as size and value.11 Our research is also related to studies
such as Harvey (2001), and Cooper & Gubellini (2011), who find that the estimation of CCAPM
is sensitive to choosing state variables. Finally, we also complement the literature by providing
evidence against CCAPM (e.g., Lewellen & Nagel 2006) for its failure in explaining the value
and momentum anomalies.

The remaining structure of this chapter is as follows. An overview of the literature on the
CCAPM, and model selection approaches is provided in Section 2.2. The econometric method-
ology is discussed in Section 2.3. Section 2.4 addresses the implementation of model selection
approaches from the CCAPM perspective. Section 2.5 provides an overview of data and bench-
mark models. The discussion of the empirical results is given in Section 2.6. Section 2.7 reports
the results of various robustness tests. The conclusions are drawn in the Section 2.8.

2.2 Literature Review

This section gives an overview of the CAPM literature as well as potential issues with the
CCAPM-IV. We also go through some well-known variable selection strategies that have been
used in the forecasting literature to deal with variable-selection uncertainty (VSU).

2.2.1 Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) has been piv-
otal in empirical asset pricing for more than fifty years now. Though the static version of the
CAPM managed to endure intense econometric investigation for years, recent tests suggest that
this static single-beta model is insufficient to explain expected returns on stocks.12 The failure
of the CAPM may be due to two potential reasons. In the first explanation, many scholars
agree that the beta is not the sole indicator of systemic risk and that asset prices are subject
to a variety of risks other than the market beta risk, including the leverage ratio, size, book-to-
market equity, momentum, liquidity, and others (e.g., Banz 1981, Fama & French 1992, Carhart
1997, Amihud 2002). The multi-factor models emerged as a result of this. The Fama & French
(1993) three-factor (FF3F) and the Carhart (1997) four-factor model are the most prominent
multi-factor factors. The former incorporated size and value as two additional factors to the
standard CAPM, while Carhart (1997) added the momentum factor to the market, size, and
value factors.13

The second potential explanation is generally linked to the fact that the standard CAPM is
a one-period model. This suggests that the standard or unconditional CAPM is founded on

11A partial list includes Jagannathan & Wang (1996), Ferson & Harvey (1999), Lettau & Ludvigson (2001),
Petkova & Zhang (2005), Cederburg & O’Doherty (2016) and others.

12For example, see Banz (1981), Fama & French (1992), Carhart (1997), Amihud (2002), Fama & French
(2015), Hou et al. (2019) and others.

13Some other multi-factor models include the q-factor model of Hou et al. (2015), which include four factors
(viz., market, size, investment, and return on equity). Later, Hou et al. (2019) added a growth factor to the
q-model. Fama & French (2015) proposed the five-factor model, which is based on market, size, value, profit and
investment factors. Later, Fama & French (2018) added momentum to their five-factor model. Stambaugh &
Yuan (2017) proposed a four-factor model, including the market and size factors plus two mispricing factors (viz.,
management and performance).
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the premise that assets’ betas and risk aversion of investors do not change over time. In the
real world, however, it is well understood that when the economy is in a slump, investors are
much more risk-averse, and when investment opportunities increase during a period of eco-
nomic growth, their risk aversion declines. Consequently, risk premia should fluctuate during
the business cycle, since increased risk aversion during economic downturns, according to Fama
& French (1989) and Cochrane (1999), necessitates a higher risk premium, resulting in the pre-
dictability of equity premium. Therefore, some researchers believe that the conditional CAPM,
which includes time-varying beta and market risk premium, may explain the cross-section of
stock returns that the unconditional CAPM cannot. For example, Jagannathan & Wang (1996)
shows that the CAPM holds if beta and risk premium are allowed to vary over time. Using a
value-weighted index and the average returns of 100 stock portfolios, they show that the con-
ditional CAPM can explain more than 50% of the cross-sectional variation in average returns.
In contrast, the unconditional CAPM can only explain 1%. Specifically, Jagannathan & Wang
(1996) define conditional CAPM as:

E[Rit|It−1] = γ0t−1 + γ1t−1βit−1 (2.1)

where they define E[Rit] as expected return on asset i at time t which is conditional on investors’
information set I, available to to them at time t − 1. γ0t−1 represents the expected return on
“zero-beta” portfolio, γ1t−1 indicates the expected market risk premium at time t−1, and βit−1

is conditional β which is given as:

βit−1 =
Cov(Rit, Rmt|It−1)

V ar(Rmt|It−1)
(2.2)

In order to define cross-sectional variation they take unconditional expectations from both sides
of equation (2.1) and get:

E[Rit] = γ0 + γ1βi + Cov(γ1t−1, βit−1) (2.3)

where γ1 represents the expected market risk premium and βi is expected beta. Conditional
CAPM is equivalent to unconditional CAPM if the co-variance in equation (2.3) is zero. Jagan-
nathan & Wang (1996) suggest that the risk premium and conditional betas are highly correlated
because, in a recession, low-performing firms’ financial leverage is expected to increase sharply
relative to other firms, increasing their systematic risk (beta).

Over the years, many empirical studies show that conditional CAPM helps explaining the un-
conditional alphas (e.g., Lettau & Ludvigson 2001, Petkova & Zhang 2005, Adrian & Franzoni
2009, Bali & Engle 2010, Cai et al. 2015, Vendrame et al. 2018). More recently, Cederburg &
O’Doherty (2016) show that CCAPM helps to explain the beta premium (betting against beta,
BAB). We follow this line of inquiry in this study and examine whether a simple conditional
CAPM can explain the cross-section of average returns.

Despite the fact that multiple studies report the success of CCAPM, its implementation in
practice is difficult. CCAPM has two big concerns. First, it is unclear how the set of predic-
tive variables should be selected. Second, there is no consensus among academics on how to
model the time variation in beta and risk premium. Consequently, the empirical success of a
particular strategy in overcoming the problems associated with unconditional CAPM is solely
determined by the method used to estimate time-varying betas (Ghysels 1998). To date, we
find many approaches to capture beta-dynamics. Some of the famous approaches include those
using data-driven filters such as beta calculated from a 60-month rolling window as in Fama
& MacBeth (1973), or a short window approach (Lewellen & Nagel 2006) and high-frequency
data (Andersen et al. 2003), multivariate GARCH (Bollerslev et al. 1988), dynamic conditional
correlation (DCC) (Engle 2002, Bali & Engle 2010), regime-switching model (Vendrame et al.
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2018), mean-reverting stochastic process (Jostova & Philipov 2005), Kalman filter (Adrian &
Franzoni 2009), and others.

Another method to incorporate time variation in beta is called an instrumental variable (IV)
approach, where beta is defined as a linear function of some predetermined instrumental vari-
ables (Jagannathan & Wang 1996, Lettau & Ludvigson 2001, Ferson & Harvey 1999, Petkova &
Zhang 2005, Cederburg & O’Doherty 2016).14 In this study we follow this approach and focus
on the models where betas are function of some observable variables. The primary motivation
for selecting the IV approach is the fact that other approaches have been criticised for concealing
the driving force behind betas. The IV method, on the other hand, can offer more economic
insight into beta movement by identifying the predictor variables that cause fluctuations in sys-
temic risk. That is why this approach is economically more fascinating as it not only reproduces
how investors actually behave, but it also offers strong economic implications without which an
asset pricing theory is void (Cochrane 2005).

2.2.2 Challenges of CCAPM-IV approach

Since there is no guidance on choosing the correct set of conditioning information variables to
model beta dynamics, the IV approach of CCAPM is extremely difficult to test (Cochrane 2009).
The existing studies using IV approach rely on the conditioning information variables (CIVs),
which obviously leads to the researcher’s discretion on the choice of predictors. For example,
the four most common CIVs frequently used in literature to capture beta dynamics include the
dividend yield, the term premium, the default premium, and the short-term Treasury bill rate.
Cooper & Gubellini (2011) find out how sensitive CCAPM tests are to changes in CIVs that
a researcher is likely to consider. They extended the dataset by adding more relevant CIVs
to four of the variables mentioned above and tested the CCAPM with a different combination
of variables. Through simulations, they show that the combinations of various variables pro-
duce different results. Thus, consistent with the findings of Ghysels (1998) and Harvey (2001),
they conclude that the performance of CCAPM-IV is sensitive to the researcher’s selection of
variables. However, the standard methods of CCAPM based on observable variables use a pre-
determined set of CIVs.

The severity of issues with the IV approach is also evident from findings of Simin (2008), who
analyses the performance of unconditional and conditional models using both individual secu-
rity and portfolio return. His conditional model given in equation (2.4) follows the IV approach,
using predictor variables (Zt) to allow both alpha αt = α0 + α1Zt and beta βt = b0 + b1Zt to
vary over time.

Rt+1 = α0 + α1Zt + b0Rp,t+1 + b1Rp,t+1Zt + ut+1, E(ut+1) = E(ut+1[ZtRp,t+1]) = 0 (2.4)

The author concludes that for step-ahead prediction, conditional models appear to yield higher
mean squared errors than unconditional models, implying that variable-selection uncertainty
under the IV approach will devastate the CCAPM’s step-ahead predictability.

The other point to consider is the nature of predictors that are used as CIVs. The standard
IV approach relies heavily on the same predictors that are being reported as aggregate stock
return predictors (Cooper & Gubellini 2011). However, using equity premium predictors can be
criticised given the identification of predictor variables is econometrically challenging, leading to
spurious identification of conditioning variables. These challenges include the issues with per-
sistence leading to bias (Stambaugh 1999), inability to predict out-of-sample (Goyal & Welch

14Some studies use aggregate variables such as interest rates (e.g., Ferson & Harvey 1999), consumption-to-
wealth ratio (e.g., Lettau & Ludvigson 2001), and other use firm specific variables (e.g., Avramov & Chordia
2006, Bauer et al. 2010) to model beta dynamics.
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2008), model instability (Paye & Timmermann 2006, Rapach & Wohar 2006) and data mining
and overfitting (Ferson et al. 2003).

In summary, the researchers under IV approach generally make two assumptions: i) prede-
termined CIVs are the only relevant variables representing investors’ information set, and ii)
the investors’ information set captured through preselected variables does not change over time.
Therefore it is interesting to apply some of the methods to the CCAPM-IV where the chosen
subset of variables can optimally vary over time.

2.2.3 Dynamic Model Selection Strategies to overcome VSU

This section discusses various strategies used in forecasting literature to address the challenges
related to variable-selection uncertainty (VSU) due to the lack of theory on relevant predictors
to be used in a model. One of the approaches to deal with VSU in the presence of many pre-
dictors is variable selection (VS), which can be defined as the process of selecting a subset of
relevant variables in a data set. The key objective of variable selection methods is removing
irrelevant or closely redundant variables without losing too much information.15 Thus, variable
selection helps simplify forecasting models and reduce the susceptibility to over-fitting problems.

In forecasting literature, we find many approaches to select a subset of variables. Sequential
selection (Draper & Smith 1966), best subset selection (Hocking & Leslie 1967), and shrinkage
methods (Tibshirani 1996) are well-known approaches for selecting and estimating the linear
model parameters. Sequential selection methods were introduced in the 1960s and have since
gained popularity in many fields due to computational convenience (Morozova et al. 2015). Un-
der this approach, to select subset variables from a large pool, one needs to perform a series
of steps. The candidate variables are evaluated at each step, one by one, usually using the
t-statistics for the coefficients of the considered variables. Forward selection, backward elimina-
tion, and stepwise regression are examples of sequential selection methods.

Another approach is best subset variable selection which consists of testing all possible combi-
nations of the predictor variables and then selecting the best model according to some statistical
criteria. In order to choose between alternatives, conventionally simplistic criteria such as the
coefficient of determination (R2) and its modified variant that penalises models with more pa-
rameters have been widely used. However, these criteria suffer from many weaknesses, especially
in a predictive context, where nowadays more advanced measures, such as information criteria
including Akaike information criteria (AIC) (Akaike 1973) and the Bayesian information crite-
rion (BIC) (Schwarz 1978) are the procedures that have gained more attention from the list of
model selection procedures (Burnham & Anderson 2002).

To overcome the computational difficulties of the best subset problem, computationally friendlier
convex optimisation based shrinkage methods, also called penalised regression, have been pro-
posed.16 These methods impose regularisation constraints on the objective function by adding
a penalty term. There are four common regularisation constraints: least absolute shrinkage
and selection operator (LASSO) introduced by Tibshirani (1996), improved version of LASSO
known as adaptive LASSO proposed by Zou (2006), Ridge from Hoerl & Kennard (1970), and
finally Elastic Net (ENet) developed by Zou & Hastie (2005). The implementation of shrinkage
methods is based on penalised regression, in which the penalty function simultaneously induces
coefficient shrinkage and variable selection.

15Comprehensive details on variable selection approaches can be found in Kuhn & Johnson (2013) and Hastie
et al. (2017).

16More information on penalised regression approaches are given in Kuhn & Johnson (2013), Hastie et al.
(2017), and Gu et al. (2020).
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The primary motivation for using shrinkage methods is grounded from a statistical perspec-
tive. For example, if a set of important predictors include some variables that are strongly
correlated (positively), the LASSO will choose one and discard the others, preventing overfit-
ting and improving predictive accuracy (see, e.g., Tibshirani 1996). These methods have been
applied in many fields to improve the forecasting accuracy. For example, equity premium (Bun-
cic & Tischhauser 2017), crude oil (Zhang et al. 2019), macroeconomic variables (Baybuza 2018),
tourism (Lourenço et al. 2021), health care (Xiao et al. 2019), weather (Al-Obeidat et al. 2020),
energy consumption (González-Briones et al. 2019), corporate failure (Pereira et al. 2016), and
others.

2.3 Econometric Methodology

This section discusses the econometric framework to estimate and test the conditional CAPM.
Before discussing the models and tests, we first introduce notation, and the process of sample
splitting. Next, we move to the econometric framework of dynamic model selection (DMS)
approaches. Finally, we discuss cross-sectional tests for evaluating the performance of various
models.

2.3.1 Notations

There are N assets indexed by i = 1, . . . . , N , K represents total predictors indexed by
k = 1, . . . . ,K and M indicates the total available models indexed by j = 1, . . . . ,M . T
represents total observations indexed by t = 1, . . . . , T . The initial training sample is indicated
by m and W represents the estimation window. S indicates out-of-sample observations for final
evaluation of model, which is given as, total observations (T ) less initial training sample (W ).
Ri,t indicates the excess returns for asset i at time t, and Rm,t indicates excess market returns
at time t. It indicates the vector of investors’ information set, Xj,t represents the vector of
explanatory variables in model j (Xt ⊆ It). αitj and βitj represent pricing error and beta for
asset i at time t with model j, respectively.

2.3.2 Sample splitting

We use out-of-sample analysis to estimate time-varying betas with various dynamic model selec-
tion approaches to prevent look-ahead bias. This involves dividing the total sample into training
and testing. The model parameters are estimated using the training sample and then applied
to unseen data to obtain out-of-sample forecasts. Specifically, we use two sample-splitting ap-
proaches summarised in Figure (2.1). In the first approach, we divide the total sample of T
observations into two portions: i) W as a training sample, and ii) S = T − W to evaluate
the out-of-sample performance. We use a rolling window approach, with a fixed window of w
observations that rolls over each time up to the last observation of the sample. Figure (2.2)
shows sample-split with rolling window framework.
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Figure 2.1: Approaches for Splitting Sample

Figure 2.2: Sample-split - Training and Testing datasets

In our second approach, instead of splitting our total sample into two parts, we divide it into
three parts: i) training (W0), ii) validation (V ), and iii) testing (S). The validation sample
is used to assess the performance of a given model by evaluating its ability to predict the
future. This sample-splitting method is widely used in machine learning methods to estimate
hyperparameters for methods such as LASSO and Elastic Net, which are also part of our analysis.
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See Gu et al. (2020) for more details on the implementation of this approach in machine learning
methods. Note that the validation sample is not used to assess the final performance of the
model. Instead, it only helps to optimise the hyperparameters or identify the best model for
making the out-of-sample forecast. Thus, the third subsample (testing sample) consisting of
S = T −W0−V observations, which is not used for estimation or validation, is simply out of the
sample and is instead used in evaluating the predictive performance of the given model. Note
that we call our second approach as cross-validation (henceforth CV) which is summarised in
Figure (2.3).

Figure 2.3: Walk Forward Cross-validation with Rolling and Expanding window

31



2.3.3 Econometric Framework

Assuming that, in a dynamic economy, the hedging motives of risk averse investors are negligible,
the conditional version of Black (1972) CAPM is described by Jagannathan & Wang (1996) as:

Et[Ri,t+1] := E[Ri,t+1|It] = λ0,t + βi,tλ1,t, (2.5)

where Ri,t+1 denotes the return on asset i in period t + 1, It represents the information set
available to investors at the end of period t. In this version of conditional CAPM, λ0,t denotes
the conditional expected return on a “zero beta” portfolio, while λ1,t represent the conditional
market risk premium. βi,t is the conditional beta of asset i based on the given information set
It, which is defined as:

βit =
Cov(Ri,t+1, Rm,t+1|It)

V ar(Rm,t+1|It)
(2.6)

where Rm,t+1 denotes the return on the market portfolio in period t+ 1.

We use Fama & MacBeth (1973) two-step method to estimate the β and λ parameters of
(2.5). The factor loadings for each asset, i.e. the estimates of conditional betas in CCAPM,
are obtained in the first step using time-series regressions. The next step requires estimating
a cross-sectional regression at each period of excess asset returns on the first step’s conditional
betas.

2.3.3.1 First-pass Regressions – Estimating Conditional Betas

To estimate conditional betas, we follow the CCAPM-IV approach (e.g., Shanken 1990, Ferson &
Harvey 1999, Petkova & Zhang 2005, Cederburg & O’Doherty 2016) and model the portfolio beta
as a function of some observable instrumental variables (IVs). Our main analysis of estimating
conditional betas uses the following time-series model:

Ri,t+1 = aIVi + (γi,0 + γ′i,1Xt)Rm,t+1 + εi,t+1, (2.7)

where t indexes months, Ri,t+1 and Rm,t+1 are the excess returns on asset i and the market
during period t+ 1, respectively, and Xt ⊆ It is a vector of L instruments which represents the
broader set of investors’ information, It. It is thus assumed that the conditional portfolio beta
is a linear function of some observable variables known at time t, βIVi,t = γi,0 + γ′i,1Xt, and the

conditional portfolio alpha is constant.17 Past studies such as Ferson & Harvey (1999), Petkova
& Zhang (2005), Cederburg & O’Doherty (2016) and others use a predetermined set of instru-
ments. However rather than selecting a prior a subset of variables from the large set of potential
conditioning variables Xt we use dynamic model selection approaches to be discussed in section
(2.4). This approach naturally leads to model where the betas are driven by a time-varying set
of conditioning variables. In addition, when Xt is the null information set, the CCAPM model
given in equation (2.7) reduces to the unconditional (static) CAPM, which restricts the beta of
the portfolio to be constant.

To obtain the conditional asset betas based on a given DMS approach, we use following equation

β̂DMS
i,t = γ̂i,0,t + γ̂′i,1,tX

∗
t (2.8)

17We also estimate model (2.7) with time-varying alphas for the robustness of results, where conditional
portfolio alpha is defined as a function of same observable variables used to for modelling betas. Results show
that the impact of allowing alphas to vary over time, is negligible on our main findings.
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where γ̂i,0,t and γ̂i,1,t are the estimates of γi,0 and γi,1, respectively obtained from equation (2.7)
by regressing Ri,2:t on a constant, Rm,2:t and Rm,2:t.X

∗
1:t−1. Where X∗t ⊆ Xt indicates a vector

of L predictors identified through model selection approaches to be discussed in section (2.4).
We use a rolling-window approach (e.g., Fama & MacBeth 1973) which employs a window of
fixed length w (60 months in our case) to estimate the market beta of asset i. Specifically, to
have β̂DMS

i at time t, we simply estimate equation (2.7) by using the observations within the
estimation window [t − w + 2 t] for Ri and Rm and [t − w + 1 t − 1] for X∗. To generate
a beta forecast for the next period, we move the window forward by one step while keeping
the window size fixed, adding one new observation and dropping the farthest one. The process
continues until we obtain the final forecast at time T , which effectively generates the sequence
of S out-of-sample beta estimates.

2.3.3.2 Second-pass Regressions and Cross-sectional Tests of CCAPM

After obtaining the out-of-sample betas, we test the model by running a cross-sectional regres-
sion at each time t of the evaluation period, with the first-step betas obtained through DMS
approaches serving as an explanatory variable.

Ri,t+1 = λ0,t+1 + λ1,t+1β̂
DMS
i,t + αi,t+1 (2.9)

where β̂DMS
i,t is the conditional β of asset i based on a given DMS approach, λ0,t+1 represents

the expected excess return on a ‘zero beta’ portfolio and λ1,t+1 denotes the expected market risk

premium. This will generate S × 1 out-of-sample estimates of λ̂0 and λ̂1, and S ×N estimates
of pricing errors α̂.

To test the model, we first get the time-series averages of excess zero-beta rate (λ0), risk premium
(λ1) and pricing errors (αi) as:

λ̂0 =
1

S

S∑
t=1

λ̂0,t (2.10)

λ̂1 =
1

S

S∑
t=1

λ̂1,t (2.11)

α̂i =
1

S

S∑
t=1

α̂i,t (2.12)

Our main asset pricing test is based on testing whether DMS models imply a reasonable risk-free
rate (zero-beta rate, Rzb) and thus adequately fits the equity premium. Here Rzb represents the
return on an asset with zero sensitivity to risk factors (conditional beta, in our case) of any given
pricing model. If a model’s Rzb is equivalent to the prevailing risk-free rate, that model fits the
equity premium well (Black 1972). The fitted constant in the cross-sectional regression given
in equation (2.9) indicates the difference between the implied Rzb and the observed risk-free
rate (i.e., λ̂0 = Rzb − Rf ). There are two versions of tests in the literature. The first version
constraints the zero-beta rate to the return on a risk-free asset by setting the cross-sectional
constant to zero. The second version, however, relaxes this restriction and estimate the model
with a constant.18 If unrestricted constant of a given model is statistically insignificant (i.e.,
λ̂0 = Rzb − Rf ≡ 0), we can say that the model adequately fits the equity premium (see, e.g.,
Jagannathan & Wang 1996, Cochrane 2005). We follow the second version and estimate the
cross-sectional regression with a constant and test whether the average excess zero-beta rate is

18Note that under the restricted version the investor’s wealth is assumed to be allocated between equities and
Treasuries, whereas the unrestricted version implies that the wealth is only allocated in equities.
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insignificant. Following the asset pricing theory, we also test whether the estimated risk-premium
is significant. Specifically, we use the following t-statistics to test DMS models;

t− statistic
λ̂k

=
λ̂k
σ̂λk

, k = 0, 1 (2.13)

where λ̂k and σ̂λk are averages and standard errors of λ̂0 and λ̂1, respectively. Note that to com-
pute t-statistics, we use Newey & West (1987) consistent standard errors for heteroskedasticity
and autocorrelation.

2.3.3.3 Performance Evaluation

We also consider four different measures for assessing and comparing the performance of various
models under consideration. First, we assess each model’s ability to generate insignificant pricing
errors for individual assets using a significance level of 1% and 5%. The total number of mispriced
assets (MPA) out of a total of N assets is our performance metric. A model with a lower value
of MPA indicates a better pricing ability. Next, we follow Adrian & Rosenberg (2008) and use
the sum of square pricing errors (SSPE) which is defined as:

SSPE = α̂′ α̂ (2.14)

SSPE does not take into account the number of assets, so we use the root mean square pricing
errors (RMSPE), which is computed as:

RMSPE =
√
SSPE/N (2.15)

Next, following Jagannathan & Wang (1996), we use adjusted R2:

Adjusted R2 = 1− (S − 1)(1−R2)

(S −K − 1)
(2.16)

R2 =
varc(R)− varc(α̂)

varc(R)
(2.17)

where R = 1/S
∑

S
t=1Rt and varc is cross sectional variance. The metrics such as SSPE and

adjusted R2, give all test assets equal weight, but some assets are actually less volatile than
others (Campbell & Vuolteenaho 2004). To overcome this issue, two additional metrics are
considered, both of which test whether all the pricing errors from cross-sectional regressions are
jointly zero (H0 : α̂ = 0). The first measure is JA (joint alpha test) which is a χ2-statistic and
can be given as:

JA = α̂
′
cov(α̂)−1α̂ ∼ χ2

N−P (2.18)

where N , P , α̂ = 1
S

S∑
t=1

α̂t, and α̂t = [α̂1,t, α̂2,t, ..., α̂N,t]
′ denote number of assets, number of

factors in a given model, the average pricing errors and vector of estimated errors, respectively.
According to the joint χ2 test, if the pricing theory holds, the pricing errors generated by a
model should be close to or equal to zero. The higher the statistic value, the greater the pricing
errors produced by the model. JA value is compared to the critical value to test the significance
of pricing errors. If JA exceeds the χ2

N−P 5% critical value, the pricing errors are significant.

In order to estimate the variance-covariance matrix of pricing errors α̂, denoted as cov(α̂) and
a version accounting for autocorrelation, denoted as c̃ov(α̂), we estimate following equations:

cov(α̂) =
1

S2

S∑
t=1

(α̂t − α̂)(α̂t − α̂)′ (2.19)
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c̃ov(α̂) =
1

S2

S∑
t=1

(α̂t − α̂)(α̂t − α̂)′ +
1

S2

q∑
j=1

S∑
t=j+1

(1− j

q + 1
)(α̂t − α̂)(α̂t−j − α̂)′ (2.20)

where q = b(4(S/100)2/9)c and bxc denotes larger integer not greater than x.

Our second measure for joint alpha test is the Composite Pricing Error (CPE), which was
used by Campbell & Vuolteenaho (2004) and is defined as:

CPE = α̂
′
Ω̂−1α̂ ∼ χ2

N−P (2.21)

where Ω̂ represents a diagonal matrix with main diagonal carrying the variances of estimated
returns. Under this measure of an aggregate pricing error, assets with more volatile alphas
receive less weight. The null hypothesis that pricing errors produced by a given model are
jointly zero is rejected, if CPE exceeds the 5% critical value.

2.4 Dynamic Model Selection (DMS) Approaches

In this section, we discuss the implementation of various dynamic model selection (DMS) ap-
proaches to model the beta dynamics. We classify these approaches into two groups which
are discussed in two different subsections. The first group consists of our new model selection
approach that, at each point in time, chooses the model that currently has the best asset pric-
ing performance. The second group consists of standard model selection approaches that are
not based on asset pricing criteria and include sequential selection, best subset selection and
shrinkage methods.

2.4.1 Dynamically Selected Beta Model (DSBM)

Under this approach, we use asset pricing criteria to select the best subset of variables from all
possible combinations of conditioning variables. This selection of the optimal subset is performed
at each point in time t. The optimal information set changes over time; therefore, we call this
approach as dynamically selected beta model (henceforth DSBM). This approach of exhaustive
search can be time-consuming and computationally intensive. However, this limitation is not
a major concern for our research because the Goyal & Welch (2008) database of conditioning
variables is considered as comprehensive, and has 14 variables so the number of potential combi-
nations can still be managed. To implement our approach, we first estimate all possible models
using K predictors as:

M0 = 2K − 1 (2.22)

where M0 denotes the number of possible models. Here a model is defined as the particular
subset of K predictors. Minus 1 represents the model when k = 0, which means a model with a
constant only. Note that the total available models M0, are indexed by j = 1, . . . . ,M0. Xjt

represents the vector of explanatory variables in model j. X∗t indicates a vector of explanatory
variables in the best model among all models.

The first step of our procedure is to screen out models which exhibit high multicollinearity.
Multicollinearity is the condition where X variables are highly correlated and often causes dif-
ficulty for estimating regression parameters (Hocking 2013). Due to multicollinearity, the stan-
dard error of the coefficients may be unreasonably high (McClendon 2002), suggesting that the
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coefficients for one or more independent predictors may not be significant. In other words, mul-
ticollinearity causes certain variables statistically insignificant when they should be significant.
The other problem is that a parameter estimate may achieve a different sign than expected
(Efron et al. 2004). The negative impacts of multicollinearity in terms of forecast accuracy on
model selection and model averaging has been identified by studies such as Jayakumar (2014),
Daoud (2017) and others.

One approach to address or reduce the problem of multicollinearity is to drop redundant vari-
ables directly from the regression model (Bowerman & O’Connell 1993, Lin 2008). However, to
remove a variable, one needs to detect the multicollinearity, which is often done through variance
inflation factor (VIF). By calculating the impact of multicollinearity on an estimated regression
coefficient in terms of increase in its variance, the VIF quantifies the severity of multicollinearity
in an OLS regression (O’brien 2007).19 To show the degree of multicollinearity, each indicator
has a VIF value, and a large value indicates that a variable needs to be either removed or sub-
stituted. A standard thumb rule is that the VIF greater than 5 indicates high multicollinearity
(Daoud 2017). Following this, at each period we calculate the VIF factor and exclude all the
models with the V IF > 5. We indicate the selected models as M , where M ⊆ M0 by only
including Mj if V IF < 5. These models are indexed by j = 1, . . . , M .

After screening models using above VIF constraint, we then select the best model by evalu-
ating the asset pricing performance of each model. Specifically, we consider following three
different approaches.

2.4.1.1 DSBM-I

We fit the following CCAPM model in the training sample using data up to time t for each
combination of variables (Xj).

Ri,t+1 = aIVi,j + (γ0,i,j + γ′1,i,jXt,j)Rm,t+1 + εi,j,t+1 (2.23)

For CCAPM to hold, pricing errors (aIVi,j ) for all the assets should be zero. This can be tested
with the following null hypothesis:

H0 : aIVi,j = 0, ∀i

To test our H0, we use the following test:

F =

[
(T −N −K)

N

]
[1 + µ̂′kΩ̂

−1
k µ̂k]

−1 â0Σ̂−1â′0 ∼ FNT−N−K (2.24)

where T is total number of observations, N represents the number of assets, K indicates the
number of parameters. µ̂ is a K× 1 vector of the average values of the K explanatory variables,
Ω̂ is a K ×K covariance matrix of K and Σ̂ is N ×N residual covariance matrix.

Note that we may have more than one models which pass the test, i.e., producing insignifi-
cant pricing errors (α) for all the assets. We denote these models with P , and in case none of
the models passes the joint tests, then we take all the models to next step (P = M) where for
each model we compute average R2 across the N test assets:

19V IF = 1
1−R2

i
, we can calculate the VIF for each variable in the model, and the process is to regress the

variable, assuming that it is ith variable against all other predictors.
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R
2
j =

1

N

N∑
i=1

R2
ij (2.25)

where

R2
ij =

V ar[β̂ijtRmt]

V ar[Rit]
=
Explained V ariance

Total V ariance
(2.26)

Next, we select the best model (X∗) as one that achieves the maximum average R2. We call
this approach as DSBM-I.

2.4.1.2 DSBM-II

Our next approach is to choose the model based on cross-sectional measures of performance.
Specifically, we run following cross-sectional regression at each time t.

Ri,t+1 = λ0,j,t+1 + λ1,j,t+1β̂i,j,t + αi,j,t+1 (2.27)

where β̂i,j,t represent the conditional fitted betas, β̂i,j,t = γ̂0,i,j + γ̂′1,i,jXt,j , obtained from time-
series regression given in equation (2.23) for each model j. According to theory, the average

cross-sectional intercept (λ̂0) should be zero. To test this, we use t-statistics given in equation

(2.13) to see whether average cross-sectional intercept (λ̂0) is insignificant at 5% level. Similar
to the first approach, we denote shortlisted models as P and when none of the models produce

insignificant λ̂0, then P = M . In the next step, we compute the cross-sectional adjusted R2

given in equation (2.16) for each of P models. Finally, we select the best model (X∗) as one
that achieves the maximum adjusted R2. We call this approach as DSBM-II.

2.4.1.3 DSBM-III

In our final approach, we estimate the mean squared pricing error (MSPE) based on asset pricing
errors over cross-validation sample.20 Given that we leave V observations in validation sample,
the MSPE can be given as:

CV–MSPEi,j =
1

V

V∑
t=1

α̂2
i,j,t (2.28)

where α̂i,j,t is one-month ahead conditional pricing error based on the predicted beta obtained
with model j.21 A model with minimum CV-MSPE is selected as the best. We call this approach
as DSBM-III.

2.4.1.4 Testing DSBM models

Let X∗t ⊂ Xt be the subset variables identified through DSBM-I, DSBM-II, or DSBM-III. The
DSBM beta for asset i using estimated parameters of γ̂0,i and γ̂1,i from (2.7) based on observation
up to time t:

β̂DSBMi,t = γ̂0,i,t + γ̂′1,i,tX
∗
t (2.29)

20See section (2.3.2) for details on cross-validation and sample-split
21Note that under this approach, a model is allowed to vary across assets as well. Whereas in DSBM-I and

DSBM-II the same model is selected to price each asset.
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In the next step, we run a cross-sectional regression at each period t:

Ri,t+1 = λ0,t+1 + λ1,t+1β̂
DSBM
i,t + αi,t+1 (2.30)

Finally, we evaluate the performance of each model (DSBM-I, DSBM-II, and DSBM-III) using
tests discussed in section (2.3.3.2) and (2.3.3.3).

2.4.2 Non Asset Pricing Model Selection Approaches

In this section, we discuss some of the other DMS approaches that are widely used in forecasting
literature but have not been applied to CCAPM. These approaches include best subset selection,
stepwise selection and shrinkage methods.

2.4.2.1 Best Subset Selection/Exhaustive search

Under best subset selection or exhaustive search approach, we first estimate all possible combi-
nations of variables as discussed in the previous section. All methods under this approach are
based on estimation results of equation (2.31) for all possible M models using training data up
to time t.

Ri,t+1 = aIVi,j + (γ0,i,j + γ′1,i,jXj,t)Rm,t+1 + εi,t+1, (2.31)

Given that j model contains p predictors estimated with T observations. RSSj indicates the
residual sum of squares and TSSj is the total sum of squares for model j estimated through
equation (2.31).

Performance metrics such as adjusted R2, and information criteria such as AIC, BIC and Mal-
low’s Cp are the most widely used criteria to evaluate the quality of a multivariate regression
model and to compare different models. We use all these criteria in this study.

2.4.2.1.1 Information Criteria The Akaike information criteria (AIC) (Akaike 1973) and
the Bayesian information criterion (BIC) (Schwarz 1978) are the procedures that have gained
more attention from the list of model selection procedures based on information criteria. By
enforcing penalties, information criteria quantify the loss of information. AIC and BIC are
defined as:

AIC = T ln(RSS/T ) + 2(p+ 1) (2.32)

BIC = T ln(RSS/T ) + (p+ 1) ln(T ) (2.33)

Both AIC and BIC try to balance the complexity of the model and its goodness of fit. Usually,
RSS would become smaller or at least the same with more explanatory variables in a regression
model, suggesting that the first component of AIC and BIC would become smaller. More pre-
dictors, however, will increase the model’s complexity and thus, the second component of AIC
and BIC would become larger. During the model selection process, a model with the smallest
value of either AIC or BIC is selected.

Hurvich & Tsai (1989) provide a refined version of the AIC estimate for small samples:

AICc = AIC + 2
(p+ 1)(p+ 2)

T − p− 2
(2.34)

Burnham & Anderson (2002) argue that AICc should be used whenever T/p < 40.
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We also use Mallows Cp which is a variant of AIC developed by Mallows (1973). It com-
pares a subset model with p predictors with a full model with K predictors, (K > p). The Cp
statistic can be given as:

Cp,j =
RSSp,j
MSEK

+ 2(p+ 1)− T (2.35)

where RSSp,j represents the residual sum of squares for model j consisting of p predictors and
MSEK is used for the mean squared errors of a full model containing all K predictors. Similar
to AIC, BIC, and AICc, a model with lowest value of Cp is selected.

2.4.2.1.2 Adjusted R2 For an ordinary least squares model with p variables, estimated
with T observations, the adjusted R2 can be given as:

Adjusted R2
j = 1− RSSj/(T − p− 1)

TSSj/(T − 1)
(2.36)

where TSS represents the total sum of squares and RSS indicates the residual sum of squares.22

Unlike information criteria such as AIC and BIC where a lower value is preferred, a model with
highest value of adjusted R2 is selected.

2.4.2.2 Sequential Selection

The subset variable selection requires the estimation of all possible models (2K). In the case
of a very large K, the implementation of the best subset selection becomes difficult due to
high computational requirement. For example, with 30 variables, we would have to estimate
more than 1.07 billion models every time to find the right one, which could lead to overfitting.
Moreover, as the search space grows (e.g., 16384 models with 14 predictors), it becomes more
likely to find models that appear to be successful on training samples but have little or no
predictive ability on future data. To overcome these issues, sequential selection techniques, which
look at a much smaller number of models, are preferable to the best subset selection method.
Four widely used variants of the sequential selection technique include forward stepwise selection
(FSS), backward elimination (BE), stepwise regression (SReg), and univariate selection (US).

2.4.2.2.1 Forward stepwise selection (FSS) FSS starts with a model that includes no
predictors, and then one predictor that improves the model’s fit at each step is included in the
model. A variable, once added, cannot be removed. To implement FSS, we follow following
steps.

(i) We begin a single variable in the model.23

(ii) Check p-value of all the predictors currently not part of the model and identify a predictor
with with lowest p-value less than αcrit.

(iii) Continue the process until all significant predictors are added in the model.

The αcrit is sometimes called the “p-to-remove or add”. We set the αcrit = 10%.24

22TSS =
T∑
t=1

(yt − ȳ)2 and RSS =
T∑
t=1

(yt − ŷt)2, where ȳ is mean across T observations.

23Generally, FSS starts with no variables in the model, however, in our case we want to link beta dynamics
with CIVs, so we want to have at least one variable in the model; otherwise, our model will become unconditional
CAPM. We choose the first variable which has the highest t-value

24We also set αcrit to 5% and 15%, however, results at 10% are better.
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Figure 2.4: Forward Selection

2.4.2.2.2 Backward stepwise elimination (BSE) BSE starts with a full model having
all K variables, and then the least important variable is iteratively eliminated at each step.
Once a predictor is eliminated, it cannot return to the model. To implement BSE, we follow
following steps.

(i) We begin with a full model containing all K predictors.

(ii) Remove the least important predictor defined as one with highest p-value (insignificant),
p-value greater than αcrit = 10%.

(iii) Refit the model and go to (ii)

(iv) Stop when there are no more insignificant predictors, when all p-values are less than
αcrit = 10%.

Figure 2.5: Backward stepwise elimination (BSE)

2.4.2.2.3 Stepwise regression The next method is stepwise regression (SReg) which com-
bines both BE and FSS. SReg is a variant of the forward selection method, with the exception
that variables that are in the model are not always retained. Similar to FSS, one variable at-a-
time is added. However, the model is re-estimated after a new variable is added, and a variable
already in the model can be omitted if it has become irrelevant due to the addition of a new
predictor. To implement SReg, we follow following steps.

(i) We begin with the most significant univariate model.

40



(ii) Repeat: Perform an FSS stage. Next, execute a BSE phase after each variable inclusion.
Variables that were omitted in previous FSS steps should be reconsidered in subsequent
FSS steps.

(iii) Stop if there are no more significant variables to add, when all p-values are more than
αcrit = 10%.

Figure 2.6: Stepwise Regression

2.4.2.2.4 Univariate Selection The next method is the univariate selection (US), where
we first estimate all univariate models. In the next step, we select the variables with p < αU .
Figure (2.7) summarises the process of selecting variables based on univariate models at a given
time.

Figure 2.7: Univariate Selection
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In addition to these standard approaches, we also implement the sequential selection approaches
where rather than identifying the significant predictors in traditional way we use asset pricing
criteria. More specifically, we use cross-sectional t-statistics on zero-beta rate as measure to
select more significant predictors in forward selection framework.

2.4.2.3 Shrinkage Methods

The shrinkage methods also called ‘parameterisation penalties’ or ‘penalised regressions’ are
aimed at overcoming the problems associated with kitchen sink (KS) regression by using reg-
ularisation constraints. The main motivation behind these methods is the empirical evidence
against the KS regressions for weak out-of-sample performance due to overfitting (e.g., Goyal &
Welch 2008). In other words, if additional “irrelevant” predictors are part of the model, the sim-
ple predictive regression model can be ineffective. Regularisation constraints may therefore be
used to prevent overfitting and to simplify the model through simultaneous coefficient shrinkage
and variable selection. The most popular method of parameter parsimony is parameterisation
penalty and is included in the objective function to maximise out-of-sample efficiency. It is thus
necessary to give the new objective function as follows:

L(γ; .) = L(γ)︸︷︷︸
Loss function

+ φ(γ; .)︸ ︷︷ ︸
Penalty

(2.37)

The “kitchen sink” OLS model, containing all the predictors (K) is given as:

Rt+1 = a0 + γ0Rm,t+1 +
K∑
j=1

γj(Rm,t+1.Xjt) + et+1 (2.38)

The loss function is the residual sum of squares (RSS) of equation (2.38), in which all K
predictors are part of the model. To obtain the penalty term φ(γ; .) we consider following four
commonly used penalties.

2.4.2.3.1 LASSO The penalty term under LASSO estimate proposed by Tibshirani (1996)
takes the following form:

φ(γ;λ) = λ

K∑
j=1

|γj |

where hyperparameter λ is the degree of parameterisation penalty. Following literature (e.g.,
Gu et al. 2020), λ is optimised adaptively using MSFE in cross-validation sample. The LASSO
estimator can be obtained through the following optimisation problem

γ̂lasso = minimise
γj

RSS + λ

K∑
j=1

|γj | (2.39)

where RSS(a0, γ0, γj) is the sum of squared residuals of equation (2.38), in which all K predictors
are part of the model. λ is the tuning parameter which shrinks the coefficients to 0 for large
λ, γ̂lasso is the K × 1 vector of estimated parameters of γj using LASSO. The conditional beta
estimate made at time t with LASSO can be given as:

β̂LASSOi,t = γlasso0,t +

K∑
j=1

γ̂lassoj,t .Xj,t (2.40)
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2.4.2.3.2 Adaptive LASSO Zou (2006) shows that the LASSO constraint does not choose
the correct subset of variables and proposes a new approach called adaptive LASSO, which
applies weights to all of the LASSO parameters. The penalty term under adaptive LASSO
estimate takes the following form:

φ(γ;λ) = λ
K∑
j=1

ωj |γj |

Suppose ω̂ = 1/| λ̂ | and λ̂ is a consistent estimator for λ, Zou (2006) defines the adaptive lasso
estimates by:

γ̂AdLasso = minimise
γj

RSS + λ
K∑
j=1

ω̂j |γj | (2.41)

The conditional beta estimate made at time t with adaptive LASSO can be given as:

β̂AdLassoi,t = γAdLasso0,t +

K∑
j=1

γ̂Adlassoj,t .Xj,t (2.42)

2.4.2.3.3 Ridge Next shrinkage approach is Ridge introduced by Hoerl & Kennard (1970).
which instead of setting coefficients of irrelevant parameters to zero, tries to compress them as
close to zero as possible. Unlike LASSO and adaptive LASSO where coefficients are set to zero,
Ridge compresses the coefficients of the irrelevant parameters to as close to zero as possible.
The penalty term of Ridge can be given as:

φ(γ;λ) = λ

K∑
j=1

|γj |2,

The Ridge estimator can be obtained through following optimisation problem

γ̂Ridge = minimise
γj

RSS + λ

K∑
j=1

|γj |2 (2.43)

The main difference between LASSO and Ridge is that in case of highly correlated variables,
LASSO usually selects one at random, while Ridge shrinks them toward each other (Zou &
Hastie 2005). The conditional beta estimate made at time t with Ridge can be given as:

β̂Ridgei,t = γRidge0,t +
K∑
j=1

γ̂Ridgej,t .Xj,t (2.44)

2.4.2.3.4 Elastic Net The final shrinkage method that we consider is the Elastic Net (ENet)
developed by Zou & Hastie (2005). The penalty term in ENet is the linear combination of Ridge
and LASSO. The ENet penalty can be given as:

φ(γ;λ, ρ) = λ(1− ρ)

K∑
j=1

|γj |+ λρ

K∑
j=1

|γj |2,

The Ridge estimator can be obtained through following optimisation problem

γ̂ENet = minimize
γj

RSS + λ(1− ρ)

K∑
j=1

|γj |+ λρ

K∑
j=1

|γj |2 (2.45)
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where ρ is a non-negative hyperparameter which is used to balance the penalty terms of LASSO
and Ridge. Note that if the ρ = 0 (ρ = 1), then equation (2.45) reduces to the LASSO (Ridge).
The ENet promotes simple models for intermediate values of ρ = 0.5 through both shrinkage
and selection. Similar to λ, the value of ρ is adaptively optimised using MSFE in the validation
sample. The conditional beta estimate made at time t with ENet can be given as:

β̂ENeti,t = γENet0,t +
K∑
j=1

γ̂ENetj,t .Xj,t (2.46)

2.4.2.4 Testing non-asset pricing methods

Let β̂NAPi,t be the beta estimates made at time t with a given non-asset pricing method (NAP).
The cross-sectional regression at each time t can be given as:

Ri,t+1 = λ0,t+1 + λ1,t+1β̂
NAP
i,t + αi,t+1 (2.47)

Finally, we evaluate the performance of each model using tests discussed in section (2.3.3.2) and
(2.3.3.3).

2.5 Data and Benchmark Models

2.5.1 Data

Following a large body of empirical research on explaining cross-sectional variation in expected
returns, we use the 25 size and book-to-market portfolios to perform the tests for a sample
period from July 1926 to December 2018. In addition, for robustness tests, we also use 25
size and momentum portfolios, 30 industry portfolios, and 10 momentum portfolios. The re-
turns of all these portfolios and market factor are calculated in excess of risk-free rate. The data
on portfolio returns, risk-free rate, and market factor are taken from Kenneth French’s website.25

The conditioning information variables are from Goyal & Welch (2008), who provide detailed
descriptions of the data and their sources. The dataset includes 14 variables considered as rel-
evant in predicting equity premium in past empirical studies.26 These variables include stock
characteristics (the dividend yield (DY), the dividend-price ratio (DP), the dividend-payout ra-
tio (DE), the earning-price ratio (EP), the book-to-market ratio (BM), the net equity expansion
(NTIS), and the stock variance (SVAR)), interest rate related variables (the Treasury bill rate
(TBL), the long-term return (LTR), the long-term yield (LTY), the term spread (TMS), the
defaults-return spread (DFR), and the default-yield spread (DFY)), and inflation (INFL) to
represent the macroeconomy. The description of these variables is given in Table 2.1. We use
monthly data for all these variables spanning from July 1926 to December 2018.

[ Insert Table 2.1 about here ]

2.5.2 Benchmark Models

To analyse the performance of the various DMS approaches (see section 2.4) relative to the
standard asset pricing models, we consider three standard conditional CAPM and two multi-
factor models. Standard CCAPM approaches include models where beta dynamics is captured
through: i) 60-month rolling window (Fama & MacBeth 1973), ii) short window (Lewellen &

25We use updated version of dataset available at
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

26We use updated version of dataset available at http://www.hec.unil.ch/agoyal/
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Nagel 2006), and iii) predetermined conditioning variable (Ferson & Harvey 1999). Multi-factor
models include: i) the Fama & French (1993) three-factor model, and ii) the four-factor model
of Carhart (1997). For all these models, we use Fama & MacBeth (1973) two-stage regressions,
where time-series regressions are estimated using 60-month rolling window.

2.5.2.1 Standard Conditional CAPM Models

2.5.2.1.1 CCAPM with Rolling window Under this approach, we follow Fama & Mac-
Beth (1973), and use a 60-month rolling window to model the beta dynamics. The time-series
regression to obtain time-varying beta βRWt can be given as:

Ri,t+1 = αi + βRWi,t (Rm,t+1) + εi,t+1, (2.48)

where

βRWi,t =
Cov(Ri,t+1, Rm,t+1)

V ar(Rm,t+1)
(2.49)

2.5.2.1.2 CCAPM with Short-window Under this approach, we follow Lewellen & Nagel
(2006) and use daily return data for estimating a separate CAPM regression at each month t
to obtain a time-series of non-overlapping CCAPM regression parameters covering the entire
sample. Following Lewellen & Nagel (2006), Boguth et al. (2011), Cederburg & O’Doherty
(2016), and others, we use the following regression model that includes the lags of the excess
market return to mitigate the effects of asynchronous trading:

Ri,d = αi + βi,0Rm,d + βi,1Rm,d−1 + βi,2

[
Rm,d−2 +Rm,d−3 +Rm,d−4

3

]
+ ei,d (2.50)

where Ri,d is excess daily return of asset i at day d, Rm,d is excess market returns. To reduce
the effect of asynchronous trading we follow Lewellen & Nagel (2006) and use lags of the excess
market return. The estimate of asset beta for month t can be given as:

β̂swi,t = β̂i,0 + β̂i,1 + β̂i,2 (2.51)

2.5.2.1.3 CCAPM with predetermined IVs Under this standard approach, we follow
Ferson & Harvey (1999) and predetermine the set of conditioning information variables and use
the same variables at each period to estimate out-of-sample betas. We first run following time
series regression at each time with a 60-month rolling window:

Ri,t+1 = aIVi + (γi,0 + γ′i,1Xt)Rm,t+1 + εi,t+1 (2.52)

where Xt is set of 12 conditioning variables from Goyal & Welch (2008) for kitchen sink model.27

Following Ferson & Harvey (1999), we use 4 standard variables including term spread, default
yield, t-bill rate and spread between 3 months and one-month t-bill rate.

β̂PIVi,t = γ̂i,0,t + γ̂′i,1,tXt (2.53)

where β̂PIVi,t is estimated conditional beta for either Ferson & Harvey (1999) (PIV=FH) or
kitchen sink model (PIV=KS), γ̂i,0,t and γ̂i,1,t are the ordinary least squares (OLS) estimates of
γi,0 and γi,1, respectively, in (2.52).

27Following Elliott et al. (2013), Zhang et al. (2020), and others, we exclude the log dividend–earnings ratio
and the long-term yield from 14 predictors to avoid multicollinearity.
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2.5.2.2 Multi-factor Models

The following time-series regression is estimated at each period for multi-factor models (FF3F
and Carhart) using a 60-month rolling window:

Ri,t+1 = ai + β′i,tFt+1 + εi,t+1 (2.54)

where Ri,t+1 represents the excess return on portfolio i at time t+ 1, Ft+1 represents the K × 1
vector of factors at time t+ 1, βi,t represents the K × 1 vector of factor loadings for portfolio i,
respectively.

Cross-sectional regression for benchmark models

In the second the pass for all benchmark models mentioned above, we test the model by esti-
mating the following cross-sectional regression at each time:

Rt+1 = β̂tλt+1 + αt+1 (2.55)

where β̂t = [1 β̂′t,1; . . ; 1 β̂′t,N ] is a N × (K + 1) matrix that includes a N × 1 vector of ones in
its first column and estimated factor loadings in other columns. λt+1 = [λ0t+1 λ1t+1 . . . λKt+1 ]′

represents a (K + 1) × 1 vector where λt is the conditional zero-beta rate and λk,t+1 is the
conditional risk premium on the kth factor in period t+ 1. Note that for all CCAPM K = 1, for
FF3F (Carhart) K = 3 (K = 4). The asset pricing tests and performance evaluation metrics
for benchmark models are already discussed in section (2.3.3.2 and 2.3.3.3).

2.6 Empirical Results

In this section, we discuss the empirical results of the various dynamic model selection (DMS)
approaches, applied to the CCAPM. This section consists of four subsections: (i) cross-sectional
results of DMS approaches, (ii) comparison of results from (i) with benchmark models, (iii)
evaluating the ability of DMS approaches in explaining the size, value and momentum anoma-
lies, and (iv) evaluating the extent to which DMS approaches address the variable-selection
uncertainty (VSU).

2.6.1 Cross-sectional Results for DMS approaches

In this section, we discuss the results of the cross-sectional tests of the CCAPM based on various
DSM approaches, which include: (i) dynamically selected beta models (DSBMs), and (ii) stan-
dard DMS approaches, including the sequential selection, best subset selection, and shrinkage
methods. Our CCAPM cross-sectional tests are based on mainstream literature that evaluates
the pricing abilities of a given model by looking at the significance of Fama & MacBeth (1973)
parameter estimates.28 In addition, we assess the performance of models through SSPE, RM-
SPE, cross-sectional adjusted R2, a number of mispriced assets at 1% and 5%, joint alpha tests
which include JA and CPE (see section (2.3.3.3) for details). The test assets are the 25 assets
sorted by size and book-to-market ratio. The conditional betas are estimated with a 60-month
rolling window and the out-of-sample period is August 1936 to December 2018.29

Table 2.2 reports the results of the standard Fama & MacBeth (1973) methodology for test-
ing the CCAPM based on various dynamic model selection (DMS) approaches. The findings

28We use t-statistics to test the significance using Newey & West (1987) heteroskedasticity and autocorrelation
consistent standard errors.

29Note that our sample starts from July 1926 to December 2018. The in-sample period is ten years because
some methods use five years of data as a validation sample. To compare all the models, our out-of-sample analysis
is based on August 1936 to December 2018.
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in Table 2.2 clearly contradict the underlying theory. The constant (excess zero-beta rate) is
significantly different from zero for all the DMS approaches, even though all the models are
estimated on excess returns. In this case, the theory behind all the models would predict the
constant to be zero. Moreover, the null hypothesis that pricing errors for all the assets are jointly
zero is also rejected for all the models based on JA and CPE. Since all the DMS models fail
the standard CCAPM test, so we compare the performance of these models based on various
metrics discussed in section (2.3.3.3).

[ Insert Table 2.2 about here ]

Panel A consists of the best subset variable selection approaches, which evaluate all possible
combinations of the predictor variables and then choose the best model according to some cri-
teria. Panel A is further divided into (A.1) Asset pricing and (A.2) Traditional DMS methods.
Under panel A.1, we report the results of three dynamically selected beta model (DSBM), which
chooses the model at each point in time that currently has the best asset pricing performance
(see section (2.4.1) for details). Results suggest that the best performing model is DSBM-
III which achieves an adjusted R2 of 39.84%, which is significantly higher than DSBM-I and
DSBM-II, which achieve an adjusted R2 of 29.13% and 35.12%, respectively. DSBM-III also
outperforms the DSBM-I and DSBM-II by achieving lower pricing errors measured as SSPE
and RMSPE. Panel A.2 reports the results of traditional methods, which include AIC, AICc,
BIC, Mallow’s Cp, and adjusted R2 (see section (2.4.2.1) for details). Results reported in Panel
A.2 of Table 2.2 suggest that AICc outperforms all the traditional best subset variable selec-
tion methods by achieving an R2 of 24.70%. However, this performance is significantly lower
than all the DSBM models where the best model, DSBM-III, achieves an adjusted R2 of 39.84%.

Panel B of Table 2.2 reports the results of sequential selection approaches, which do not re-
quire estimation of all possible combinations of variables. Instead, they explore a much more
limited range of models, making them desirable alternatives to the best subset selection. We con-
sider four widely used variants of the sequential selection techniques, including forward stepwise
selection (FSS), backward elimination (BE), stepwise regression (SReg), and univariate selection
(US) (see section (2.4.2.2) for details). Results given in Panel B.1 of Table 2.2 suggest that the
stepwise regression (SReg) approach performs the best among sequential selection approaches
by achieving an adjusted R2 of 17.78%. However, this performance is significantly lower than
the best subset variable approaches given in Panel A of Table 2.2. In addition to these standard
approaches, we also implement the sequential selection approaches where we use asset pricing
criteria to identify the significant predictors. Specifically, we use a cross-sectional t-statistics
on the excess zero-beta rate as a measure to select more significant predictors in the forward
selection (FSS-APC) and univariate (US-APC) framework. The reported results in Panel B.2
of Table 2.2 suggest that the introduction of asset pricing criteria significantly improves the
sequential selection approach’s performance. Model FSS-APC achieves an R2 of 33.47%, which
is not only significantly higher than all the sequential selection approaches but also significantly
higher than the traditional best subset approaches reported in Panel A.2 of Table 2.2. However,
DSM-III still significantly outperforms all the models considered so far.

Panel C of Table 2.2 reports the results of shrinkage methods which include LASSO, adaptive
LASSO, Ridge, and Elastic Net (ENet) (see section (2.4.2.3) for details). Results suggest that
the ENet achieves an adjusted R2 of 13.67%, which remains the highest among the four shrink-
age methods. However, these methods perform poorly compared to all the DMS approaches
considered in this study. For example, adjusted R2 of 13.67% achieved by ENet is about three
times lower than the DSBM-III, which achieves an adjusted R2 of 39.84%.
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To summarise the results on DMS approaches, we find that the model selection approaches
based on asset pricing criteria outperform DMS with standard approaches. The best perform-
ing model among all DMS approaches is the DSBM-III which selects the best models based on
MSPE of an individual asset in CV sample. DSBM-III achieves an adjusted R2 of 39.84%, and
it also produces lower pricing errors by achieving the lowest values for measures such as SSPE,
RMSPE, JA, and CPE.30 The better performance of DSBM-III compared to standard methods
may be attributed to the fact that the traditional models use the residuals of time-series re-
gression to select beta models. On the hand, DSBM-III chooses the model that best prices the
assets (i.e., consider the conditional pricing errors).

2.6.2 Comparing Results with Benchmark Models

In this section, we provide a direct comparison of the best performing DSM approach, DSBM-
III, to the various standard CCAPM and multi-factor models. Standard CCAPM approaches
include models where beta dynamics is captured through: i) 60-month rolling window (Fama &
MacBeth 1973), ii) short window (Lewellen & Nagel 2006), iii) four standard variables (Ferson
& Harvey 1999), and iv) kitchen sink model containing all variables. While, multi-factor models
include: i) Fama & French (1993) three-factor model, and ii) the four-factor model of Carhart
(1997). See section (2.5.2) for more details on benchmark models.

Results in Table 2.3 show that consistent with our previous findings for DMS approaches, cross-
sectional constant (excess zero-beta rate) is highly significant for all the benchmark models.31

However, results show that our DSBM-III outperforms the CCAPM benchmark models pre-
sented in Panel A of Table 2.3. The CCAPM benchmark models generally do a poor job.
Starting with the zero-beta rate, all the benchmark models produce a significant zero-beta rate
with a minimum of 0.8404 achieved by CAPM (βFH). On the other hand, DSBM-III produces a
zero-beta rate of 0.7124, which is significant but significantly lower than the CCAPM benchmark
models.32 Next, we can see that the estimated risk premium for all the CCAPM benchmark
models is negative. However, DSBM-III produces a positive risk premium of 0.3919. In terms
of asset pricing performance, our DSBM-III achieves an adjusted R2 of 39.84%, which is higher
than the best performing CCAPM benchmark, CCAPM (βRW ), which achieves an adjusted R2

of 33.65%. Moreover, compared to our DSBM-III model, all the CCAPM models produce sig-
nificantly larger errors measured as SSPE and RMSPE. However, all the models reject the null
hypothesis of producing zero pricing errors (H0 : α̂ = 0) for all the portfolios measured by mea-
sures of joint alpha (JA) and composite pricing errors (CPE). There are two main conclusions
from these findings. First, conditioning information can play a significant role in capturing the
beta dynamics compared to models where beta is a function of time, i.e., using a rolling window
(βRW ) or short window (βSW ) to model time-variation in betas. Second, time-varying IVs can
improve the performance of CCAPM-IV with the predetermined IVs.

[ Insert Table 2.3 about here ]

We can also examine the pricing performance of each model by plotting the average monthly
estimated excess return with a given model, and the average monthly realised excess return for

30We also use cross-sectional (CS) excess zero-beta rate, CS R2, and combination of excess zero-beta rate and
CS R2 as alternative criteria in cross-validation sample and find consistent results.

31Note that the models are estimated with a constant (Excess zero-beta rate). In unreported results, we also
estimate the model without constant assuming that Rzr = Rf and find consistent results, i.e. same ranking of
models.

32The differences between zero-beta rates of DSBM-III and CCAPM benchmark models are significant at 5%
level.
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each asset. If a model perfectly fits the returns, then the test assets should lie on the 450 line
in Figure 2.8. For a given test asset, the coordinates below (above) the 450 line correspond to
the negative (positive) pricing errors, α̂i. The Figure 2.8 provides a graphical illustration of the
findings presented in Table 2.3. The CCAPM benchmark models fit the data poorly as there is
a substantial deviation of assets returns from the 450 line. In contrast, the DSBM-III has asset
returns that are reasonably close to the 450 line. However, dispersion is still high, which suggests
that even after allowing IVs to vary over time, conditional CAPM does not fully explain the
cross-section of asset returns for size and book-to-market sorted portfolios. On the other hand,
if we compare the performance of our DSBM-III model with FF3F and Carhart models, we see
that asset returns are relatively close to the 450 line, which implies that factor models fit the
data well compared to all given models.

Panel B in Table 2.3 reports the results of Fama & French (1993) three-factor model (FF3F) and
Carhart (1997) four-factor model (Carhart). Consistent with the findings of CCAPM benchmark

models, multi-factor models produce a negative risk premium (λ̂MKT ) with -0.3113 and -0.2785
achieved by FF3F and Carhart, respectively. However, the HML factor is highly significant and
positive, and the SMB factor is positive but significant at 10% level for both the models. On
comparison of the performance of the DSBM-III and multi-factor models, we find that consistent
with findings through graphical illustration in Figure 2.8, the FF3F (Carhart) performs better
than our DSBM-III by achieving an adjusted R2 of 72.10% (77.26%), which is about 32% (37%)
higher than our DSBM-III model for FF3F (Carhart) model. In summary, results suggest that
factor models outperform our DSBM-III model; however, the role of additional degrees in high
explanatory power cannot be ignored (Campbell & Vuolteenaho 2004). More specifically, there
are three (four) freely estimated parameters in the FF3F (Carhart).

2.6.3 Ability of DSBM to explain anomalies

Lewellen & Nagel (2006) criticise the cross-sectional tests and argue in favour of time-series
tests for testing the suitability of CCAPM by directly evaluating the ability of model in explain-
ing the anomalies unexplained by unconditional CAPM. The main difference between time-
series and cross-sectional tests is that the former uses realised market returns to estimate the
conditional pricing errors of a given asset i, α̂i,t+1 = Ri,t+1 − (β̂i,t.Rm,t+1). On the other
hand, the pricing errors for cross-sectional tests are the residuals of second pass regressions,
α̂i,t+1 = Ri,t+1 − (λ̂0,t+1 + β̂i,t.λ̂1,t+1).

Following Lewellen & Nagel (2006) and Cederburg & O’Doherty (2016), we also use time-series
analysis to assess the performance of DMS approaches compared to unconditional CAPM and
CCAPM benchmark models.33 More specifically, in our time-series tests, we compare the uncon-
ditional and conditional performance of size, value, and momentum portfolios.34 Our analysis is

based on testing whether the average conditional alphas of portfolio, α̂
IV
SMB, α̂

IV
VMG, and α̂

IV
WML,

are equal to zero as implied by the CCAPM. We also test whether average conditional alphas
produced by a given model are significantly higher than the corresponding unconditional alphas

(α̂Ui ). This is done through testing the null hypothesis that α̂
C
i ≤ α̂Ui , where i indicates SMB,

VMG, and WML.

33Note that DSBM-III outperforms all DMS approaches in time-series tests. Therefore we provide a comparison
between DSBM-III and benchmark models.

34The test portfolios are from Fama French database. ‘Small’ and ‘Big’ represent the simple average across
the five low-market-cap portfolios and the five high-market-cap portfolios, respectively. ‘SMB’ is the difference
between ‘Small’ and ‘Big’. ‘Growth’ and ‘Value’ represent the simple average across the five low-B/M portfolios
and the five high-B/M portfolios, respectively. ‘VMG’ is the difference between ‘Value’ and ‘Growth’. ‘Winners’
(‘Losers’) represent the top (bottom) decile of Fama-French momentum sorted portfolios. ‘WML’ is the difference
between ‘Winners’ and ‘Losers’.
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Table 2.4 reports the average pricing errors of SMB, VMG, and WML portfolios produced
by our DSBM-III model, CCAPM benchmark models, and unconditional CAPM. Conditional
alpha is estimated as α̂i,t+1 = Ri,t+1 − (β̂i,t.Rm,t+1), where β̂i,t represents the forecast of con-
ditional beta made at time t, which results either from our DSBM-III model or benchmark
CCAPM model. To obtain the estimates of unconditional alpha (αUCi,OLS), we regress the excess
portfolio return on excess market return.

[ Insert Table 2.4 about here ]

Results for the out-of-sample period August 1936 to December 2018 show that the size premium
is insignificant at 5% for all the models. This is consistent with the findings of Lewellen &
Nagel (2006) that both conditional and unconditional models can explain the size premium.
However, the average pricing errors for ‘VMG’ and ‘WML’ are significant for all the models,
including DSBM-III are highly significant. Interestingly, DSBM-III produces 18.22% lower pric-
ing errors for ‘VMG’ portfolio than unconditional CAPM, which is significant at 5% significance
level. However, there is no significant difference between unconditional and conditional alphas
for ’WML’ portfolio. The significant reduction in pricing errors for ’VMG’ is some success com-
pared to other CCAPM benchmark models as there is no significant difference between pricing
errors produced by unconditional CAPM and CCAPM benchmark models.

Next, following Lewellen & Nagel (2006), Boguth et al. (2011), Cederburg & O’Doherty (2016),
and others, we decompose the difference between the unconditional (α̂U ) and the average con-
ditional alpha (α̂C) into the market-timing (MT) and the volatility-timing (VT).

α̂ui − α̂
C
i ≈ (1 +

R
2
m,t

σ2
m

)Cov(β̂Ci,t, Rm,t)−
Rmt
σ2
m

Cov(β̂Ci,t, R
2
m,t) (2.56)

the market-timing (MT) is estimated as (1+
R

2
m,t

σ2
m

)Cov(β̂Ci,t, Rm,t), where Rm,t and σ̂2
m are average

market risk premium and its unconditional variance respectively. Cov(β̂Ci,t, Rm,t) is covariance
between conditional beta of asset i and realised market excess returns. The volatility-timing

(VT) is estimated as
Rm,t
σ2
m
Cov(β̂Ci,t, R

2
m,t). From this decomposition it is clear that if CCAPM

holds i.e. α̂
C
i = 0, the unconditional alphas should be explained by MT and VT.

The results in Table 2.5 show that consistent with Lewellen & Nagel (2006), the covariance
components are insufficient to explain the unconditional alpha, confirming the failure of time-
varying IVs to explain the value and momentum anomalies.35 The results show that the 18.22%
reduction in alpha for value premium using our DSBM-III model is coming from market timing
which is 0.0789.36 Moreover, results suggest no evidence of volatility timing bias which is also
consistent with Lewellen & Nagel (2006). However, unlike Lewellen & Nagel (2006), our findings
suggest that there is positive covariance between conditional betas of value-stock and the market
risk premium, while the betas of growth stocks hold the opposite.

[ Insert Table 2.5 about here ]

35Note that the alpha bias given in equation (2.56) would not exactly be equal to the difference of MT and
VT because our conditional alphas and betas are estimated out-of-sample.

36Note that the difference between unconditional alpha and average pricing errors under DSBM-III for VMG
is 0.099 which ≈ MT
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2.6.4 Does Dynamic Model Selection (DMS) overcome VSU?

The time-series and cross-sectional results suggest that although the best performing model,
DSBM-III, outperforms the standard CCAPM approaches in monthly returns but it fails to
outperform factor models in cross-sectional tests. Most importantly, according to standard time-
series tests (e.g., Lewellen & Nagel 2006), value and momentum anomalies remain unexplained
by all the DMS approaches. Our main objective to introduce DMS approaches is to overcome
the problem of variable-selection uncertainty (VSU). However, often, DMS approaches such as
sequential selection and best-subset methods have been criticised for high instability (see, e.g.,
Miller 2002, Petropoulos et al. 2018). Here, “instability” refers to a model’s sensitivity to minor
changes in the data, modifying the chosen predictors (Gifi 1990). Although DMS suggests that
we have to choose a different model (set of variables) that best represent the investor information
set at a given time, we expect a selected model not to change completely in the next period.
This is important because it is unrealistic that information set changes entirely from one period
to another.

Considering this, we perform various tests to evaluate the VSU and model instability. The
frequency-based measures to quantify the model stability are more common in literature (e.g.,
Sauerbrei et al. 2015, Petropoulos et al. 2018). These metrics look at the frequency of selection
of subset variables, or a particular model. We first evaluate the model stability over time using
the original sample based on equation (2.57) that measures the variability in selected variables
over time in each out-of-sample period.

MSTB =

S∑
t=2

It

S − 1
(2.57)

where MSTB is model stability measure, It is an indicator function taking a value of one if a
model selected at time t has at least one variable from variables selected at time t− 1 and zero
otherwise, and S indicates the out-of-sample observations. A high value of MSTB for any model
selection approach would indicate model stability. Results suggest that the best performing
approach is DSBM −III which achieves a score of 67.5% for MSTB. Since our indicator is very
optimistic as it takes the value of one in case of one single variable from variables at t−1 is part
of the model at time t, so we expect a value for MSTB closer to one for any given approach.
However, a value of 67.5% suggests that there is 32.5% probability that the variables selected
at time t+ 1 would be 100% different from the variables selected at time t. This suggests that
all the dynamic model selection approaches exhibit model instability.

Next, we evaluate the model instability through bootstrap method, widely used in literature
to quantify the model uncertainty and instability (e.g., De Bin et al. 2016, Petropoulos et al.
2018). The bootstrap simulates multiple realisations of training data assuming that it is a rep-
resentation of the population. In other words, one can obtain B bootstrapped samples with
repeated random ‘sampling with replacement’ of the original dataset of size T . Each bootstrap
sample is, therefore, the same size as the original dataset, but includes some sample replicates,
while others are replaced. After getting bootstrapped samples, a given DMS method is then
implemented for each pseudo sample, resulting in selection of different models due to minor data
changes. The important point to note here is that the inclusion and exclusion of predictors can
provide useful information about the relevance of particular predictors in explaining the target
variable. It is expected that the relevant variables will almost always be the part of the selected
models across bootstrapped samples, whereas less related to the target variable would rarely be
included in the model across samples. The proportion of times a particular predictor is part of
the models is known as the “inclusion frequency,” suggesting the importance of each variable
and can take a value between 0 and 1, where zero indicates that the variable was never selected.
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In contrast, a value of one suggests the variable was always selected in each pseudo sample. The
variable with strong (weak) effect, in the ideal case, have inclusion frequencies equal to one (zero).

In our analysis, we evaluate the inclusion frequency of variables with weak and strong effects.
Specifically, we consider whether strongest (weakest) variables are always included (excluded)
in a subset of variables selected by a particular approach at each period. To implement this, we
generate 100 bootstrapped samples with 5 years of training dataset. Next, we select the subset
of variables in each sample with a given model selection approach and calculate the inclusion
frequencies for each variable.

IFj =

B∑
b=1

Ijb

B
(2.58)

where IFj indicates the inclusion frequency of variable j, Ijb is an indicator function taking a
value of one if variable j is included in the selected subset of variables under given approach in
bootstrapped sample b, and zero otherwise.

To implement our approach, we are interested in extreme values of inclusion frequencies. We aim
to compare this with selected variables with original data. We see whether a variable with high-
est (lowest) inclusion frequency is included (excluded) from selected variables based on original
data. We use three measures to evaluate the model stability: i) false inclusion (FalseI) - the
inclusion of variable with lowest IF , ii) false exclusion (FalseE) - exclusion of a variable with
highest IF , and iii) false inclusion and false exclusion (FalseIE) - false inclusion of variable
with the weakest effect and false exclusion of variable with the strongest effect, simultaneously.
At each period for a given model selection approach, we would assign a value of one only if false
inclusion or exclusions are made, and zero otherwise. We repeat this process for each out-of-
sample period which provides a time-series of values for overall S out-of-sample observations,
and next, we calculate the correct selection of variables over the entire period as:

MSIFg =

S∑
t=1

It

S
(2.59)

where MSIFg is model stability based on inclusion frequency for one of the three measures
(FalseI, FalseE, or FalseIE), It is an indicator function that takes a value of one if variable
inclusion condition under each measure is satisfied, zero otherwise. A high value of MSIF for
any model selection approach would indicate model instability. Figure 2.9 shows the values for
three false inclusion/exclusion for various approaches. The values can be interpreted as the ratio
of false inclusion/exclusion periods to total out-of-sample periods. Figure 2.9 suggests that all
DMS approaches exhibit model instability as values for all the three measures are high. However,
the best performing model is DSBM-III which achieves a value of 34% for MSIFFalseIE ; this
means that about 34% of overall out-of-sample periods, DSBM-III has both false inclusion and
false exclusion. The worst model is a univariate variable selection which includes the variable
based on 5% significance level, which achieves a value of 65% for MSIFFalseIE . On average all
models do false exclusion (inclusion) for about 60% (56%) of overall periods.

[ Insert Figure 2.9 about here ]

So far, our approach uses the input-based definition of stability which does not consider the
outcome. This may be criticised because in our case, some variables such as DP and DY are
highly correlated. There is a possibility that DP is part of the model selected using original data.
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Still, DY has the highest inclusion frequency. Our earlier analysis would consider this as false
exclusion when this may not be true, as the impact on the outcome (forecast) may be negligible.
Considering this, next, we use a different definition of stability, which is based on the variability
of the output generated by a model selection approach concerning data sampling (e.g., Nogueira
et al. 2017). To implement this, following Sauerbrei et al. (2015), we use a cross-validation
approach, dividing the sample into training for estimating model parameters and validation for
assessing the predictive performance of individual models. Next, we estimate all possible com-
binations of variables M = 214 − 1 = 16383 models indexed by j (j = 1, 2, . . . . M) and Let
(M∗j ) be the optimal model selected with particular approach.

After generating 100 bootstrap samples based on training data, the model inclusion frequencies
under each model selection approach are calculated. Let F(Mj) be the model selection frequency
which is the proportion of bootstrap samples (B = 100) in which model (Mj) was selected. The
main idea behind calculating the model inclusion frequency is to form a weighted average fore-
cast where each model is weighted according to model inclusion frequency. Petropoulos et al.
(2018) call this approach as Bootstrap model combination (BMC) which can be given as:

β̂BMC
i,t =

M∑
j=1

ωj β̂i,j,t (2.60)

where ωj = F(Mj) and
M∑
j=1

= 1, and β̂i,j,t represent the beta estimates with model j using

original data.37

These estimates are used to calculate prediction errors in the cross-validation sample as:

α̂BMC
i,t+1 = Ri,t+1 − β̂BMC

i,t Rm,t+1 (2.61)

Given that V and α̂BMC
i are CV observations and one-step ahead pricing errors based on BMC,

the MSFECV can be given as:

MSFEBMC
CV =

1

V

V∑
t=1

(α̂BMC
t )2 (2.62)

Similarly, MSFE in validation sample is computed for beta forecasts based on optimally selected
forecasts given as MSFE∗CV . Next, we compare these two MSFE to see whether the selected
model (subset variables) performs better than BMC. The main idea behind making a compar-
ison of performance between these two is that the BMC forecasts have considered the model
uncertainty into account which makes BMC a perfect benchmark against a single selected model
(see, e.g., Buchholz et al. 2008, Sauerbrei et al. 2015). To quantify the stability, we use a measure
similar to the model stability based on inclusion frequency (MSIFg ) given in equation (2.59),
but here indicator function would take a value of one if the best model performs poorly than
BMC and zero otherwise. Figure (2.10) shows that all the dynamic model selection approaches
produce large prediction errors compared to BMC in all the out-of-sample periods. Moreover,
instead of selecting the best model under any given approach, we compare the MSFE −CV of
each of individual 16383 models with BMC and find that BMC always outperforms individual
models. This is consistent with Petropoulos et al. (2018) that model selection approaches do
not overcome the issue of variable-selection uncertainty (VSU).

[ Insert Figure 2.10 about here ]

37For more details on ωj = F(Mj), see Buchholz et al. (2008).
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Finally, we evaluate the sensitivity of model selection across assets. The main motivation for
such analysis is that the standard IV approach assumes that the predetermined predictors can
price all the assets equally. But from our results, we find that DSBM-III, which allows choosing a
different set of variables for each asset performs better than DSBM-I and DSBM-II.38 To perform
this analysis, we investigate the relative importance of individual predictors in DSBM-III betas
of individual assets. Following Gu et al. (2020), we calculate the increase in out-of-sample MSFE
by excluding a particular predictor from information set. Given K predictors, the importance
factor can be given as:

∆MSFEi,j = (MSFEi,K−1 −MSFEi,K) (2.63)

where ∆MSFEi,j is an increase in MSFE of asset i due to absence of j th predictor, MSFEi,K is
MSFE using all predictors and MSFEi,K−1 is MSFE without j th predictor. Now the importance
factor can be calculated as:

Φi,j =
∆MSFEi,j
K∑
j=1

∆MSFEi,j

(2.64)

where Φi,j is the variable importance of each predictor j for asset i, which is normalised to sum
to one. Here, the importance factor indicates the weights of individual predictor for a given
asset. We obtain the weights of individual assets across B bootstrapped sample and finally
calculate the summary statistics (minimum, maximum, mean, and standard deviation) across
assets. This would provide an idea about the sensitivity of variables across assets. For example,
if a particular variable is equally important to all the assets, then the standard deviation should
be zero. On the other hand, if the importance (weights) vary across assets, we can say that
variables are not equally important for different assets. Figure 2.11 plots the average summary
statistics. The range of each predictor shows that the importance of individual predictors varies
across assets. For example, the variable LTY has a standard deviation of 4.7% with a wider
range. The minimum value for a single asset is 0.25% and maximum value is 16.79%. This means
that on average, the variable is not equally important for all the assets. This is an important
finding of the CCAPM-IV approach which suggests that existing CCAPM-IV approach not only
assumes that predetermined variables on average work for all periods but it also assumes that
a single model on average works equally well for all the assets. This is also evident from our
findings of significantly better performance of DSBM-III compared to DSBM-I and DSBM-II.

[ Insert Figure 2.11 about here ]

To summarise, our VSU and model instability analysis suggests that the DMS approaches do
not fully account for VSU. The variable and model inclusion frequencies vary, implying that a
small change in data will alter the selected variables. This is also consistent with the recent
criticism on model selection approaches due to the assumption that there is a true model and
we can identify it.39 This may never be the case as shown by many studies that model selection
approaches fail to account for model uncertainty and stability (see, e.g., Smith 2018, Petropoulos
et al. 2018, Makridakis et al. 2020).

38DSBM-I and DSBM-II use the best identified model at a given time to price all the assets.
39The quest of selecting the best model is often viewed as the “holy grail” in forecasting (Makridakis et al.

2020).
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2.7 Robustness Tests

In this section, we discuss the findings from various robustness tests that we perform to see
whether our original results are affected by additional tests.

First, following Ferson & Harvey (1999), Christopherson et al. (1998), among others, we es-
timate the CCAPM-IV with time-varying alphas.

αi,t = a0,i + a′1,iXt (2.65)

and given β is also a linear function of conditioning variables:

βi,t = γ0,i + γ′1,iXt (2.66)

By putting equations (2.65) and (2.66) in equation (2.7) we get following econometric model:

Ri,t+1 = a0,i + a′1,iXt + (γ0,i + γ′1,iXt)Rm,t+1 + εi,t+1 (2.67)

By using equation (2.67), we redo all the asset pricing tests. The findings show that the results
are very similar to those of the main tests based on the assumption that alpha is constant. These
findings indicate that enabling alphas to vary over time has a negligible effect on our primary
results.

Next, we analyse the ability of all the models considered for benchmark tests in pricing ad-
ditional test portfolios, namely the 10 momentum sorted portfolios, 25 portfolios formed on
size and momentum, and 30 industry portfolios. Results in Table 2.6 suggest that with these
additional assets, the findings are consistent with our main results.

[ Insert Table 2.6 about here ]

Next, we apply alternative asset pricing criteria to see whether these can change the results.
In addition to adjusted R2, we use Composite Pricing Errors (CPE) given in equation (2.21).
Moreover, we also follow Boguth et al. (2011) and use a two-step IV approach that can offer
more clear evidence of the relationship between the conditioning variables and the beta of the
portfolio. The first step involves the estimation of monthly betas using daily returns, β̂swi,t , with
the model given in equation (2.50). Next, we regress the estimated monthly betas on a set of
IVs,

β̂swi,t = φi,j,0 + φ′i,j,1Xj,t−1 + ei,j,t (2.68)

Next, we choose the model based on R2 from the regression model in equation (2.68). A
model with the highest adjusted R2 is one that explains the most beta dynamics, the optimal
conditioning information would be given as X∗.

β̂swi,t = φi,0 + φ′i,1X
∗
t−1 + ei,t (2.69)

Next, we get the conditional fitted betas using estimates of φi,0 and φi,1

β̃i,t = φ̂i,0 + φ̂′i,1X
∗
t−1, (2.70)

Next, by defining βi as a function of fitted betas βi,t = γ0i + γ1iβ̃i,t and by putting value of βi
in (2.7) we get:

Ri,t = aIV 2
i + γi,0Rm,t + γi,1β̃i,tRm,t + εi,t (2.71)
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Next, we get the conditional beta using estimates of γ̂i,0 and γ̂i,1

β̂IV 2
i,t = γ̂0i + γ̂1iβ̃i,t (2.72)

Results reported in Table 2.7 suggests that these additional asset pricing criteria and beta
estimation methods do not make any significant impact on the conclusions of our original results.

[ Insert Table 2.7 and Table 2.8 about here ]

Finally, we analyse the performance of different models considered in the alternative sample
period. Following mainstream literature, we use a post-1963 period. The sub-sample results are
consistent with the full-sample period as our DSBM-III outperforms the CCAPM benchmark
models.

2.8 Conclusion

This study examines the performance of a conditional CAPM where we use various dynamic
model selection (DMS) approaches to estimate conditional market betas. We contribute to the
literature by introducing a new model selection approach that at each point in time, chooses
the model that currently has the best asset pricing performance. Our main empirical results
suggest that all the DMS approaches, in particular, shrinkage methods such as LASSO, adaptive
LASSO, and ENet perform poorly in explaining cross-sectional variation in expected returns.
All the models yield significant pricing errors based on joint alpha (JA) and composite pricing
errors (CPE). However, the DSM approaches based on asset pricing criteria perform better than
traditional approaches such as sequential selection, best subset selection and shrinkage methods
by achieving higher R2. One potential reason for the traditional methods’ poor performance is
their reliance on residuals from time-series regression of CCAPM-IV as their primary objective
function. However, according to the CAPM theory, when the returns are measured in excess
of risk-free rate, the intercept term aIVi indicates the expected abnormal return, which should
be zero. Therefore, the DMS approach based on asset pricing tests ensures that a model that
minimises the pricing errors is selected to capture beta dynamics.

However, consistent with Lewellen & Nagel (2006), we find the failure of DMS approaches
in explaining the value and momentum anomalies. Using bootstrap methods to quantify the
model uncertainty and instability, we find that the DMS approaches do not fully account for
variable-selection uncertainty (VSU). These findings are in line with recent criticism of DMS ap-
proaches regarding their failure to fully account for variable-selection uncertainty and to achieve
model stability (see, Smith 2018, Petropoulos et al. 2018, Makridakis et al. 2020, and others).
Based on these findings, in the next chapter we consider alternative forecasting approaches such
as combining information (e.g., Kelly & Pruitt 2013, Neely et al. 2014) and combining forecasts
(e.g., Bates & Granger 1969, Timmermann 2006, Rapach et al. 2010) to address the issue of
VSU.
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Table 2.2: Out-of-sample Cross-sectional Results of DMS approaches

This table reports the results from the second step of the Fama & MacBeth (1973) methodology for dynamic model selection
(DMS) approaches. Panel A reports the results of best subset selection approaches where under asset pricing approach
(A.1) we report results of three models, we call them DSBM-I, DSBM-II, and DSBM-III (See section (2.4.1) for details).
Traditional methods given in A.2 include AIC, AICc, BIC, adjusted R2, and Mallow’s Cp (see section (2.4.2.1) for details).
Under stepwise methods given in B, rather than estimating all possible models we use forward (FWD) selection, backward
elimination (BE), stepwise regression (SReg), and univariate selection (US) (see section (2.4.2.2) for details). Panel C
reports the results of shrinkage methods which include LASSO, Adaptive LASSO, Ridge, and Elastic Net (2.4.2.3) for
details). Results consists of price of risk and performance evaluation. Under price of risk, λ̂0 is average return on zero beta
portfolio, λ̂1 is estimated risk premium, to test the null hypothesis that the price of risk is equal to zero, the Newey &
West (1987) t-statistics is reported below the coefficient estimates. [*], [**] and [***] asterisks denote the significance of
coefficients at a 10%, 5% and 1% level, respectively. The performance evaluation criteria include SSPE, RMSFE, Adj. R2,
mispriced asset (MA), JA, and CPE are sum of square pricing errors, root mean square pricing error, Jagannathan & Wang
(1996) adjusted R2, joint alpha test, and composite pricing error. Under MA, at 1% and MA 5% indicate the number of
portfolios for which pricing errors are significant at 1% and 5% levels respectively. JA and CPE statistics are used for testing
the null hypothesis that pricing errors are jointly zero. [∗∗] indicates that the null hypothesis is rejected at 5% critical value
based on the normal distribution for JA, and for CPE, we use bootstrap distribution. Monthly observations are used to
estimate all the models. The test assets are the 25 assets sorted by size and book-to-market ratio. The out-of-sample period
is August 1936 to December 2018.

Price of Risk Performance Evaluation Criteria

λ̂0 λ̂1 SSPE RMSPE Adj. R2
Mispriced Assets Joint Test

at 5% at 1% JA CPE

A. Best Subset Selection

A.1 Asset Pricing

A.1.1 DSBM-I 0.8423∗∗∗ 0.2335 0.6032 0.15533 0.29131 11 8 71.2271∗∗ 0.0202∗∗

3.1251 0.8781

A.1.2 DSBM-II 0.7582∗∗∗ 0.3235 0.5812 0.1525 0.3512 10 7 69.3827∗∗ 0.0197∗∗

3.0321 1.0528

A.1.3 DSBM-III 0.7125∗∗∗ 0.3919 0.5694 0.1509 0.3984 9 7 67.1012∗∗ 0.0185∗∗

2.9415 1.1381

A.2 Traditional

A.2.1 AIC 0.9209∗∗∗ 0.1028 0.7113 0.1687 0.2006 12 9 81.2967∗∗ 0.0209∗∗

3.2000 0.8273

A.2.2 AICc 0.8997∗∗∗ 0.1491 0.6682 0.1634 0.2470 11 8 74.4219∗∗ 0.0277∗∗

3.1874 0.8770

A.2.3 BIC 0.9019∗∗∗ 0.1266 0.6895 0.1661 0.2246 11 9 76.7924∗∗ 0.0287∗∗

3.1975 0.8653

A.2.4 Mallow’s Cp 0.9376∗∗∗ 0.0957 0.9982 0.1998 0.1813 12 9 95.0373∗∗ 0.0204∗∗

3.2031 0.8182

A.2.5 Adjusted R2 0.9426∗∗∗ 0.0836 0.9984 0.1998 0.1811 12 9 95.1949∗∗ 0.0215∗∗

3.2283 0.8037

B. Stepwise Selection

B.1 Traditional

B.1.1 FWD Selection (FSS) 0.9803∗∗∗ 0.0469 1.0209 0.2021 0.1626 12 9 95.8931∗∗ 0.0221∗∗

3.2769 0.4952

B.1.2 BKWD Elimination (BE) 0.9609∗∗∗ 0.0757 1.0154 0.2015 0.1671 12 9 80.2408∗∗ 0.0216∗∗

3.2661 0.6420

B.1.3 Stepwise Regression (SReg) 0.9547∗∗∗ 0.0795 1.0023 0.2002 0.1778 12 9 86.1940∗∗ 0.0210∗∗

3.2544 0.7447

B.1.4 Univariate Selection (US) 1.0117∗∗∗ -0.0791 1.0245 0.2024 0.1597 12 9 79.0407∗∗ 0.0220∗∗

3.2811 -0.4822

B.2 Asset Pricing

B.2.1 FWD Selection (FSS-APC) 0.7795∗∗∗ 0.2838 0.5916 0.1538 0.3347 10 7 69.1499∗∗ 0.0244∗∗

3.0517 1.0286

B.2.2 Univariate Selection (US-APC) 0.8196∗∗∗ 0.2578 0.6138 0.1567 0.3097 11 7 73.2844∗∗ 0.0243∗∗

3.0993 0.9617

C. Shrinkage Methods

C.1 LASSO 1.0930∗∗∗ -0.1394 1.0734 0.2072 0.1196 12 9 65.6347∗∗ 0.0225∗∗

3.4203 -0.6987

C.2 Adaptive LASSO 1.0910∗∗∗ -0.1302 1.0541 0.2053 0.1353 12 9 71.9532∗∗ 0.0227∗∗

3.3315 -0.6287

C.3 Ridge 1.1171∗∗∗ -0.1602 1.0798 0.2078 0.1143 12 9 71.9878∗∗ 0.0229∗∗

3.4368 -0.8035

C.4 Elastic Net 1.0594∗∗∗ -0.1106 1.0525 0.2052 0.1367 12 9 80.2285∗∗ 0.0216∗∗

3.3234 -0.5810

65



T
a
b

le
2.

3:
O

u
t-

o
f-

sa
m

p
le

C
ro

ss
-s

ec
ti

on
al

R
es

u
lt

s
of

D
S

B
M

an
d

B
en

ch
m

ar
k

M
o
d

el
s

T
h

is
ta

b
le

re
p

o
rt

s
th

e
re

su
lt

s
fr

o
m

th
e

se
co

n
d

st
ep

o
f

th
e

F
a
m

a
&

M
a
cB

et
h

(1
9
7
3
)

m
et

h
o
d

o
lo

g
y

fo
r

o
u

r
D

S
B

M
-I

II
a
n

d
b

en
ch

m
a
rk

a
ss

et
p

ri
ci

n
g

m
o
d

el
s.

D
S

B
M

-I
II

,
is

b
a
se

d
o
n

M
S

F
E

o
v
er

C
V

sa
m

p
le

u
si

n
g

co
n

d
it

io
n

a
l

p
ri

ci
n

g
er

ro
rs

,
α̂
i,
t+

1
.

P
a
n

el
A

re
p

o
rt

s
th

e
re

su
lt

s
o
f

v
a
ri

o
u

s
C

C
A

P
M

b
en

ch
m

a
rk

m
o
d

el
s

w
h

er
e

m
o
d

el
s

d
iff

er
o
n

th
e

b
a
si

s
o
f

ca
p

tu
ri

n
g

ti
m

e-
v
a
ri

a
ti

o
n

in
b

et
a
s.

M
o
d

el
C

A
P

M
(β
R
W

),
a
n

d
C

A
P

M
(β
S
W

)
re

p
o
rt

th
e

re
su

lt
s

o
f

C
A

P
M

w
h

er
e

th
e

ti
m

e
v
a
ri

a
ti

o
n

in
b

et
a

is
ca

p
tu

re
d

th
ro

u
g
h

6
0

m
o
n
th

ly
ro

ll
in

g
w

in
d

o
w

a
n

d
sh

o
rt

w
in

d
o
w

a
p

p
ro

a
ch

o
f

L
ew

el
le

n
&

N
a
g
el

(2
0
0
6
),

re
sp

ec
ti

v
el

y.
C

A
P

M
(β
F
H

)
re

p
o
rt

s
th

e
re

su
lt

s
o
f

C
A

P
M

w
it

h
b

et
a

d
efi

n
ed

a
s

p
re

d
et

er
m

in
ed

se
t

o
f

fo
u

r
co

n
d

it
io

n
in

g
v
a
ri

a
b

le
s

u
se

d
b
y

F
er

so
n

&
H

a
rv

ey
(1

9
9
9
).

T
h

es
e

v
a
ri

a
b

le
s

in
cl

u
d

e
te

rm
sp

re
a
d

,
d

ef
a
u

lt
y
ie

ld
,

t-
b

il
l

ra
te

a
n

d
sp

re
a
d

b
et

w
ee

n
3

m
o
n
th

s
a
n

d
o
n

e-
m

o
n
th

t-
b

il
l

ra
te

.
C

A
P

M
(β
K
S

)
re

p
o
rt

s
th

e
re

su
lt

s
o
f

C
A

P
M

w
it

h
b

et
a

d
efi

n
ed

a
s

fu
n

ct
io

n
o
f

a
ll

th
e

1
2

p
re

d
ic

to
rs

o
f

G
o
y
a
l

&
W

el
ch

(2
0
0
8
).

P
a
n

el
B

re
p

o
rt

s
th

e
re

su
lt

s
o
f

fa
ct

o
r

m
o
d

el
s

w
h

ic
h

in
cl

u
d

e
F

a
m

a
&

F
re

n
ch

(1
9
9
3
)

th
re

e-
fa

ct
o
r

a
n

d
C

a
rh

a
rt

(1
9
9
7
)

fo
u

r-
fa

ct
o
r

m
o
d

el
s.

S
ee

T
a
b

le
(2

.2
)

fo
r

d
et

a
il
s

o
n

te
st

s.

C
ro

ss
-s

e
c
ti

o
n
a
l

E
x
p
la

n
a
ti

o
n

P
ri

c
e
s

o
f

R
is

k
P

e
rf

o
rm

a
n
c
e

E
v
a
lu

a
ti

o
n

M
e
a
su

re
s

λ̂
0

λ̂
1

S
S
P

E
R

M
S
F

E
A

d
j.
R

2
M

is
p
ri

c
e
d

A
ss

e
ts

J
o
in

t
T

e
st

a
t

5
%

a
t

1
%

J
A

C
P

E

D
S
B

M
-I

II
0
.7

1
2
4
∗∗

∗
0
.3

9
1
9

0
.5

6
9
4

0
.1

5
0
9

0
.3

9
8
4

9
7

6
7
.1

0
1
2
∗∗

0
.0

1
8
5
∗∗

2
.9

4
1
5

1
.1

3
8
1

P
a
n
e
l

A
-

C
C

A
P

M
B

e
n
ch

m
a
rk

M
o
d
e
ls

A
.1

C
A

P
M

(R
W

)
0
.9

0
2
2
∗∗

∗
-0

.2
4
9
4

0
.5

9
0
4

0
.1

5
3
7

0
.3

3
6
5

1
1

8
7
2
.4

3
4
1
∗∗

0
.0

2
0
9
∗∗

3
.4

1
5
8

-0
.6

5
0
8

A
.2

C
A

P
M

(S
W

)
0
.9

4
9
9
∗∗

∗
-0

.2
4
8
6

0
.7

2
0
3

0
.1

6
9
7

0
.1

8
2
8

1
2

7
8
0
.9

6
5
3
∗∗

0
.0

2
6
3
∗∗

4
.0

0
5
6

-1
.2

9
2
1

A
.3

C
A

P
M

(F
H

)
0
.8

4
0
4
∗∗

∗
-0

.0
5
8
6

0
.6

1
1
2

0
.1

5
6
4

0
.3

1
3
0

1
1

7
6
9
.4

1
4
4
∗∗

0
.0

2
3
6
∗∗

5
.4

5
0
5

-0
.4

3
4
1

A
.4

C
A

P
M

(K
S

)
0
.9

2
5
0
∗∗

∗
-0

.0
5
9
9

0
.7

1
4
9

0
.1

6
9
1

0
.1

9
6
5

1
2

1
0

8
1
.2

7
7
2
∗∗

0
.0

2
2
2
∗∗

5
.6

1
6
3

-1
.1

6
2
5

P
a
n
e
l

B
-

F
a
c
to

r
M

o
d
e
ls

P
ri

c
e
s

o
f

R
is

k
P

e
rf

o
rm

a
n
c
e

E
v
a
lu

a
ti

o
n

M
e
a
su

re
s

λ̂
0

λ̂
M
K
T

λ̂
S
M
B

λ̂
H
M
L

λ̂
M
O
M

S
S
P

E
R

M
S
F

E
A

d
j.
R

2
M

is
p
ri

c
e
d

A
ss

e
ts

J
o
in

t
T

e
st

a
t

5
%

a
t

1
%

J
A

C
P

E

B
.1

F
F

3
F

0
.9

9
1
7
∗∗

∗
−

0
.3

1
1
3
∗

0
.1

0
7
0

0
.3

3
3
8
∗∗

∗
0
.2

4
8
2

0
.0

9
9
6

0
.7

2
1
0

7
3

6
5
.3

9
6
7
∗∗

0
.0

0
6
3
∗∗

5
.8

4
3
2

-1
.6

8
3
3

1
.1

6
0
2

3
.5

6
2
5

B
.

C
a
rh

a
rt

0
.9

5
0
9
∗∗

∗
-0

.2
7
8
5

0
.1

2
8
8

0
.3

2
8
1
∗∗

∗
0
.1

4
8
7

0
.2

0
2
3

0
.0

9
0
0

0
.7

7
2
6

6
4

7
1
.1

3
7
3
∗∗

0
.0

0
5
2
∗∗

5
.3

7
1
0

-1
.4

5
9
0

1
.4

0
6
3

3
.5

4
3
0

0
.7

8
8
9

66



Table 2.4: Explaining the Size, Value and Momentum Anomalies

This table reports the pricing errors and R2 for size, value and momentum anomalies produced by unconditional CAPM
and various CCAPM including DSBM for sample period August 1936 to December 2018. ‘Small’ and ‘Big’ represent the
simple average across the five low-market-cap portfolios and the five high-market-cap portfolios, respectively. ‘SMB’ is the
difference between ‘Small’ and ‘Big’. ‘Growth’ and ‘Value’ represent the simple average across the five low-B/M portfolios
and the five high-B/M portfolios, respectively. ‘VMG’ is the difference between ‘Value’ and ‘Growth’. ‘Winners’ (‘Losers’)
represent the top (bottom) decile of Fama-French momentum sorted portfolios. ‘WML’ represents the difference between
‘Winners’ and ‘Losers’. DSBM-III selects the best model for each asset based on CV-MSFE. See section (2.5.2) for details
on the benchmark models. The pricing error (α̂U ) and R2

U for unconditional model are obtained from OLS regressions

of portfolio excess return on the market excess return. α̂i indicate the average conditional pricing error for given asset
i where monthly conditional alpha is estimated as α̂i,t+1 = Ri,t+1 − (β̂i,t.Rm,t+1) , where β̂i,t is the forecast of beta
made at time t, which results from the DSBM-III. The significance of the pricing errors is given with ‘t-statistics’. R2

C
indicates the R2 for conditional model, which is given as R2

C = V ar[ERit+1]/V ar[Rit+1], where ERit+1 is explained

returns and can be obtained as β̂itRm,t+1. ∆α̂i and ∆R2
i indicate the change in pricing errors ([α̂

C
i − α̂Ui ]/α̂Ui ) , and R2

([R2
C,i − R

2
U,i]/R

2
U,i) relative to unconditional CAPM, respectively. A negative (positive) value for ∆α̂i (∆R2

i ) indicate

the improvement compared to unconditional model. ∆α̂i (∆R2
i ) in bold indicates that pricing errors (R2) are significantly

lower (higher) than unconditional CAPM at 5% level based on bootstrapped p-values.

Model
Performance Size Value Momentum

Measure Small Big SMB Value Growth VMG Winner Loser WML

Unconditional α̂Ui 0.0485 0.0143 0.0342 0.2871∗∗∗ −0.2062∗∗∗ 0.4934∗∗∗ 0.4575∗∗∗ −0.8813∗∗∗ 1.3389∗∗∗

CAPM tstat 0.3722 1.6951 0.1138 2.7803 −2.6837 4.5522 4.4753 −5.9598 6.3297

R2
i 0.6783 0.9335 0.1038 0.7485 0.8526 0.0037 0.7306 0.6713 0.0397

DSBM-III

α̂i 0.0570 0.0238 0.0332 0.2241∗∗ −0.1793∗∗ 0.4035∗∗∗ 0.4437∗∗∗ −0.8460∗∗∗ 1.2897∗∗∗

tstst 0.4624 0.6611 0.1121 2.4173 −2.3374 3.8204 4.4309 −5.8114 5.9478

∆α̂i -0.0297 -0.1822 -0.0367

R2
i 0.7391 0.9595 0.1541 0.8034 0.8671 0.1914 0.7803 0.7084 0.1432

∆R2
i 0.4857 50.8579 2.6093

CAPM (βRW )

α̂i 0.1207 0.0447 0.0760 0.2746∗∗∗ −0.1784∗∗ 0.4531∗∗∗ 0.4590∗∗∗ −0.8534∗∗∗ 1.3125∗∗∗

tstst 0.9632 1.2270 0.5630 3.0709 −2.2716 4.3649 4.4374 −5.8887 6.2431

∆α̂i 1.2207 -0.0816 -0.0197

R2
i 0.6964 0.9373 0.1320 0.7784 0.8554 0.1076 0.7184 0.6777 0.0394

∆R2
i 0.2720 28.1417 -0.0061

CAPM (βSW )

α̂i 0.0534 0.0719 -0.0184 0.2716∗∗∗ −0.1866∗∗∗ 0.4582∗∗∗ 0.4630∗∗∗ −0.8507∗∗∗ 1.3137∗∗∗

tstst 0.4512 0.0499 1.5566 3.2340 −2.8218 3.7954 3.8143 −4.7972 5.4418

∆α̂i -0.4627 -0.0713 -0.0188

R2
i 0.6201 0.9335 0.0397 0.7765 0.8324 0.0400 0.7616 0.7089 0.0344

∆R2
i -0.6172 9.8470 -0.1325

CAPM (βFH)

α̂i 0.0914 0.0655 0.0259 0.2693∗∗∗ −0.1784∗∗ 0.4477∗∗∗ 0.4405∗∗∗ −0.8576∗∗∗ 1.2981∗∗∗

tstst 0.7194 0.7876 0.1871 3.4919 −2.2901 4.1396 3.5230 −5.6981 5.6907

∆α̂i -0.2442 -0.0927 -0.0304

R2
i 0.6880 0.9366 0.0897 0.7781 0.8453 0.0636 0.7104 0.6810 0.0598

∆R2
i -0.1358 16.2396 0.5075

CAPM (βKS)

α̂i 0.0205 0.0780 -0.0575 0.3012∗∗∗ −0.1927∗∗∗ 0.4940∗∗∗ 0.4476∗∗∗ −0.8983∗∗∗ 1.3459∗∗∗

tstst 0.1213 1.5932 -0.3107 3.0944 −2.9955 3.4414 2.2848 −3.8309 3.6414

∆α̂i 2.6461 0.0619 0.0053

R2
i 0.4479 0.8869 0.0228 0.6339 0.7370 0.0055 0.4008 0.2116 0.0132

∆R2
i -0.7805 0.4999 -0.6668
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Table 2.5: Alpha Bias Decomposition

This table reports the results from the decomposition of the unconditional alphas for size, value and momentum anoma-
lies. Market timing and volatility timing effects are two components of the unconditional alpha bias, αUCi,OLS − α

C
i . The

market-timing bias is estimated as (1 +
R

2
mt
σ̂2
m

)Cov(β̂Ci,t, Rm,t), where Rmt and σ̂2
m are average market risk premium and

its unconditional variance respectively. Cov(β̂Ci,t, Rm,t) is covariance between conditional beta and realised market risk

premium. The volatility-timing bias is estimated as Rmt

σ2
m,t

Cov(β̂Ci,t, R
2
m,t). Unconditional alpha is obtained by regressing the

excess return of the portfolio on the market excess return. Conditional alpha is estimated as α̂i,t+1 = Ri,t+1−(β̂i,t.Rm,t+1)

, where β̂i,t is the beta forecast at time t, resulting either from the DSBM-III or conditional benchmark model. Note that
the beta estimates for our all models are out-of-sample betas, therefore the alpha bias decomposition, αUCi,OLS − α

C
i , can

only be approximated to the difference between market timing and volatility timing. For more details see Cederburg &
O’Doherty (2016).

Model Anomaly Portfolio
Market Timing Volatility Timing

(1 +
R

2
mt
σ2
m

)Cov(β̂Ci,t, Rm,t) − Rmt
σ2
m
Cov(β̂Ci,t, R

2
m,t) = Total ≈ α̂Ui − α̂

C
i

DSBM-III

Size

Small -0.0094 − -0.0006 = -0.0088 ≈ 0.0485 − 0.0570

Big 0.0450 − 0.0024 = 0.0427 ≈ 0.0643 − 0.0238

SMB -0.0544 − -0.0030 = -0.0514 ≈ -0.0158 − 0.0332

Value

High 0.0612 − -0.0075 = 0.0688 ≈ 0.2872 − 0.2242

Low -0.0177 − 0.0046 = -0.0222 ≈ -0.2062 − -0.1793

HML 0.0789 − -0.0121 = 0.0910 ≈ 0.4934 − 0.4035

Momentum

Winner 0.0092 − -0.0041 = 0.0134 ≈ 0.4575 − 0.4438

Loser -0.0240 − 0.0097 = -0.0336 ≈ -0.8814 − -0.8460

WML 0.0332 − -0.0138 = 0.0470 ≈ 1.3389 − 1.2898

CAPM (βRW )

Size

Small -0.0557 − 0.0260 = -0.0817 ≈ 0.0485 − 0.1207

Big 0.0290 − 0.0077 = 0.0213 ≈ 0.0643 − 0.0447

SMB -0.0847 − 0.0183 = -0.1030 ≈ -0.0158 − 0.0760

Value

High 0.0071 − -0.0024 = 0.0094 ≈ 0.2872 − 0.2947

Low -0.0242 − 0.0037 = -0.0280 ≈ -0.2062 − -0.1785

HML 0.0313 − -0.0061 = 0.0374 ≈ 0.4934 − 0.4731

Momentum

Winner -0.0291 − -0.0099 = -0.0192 ≈ 0.4575 − 0.4590

Loser 0.0086 − 0.0106 = -0.0020 ≈ -0.8814 − -0.8535

WML -0.0377 − -0.0205 = -0.0172 ≈ 1.3389 − 1.3125

CAPM (βSW )

Size

Small -0.0317 − -0.0019 = -0.0298 ≈ 0.0485 − 0.0535

Big 0.0117 − -0.0017 = 0.0134 ≈ 0.0143 − 0.0719

SMB -0.0434 − -0.0002 = -0.0432 ≈ 0.0342 − -0.0184

Value

High -0.0765 − -0.0081 = -0.0683 ≈ 0.2872 − 0.2716

Low -0.0956 − -0.0048 = -0.0908 ≈ -0.2062 − -0.1866

HML 0.0192 − -0.0033 = 0.0225 ≈ 0.4934 − 0.4583

Momentum

Winner -0.0142 − -0.0067 = -0.0075 ≈ 0.4575 − 0.4630

Loser 0.0296 − 0.0061 = 0.0234 ≈ -0.8814 − -0.8507

WML -0.0438 − -0.0128 = -0.0310 ≈ 1.3389 − 1.3138

CAPM (βFH)

Size

Small 0.0407 − -0.0008 = 0.0415 ≈ 0.0485 − 0.0914

Big 0.0207 − 0.0102 = 0.0105 ≈ 0.0643 − 0.0655

SMB 0.0200 − -0.0110 = 0.0310 ≈ -0.0158 − 0.0259

Value

High 0.0185 − 0.0005 = 0.0181 ≈ 0.2872 − 0.2693

Low -0.0407 − -0.0185 = -0.0223 ≈ -0.2062 − -0.1784

HML 0.0593 − 0.0385 = 0.0208 ≈ 0.4934 − 0.4477

Momentum

Winner 0.0100 − -0.0110 = 0.0210 ≈ 0.4575 − 0.4406

Loser 0.0002 − 0.0227 = -0.0225 ≈ -0.8814 − -0.8576

WML 0.0098 − -0.0337 = 0.0435 ≈ 1.3389 − 1.2982

CAPM (βKS)

Size

Small 0.0874 − 0.0650 = 0.0224 ≈ 0.0485 − 0.0205

Big -0.0053 − 0.0111 = -0.0163 ≈ 0.0643 − 0.0780

SMB 0.0927 − 0.0539 = 0.0388 ≈ -0.0158 − -0.0575

Value

High -0.0240 − -0.0082 = -0.0158 ≈ 0.2872 − 0.3013

Low -0.0210 − -0.0070 = -0.0140 ≈ -0.2062 − -0.1927

HML -0.0030 − -0.0012 = -0.0019 ≈ 0.4934 − 0.4940

Momentum

Winner 0.0070 − -0.0027 = 0.0097 ≈ 0.4575 − 0.4476

Loser 0.0687 − 0.0526 = 0.0161 ≈ -0.8814 − -0.8984

WML -0.0617 − -0.0553 = -0.0064 ≈ 1.3389 − 1.3460
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Figure 2.8: Actual (Realised) vs Fitted Returns

(a) DSBM-III (b) CAPM (βRW )

(c) CAPM (βSW ) (d) CAPM (βFH)

(e) CAPM (βKS) (f) FF3F

Note: This figure compares the average fitted excess returns of 25 size and book-to-market
sorted portfolios and their realised (actual) excess returns for various models. The two numbers
indicate the individual portfolios where the first, and second digit indicate the size and the
book-to-market quantile, respectively.
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Figure 2.9: Model Instability based on Inclusion Frequency

Note: This figure shows the model instability measure based on bootstrapped samples indi-
cating the proportion of overall OOS periods when there is false inclusion, false exclusion of
variables, or both under each model selection approach. A higher value suggests that there is
high instability.

Figure 2.10: Model Instability based on Best Model vs. BMC

Note: This figure shows the model instability measure based on bootstrapped samples
comparing the performance of best subset variables with bootstrap model combination (BMC).
Bars indicate the proportion of overall OOS periods when MSFE for best selected variables is
lower than MSFE of BMC. A higher value suggests that there is high instability.
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Figure 2.11: Variable selection uncertainty (VSU) across assets

Note: This figure shows the VSU across assets. The values indicate the average importance,
standard deviation in importance, minimum and maximum importance values of each variable
across assets.
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Chapter 3

Conditional CAPM (CCAPM) under
Variable-selection Uncertainty (VSU)

3.1 Introduction

3.1.1 Background

The conditional CAPM (CCAPM) is well established in theory to hold perfectly, period by pe-
riod; on the other hand, the unconditional CAPM misprices stocks (e.g., Jagannathan & Wang
1996). The main argument in favour of CCAPM is that a stock’s conditional alpha (or pricing
error) could be zero if its beta varies and is strongly correlated with the equity premium or
market volatility (see Lewellen & Nagel 2006).1 However, empirically, the performance of such
a method relies on an excellent econometric framework that captures the time-variation of con-
ditional betas (Ghysels 1998).

One of the approaches to incorporate time variation in beta is called an instrumental variable
(IV) approach (CCAPM-IV), where beta is defined as a function of some selected instrumental
variables (e.g., Jagannathan & Wang 1996, Ferson & Harvey 1999, Lettau & Ludvigson 2001,
Petkova & Zhang 2005, Cederburg & O’Doherty 2016).2 While these studies provide enough ev-
idence on the success of CCAPM-IV, however, its implementation in practice is rather complex.
One of the challenges is “variable-selection uncertainty,” which arises from the inability to de-
termine the best set of predictive variables. Cochrane (2009), for example, points out that these
models are difficult to test, since proxies for the information set are needed to properly capture
the dynamics of betas. Moreover, studies such as Ghysels (1998), Harvey (2001) and Cooper
& Gubellini (2011) find that the performance of CCAPM-IV is sensitive to the researcher’s se-
lection of variables. In this paper, we use various approaches from the forecasting literature to
model asset betas in a CCAPM-IV context to deal with variable-selection uncertainty.

3.1.2 Motivation

The main motivation for this study comes from the findings of our first essay, where we applied
various dynamic model selection (DMS) approaches: i) best subset selection based on adjusted

1If the conditional CAPM holds, Lewellen & Nagel (2006) show that the unconditional alpha of a given
asset can be explained by the covariance between time-varying betas (βt) and the market risk premium (Rmt),
αU = Cov(βt, Rmt).

2Some of the other famous approaches to model time variation in beta include those using data-driven filters
such as beta calculated from a 60-month rolling window as in Fama & MacBeth (1973), or a short window ap-
proach (Lewellen & Nagel 2006) and high-frequency data (Andersen et al. 2003), multivariate GARCH (Bollerslev
et al. 1988), dynamic conditional correlation (DCC) (Engle 2002, Bali & Engle 2010), regime-switching model
(Vendrame et al. 2018), mean-reverting stochastic process (Jostova & Philipov 2005), Kalman filter (Adrian &
Franzoni 2009), and others.
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R2, Akaike information criterion (Akaike 1973), Bayesian information criterion (Schwarz 1978),
Mallows’s CP (Mallows 1973), ii) sequential selection approaches based on forward selection,
backward elimination, and stepwise regression, iii) the shrinkage methods based on the Least
Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani 1996), Adaptive LASSO (Zou
2006), and Elastic Net (ENet) (Zou & Hastie 2005), and iv) our newly introduced dynamically
selected beta model (DSBM) that at each point in time, selects the model that currently has the
best asset pricing performance. Consistent with Lewellen & Nagel (2006), we found that CCAPM
based on DMS approaches cannot explain the value and momentum anomalies. Moreover, using
bootstrap methods to quantify the model uncertainty and instability, we find that the DMS
approaches of selecting conditioning variables is subject to considerable estimation error. These
findings provide strong motivation for our second essay, where we consider alternative forecasting
approaches which try to address variable-selection uncertainty (VSU).

3.1.3 Research Gaps and Objectives

The CCAPM-IV approach is challenging to implement due to variable-selection uncertainty
(VSU), which arises from a lack of guidance on the predictor variables to include in the model
to better reflect the investors’ information set. Since this problem is so prevalent in empirical
economics and finance, researchers have developed a variety of approaches to address VSU over
time; however, their application to CCAPM-IV is less common. Given this gap, the primary
objective of this study is to apply various forecasting approaches to CCAPM-IV in order to ad-
dress VSU. In the forecasting literature, we generally find three approaches to account for VSU:
the combination of forecasts (CF) (e.g., Bates & Granger 1969), the combination of information
(CI) (e.g., Kelly & Pruitt 2013), and one that combines both CI and CF (e.g., Huang & Lee
2010). CF combines forecasts obtained from simple models where each model incorporates a
portion of the entire information set, CI, on the other hand, integrates the whole information
set into one single model to produce a single optimal forecast.3 From a literature review, we
find that there are many alternative approaches to implement CF and CI. However, there is no
clear consensus on which method is the best. Most studies are concerned with equity premium
and macroeconomic prediction, but none of them examines the optimal approach suitable for
modelling the time variation of betas in the CCAPM framework. Therefore we aim to compare
various CF, CI, and a hybrid of CI and CF approaches in explaining the cross-section of asset
returns within a CCAPM-IV framework.

The CF approaches are motivated by the pioneering work of Bates & Granger (1969) and have
been followed by many researchers in various empirical applications showing that the CF ap-
proach can deal with model uncertainty issues and often perform superior to their counterparts
(e.g., Clemen 1989, Timmermann 2006, Elliott & Timmermann 2016). Following Rapach et al.
(2010), our CF analysis combines point forecasts of betas estimated from univariate predictor-
based regressions from a large pool of conditioning variables. At each point in time, these beta
forecasts are weighted in various ways, including simple equally-weighted average and weighting
schemes based on some criteria such as mean squared error (MSE).

The CI approaches are motivated by the availability of various high dimensional datasets that
researchers these days use, for example, the Federal Reserve Economic Data (FRED) database
(e.g., McCracken & Ng 2016). Some studies suggest that dimension reduction methods outper-

3CI, is generally referred as dimension reduction, which is the means of transforming data from a high-
dimensional space to a low-dimensional space while preserving all of the original data’s meaningful properties.
However, we also include model selection approaches from Essay 1 under this category because either subset
variable selection or dimension reduction would ultimately result in one model to generate the final forecast. The
CF approach, on the other hand, always generates multiple forecasts for the same target variable and combines
them into a composite forecast.
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form individual models, model selection, and forecast combination methods (e.g., Ludvigson &
Ng 2007, Bai & Ng 2008, Kelly & Pruitt 2013, Neely et al. 2014, Tu & Lee 2019). In our CI
approach, we use dimension reduction methods which include Principal Components (PCs) (Bai
& Ng 2002) and Kelly & Pruitt (2013) three pass filter based on partial least squares (PLS).
These approaches take the original pool of predictor variables and reduce it down to a small sub-
set of variables known as factors. These factors are then used to fit the time-varying beta model.

There exist other methods that combine CI and CF by first identifying the relevant predic-
tors through various variable selection approaches (CI) and then combine the forecasts of those
using CF approaches. We find two groups of studies in this category. First, using the traditional
CI and CF methods, for example, Huang & Lee (2010) use principal components to extract
relevant factors of forecasts (CI) and combine them using various weighting schemes (CF).
Moreover, Kourentzes et al. (2019) first select predictors with classical approaches such as AIC,
BIC, and adjusted R2 and then combine the forecasts of selected predictors. The second group
of studies combining CI and CF are mainly motivated by the success of machine learning tech-
niques in forecasting.4 These studies employ hybrid approaches, which incorporate traditional
econometrics and machine learning techniques. Hirano & Wright (2017), for example, suggested
a split-sample (SPLT) approach to address the variable-selection uncertainty. They demon-
strated that choosing a model through AIC through SPLT and adding a bootstrap aggregation
(bagging) stage improves prediction performance significantly. Liu & Xie (2019) extended the
work of Hirano & Wright (2017) by replacing model selection with model averaging and applied
the bagging step. Most recently, Rapach & Zhou (2020) extend the machine learning methods
where they first use the elastic net method to preselect the individual predictor variables and
then apply combining forecast approaches of Rapach et al. (2010). They find that combining
elastic net and simple CF methods enhances forecast accuracy; the authors claim that to date,
this strategy is one of the best for predicting out-of-sample equity premium.

Following the above studies, our hybrid of CI and CF approaches include principal component
combinations of Chan et al. (1999) and Huang & Lee (2010), variable selection and combination
(Rapach & Zhou 2020). Moreover, we consider the bootstrap aggregation (bagging or BAGG)
method, which requires a training phase that involves bootstrapping new training sets. B ran-
dom samples are taken from the original training dataset, with replacement. Our approach
follows a two-step process where we first apply various CI approaches to get a forecast for each
bootstrap sample. In the final step, we take a simple average across B forecasts to obtain a
combined forecast. More specifically, our implementation of bagging follows the approach of In-
oue & Kilian (2008), Rapach & Strauss (2010), and Borup & Schütte (2020). For each sample,
we first select a subset of variables, such that only the statistically significant variables based
on t-statistics are included. In the next step, we use these variables in a single multivariate
CCAPM-IV time-series regression to model asset betas. We also use hybrid methods in the
BAGG framework, which combine traditional econometrics and machine learning. We first fol-
low Hirano & Wright (2017) to use a split-sample (SPLT) for model selection using asset pricing
criteria. Second, we follow Liu & Xie (2019) and use model averaging approaches to obtain a
composite forecast in each sample and then take an average across B samples.

3.1.4 Summary of Methodology

Our all methods to estimate time-varying betas are based on out-of-sample analysis to prevent
look-ahead bias. Our analysis examines whether CCAPM models based on CI, CF and hybrid
of CI and CF explain the cross-section of asset returns. Our analysis is based on Fama &
MacBeth (1973) two-step method, in which the factor loadings for each asset, i.e. the estimates

4See Gu et al. (2020) for more information on machine learning approaches and their application in financial
forecasting.
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of conditional betas in CCAPM, are obtained in the first step using time-series regressions. The
first step involves regressing monthly excess asset returns on the market risk factor, in a model
where the market beta varies with conditioning variables (see, e.g., Shanken 1990, Ferson &
Harvey 1999, Cederburg & O’Doherty 2016). More specifically, βt = f(Xt), where X represents
the subset of the full information set of investors (I), Xt ⊂ It. Under dimension reduction
approach, we first construct relevant factors Ft from Xt using various approaches, and then
define βt = f(Ft). Under CF framework, the combined beta forecast based on individual betas j
is given as: βt = f(ωj , βjt), where βjt = f(Xjt). Finally, in our hybrid of CI and CF approaches,
we first preselect the subset of variables X∗t ⊂ Xt, next we obtain the estimates of individual
betas, βjt = f(X∗jt), which are then used to form combined forecast of beta, βt = f(ωj , βjt).
Note that while the CI method yields one beta estimate for each asset, the CF framework yields
one point forecast for each model, which we then combine to obtain a combined forecast. After
obtaining the out-of-sample betas, we test the model by running a cross-sectional regression
at each time t of the evaluation period, with the first-step betas (obtained through different
approaches) serving as an explanatory variable. Our CCAPM cross-sectional tests are based
on mainstream literature that evaluates the pricing abilities of a given model by looking at
the significance of Fama & MacBeth (1973) parameter estimates.5 In addition, we assess the
performance of each model through various performance metrics such as the sum of squared
pricing errors (SSPE) (Adrian & Rosenberg 2008), cross-sectional adjusted R2 (Jagannathan &
Wang (1996)), and composite pricing errors (CPE) (Campbell & Vuolteenaho 2004).

3.1.5 Principal results

We use the monthly excess returns on 25 size and value portfolios of Fama & French (1993)
to perform the tests for a sample period from July 1926 to December 2018. The conditioning
information variables used in this study are taken from Goyal & Welch (2008); we select the 14
variables for which monthly data are available from July 1926 to December 2018. The cross-
sectional results for out-of-sample periods August 1936 to December 2018 and August 1968 to
December 2018 show that all the approaches considered in this study do not handle the equity
premium properly since the excess return on the zero-beta portfolio (constant from Fama &
MacBeth (1973) second stage regression) is significant and large in magnitude. However, CF
approaches outperform CI approaches in explaining the cross-section of asset returns measured
as adjusted R2. The improved performance of CF is in line with previous research that claims
that the CF is effective in lowering forecast errors and significantly reducing model uncertainty
(Bates & Granger 1969, Timmermann 2006, Rapach et al. 2010). However, hybrid models that
combine CF and CI methods improve the performance of CCAPM beyond CF. These results
are consistent with Huang & Lee (2010), Kourentzes et al. (2019), Rapach & Zhou (2020), and
others that show the superior performance of hybrid approaches compared to individual CI and
CF approaches. Moreover, such studies claim that hybrid approaches help to reduce variable-
selection uncertainty (VSU). Thus, the reduction in VSU, we believe, is the primary reason for
the improved results of CCAPM-IV.

3.1.6 Contribution

Our second essay contributes to the empirical asset pricing literature in the following ways: to
the best of our knowledge, this is the first research to include a detailed comparison of various
well-known approaches identified by literature to deal with VSU from a CCAPM perspective.
Consistent with the studies such as Hirano & Wright (2017) and Rapach & Zhou (2020), we
show that a combination of traditional econometric and machine learning approaches can out-
perform the individual methods. For example, we find the evidence on improved performance

5We use t-statistics to test the significance using Newey & West (1987) heteroskedasticity and autocorrelation
consistent standard errors.
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of CCAPM-IV with BAGG method, where in each pseudo sample, we first select the subset of
variables based on the mean squared forecasting error (MSFE) in cross-validation sample, and
then take a simple average of beta estimates across all pseudo samples. This method performs
as well as the Fama & French (1993) three-factor model in explaining the cross-sectional returns
of 25 Size-B/M, 30 industry and 10 momentum portfolios.

The remaining structure of this chapter is as follows. Section 3.2 provides an overview of the
literature on various approaches to address VSU. The econometric methodology is discussed in
Section 3.3. Section 3.4 addresses the implementation of CI, CF, and hybrid of CI and CF ap-
proaches to CCAPM-IV. An overview of data and benchmark models is provided in Section 3.5.
Section 3.6 reports the empirical results. Section 3.7 reports the results of various robustness
tests. The conclusions are drawn in the section 3.8.

3.2 Literature Review

This section provides an overview of a variety of strategies that have been used in forecasting
literature to address the challenges related to variable-selection uncertainty (VSU).6 From a time-
series forecasting perspective, these approaches can be classified into (i) using a single model to
generate a forecast; and (ii) combining forecasts obtained from different models. Huang & Lee
(2010) name these approaches as combination of information (CI) and combination of forecasts
(CF). To generate a fundamental forecast, CI integrates the entire information into a single,
highly comprehensive model. CF, on the other hand, combines forecasts generated by simple
models that each use a piece of the whole information set. The third strategy to address the
VSU combines the CI, and CF approaches to improve forecasting accuracy (e.g., Huang & Lee
2010, Tu & Lee 2019). These approaches are discussed in the following sections.

3.2.1 Combining Information (CI)

The first category is combining information (CI) which includes approaches that are based on a
single model to generate a forecast obtained through either subset variable selection or dimension
reduction. Subset variable selection approaches are already discussed in Chapter 2, so here we
only discuss dimension reduction approaches.

3.2.1.1 Dimension reduction methods

Addressing the issue of the increased number of predictors generally requires strategies for re-
ducing the impact of estimation error caused by trying to include more predictors in the model.
One approach is to use a few linear combinations of predictors in the forecasting model that
have been carefully selected. One of the most famous approaches is to employ dynamic factor
models (DFMs), which has produced a wide body of literature over the last two decades. Many
studies show improvement in forecasting accuracy using DFM. For example, Ludvigson & Ng
(2007) show the better out-of-sample performance of quarterly equity premium forecasts based
on dynamic factors extracted from 172 financial and 209 macroeconomic predictors. Moreover,
Neely et al. (2014) also demonstrate the forecasting gains for equity premium based on dynamic
factors extracted from a set of popular technical indicators and Goyal & Welch (2008) predic-
tors. DFMs can be classified into supervised and unsupervised (Tu & Lee 2019). The term
“supervision” refers to the process of training predictors to forecast a variable. One of the most
famous unsupervised factor models is principal component regression, PCR. A two-step process
is used in PCR, in which the first step involves grouping predictors into a small number of linear

6For brevity, we do not provide the literature on conditional CAPM as it has already been given in Chapter
2.
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combinations that best maintain the predictors’ covariance structure. In the second stage, stan-
dard predictive regression is used with a few leading components. The ultimate statistical goal,
predicting a target variable, is not included in the dimension reduction stage of PCR, which is a
disadvantage. In other words, the PCR only accounts for the variance of the chosen predictors
and does not use the forecast target information explicitly.

To overcome this problem, supervised factor models such as partial least squares (PLS) are
used, which are designed to minimise dimension by directly exploiting predictor-target covaria-
tion.7 The application of PLS methods can be found in Kelly & Pruitt (2013), who introduce
a new dimension reduction technique based on PLS that considers the relationship between the
target variable and predictors. Their approach consists of three steps, which they refer to as
a three-pass filter (3PF), and they demonstrate out-of-sample forecasting gains for equity pre-
mium prediction using factors derived from a collection of disaggregated valuation ratios (see
section (3.4.1) for the implementation of 3PF).

3.2.1.2 Hybrid of variable selection and dimension reduction

Some approaches within CI group combine the variable selection approach and dimension re-
duction. The idea is to overcome the criticisms on PCR that it is unsupervised as it does not
consider the target variable in factor construction. Under this approach, the supervision refers
to variable selection, also known as subset selection, which identifies the best predictors for the
target variable. The principal components are then constructed using the selected predictors and
used in the predictive regression model. This approach is called “targeted PCR”. Two widely
used targeting methods proposed in the literature are hardthresholding and softthresholding.
Hardthresholding begins by running single linear regressions on the target for each predictor
(Bai & Ng 2008). The algorithm then selects only those predictor variables with t-statistics
greater than a certain threshold level (e.g., 10%). Hardthresholding is limited by the fact that
it only considers the bivariate relationship between the variable Xi and the variable of interest
y, ignoring the association between Xi and Xj . As a result, strongly collinear predictors are
likely to be selected. Softthresholding is intended to mitigate this issue by ranking the variables
in order of their significance, which is referred to as the position of inclusion (Bai & Ng 2008).
More complex variable selection methods, such as Least Angle Regression (Efron et al. 2004),
LASSO (Tibshirani 1996, Zou 2006), Elastic Net (Zou & Hastie 2005), and so on, have recently
appeared in the literature. All of these softthresholding methods attempt to rank the predictors
and choose a subset suggested by their rankings.8

3.2.2 Combining Forecasts (CF)

Since the highly regarded publications of Barnard (1963) and Bates & Granger (1969), a stream
of studies on combining various forecasts appeared in the forecasting literature. More details on
combining forecasts (CF) methods can be found in Clemen (1989), Timmermann (2006), Rapach
& Zhou (2013), and Timmermann (2018). A literature review suggests that CF approaches
can be classified into three groups based on combining forecasts: i) across models, ii) across
estimation windows, and iii) across samples. These approaches are summarised in Figure 3.1.
Considering the objective of this study, that of addressing the variable-selection uncertainty
(VSU), we only consider CF across models and samples.

7See Tu & Lee (2019), who provide a comparison between supervised and unsupervised factor models.
8See Bair et al. (2006) and Bai & Ng (2008), who provide detailed analysis on the success of the “targeted

PCR”.
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Figure 3.1: Classification of CF literature

3.2.2.1 Combining across models

One CF approach is to combine the forecasts obtained through univariate predictor-based mod-
els, which limit the number of total models to the number of predictors (K). This approach
generally avoids multicollinearity issues, where highly correlated predictors in the same model
can result in overfitting. From the historical perspective, this approach has been used to com-
bine forecasts when underlying information is unknown, for example, expert forecasts where
the only thing known is the forecasts. Note that under this approach, the forecasts remain the
same to all various techniques used to combine point forecasts. The only difference is the way
weights are obtained. We generally find two approaches to obtain combining weights: i) equal
weights (simple average) and ii) value weights. The value weight can further be divided into
based on simple criteria such as mean square forecast error (MSFE) and optimisation techniques
requiring estimation of the error-covariance matrix. Empirical evidence suggests that CF based
on simple average often outperforms the optimal forecast combination based on sophisticated
weighting schemes. This empirical reality has been named the “forecast combination puzzle”.
Many studies, such as Smith & Wallis (2009), and Graefe et al. (2014) have attempted to explain
this puzzle. These studies demonstrate that the impact of the error on weight estimation can
be large, offering an empirical explanation for the forecast puzzle.

Since simple weighting schemes such as equally weighted forecast is more straightforward, the
issues regarding the value-weighted CF are severe in forecasting literature. Therefore, follow-
ing Rapach et al. (2010), in this study, we only use simple approaches and does not focus on
optimisation techniques of CF.

3.2.2.2 Combining across estimation windows

Pesaran & Timmermann (2007) and Pesaran et al. (2013) argue that CF across models fails to
address the structural break problem. They demonstrate that CF across models is based on
the assumption that the underlying data generation process and the models are consistent over
time. Considering this, Pesaran & Timmermann (2007) propose a CF approach that combines
the forecasts obtained from the same model but calculated over different estimation windows.
This method is particularly useful when the existence of the breaks, as well as the number of
them, is unclear. Pesaran et al. (2013) proposed a new method called average-average (AveAve)
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which is based on combining the two averaging methods: i) CF across models and ii) CF across
estimation windows. They show that the AveAve approach outperforms the simple combination
approach across models using a single-window, i.e. rolling or expanding. Note that in this
paper, our objective is to address the variable-selection uncertainty by combining forecasts
across models estimated with the same estimation window. Therefore, we do not apply the CF
across estimation windows in our analysis.

3.2.2.3 Combining across samples – Bagging

Another form of combination is “bootstrap aggregation” (also known as bagging or BAGG),
which involves creating a combined forecast for a given model using a collection of bootstrap-
based training samples (multiple versions of a predictor). Breiman (1996) suggested bagging
as a tool for smoothing instabilities from modelling techniques that include hardthresholding
and pre-testing in order to increase forecast accuracy. In bagging, the modelling procedure is
implemented to bootstrap samples many times, and the final forecast is determined by com-
bining the forecasts obtained from the bootstrap samples. Bühlmann & Yu (2002) illustrate
how bagging reduces prediction variance and, as a result, increases accuracy. Stock & Watson
(2012) use the t-statistics to derive a shrinkage representation for bagging, demonstrating that
it is asymptotically identical to shrinking the unrestricted coefficient estimate to zero. The t-
statistic determines the magnitude of shrinkage.

For predicting economic and financial variables, bagging is becoming a common forecasting
strategy. For example, Inoue & Kilian (2008) apply various bagging strategies to forecast US
inflation using many predictors. On the other hand, Rapach & Strauss (2010) apply bagging for
forecasting the unemployment growth using 30 predictors. When bagging is applied to a pre-test
technique that selects variables based on individual t-statistics, they notice that the forecasts
are very competitive when compared to CF across univariate predictor-based models. Bagging’s
validity in reducing forecast errors in the presence of time-series dependence is justified by Jin
et al. (2014). Their findings suggest that bagging significantly reduces the mean squared error
(MSE) for “unstable” predictors in predicting out-of-sample equity premium. More details on
bagging can be found in Petropoulos et al. (2018) and Yin (2020).

3.2.2.4 Summary on effectiveness of combining forecasts (CF)

There are many reasons why the Combining Forecasts (CF) approach outperforms the best
model chosen from a number of alternatives. Prediction models are basic approximations for
data-generating processes that are almost always much more complex than one expects. As
a result, it is unlikely that a single model forecast would cover all other models. Even if a
particular model consistently outperforms other models by producing lower prediction errors,
there is a possibility to obtain diversification gains by assigning weights to other models (Bates
& Granger 1969).

Timmermann (2006) summarises the three main reasons for preferring CF over an individual
model selected from a pool of models.9 First, combining the forecasts of individual models can
help to minimise the risk of selecting the wrong model (Hendry & Clements 2004). Moreover,
combining forecasts (CF) based on models that use different sets of conditioning information
may provide more reliable forecasts than a single model that tries to integrate all of the in-
formation, similar to the concept of portfolio diversification (Huang & Lee 2010). Second, CF

9The importance of CF approaches in combining forecasts across different estimation windows can be found
in Pesaran & Timmermann (2007), Pesaran et al. (2013), Tian & Anderson (2014), and others. Moreover,
the benefits of CF across different samples is also reported by many studies. For example, Petropoulos et al.
(2018) show that combining forecasts across pseudo-samples through bagging framework can address the model
uncertainty.
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can be more resistant to unknown structural breaks that tend to support one model over the
other at various points in time (Clark & McCracken 2010). This is also consistent with the
arguments of some studies (e.g., Stock & Watson 2004, Aiolfi & Timmermann 2006) that no
single model will outperform the others over all the periods. The rankings of models in terms of
producing lower forecast errors keep changing over time, making the CF approach more suitable
to address the issue of model misspecification. Moreover, some predictive models may well be
able to respond rapidly to events like economic downturns and times of high uncertainty about
the outlook of the economy, while others take longer. During or, ideally, prior to such events,
a rational decision-maker might choose to use predictions from more reliable models with more
accurate parameter estimates (Elliott & Timmermann 2005). Therefore, a rational investor will
consider a time-varying CF scheme in light of changing economic conditions and the perfor-
mance of forecasting models, making CF more appealing. Finally, if some models have omitted
variable bias, CF might be able to average out such unknown biases and avoid choosing a single
bad model (Panopoulou & Vrontos 2015).

The advantages of CF over the last five decades can be summarised as:10

� it aggregates information about various predictors since one forecasting approach is based
on variables or information that has not considered by the other forecasts (Bates & Granger
1969, Chan et al. 1999, Graefe et al. 2014);

� it allows for the identification of the underlying mechanism, as various forecasting mod-
els are capable of capturing different aspects of the information available for forecasting
(Reeves & Lawrence 1982, Clemen 1989);

� it considers the relative accuracy of individual approaches as well as the covariance of
forecast errors across methods (Winkler & Makridakis 1983);

� it enhances forecasting performance by producing lower forecasting errors (Makridakis &
Winkler 1983, Rapach et al. 2010, Cang & Yu 2014);

� it reduces the variability of accuracy for various measures of variance (Makridakis & Win-
kler 1983, Mahmoud 1989, Hibon & Evgeniou 2005);

� it allows for the reduction of uncertainty and is simpler and less costly than depending on
a single approach (Winkler 1989, Hibon & Evgeniou 2005, Bordignon et al. 2013);

� it could lead to more normally distributed errors (Barrow & Kourentzes 2016)

3.2.2.5 Some challenges of combining forecasts (CF)

Despite a proven record of CF, there are still some challenges that can affect the forecasting per-
formance. Some of the challenges include decisions about the selection of performance criteria,
weighting scheme, and model evaluation sample. The other issue is related to the choice between
a simple average and a more sophisticated weighting scheme. However, the most challenging
part and perhaps the most concerning point is to decide whether to combine all the available
forecasts. Though, in a value-weighted approach, different weighting methods have been sug-
gested to reduce the effect of inaccurate predictions by assigning a low weight to a model with
poor forecasting results. However, since unweighted combinations work very well (Timmermann
2006) and the majority of studies use equally weighted CF, effectively without excluding any
forecast. A weakness in CF methods is that they presume that all of the predictions to be
combined are important. However, it appears that a worse forecast could be given more weight
than a better forecast, thus weakening the weighted forecast. Kourentzes et al. (2019) go into

10For more details, see, Timmermann (2006), Kolassa (2011), Elliott & Timmermann (2016).

85



great detail about this issue, arguing that choosing an appropriate pool of forecasts is crucial to
the model development. They suggest a technique known as forecast pooling, which states that
only a subset of the total set of forecasts should be combined. This is also consistent with the
results of Aiolfi & Timmermann (2006), who look into how forecast pools are constructed using
forecasts from arbitrarily selected top-performing quantiles or clustering methods. According to
the authors, pooling selected forecasts generate more accurate forecasts compared to combining
all the forecasts, but they also acknowledge that the pooling strategies are sensitive to the choice
of quantiles.

The proposal of pooling forecasts naturally leads to a strategy that combines CI and CF by
choosing a subset of models or forecasts and then combining them into a single forecast. The
following section provides an overview of the literature using forecasting methods which are a
hybrid of CI and CF approaches.

3.2.3 Combining CI and CF

In this section, we present an overview of forecasting literature that employs a combination of
CI and CF methods, demonstrating that the hybrid of CI and CF produces better forecasts
than either approach alone.

3.2.3.1 Pooling – Hybrid of variable selection and CF

A collection of predictors, in an ideal world, will contain all of the essential information needed
to predict a variable of interest. However, if a predictor is strongly correlated with another, it
runs the risk of adding noise to the data rather than predictive power, making forecasts less
accurate. Moreover, forecasts could be biased towards the portion of the target variable that
this group explains if a particular category of predictive variables is heavily represented in the
selected set of predictors. Therefore, with a smaller but more balanced set of predictor variables,
more accurate forecasts could be made.

Pooling is a forecasting strategy that uses a subset of the available forecasts rather than all
of them. The aim is to minimise forecast errors even further while increasing computational
efficiency. According to Timmermann (2006), the cost of implementing increased parameter
estimation error should be balanced against the value of adding forecasts. He uses three easy
trimming rules relying on the out-of-sample mean squared prediction errors (MSPE) of models:
the top 75%, 50% and 25% models. Aiolfi & Favero (2005) also notice that trimming 80% of
forecasts based on the model’s R2 boost forecasting accuracy in the context of stock return
forecasting. Bjørnland et al. (2012) also provide evidence on the effectiveness of combining the
inflation forecasts of the top 5% of models.

Aiolfi & Timmermann (2006) combine all forecasts from each quartile and then conduct a
weighted combination of the combined quartile forecasts. Instead of decreasing the number of
base forecasts employed, they reduce the number of forecasts requiring the estimation of com-
bining weights. Most recently, Kourentzes et al. (2019) analyse forecast pooling strategies and
find that they improve forecast accuracy. The authors suggest an algorithm for automatically
generating forecast pools, regardless of their origin, and show that it outperforms model selection
and the standard CF methods under various conditions.

3.2.3.2 Combining Forecast Principal Component (CFPC)

Combining forecast principal component (CFPC) is a form of supervised factor models (Tu
& Lee 2019). This approach differs from other supervised methods like PLS, which computes
factors directly. Under CFPC, forecasts are computed first, and then the principal components
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of the forecasts are estimated as a means for CF. The applications of combining forecasts using
principal components can be found in Chan et al. (1999), Stock & Watson (2004), Huang & Lee
(2010), Tu & Lee (2019), and others. The main difference between PCR and CFPC lies in the
input used for extracting factors. The principal components are determined directly from X ′s
in PCR, without taking into account their association with the variable of interest, y. Because
of the unsupervised nature of the PCR approach, Bai & Ng (2008) propose that a subset of
X variables (“targeted predictors”) that seem to be useful in forecasting be selected first, and
then the subset be used to extract factors. CFPC, on the other hand, computes the principal
components from a collection of individual forecasts (ŷ1, ŷ2, . . . , ŷN ) that contains data on
X ′s as well as all previous y values. This helps us understand why studies like Tu & Lee (2019)
find CFPC to be more powerful than PCR.

3.2.3.3 Combining CF and Machine Learning

Given the success of machine learning (ML) techniques in forecasting, some studies call tra-
ditional methods, in particular, linear statistical models, ineffective and advocate the use of
machine learning methods (see Gu et al. 2020). On the other hand, some studies find evidence
against machine learning methods. For example, Makridakis et al. (2018) use a broad subset of
1045 monthly time series from the M3 Competition for comparing the performance of conven-
tional statistical approaches and machine learning across different forecasting horizons.11 After
contrasting the post-sample accuracy of common ML methods to that of conventional statistical
methods, the authors discover that traditional methods outperform ML methods in all accu-
racy measures and forecasting horizons tested.12 On this note, some studies have shown that
combining machine learning techniques with linear statistical models will outperform the two
approaches separately.13

Rapach & Zhou (2020) extend the machine learning methods where they first use the elas-
tic net method to preselect the individual predictor variables and then apply combining forecast
approaches of Rapach et al. (2010). They find that combining elastic net and simple CF methods
enhances forecast accuracy; the authors claim that this strategy is one of the best for predict-
ing out-of-sample equity premium to date. The split-sample approach and its model averaging
extensions are two other hybrid approaches. Hirano & Wright (2017), for example, suggested a
split-sample (SPLT) approach to address the variable-selection uncertainty. They demonstrated
that choosing a model with AIC through SPLT and adding a bootstrap aggregation (bagging)
stage improves prediction performance significantly. Liu & Xie (2019) extended the work of
Hirano & Wright (2017) by replacing model selection with model averaging and applied the
bagging step.

11Also see Xie et al. (2020) who provide a detailed review of comparison between conventional econometric
methods and machine learning methods.

12For a discussion of why ML models are less reliable than statistical models, see Makridakis et al. (2018).
13Note that our focus is on linear models, so we consider shrinkage and bagging as ML methods.
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3.3 Econometric Methodology

This section discusses the econometric framework to estimate and test the conditional CAPM.
Before discussing the models and tests, we first introduce notation, and the process of sample
splitting. Next, we move to the econometric framework of various approaches considered in this
study. Finally, we discuss cross-sectional tests for evaluating the performance of various models.

3.3.1 Notations

There are N assets indexed by i = 1, . . . . , N , K represents total predictors indexed by
k = 1, . . . . ,K and M indicates the total available models indexed by j = 1, . . . . ,M . T
represents total observations indexed by t = 1, . . . . , T . The initial training sample is indicated
by W and w represents the estimation window. S indicates out-of-sample observations for final
evaluation of model, which is given as, total observations (T ) less initial training sample (W ).
The excess returns for asset i at time t, are indicated as Ri,t, and Rm,t indicates excess market
returns at time t. It indicates the vector of investors’ information set, Xj,t represents the vector
of explanatory variables in model j (Xt ⊆ It). αitj and βitj represent pricing error and beta for
asset i at time t with model j, respectively.

3.3.2 Sample splitting

We use out-of-sample analysis to estimate time-varying betas with various CI, CF and combina-
tion of CI and CF approaches to prevent look-ahead bias. This involves dividing the total sample
into training and testing. The model parameters are estimated using the training sample and
then applied to unseen data to obtain out-of-sample forecasts. Specifically, we use two sample-
splitting approaches, where in the first approach, we divide the total sample of T observations
into two portions: i) W as a training sample, and ii) S = T −W to evaluate the out-of-sample
performance. We use a rolling window approach, with a fixed window of w observations that
rolls over each time up to the last observation of the sample. In our second approach, instead
of splitting our total sample into two parts, we divide it into three parts: i) training (W0), ii)
validation (V ), and iii) testing (S). The validation sample is used to assess the performance of
a given model by evaluating its ability to predict the future. Note that the validation sample
is not used to assess the final performance of the model. Instead, it only helps to identify the
best model or obtaining combining weights for making the out-of-sample forecast. Thus, the
third subsample (testing sample) consisting of S = T −W0 − V observations, which is not used
for estimation or validation, is simply out of the sample and is instead used in evaluating the
predictive performance of the given model.

3.3.3 Econometric Framework

Assuming that, in a dynamic economy, the hedging motives of risk averse investors are negligible,
the conditional version of Black (1972) CAPM is described by Jagannathan & Wang (1996) as:

Et[Ri,t+1] := E[Ri,t+1|It] = λ0,t + βi,tλ1,t, (3.1)

where Ri,t+1 denotes the return on asset i in period t + 1, It represents the information set
available to investors at the end of period t. In this version of conditional CAPM, λ0,t denotes
the conditional expected return on a “zero beta” portfolio, while λ1,t represent the conditional
market risk premium. βi,t is the conditional beta of asset i based on the given information set
It, which is defined as:

βit =
Cov(Ri,t+1, Rm,t+1|It)

V ar(Rm,t+1|It)
(3.2)
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where Rm,t+1 denotes the return on the market portfolio in period t+ 1.

We use Fama & MacBeth (1973) two-step method to estimate the β and λ parameters of
(3.1). The first step is based on time-series regressions to obtain the factor loadings for each
asset, i.e. the estimates of conditional betas in CCAPM. The next step requires estimating a
cross-sectional regression at each period of excess portfolio returns on the first step’s conditional
betas.

3.3.3.1 First-pass regressions – Estimating conditional betas

To estimate conditional betas, we follow the CCAPM-IV approach (e.g., Shanken 1990, Ferson &
Harvey 1999, Petkova & Zhang 2005, Cederburg & O’Doherty 2016) and model the portfolio beta
as a function of some observable instrumental variables (IVs). Our main analysis of estimating
conditional betas uses the following time-series model:

Ri,t+1 = aIVi + (γi,0 + γ′i,1Xt)Rm,t+1 + εi,t+1, (3.3)

where t indexes months, Ri,t+1 and Rm,t+1 are the excess returns on asset i and the market
during period t + 1, respectively, and Xt ⊆ It is a vector of L instruments which represents
the broader set of investors’ information, It. It is thus assumed that the conditional portfolio
beta is a linear function of some observable variables known at time t, βIVi,t = γi,0 + γ′i,1Xt,

and the conditional portfolio alpha is constant.14 Past studies such as Ferson & Harvey (1999),
Petkova & Zhang (2005), Cederburg & O’Doherty (2016) and others use a predetermined set of
instruments. However rather than selecting a prior a subset of variables from the large set of
potential conditioning variablesXt, we use combining information (CI), combining forecast (CF),
and combination of CI and CF methods to be discussed in section 3.4. Following subsections
provide an overview of the process for obtaining out-of-sample forecast of asset betas with CI
and CF respectively.

3.3.3.1.1 Combining Information In order to obtain the conditional portfolio betas based
on a given CI approach, we use following equation

β̂CIi,t = γ̂i,0,t + γ̂′i,1,tX
∗
t (3.4)

where γ̂i,0,t and γ̂i,1,t are the estimates of γi,0 and γi,1, respectively obtained from equation (3.3)
by regressing Ri,2:t on a constant, Rm,2:t and Rm,2:t.X

∗
1:t−1. Where X∗t ⊆ Xt indicates a vector

of L predictors identified either through model selection approaches or factor construction to be
discussed in section (3.4.1).

3.3.3.1.2 Combining forecasts The conditional portfolio betas based on a given CF ap-
proach can be given as:

β̂CFi,t =

M∑
j=1

ω∗j,tβ̂i,j,t (3.5)

where β̂FCi,t is the weighted average beta for asset i across M models. ω∗j,t indicates the combining
weights for each model j which are obtained at time t through various methods discussed in
section (3.4.2). β̂i,j,t = γ̂i,j,0,t + γ̂i,j,1,tXj,t is the out-of-sample beta for asset i at time t using
predictor Xj . The estimates, γ̂i,j,0,t and γ̂i,j,1,t are the estimates of γi,j,0 and γi,j,1, respectively

14We also estimate model (3.3) with time-varying alphas for the robustness of results, where conditional
portfolio alpha is defined as a function of same observable variables used to for modelling betas. Results show
that the impact of allowing alphas to vary over time, is negligible on our main findings.
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obtained from equation (3.3) by regressing Ri,2:t on a constant, Rm,2:t and Rm,2:t.Xj,1:t−1.

We use a rolling-window approach (e.g., Fama & MacBeth 1973) which employs a window of
fixed length w (60 months in our case) to estimate the market beta of asset i. Specifically, to have
either β̂CIi or β̂CFi at a given period, we simply estimate equation (3.3) using constructed factors
or individual predictors j by using the observations within the estimation window [t−w+ 2 t]
for Ri and Rm and [t− w + 1 t− 1] for X. To generate a beta forecast in the next period, we
roll the window one step forward where one new observation is added, and the most distant one
is dropped. The process continues until we obtain the final forecast at time T , which effectively
generates the sequence of S out-of-sample beta estimates.

3.3.3.2 Second-pass regressions and Cross-sectional tests of CCAPM

After obtaining the out-of-sample betas, we test the model by running a cross-sectional regression
at each time t of the evaluation period, with the first-step betas obtained either through CI,
CF, or hybrid of CI and CF approaches serving as an explanatory variable.

Ri,t+1 = λ0,t+1 + λ1,t+1β̂
C
i,t + αi,t+1 (3.6)

where β̂Ci,t is forecasted β of asset i based on either CI, CF, or hybrid of CI and CF approach,
λ0,t+1 represents the expected excess return on a ‘zero beta’ portfolio and λ1,t+1 denotes the

expected market risk premium. This will generate S × 1 out-of-sample estimates of λ̂0 and λ̂1,
and S ×N estimates of pricing errors α̂.

To test the model, we first get the time-series averages of excess zero-beta rate (λ0), risk premium
(λ1) and pricing errors (αi) as:

λ̂0 =
1

S

S∑
t=1

λ̂0,t (3.7)

λ̂1 =
1

S

S∑
t=1

λ̂1,t (3.8)

α̂i =
1

S

S∑
t=1

α̂i,t (3.9)

Our main asset pricing test is based on testing whether a given model implies a reasonable risk-
free rate (zero-beta rate, Rzb) and thus adequately fits the equity premium. Here Rzb represents
the return on an asset with zero sensitivity to risk factors (conditional beta, in our case) of any
given pricing model. If a model’s Rzb is equivalent to the prevailing risk-free rate, that model
fits the equity premium well (Black 1972). The fitted constant in the cross-sectional regression
given in equation (3.6) indicates the difference between the implied Rzb and the observed risk-
free rate (i.e., λ̂0 = Rzb − Rf ). There are two versions of tests in the literature. The first
version constraints the zero-beta rate to the return on a risk-free asset by setting the cross-
sectional constant to zero. The second version, however, relaxes this restriction and estimate
the model with a constant.If unrestricted constant of a given model is statistically insignificant
(i.e., λ̂0 = Rzb − Rf ≡ 0), we can say that the model adequately fits the equity premium (see,
e.g., Jagannathan & Wang 1996, Cochrane 2005). We follow the second version and estimate
the cross-sectional regression with a constant and test whether the average excess zero-beta
rate is insignificant. Following the asset pricing theory, we also test whether the estimated
risk-premium is significant. Specifically, we use the following t-statistics to test a given model:

t− statistics
λ̂k

=
λ̂k
σ̂λk

, k = 0, 1 (3.10)
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where λ̂k and σ̂λk are averages and standard errors of λ̂0 and λ̂1, respectively. Note that to com-
pute t-statistics, we use Newey & West (1987) consistent standard errors for heteroskedasticity
and autocorrelation.

Vendrame et al. (2018) argue that although the cross-sectional tests can provide the evidence
on the performance of a given model in explaining cross-sectional returns, the evidence is never-
theless incomplete and should be complemented by evaluating anomalies separately. Following
them, we evaluate the size, value, and momentum anomalies. If our models explained these
anomalies, then the loadings from the three factors should not be priced. This means anomalies
are already explained by models in the first pass regressions.

To implement this, we run S cross-sectional regressions with the three factors on net returns:

R∗i,t+1 = λ0,t+1 + λs,t+1β̂
SMB
i,t + λh,t+1β̂

HML
i,t + λmom,t+1β̂

MOM
i,t + αit+1 (3.11)

where R∗ represents the risk adjusted returns given by R∗i,t+1 = Ri,t+1 − (Rm,t+1β
C
i,t), where

Ri,t+1 is excess return on portfolio i at time t + 1, βCi,t is obtained through given model and
Rm,t+1 is realised risk premium at time t+ 1. In addition, we consider the net returns based on

estimated risk premium, R∗i,t+1 = Ri,t+1 − (λ̂0,t+1 + β̂Ci,tλ̂1,t+1).

The loadings for size (βSMB
i,t ), value (βHML

i,t ), and momentum (βMOM
i,t ) are estimated through

Carhart (1997) four-factor model with 60 monthly rolling window:

Ri,t = ai + βmkti,t Rm,t + βsi,tSMBt + βhi,tHMLt + βmomi,t MOMt + εi,t (3.12)

where Ri,t is excess return on portfolio i at time t and Rm,t, SMBt, HMLt, MOMt are excess
market returns, size, value, and momentum factor, respectively. The time-series test is then
performed on out-of-sample means of λs,t+1, λh,t+1, and λmom,t+1. In order to test whether the
loadings on size, value, and momentum anomalies are significant, we use t-statistics given in
equation (3.10).

3.3.3.3 Performance Evaluation

We also consider four different measures for assessing and comparing the performance of various
models under consideration. First, we assess each model’s ability to generate insignificant pricing
errors for individual assets using a significance level of 1% and 5%. The total number of mispriced
assets (MPA) out of a total of N assets is our performance metric. A model with a lower value
of MPA indicates a better pricing ability. Next, we follow Adrian & Rosenberg (2008) and use
the sum of square pricing errors (SSPE) which is defined as:

SSPE = α̂′ α̂ (3.13)

SSPE does not take into account the number of assets, so we use the root mean square pricing
errors (RMSPE), which is computed as:

RMSPE =
√
SSPE/N (3.14)

Next, following Jagannathan & Wang (1996), we use adjusted R2:

Adjusted R2 = 1− (S − 1)(1−R2)

(S −K − 1)
(3.15)

R2 =
varc(R)− varc(α̂)

varc(R)
(3.16)
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where R = 1/S
∑

S
t=1Rt and varc is cross sectional variance. The metrics such as SSPE and

adjusted R2, give all test assets equal weight, but some assets are actually less volatile than
others (Campbell & Vuolteenaho 2004). To overcome this issue, two additional metrics are
considered, both of which test whether all the pricing errors from cross-sectional regressions are
jointly zero (H0 : α̂ = 0). The first measure is JA (joint alpha test) which is a χ2-statistic and
can be given as:

JA = α̂
′
cov(α̂)−1α̂ ∼ χ2

N−P (3.17)

where N , P , α̂ = 1
S

S∑
t=1

α̂t, and α̂t = [α̂1,t, α̂2,t, ..., α̂N,t]
′ denote number of assets, number of

factors in a given model, the average pricing errors and vector of estimated errors, respectively.
According to the joint χ2 test, if the pricing theory holds, the pricing errors generated by a
model should be close to or equal to zero. The higher the statistic value, the greater the pricing
errors produced by the model. JA value is compared to the critical value to test the significance
of pricing errors. If JA exceeds the χ2

N−P 5% critical value, the pricing errors are significant.

In order to estimate the variance-covariance matrix of pricing errors α̂, denoted as cov(α̂) and
a version accounting for autocorrelation, denoted as c̃ov(α̂), we estimate following equations:

cov(α̂) =
1

S2

S∑
t=1

(α̂t − α̂)(α̂t − α̂)′ (3.18)

c̃ov(α̂) =
1

S2

S∑
t=1

(α̂t − α̂)(α̂t − α̂)′ +
1

S2

q∑
j=1

S∑
t=j+1

(1− j

q + 1
)(α̂t − α̂)(α̂t−j − α̂)′ (3.19)

where q = b(4(S/100)2/9)c and bxc denotes larger integer not greater than x.

Our second measure for joint alpha test is the Composite Pricing Error (CPE), which was
used by Campbell & Vuolteenaho (2004) and is defined as:

CPE = α̂
′
Ω̂−1α̂ ∼ χ2

N−P (3.20)

where Ω̂ represents a diagonal matrix with main diagonal carrying the variances of estimated
returns. Under this measure of an aggregate pricing error, assets with more volatile alphas
receive less weight. The null hypothesis that pricing errors produced by a given model are
jointly zero is rejected, if CPE exceeds the 5% critical value. To supplement our analysis,
we follow Andronoudis et al. (2019) and consider the magnitude of the pricing errors across
models. More specifically, we use the square root of the CPE indicated as PEM and Hansen &
Jagannathan (1997) distance measure (HJ):

PEM =
√
CPE (3.21)

HJ =

√
α̂
′
[(R
′
R)
−1

]α̂ (3.22)

For the weighting matrix, HJ relies on the moment matrix of expected asset excess returns.

3.4 Combining Information and Combining Forecasts

In this section, we discuss the various approaches widely used in forecasting literature to address
VSU. Our objective is to compare these methods from the CCAPM perspective. The approaches
can be classified into three categories: i) combining information (CI), ii) combining forecast (CF),
and iii) combining CI and CF.
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3.4.1 Combining Information

Under this approach, we apply dimension reduction methods.15

3.4.1.1 Dimension Reduction

Dimension reduction approaches are used to address the problem associated with high dimen-
sional data which has become common and is of increasing importance in finance domain.
Dimension reduction methods are often known as dynamic factor models (DFM) or diffusion
indices (DI). The DI technique integrates the information found in a big number of predictors
into a handful of estimated factors to avoid the negative consequences of having too many pa-
rameters, such as over-fitting and poor forecast performance. The resulting more parsimonious
data set usually contributes to forecasting accuracy (e.g., Stock & Watson 2004, Bai & Ng 2008).
These methods can be classified into supervised and unsupervised. The key distinction is that
supervised approaches take into account the association between explanatory variable (X) and
the target variable (y). In contrast, unsupervised methods extract the factors which explain
the cross-section of the predictors (X) without considering their relevance to the target variable
(y). We use both supervised and unsupervised methods in our analysis. The supervised method
includes ‘Principal Components Regression (PCR)’, and two standard methods from supervised
include the PCR with targeted predictors and partial least squares (PLS) where we consider the
three-pass filter of Kelly & Pruitt (2013). In order to estimate out-of-sample forecasts of beta
based on diffusion indices (DI), we use following model.

Rt+1 = aIV + γ0Rm,t+1 + γ′DI(Rm,t+1.F̂t) + ut+1 (3.23)

where aIV represent the intercept, γ0 is coefficient on excess market returns, and γDI is a q-vector
of slope coefficients on factors.

3.4.1.1.1 Principal Components Regression (PCR) The first dimension reduction method
we use is PCR. The steps are as follows:

xt = ΛFt + υt, (3.24)

where xt = (x1t, . . . , xKt)
′ is (K × 1) vector of predictors, r is true number of factors, Λ is

K × r and Ft is r× 1 vector of common factors. The latent common factors F = (F1 F2 ... FT )′

can be obtained by using the principal component methodology:

F̂ = XΛ̂/K (3.25)

where K represents the size of xt, X = (x1 x2 ... xT )′, and factor loading Λ̂ is set to
√
K times

the eigenvectors corresponding to the r largest eigenvalues of X ′X (see Bai & Ng 2002).16 In
order to estimate out-of-sample forecasts of beta based on factors obtained through principal
components, we use equation (3.23). Next, the out-of-sample beta forecast made at time t using
estimated parameters of γ̂0 and γ̂DI from (3.23) using data up to time t can be given as:

β̂CI-PCRt = γ̂0 + γ̂′DI F̂t (3.26)

15CI approaches also include variable selection methods such as stepwise selection methods, best subset selec-
tion, and shrinkage methods. We applied these methods in Chapter 2.

16If there is no information on the true number of factors, one can estimate it by minimising some information
criteria such as AIC and BIC (e.g., Bai & Ng 2002). However, following Neely et al. (2014), we use the adjusted
R2 criterion to select optimal factors and also use a small number of factors, i.e. 1, 2, and 3.
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3.4.1.1.2 Principal Components with targeted predictors Recent research has found
that using too many predictors to compute the factors will damage a model’s forecasting ac-
curacy because the PCR approach does not account for the target variable’s properties. For
example, when the factors are calculated using a subset of variables having high potential to
predict the target variable y, Boivin & Ng (2006) and Bai & Ng (2008) show that the forecasting
performance is significantly improved over regular PCR forecasts. The chosen subset of predic-
tors is referred to as “targeted predictors,” and this refinement of the DI approach is referred
to as “targeted DI forecasts” (Bai & Ng 2008).

To find a subset of targeted predictors, various techniques can be used. In this study, we
use both hard and softthresholding rules to target the predictors, as recommended by Bai & Ng
(2008). We also introduce asset pricing criteria for identifying the target predictors.

3.4.1.1.2.1 Hardthresholding After controlling for lags of the target variable, hardthresh-
olding approach evaluates the bivariate relationship between each variable (Xj) and the target
variable (y), independent of other predictors. A predictor is added to the pool of targeted pre-
dictors if there is a statistically significant relationship with target variable. Specifically, our
approach is based on Bai & Ng (2008) where we estimate equation (3.27) for each j = 1, . . . . ,K
using OLS with four lags, p = 4. Let the t-statistics associated with Xj is denoted by t obtained
through OLS regression. We next sort t1, t2, ... , tK in descending order and identify the
predictors with t-statistics greater than a certain level of significance, α.

Rt+1 = a0 +

p∑
d=1

a′dRt−d+1 + γ0Rm,t+1 + γ′j(Rm,t+1.Xjt) + et+1 (3.27)

The equation (3.27) yields a t-value on γj for each of the possible predictors Xj , defined as tj .
For any given threshold, f, we can define a vector of targeted predictors as X∗t ⊂ Xt by only
including Xj if | tj |> f. We use threshold of f = 1.96, which is critical value of two-tailed at 5
percent level.17 The factors can now be estimated using equation (3.24) and remaining process
to estimate out-of-sample beta remain same as discussed in (3.4.1.1.1). We indicate the beta
under this method as β̂CI-TPCR (HT ).

3.4.1.1.2.2 Softthresholding The hardthresholding method simply decides if the pre-
dictors are significant without taking into account their correlations. As a consequence, hardthresh-
olding has a tendency to pick strongly correlated predictors. Softthresholding methods resolve
this flaw by performing subset selection and shrinkage on the entire range of predictors at the
same time. Following Li & Chen (2014), we use LASSO method for identifying the subset of
relevant predictors X∗t = {Xjt ∈ Xt | γ̂LASSO 6= 0}. The factors can then be estimated from
selected predictors X∗t using equation (3.24) and remaining process to estimate out-of-sample
beta remain same as discussed in (3.4.1.1.1).18 We indicate the beta under this method as
β̂CI-TPCR (ST ).

3.4.1.1.2.3 Targeted predictors with Asset Pricing Criteria The targeted pre-
dictor methods such as hardthresholding and softthresholding are designed for a single target
variable. In our application, we model the beta of individual asset separately which targets

17As there is no clear indication what the exact threshold should be, we also use different threshold values,
f = [2.58, 1.65, 1.28]. These are the two-tailed 1, 10 and 20 percent levels respectively. However, we do not find
big difference in results with these threshold values.

18We also use Elastic Net (ENet), Least Angle Regression (LARS) and stepwise selection methods. However,
we do not find a significant difference in results. Note that these methods are discussed in Chapter 2, so we do
not provide details of variable selection approaches.

94



different predictors for each asset. Here we apply cross-sectional asset pricing criteria to tar-
get the predictors which not only identify the predictors that are related to cross-sectional
returns but also restricts the predictors to be same for all the assets which helps in identify-
ing the important predictors overtime.19 In order to implement our approach, we follow Fama
& MacBeth (1973) two step process where in the first step we estimate time-series regression,
Ri,t+1 = aIVi,j + (γi,j,0 + γ′i,j,1Xj,t)Rm,t+1 + εi,t+1, for each predictor j using observation up
to time t as training sample. Next, we get (T × N) estimates of the fitted conditional be-
tas, β̂i,j,t = γ̂i,j,0 + γ̂′i,j,1Xj,t. Next, we run following cross-sectional regression at each time t
(t = 1, 2, ... , T ):

Ri,t+1 = λ0j,t+1 + λ1j,t+1β̂i,j,t + αij,t+1 (3.28)

where λ0,j,t+1 represents the excess zero-beta rate and according to theory this should be zero.
We test this with t-statistics using equation (3.10) discussed in section (3.3.3.2). This provides
one t-value for each of the predictor, denoted as tj . For a threshold of f = 1.96, which is critical
value of two-tailed at 5 percent level, we can create a X∗t ⊂ Xt by only including Xj if | tj |< f.
The factors can now be estimated using equation (3.24), and the remaining process to estimate
out-of-sample betas remains the same as discussed in (3.4.1.1.1). Note that our application is
similar to hardthresholding, where we select the predictors based on the t-value of the bivariate
relationship between the target variable and predictor. We indicate the beta under this method
as β̂CI-TPCR (APC).

3.4.1.1.3 Three pass filter of Kelly & Pruitt (2013) The three-pass regression filter of
Kelly & Pruitt (2013) identifies the relevant factors to explain a variable of interest, i.e. asset
returns in our case. This method can be interpreted as a series of three regressions. In the first
pass regression given in equation (3.29), K time-series regressions are estimated, one for each
predictor.20 The predictor (Xj) is the dependent variable in these first pass regressions, the
proxies (Z) are the regressors, and the estimated coefficients define the predictor’s sensitivity to
the factors represented by the proxies.21

Xj,t = φ0,j + Z ′tφj + ej,t (3.29)

The second pass consists of estimating T different cross-sectional regressions of the predictors
Xj,t on coefficients φ̂′j obtained from the first-stage.

Xj,t = φ0,t + φ̂′jFt + εj,t (3.30)

This gives time series of F̂t which are then used in the following CCAPM equation.

Rt+1 = aIV + γ0Rm,t+1 + γ′KP (Rm,t+1.F̂t) + ut+1 (3.31)

where aIV is the intercept, γ0 represent coefficient on excess market returns, and γKP is a q-
vector of slope coefficients. The forecasted beta at time t using estimated parameters of γ̂0 and
γ̂KP from (3.31) can be given as:

β̂CI-KPt = γ̂0,t + γ̂′KP,tF̂t (3.32)

19We also use t-statistics of time-series of conditional alpha αi,j,t+1 = Ri,t+1 − β̂i,j,tRm,t+1, which selects
different predictors for each asset. We do not find much difference in results. Like, hardthresholding, we also use
various threshold levels for both time-series and cross-sectional criteria.

20Predictors need to be standardised to have unit variance.
21Following Kelly & Pruitt (2015), we use one proxy and setting it equal to the target variable, Z = Ri.
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3.4.1.1.4 Single Index using asset pricing criteria Under this approach, we create
a factor (single-index) based on asset pricing performance. We first define a single index of
predictors as:

XSI
t =

K∑
j=1

ωjXjt (3.33)

For each Xj,t, we have T observations, but we only use (T −1) observations as a training sample
for obtaining optimal loadings for a single index. We initially set equal weights, 1/K, that we
later solve through optimisation. The time-series model based on equally-weighted index can be
given as:

Rt+1 = a0 + γ0Rm,t+1 + γ1(Rm,t+1.X
SI
t ) + et+1 (3.34)

Next we obtain the fitted conditional betas, β̂SIt = γ̂0 + γ̂1X
SI
t , and compute the pricing errors

as:
α̂SIt+1 = Rt+1 − (β̂SIt Rm,t+1) (3.35)

Next we obtain the asset pricing performance measure, mean squared error (MSE) of conditional
pricing errors as:22

MSESI =
1

T − 1

T−1∑
s=1

(α̂SIs )2 (3.36)

where α̂SIs is one-step ahead conditional pricing error given in equation (3.35) estimated at time
s (s = 1, 2, . . . . T − 1). Note that the MSE is function of single index which depends upon
weight of individual predictor (ωj). If we assume that weights remain same overtime then our
optimisation problem would be:

minimise
wj

MSESI (3.37)

The optimal weights (ω̂∗) now can be used to construct the optimal single index as:

XSI∗
t =

K∑
j=1

ω̂∗jXjt (3.38)

Now we use this optimal index as only conditioning information variable in CCAPM equation
as:23

Rt+1 = a0 + γ0Rm,t+1 + γ1(Rm,t+1.X
SI∗
t ) + et+1 (3.39)

Now by using these estimates we can estimate the conditional beta as:

β̂SIt = γ̂0,t + γ̂1,tX
SI∗
t (3.40)

3.4.1.1.5 Cross-sectional Beta Premium (CSBP) In this method, to construct common
factors, we use the estimated cross-sectional beta premium (CSBP) based on each model. The
idea behind this approach is to create common factors by relating conditional betas obtained
with conditioning information.

Assume we have M predictors (j = 1, 2, ... ,M), N assets (i = 1, 2, ... , N) and T ob-
servations in total for one-month ahead returns for asset i, Ri,t+1, one-month ahead returns

22We also use cross-sectional adjusted R2 as objective function. Additionally, we use a restricted version where

we use two conditions,
K∑
j=1

wj = 1 and 0 ≤ wj ≤ 1

23Note that the index consists of T observations, where T − 1 observations are used as training data and last
observation is held for out-of-sample beta forecast.
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for market, Rm,t+1, and predictors Xj,t.
24 We use following steps to reach out-of-sample beta

forecast based on cross-sectional beta premium (CSBP).

Step 1: Estimate time-series regression
By using T observation as training sample, following time-series regression is estimated for each
univariate predictor-based model j:

Ri,t+1 = aIVi,j + (γi,j,0 + γ′i,j,1Xj,t)Rm,t+1 + εi,t+1, (3.41)

Step 2: Estimate fitted conditional betas
Next, we obtain T ×N estimates of conditional betas using following equation.

β̂i,j,t = γ̂i,j,0 + γ̂′i,j,1Xj,t (3.42)

Step 3: Estimate cross-sectional regression
Next, we estimate following cross-sectional regression at each time t (t = 1, 2, ... , T ):

Rit+1 = λ0j,t+1 + λ1j,t+1β̂i,j,t + αij,t+1 (3.43)

This provides T × 1 loadings on estimated betas (cross-sectional beta premium, λ̂1) for each
model j. With M models we will have a panel of T ×M cross-sectional beta premium.

Step 4: Estimate factors of cross-sectional beta premium
Next, we use panel of T ×M cross-sectional beta premium to construct P factors, denoted as
Ft, using principal component method discussed in section (3.4.1.1.1).25

Step 5: Use factors as lagged predictor
Given that we have T observations of Ri,t+1 and Fj,t+1 (j = 1, 2, ... , P ), and we want to use
cross-sectional beta premium as lagged predictor, so we use T − 1 observations for estimation of
factor regression (3.44) where we use 2 : T observations of Ri,t+1 and 1 : T − 1 observations of
Fj,t+1 and hold T th observation of factor for out-of-sample beta estimation.

Ri,t+1 = aIVi + (γi,0 + γ′i,CSBPFt)Rm,t+1 + εi,t+1, (3.44)

Step 6: Estimate out-of-sample beta
Finally, our beta estimate at time t can be given as:

β̂CI-CSBPi,t = γ̂i,0 + γ̂′i,CSBP F̂t (3.45)

3.4.1.2 Testing Dimension Reduction (DR) models

Let β̂DRi,t be the beta estimates made at time t with a given dimension reduction (DR) method.
The cross-sectional regression at each time t can be given as:

Ri,t+1 = λ0,t+1 + λ1,t+1β̂
DR
i,t + αi,t+1 (3.46)

Finally, we evaluate the performance of each model using tests discussed in section (3.3.3.2) and
(3.3.3.3).

24Note that here we set M = K, however, the same method can be applied to any given number of models
25We also use targeted predictors and KP’s 3PF and find consistent results
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3.4.2 Combining Forecasts

This section discusses the framework to obtain optimal weights for combining the betas of indi-
vidual assets. Note that all CF methods require individual point forecasts and their combining
weights, so our each CF method only differs in the way it obtains the combining weights. Given
that out-of-sample CF of beta is given as:

β̂CFi,t =

M∑
j=1

ω∗j,tβ̂i,j,t (3.47)

All the CF methods discussed below are aimed at obtaining ω∗j,t to be applied to beta fore-

cast β̂i,j,t. The CF literature suggests that the combining weights for forecasting models de-
pend upon the performance of individual models in terms of forecasting accuracy. This is
normally measured using forecasting errors of individual models. From this perspective, the
forecasting errors would be given as the residuals, εi,t+1 obtained from the time-series regres-
sion, Ri,t+1 = aIVi,j +(γi,j,0+γ′i,j,1Xj,t)Rm,t+1+εi,t+1. However, from asset pricing perspective, the

forecasting accuracy depends upon the conditional pricing errors, α̂i,t+1 = Ri,t+1− β̂i,tRm,t+1.26

Considering this, our all CF methods are based on asset pricing criteria using time-series of
conditional alphas as main input for performance evaluation of individual models.27

To implement our CF approaches, we follow three simple steps. First for each portfolio i,
we estimate following CCAPM model for individual predictor-based model j using data up to
time t:

Ri,t+1 = aIVi,j + (γi,j,0 + γ′i,j,1Xj,t)Rm,t+1 + εi,t+1, (3.48)

Next, by using estimates of γ̂i,j,0 and γ̂′i,j,1, obtain conditional betas as:

β̂i,j,t = γ̂i,j,0 + γ̂′i,j,1Xj,t (3.49)

Next, by using the estimates of betas, we calculate conditional alphas as:

α̂i,j,t+1 = Ri,t+1 − β̂i,j,tRm,t+1 (3.50)

Our CF approaches are based on following methods.

3.4.2.1 Simple average

Under simple CF methods, following Rapach et al. (2010), we use simple average, trimmed
mean, and median forecast models. The combining weights under this approach can be defined
as:

ωj =
1

M
, j = 1, 2, ... , M (3.51)

The equally-weighted beta forecast for any given asset i, can be given as:

β̂EWi,t =
1

M

M∑
j=1

β̂ij,t (3.52)

The simple average can be sensitive to outliers. Following Rapach et al. (2010), we also consider
the trimmed mean combination forecast which sets ωj,t = 0 for the smallest and largest individual

26We also use standard forecasting approaches which use OLS residuals as main criteria for forecasting accuracy.
The idea is to make a comparison and support our argument that using OLS residuals as main criteria is not
ideal for combining weights for betas.

27We also use cross-sectional pricing errors (cross-sectional residuals) of individual assets as alternative asset
pricing criteria for robustness and find consistent results with time-series approach.
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forecasts and then the combining weights for remaining M − 2 forecast can be given as: ωj,t =
1/(M − 2).28

3.4.2.2 Value weight based on asset pricing criteria

Under this approach the combining weights are the function of some asset pricing criteria. We
use R2 as performance measure of each model j, which can be given as:29

R2
j = 1− V ar[α̂j,t]

V ar[Rt]
= 1− Unexplained V ariance

Total V ariance
(3.53)

where α̂j,t is conditional pricing errors given in equation (3.50). The combining weights and
beta estimates can be given as:

ωVW−APCjt =
R2
j

M∑
j=1

R2
j

(3.54)

β̂CF−VWAPC
i,t =

M∑
j=1

ωVW−APCjt β̂ij,t (3.55)

3.4.2.3 Discounted mean square forecast error (DMSFE) method

Under DMSFE method, more weight is assigned to the recent forecasts than distant ones.
Following Winkler & Makridakis (1983), the combining weights under DMSFE can be given as:

ωDMSFE
j =

1/
T∑
t=1

θT−t−1α̂2
jt

1/
M∑
j=1

T∑
t=1

θT−t−1α̂2
jt

(3.56)

where θ indicates the discounting factor with 0 < θ ≤ 1, α̂jt is the jth forecast error obtained
through (3.50), whereas T represents the number of observations andM indicates the the number
of individual forecasts, respectively. The coefficient θ gives less (more) weight to the distant
(recent) forecasting errors. Following Rapach et al. (2010) we set θ = 0.9 and θ = 1. The beta
forecast can be given as:

β̂CF−DMSFE
i,t =

M∑
j=1

ωDMSFE
jt β̂ij,t (3.57)

3.4.2.4 Robust weighting scheme

Aiolfi & Timmermann (2006) propose a robust weighting method that inversely weighs forecast
models to their rank based on some performance criteria such as MSFE.

ωRobRj =
Rank−1

j

M∑
j=1

Rank−1
j

(3.58)

28As robustness we also use the median and the mode of β̂i,j,t and do not find much difference in results.
29We also use other measures such as Root Mean Squared Pricing Error (RMSPE) and find similar results.
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where a rank of 1 is given to the best model, a rank of 2 is received by the second best model,
and so on. The out-of-sample beta forecast can be given as:

β̂CF−RobRi,t =
M∑
j=1

ωRobRjt β̂ij,t (3.59)

3.4.2.5 Testing CF models

Let β̂CFi,t be the beta estimates made at time t with a given combining forecasts (CF) method.
The cross-sectional regression at each time t can be given as:

Ri,t+1 = λ0,t+1 + λ1,t+1β̂
CF
i,t + αi,t+1 (3.60)

Finally, we evaluate the performance of each model using tests discussed in section (3.3.3.2) and
(3.3.3.3).

3.4.3 Combining CI and CF

These forecasting schemes combine the CI and CF approaches. These methods include forecast
pooling, combining forecasts principal components (CFPC), CF of univariate PCR, CF with
cross-sectional beta premium, and combining machine learning (ML) and traditional CI and CF
methods.

3.4.3.1 Forecast pooling

Forecast pooling is a technique that uses only a portion of the available forecasts rather than
all of them. The main objective of pooling strategies is to minimise forecast errors even further
while increasing computational efficiency (Aiolfi & Timmermann 2006). The main motivation
for this strategy is that, rather than using a sophisticated weighting scheme to allocate lower
weights to weak forecasts, it is preferable to exclude them and pool the remaining forecasts using
a simple average (Kourentzes et al. 2019). The primary issue in this approach is which forecast
assessment criteria should be used to identify the best forecasts to combine. The traditional
approaches to forecast pooling are discussed first, followed by our asset pricing criteria for
selecting appropriate forecasts. Finally, we introduce a method that automatically chooses the
best subset of forecasts for pooling.

3.4.3.1.1 Pooling top quantiles In our first approach, we follow Timmermann (2006), who
claims that the advantage of incorporating additional forecasts must be balanced against the cost
of increasing parameter estimation error. He recommends to construct a pooled forecast using
only top q% models based on the pseudo out-of-sample mean squared forecast error (MSFE).30

Given that V represents the number of observations in validation sample, and α̂j,t indicates the
one-step ahead conditional pricing errors of individual forecast j, at time t of validation sample,
the MSFE in CV sample, MSFECV , for forecast j can be given as:

MSFECVj =
1

V

V∑
t=1

(α̂j,t)
2 (3.61)

Following Timmermann (2006), we consider combining the top 75%, top 50% and top 25% mod-
els based on MSFECV , we call them as β̂CF -Q3

t , β̂CF -Q2
t , and β̂CF -Q1

t , respectively.

30We split T observations into T0 and V for training and out-of-sample holdout period. Next, we compute the
MSFE of each predictor-based model j in validation sample. See section (3.3.2) for details.
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It is obvious that this approach may select different predictors for each asset. In order to
identify common predictors to pool, we use alternative criteria from asset pricing tests based
on the cross-sectional performance.31 More specifically, we use t-statistics of cross-sectional
zero-beta rate of each univariate predictor-based model j, denoted as tj . The subset variables,
X∗t ⊂ Xt, only include Xj if | tj |> 1.96. Let us use P for selected variables. We estimate
following models to generate conditional betas:

Ri,t+1 = a0 + γ0,jRm,t+1 + γ1,j(Rm,t+1.X
∗
jt) + ei,t+1 (j = 1, . . . . , P ) (3.62)

β̂i,j,t = γ0,j,t + γ̂1,j,t.X
∗
j,t (j = 1, . . . . , P ) (3.63)

β̂Pool−APCi,t =

P∑
j=1

ω∗t .β̂i,j,t (3.64)

We use equal weights for individual forecasts.

3.4.3.1.2 Cluster combination Aiolfi & Timmermann (2006) proposed cluster combina-
tion approaches, which are conditional combination approaches that incorporate information
from previous forecast results of individual models as well as forecast persistence. Following
Rapach & Strauss (2010), we use the Previous Best Conditional Combination algorithm, de-
fined as C(D,PB), where C indicates a cluster combination, D refers to the number of clusters,
and PB is used for the Previous Best conditional combination strategy. With this combination
approach, the first combining forecast is calculated using the MSFE by clustering the individual
model forecasts over the initial holdout out-of-sample period into D clusters of the same size.
The individual models with the next lowest MSFE values are in the second cluster, and so on.
The cluster CF is then simply an average of the cluster’s forecasts. In this study, we follow Aiolfi
& Timmermann (2006) and consider D = 2 and D = 3.

3.4.3.1.3 Pooling Forecast Island The most important downside of using top quantiles
discussed in the previous section is that there is no performance metric used in selecting the
best quantile; instead, the cut-off level is arbitrarily determined. As a consequence, the results
must be sensitive to the cut-off level chosen by the modeller. Because of this, Kourentzes
et al. (2019) introduced a heuristic for forming forecast pools, named “forecast island.” Let C
indicates some appropriate performance criteria. Following them, we use C = MSFECV given
in equation (3.61) (MSFE in validation sample) and order the forecasts from best to worst.32

We then create C ′ = (0,∆C) from the sorted metric, where ∆ is used for differencing and a
0 indicates the first prediction. Here C ′ represents the rate of change of the metric allocated
to each prediction. As a consequence, the pool of selected forecasts consists of all predictions
before the first steep rise, which can be obtained by using the formula generally used to find
outliers in the boxplot. This can be given as: T = Q3 + 1.5IQR, here Q3 represents the 3rd

quartile, while IQR denotes the inter-quartile range. As each additional forecast is considered,
T is progressively determined. All forecasts are included in the pool before C ′ ≥ T and then are
combined using a simple average.

3.4.3.1.4 Auto-pooling (Optimal pooling) with asset pricing criteria Under this ap-
proach, we introduce a novel approach to automatically choose the optimal forecasts to combine.
More specifically, we use out-of-sample holdout validation sample to evaluate the performance

31These asset pricing criteria are discussed in section (3.4.1.1.2.3).
32We also use some other criteria such as AIC, AICc, BIC and adjusted R2 but there is no significant difference

in results.
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of each CF with specific k. The implementation of this process is similar to stepwise forward se-
lection, however our objective is to find the univariate predictor-based models that best perform
in CF framework. Figure 3.2 shows the implementation of our approach.33 To implement this,
we follow the standard approaches of selecting top quantiles or forecast island based on MSFE
in validation sample of individual forecasts. In the first step, we sort the forecasts (predictors)
from best to worst based on MSFECVj .34

Figure 3.2: Optimal Pooling

Next, we start adding on predictor at a time to existing predictors to form a combined forecast
based on individual forecasts and compute the MSFE in validation sample.35 The process
continues till all predictors from univariate models are finished. Note that each step will provide
a CF based on active individual forecasts, where the first model is based on the best univariate
predictor-based model (standard best univariate model selection approach), and the last model
combines all the available forecasts (standard equally-weighted combining forecasts approach).
The MSFE of each of k can be given as:

MSEk =
1

V

V∑
t=1

(α̂k,t)
2 (3.65)

where k = 1, 2, . . . , K and each k consists of P = 1 : k forecasts in the model. αk,t, is
one-period ahead forecast error based on equally-weighted beta forecasts for a specific k, at time

33Note that the figure provides an example of 12 predictors, however, this can be generalised to any given
number of predictors or forecasts.

34We also use cross-sectional adjusted R2, and t-statistics of cross-sectional zero-beta rate of each predictor j
as alternative criteria which effectively helps to identify the predictors to pool which are common to all portfolios.

35Note that the MSFE is computed for CF, not the individual forecasts.
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t in out-of-sample holdout validation period, which is given as:

α̂k,t+1 = Rt+1 − (β̂CFk,t Rm,t+1) (3.66)

where β̂CFk,t is defined as equally-weighted average beta forecast in each k, given as:

β̂CFk,t =
1

k

k∑
j=1

β̂j,t (3.67)

As shown in Figure 3.2, with maximum K models of CF, we get K values of MSFECV and we
choose optimal CF with one producing minimum MSFE and that is used to get out-of-sample
beta at t defined as β̂CF−optP

∗

i,t . The process is repeated at each period, leading to a beta forecast
of a given asset with time-varying optimal pooling.

3.4.3.2 Combining forecasts principal components (CFPC)

Combining forecasts principal components (CFPC) is a combination of CF and PC methods, as
the name suggests. In this approach, we follow Huang & Lee (2010) and Tu & Lee (2019) to
combine the dimension reduction approaches, in particular principal components (PCs), given in
section (3.4.1.1.1) and CF method proposed by Granger & Ramanathan (1984) (GR henceforth).
The main motivation for the CFPC method is to address issues with the traditional GR approach,
which involves regressing the target variable yt on forecasts ŷj,t obtained from a specific model
j.

yt = ω0 +
M∑
j=1

ωj ŷj,t + et (3.68)

The estimated regression coefficients (ω̂0, and ω̂j) indicate the combining weights for a particular
model.36 If we have M models, generating M forecasts of target variable y, we need to esti-
mate a multivariate regression with M explanatory variables. If the M is very large, there are
chances of overfitting. Therefore, to overcome this issue of the standard GR method, instead of
regressing y on all the M forecasts, dimension reduction methods such as principal components
(PCs) are applied on M forecasts to construct the P factors, where P < M . Now the model
can be estimated by regressing y on P factors.

The implementation of this approach is not straightforward when applied to CCAPM because
we are mainly interested in estimates of betas and the approach relies on direct forecasts of
the target variable. To implement this approach, we first need to obtain the estimated betas,
β̂i,j,t, in either testing period or out-of-sample holdout period. Next, we require the estimated

returns, R̂j,t+1 = β̂j,tRm,t+1, for each asset i based on each univariate predictor-based model j.
The principal components are then extracted from the collection of individual predictions. Let
R̂t+1 = (R̂1,t+1, R̂2,t+1, . . . , R̂M,t+1)′. Now, by considering a factor model of R̂t (similar to the

factor model of Xt in equation (3.24) for CI-PCR). Let F̂t+1 = (F̂1,t+1, F̂2,t+1, . . . , F̂P,t+1)′

denote the first P principal components of R̂t+1 = (R̂1,t+1, R̂2,t+1, . . . , R̂M,t+1)′. Then the
forecasting equation is:

Rt+1 = ω0 +
P∑
j=1

ωjF̂j,t+1 + ut+1 (3.69)

36Note that the regression weights in equation (3.68) are unconstrained, there are also two other variates of
Granger & Ramanathan (1984) methods, putting some restrictions on combining weights. The first requires
estimating the equation (3.68) without an intercept. Under the second approach, there is no intercept, and the
sum of regression weights is constrained to one.
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Equation (3.69) suggests that the asset returns depend upon the constructed factors from fitted
returns, which are based on conditional betas. To estimate the conditional beta forecasts made
at time t, we first need to calculate the fitted returns by using the estimated parameters of ω̂0

and ω̂j from (3.69).

R̂t+1 = ω̂0 +

P∑
j=1

ω̂jF̂j,t+1 (3.70)

We know that the estimated returns for a particular asset can be given as R̂t+1 = β̂tRm,t+1.
Since we know the estimated returns R̂t+1 and realised market returns Rm,t+1, the beta estimate
can be defined as:

β̂CF -PC
t = R̂t+1/Rm,t+1 (3.71)

This forecasting scheme is denoted as CF-PC.

3.4.3.3 Combining forecasts based on univariate PCR

Here we combine the univariate forecasts of principal components regression (PCR). The princi-
pal components of the explanatory variables are used as regressors in PCR instead of explicitly
regressing the dependent variable on the explanatory variables. Assume that we have r principal
components (F̂t), which we use as individual predictors (X̂t). Let us use P for selected principal
components through some selection criteria discussed in (3.4.1.1.1). We estimate the following
models to estimate conditional betas:

Ri,t+1 = a0 + γ0,jRm,t+1 + γ1,j(Rm,t+1.F̂jt) + ei,t+1 (j = 1, . . . . , P ) (3.72)

β̂PCi,j,t = γ0,j,t + γ̂1,j,t.F̂j,t (j = 1, . . . . , P ) (3.73)

β̂CF−UPCRi,t =

P∑
j=1

ω∗j,t.β̂
PC
i,j,t (3.74)

where ω∗j,t represents optimal weights formed at time t, which can be obtained through different
methods discussed in section (3.4.2). However, we use equal weights for individual forecasts.

3.4.3.4 Combining forecasts using cross-sectional beta premium

In section (3.4.1.1.5), we discussed the process of constructing factors from cross-sectional beta
premium from a panel of (T ×M) cross-sectional premium. Here we use individual CSBP as a
predictor to obtain individual forecast. Given that we have K predictors and we can obtain K
CSBP, λ̂1,j (j = 1, 2, . . . . , K). Now by using CSBP (λ̂1,j) as a predictor we can estimate
following models.

Ri,t+1 = a0 + (γ0,j + γ1,j λ̂1,j,t)Rm,t+1 + ei,t+1 (j = 1, . . . . , K) (3.75)

β̂i,j,t = γ̂0,j,t + γ̂1,j,t.λ̂j,t (j = 1, . . . . , K) (3.76)

β̂CF−CSBPi,t =

K∑
j=1

ω∗j,t.β̂i,j,t (3.77)

Optimal weights (ω∗) can be obtained through various schemes discussed in section (3.4.2).
However, we only report the results based on equal weights.
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3.4.3.5 Combining Machine Learning and Traditional methods

Under this section, we discuss some of the methods that combine machine learning methods in
particular shrinkage and bagging with CI or CF approaches.

3.4.3.5.1 Combining Forecast using Shrinkage methods Most recently, Rapach &
Zhou (2020) employ the elastic net for refining the simple combination forecast.37 Instead of av-
eraging all the individual univariate predictor-based forecasts, the combination ENet (C-ENet)
forecast takes the simple average across individual forecasts selected by the ENet. Following
them, we use the ENet method to preselect the variables and then using them for combining
individual forecasts of preselected variables. Let ENet selects the subset of relevant predictors
X∗t = {Xjt ∈ Xt | γ̂ENet 6= 0}. Let us use P for selected variables. To obtain conditional betas,
we estimate the following models:

Ri,t+1 = a0 + γ0,jRm,t+1 + γ1,j(Rm,t+1.Xjt) + ei,t+1 (j = 1, . . . . , P ) (3.78)

β̂i,j,t = γ0,j,t + γ̂1,j,t.Xj,t (j = 1, . . . . , P ) (3.79)

β̂FC−ENeti,t =
P∑
j=1

ω∗j,t.β̂i,j,t (3.80)

where ω∗j,t represent optimal weights can be obtained through formed at time t using methods
discussed in section (3.4.2). However, here we use equal weights for individual forecasts.

3.4.3.5.2 Bootstrap Aggregation (Bagging) Our implementation of “Bootstrap Aggre-
gation” (Bagging or BAGG) follows the lines of Inoue & Kilian (2008), Rapach & Strauss (2010),
and Borup & Schütte (2020).38 We first apply a hard threshold on the variables in Xt, such that
only the statistically significant variables based t-statistics at 5% significance level remain.39

The subset variables, X∗t ⊂ Xt, only include Xj if | tj |> 1.96. See section (3.4.1.1.2.1) for
details on hardthresholding. Let us use P for selected variables. In the next step, we run the
following multivariate regression using X∗t using data up to time t as:

Ri,t+1 = a0 + γ0Rm,t+1 +
P∑
j=1

γ1,j(Rm,t+1.X
∗
j,t) + ei,t+1 (j = 1, . . . . , P ) (3.81)

Next, we get the out-of-sample beta forecast at time t as:

β̂i,b,t = γ̂0,t +
P∑
j=1

γ̂1,j,t.X
∗
j,t (j = 1, . . . . , P ) (3.82)

The procedure is then augmented by using a moving block bootstrap to reduce variance coming
from model uncertainty. We produce B pseudo samples of the size of training sample for the
Ri,t+1, Rm,t+1, and Xt with replacement.40 For a given pseudo sample (indexed by b), we use

37Note that this method is similar to forecast pooling discussed in section (3.4.3.1). However, we place this
method here because the variable selection under this method is made using a machine learning method (ENet)

38Note that Bagging method is normally placed in combining forecasts (CF) category, in particular combination
across samples see section (3.2.2.3) for details. However, we place this method under combining CI and CF
framework because targeting predictors for each pseudo sample is related to the subset variable selection that we
categorise as CI approach and the average across samples is CF approach. So in its design, bagging with targeted
variables is a combination of CI and CF.

39Following Rapach & Strauss (2010), we use Newey & West (1987) standard errors.
40Following Inoue & Kilian (2008) and Rapach & Strauss (2010), we use B = 100. More details on generating

bootstrap sample can also be found in these studies.
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the decision rule (tval = 1.96) to eliminate insignificant predictors and estimate equation (3.81)
with data up to time t. Next, we use equation (3.82) to compute the hard-threshold bootstrap
beta forecast, β̂i,b,t, using bootstrap coefficients and original data X∗. The bagging beta forecast
is then given as the average of the B hard-threshold bootstrap forecasts:

β̂BAGGi,t =
1

B

B∑
b=1

β̂i,b,t (3.83)

3.4.3.5.3 Bagging with asset pricing criteria Under this method, we use two approaches,
indicated as BAGG-APC1 and BAGG-APC2. The framework for both approaches remains the
same discussed in the previous section (3.4.3.5.2). The only difference is the selection of sig-
nificant predictors. In the first approach, we use asset pricing criteria discussed in section
(3.4.1.1.2.3) to preselect the predictors. More specifically, we use t-statistics of cross-sectional
zero-beta rate of each predictor j, denoted as tj . The subset variables, X∗t ⊂ Xt, only include
Xj if |tj | > 1.96.

In the second approach, we want to directly compare the standard approach where signifi-
cant predictors in each pseudo sample are selected through t-statistics and the approach based
on asset pricing criteria. Here we use cross-sectional adjusted R2 as our asset pricing criteria
where first we get the adjusted R2

j for each univariate predictor-based model j. Next, we sort the

adjusted R2
j from high to low values and select the first P models as significant predictors used

to estimate betas in each sample. Here P indicates the number of predictors in X∗t selected by
standard method, X∗t ⊂ Xt, and {Xj ∈ X∗t | |tXj | > 1.96}. This way, we can ensure that both
methods, standard and asset pricing criteria use the same number of variables in each sample,
but the only difference is how we select these predictors.

3.4.3.5.4 CI approaches using Bagging The original approach of Bagging is based on
selecting a subset of variables by evaluating the bivariate relationship (hard-threshold based on
t-statistics) between a given predictor and the target variable. However, as discussed earlier in
CI approaches (see section (3.4.1)) that we can apply various techniques to identify the subset
of variables. Hirano & Wright (2017) also find that subset selection through sample-split CV
and bagging application can improve the forecasting accuracy. Considering this, for a given
subset variable selection method, we take an average of out-of-sample betas, β̂CIi,t , across pseudo
samples. For example, in our implementation of shrinkage methods, the out-of-sample beta for
LASSO is given as β̂CI−lasso. Assume that the same process is repeated with B pseudo samples,
the bagging forecast – the average across samples – can be given as:

β̂CI−lasso−BAGGi,t =
1

B

B∑
b=1

β̂CI−lassoi,b,t (3.84)

3.4.3.5.5 CF approaches using Bagging Liu & Xie (2019) and Xie et al. (2020) find that
the combination of bagging and CF strategies can significantly improve forecasting accuracy.
Following this, we apply bagging on CF approaches discussed in section (3.4.2). For example,
the CF of beta using robust weighting method discussed in section (3.4.2.4) is given by β̂CF−RobRi,t ,
Given that we repeat the same process on B samples, the bagging forecast can be given as:

β̂CF−RobR−BAGGi,t =
1

B

B∑
b=1

β̂CF−RobRi,b,t (3.85)
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3.4.3.5.6 Combining CI and CF approaches using Bagging Under this framework,
any given CI and CF framework can the estimated with bagging. For example, CF using
shrinkage methods recently used by Rapach & Zhou (2020) discussed in section (3.4.3.5.1).
Where we define out-of-sample beta with original sample as β̂CF−ENeti,t . The bagging forecast of
this approach with B sample can be given as:

β̂CF−ENet−BAGGi,t =
1

B

B∑
b=1

β̂CF−ENeti,b,t (3.86)

3.4.3.6 Testing combination of CI and CF models

Let β̂CI−CFi,t be the beta estimates made at time t with a given hybrid of CI and CF (CI-CF)
method. The cross-sectional regression at each time t can be given as:

Ri,t+1 = λ0,t+1 + λ1,t+1β̂
CI−CF
i,t + αi,t+1 (3.87)

Finally, we evaluate the performance of each model using tests discussed in section (3.3.3.2) and
(3.3.3.3).

3.5 Data and Benchmark Models

3.5.1 Data

Following a large body of empirical research on explaining cross-sectional variation in expected
returns, we use the 25 size and book-to-market portfolios to perform the tests for a sample
period from July 1926 to December 2018. In addition, for robustness tests, we also use 25
size and momentum portfolios, 30 industry portfolios, and 10 momentum portfolios. The re-
turns of all these portfolios and market factor are calculated in excess of risk-free rate. The data
on portfolio returns, risk-free rate, and market factor are taken from Kenneth French’s website.41

The conditioning information variables are from Goyal & Welch (2008), who provide detailed
descriptions of the data and their sources. The dataset includes 14 variables considered relevant
in predicting equity premium in past empirical studies.42 These variables include stock char-
acteristics (the dividend yield (DY), the dividend-price ratio (DP), the dividend-payout ratio
(DE), the earning-price ratio (EP), the book-to-market ratio (BM), the net equity expansion
(NTIS), and the stock variance (SVAR)), interest rate related variables (the Treasury bill rate
(TBL), the long-term return (LTR), the long-term yield (LTY), the term spread (TMS), the
defaults-return spread (DFR), and the default-yield spread (DFY)), and inflation (INFL) to
represent the macroeconomy. We use monthly data for all these variables spanning from July
1926 to December 2018.

3.5.2 Benchmark Models

To analyse the performance of the various CI, CF, and hybrid of CI and CF approaches relative to
the standard asset pricing models, we consider three standard conditional CAPM and two multi-
factor models. Standard CCAPM approaches include models where beta dynamics is captured
through: i) 60-month rolling window (Fama & MacBeth 1973), ii) short window (Lewellen &
Nagel 2006), and iii) predetermined conditioning variable (Ferson & Harvey 1999). Multi-factor
models include: i) the Fama & French (1993) three-factor model, and ii) the four-factor model
of Carhart (1997). For all these models, we use Fama & MacBeth (1973) two-stage regressions,

41We use updated version of dataset available at
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

42We use an updated version of the dataset available at http://www.hec.unil.ch/agoyal/
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where time-series regressions are estimated using a 60-month rolling window. See Chapter 2 for
details.

3.6 Empirical Results

In this section, we discuss the empirical results of the various CI, CF and hybrid of CI and CF
approaches applied to the CCAPM. This section consists of two subsections: (i) cross-sectional
results of approaches considered to address variable-selection uncertainty, (ii) comparison of
results from (i) with benchmark models.

3.6.1 Cross-sectional Results for CI, CF, and Combining CI and CF ap-
proaches

In this section, we discuss the results of the cross-sectional tests of the CCAPM based on various
approaches to address variable-selection uncertainty (VSU), applied to CCAPM-IV, which in-
clude: i) combining information (CI), ii) combining forecasts (CF), and iii) combining CI and CF.

Our CCAPM cross-sectional tests are based on mainstream literature that evaluates the pricing
abilities of a given model by looking at the significance of Fama & MacBeth (1973) parameter
estimates.43 The second category of results accounts for the explanation of size, value, and
momentum anomalies which specifically tests whether a given model has already explained the
three anomalies in the first pass regressions. This means that the loadings of the size, value, and
momentum anomalies on net returns from the two factors given in equation (3.11) should not
be priced.44 More than one model can produce insignificant loadings, so to compare the models,
we use adjusted R2. A high value of adjusted R2 indicates that the three factors can explain
the large portion of three anomalies, which means CCAPM in the first pass has not explained
these anomalies. This means that a lower value of adjusted R2 indicates better performance. In
addition, we assess the performance of models through SSPE, RMSPE, cross-sectional adjusted
R2, a number of mispriced assets at 1% and 5%, joint alpha tests which include JA and CPE,
the magnitude of pricing error tests consisting of PEM and HJ (see section (3.3.3.3) for details).
The test assets are the 25 assets sorted by size and book-to-market ratio. The conditional betas
are estimated with a 60-month rolling window, and the out-of-sample period is August 1936 to
December 2018.45

3.6.1.1 Results from CI and CF approaches

In this section, we discuss and compare the results of the CI, and CF approaches. Panel A
of Table 3.1 presents the results from CI approaches, including subset variable selection (A.1)
and dimension reduction approaches (A.2). In Chapter 2, we present a detailed analysis of
subset variable selection approaches, including the best subset selection, stepwise selection, and
shrinkage methods. Under the best subset variable selection, we use adjusted R2, Akaike infor-
mation criterion (Akaike 1973), Bayesian information criterion (Schwarz 1978), Mallows’s CP
(Mallows 1973) to choose the best model. Our stepwise selection approaches include forward
selection, backward elimination, and stepwise regression. The shrinkage methods include the
Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani 1996), Adaptive LASSO

43We use t-statistics to test the significance using Newey & West (1987) heteroskedasticity and autocorrelation
consistent standard errors.

44Net represents indicate the returns not explained by the conditional beta given as R∗
i,t+1 = Ri,t+1 −

(Rm,t+1β
C
i,t), where Ri,t is excess return on portfolio i at time t, βCi,t is obtained either through CI, CF, or

hybrid of CI and CF model and Rm,t+1 is realised risk premium at time t+ 1.
45Note that our sample starts from July 1926 to December 2018. The in-sample period is ten years because

some methods use five years of data as a validation sample. To compare all the models, our out-of-sample analysis
is based on August 1936 to December 2018.
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(Zou 2006), and Elastic Net (ENet) (Zou & Hastie 2005). In addition, we also consider a new
approach that selects the beta models that perform the best based on standard asset pricing
criteria on past data at each point in time. We call this approach a dynamically selected beta
model (DSBM). Results show that the DSBM approach, where each model is selected based on
MSFE in a cross-validation sample, outperforms all the DMS approaches. Considering that we
use the same data in our analysis, more specifically, the sample, test assets, and conditioning
variables are the same used in Chapter 2. We only report the results of the best performing
model DSM-III (MSFE − CV ), which achieves an adjusted R2 of 39.84%.

Panel A.2 in Table 3.1 presents the results for dimension reduction approaches. We find that
similar to variable selection approaches in Chapter 2, all the dimension reduction approaches
fail to produce an insignificant excess zero-beta rate. Moreover, none of the methods can ex-
plain the value premium as the loadings on the HML factors are priced in the cross-section of
unexplained asset returns – significant at 5% level. If we compare the two standard DR ap-
proaches of principal component regression (PCR) and Kelly & Pruitt (2013) three-pass filter
(KP3F), which is based on partial least squares (PLS), we find that KP3F outperforms the PCR
by achieving an adjusted R2 of 33.81%. PCR, on the other hand, achieves an adjusted R2 of
30.86%. KP3F also outperforms PCR in other metrics such as SSPE and RMSPE by achieving
lower values, implying lower pricing errors for KP3F. However, the PCR of cross-sectional beta
premium and the supervised PCR – targeted PCR with asset pricing criteria – perform better
than other approaches by achieving an adjusted R2 of 46.46% and 41.52%, respectively. If we
compare these results with those obtained through the best model selection approach DSM-III
(MSFE −CV ) given in Panel A.1 of Table 3.1, we find that the dimension reduction methods
outperform. These results are consistent with studies such as Bai & Ng (2008), Ajana et al.
(2019), and others who find that predictors have a natural grouping structure and dimension
reduction techniques are more effective compared to variable selection approaches, including
shrinkage approaches for predicting a given target variable accurately. Moreover, consistent
with Tu & Lee (2019), we find the importance of supervised factor models where the relation-
ship between the target variable and predictor variables is considered. However, the benefits
of supervised factors when the relationship is viewed from the perspective of asset pricing are
important, as the best dimension reduction approaches consider the target-predictor relation-
ship from the perspective of conditional betas, which is consistent with our previous findings in
Chapter 2.

[ Insert Table 3.1 about here ]

Panel B in Table 3.1 shows the cross-sectional results of all the combining forecasts (CF) ap-
proaches. Consistent with dynamic variable selection and dimension reduction approaches, all
the CF approaches produce significant excess zero-beta rate and fail to price value premium.
Moreover, joint alpha tests based on JA and CPE suggest all the CF models reject the null
hypothesis that all the pricing errors are jointly zero. However, we can compare the various CF
approaches based on multiple performance metrics. The simplest of all the CF approaches is
the EW (mean) forecast given in Panel B.1 of Table 3.1. The results show that it achieves an
adjusted R2 of 42.66%, which can be used to compare it to other models. This implies that
even a simple average forecast outperforms combining information (CI) approaches, such as the
variable-selection approaches discussed in Chapter 2 and the dimension reduction methods pre-
sented in Panel A of Table 3.1. However, results suggest that the value-weighted (VW) methods,
in which weights are based on individual model performance in a cross-validation (CV) sam-
ple, perform marginally better than the equally-weighted (EW) forecasts. The best performing
models include the discounted MSFE (B.6 DMSFE-CV) with a discount factor of 0.9 (θ = 0.9)
and Robust Rank based on MSFE-CV (B.7) models, which achieve an adjusted R2 of 47.08%
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and 44.65%, respectively, which is slightly better than EW which achieves an adjusted R2 of
42.66%.46 The important finding is that the weights based on CV performance and the consider-
ation of recent forecast performance (discounted forecast errors) improves the forecast accuracy.
These two findings are in line with many forecasting studies such as Rapach et al. (2010) and
others.

3.6.1.2 Results from hybrid of CI and CF approaches

Next, we discuss the cross-sectional results of approaches that are based on combining CI and
CF methods. The first six models (A.1 to A.6) of Table 3.2 represent the results from pooling
approaches. Pooling is the strategy where, rather than combining all the forecasts, a subset
of forecasts is first selected then combined based on a simple average. Note that our pooling
methods (A.1 to A.6) are based on MSFECV − APC criteria.47 The results show that our
method of auto-combining (A.6), where we optimally select the best equally weighted forecast
from available K clusters, perform the best among all the pooling strategies by achieving an
adjusted R2 of 48.90%. Moreover, the model not only explains the size and value anomalies
but also produces the smallest joint pricing errors, which are insignificant at 5% level. These
results are fascinating because our model (A.6) not only significantly outperforms the existing
traditional pooling approaches but also the standard CF approaches given in Table 3.1.48

[ Insert Table 3.2 about here ]

There are two main takeaways from these results. First, we provide evidence that supports the
idea of combining a subset of the available predictions rather than all of them (see Timmermann
2006, Aiolfi & Timmermann 2006, Kourentzes et al. 2019). Second, the optimal pooling based
on MSFECV APC performs better than the arbitrary choice for the number of forecasts. The
method works better than the forecast island of Kourentzes et al. (2019) because our approach
is based on evaluating both the individual forecast performance and all possible K clusters by
adding one forecast at a time to existing forecasts.49 In other words, it optimally chooses the
best forecast to combine between the best univariate and the CF of all available forecasts. This
flexibility enables the model to choose the forecasts that improves the forecast accuracy opti-
mally.

The next two results (A.7 and A.8) given in Table 3.2 are based on CF using principal compo-
nents. The first model, CF-PC (A.7) uses the PCs of forecasting returns (R̂t+1 = β̂t . Rm,t+1) in
Granger & Ramanathan (1984) regression analysis whereas the CF Univariate PCR (A.8) com-
bines the individual forecasts of the P selected PCs.50 Results show that CF-PC (A.7) and CF
Univariate PCR (A.8) achieve an adjusted R2 of 45.02% and 30.28%, respectively. The main
comparison of these two models would be with their counterparts in CI and CF approaches.
CF-PC (A.7) is basically used to improve the performance of standard CF approaches such as
simple average. Our results are consistent with those of Stock & Watson (2004), Huang & Lee
(2010), and Tu & Lee (2019) that the CF-PC (A.7) outperforms the standard CF approaches
by achieving significantly higher adjusted R2.51 On the other hand, the comparison between

46The difference of adjusted R2 is significant at 5% level using bootstrapped p-values.
47APC indicates the asset pricing criteria, conditional pricing errors, α̂t+1 = Rt+1 − β̂t.Rm,t+1
48Based on the bootstrapped p-values for the difference between adjusted R2.
49The forecast island of Kourentzes et al. (2019) is based on the outlier detection method (box-plot) and

automatically identifies the pools of forecasts without relying on any performance metric. Instead, the performance
metric is used only to sort the forecasts and not for identifying the optimal forecast to combine.

50Note that A.7 constructs the factors from returns (R̂), whereas A.8 constructs the factors from predictors’
data (X)

51At 5% bootstrapped p-values.
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CF Univariate PCR (A.8 in Table 3.2) and PCR approach given in Table 3.1 show that there is
no significant difference between the performance of these two models.52

The next approach (A.9 in Table 3.2) is combining forecasts (CF) based on cross-sectional beta
premium (CSBP).53 Under this approach, rather than using individual predictor to generate
the beta forecast, we first use each predictor to generate the time-series of CSBP and then use
lagged CSBP instead of the lagged predictor (see section 3.4.3.4). Results show that the model
CF-CSBP outperforms all the models discussed so far by achieving an adjusted R2 of 50.18%.
Though the model produces a significant excess zero-beta rate but the estimated risk-premium
on loadings on size and value factors anomalies are insignificant. This suggests that the model
can explain the size and value anomalies for 25 size and book-to-market portfolios. These results
are supported by the fact that the joint alpha tests show that the pricing errors produced by
the CF − CSBP model are jointly zero.

The final model in combining CI-CF approaches is the pooling through shrinkage method (A.10
in Table 3.2) recently used by Rapach & Zhou (2020) in forecasting equity premium. Under
this method, we first identify the relevant predictors through ENet, which are then used in a
univariate regression model to produce individual forecasts. Finally, we take the simple aver-
age to construct the final combined forecast. The results show that the CF-ENet model does
not perform well as it only achieves an adjusted R2 of 24.71% which is significantly lower than
combining all individual forecasts. This supports our earlier findings that shrinkage methods
perform poorly in variable selection approaches because they depend on residuals of time-series
regression instead of conditional pricing errors. This evidence is further supported by the fact
that the pooling strategies based on conditional pricing errors given in Table 3.2 (Models A.1,
A.4, A.5, and A.6) outperform the CF-ENet model by producing significantly higher adjusted
R2.

3.6.1.3 Results from Bootstrap Aggregation (Bagging) approaches

Finally, we present the results with bootstrap aggregation (bagging) methods.54 Bootstrap ag-
gregating or bagging (Breiman 1996) is a common strategy to overcome the model uncertainty.
The bagging estimate is calculated by the mean of the bootstrap samples (see section (3.4.3.5.2)
for details). Panel A in Table 3.3 presents the results of model selection approaches using
Bagging strategies where first three models A.1 to A.3 are based on the standard approach of
bagging (see Inoue & Kilian 2008, Rapach & Strauss 2010, Borup & Schütte 2020) where we
first apply a hard-threshold on the variables in Xt, such that only the statistically significant
variables based t-statistics at 5% significance level remain.55 The subset variables, X∗t ⊂ Xt,
only include Xj if | tXj |> 1.96. See section (3.4.1.1.2.1) for details on hard-thresholding.

The main difference between three approaches (A.1, A.2, and A.3) is that the A.1 is based on
the direct relationship between Ri and Xj where the t-statistics on Xj of model, Ri,t+1 = a0 +
(γ0 + γ1,jXj,t)Rm,t+1 + ei,t+1, is considered. On the other hand, the models A.2 (BAGG-APC1)
and A.3 (BAGG-APC2) are based on asset pricing criteria discussed in section (3.4.1.1.2.3) to
preselect the predictors. In model A.2, we use t-statistics of cross-sectional zero-beta rate of

52Note that both these methods are unsupervised – does not consider the target variable. In unreported
results, we compare the performance of supervised PCR with supervised CF univariate PCR where the factors are
constructed from targeted predictors. Results were consistent with unsupervised PCR – no significant difference.

53To account for the criticism of Lewellen et al. (2010), who claim that the cross-sectional results can vary
depending on the choice of test assets, we include diverse assets where in addition to 25 size-B/M portfolios, we
include 10 momentum and 30 industry portfolios as test assets.

54We use bagging for all the methods, including subset variable selection, shrinkage, combining forecasts, and
combining CI and CF. However, we only present the key results of bagging in Table 3.3.

55Following Rapach & Strauss (2010), we use Newey & West (1987) standard errors.
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each predictor j, whereas in A.3 we use cross-sectional adjusted R2 as our asset pricing criteria
where first we get the adjusted R2

j for each predictor j. Next, we sort the adjusted R2
j from

high to low values and select first P models as significant predictors used to estimate betas in
each sample. Here P indicates the number of predictors in X∗t selected by standard method
(A.1), X∗t ⊂ Xt, and {Xj ∈ X∗t | |tXj | > 1.96}. This way we can ensure that both methods
standard (A.1) and with asset pricing criteria (A.3) use the same number of variables in each
pseudo sample but the only difference is the way we select these predictors.

The results show that the BAGG-APC2 performs best among these three methods by achieving
an adjusted R2 of 45.64%.56 The improved performance over A.1 is consistent with previous
findings that conditional beta-based performance measures outperform criteria based on a di-
rect relationship between return and predictors. However, the significant difference between the
performance of A.2 and A.3 is a surprising result. On exploring why A.3 outperforms A.2, we
find that most univariate predictor-based models generate a significant excess zero-beta rate. In
that case, only a single predictor with minimum t-statistics is selected. This makes the model
univariate, i.e. based on a single best predictor at each period. More specifically, under A.2
on average, about 80% of times, the out-of-sample forecasts are based, univariate model. This
makes other K−1 predictors irrelevant when they may have a significant role to play in the beta
forecast. This also adds to the evidence that bagging is robust, as the average across pseudo
sample can only increase forecasting performance if the underlying variable selection methods
and criteria are chosen correctly.

The standard Bagging approaches are based on univariate model selection. Next, we apply
Bagging to subset variable selection approaches.57 Model A.4 (BAGG-MSFE-CV (APC)) in
Panel A of Table 3.3 indicates the model where subset variable selection is based on MSFE in
CV sample. We see a significant improvement in the performance as adjusted R2 goes to 52.13%
from 39.84% when estimated with original data only. Moreover, the estimated risk-premium on
loadings on size and value factors anomalies are also insignificant, suggesting that after account-
ing for model uncertainty through bagging, the model can explain the size and value anomalies
for 25 size and book-to-market portfolios. These results are supported by the fact that the joint
alpha tests show that the pricing errors produced by MSFECV APC model are jointly zero. We
also find that the results with standard model selection approaches are not improved even after
accounting for model uncertainty.58 This supports our previous findings that standard methods
are based on time-series regression residuals rather than pricing errors, and that a model chosen
based on less appropriate criteria cannot improve even when estimating in multiple samples.

[ Insert Table 3.3 about here ]

Next, we apply the bagging strategy to dimension reduction (DR) models. We find that, with
the exception of targeted PCR (APC), there is no significant difference in adjusted R2 between
standard dimension reduction methods and the same methods estimated using bagging. The re-
sults of Model B.1 (BAGG-PCR (APC)) in Table 3.3 show that the adjusted R2 of the targeted
PCR where factors are selected using asset pricing criteria goes to 45.51% from 41.52%. The
main reason for this is that DR methods already account for model uncertainty by combining
information from multiple predictors. Moreover, we test whether the average out-of-sample beta
with original data is significantly different than the average beta estimated with bagging, and we
do not find any difference between the two at 5% significance level. Panel C in Table 3.3 presents

56The difference between adjusted R2 is significant at 5% level based on bootstrapped p-values.
57We only present results for MSFE-APC (CV) approaches as bagging improves this model’s results signifi-

cantly.
58For brevity, the results are not reported.
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the CF results when CF betas under each method are estimated as an average across B boot-
strap samples. This is surprising to see that bagging does not make significant improvements
in the adjusted R2 of standard CF methods. The reason behind this improvement is the fact
that in simple average methods, in particular, EW, the model uncertainty is already addressed
(e.g., Hendry & Clements 2004) Timmermann (2006). Panel D in Table 3.3 represent the results
when bagging is applied to various combining CI and CF strategies given in Table 3.2. Results
show that bagging improves the performance of most of the models. The top three models
with significant improvement include the BAGG-Pool (Auto Combine) (D.1), BAGG-CF-CSBP
(D.2) and BAGG-CF PCR (D.3), which achieve an adjusted R2 of 52.94%, 52.10%, and 49.98%,
respectively. This shows that bagging helps in overcoming the problem of model uncertainty
related to subset variable selection for pooling, model D.1 in this case. On the other hand, the
improvements in results of CF-PC are also consistent with the findings of (Yang et al. 2017),
who find that the bagging applied to the principal component (PC) combination approaches
helps in lowering the MSFE compared to the simple average.

To summarise our results on CI, CF, and combination of CI and CF approaches, we find
that three top-performing models include BAGG–Pool (Auto Combine using MSFECV APC),
BAGG–MSFECV APC, and BAGG–CF-CSBP with an adjusted R2 of 52.94%, 52.13%, and
52.10%, respectively.59 However, the difference between the adjusted R2 of these models is
insignificant, which means that these models’ performance is almost identical. The choice of
the model depends upon the complexity of the model. More complex models should be ex-
cluded. Given this, we choose the model BAGG–Pool (Auto Combine using MSFECV APC)
because it is based on the combination of various standard approaches. We name this method
as BAPCAM, Bagging of Auto combined Pooling based on Cross validation sample using
Asset pricing criterion of MSFE. This is a summary of the different methods for accounting
for variable-selection uncertainty (VSU). The best-performing strategy is one that combines a
subset of forecasts rather than all, ii) uses automated quantile selection rather than arbitrarily
selected by the researcher, iii) uses bagging to resolve variable (forecast) selection uncertainty,
iv) uses a validation sample to test the performance of a given model, and v) uses the correct
performance criterion.

3.6.2 Comparing Results with Benchmark Models

In this section, we provide a direct comparison of the best performing approach, BAPCAM, to
the various standard CCAPM and multi-factor models. Standard CCAPM approaches include
models where beta dynamics is captured through: i) 60-month rolling window (Fama & Mac-
Beth 1973), ii) short window (Lewellen & Nagel 2006), iii) four standard variables (Ferson &
Harvey 1999), and iv) kitchen sink model containing all variables. Multi-factor models include:
i) Fama & French (1993) three-factor model, and ii) the four-factor model of Carhart (1997).
See section (3.5.2) for more details on benchmark models.

The results of the Fama & MacBeth (1973) cross-sectional regressions presented in Table 3.4
show that consistent with our findings for CI, CF, and hybrid of CI and CF approaches, the
constant (excess zero-beta rate) is significantly different from zero for all the models including
BAPCAM and multi-factor models including Fama & French (1993) three-factor model and
Carhart (1997) four-factor model, even though all the models are estimated on excess returns.60

In this case, the theory behind all the models would predict the constant to be zero. This implies

59Note that before selecting these models as the best performing models, we first perform all the robustness
tests discussed in section (3.7) and find that these methods consistently outperform other methods.

60Note that the models are estimated with a constant (excess zero-beta rate). In unreported results, we also
estimate the model without constant assuming that Rzr = Rf and find consistent results, i.e. same ranking of
models.
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that there are other factors not included in the model can explain the cross-section of returns.

However, results show that our BAPCAM outperforms the CCAPM benchmark models pre-
sented in Panel A of Table 3.4. The CCAPM benchmark models generally do a poor job.
Starting with the excess zero-beta rate, all the benchmark models produce a significant zero-
beta rate with a minimum of 0.820 achieved by CAPM (βRW ). However, BAPCAM produces a
lower excess zero-beta rate compared to benchmark models with 0.412. The differences between
the excess zero-beta rates of BAPCAM and CCAPM benchmark models are significant at 5%
level. Next, we can see that the estimated risk premium for all the CCAPM benchmark models
is negative. However, BAPCAM produces a positive risk premium of 0.472. In terms of asset
pricing performance based on other metrics, our BAPCAM achieves an adjusted R2 of 52.21%,
which significantly higher than the best performing CCAPM benchmark, CAPM (βRW ), which
achieves adjusted R2 of 25.3%. Moreover, compared to our BAPCAM model, all the CCAPM
models not only produce significantly larger errors measured by SSPE and RMSPE but also
reject the null hypothesis of producing zero pricing errors (H0 : α̂ = 0) for all the portfolios
measured by measures of joint alpha (JA) and composite pricing errors (CPE). There are two
main conclusions from these findings. First, conditioning information can play a significant role
in capturing the beta dynamics compared to a model where beta is a function of time, i.e.
using rolling window (βRW ) or short window (βSW ) to model time-variation in betas. Second,
time-varying conditioning information based changing set of predictors is key to the better per-
formance of CCAPM with IV framework.61

[ Insert Table 3.4 about here ]

We can also examine the pricing performance of each model by plotting the average monthly
fitted excess return and the average monthly realised excess return for each asset. If a model
perfectly fits the returns, then the test assets should lie on the 450 line in Figure 3.3. For a
given test asset, the coordinates below (above) the 450 line correspond to the negative (positive)
pricing errors, α̂i. The Figure 3.3 provides a graphical illustration of the findings presented in
Table 3.4. The CCAPM benchmark models fit the data poorly as there is a substantial deviation
of assets returns from the 450 line. In contrast, the BAPCAM has asset returns relatively close
to the 450 line. However, dispersion is still high, suggesting that even after optimally combining
the beta forecasts, conditional CAPM does not fully explain the cross-section of asset returns
for size and book-to-market sorted portfolios. On the other hand, if we compare our BAPCAM
model’s performance with FF3F and Carhart models, we see that asset returns are relatively
close to the 450 line, which implies that factor models fit the data well compared to all given
models.

[ Insert Figure 3.3 about here ]

Panel B in Table 3.4 reports the results of Fama & French (1993) three-factor model (FF3F)
and Carhart (1997) four-factor model (Carhart). Results show that factor models produce a

negative risk premium (λ̂MKT ) with -0.3113 and -0.2785 achieved by FF3F and Carhart, re-
spectively. However, the HML factor is highly significant and positive, and the SMB factor is
positive but significant at 10% level for both models. On comparison of the performance of the
BAPCAM and factor models, we find that consistent with findings through graphical illustration

61Note that the most of CI, CF, and combining CI and CF (Table 3.2) approaches outperform these CCAPM
benchmark models. This shows that after accounting for variable-selection uncertainty in CCAPM-IV approach,
we can improve the performance.

114



in Figure 3.3 the FF3F (Carhart) performs better than our BAPCAM by achieving an adjusted
R2 of 72.10% (77.26%) which is about 20% (25%) higher than our BAPCAM model for FF3F
(Carhart) model. This finding, however, should be interpreted with caution for at least three
points. First, the high explanatory power of multi-factor models may simply be attributed to
the extra degrees of freedom; the FF3F (Carhart) model has three (four) parameters that can
be freely estimated (Campbell & Vuolteenaho 2004). Second, since the excess return on the
zero-beta portfolio is substantial and high in magnitude (i.e. Rzb − Rf 6= 0), the multi-factor
models do not handle the equity premium adequately. Third, the multi-factor models model,
like the other models, yield significant pricing errors measured as JA and CPE.

In conclusion, our results are mixed, suggesting that none of the asset pricing models anal-
ysed perfectly describes the cross-section of realised returns. However, we consider the relative
performance of our BAPCAM to be a success based on a single factor.

3.6.2.1 Sources of improvement

In this section, we identify the source of improvement for BAPCAM relative to benchmark mod-
els. Table 3.5 presents the pricing errors for each size and book-to-market quintile measured
as the sum of squared pricing errors (SSPE). Consistent with past studies, results suggest that
the large pricing errors for the CAPM (βRW ) are clustered in the small, big, growth and value
quintiles. The performance of other benchmark models is almost similar. However, when we
compare the performance of BAPCAM with the CCPAM benchmark models, we find an aver-
age reduction of 19.6%, 80.4%, 45.8%, 32.9% in SSPE of small, big, growth, and value quintiles,
respectively. Therefore, the rationale behind our BAPCAM’s empirical success compared to
benchmark models in pricing size and B/M sorted portfolios is as follows. Take the value pre-
mium into consideration. Since value stocks have high average returns but low expected betas,
CAPM fails to price value stocks in an OLS setting. However, according to our BAPCAM ap-
proach, the systematic risk tracks the business cycle, and on average, beta forecasts are higher
than OLS betas. As a result, a high beta calculation is combined with high expected returns,
lowering the expected pricing errors of “Value” stocks. “Small” stocks, which have experienced
a reduction in beta, have a similar intuition. The opposite occurs for the “Big” and “Growth”
stocks.

[ Insert Table 3.5 about here ]

3.6.2.2 Which predictors matter?

In this section, we investigate the relative importance of individual predictors in BAPCAM
betas. We follow Gu et al. (2020) and calculate the reduction in out-of-sample cross-sectional
adjusted R2 by excluding a particular predictor. Given K predictors, the importance measure
can be given as:

∆R2
i = (R2

K −R2
K−1) (3.88)

where ∆R2
i is reduction in cross-sectional adjusted R2 due to absence of ith predictor, R2

K

is adjusted R2 using all predictors and R2
K−1 is adjusted R2 without ith predictor. Now the

importance factor can be calculated as:

Φ1i =
∆R2

OOSi
K∑
i=1

∆R2
OOSi

(3.89)
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where Φi is the predictor importance of each predictor which is normalised to sum to one.

Figure 3.4 plots the R2 based predictor importance where we can see that the variable EP is
the most influential variable as the absence of this variable from the dataset contributes 19.2%
in an overall reduction in cross-sectional adjusted R2. The variables INFL and TMS stand
second and third with 16.4% and 14.2%, respectively. This shows that the variable EP plays
a significant part in explaining the value premium. Inflation (INFL) and term-spread (TMS)
are two other essential variables. The importance of TMS and INFL indicate the connection to
macroeconomic activity as (Stock & Watson 2003) and others show that TMS, a commonly used
stock market return predictor, has strong predictive power for aggregate output. Since most of
the predictors are highly correlated, so we classify them: i) equity - which includes DP, DY, EP,
DE, BM and SVAR, and ii) non-equity - which includes DFR, DFY, LTY, LTR, TBL, TMS,
INFL. If we sum individual contributions across each group, then we find that the non-equity
group plays a more significant role with 60% contribution in the importance measure. Whereas
four variables EP, INFL TMS and DP contribute more than 60%. This also provides evidence
on how macroeconomic variables and financial variables complement each other.

We can link these predictor contributions with the findings on the improvement in the cross-
sectional performance discussed in the previous section, which shows that the improvement com-
pared to benchmark models is mainly due to improvements in beta estimates of value stocks.
To do this, we compute the correlation between conditional betas of value premium and state
variables and find a significant and negative correlation of the conditional beta of the value
premium with INFL and PE and significant negative correlation with TMS and thus changes
countercyclically across time.62 By identifying EP as an important state variable, we confirm
that the stock price indeed has essential effects on the dynamic of the value premium’s condi-
tional market beta. Moreover, because inflation is one of the most closely watched gauges of
aggregate economic activity by the Federal Reserve, our results confirm a vital implication of the
investment-based asset pricing models, (e.g., Zhang 2005), that the value premium’s conditional
market beta changes with business conditions.

[ Insert Figure 3.4 about here ]

3.7 Robustness Tests

We test the robustness of our key findings in a number of different ways. First, we look at differ-
ent sample dates and estimation windows and find similar results in all alternative samples and
different estimation windows. Second, we allow alphas to be time-varying following Christopher-
son et al. (1998), Ferson & Harvey (1999), among others. More specifically, we redo the asset
pricing tests by using equation, Ri,t+1 = a0,i+a

′
1,1Xt+(γ0,i+γ

′
1,iXt)Rm,t+1+εi,t+1. Results show

that the findings are very similar to the corresponding results in the benchmark tests. These re-
sults suggest that allowing alphas to be time-varying has a negligible impact on our main results.

Third, we examine the models’ success in explaining cross-sectional variance in excess monthly
returns using additional test portfolios, including 10 momentum sorted portfolios and 30 indus-
try portfolios, as well as 25 size and momentum cross sorted portfolios. We find no significant
change in our conclusions from the benchmark tests. Finally, following Boguth et al. (2011),
we include 1-, 6-, and 36-month lagged realised beta as candidate conditioning variables. More
specifically, we estimate each asset’s realised betas either with 1 month or 6 months of past
daily returns implementing Dimson (1979) correction for infrequent trading, or 36 months of

62Following Lewellen & Nagel (2006), we define value premium as the the difference between “Value” and
“Growth” (VMG). We take the average of the five low-B/M (low-B/M) portfolios for “Growth” (“Value”.).
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past monthly returns. The results show that the inclusion of the realised betas as conditioning
variables does not change our main findings in any qualitative manner. For brevity, we do not
report the results of all these tests.

[ Insert Table 3.6 about here ]

3.8 Conclusion

In this chapter, we apply and compare various methods to address the issue of variable-selection
uncertainty (VSU), applied to conditional CAPM (CCAPM). This chapter contributes to the
existing literature in many ways. First, to our knowledge, this is the first study to include a
detailed comparison of various well-known approaches to dealing with VSU from a CCAPM
perspective. We find that CF approaches dominate the CI approaches in explaining the cross-
section of assets returns measured as adjusted R2. The better performance of CF is consistent
with the past studies that claim that CF not only helps to reduce forecast errors but also helps
to mitigate model uncertainty (Bates & Granger 1969, Timmermann 2006, Rapach et al. 2010).
However, hybrid models that combine CF and CI methods improve the performance of CCAPM
beyond CF. These results are consistent with Huang & Lee (2010), Kourentzes et al. (2019),
Rapach & Zhou (2020), and others that show the superior performance of hybrid approaches
compared to individual CI and CF approaches. Moreover, such studies claim that hybrid ap-
proaches help to reduce variable-selection uncertainty (VSU). Thus, the reduction in VSU, we
believe, is the primary reason for the improved results of CCAPM-IV.

Moreover, we find that the best performing models include hybrid models where CF is com-
bined with machine learning methods such as bagging. This is in line with studies that suggest
that bagging helps reduce variance without raising forecast bias (Hastie et al. 2009) and handle
the data, model and parameter uncertainty simultaneously (Petropoulos et al. 2018), which has
been shown to increase forecasting accuracy (Rapach & Strauss 2010, Liu & Xie 2019, Borup &
Schütte 2020).
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Table 3.5: Pricing errors of individual assets and SSPE

This table reports the pricing errors of individual assets and sum of squared pricing errors (SSPE) for our BAPCAM and
benchmark asset pricing models. Values in bold indicate that the pricing errors are significant at 5% level.

A. BAPCAM

A.1) CAPM with BAPCAM

Growth 2nd Q 3rd Q 4th Q Value SSPE

Small -0.3917 -0.0935 -0.1437 0.1658 0.0175 0.2106

2nd Q 0.0351 0.0858 0.0538 -0.0522 -0.1203 0.0287

3rd Q -0.0823 0.0604 -0.0095 -0.0310 -0.0314 0.0125

4th Q 0.2092 0.0975 0.0969 0.0419 -0.2630 0.1336

Big 0.1830 0.1657 0.0429 0.0717 -0.0825 0.0747

SSPE 0.2387 0.0567 0.0349 0.0381 0.0917 0.4601

B. CAPM - Time variation in beta is function of time

B.1) CAPM with 60 months rolling beta B.2) CAPM with short window

Growth 2nd Q 3rd Q 4th Q Value SSPE Growth 2nd Q 3rd Q 4th Q Value SSPE

Small -0.3003 -0.2025 -0.1511 -0.0753 -0.1989 0.1993 Small -0.3182 -0.1722 -0.1407 -0.0820 -0.2809 0.2363

2nd Q -0.0898 0.0618 0.0051 -0.0864 -0.1735 0.0495 2nd Q -0.0569 0.0657 0.0159 -0.0930 -0.2319 0.0702

3rd Q -0.0247 0.0552 0.0026 -0.0206 -0.0817 0.0108 3rd Q 0.0092 0.0930 0.0146 0.0230 -0.1128 0.0222

4th Q 0.2161 0.1345 0.1048 0.0430 -0.1564 0.1021 4th Q 0.2229 0.1669 0.1421 -0.0126 -0.2134 0.1435

Big 0.3244 0.2582 0.2107 0.1041 0.0409 0.2288 Big 0.3545 0.2583 0.2191 0.0834 0.0281 0.2481

SSPE 0.2508 0.1326 0.0782 0.0262 0.1025 0.5904 SSPE 0.2799 0.1372 0.0885 0.0230 0.1917 0.7203

C. CAPM - Time variation in beta is function of Constant IVs

C.1) CAPM - Ferson and Harvey (1999) C.2) CAPM with Kitchen Sink

Growth 2nd Q 3rd Q 4th Q Value SSPE Growth 2nd Q 3rd Q 4th Q Value SSPE

Small -0.3415 -0.1935 -0.1389 -0.0586 -0.2075 0.2198 Small -0.2715 -0.2036 -0.1247 -0.1003 -0.2121 0.1857

2nd Q -0.0875 0.0483 0.0241 -0.0807 -0.1819 0.0502 2nd Q -0.0981 0.0660 0.0168 -0.1093 -0.2197 0.0745

3rd Q 0.0071 0.0686 0.0147 0.0109 -0.0866 0.0126 3rd Q 0.0226 0.0914 0.0272 0.0022 -0.1322 0.0271

4th Q 0.1934 0.1519 0.1237 0.0352 -0.1856 0.1114 4th Q 0.2048 0.1246 0.0946 0.0323 -0.2501 0.1300

Big 0.3206 0.2397 0.2078 0.1174 -0.0009 0.2172 Big 0.3928 0.2796 0.2153 0.1364 0.0148 0.2976

SSPE 0.2645 0.1250 0.0786 0.0251 0.1181 0.6112 SSPE 0.2801 0.1478 0.0718 0.0417 0.1735 0.7149

D. Factor Models

D.1) Fama French Three Factor D.2) Carhart Four Factor

Growth 2nd Q 3rd Q 4th Q Value SSPE Growth 2nd Q 3rd Q 4th Q Value SSPE

Small -0.2890 -0.0665 0.0329 0.0912 0.0157 0.0976 Small -0.2588 -0.0851 0.0372 0.0794 0.0293 0.0828

2nd Q -0.1247 0.0627 0.1002 0.0050 -0.0926 0.0381 2nd Q -0.0880 0.0640 0.0868 0.0217 -0.1128 0.0326

3rd Q -0.0854 0.0304 0.0173 0.0268 -0.0141 0.0094 3rd Q -0.0820 0.0220 0.0207 0.0076 0.0122 0.0078

4th Q 0.0763 0.0744 0.0755 0.0223 -0.2010 0.0580 4th Q 0.0764 0.0669 0.0745 0.0071 -0.1783 0.0477

Big 0.1468 0.1104 0.0362 0.0407 -0.0916 0.0451 Big 0.1343 0.0881 0.0123 0.0315 -0.0671 0.0314

SSPE 0.1337 0.0270 0.0184 0.0112 0.0578 0.2482 SSPE 0.1053 0.0241 0.0151 0.0079 0.0500 0.2023

Sample: August 1936 to December 2018
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Figure 3.3: Actual (Realised) vs Fitted Returns

(a) BAPCAM (b) CAPM (βRW )

(c) CAPM (βSW ) (d) CAPM (βFH)

(e) CAPM (βKS) (f) FF3F

Note: This figure compares the average fitted excess returns of 25 size and book-to-market
sorted portfolios and their realised (actual) excess returns for various models. The two numbers
indicate the individual portfolios where the first, and second digit indicate the size and the
book-to-market quantile, respectively.
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Figure 3.4: Significance of Variables

Note: This figure shows the relative importance of each predictor for our BAPCAM model.
Predictor importance of a specific variable j is defined as the reduction in cross-sectional adjusted
R2 for the model estimated using all the variables compared to the same model reestimated using
all the variables except the variable j.
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Chapter 4

Equity Premium Prediction under
Variable-selection Uncertainty (VSU) and
Parameter Instability (PI)

4.1 Introduction

4.1.1 Background

Scholars and practitioners alike are interested in forecasting future stock returns because return
predictability has applications in a number of fields, including asset pricing, risk management,
asset allocation, and the evaluation of investment managers’ performance.1 However, the semi-
nal work by Goyal & Welch (2008) suggests that it is challenging to identify an economic variable
that generates consistently superior out-of-sample forecasts of aggregate stock returns compared
to the historical average. This failure in establishing the existence of reliable out-of-sample pre-
dictor variables has been attributed to various reasons. Among them, scholars appear to accept
that structural breaks, or model parameter instability, might have contributed in many linear
predictive models’ weak out-of-sample forecasting performance (e.g, Rapach & Wohar 2006,
Paye & Timmermann 2006, Dangl & Halling 2012). The other explanation for weak out-of-
sample prediction results could be linked to the model-selection uncertainty. For example, the
poor performance of simple univariate linear prediction models does not rule out the possibility
of substantial predictive improvements by moving to more complex models that introduce new
predictor variables that have not been extensively examined in the past (Phan et al. 2015, Huang
et al. 2015, Chen 2017, Rapach et al. 2016, Chava et al. 2015). Overall, the weak out-of-sample
forecasts observed in Goyal & Welch (2008) has been linked to the issue of parameter instability
(PI) surrounding the data generating process for stock returns and variable-selection uncertainty
(VSU) arising from the lack of theoretical guidance on which subset of predictors should be used
in a forecasting model (Timmermann 2018, Yin 2019).

To address these two issues, several researchers try to establish return predictability employing
advanced econometric methods.2 This study contributes to the literature by introducing a new
combining forecasts (CF) approach that relies on a variance-covariance method that simultane-
ously addresses parameter instability and variable-selection uncertainty to improve out-of-sample

1More details on the implications of return predictability in various field of finance can be found in Fama &
French (1989), Barberis (2000), Avramov & Wermers (2006), and others.

2Econometric methods include economically motivated restrictions (Campbell & Thompson 2008, Pettenuzzo
et al. 2014, Zhang et al. 2019), variable selection based on shrinkage methods (Buncic & Tischhauser 2017, Li
& Tsiakas 2017), combining forecasts Rapach et al. (2010), combining information through dimension reduction
methods (Ludvigson & Ng 2007, Kelly & Pruitt 2013, Neely et al. 2014, Kelly & Pruitt 2015), regime shifts
(Guidolin & Timmermann 2007, Dangl & Halling 2012), machine learning (Gu et al. 2020, Rapach & Zhou 2020),
and others.
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equity premium forecasts.

4.1.2 Motivation

Our motivation stems from research in macroeconomics and finance that has linked parameter
instability to forecast failure (e.g., Stock & Watson 1996, Pesaran et al. 2006, Giacomini & Rossi
2009, Inoue & Rossi 2011, Inoue et al. 2017). The main argument of these studies is that the
issue of structural breaks in predictive models changes the underlying relationship between the
variables in the model. Since standard forecasting models assume that the relationship between
these variables remains constant over time, any parameter instability can lead to weak out-of-
sample performance.

Structural breaks caused by a number of factors trigger parameter instability. These factors
include extreme events, significant changes in financial market conditions, presidential elections,
regime switches in monetary policies, business changes, new technology, and significant changes
in government regulations. In particular, in the predictive relationship between different eco-
nomic variables and stock returns, Rapach & Wohar (2006) find clear evidence of structural
breaks. As shown by Pesaran & Timmermann (2007) the performance of a forecasting model
when structural breaks are present depends on the number of observations (window length) used
to estimate the out-of-sample forecast. However, there is no clear consensus in the literature
on the number of observations to be used in estimation, which is usually referred as estimation
window uncertainty (EWU) (Pesaran & Timmermann 2007). Due to this issue, it is recom-
mended rather than including all available observations for estimating the parameters, only the
most recent observations be used (the so-called “rolling estimation” method). However, most of
the existing forecasting strategies in equity premium prediction (EPP) use an expanding window
method, for example, Rapach et al. (2010) use combining forecast (CF) technique, whereas Neely
et al. (2014) use combining information (CI) approach. Both of these strategies use a recursive
expanding window, which uses all the observations available and, as a result, will be non-optimal
in the presence of structural breaks. There are few studies which use rolling window approach,
for example, most recently Li & Tsiakas (2017) and Yin (2020) use rolling window in implement-
ing the shrinkage approaches such as LASSO and Elastic Net (ENet) to predict equity premium.

In most studies that use the rolling window technique, the size of the rolling window is ar-
bitrarily selected or supported by the results of past studies. However, the forecasting accuracy
of the rolling scheme is found to be sensitive to the choice of window size (e.g., Pesaran &
Timmermann 2007, Inoue et al. 2017). This implies that though the existing forecasting strate-
gies (such as combining forecasts, combining information, and shrinkage methods) using either
expanding window or rolling window approaches account for VSU but do not choose the win-
dow optimally, as a result, fail to address the issue of EWU. In this study, we address this
by using techniques to choose both the optimal variables and optimal window. Therefore, our
new forecasting approach addresses both VSU (choice of variable) and EWU (choice of window)
simultaneously to improve the out-of-sample forecasts of the equity premium.

4.1.3 Research Gaps and Objectives

Estimating breaking dates and including post-break observations for estimating the parameters,
then generating forecasts, is a standard technique for dealing with parameter instability in the
presence of structural breaks (see Bai & Perron 1998). However, this approach has been criti-
cised in the literature for not improving forecast accuracy measured as mean squared forecasting
error (MSFE). For example, in a study on the usefulness of pre-break data for estimating pa-
rameters, Pesaran & Timmermann (2007) show that the exclusion of pre-break data leads to
high estimation uncertainty resulting in high MSFE.
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Alternatively, studies such as Pesaran & Timmermann (2007), Pesaran & Pick (2011), Pesaran
et al. (2013), Tian & Anderson (2014), Wang et al. (2020) and others show that combining
forecasts (CF) obtained from the same model but over different estimation windows can be ben-
eficial. However, combining weights under these methods are either based on the simple average
or MSFE of an individual window. This implies that the existing CF approaches across windows
methods fail to consider the correlation among forecasting errors of models estimated through
multiple windows. However, from CF literature, we learn that one of the widely used CF tech-
niques is the variance-covariance (VC) method (see Bates & Granger 1969, Newbold & Granger
1974, Figlewski 1983, Wong et al. 2007, Cang & Yu 2014, Croce 2016, Chan & Pauwels 2018, and
others). The VC approach emphasises the consideration of correlation among forecasting errors,
and the optimal weights are obtained as a solution to minimising the error variance-covariance
matrix. It is shown that VC can provide a diversification effect and improve forecast accuracy
(Bates & Granger 1969). Therefore, we aim to contribute to the literature by implementing the
VC approach to obtain the optimal out-of-sample forecast for a particular economic predictor-
based model based on different windows. More specifically, our primary question in this study is:
“Can a model addressing estimation window uncertainty (EWU) through variance-covariance
approach fully explain the weak predictive performance of univariate economic predictor-based
models examined by Goyal & Welch (2008)?”

Next, Pesaran et al. (2013) show that estimation window uncertainty (EWU) and variable-
selection uncertainty (VSU) are relevant problems for predicting macroeconomic and financial
variables and introduced a new approach called average-average (AveAve). They argue that
the two differently used approaches based on a simple average for accounting VSU (forecasts
from various models, all estimated on a single window, are averaged, AveM) and EWU (cal-
culated as the averages of forecasts generated from the same model over multiple windows,
AveW) can be combined into one approach (AveAve) to generate a single forecast. They show
that out-of-sample “AveAve” forecasts outperform the AveM, as well as the AveW forecasts.
However, most of the equity premium literature considers VSU and EWU as two different and
independent issues. For example, Rapach et al. (2010) account for VSU by taking a simple av-
erage across individual predictive models (AveM), however all individual models are estimated
with an expanding window. On the other hand, Tian & Zhou (2018) apply three alternative
methods for directly dealing with EWU for various univariate and multivariate models based
on Goyal & Welch (2008) predictors to forecast out-of-sample equity premium; however, they
do not consider VSU. This provides an opportunity to contribute to the existing literature by
implementing the VC approach to simultaneously address EWU and VSU issues. Thus, our
second research question is: “Can a model addressing EWU and VSU simultaneously based
on VC panel approach improve the out-of-sample forecasts of equity premium and outperform
simple average approaches such as AveM, AveW, and AveAve?”

Finally, most recently, Wang et al. (2020) use a different approach to address EWU and VSU at
the same time. They show that a two-step procedure, in which the first step generates forecasts
of individual models using a “time-dependent weighted least squares (TWLS)” approach, and
the second step takes a simple average across forecasts of univariate models produced in the
first step, performs better than the AveAve method. Following them, we can contribute to
the literature by introducing a two-step strategy based on the variance-covariance method, in
which the first addresses the EWU by combining forecasts across estimation windows of a single
model, and the second step involves combining forecasts across multiple models obtained from
the first step. Thus, our final question of this study is: “Can a model addressing EWU and VSU
simultaneously through VC approach under a two-step process outperform the panel approach
that combines forecasts from different models and windows in one step?”
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4.1.4 Summary of Methodology

Following the literature on equity premium prediction, our primary analysis is based on a simple
linear regression, rt+1 = βXt + εt+1, where rt+1 indicates aggregate market returns in excess of
the risk-free rate, and Xt represents a vector consisting of predictor variables and an intercept.
In this paper, our focus is on univariate models. More specifically, Xt only incorporates a
variable of interest and the intercept. We can estimate N different models with N predictors.
Since each univariate predictor-based model can be estimated with M different windows, this
essentially results in N ×M models, each generating one forecast at a time. Since our primary
focus in this paper is to apply VC approach for combining i) forecasts from different univariate
predictive models all estimated on a single-window (across N forecasts when M = 1, N × 1
forecasts), ii) forecasts from the same univariate predictor-based model estimated across different
windows (across M forecasts when N = 1, 1×M forecasts), and iii) forecasts from both different
univariate predictor-based models and windows (both across N and M , N × M forecasts).
Thus, we derive the optimal weights to be applied to the individual forecasts as a function
of the covariance matrix of forecast errors, which provides optimal weights in the sense that
the variance of the combined forecast error is minimised. Following mainstream literature,
we use a sample covariance matrix. We also use a “single-index” model (SIM) introduced by
Figlewski (1983), which is similar to the “market model” of finance. Following Pesaran &
Timmermann (2007), we use cross-validation method, which reserves the last E observations
of the data (T observations) for an out-of-sample estimation exercise. More specifically, we
estimate forecasting errors, error-covariance matrix, and optimal weights over out-of-sample
holdout (cross-validation, CV) observations.

4.1.5 Data and Principal Results

Our main results are based on updated data from Goyal & Welch (2008), spanning from January
1927 to December 2018. We include 14 variables for which monthly data is available. Our out-
of-sample evidence suggests that the introduction of the variance-covariance approach based on
single-index model (VC-SIM) applied to combine forecast across estimation windows for indi-
vidual predictor-based models helps to produce a smaller MSFE for 12 (14) out of 14 individual
predictive models when estimated with traditional expanding (rolling) window. Our VC-SIM
approach applied to a panel of forecasts (Panel (SIM)) generated from different univariate mod-
els and windows also improves forecasting accuracy. It achieves an out-of-sample R2 (R2

OS) of
0.922%, whereas the AveAve (Pesaran et al. 2013) and equally weighted based on expanding
window (AveM) (Rapach et al. 2010) achieves an R2

OS of 0.808% and 0.689%, respectively. The
results are even better for the VC-SIM approach, which uses a two-step method to combine
forecasts across estimation windows first, and then individual model forecasts are combined
COMCOM (SIM), which achieves an R2

OS of 1.426% which remains the highest among all the
approaches. A heuristic calculation suggested by Cochrane (1999) shows that the Sharpe ratio
(s∗) earned by an active investor exploiting predictive information (summarised by the regression

R2) and the Sharpe ratio (so) earned by a buy-and-hold investor are related by s∗ =

√
s20+R2

1−R2 .

Using data back to 1871, Campbell & Thompson (2008) calculated a monthly equity buy-and-
hold Sharpe ratio of 0.108. As a result, an out-of-sample predictive R2 of 0.922% (1.426%) for
Panel-SIM (COMCOM-SIM), suggests that an active investor using our approach would achieve
a Sharpe ratio improvement of approximately 34% (50%), over a buy-and-hold investor, using
real-time information in Goyal & Welch (2008) predictors.

We also analyse portfolio performance for a mean-variance investor allocating the wealth into
risk-free assets (Treasury bill) and equity. Return forecasts for the next period are used to
calculate the weights of the stock index in the portfolio. Certainty equivalent returns (CER)
is a popular utility-based metric to analyse the equity premium forecasts (e.g., Goyal & Welch
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2008, Campbell & Thompson 2008, Rapach et al. 2010, Neely et al. 2014, Li & Tsiakas 2017).
The CER can be viewed as the performance fees that a risk-averse investor with a specific risk
aversion level should pay to switch from a risk-free asset to a risky portfolio. To evaluate the
portfolio performance, we use the gains in CER (∆CER), which is defined as the difference
between CER of portfolio formed on the basis of forecasts obtained from a given model (VC
approaches in our case), and CER generated by portfolio based on the forecast of the historical
average. Results suggest that using the VC-SIM method, we improve CER gains in 12 of the 14
univariate predictor-based models in the full sample. Our Panel (SIM) and COMCOM (SIM)
achieve CERs of 207.1 bps and 252.4 bps, respectively, implying that our methods improve
portfolio performance. On the other hand, AveM and AveAve achieve CER of 107.6 bps and
120.9 bps, respectively. This confirms that our findings are both statistically and economically
significant. We also compare our results with some of the standard approaches including dy-
namic factor models based on principal components (Neely et al. 2014), three pass filter (Kelly
& Pruitt 2013); and shrinkage methods including LASSO (Tibshirani 1996), Adaptive LASSO
(Zou 2006), Ridge (Hoerl & Kennard 1970), and Elastic Net (Zou & Hastie 2005). Our both
approaches, Panel (SIM) and COMCOM (SIM), outperform these methods.

Moreover, we show that our equity premium forecasts generated by Panel (SIM) and COM-
COM (SIM) are linked to the real economy. Increased risk aversion, according to Fama &
French (1989) and Cochrane (1999), generally requires a higher risk premium during economic
downturns, resulting in equity premium predictability. Considering this, we analyse variations
in equity premium forecasts generated by our VC-SIM approaches over the business cycle. More
precisely, we analyse that changes in combined forecasts obtained with our VC approaches are
closely linked to business-cycle phases as measured by the National Bureau of Economic Re-
search (NBER). We find a clear pattern in our equity premium forecasts, with a sharp increase in
equity premium forecasts in periods of recession and a decline during expansions. The six [five]
highest points achieved by our forecasts generated by COMCOM (SIM) [Panel (SIM)] during
recessions, and if we compare our forecasts with the historical average, then we see that the his-
torical average is smooth and does not respond to business cycles. Overall, we demonstrate that
the NBER business-cycle phases are closely tracked by the equity premium forecasts obtained
through our VC-SIM approach. This forecasts behaviour is consistent with the findings of Fama
& French (1989) and Cochrane (1999).

4.1.6 Contribution

This study contributes to the existing literature in multiple ways. First, this study comple-
ments the growing literature on methods for directly dealing with estimation window uncer-
tainty (EWU) in forecasting.3 This is the first study to the best of our knowledge, to apply the
VC approach for combining forecasts from estimation windows of individual models. All past
studies either use a simple average (e.g., Pesaran et al. 2013) or inverse of MSFE (e.g., Pesaran
& Timmermann 2007) to combine forecasts across different windows. We show that considering
the correlation among forecast errors across estimation windows can significantly improve the
forecasting accuracy for individual models.

Second, this is the first study, to our knowledge, to present a comprehensive evaluation of models
addressing parameter instability in the perspective of equity premium prediction. For univariate
and multivariate models, Tian & Zhou (2018) compare three alternative parameter instability
approaches to conventional rolling and expanding window in equity premium prediction. The
three methods to address parameter instability under structural breaks include the Bai–Perron
method of using post-break observations (Bai & Perron 1998), optimally weighted observations

3A partial list include Pesaran & Timmermann (2007), Pesaran & Pick (2011), Rossi & Inoue (2012), Pesaran
et al. (2013) and others.
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(Pesaran et al. 2013) and combining forecasts across different estimation windows (Pesaran &
Timmermann 2007, Tian & Anderson 2014). The authors’ focus was limited to two simple com-
bining approaches not requiring the estimation of weights. However, in this study, we compare
our VC approach’s performance with ten alternative methods to deal with parameter instability.
These methods are summarised in Table 4.2 and discussed in section (4.2.3). Consistent with
the findings of Tian & Zhou (2018), we find that none of the univariate predictor-based models
based on all parameter instability approaches, including our variance-covariance approach, can
outperform the historical average forecasts. These findings are also consistent with Pesaran et al.
(2013), who argue that the ultimate out-of-sample forecast for any given target variable should
account for both variable-selection uncertainty and parameter instability at the same time.

Third, for the first time in the forecasting literature, we introduce a panel combination ap-
proach based on VC approach to address the issues of EWU and VSU simultaneously. Based
on out-of-sample equity premium prediction, we show that our new model not only outperforms
the existing AveAve approach of Pesaran & Timmermann (2007) but also existing approaches
in equity premium such as combining forecasts (CF) methods (Rapach et al. 2010), dimension
reduction (DR) methods (Kelly & Pruitt 2013, Neely et al. 2014) and shrinkage methods (Zhang
et al. 2020). Moreover, we also complement the findings of Wang et al. (2020) by showing that
a two-step procedure where first addressing EWU and then combining forecasts of univariate
models generated from the first step (COMOM (SIM)) performs better than panel approach
(Panel (SIM)).

Finally, in recessions, the superior performance of our VC-SIM approach based on Panel (SIM)
and COMCOM (SIM) is important because predictive awareness of economic fundamentals over
recessions is more valuable to an investor. This is because investors are more risk-averse during
recessions requiring a higher risk premium, and there is also high volatility, making the historical
mean a weak forecast (see Li & Tsiakas 2017, for more details). Kacperczyk et al. (2016) also
show that the economic outlook affects how investors process information. In recessions, fund
managers are more concerned with aggregate shocks because stocks have a higher aggregate risk.
In summary, in recessions, economic fundamentals information is most important for predicting
the equity premium, and we find that this is when our predictive process works best.

The remainder of this chapter is organised as follows. Section (4.2) provides an overview of
literature related to equity premium prediction and forecasting methods to deal with variable-
selection uncertainty and parameter instability. Section (4.3) outlines the econometric method-
ology. Section (4.4) discusses the implementation of variance-covariance approach in addressing
the issues of EWU and VSU. Data and benchmark models are provided in section (4.5). Sec-
tion (4.6) discusses the empirical results. Results from various robustness tests are provided in
section (4.7). Section (4.8) concludes.

4.2 Literature review

In this section, we provide a brief overview of the literature that would serve as a basis for
implementing our variance-covariance (VC) approach to address the parameter instability and
variable-selection uncertainty simultaneously. We start our discussion with a brief overview of eq-
uity premium literature highlighting earlier success and challenges in establishing out-of-sample
predictability. Next, we discuss the recent developments in out-of-sample equity premium predic-
tion literature that would not only guide to identify the research gaps but also help to determine
the benchmark models for performance comparison with our models. Since our motivation for
this study is parameter instability, we then discuss some of the well-known approaches used
in forecasting literature to address the parameter instability issues. These approaches would
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also be the benchmark models to compare the performance of VC approach. Considering that
our VC approach lies in the body of combining forecasts (CF) literature, next, we summarise
standard methods of combining forecasts which would also serve as benchmark models.

4.2.1 Overview of equity premium forecasting literature

Until the 1970s, asset returns were commonly thought to be unpredictable, and asset prices
were assumed to follow a random walk (Cochrane 2009). Nonetheless, a vast literature compiles
evidence starting in the late 1970s that various economic variables can forecast aggregate stock
returns using the predictive regression provided in equation (4.1).

rt+1 = α+ βxt + ut+1 (4.1)

where xt represent a set of predictors known at time t. The most widespread in-sample pre-
dictor variables of stock returns identified in the literature include the dividend–price ratio,
dividend-payout ratio, book-to-market ratio, the earnings–price ratio, volatility of stock market,
interest rate spreads, nominal interest rates, inflation rate, corporate issuing activity, and many
other.4 However, in an important review of all the commonly used predictor variables, Goyal
& Welch (2008) argue that, although many conditioning variables appear to strongly predict
returns based on in-sample regressions, it is challenging to identify a predictor variable that
consistently outperforms the historical average based on out-of-sample tests.

Goyal & Welch (2008) also use a multivariate regression model (“Kitchen sink model”), in-
corporating all K variables:

rt+1 = α+
K∑
k=1

βkxk,t + εt+1 (4.2)

In addition, they also use the “model selection” (MS) approach where they first estimate all
possible combinations of predictor variables.5 Then, they choose the forecast that has made
the biggest impact by achieving the smallest value of cumulative mean squared error (CMSE)
up to that point at each time period. They find that both “Kitchen sink model” and “model
selection” approaches also fail to outperform historical average. Overall, Goyal & Welch (2008)
argue that univariate predictor-based and multivariate predictive regression models are unstable
and that the historical average is not outperformed by traditional forecasting models.

This failure in establishing out-of-sample predictability may be attributed to various reasons.
However, the equity premium forecasting literature generally agrees that the existence of perma-
nent shift in the underlying distribution of the premium, known as structural breaks, is one of
the key explanations for weak out-of-sample prediction performance (e.g., Paye & Timmermann
2006, Rapach & Wohar 2006, Dangl & Halling 2012, Rapach & Zhou 2013).6

There have been several advances in equity premium prediction literature to respond to the
critique of Goyal & Welch (2008) (See Figure 4.1). Recent academic studies show that the
out-of-sample predictability of stock returns can be enhanced by certain new predictors and new
econometric methods. Many new and effective predictors have been developed in recent studies
to outperform the historical average benchmark and improve stock return predictability. Some
of these predictors include technical indicators (Neely et al. 2014, Lin 2018), investor sentiment
and attention (Huang et al. 2015, Ni et al. 2015, Sun et al. 2016, Chen 2017, Coqueret 2020,
Zhang et al. 2021), manager sentiment (Jiang et al. 2019), the short interest index (Rapach

4See Rapach & Zhou (2013) for a comprehensive review of equity premium prediction literature.
5The implementation of the MS approach involves estimating 2N models and selecting one of the best models.
6See Timmermann (2018) who discusses some of the challenges in establishing equity premium predictability.
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et al. 2016), the variance risk premium (Bollerslev et al. 2009), news-implied volatility (Manela
& Moreira 2017), financial news (Narayan & Bannigidadmath 2017), bitcoin prices (Salisu et al.
2019), and credit quality (Chava et al. 2015), among others.

Other research studies aim to improve predictability by using the same set of traditional predic-
tors but applying different econometric methodologies. Econometric methods include economi-
cally motivated restrictions (Campbell & Thompson 2008, Pettenuzzo et al. 2014, Zhang et al.
2019), variable selection based on shrinkage methods (Buncic & Tischhauser 2017, Li & Tsiakas
2017), combining forecasts (Rapach et al. 2010), combining information through dimension re-
duction methods (Ludvigson & Ng 2007, Kelly & Pruitt 2013, Neely et al. 2014, Kelly & Pruitt
2015), regime shifts (Guidolin & Timmermann 2007, Dangl & Halling 2012), machine learning
(Gu et al. 2020, Rapach & Zhou 2020), and among others.

This study fits in the second group of studies that address parameter instability and variable-
selection uncertainty issues using standard Goyal & Welch (2008) predictors. In the next sub-
section, we discuss various econometric approaches mentioned above in more detail.

Figure 4.1: Advances in Equity premium literature since Goyal & Welch (2008)

4.2.2 Strategies to establish equity premium predictability

The approaches for dealing with the variable-selection uncertainty (VSU) and parameter insta-
bility (PI) are summarised in Figure 4.1.
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4.2.2.1 Theoretical Constraints

Campbell & Thompson (2008) (CT) noted that one of the drawbacks of the analysis conducted
by Goyal & Welch (2008) was that out-of-sample analyses are based on unrestricted predictive
regressions. Consequently, they propose imposing economically motivated restrictions on stock
return predictive regression forecasts. Specifically, they suggest that a rational investor would
disregard the negative forecasts, so any negative forecast produced by the model should be set
to zero. Statistically, the CT forecasts at month t+ 1 with predictor i, r̂CTt+1, can be given as

r̂CTt+1 = max(0, α̂i,t + β̂i,txi,t) (4.3)

The other theoretical constraint is given by Pettenuzzo et al. (2014) (PTV) who propose to limit
the in-sample annualized Sharpe ratios between zero and one. To implement this approach we
need to estimate equation (4.1) with constrained least squares,

0 ≤
√

12(α̂PTVi,τ + β̂PTVi,τ xi,τ )

σ̂τ
≤ 1, τ = 1, . . . , t (4.4)

where α̂PTVi,τ , and β̂PTVi,τ indicate the constrained coefficient estimates, and σ̂τ represents the
the empirical estimate of stock volatility at month τ . The PTV forecasts at month t + 1 with
predictor i, r̂PTVi,t+1 , can be given as

r̂PTVi,t+1 = α̂PTVi,t + β̂PTVi,t xi,t (4.5)

Most recently, Zhang et al. (2019) (ZWMY) propose a new constraint which is based on the
well-known three-sigma rule where extreme positive and negative values of return forecasts are
truncated. The ZWMY constrained forecasts at month t + 1 with predictor i, r̂ZWMY

i,t+1 , can be
given as

r̂ZWMY
i,t+1 =


rit + 3σt, if r̂i,t+1 > rit + 3σt

rit − 3σt, if r̂i,t+1 < rit − 3σt

r̂i,t+1 otherwise,

(4.6)

where r̂i,t is the unconstrained forecast generated by equation (4.1), and σt represents the stan-
dard deviation of excess stock returns for month t.

4.2.2.2 Combining Information (Dynamic Factor Models)

Combining or pooling information provides a way to track the key co-movements in many
predictors conveniently. One of the most prominent approaches is the dynamic factor model
(DFM) or the diffusion index (DI) approach that assumes a latent factor model structure for
the (demeaned) potential predictors:

xit = λ′ift + ei,t, (i = 1, . . . . N) (4.7)

where ft and λi represent the q-vector of latent factors and factor loadings, respectively and ei,t
indicates zero-mean disturbance term. Under (4.7), relatively small number of factors (q � N)
mainly represent the major co-movements in the predictors. Next, the estimated latent factors
ft serve as predictors in predictive regression given in equation (4.1):

rt+1 = αDI + β′DIft + εt+1 (4.8)

Many studies show improvement in forecasting accuracy using DFM. For example, Ludvigson
& Ng (2007) show the better out-of-sample performance of quarterly equity premium forecasts
based on dynamic factors extracted from 172 financial and 209 macroeconomic predictors. More-
over, Neely et al. (2014) also demonstrate the forecasting gains for equity premium based on
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dynamic factors extracted from a set of popular technical indicators and Goyal & Welch (2008)
predictors. Along the same lines, Kelly & Pruitt (2013) propose a new method of dimension
reduction that considers the relationship between the target variable and predictors. Their ap-
proach consists of three steps; they call it a three-pass filter (3PF) and show the improvement in
out-of-sample equity premium prediction based on factors derived from a collection of disaggre-
gated valuation ratios. The first pass of three passes runs N time-series regressions separately,
one for each predictor.7 The predictor is the dependent variable in these first pass regressions
given in equation (4.9), the proxies are the regressors, and the estimated coefficients define the
predictor’s sensitivity to factors represented by the proxies.

xi,t = φ0,i + z′tφi + ei,t (4.9)

Next, in the second pass regressions, the estimated first-pass coefficients φ̂′i are used in T in-
dependent cross-sectional regressions given in equation (4.10). The individual predictor is once
again the dependent variable in these second pass regressions, while the first-pass coefficients φ̂′i
are the regressors.

xi,t = φ0,t + φ̂′iFt + εi,t (4.10)

This gives time series of estimated factors, F̂t, which are then used in equation (4.8) to estimate
equity premium forecasts.

4.2.2.3 Combining Forecasts

Many studies, such as Bates & Granger (1969), Clemen (1989), and others, argue that combin-
ing individual forecasts is advantageous since it provides diversification benefits over depending
on forecasts from a single forecasting approach. Moreover, it is also shown that combining fore-
casts (CF) guards against misspecification of the model (Timmermann 2006). Considering this,
Rapach et al. (2010) demonstrate the statistical and economic significance of the CF approach
in generating out-of-sample forecasts for the equity premium. They use various versions of CF,
which include equally weighted, trimmed mean, median and discount mean square forecast error
(DMSFE). We provide the details on CF strategies in section (4.2.4).

4.2.2.4 Shrinkage Methods

Buncic & Tischhauser (2017) and Li & Tsiakas (2017) show that the shrinkage methods that
impose the statistical constraints on regression coefficients can significantly improve the out-
of-sample equity premium forecasts. The shrinkage methods improve the performance of a full
model given in equation (4.11), containing all the predictors by shrinking the coefficients of
irrelevant predictors to zero.

rt+1 = α+
N∑
i=1

βixi,t + εt+1, (4.11)

The shrinkage of the regression coefficients from equation (4.11) is based on solving the following
system:

min
β

1

2

T−1∑
t=1

(
rt+1 − α−

N∑
i=1

βixi,t)

)2

subject to

N∑
i=1

|βi| < s1 and
N∑
i=1

β2
i < s2

(4.12)

7Predictors need to be standardised to have unit variance.

142



where s1 and s2 represent two positive constants. To estimate these constraints, one needs to
minimise the mean squared forecast errors (MSFE). The type of shrinkage method depends
upon the constraint. For example, the Elastic Net (ENet) originally proposed by Zou & Hastie
(2005) given in equation (4.12), is a general estimator containing two well-known special cases.
For example, if the first constraint, s1, in unbound i.e., s1 = ∞, then equation (4.12) becomes
the ridge regression introduced by (Hoerl & Kennard 1970). On the other hand, if the second
constraint, s2, in unbound i.e., s2 = ∞, then equation (4.12) reduces to the LASSO (Least
Absolute Shrinkage and Selection Operator) regression (Tibshirani 1996).

4.2.2.5 Machine Learning

The availability of high dimensional data has motivated many researchers in finance to rely
on machine learning (ML) methods. The initial application of ML was limited to shrinkage
methods discussed in the previous section. However, there is a growing trend of ML methods
in finance and predicting stock returns in particular. For example, Gu et al. (2020) perform
a comparative analysis of ML techniques to measure asset risk premia. Their study is based
on analysing about 30,000 individual stocks over 60 years from 1957 to 2016. For each stock,
the dataset includes 94 characteristics, interactions of each characteristic with eight aggregate
time-series predictors, and 74 industry sector dummies. In total, their analysis is based on more
than 900 baseline signals. They find that ML methods, in particular trees and neural networks,
can predict asset returns and provide large economic gains to investors. Complete detail of
these methods is beyond the scope of this paper. However, the applications of ML methods in
predicting stock returns in both time-series and cross-sectional can be found in Rapach & Zhou
(2020) where the authors extend the ML techniques introduced in Han et al. (2019) to forecast
cross-sectional stock returns to a time-series context.

4.2.2.6 Strategies to address Parameter Instability

Most of the above methods either use an expanding window or a rolling window approach, which
make an assumption about the presence of structural breaks in data (see section 4.2.3 for details).
To address parameter instability, several forecasting strategies have been proposed in equity pre-
mium prediction literature. For example, following Hamilton (1989), Guidolin & Timmermann
(2007) report forecasting gains from using a multivariate Markov switching model. In their
application, they define four regimes as ‘crash’, ‘slow growth’, ‘bull’, and ‘recovery’. Moreover,
by using a regime-switching vector auto-regression model based on two states closely resembling
the NBER-dated business cycles, Henkel et al. (2011) find the out-of-sample forecasting gains
for stock returns. The important findings include that fundamental variables such as the divi-
dend yield only provide valuable information during recessions. However, the historical average
forecast remains the best out-of-sample indicator during expansion.

Lettau & Van Nieuwerburgh (2008), however, criticise the regime-shifting models for problems
associated with correctly specifying the timing and the size of regime shifts. To address this
criticism, Huang et al. (2017) introduce a state-dependent predictive regression model given in
equation (4.13).

rt+1 = αi + βgoodi xi,tI
good
t + βbadi xi,t(1− Igoodt ) + εi,t+1, (4.13)

the indicator It is the proxy for market state which depends upon the past return information
and takes the value of one if the past six-month (log) returns are positive, zero otherwise.

There are also few other studies such as Tian & Zhou (2018), Zhang et al. (2020), and Wang et al.
(2020) that implement various strategies that directly address the parameter instability (see sec-
tion 4.2.3 for details) from the equity premium perspective. Tian & Zhou (2018) compare three
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approaches to dealing with parameter instability associated with structural break uncertainty
(SBU) with traditional rolling and expanding window approaches to forecasting out-of-sample
equity premium. On the other hand, Zhang et al. (2020) apply window combination approach to
various variable selection and model averaging approaches to forecast stock returns. The main
difference between these two studies is that Tian & Zhou (2018) focus on parameter instability.
In contrast, Zhang et al. (2020) compare the methods dealing model uncertainty and parameter
instability simultaneously. Moreover, Wang et al. (2020) use a different approach to address pa-
rameter instability and model uncertainty at the same time from equity premium perspective.
They show that a two-step procedure where first addressing parameter instability based on a
“time-dependent weighted least squares (TWLS)” method to generate forecasts of univariate
predictor-based models and then in the second step taking a simple average across forecasts of
univariate models from the first step can improve the forecast accuracy.

4.2.3 Forecasting methods to deal with Parameter Instability

In this section, we present an overview of alternative methods that address parameter instability
due to structural break uncertainty (SBU). Figure 4.2 summarises these methods, demonstrating
how different methods can be classified based on assumptions regarding structural breaks. It is
worth noting that our aim is not to assess the merits and drawbacks of each approach. Instead,
we present the key intuition behind each method to better understand these approaches, which
we also use as benchmark models.

Figure 4.2: Forecasting methods under assumptions about structural breaks

144



4.2.3.1 Expanding window

The expanding window (EXP) approach ignores the possible structural breaks in data. Conse-
quently, it uses all the observations up to time T (1 : T ) to make a forecast at time T + 1. So as
T increases by one, the observations used for estimating parameters βEXPT also increase by one.
Many studies in equity premium prediction literature such as Rapach et al. (2010), Neely et al.
(2014) and others use expanding window approach. The forecast under this approach ŷT+1 can
be computed as:

ŷT+1 = X ′T β̂
EXP
T (4.14)

where

β̂EXPT = (X ′1:T−1X1:T−1)−1X ′1:T−1y2:T (4.15)

with the observation matrices, X ′1:T = [X1, X2, X3, . . , XT ] and y′1:T = [y1, y2, y3, . . , yT ],
respectively.

4.2.3.2 Rolling window

The evidence of structural break in long samples (e.g., Paye & Timmermann 2006, Rapach &
Wohar 2006) motivate researchers to use most recent observations. This leads to rolling window
approach which assumes that there are no structural breaks in data in recent past. Consequently,
it only uses last w observations to make a forecast at time T + 1. Unlike expanding window
approach, this approach use a fixed number of observations for estimating parameters βROLLT .
Given that we choose w as window size and our data on target variable (y) and predictor
variables (X) include X ′T−w+1:T = [XT−w+1, XT−w+2, XT−w+3, . . , XT ] and y′T−w+1:T =
[yT−w+1, yT−w+2, yT−w+3, . . , yT ]. The forecast under this approach ŷT+1 can be computed
as:

β̂ROLLT = (X ′T−w+1:T−1XT−w+1:T−1)−1X ′T−w+1:T−1yT−w+2:T (4.16)

ŷT+1 = X ′T β̂
ROLL
T (4.17)

Studies as such Fama & MacBeth (1973), Li & Tsiakas (2017), and others use rolling window
approach. This approach has been criticised for disposing of all the data prior to the recent
w observations, on the other hand, the window size (w) is arbitrarily selected. Studies such as
Pesaran & Timmermann (2007), Inoue & Rossi (2011), and others show that the forecasting
accuracy of the rolling scheme is sensitive to window size choice.

4.2.3.3 The Bai–Perron method

When forecasters are unaware of details about the structural breaks in the sample, the method
of Bai & Perron (1998, 2003) is one of the most commonly used approaches for estimating break
dates as well as the number of breaks. The presence of several breaks is accommodated by
this approach and is thus most often used in studies involving a long period of observations.
Since by identifying break dates, the Bai-Perron method chooses its estimation window (the post-
break observations) for generating forecasts, its predictive accuracy is dependent on the accurate
identification of the breakpoints. To implement this approach for identifying the optimal number
of breaks, one needs to estimate the model with various numbers of breaks, l, ranging from zero
to a maximum number of breaks assumed by the researcher. One can estimate the break points,
T1, . . . , Tl, for each specified l by minimising the sum of the squared residuals or information
criteria such as the Bayesian information criterion (BIC). If the optimal number of breaks, l∗,
is zero then it suggests that there are no breaks in the past, and then one needs to use all the
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past observations to estimate the parameters. However, if we detect structural breaks, then our
estimated parameters would be based on the observations after the last estimated breakpoint
T̂l∗ and the forecast can be given as:

β̂BPT = (X ′
T̂I∗+1:T−1

XT̂I∗+1:T−1)−1X ′
T̂I∗+1:T−1

yT̂I∗+2:T (4.18)

ŷT+1 = X ′T β̂
BP
T (4.19)

This method is widely used in forecasting (e.g., Choi & Jung 2009, Cró & Martins 2017).
However, studies such as Pesaran & Timmermann (2007) criticise this approach and show that
due to limited post-break data, this approach introduces high estimation uncertainty which
adversely affects the forecast accuracy measured as MSFE.

4.2.3.4 Cross validation: Minimum MSFE

Pesaran & Timmermann (2007) propose a cross-validation method for selecting a single estima-
tion window from estimation windows of different sizes. The authors are not concerned with
detecting the exact location of the break, but instead with the optimum sample size to be used
to estimate the model parameters to predict out-of-sample, assuming that there has been a
structural break. The cross-validation strategy retains the last E observations of overall T for
an out-of-sample estimation exercise and selects the estimation window on this sample that
produces the smallest MSFE value. It is further assumed that to estimate the parameters of
the forecasting model, a minimum of w observations are needed; this implies that w + E data
points are needed for implementing this approach. The recursive pseudo out-of-sample MSFE
value for each possible starting point of the estimation window, m, can be computed as:

MSFE(m|T,E) = E−1
T−1∑

τ=T−E
(yτ+1 −X ′τ β̂m:τ )2, m = 1, 2, . . . , T − w − E (4.20)

Now suppose forecaster has already estimated the breakpoint, T̂1 and define m∗(T, T̂1, w,E) as
that value of m ∈ 1, 2, . . . , T̂1 + 1 or m ∈ 1, 2, . . . , T − w − E, whichever is smallest,
since it would only be necessary to look for windows that start before T̂1 + 1 that minimize the
out-of-sample MSFEE for efficiency reasons:

m∗(T, T̂1, w,E) = arg minimise
m= 1, . . . . , min(T̂1+1,T−w−E)

{
E−1

T−1∑
τ=T−E

(ŷτ+1 −X ′τ β̂m:τ )2

}
(4.21)

Now we can compute the corresponding forecast as:

ŷT+1 = X ′T β̂m∗:T (4.22)

However, one can assume that the break date is unknown, which means there is no need to
estimate T̂1. In that case, the optimal window for estimation is obtained from

m∗(T,w,E) = arg minimise
m= 1, . . . . , min(T̂1+1,T−w−E)

{
E−1

T−1∑
τ=T−E

(ŷτ+1 −X ′τ β̂m:τ )2

}
(4.23)

this effectively searches for m∗ along the points m = 1, 2, . . . , T −w−E without relaying on
the break date.
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4.2.3.5 Robust optimal weights on observations

Pesaran et al. (2013) propose a new method called robust optimal weights (ROW), a type
of generalised least squares estimator. These weights are called as optimal because these are
based on minimising the one-step ahead MSFE. Moreover, by incorporating the optimal weights
with regard to uniformly distributed break dates, they are robust to the uncertainty concerning
parameter instability timing. The important feature of this approach is that there is no need
to estimate break dates and size to produce an out-of-sample forecast. Since the weights are
independent of the models and data and are determined solely by the sample size T and the
assumed number of past breaks, the ROW method is simple to implement in practice. For a
large sample and a single structural break, the weights can be given as:8

w∗t =
−log(1− t/T )

T − 1
, for t = 1, 2, , T − 1, and (4.24)

w∗t =
log(T )

T − 1
(4.25)

Therefore, the standardised robust optimal weights of wRt , which add up to unity, are determined
as

wRt =
w∗t
T∑
s=1

w∗s

(4.26)

To obtain a weighted observation matrix, we need to multiply the robust optimal weights w∗t by
the matrix of regressors, wx′1:T = [x1xwR1 , x2xwR2 , . . . . , xTxwRT ]. The (weighted) least square
estimator is

β̂WLS
T = (wx′1:T−1X1:T−1)−1wx′1:T−1y2:T (4.27)

and now we can obtain the one-step-ahead forecast as

ŷT+1 = X ′T β̂
WLS
T (4.28)

4.2.3.6 Combining forecasts across estimation windows

Under this approach, the forecasts obtained through different window sizes are combined to
generate a final out-of-sample forecast. As opposed to the Bai & Perron (1998) method, this
method has the advantage of not relying on calculating break sizes and break dates, which can
be difficult to quantify due to the noisy time series. In the literature, the following methods
have been proposed.

4.2.3.6.1 Equally weighted forecast combination Pesaran & Timmermann (2007) pro-
pose an equally-weighted combining forecasts approach, estimated with different sample (win-
dow) sizes. Assume a minimum of w observations are required for estimation, the one-step-ahead
CF can be given as

ŷT+1 =
1

T − w

T−w∑
τ=1

(X ′T β̂τ :T ) (4.29)

where β̂τ :T = (X ′τ :T−1Xτ :T−1)−1X ′τ :T−1yτ+1:T for τ = 1, 2, . . . , T − w.

8See Pesaran et al. (2013), and Tian & Zhou (2018) for optimal weights in case of more than one breaks.
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4.2.3.6.2 Equally weighted with fixed windows Pesaran & Pick (2011) propose a simple
method where instead of combining forecasts across all possible windows, one only requires a
fixed number of windows that automatically update between a minimum given window and
full sample. Let us consider the observation window W = {yt+1, Xt}T−1

t=0 , and divide it into m
estimation windows of size

Wi = {yt+1, Xt}T−1
t=wi

, i = 1, . . . . . ,m (4.30)

where wi is the size of the ith estimation window, defining wmin as the minimum size of estimation
window, wi can be given as;

wi = wmin + (
i− 1

m− 1
)(T − wmin) (4.31)

Now, the CF across m estimation windows, AveW , can be given as

ŷAveWT+1 =
1

m

m∑
i=1

ŷT+1(Wi) (4.32)

where ŷT+1(Wi) indicates the forecast of any given model with particular estimation window
Wi.

4.2.3.6.3 Location weighted forecast combination Tian & Anderson (2014) suggest a
different CF method that combines forecasts across estimation windows by putting more weight
on recent observations. The weights under this approach are proportional to the position of each
estimation window’s start date (i.e. τ); CF are basically location weighted forecasts and can be
given as:

ŷT+1 =
T−w∑
τ=1

 τ
T−w∑
τ=1

τ

(X ′T β̂τ :T )

 (4.33)

4.2.3.6.4 MSFE weighted forecast combination Pesaran & Timmermann (2007) pro-
pose a CF method that combines forecasts obtained through different estimation windows. The
combining weights under this approach are proportional to the inverse of the corresponding
out-of-sample MSFE values computed over cross-validation period. This method is similar to
cross-validation approach discussed in section (4.2.3.4) but instead of selecting the best window,
this approach recommends to combine these forecasts based on their forecasting performance
under each estimation window. Given that E and w represent the cross-validation sample and
minimum observations required to estimate a model, respectively, the recursive pseudo out-
of-sample MSFE value for each possible starting point of the estimation window, m, can be
computed as:

MSFE(m|T,E) = E−1
T−1∑

τ=T−E
(ŷτ+1 −X ′τ β̂m:τ )2, m = 1, 2, . . . , T − w − E (4.34)

The CF across estimation windows based on MSFE weights is then given as:

ŷT+1 =

T−w−E∑
m=1

(X ′T β̂m:T )MSFE(m|T,E)−1

T−w−E∑
m=1

MSFE(m|T,E)−1

(4.35)
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4.2.3.6.5 ROC weighted forecast combination Tian & Anderson (2014) propose a new
approach to combine forecasts over various estimation windows which relies on the Reverse Or-
dered CUSUM (ROC) structural break test. The ROC is a two-stage technique for prediction.
A sequence of ROC test statistics is determined in the first step, starting from the most recent
observations and going back through time. Each location in the sample is regarded as the most
recent possible breakpoint. This test is similar to the Brown et al. (1975) classical CUSUM
test, but differs from the standard CUSUM test in that the test sequence considers potential
breakpoints in reverse chronological order, which is done by first putting all observations in
reverse order, then performing the conventional CUSUM test on the rearranged set of data.

In the first stage of the approach, for τ = T − w + 1, T − w, . . . 2, 1 , let :

y′T :τ = (yT , yT−1, . . . , yτ+1, yτ ) (4.36)

X ′T :τ = (XT , XT−1, . . . , Xτ+1, Xτ ) (4.37)

be the observations matrices, and let:

β̂ROCT :τ = (X ′T :τXT :τ )−1X ′T :τyT :τ (4.38)

be a series of β estimates obtained through least squares linked to the reverse-ordered datasets.
The ROC test statistics sτ is given as:

sτ =

T−w∑
t=τ

ξ2
t

T−w∑
t=1

ξ2
t

, for τ = T − w, T − w − 1, . . . 2, 1 (4.39)

where ξt are the standardised one-step-ahead recursive residuals given as:

ξt =
yt −X ′tβ̂ROCT :T+1√

(1 +X ′t(X
′
T :t+1XT :t+1)−1Xt)

(4.40)

All dates t are viewed as potential options for the final breakpoint in the second stage of the
procedure. The combining weight on each t is then given as:

cwτ =

∣∣∣sτ − (T−w−τ+1
T−w

)∣∣∣
T−w∑
τ=1

∣∣∣sτ − (T−w−τ+1
T−w

)∣∣∣ , τ = 1, 2, . . . , T − w (4.41)

Since, under the null hypothesis of no structural break in τ , it is:

E(sτ ) =
T − w − τ + 1

T − w
(4.42)

the combining weights differ from sτ to its predicted value depending on the absolute distances.
As a result, if this distance is high, cwτ is larger. This suggests that the evidence of a structural
break is strong. On the other hand, if no proof of a significant breakpoint exists in τ , the asso-
ciated weight, cwτ , is negligible.

In addition, the weights are not determined by locating and dating a structural break. However,
if, under the null hypothesis, the absolute values of the gap between the ROC statistics and
their expectations start to rise (indicating a possible structural break), the higher weights to the
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observations on data, following τ , will be assigned.
The one-step-ahead forecast, ŷT+1, based on ROC statistics can be given as:

ŷT+1 =
T−w∑
τ=1

(
cwτ (X ′T β̂τ :T )

)
(4.43)

4.2.3.6.6 ROC Location weighted forecast combination Tian & Anderson (2014) show
that it is possible to take into account an additional weight function lt in the definition of ROC
weights by considering a prior belief on the likelihood that a time t may be the latest breakpoint.
The combining weight with ROC location can be given as:

cwτ =

∣∣∣sτ − (T−w−τ+1
T−w

)∣∣∣ lτ
T−w∑
τ=1

∣∣∣sτ − (T−w−τ+1
T−w

)∣∣∣ lτ , τ = 1, 2, . . . , T − w (4.44)

For example, if a single breakpoint seems to be equally likely at each time point, the obvious
choice is lτ = 1 for τ = 1, 2, . . . , T−w. In this situation, the combining weights are only related
to the magnitude of the ROC statistics, and the weights are obtained through (4.43). However,
if the identification of the latest break is important, the prior weight lt could be chosen in the
full sample as an increasing function of the location of time τ . The most natural alternative is
lτ = τ in the sense of CF with location weights.

4.2.4 Overview of Combining Forecasts (CF) Literature

The concept of combining forecasts (CF) was first proposed by Bates & Granger (1969) to im-
prove forecast accuracy, and since then, the CF techniques have been used in many fields. A
growing consensus suggests that CF improves forecasting accuracy and minimises forecast error
variance. The following four points summarise the motivation for using the forecast combination
method to achieve superior performance. (I) In explaining the variation in the target variable, an
individual model may not be appropriate because the best in-sample model may perform poorly
out-of-sample. (II) Usually, individual forecasts characterise the time series data-generating pro-
cess from numerous and somewhat complementary perspectives. (III) Adaptive CF strategies
may provide a full image of a variety of partial solutions, i.e., CF allows individual forecasts to
“cover considerable grounds.” (IV) CF may help mitigate structural breaks, model uncertain-
ties, and model misspecifications, thereby improving the forecast accuracy. In short, CF can
compensate for the disadvantages of individual forecasts, take advantage of interactions between
individual forecasts, and minimise the risks of relying on a single forecast.9

4.2.4.1 Approaches for combining forecasts

In this section, we consider some of the important approaches of CF that have been used in
various field. Following Newbold & Granger (1974), all CF methods can be described as a linear
combination such that:

ŷct =
N∑
i=1

ωitŷit = w′tŷt (4.45)

where ŷt indicates the column vector of one-step-ahead forecasts (ŷ1t, ŷ2t, . . . , ŷNt) at time
t generated by the ith forecasting model, and wt represents the column vector of combining
weights for the set of N forecasting methods (ω1t, ω2t, . . . , ωNt). Generally, the combining
weights, ωit, would depend on the historical precision of the base forecasts. Therefore, in order
to forecast at time t+ 1, all the observations up to time t are used to estimate all base forecast

9See Chapter 3 for more details on CF approach.

150



model parameters and combining weights. The well-known CF approaches that vary primarily
in the way the combining weights are obtained are discussed below.

4.2.4.1.1 Simple average Of all the combining forecast approaches, this is the simplest. It
is famous because of its ease of implementation, robustness, and strong economic and business
forecasting record (Jose & Winkler 2008, Timmermann 2006, Rapach et al. 2010). The weights
under this approach are obtained as:

ωi =
1

N
(4.46)

The mean (simple average) forecast is susceptible to outliers and implies that distributions
are symmetrical. It is possible to use alternative combination operators such as the trimmed
mean combined forecast that sets ωit = 0 forecasts having the lowest and highest values, and
ωit = 1/(N − 2) for the rest. Alternatively the median and model of ŷt can also be used (see
Rapach et al. (2010) for more details).

4.2.4.1.2 Discounted mean square forecast error (DMSFE) method Under DMSFE
method, recent forecasts are more heavily weighted than distant ones. Following Winkler &
Makridakis (1983), the combining weights under DMSFE can be given as

ωi =

1/
T∑
t=1

θT−t−1υ2
it

1/
N∑
i=1

T∑
t=1

θT−t−1υ2
it

(4.47)

where θ indicates the discounting factor with 0 < θ ≤ 1, υit is the ith forecast error, whereas T
and N represent the total observation and the number of individual forecasts, respectively. If
θ = 1, then ω is proportional to the inverse of the models’ MSFE-values:

ωi =
MSFE−1

i
N∑
i=1

MSFE−1
i

(4.48)

4.2.4.1.3 Robust weighting scheme Aiolfi & Timmermann (2006) propose a robust weight-
ing method that inversely weighs forecast models to their rank based on some performance
criteria such as MSFE.

ωi =
Rank−1

i
N∑
i=1

Rank−1
i

(4.49)

where best model gets a rank of 1, second best model a rank of 2, etc.

4.2.4.1.4 Regression Method Granger & Ramanathan (1984) introduced a regression
method to combine forecasts. This method involves regressing the target variable yt on the
forecasts ft obtained through a particular model. The estimated regression coefficients indicate
the combining weights for a particular model. Granger & Ramanathan (1984) consider the
following three regression models:

yt = α+ w′ft + et (4.50)

yt = w′ft + et (4.51)
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yt = w′ft + et, subject to
N∑
i=1

ωi = 1 (4.52)

In equation (4.50) regression weights are unconstrained, while in equation (4.51) there is no
intercept term and in equation (4.52) there is no intercept and sum of regression weights is
constrained to one. If some of the predictive models fit are biased predictors, then the weighting
schemes generated by (4.51) and (4.52) could be biased, but (4.50) still generates unbiased
predictor as the bias in fit is picked up by the intercept. Therefore, if sample size is large, we
should expect the mean squared prediction error of (4.50) ≤ mean squared prediction error of
(4.51) ≤ mean squared prediction error of (4.52) unless the restriction is correct.

4.2.4.1.5 The optimal or variance-covariance method This method is one of the widely
used CF techniques in forecasting literature (Bates & Granger 1969, Newbold & Granger 1974,
Figlewski 1983, Cang & Yu 2014, Wong et al. 2007, Croce 2016). The VC approach emphasises
the consideration of correlation among forecasting errors, and the optimal weights are obtained
as a solution to minimising the combined forecast variance based on error variance-covariance
matrix. It is shown that VC can provide diversification effect and improve forecast accuracy
Bates & Granger (1969).

To obtain the optimal weights, wt, under VC approach, following formula is used

wt =
Ω−1e

e′Ω−1e
(4.53)

where e is the (N × 1) unit vector and Ω is the (N × N) covariance matrix of one-step-ahead
forecast errors.

To illustrate the VC approach, we assume that there two individual forecasts. If αit = yt − fit,
i = 1, 2 and yt represent the actual value of the corresponding forecast series, and we define εt
as forecast error on forecast combination, then

εt = yt − fct = ω1α1t + ω2α2t (4.54)

considering
N∑
i=1

ωi = 1, equation (4.54) can be rewritten as;

εt = ω1α1t + (1− ω1)α2t (4.55)

which has mean zero. Now we can obtain the variance as

σ2
c = E(ε2

t ) = ω2
1σ

2
1 + (1− ω1)2σ2

2 + 2ω1(1− ω1)σ12, (4.56)

where σ2
c is the variance of the combined forecast, σ2

i represents the variance of the ith individual
forecast, and σij is the covariance between the ith and the jth individual forecasts.
Now we can obtain the weight vector ωi by minimizing σ2

c :

ω1 =
(σ2

2 − σ12)

σ2
1 + σ2

2 − 2σ12
, (4.57)

ω2 =
(σ2

1 − σ12)

σ2
1 + σ2

2 − 2σ12
, (4.58)

The error-covariance method primarily depends upon the estimation of the error covariance
matrix. The first choice is a sample covariance matrix which requires estimation of N(N + 1)/2
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distinct elements. To overcome issues of the sample covariance matrix, Figlewski (1983) provides
a ‘single-index’ model. The single index model restricts the nature of the covariance matrix and is
similar to the market model in finance. Another way is to assume that forecasts are independent,
which means that the diagonal of Ω is sufficient. This helps in mitigating the estimation issues in
the presence of short time series (Bates & Granger 1969, Granger & Ramanathan 1984). There
is also another variant of the VC approach that assumes that weights cannot be negative (i.e.,
must belong to the interval [0, 1]) and sum to one.

4.3 Econometric Methodology

This section discusses the econometric framework to estimate the out-of-sample equity premium
forecasts. Before discussing the models and tests, we first introduce notation, then explain
the process of sample splitting. Next, we discuss the predictive regression framework for our
variance-covariance approach and out-of-sample forecast evaluation methods.

4.3.1 Notation

There are N predictors, which we index using the subscript i, from T dates (e.g., months),
which we index using the subscript t. Each model can be estimated with M estimation windows
indexed by j. W and E denote the in-sample and the out-of-sample holdout period, respectively.
S denotes the total number of out-of-sample observations (S = T −W − E) to evaluate the
performance of a given model. We let υi,t denote the forecast errors for model i at date t for
1 ≤ i ≤ N and 1 ≤ t ≤ T . The vector υt := (υ1,t, . . . . , υN,t)

′ consists of the forecast errors
of each model on date t. Finally, µt := E[υt] and Σt := Cov(υt) denote the expected forecast
errors and the error covariance matrix for date t, respectively.

4.3.2 Sample Split

All the methods used in this study are based on out-of-sample analysis to prevent look-ahead
bias. To obtain optimal combining weights, we follow the mainstream literature and estimate
forecast errors, error-covariance matrices and optimal weights from the data in a validation
sample. In particular, we divide our total sample of T observations into three different periods
that maintain the temporal ordering of the data. The first subsample (training sample) consists
of W observations to obtain initial parameters. The second subsample (validation sample)
consist of E observations, used to obtain optimal weights. The concept of validation is to
simulate an out-of-sample test of a given model. Note that the validation sample fits are not
really out of the sample since they are used to achieve an optimum combination of weights,
which, in turn, is an input to the calculation of the final forecast. Thus, the third subsample
(testing sample) consisting of S = T −W −E observations, which is not used for estimation or
validation, is simply out of the sample and is instead used to assess the predictive performance
of a given model.

4.3.3 Out-of-sample optimal forecast of equity premium

Following mainstream literature (e.g., Goyal & Welch 2008, Campbell & Thompson 2008, Rapach
et al. 2010, Neely et al. 2014), we use the standard predictive regression model, which can be
represented as:

rt+1 = αi + βixi,t + εi,t+1, (4.59)

where rt+1 is excess return on stock market index (equity premium) at time t + 1, and xi,t is
the predictive variable at time t, indexed by i, and εi,t+1 is corresponding disturbance term of
equity premium.
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In this study, our focus is on univariate models. More specifically, equation (4.59) only in-
corporates one variable of interest i. We can estimate N different models with N predictors.
Since each univariate predictor-based model can be estimated with M different windows, this
essentially results in N ×M models, each generating one forecast at a time. Our primary focus
in this paper is to apply combining forecast (CF) approach based on combining i) forecasts
from different univariate predictive models all estimated on a single-window (across N forecasts
when M = 1, N × 1 forecasts), ii) forecasts from the same univariate predictor-based model
estimated across different windows (across M forecasts when N = 1, 1×M forecasts), and iii)
forecasts from both different univariate predictor-based models and windows (both across N and
M , N ×M forecasts). The procedure for generating CF using these three methods is described
below.

4.3.3.1 CF across models

Rapach et al. (2010) propose the CF approach to combine forecasts obtained from various
univariate predictor-based models. Given that, we have N forecasts (indexed by i). The CF
across models can be given as:

r̂CF−Mod
t+1 =

N∑
i=1

ω̂i,t(r̂i,t+1) (4.60)

where r̂CF−Mod
t+1 is a combined forecast across models at time t + 1. ω̂i,t indicates the optimal

weight for forecast i, obtained through variance-covariance approach discussed in section (4.4).
r̂i,t+1 indicates the forecast obtained from model i, based on an expanding window.

4.3.3.2 CF across estimation windows

Most of the studies in equity premium forecasting (e.g., Rapach et al. 2010, Neely et al. 2014,
and others) use a recursive expanding window to estimate out-of-sample forecasts. However,
many studies such as Pesaran & Timmermann (2007), Pesaran & Pick (2011), Rossi & Inoue
(2012), Tian & Anderson (2014), Wang et al. (2020), and others show the benefit of combining
the forecasts of a single model estimated with different estimation windows. Suppose we have
M forecasts (indexed by j) from different window lengths and combining weights formed at time
t are given as ω̂i,j,t, the combined forecast across different estimation windows for model i can
be defined as:

r̂CF−Win
i,t+1 =

M∑
j=1

ω̂i,j,t(r̂i,j,t+1) (4.61)

The above-mentioned studies combine forecasts based on different estimation windows, using
equal weights or weights proportional to the inverse of the loss function of the out-of-sample,
such as mean square forecasting error (MSFE). However, in this study, we use the variance-
covariance approach discussed in section (4.4.2).

4.3.3.3 CF across models and estimation windows

The CF approach given in equation (4.60) represents the CF across N models, all estimated
with a single window (expanding). On the other hand, model in equation (4.61) indicates the
CF forecasts across M estimation windows for any given model i. Now we consider combining
forecasts based on various models (N) and different estimation windows for individual model
(M). We consider three variants of this method discussed below.
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4.3.3.3.1 Panel approach The panel approach implies that we have a panel of (P = M×N)
forecasts indexed by g. The combined forecasts can be given as:

r̂CF−Panelt+1 =
P∑
g=1

ω̂g,t(r̂g,t+1) (4.62)

where r̂CF−Panelt+1 is combined forecast across windows and models. ω̂g,t indicate the optimal
weights obtained through variance-covariance approach discussed in section (4.4.2).

4.3.3.3.2 SELCOM approach Next, we are interested in a hybrid of model selection (SEL)
and combination (COM) approach. We call this approach as “SELCOM” and the combined
forecast with this approach can be given as:

r̂SELCOMt+1 =
N∑
i=1

ω̂i,t(r̂
∗
i,t+1) (4.63)

where r̂∗i,t+1 is equity premium forecast at time t+1 based on the optimal estimation window ap-
proach proposed by Pesaran & Timmermann (2007), discussed in section (4.2.3.4). Specifically,
this approach chooses the optimal window size by minimising the MSFE in validation sample.
ω̂i,t indicates the optimal combining weights obtained through variance-covariance approach
discussed in section (4.4.2).

4.3.3.3.3 COMCOM approach Finally, we consider a double combining method, which
first combines the forecasts of individual predictor-based models across estimation windows given
in equation (4.61), and then uses the variance-covariance approach to combine the optimally
weighted forecasts across models. Therefore, we name this approach as “COMCOM”, and the
combined forecast using this method is as follows:

r̂COMCOM
t+1 =

N∑
i=1

ω̂i,t(r̂
CF−Win
i,t+1 ) (4.64)

where r̂CF−Win
i,t+1 is the combined forecast of individual model across M estimation windows ob-

tained from equation (4.61), and ω̂i,t indicates the optimal combining weights obtained through
variance-covariance approach discussed in section (4.4.2).

4.3.4 Forecast Evaluation

In this section, we discuss different tests to evaluate the out-of-sample performance of our
forecasting approaches and benchmark models. Each model’s performance is evaluated over S
out-of-sample observations spanning from January 1947 to December 2018. The out-of-sample
evaluation period is indexed by e (e = 1, 2 . . . S).10 This section consists of two parts. First, we
discuss the measures to evaluate the statistical significance of a given model and the measures
for evaluating the economic significance are discussed in the final part of this section.

4.3.4.1 Measures to evaluate statistical significance

The most common metric for measuring forecast accuracy is mean squared forecasting error
(MSFE), and it is not surprising that MSFE is regularly reported in stock return predictability

10Note that each time e represents the one-step-ahead forecast. For example, a forecast at time e = 1 would
indicate the first out-of-sample forecast, r̂t+1.
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studies. The MSFE for approach for a given approach m over evaluation period can be given
as:

MSFEm =
1

S

S∑
e=1

(re − r̂m,e)
2 (4.65)

We compare the performance of a given forecasting model m, with the historical average (HA)
benchmark model which assumes that the expected excess returns remain constant over time
and can be given as:

rt+1 =
1

t

t∑
s=1

rs (4.66)

and its MSFE over evaluation period can be given as:

MSFEHA =
1

S

S∑
e=1

(re − re)2 (4.67)

To compare MSFEs of a given model and historical average, the out-of-sample R2 (Campbell &
Thompson 2008) is a convenient statistic. It is similar to the traditional in-sample R2 and calcu-
lates the proportional decrease in MSFE relative to the historical average for a given forecasting
approach m. It can be given as:

R2
OOS,m = 1− MSFEm

MSFEHA
(4.68)

The out-of-sample R2 lies in the range (−∞, 1), where a negative value indicates that the fore-
casting performance of a given model is poor and fails to outperform the historical average.

Next, we test whether the CF models produce significantly lower MSFE than the benchmark
models i.e., historical averages and others. We test the null hypothesis of R2

OOS ≤ 0 against the
alternative hypothesis of R2

OOS > 0. We use MSFE-adjusted statistic given by Clark & West
(2007). In order to calculate MSFE-adjusted statistic, we first need to define:

fe = (re − re)2 − [(re − r̂m,e)
2 − (re − r̂m,e)

2] (4.69)

Next, we regress {fe}Se=1 on a constant, and calculate the t-statistic. Finally, using the standard
normal distribution, we calculate a p-value for a one-sided (upper-tail) test based on 1%, 5%,
and 10% significance levels.

In addition to the Clark & West (2007) statistic and the R2
OOS , we also compute and plot

the cumulative difference of the squared forecast errors (CumSFE) of the historical average
(HA) and a given m model over the out-of-sample forecast evaluation period. The CumSFE
is frequently used as a visual method in the forecasting literature to illustrate the predictive
performance over time of a proposed model relative to the benchmark (e.g., Goyal & Welch
2008, Rapach et al. 2010). The CumSFE can be given as:

CumSFEe =
e∑
s=1

(
[rs − rs]2 − [rs − r̂m,s]

2
)
, ∀e = 1, . . . . , S (4.70)

A value above zero of CumSFEe suggests that the proposed m model produces more accurate
forecasts relative to historical average.
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4.3.4.2 Measures to evaluate economic significance

The performance metrics discussed in the previous section only indicate the statistical signif-
icance; they do not specifically account for the risk that an investor bears during the out-of-
sample period. Considering this, we also evaluate the economic significance of the proposed
models. More specifically, following Campbell & Thompson (2008), Goyal & Welch (2008),
Rapach et al. (2010), Neely et al. (2014), Li & Tsiakas (2017), and others, we use a dynamic
asset allocation strategy to assess the economic significance of equity risk premium predictions
for an investor with a certain degree of risk-averse level. The strategy assumes that an active
portfolio consisting of investments in risky (equities) and risk-free (Treasury bill) assets requires
monthly rebalancing to allocate the resources based on different equity risk premium predictions.

The average utility gain for a mean-variance investor is a popular utility-based metric to anal-
yse the equity premium forecasts. At the end of period t, the risk-averse investor optimally
distributes the following proportion of the portfolio to equities during period t+ 1:

ωt =

(
1

γ

)(
r̂t+1

σ̂2
t+1

)
(4.71)

where γ is the degree of risk-aversion, r̂t+1 indicates the equity premium forecast with any given
model and σ̂2

t+1 represents the variance of the forecast. The weights assigned to risk-free asset
can be given as 1−ωt. The return on portfolio at period t+ 1, rp,t+1, based on optimal weights
can be given as:11

rp,t+1 = ωtr̂t+1 + rf,t+1 (4.72)

Following Campbell & Thompson (2008), our estimates of σ̂2
t+1 are based on a five-year rolling

average of the variance of past monthly returns and do not allow short-selling and leverage is also
limited to no more than 50%. We do this by limiting the weights of risky assets to be wt ∈ [0, 1.5].

The certainty equivalent rate (CER) for the portfolio can now be given as:

CER =

(
r̂p −

1

2
γσ̂2

p

)
(4.73)

where r̂p and σ̂2
p represent the mean portfolio return and portfolio variance, respectively over the

forecast evaluation period for an investor with a risk-aversion level of γ. The CER can be viewed
as the performance fees that a risk-averse investor with a specific risk aversion level should pay
to switch from a risk-free asset to a risky portfolio. Our focus in this study is the relative CER
also known as CER gain (∆CER), which is defined as the difference between the CER of any
given model and the CER of the historical mean benchmark. To present this difference (∆CER)
into average annualised percentage return, we multiply it by 1200, which can be understood as
the annual percentage portfolio management fee that an investor is ready to pay in order to
access a given model’s forecasts in comparison to the historical average forecast. We also take
the impact of transaction costs into account to provide a practical measure of the profitability of
dynamic trading strategies. Specifically, we follow forecasting literature (e.g., Neely et al. 2014)
and calculate the ∆CER net of proportional transaction costs of 50 bps per month.

In addition to the CER, we also consider two other measures including Sharpe ratio (SR) and
portfolio turnover (TO). The SR is by far the most widely used measure of performance and is

11Remember that the equity premium is measured as the return on S&P 500 index in excess of risk-free rate
(Treasury bill), rS&P500 − rf . The weighted average portfolio based on a risky and a risk-free asset, therefore, be
given as ωtr̂

S&P500
t+1 + (1 − ωt)rf,t+1, which can be redefined as ωt(r̂

S&P500
t+1 − rf,t+1) + rf,t+1, where the former

term represents the equity premium by definition.
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characterised as a portfolio’s average excess return divided by the standard deviation of portfolio
returns.

SR =
r̂p
σ̂p

(4.74)

where r̂p and σ̂p represents the mean and standard deviation, respectively, of the investor’s
portfolio over the forecast evaluation period. To assess the statistical significance, we use the
Ledoit & Wolf (2008) bootstrap two-sided test, which checks if the alternative model’s SR is
distinct from the benchmark.

Finally, we consider the average portfolio turnover measure TO, which can be viewed as the
average fraction of portfolio value is being traded each period. We can define TO as the average
of the sum of absolute change in portfolio weight across the assets for any given model over all
available rebalancing periods, T − 1:

TO =
1

T − 1

T−1∑
t=1

(|wt+1 − w−t+1|) (4.75)

where T−1 indicates the number of trading periods, wt+1 represents the weight on the risky asset
at time t + 1, and w−t+1 = wt

1+rt+1

1+rp,t+1
indicates the risky asset’s weight right before rebalancing

at time t+1. Note that the TO indicates the average monthly trading volume but in results our
TO measure is in relative sense, which is the ratio of the alternative model’s average turnover
divided by the benchmark model’s average turnover.

4.4 Optimal CF with variance-covariance (VC) approach

This section discusses the optimal combining forecast (CF) approach using the variance-covariance
method. We first discuss the optimal CF problem and explain how it relates to covariance ma-
trix estimation. In the last subsection, we discuss the implementation of the variance-covariance
approach to generate out-of-sample forecasts for equity premium.

4.4.1 Optimal forecast combination problem

The idea of combining forecasts (CF) was first proposed by Bates & Granger (1969) as a way of
improving forecast accuracy by minimising the variance of composite forecast. The optimisation
problem is similar to Markowitz portfolio theory, which deals with the problem of assigning
weights ω to a universe of M possible assets in order to minimise the variance of the portfolio.
More precisely, the optimal portfolio weights (forecast weight in our application) ω on time t
are found by solving

ω =
Σ−1e

e′ Σ e
(4.76)

where ω is M vector of weights, e is the (M × 1) unit vector, Σ is the (M ×M) covariance
matrix of asset returns. The solution can also be found through optimisation which is identical
to (4.76).

minimise
ω

ω′ Σ ω

subject to ω′e = 1
(4.77)

We can see that this problem is similar to portfolio optimisation (global minimum variance) to
obtain optimal portfolio weights for M assets where optimal weights ω are obtained by minimis-
ing the portfolio variance.
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Many studies (e.g., Newbold & Granger 1974, Figlewski 1983, Timmermann 2006) find that
allowing negative weights can produce poor forecasts as the change in weights from one period
to another can be large and consequently many studies use the additional constraint of no-short
sales in equation (4.77) to obtain optimal weights which results in:

minimise
ω

ω′ Σ ω

subject to ω′e = 1

ωj ≥ 0

(4.78)

To implement the variance-covariance method, we first need to estimate the error-covariance
matrix. The standard choice is the sample covariance matrix which requires estimation of
M(M+1)/2 distinct elements. To overcome issues of sample covariance matrix, Figlewski (1983)
provides a ‘single-index’ model. The single index model restricts the nature of the covariance
matrix, and is similar to the market model in finance. Another way is to assume that forecasts
are independent which means that the diagonal of Σ is sufficient. This also mitigates estimation
issues when only short time series are available (Bates & Granger 1969, Granger & Ramanathan
1984). To estimate the error variance-covariance matrix, we use all three methods: diagonal,
sample, and single-index model.

4.4.1.1 Sample Covariance Matrix

The sample covariance matrix is the standard measure for estimating the pair-wise covariances
of asset classes. Given E observations of forecasting errors, we can define the sample covariance
matrix as:

ΣS =
1

E − 1

E∑
t=1

(υt − υ)(υt − υ)′ (4.79)

where υt = [α1,t, . . . . , αM,t], υ = [α1, . . . . , αM ] and υj = 1
E

E∑
t=1

αj,t.

4.4.1.2 Diagonal Covariance Matrix

Diagonal covariance treats the forecast errors as independent by setting all off-diagonal ele-
ments to zero. This approach ignores correlations that help prevent complications caused by
dependency when assigning optimal weights to forecasts.

ΣDIAG =

σ
2
j

. . .

σ2
M


ΣDIAG = IMΣS = Diag(ΣS) (4.80)

where IM is identity matrix and ΣS denotes sample covariance matrix discussed earlier.

4.4.1.3 Single Index Model Covariance Matrix

Figlewski (1983) employs a “single-index model,” which is analogous to the market model of
finance, in which he models the information structure in such a way that certain individual model
differences are allowed, but the error covariance matrix (Σ) is a function of a small number of
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parameters. He uses a cross-sectional average of forecast errors to measure “systematic” error
forecast, which is common to all models.

υt =
1

M

M∑
j=1

αj,t, (4.81)

We can now describe our single-index model as follows, using E time-series of M individual
forecast errors (E ×M) and E × 1 time-series of average errors:

αj,t = Aj + Cjυt + uj,t,

υ ∼ N (0, Θ2),

uj ∼ N (0, σ2
uj ),

cov(υ, uj) = 0,

cov(ui, uj) = 0 ∀ i 6= j

(4.82)

This can also be given in matrix form. Assume Ψ is the error vector.

Ψt = A+ C Ψt + Ut (4.83)

Ψt =



α̂1,t

α̂2,t

α̂3,t

•
•
•

α̂M,t


, C =



C1

C2

C3

•
•
•
CM


, Ut =



u1,t

u2,t

u3,t

•
•
•

uM,t


then

ΣSIM = var(Ψ) = CvarΨtC
′ + var(Ut) (4.84)

ΣSIM = Θ2.CC ′ +D (4.85)

where Θ2 . CC ′ is shared information deficiency and D = diag(σ2
u1
, σ2

u2
, σ2

u3
, . . . . . , σ2

uM
),

model specific error variance.

4.4.2 Implementing Variance-Covariance approach

In this section, we discuss the implementation of the optimal forecast method with the variance-
covariance approach in forecasting out-of-sample equity premium. This section is divided into
three subsections based on the form of uncertainty that the VC approach addresses: i) estimation
window uncertainty (EWU), ii) variable-selection uncertainty (VSU), and iii) both EWU and
VSU.

4.4.2.1 Applying VC approach to address EWU

Our first application is to combine forecasts from different estimation windows for univariate
predictor-based models. To obtain optimal weights, we need to estimate the error-covariance
matrix in the validation sample, which requires the estimates of forecast errors generated by in-
dividual models across all possible windows. Since the last E data observations are reserved for
an out-of-sample estimation exercise by the cross-validation approach. And we further assume
that a minimum of wmin observations are needed to estimate the forecasting model parame-
ters; this means that this method needs wmin + E data points. In our application, we set the
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minimum estimation window to 180 observations and the CV sample to 60 observations.12 All
possible estimation windows can be defined as M = T − wmin − E. Here M indicates the to-
tal possible models with different estimation windows which is indexed by j (j = 1, 2, . . . . . M).

The recursive pseudo out-of-sample forecasting errors for each possible starting point of the
estimation window, j, can be computed as:

Aτ (j|T,E) = rτ+1−x′τ β̂j:τ , j = 1, 2, . . . , T −wmin−E and τ = T −E, . . . , T −1 (4.86)

where Aτ represents E × M error matrix at time τ , β̂j:τ represents the OLS estimate from
equation (4.59) using [j, τ ] observation window. Since the number of estimation windows, M ,
increases by 1 with an increase in time τ , so error matrix also increases with each out-of-sample
period. This means that the first out-of-sample evaluation period will contain error-matrix with
E × 1 and last period will have E × (T − wmin − E) errors.

Since we have E × M cross-validation forecast errors and now we can obtain M × M
error covariance matrix using diagonal, sample covariance and the single-index model discussed
in the previous section.13 After estimating the error-covariance matrix now we can find optimal
weights under our error-covariance (EC) ωj as:

minimise
ω

ω′ Σ ω

subject to ω′e = 1, e is vector of 1’s

ωj ≥ 0

(4.87)

this will generate 1×M optimal weights, which can be applied to the out-of-sample forecast.
The one-period ahead forecast based on the VC method is given as:

r̂CFWin−V C
i,t+1 =

M∑
j=1

ω̂i,j,t(r̂i,j,t+1) (4.88)

where r̂CFWin−V C
i,t+1 is combined out-of-sample forecast of equity premium across M estimation

windows with predictor i using variance-covariance approach.

4.4.2.2 Applying VC approach to address VSU

We use the variance-covariance (VC) method to combine forecasts from various univariate
predictor-based models, each of which is estimated with a single-window. More precisely, a
CF approach that tackles variable-selection uncertainty but uses a non-optimal estimation win-
dow. Given that we have N univariate predictor-based models indexed by i (i = 1, 2, . . . , N),
the combining forecast based on VC approach, r̂CFMod−V C , can be given as:

r̂CFMod−V C
t+1 =

N∑
i=1

ω̂i,t(r̂
EXP
i,t+1 ) (4.89)

where r̂EXPi,t+1 is a forecast of the univariate predictor-based model estimated with expanding
window (e.g., Rapach et al. 2010) and ω̂i,t indicates the optimal combining weights obtained
through VC approach.

12Many studies (e.g., Rapach et al. 2010) use 15 years data for estimation of initial parameters, and 5 year
data for holdout validation sample.

13Since cross-validation forecasting errors are not zero mean, so to make them unbiased, we follow Figlewski
(1983) and remove the mean of individual errors.
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Forecasting literature suggests four potential ways to estimate the optimal weights based on
the error covariance matrix. i) cross-validation approach; ii) using all past forecasting errors, i.e.
estimating covariance matrix with expanding window, iii) using recent forecasting errors, i.e.
estimating error covariance matrix with rolling window, and iv) optimal covariance matrix. The
main difference between approach (i) and other three approaches (ii to iv) is that (i) considers
the forecasting performance in the CV sample; however, approaches ii, iii, and iv consider the
past performance.

Since the evidence for these methods is mixed, we use all four. A review of the literature
on portfolio optimisation shows that several studies, including Fleming et al. (2003), Hautsch
& Voigt (2019), and others, suggest the use of rolling covariance, in which estimates are re-
estimated at each time. Considering this, our rolling window covariance consists of 15 years
rolling window by using equation (4.59). On the other hand, the optimal covariance matrix
is based on the minimisation of combined forecast variance. More specifically, at each period,
we get the covariance matrix Σ̂, optimal weights ω∗ and composite forecast variance ω∗ ′ Σ̂ ω∗

with all possible window lengths with minimum of 15 years. Next, we choose the optimal length
one that produces the minimum composite variance. Next, the combining weights under opti-
mal window length are applied to the out-of-sample forecasts of the individual model obtained
through expanding window.

4.4.2.3 Applying VC approach to address both EWU and VSU

This section introduces some of the methods for simultaneously addressing EWU and VSU
problems.

4.4.2.3.1 A panel approach of Combining Forecasts In this section, we discuss the
panel approach to combine various forecasts from both univariate predictor-based models and
estimation windows. As shown in section (4.4.2.1) that a validation sample approach for each
predictor-based model would generate E ×M forecast errors which are used as input for the
error-covariance matrix. Instead of estimating N separate error-covariance matrices at each
period, we use a panel of forecast errors (E×N ×M) that requires estimation of a single error-
covariance matrix. After estimating error covariance matrix, we can obtain the optimal weights
through equation (4.87) and define the combined forecast as:

r̂CFPanel−V Ct+1 =

P∑
g=1

ω̂g,t(r̂g,t+1) (4.90)

where r̂CFPanel−V Ct+1 is combined forecast across estimation windows and models. ω̂g,t indicate
the optimal weights obtained through variance-covariance approach.

4.4.2.3.2 Selection-Combination (SELCOM) approach Under this approach, we first
select the optimal window for each individual predictor-based model and then combine them
using the variance-covariance approach. Specifically, at each period, we get the individual fore-
casts with all possible estimation windows with minimum wmin observations, and by following
Pesaran & Timmermann (2007), we compute MSFE for each estimation windows in the CV
sample. We then choose the optimal window length as one with minimum MSFE. In the next
step, we obtain the optimal weights for the individual model based on the variance-covariance
approach discussed earlier and then form the combined forecast as:

r̂SELCOMt+1 =

N∑
i=1

ω̂i,t(r̂
∗
i,t+1) (4.91)
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where r̂∗i,t+1 indicates the forecasts of the univariate predictor-based model with optimal estima-
tion window based on MSFE in the validation sample. And ω̂i,t indicates the optimal combining
weights for each model i are obtained through the variance-covariance approach. We consider
all four methods for estimating optimal weights discussed in section (4.4.2.2).

4.4.2.3.3 Combination-Combination (COMCOM) approach This strategy is similar
to that of SELCOM. However, in the first step, we replace the selection with combination, and
the CF across windows for univariate predictor-based models is based on the VC method. The
second combining step is the same as the SELCOM method described in the previous subsection.

r̂COMCOM
t+1 =

N∑
i=1

ω̂i,t(r̂
CW
i,t+1) (4.92)

4.5 Data and Benchmark Models

4.5.1 Data

We follow the mainstream equity premium predictability literature (e.g., Goyal & Welch 2008,
Rapach et al. 2010, and others) to construct the equity premium as well as the economic and
financial predictor variables. The target return to be predicted is the market return, which
is described as the S&P 500 index log return (including dividends) minus the log return on
one-month T-bill rate, available from Amit Goyal’s website. The predictor variables are from
Goyal & Welch (2008), who also provide comprehensive descriptions of the data, including their
origins. The dataset includes 14 variables considered relevant in predicting equity premium
in past empirical studies.14 These variables include stock characteristics (the dividend yield
(DY), the dividend-price ratio (DP), the dividend-payout ratio (DE), the earning-price ratio
(EP), the book-to-market ratio (BM), the net equity expansion (NTIS), and the stock variance
(SVAR)), interest rate related variables (the Treasury bill rate (TBL), the long-term return
(LTR), the long-term yield (LTY), the term spread (TMS), the defaults-return spread (DFR),
and the default-yield spread (DFY)), and inflation (INFL) to represent the macroeconomy. We
use monthly data for all these variables spanning from July 1926 to December 2018.15

4.5.2 Benchmark Models

To analyse the performance of our various optimal forecast approaches (see section 4.4) relative
to the standard equity premium prediction models, we consider various benchmark models
from existing forecasting literature. To provide a direct comparison to our variance-covariance
approach, we divide our benchmark models into three groups based on the type of uncertainty
they address: i) estimation window uncertainty (EWU), ii) variable-selection uncertainty (VSU),
and iii) both EWU and VSU.

4.5.2.1 Standard approaches to address EWU only

The various well-known methods used in literature to address the issue of EWU for a single
model are included in our first group of benchmark models. These benchmarks allow us to
directly compare forecast performance with our variance-covariance approach that optimally
combines the forecasts of a single model based on different estimation windows. We denote the
forecast for any given individual predictor-based model i under one of the benchmark models b
as r̂EWU∗

i,t+1,b . The details on these model are given in section (4.2.3).

14We use an updated version of the dataset available at http://www.hec.unil.ch/agoyal/
15The transformations that we use to build the predictor variables are given in Table 1 of Chapter 2.
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4.5.2.2 Standard approaches to address VSU only

In the next group of benchmark models, we consider well-known models that are thought to
solve the issue of VSU but are not based on an optimum estimation window. The detail on these
models can be found in section (4.2.2) and Table 4.2. The primary reason for including these
strategies is that they typically use an expanding (recursive) window and presume that either
no structural breaks exist or that the applied strategy often addresses parameter instability
issues. However, studies such as Pesaran & Timmermann (2007), Pesaran & Pick (2011), Rossi
& Inoue (2012), Pesaran et al. (2013), and Zhang et al. (2020) show that EWU should be
tackled separately. In particular, when compared to some of the benchmark models given in
section (4.2.2) that only address VSU, Pesaran et al. (2013), Zhang et al. (2020), and Wang
et al. (2020) show that considering VSU and EWU simultaneously improves forecast accuracy.

4.5.2.3 Standard approaches to address both EWU and VSU

Our final set of benchmark models includes models that first address the problem of EWU and
then take a simple average across all models to address the issue of VSU. The main benchmark
under this approach is the average-average (AveAve) of Pesaran et al. (2013), where the first step
involves taking a simple average across estimation windows for individual predictor-based models
(AveW). Then a simple average across models is taken to reach the final forecast (AveAve). We
extend our benchmark set in this category to all the approaches discussed in the previous section
(4.5.2.1) which address the EWU issues. Given that r̂EWU∗

i,t+1,b is the optimal or final forecast for i
predictor-based model using approach b, the average forecast across model then be given as:

r̂Ave−PI
∗

b,t+1 =
1

N

N∑
i=1

r̂PI
∗

i,t+1,b (4.93)

The inclusion of these models as benchmarks allows us to compare our SELCOM and COMCOM
models more effectively. For example, a direct benchmark for our SELCOM model will be models
that choose the best window for each individual predictor-based model based on MSFE in the
CV sample and then take a simple average across all models. The only distinction between these
two methods is how forecasts across models are combined, since we use a variance-covariance
approach to combine forecasts across models based on forecasting results rather than a simple
average as in benchmark models. Similarly, any method that combines forecasts from different
estimation windows first and then takes a simple average across models will be an excellent
benchmark for our COMCOM approach.

4.6 Empirical Results

The out-of-sample forecasting results of the equity risk premium from January 1947 to De-
cember 2018 are discussed in this section. There are six subsections in this section. First, we
discuss the results of the variance-covariance (VC) approach in addressing estimation window
uncertainty (EWU), variable-selection uncertainty (VSU), and both EWU and VSU. The VC
approach’s findings are then compared to the various benchmark models discussed in section
(4.5.2). The third subsection compares the results of the VC approaches and benchmark models
over recession and expansion periods. In subsection four, the findings on economic significance
based on the mean-variance strategy are discussed. The importance of individual predictors in
combined equity premium forecasts are discussed in subsection 5. The last subsection discusses
the evidence on the linkage between equity premium forecasts generated by our VC approaches
and the real economy.
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4.6.1 Results from VC approach

This section discusses the results of variance-covariance approach. Following the literature,
we use Campbell & Thompson (2008) out-of-sample R2

OOS metric to evaluate the forecasting
performance of all the models considered. The R2

OOS measures the reduction in mean squared
forecasting error (MSFE) relative to an alternative model, which is a historical average in our
case. A positive R2

OOS suggests the model of interest outperforms the benchmark model. In
order to test whether our model produces less MSFE than the benchmark model, we use Clark
& West (2007) statistic.

4.6.1.1 Results from VC approach addressing EWU only

Table 4.3 reports the results from univariate predictor-based models based on our VC approach.
These models are summarised in Table 4.1 and details are given in section (4.4.2.1). The results
from VC approach are based on diagonal, sample, and single index model (SIM) covariance ma-
trices. All of these covariance matrices are calculated using the Cross-validation (CV) method,
which uses an out-of-sample holdout sample (cross-validation sample) to estimate forecasting
errors, error-covariance matrix, and optimal weights.

[Insert Table 4.3 about here]

We report the out-of-sample R2 (R2
OOS) statistics in percentage form to compare the forecasts

provided by prediction models with the historical average forecast. The results show that all
univariate predictor-based models under VC-DIAG and VC-SAMPLE perform poorly as R2

OOS

is negative for all models. However, for VC-SIM, three individual models, DE, SVAR, and TMS,
yield positive R2

OOS . This indicates that the VC-SIM approach outperforms the VC-SAMPLE
and VC-DIAG approaches by achieving the highest R2

OOS for all individual models. This is in
line with studies such as Figlewski (1983) that performance of sample covariance is poor due to
high estimation error, and diagonal covariance matrix does not consider the correlation among
forecasting errors. This indicates that the optimal weights under the single-index model help to
improve forecasting accuracy. However, despite accounting for estimation window uncertainty
(EWU) using a variance-covariance method, univariate predictor-based models fail to outperform
the historical average in general. The best performing model, DE, has an R2

OOS of 0.23%, which
is significant at 5% based on Clark & West (2007) statistic. However, according to Campbell &
Thompson (2008) argue that R2

OOS in excess of 0.5% can be considered a significant improvement
over the benchmark model (historical average). However, all of the models using VC approaches
have an R2

OOS of less than 0.5%.

4.6.1.2 Results from VC approach addressing VSU only

Table 4.4 reports the forecasting results of our VC approach addressing variable-selection un-
certainty only by combining forecasts across univariate predictor-based models. These models
are summarised in Table 4.1 and details are given in section (4.4.2.2). Following mainstream
equity premium prediction (e.g., Rapach et al. 2010, Neely et al. 2014), each univariate model
is estimated with an expanding window. The variance-covariance method produces results us-
ing three types of covariance matrices: diagonal, sample, and single-index model. Moreover,
each covariance matrix is estimated using four different ways, including cross-validation (CV),
rolling-window (ROLL), expanding-window (EXP), and optimal-window (Optimal). CV de-
notes a cross-validation approach similar to the one used in combining forecasts across different
estimation windows discussed in the previous section. ROLL (EXP) indicates that the histor-
ical forecasting errors for individual models are estimated with a rolling window of 15 years
(expanding window including all the observations). The optimal covariance matrix at a given
time effectively determines the optimal past observations for estimation of the error-covariance
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matrix using minimal variance criteria (see section (4.4.2.2) for details).

[Insert Table 4.4 about here]

Results in Table 4.4 suggest that CF across univariate predictor-based models based on VC
approach improves the forecasting accuracy for most of the models. All the models except those
which use expanding window for estimating the covariance matrix achieves an R2 in excess of
0.50%, which is really a big improvement compared to various methods considered in Table 4.3
for addressing EWU issues for univariate predictor-based models. Moreover, consistent with
findings on univariate models given in Table 4.3, we find that VC-SIM outperforms VC-DIAG
and VC-SAMPLE by achieving an R2

OOS of 0.754% and 0.804% for covariance matrix based on
15 years rolling window and optimal covariance, respectively. These R2

OOS are significant at 1%
based on Clark & West (2007) statistic.

4.6.1.3 Results from VC approach addressing EWU and VSU

Given that addressing variable-selection uncertainty using a VC approach improves equity pre-
mium forecasting accuracy, we are now focusing on addressing EWU and VSU at the same time
using our VC approach. These models are summarised in Table 4.1 and details are given in sec-
tion (4.4.2.3). Table 4.5 reports the forecasting results of our VC approach addressing EWU and
VSU simultaneously by combining forecasts across estimation windows and individual predictor-
based models. Panel A presents the results of a panel approach in which a single error-covariance
matrix is estimated to obtain the optimal weights for individual predictor-based models and es-
timation windows. We begin by comparing the results of the three covariance matrices that
were used in this analysis. Results show that among diagonal, sample and single-index model,
the Panel (SIM) obtains the highest monthly out-of-sample R2 with 0.922%. Panel(DIAG) and
Panel (SAMPLE) achieves R2 of 0.838% and 0.792%, respectively. All these R2 statistics are
significant at 5% level based on Clark & West (2007) test.

[Insert Table 4.5 about here]

Next, we analyse the optimal weights generated by each approach using original and boot-
strapped samples. We find that the optimal weights under the panel approach are more volatile
for Panel (SAMPLE) than Panel (SIM). On the other hand, the diagonal matrix generates more
stable weights. Despite the better performance of Panel (SIM), in some periods, the model
is biased towards a single univariate model where optimal weights are spread over different
estimation windows of the same predictor-based model. This implies that a panel approach
can be biased toward accounting for EWU while neglecting to account for VSU. This moti-
vates us to use a two-step approach of Wang et al. (2020), in which they demonstrate that
it is best to address EWU for univariate predictor-based models first and then take a simple
average across forecasts of univariate models obtained from the first step. This way, all univari-
ate predictor-based models have the opportunity to contribute towards the ultimate forecast.
Following Wang et al. (2020), we first apply VC approach to EWU by combining forecasts of
individual predictor-based models across windows and in the next step, we take a simple aver-
age across individual models. We call this approach Mean (VC-DIAG), Mean (VC-SAMPLE),
and Mean (VC-SIM) for diagonal, sample, and SIM covariance matrix, respectively. Results
in Panel B of Table 4.5 suggests that there is significant improvement in R2 for SIM as Mean
(VC-SIM) achieves an R2 of 1.124%, significant at 5% level based on Clark & West (2007) test.16

16The difference between R2 of Mean (CV-SIM) and Panel (SIM) is significant at 5% level using bootstrapped
p-values.
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Next, we replace the simple average in the second step of the two-step process with optimal
weights for univariate predictor-based models obtained through VC approach discussed in the
previous section. Panel C of Table 4.5 reports the results of our SELCOM approach where by
following Pesaran & Timmermann (2007), we first compute MSFE for each estimation windows
in CV sample. We then choose the optimal window length as one with minimum MSFE. In
the next step, we obtain the optimal weights for the individual model based on VC approach
discussed earlier and then form the combined forecast (see section (4.4.2.3.2) for details). Re-
sults show that SELCOM (SIM) outperforms SELCOM (DIAG) and SELCOM (SAMPLE) in
all specifications of covariance matrix estimation. In addition, we find that Roll covariance
performs better than Exp, which implies considering recent observations and forecasting errors
improves forecasting accuracy. Moreover, the best performing model is SELCOM (SIM), esti-
mated with optimal covariance matrix, which achieves an R2 of 1.215% which is significant at
5% level based on Clark & West (2007) test.17

Panel D of Table 4.5 reports the results of our COMCOM approach, which applies VC ap-
proach to both CF across windows for univariate predictor-based models and in the second step,
it also applies the VC approach across models to reach the final forecast. Results are consistent
with SELCOM approach that COMCOM (SIM) outperforms COMCOM (DIAG) and COM-
COM (SAMPLE) and the best performing model is COMCOM (SIM-Optimal) which achieves
an R2 of 1.426% which is significant at 5% level based on Clark & West (2007) test.18

To support these results, following Goyal & Welch (2008), Rapach et al. (2010) and many
others, we present time-series plots of the cumulative square forecasting error (CumSFE) for
our VC-SIM approaches relative to historical average (HA) in Figure 4.3 for the full sample.
This provides an informative graphical representation about the consistency of a given model
in outperforming the benchmark model over the entire out-of-sample period. When the curve
for a given model in Figure 4.3 increases, the model outperforms the historical average, whereas
when the curve decreases, the model underperforms the historical average. The horizontal zero
line to correspond to the start of the out-of-sample period; the plot easily indicates whether our
VC-SIM models have a lower MSFE than the historical average for any specific out-of-sample
period. The plot clearly shows if our VC-SIM models have a lower MSFE than the historical
average for any given out-of-sample time, with the horizontal zero line corresponding to the
start of the out-of-sample period. Figure 4.3 shows that all of our four VC-SIM approaches
always have a positive curve, implying that our models outperform the historical average for
every out-of-sample period.

To summarise our results on our VC approach, the SIM covariance outperforms diagonal and
sample covariance in all the specifications. Forecasting results for univariate predictor-based
models estimated with VC approaches fail to outperform the historical average. These find-
ings are consistent with Tian & Zhou (2018), who report that addressing EWU for univariate
predictor-based models alone does not outperform the historical average. The Panel (SIM)
that addresses the EWU and VSU at the same time, on the other hand, produces significantly
lower MSFE than the historical average. Moreover, we find that a two-step approach address-
ing EWU and VSU separately strengthens the panel approach, which is consistent with Wang
et al. (2020). Our three approaches Mean(VC), SELCOM (VC), COMOM (VC) under SIM
framework achieves an R2 of 1.124%, 1.215%, and 1.426%, respectively.

17The difference between R2 of SELCOM (SIM-Optimal) and all other approaches under SELCOM is significant
at 5% level using bootstrapped p-values.

18The difference between R2 of COMCOM (SIM-Optimal) and all other approaches under COMCOM is sig-
nificant at 5% level using bootstrapped p-values.
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4.6.2 VC-SIM approach compared with benchmark models

In this section, we analyse the performance of our VC approaches relative to the standard
benchmark models discussed in section (4.5.2).

4.6.2.1 Comparing with benchmarks addressing EWU

Table 4.6 reports the results from univariate predictor-based models based on our VC approach
and various benchmark models. There are two panels in this: Panel A displays results from VC
approach based on diagonal, sample, and single index model (SIM) covariance matrices. All of
these covariance matrices are calculated using the Cross-validation (CV) method, which uses
an out-of-sample holdout sample (cross-validation sample) to estimate forecasting errors, error-
covariance matrix, and optimal weights. Panel B presents forecasting results of the benchmark
models listed in Table 4.2.

[Insert Table 4.6 about here]

To compare the forecast produced by prediction models with the historical average forecast, we
report the out-of-sample R2 statistics in percentage form. Values in bold indicate the best fore-
casting approach for a given univariate predictor-based model. Results show that VC based on
SIM (VC-SIM) performs better than the expanding window (EXP) approach for 12 of 14 univari-
ate economic predictor-based forecasting models. The EXP performs better than VC-SIM for
TBL and DFR only. Results also confirm the poor performance of the rolling window approach
(ROLL), where each forecasting model is estimated with the last 15 years data. Our VC-SIM
outperforms all individual models when estimated with the ROLL approach. In addition, ROLL
also performs poorly compared to EXP and other approaches that do not completely discard
historical observations. This is also consistent with Pesaran & Timmermann (2007), who argue
that past data may also be informative and produce accurate forecasts.

If we compare the results of our VC-SIM with other approaches used to address the param-
eter instability, then we find that VC-SIM performs better than all the approaches for 6 of 14
univariate economic predictor-based forecasting models. Consistent with Tian & Zhou (2018),
we find that the robust optimal weighting method (RobW1 and RobW2) can also improve
the forecasting performance of individual models as it outperforms the traditional expanding
(rolling) for 10 (14) of 14 models. However, RobW1 and RobW2 together can outperform all
the approaches for 5 of 14 models. However, consistent with Tian & Zhou (2018), although
most forecasting strategies addressing parameter instability considered in this study can en-
hance the forecasting efficiency of economic predictor-based models, while still typically failing
to outperform historical average benchmark forecasts based on R2

OS .19

4.6.2.2 Comparing with benchmarks addressing EWU and VSU

The predictive accuracy of our VC-SIM approaches is compared in Table 4.7 with a comprehen-
sive array of alternative approaches considered in the literature to address the issues of VSU,
and both EWU and VSU. Panel A displays results from VC-SIM approaches whereas Panel B
and C display forecasting results of the benchmark models listed in Table 4.2.

19In unreported results, we also perform the analysis to evaluate the economic significance of all the models
based on the mean-variance trading strategy discussed in section (4.3.4.2). The results are consistent with our
main findings based on out-of-sample R2 that almost all the univariate predictor-based models fail to outperform
the historical average.
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[Insert Table 4.7 about here]

Panel B reports the results of benchmark models, which are developed to address EWU. How-
ever, following Wang et al. (2020), we apply a two-step process to enable all these models to
address the issues of EWU and VSU simultaneously. More specifically, for each approach, we
first estimate the forecasts for univariate predictor-based models, and in the second step, we
take a simple average across individual forecasts from the first step. Results show that this
approach works well as all the models considered produce lower MSFE relative to the historical
average. The lowest R2 is 0.503%, achieved by Mean (ROLL), whereas Mean (ROC) achieves
an R2 of 0.838% which remain the highest among benchmark models. It is interesting to see
that the AveAve approach of Pesaran et al. (2013), which takes simple average across univari-
ate predictor-based models and windows, achieves an R2 of 0.808% which is the second-highest
among benchmark models. When we compare these findings to the results of our VC-SIM ap-
proaches in Panel A, we can see that all the four approaches outperform the benchmark models.
The best performing model, COMCOM-SIM, achieves an R2 of 1.426%, which is significantly
higher than the best performing benchmark model, Mean (ROC), which achieves an R2 of
0.838%.20

Next, we compare the results with standard approaches given in Panel C of Table 4.7, which have
been widely used in forecasting equity premium. The forecasts under all these approaches are
based on expanding window, which assumes no structural breaks. These approaches include the
Kitchen Sink model, dimension reduction, shrinkage, and combining forecasts. Results suggest
that CF approaches outperform the other methods among benchmark models given in Panel C.
The simple average across forecasts from univariate models achieves an R2 of 0.689%. However,
DMSFE with a discount factor of 0.9 (θ = 0.9) model performs slightly better by achieving an
R2 of 0.731%. This shows that considering recent forecasts improves forecasting accuracy. But
surprisingly, none of the models from CF outperforms our VC-SIM (Optimal) approach given
in Table 4.4, which combines forecasts of univariate models using VC-SIM approach where each
individual models are estimated with expanding window. This suggests that the implementa-
tion of VC approach improves not only the forecasting accuracy for univariate predictor-based
models given in Table 4.6 but also CF based on a simple average. If we compare these results
with our VC-SIM approaches addressing EWU and VSU simultaneously, we see that our all four
approaches Panel (SIM), Mean (VC-SIM), SELCOM-SIM, and COMCOM-SIM outperform all
the approaches by achieving R2 of 0.922%, 1.124%, 1.215%, and 1.426%, respectively. This
suggests that accounting for EWU and VSU together can improve the forecasting accuracy for
equity premium.

4.6.3 Out-of-sample results over recession and expansion

To see how various models considered in this study perform during the business cycle, we
compute R2

OS for NBER-dated business cycle expansions (EXP) and recessions (REC):

R2
c,OOS = 1−

T∑
t=m

Ict (rt+1 − r̂i,t+1)2

T∑
t=m

Ict (rt+1 − rt+1)2

for c = EXP ,REC (4.94)

where IRECt (IEXPt ) is an indicator function that takes a value of one when t is a recession
(expansion) and zero otherwise.
Table 4.8 shows the results of VC-SIM approaches and benchmark models over recession and

20The difference between R2s is significant at 5% using bootstrapped p-values.
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expansion periods for 1-month returns. Results show that our VC-SIM approaches can predict
equity premium over both recession and expansion periods. Our COMCOM-SIM achieves an R2

of 0.934% in expansion and 2.811% during recession. Results are also consistent with the other
three VC-SIM approaches. These results provide strong evidence that our VC-SIM approaches
perform better in recession. If we see the performance of benchmark models, the results show
that none of the models outperforms our approach by producing a higher R2 across recession
and expansion periods.

Panel B reports the results of a two-step process for addressing parameter instability first and
then taking a simple average across models. Surprisingly, all these approaches perform good
in both recession and expansion, but performance is better in the recession period. This is an
important finding because this suggests that accounting for parameter instability and variable-
selection uncertainty at the same time significantly improves the forecasting accuracy in both
expansion and recession. This evidence is further supported by the findings of models given in
Panel C that only accounts for variable uncertainty. Results suggest that none of the models
consistently produce higher R2 across recession and expansion periods. For example, PCR3
achieves an R2 of 2.954% in recession, but it performs poorly in expansion as it achieves R2 of
−0.354%, which means it even fails to outperform the simple historical average.

An essential finding is the superior performance of our VC-SIM approaches in recessions be-
cause predictive awareness of economic fundamentals over recessions is more important to an
investor. Because of the high volatility experienced during recessions, the historical mean is a
poor indicator (see Li & Tsiakas 2017, for more details). Moreover, Kacperczyk et al. (2016)
demonstrates that the economic outlook influences how investors interpret information. Since
stocks carry more aggregate risk during recessions, fund managers are more concerned with
aggregate shocks. In summary, in recessions, economic fundamentals information is most im-
portant for predicting the equity premium, and we find that this is when our predictive models
(VC-SIM) work best.

4.6.4 Equity premium predictability and asset allocation

Table 4.9 presents the results of portfolio performance for a mean-variance investor with a degree
of risk aversion of five. Consistent with our statistical findings, portfolio performance results
show that our VC-SIM approaches perform better than benchmark models. For example, our
COMCOM-SIM delivers an annualised utility gain (∆CER) of 2.524%, which are higher than
any of the benchmark models. The AveAve model performs the best among all benchmark
models with (∆CER) of 1.421% whereas simple average across model (Mean) delivers (∆CER)
of 1.076%. The net transaction costs results remain the same as our COMCOM-SIM model out-
performs all the benchmarks even after considering 50bp transaction cost can generate (∆CER)
of 2.019%. Moreover, our COMCOM-SIM achieves an annualised Sharpe ratio of 0.497, which
remains the highest among all the models.

Overall, we provide the evidence on out-of-sample predictability of the equity premium. We
also show a high economic benefit in using our VC-SIM approaches in the context of a mean-
variance strategy.

[Insert Table 4.9 about here]

4.6.5 Which predictors matter?

In this section, we investigate the relative importance of individual predictors in combined fore-
cast over time for our COMCOM-SIM approach. We use three different approaches to account
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for the importance of each predictor in the equity premium forecast. Table 4.10 reports the
importance of each predictor, which is discussed below.

[Insert Table 4.10 about here]

4.6.5.1 Importance as means of reduction in R2
OOS

In the first method, we follow Gu et al. (2020) and calculate the reduction in out-of-sample
R2
OOS by excluding a particular predictor in each training sample, and then we get an average

of these to obtain importance measure.

∆R2
OOSi =

1

S

S∑
e=1

(R2
N,e −R2

N−1,e) (4.95)

where ∆R2
OOSi is reduction in out-of-sample R2 due to absence of ith predictor, R2

N,e is R2 at

time e of evaluation period using all predictors and R2
N−1,e is R2 at time e without ith predictor.

Now the importance factor can be calculated as:

Φ1i =
∆R2

OOSi
N∑
i=1

∆R2
OOSi

(4.96)

where Φi is the variable importance of each predictor, which is normalised to sum to one.

Figure 4.4 plots the R2 based predictor importance. We can see that NTIS is the most influ-
ential variable, as the absence of this variable from the dataset contributes 19.8% in an overall
reduction in R2. This is obvious as NTIS is one of the proxies to measure sentiment index,
which influences the equity market (Baker & Wurgler 2006), and since this variable is not highly
correlated with other variables so other variables may not take the effect of NTIS. DFR and DY
stand second (16.6%) and third (13.4%), respectively. Since most of the predictors are highly
correlated, we classify them: i) equity - which includes DP, DY, EP, DE, BM and SVAR, and
ii) non-equity - which includes DFR, DFY, LTY, LTR, TBL, TMS, INFL. If we sum individual
contributions across each group, then we find that the equity group plays a more significant role
with 54.1% contribution in the composite forecast of the equity premium.

[Insert Figure 4.4 about here]

4.6.5.2 Importance as means of contribution in optimal forecast

In our next approach, we take the average of optimal weights of individual predictors obtained
at each of the evaluation period e.

ω∗i =
1

S

S∑
e=1

ω∗i,e (4.97)

where ω∗i is an average weight for predictor i, and ω∗i,e is optimal weight for predictor i at time
e.

To normalise the importance of predictor to one we use:
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Φ2i =
ω∗i
N∑
i=1

ω∗i

(4.98)

where Φ2i indicates the importance of ith predictor in composite forecast.
Figure 4.5 plots the optimal-weight based importance of each predictor over the full sample
and NBER-dated recession periods. The main difference between R2-based importance and im-
portance represented in Figure 4.5 is that the R2-based measures are averaged over all sample
splits. In contrast, the optimal-weight based importance is based on the full sample (1947:01
- 2018:12) only. Results show that BM is the most influential variable in the full sample, ex-
pansion, and recession periods with a contribution of 12.61% in composite weight in the full
sample. However, BM’s contribution in recession increases to 16.03% and decreases to 12.05%
in expansion, but it is still highest in all predictors. The predictors such as DFR, TBL, NTIS,
and EP together contribute 42.4% with an individual contribution of 10.73%, 10.71%, 10.49%
and 10.47%, respectively. SVAR seems to be the least important, with a contribution of only
1.28%. In expansion periods, the top three most influential predictors are BM, DFR, and TBL,
with a contribution of 12.05%, 11.68%, and 11.15%, respectively. Whereas BM, EP, and LTR
are highly contributing predictors at 16.03%, 12.51%, and 10.64%.

[Insert Figure 4.5 about here]

Next, we investigate the predictor importance over the periods of optimism and pessimism. Fol-
lowing Baker & Wurgler (2006), we define the optimism period with a sentiment index over zero
and a negative value as pessimism. Since the data for sentiment index is available from 1963:01,
therefore this analysis also provides the importance over sub-sample. Figure 4.6 plots the opti-
mal weight-based importance for sample 1963:01-2018:12. Results show that DFR, NTIS, and
EP are the most significant variables over the overall sub-sample with an individual contribution
of 15.45%, 12.56%, and 11.76%, respectively. When we look at the optimism and pessimism
periods, the optimism periods are dominated by DFR and DFY together, and they contribute
32.33% with an individual contribution of 16.51% and 15.82%, respectively. The most important
thing is the role of NTIS as it seems to be the most important variable in pessimism periods with
a contribution of 17.04% which is highest among all the predictors, TBL also gains significant
importance in pessimism by standing second with 15.65% which was only 3.99% in optimism.
The contribution of DFY falls from 15.82% (optimism) to 2.23% (pessimism), whereas DFR re-
mains the most consistent variable through optimism (16.51%) and pessimism (14.53%) periods.

[Insert Figure 4.6 about here]

Next, we identify the optimism and pessimism periods in NBER-dated recession periods, which
leads to four groups: i) expansion-optimism; ii) expansion-pessimism; iii) recession-optimism,
and iv) recession-pessimism. 4.7 plots the optimal weight-based importance for sample 1963:01-
2018:12. Results show that EP (22.38%) and DFR (19.08%) are the most important predictor in
expansion-optimism and recession-optimism periods, respectively. In contrast, NTIS contributes
the most in both expansion-pessimism and recession-pessimism periods with 20% and 16.74%,
respectively.

To summarise the discussion on the overall importance of individual predictors, we can con-
clude that the NTIS is the most influential variable throughout all the samples, but it has less
importance in optimism and optimism-recession periods, and the most significant influence is in

172



expansion-pessimism periods. In financial ratios, EP is a consistent predictor with an average
contribution of more than 10% in all periods except expansion-recession, where it only con-
tributes 4.09%. The predictor, DFR, seems to be the most influential and consistent in macro
variables in all periods, but it only contributes 4.95% and 4.27% in recession and expansion-
optimism, respectively.

[Insert Figure 4.7 about here]

4.6.5.3 Contribution in optimal forecast overtime

The first two measures give an overall picture of predictor importance, but we cannot get an
idea about the importance of predictors over time. Considering this, we plot the contribution
(optimal weight) of each predictor at each time. Since the weight of composite forecast sums to
one so, we can easily get an idea about the contribution of each predictor. Figure 4.8 shows that
predictors DP and DY frequently appear in the 1970s, with DY achieving the highest weight
of 54%, and most of the time, they contribute near recession points. DY has significantly ap-
peared after the global crisis of 2008. Variable EP appears at the beginning (first five years) of
out-of-sample with an average weight of about 40%, and then it disappears for a long period.
Then it contributes heavily with an average 65% weight between the recession of 2001-2008 and
disappears entirely after the global crisis of 2008. The exciting results are on SVAR as reported
earlier that it contributes less in the composite forecast, and we can see that it appears between
1980-1985; otherwise, it appears occasionally. The next variable is BM, which dominates the
other predictors between 1947 to 1955 with an average contribution of 70% and then disappears
till the beginning of the 1970 recession, but since then, it never appears. The previous section
shows the importance of the variable NTIS, and the time series plot confirms this by showing
that NTIS variable is an essential variable in the expansion period, and it frequently appears
in the period 1985 to 1995 and then two years post-global crisis 2008. In macro variables, TBL
appears more regularly between 1960 to 1980 with an average contribution of 40%, whereas LTY
only appears in the last five years of the sample (2013-18). The variables LTR, TMS, DFY, and
DFR, seem to contribute more in periods between 1955 to 1990 by appearing more frequently in
periods 1972-1985, 1960-1985, 1980-1990 and 1990-2000, respectively. The variable INFL shows
its importance in periods 1955-1960 and post-global crisis 2008.

[Insert Figure 4.8 about here]

Next, we classify the predictors into equity (DP, DY, EP, DE, SVAR, BM, and NTIS) and non-
equity (TBL, LTY, LTR, TMS, DFY, DFR, and INFL). Figure 4.9 shows the importance of each
category as we can see that the financial variables dominate in the early sample (1947-1955),
where variables like BM, NTIS, and EP contribute heavily. In contrast, variable LTR is the
only variable that contributes from the non-equity group. Non-equity variables show absolute
dominance in periods 1956-1968 and 1975-1980, where equity variables hardly contribute. The
period between 1980 and 2001 shows the shared contribution of both groups, but the financial
group dominates between the recession of 2001 and global crisis 2008, and it is interesting to
see that the variables DP, DY, EP contribute heavily with an average 98% weight. Post global
crisis, there is a shared contribution of each group where variables DY, NTIS, LTY, and INFL
seem to play a vital role in predicting equity premium.

[Insert Figure 4.9 about here]
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4.6.6 CF with VC-SIM and link to real economy

In this section, we analyse whether the equity premium estimates generated by our VC-SIM
approaches are related to the real economy. These ties can provide additional support for
our prediction methods as well as an economic justification for the out-of-sample forecasting
improvements.

4.6.6.1 Equity premium forecast and NBER business cycles

Increased risk aversion, according to Fama & French (1989) and Cochrane (1999), generally
requires a higher risk premium during economic downturns, resulting in equity premium pre-
dictability. Considering this, we analyse variations in equity premium forecasts generated by
our VC-SIM approaches over the business cycle. More precisely, we analyse whether forecast
fluctuations are strongly related to NBER-dated recession and expansion phases. Figure 4.10
plots the equity premium forecasts along with NBER-dated recession bars shows that there are
well-defined patterns in our equity premium forecast as we can see a sharp increase in equity pre-
mium forecasts in periods of recession and decline in expansion. The six highest points achieved
by our forecasts are during recessions, and if we compare our forecasts with the historical aver-
age, then we see that the historical average is smooth and does not respond to business cycles.
Overall, our VC-SIM approaches generate equity premium forecasts that tend to follow NBER
business-cycle phases, as shown in Figure 4.10. This forecasts’ behaviour is consistent with the
findings of Fama & French (1989) and Cochrane (1999).

[Insert Figure 4.10 about here]

4.6.6.2 Forecasting gains during “Good” and “Bad” growth periods

Following Rapach et al. (2010), we next analyse CF generated through our VC-SIM approaches
over different regimes based on the economic growth rate. Specifically, we use the top, middle,
and bottom thirds of sorted rates of growth to characterise “good”, “normal,” and “bad” regimes.
Consistent with Rapach et al. (2010), our analysis uses growth rates of three variables: i) real
profit, ii) real GDP, and iii) real net cash flow. We calculate R2

OS for these three regimes. Results
in Table 4.11 indicate that out-of-sample gains are frequently clustered in lower growth periods
for our VC-SIM approaches. When comparing periods of low-growth periods to normal-growth,
the R2

OS is higher for all three variables. For real GDP growth, the R2
OS is around four times

greater in low-growth periods than the periods of normal-growth. Such differences are even
larger when regimes are sorted on real profit growth, but the difference is about three times
when we sort by real net cash flow growth.

[Insert Table 4.11 about here]

4.6.6.3 Correlation between equity premium forecasts and macro variables

Following Kelly & Pruitt (2013), we test the correlation between CF generated by VC-SIM
approaches and indicators such as macroeconomic activity (GDP growth, industrial production
growth and unemployment), macroeconomic uncertainty (volatilities in GDP growth, consumer
growth, industrial production, real profit and uncertainty in financial, macro and real activity),
sentiment (sentiment index variables of Baker & Wurgler (2006)) and credit (term spread). Ta-
ble 4.12 reports the correlation results.
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[Insert Table 4.12 about here]

First, the countercyclical nature of equity premium estimates is found to be substantially lower
in periods of high GDP growth, industrial growth, real profit growth, low book-to-market ag-
gregate ratios, and low unemployment. In periods of high real personal income growth and high
Chicago Fed National Activity Index (CFNAI) levels, they are also lower but insignificant. We
consider two indicators of recession probability. The first is a real-time probability of recession
determined by Chauvet & Potter (2002), Chauvet & Piger (2008). The second is the “Anxious
Index” from the Survey of Professional Forecasters, which asks survey panellists “to estimate
the probability that real GDP will decline in the quarter in which the survey is taken and in each
of the following four quarters.” With both measures, we find a strong positive and significant
association between expected equity returns and the likelihood of economic contraction.

Next, our findings show a strong association between our equity premium forecasts and macroe-
conomic uncertainty. We consider several uncertainty measures, which include: i) Bloom et al.
(2018) measures - volatility in GDP estimated with a GARCH model, the cross-section stan-
dard deviation in the forecasts of industrial production growth made by professionals, and an
uncertainty index which is a combination of seven variables of macroeconomic uncertainty and
ii) Jurado et al. (2015) - financial, macro and real uncertainty. We find a strong positive asso-
ciation between our equity premium forecasts and these uncertainty measures. Considering the
importance of consumption growth volatility from the theory of the long-run risk of Bansal &
Yaron (2004), we also consider consumption uncertainty estimated with a GARCH model. Our
results show a positive and significant correlation between our estimates of equity premium with
COMCOM-SIM and consumption growth volatility with a correlation of 24.86%.

Next, we find a strong association between investor sentiment and equity premium forecasts
generated by our VC-SIM approaches, which is consistent with findings of Baker & Wurgler
(2006) that in times of high investor sentiment, discount rates decline. We use the investor
sentiment index of Baker & Wurgler (2006) and four individual sentiment proxies and find that
the sentiment is significantly negatively correlated with our forecasts of the equity premium.
Finally, we find that forecasts are significantly positively correlated with default yield spread.
However, the correlation between forecasts and the term spread is insignificant.

4.6.6.4 Forecasting Macroeconomic variables

Rapach et al. (2010) show that combining forecast approach with Goyal & Welch (2008) predic-
tors can predict some of the macro variables including real profit growth, real GDP growth, and
real net cash flow growth. On this note, we also use the same variables used in predicting equity
premium to predict macroeconomic variables, including industrial production growth, real GDP
growth, real profit growth, Unemployment rate, and GDP growth, and Chicago Fed National
Activity Index, with our VC-SIM approaches. Data is obtained from the FRED dataset. Con-
sidering the availability of all variables, our sample consists of 1961:03 to 2018:12, where the first
10 years are used as training sample and the next 5 years for holdout validation sample, which
leaves an out-of-sample period 1976:04 to 2018:12. Table 4.13 shows that our approach can
predict above mentioned macroeconomic variables by achieving R2 of 3.315%, 7.924%, 5.734%,
9.723% and 5.891% for real profit growth, industrial production growth, real GDP growth,
CFNAI and unemployment rate, respectively.

[Insert Table 4.13 about here]
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4.7 Robustness Tests

We establish the robustness of our main equity premium prediction results in many ways. First,
we evaluate various sample dates and equity measures and find similar results in all alternative
samples and equity premium measures such as unlogged equity premium and Fama & French
(1993) excess market factor. Second, we use technical indicators given by Neely et al. (2014)
as an alternative dataset and show that our approach produces consistent results with these
indicators as well. Moreover, when these technical indicators are taken as the first principal
component and included as an additional predictor to Goyal & Welch (2008) dataset, then
results are improved. Third, we find strong evidence on good out-of-sample predictability of our
approach for predicting excess returns for characteristic portfolios sorted on book-to-market, size,
momentum, and industry. Finally, we test whether economic restrictions can improve the results.
We use three economic constraints, CT, PTV, and ZWMY (see section 4.2.2.1 for details).
Results show that these constraints have a positive impact on most of the models considered
in this study. Consistent with Zhang et al. (2019), we find that ZWMY performs better than
CT and PTV. Most importantly, consistent with our main results, after imposing these various
constraints on all the models, our VC-SIM approaches still outperform the benchmark models.
For brevity, we do not report the results of all these tests.

4.8 Conclusion

Combining forecasts (CF) approaches are widely used in economic forecasting, but they are less
common in financial forecasting, specifically in the prediction of equity premium Timmermann
(2018). This study investigates whether it is worth combining the equity premium forecasts
from the same model but with different windows using the variance-covariance approach. Us-
ing Goyal & Welch (2008) 14 predictors, this study documents that the optimal CF based on
a variance-covariance approach where the error-covariance matrix is estimated with the single-
index model can be useful for predicting monthly US excess stock returns over the out-of-sample
period of 1947–2018. We also introduce a panel CF approach that combines the forecasts across
univariate predictor-based models and windows, which effectively addresses the estimation win-
dow uncertainty (EWU) and variable-selection uncertainty (VSU) simultaneously. Two other
approaches SELCOM and COMCOM are also introduced. Results show that our approaches
improve upon benchmark forecast combination models, as well as the historical average ex-
cess return by achieving an out-of-sample R2 of 1.426% with our COMCOM-SIM model. The
improvements in out-of-sample forecast accuracy are significant, both statistically and econom-
ically. Our COMCOM-SIM approach has superior market timing abilities, such that a mean-
variance investor with a risk-aversion level of five would be willing to pay an annual performance
fee of 2.54% to switch from the predictions offered by the historical average benchmark model
to those of the COMCOM-SIM for monthly returns.

Moreover, our VC-SIM models can also predict equity premium over both recession and ex-
pansion periods. An essential finding is the superior performance of our VC-SIM approaches
in recessions because predictive awareness of economic fundamentals over recessions is more
important to an investor. This is because investors are more risk-averse during recessions re-
quiring a higher risk premium, and there is also high volatility, making the historical mean a
weak forecast (Li & Tsiakas 2017). In addition, Kacperczyk et al. (2016) also shows that the
economic outlook affects how investors process information. In recessions, fund managers are
more concerned with aggregate shocks because stocks have a higher aggregate risk. In summary,
in recessions, economic fundamentals information is most important for predicting the equity
premium, and we find that this is when our predictive framework works best.
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Table 4.3: Out-of-sample results: VC approach to address EWU

This table presents the out-of-sample R2
OOS for 1-month returns of equity premium based on univariate predictor-

based forecasting models for the out-of-sample period January 1947 to December 2018. All the results are from
our variance-covariance approach, where the combined forecast of each model is taken as optimally weighted
across estimation windows based on the error covariance matrix. The three covariance matrices include diagonal
(DIAG), sample (SAMPLE) and single-index model (SIM), respectively. The details of the models is given in
Table (4.2). Equity premium is estimated with univariate predictor-based model, rt+1 = αi+βiXt+ εi,t+1, where
Xi, t is one of the 14 Goyal & Welch (2008) predictors. R2

OOS measures the reduction in MSFE for the competing
forecast relative to the historical average forecast. *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively. The significance is based on Clark & West (2007) statistic given in Equation 4.69.

VC-DIAG VC-SAMPLE VC-SIM

DP -0.2492 -1.1693 -0.0693

DY -0.1257 -1.3420 0.1091

EP -0.6429 -2.2166 -0.9219

DE -0.8088 -0.2375 0.2288∗∗

SVAR -0.2552 0.0008 0.1688∗∗

BM -1.4586 -0.7946 -0.7568

NTIS -0.8513 -1.1227 -0.4754

TBL -0.8571 -2.5962 -0.8893

LTY -0.5762 -2.3006 -0.1438

LTR -0.5158 -0.2582 -0.2900

TMS -0.5030 -1.2967 0.1508∗

DFY -0.9706 -2.2067 -0.1474

DFR -0.7954 -0.9247 -0.9187

INFL -0.3942 -0.4490 -0.0349
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Table 4.4: Out-of-sample results: VC approach to address VSU

This table reports the out-of-sample results for 1-month return for equity premium approach with VC approach
addressing variable uncertainty only by combining forecasts across univariate predictor-based models. Univariate
predictive models are estimated with expanding window where are CV, Roll, Exp, and optimal represent four
different approaches to estimate covariance matrix. CV indicates the cross-validation approach. Roll and Exp
indicate that the historical forecasting errors for individual models are estimated with a rolling window of 15 years
and expanding window including all the observations, respectively. The optimal indicates the optimal covariance
matrix at a period that effectively identifies the optimal past observations based on minimum variance criteria
to estimate the error-covariance matrix (see section (4.4.2.2) for details). MSFE represents the mean squared
forecast error. R2

OOS indicates the reduction in MSFE for the competing forecast relative to the historical average
forecast. MSFE-adjusted is the Clark & West (2007) statistic given in Equation 4.69. *, **, and *** indicate

significance at the 10%, 5%, and 1% levels, respectively. ê
2

represents the squared forecast bias, and var(ê)
indicates the forecast error variance.

Forecasting model MSFE R2
OS (%) MSFE-adj. p-value ê

2
var(ê)

Historical Average (HA) 17.224 0.035 17.189

A. VC-DIAG

CV 17.115 0.636∗∗∗ 3.018 0.001 0.004 17.111
EXP 17.127 0.566∗∗ 2.336 0.010 0.024 17.103
ROLL 17.110 0.664∗∗∗ 3.019 0.001 0.024 17.086
Optimal 17.106 0.691∗∗∗ 2.481 0.006 0.009 17.097

B. VC-SAMPLE

CV 17.133 0.531∗∗∗ 2.922 0.002 0.005 17.128
EXP 17.320 −0.553 0.424 0.336 0.001 17.319
ROLL 17.119 0.609∗∗∗ 3.009 0.001 0.030 17.089
Optimal 17.117 0.624∗∗∗ 3.215 0.001 0.033 17.084

C. VC-SIM

CV 17.100 0.726∗∗∗ 2.968 0.001 0.005 17.095
EXP 17.341 −0.678 0.641 0.261 0.003 17.338
ROLL 17.095 0.754∗∗∗ 3.215 0.001 0.024 17.071
Optimal 17.086 0.804∗∗∗ 3.063 0.001 0.029 17.057
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Table 4.5: Out-of-sample results: VC approach to address EWU and VSU

This table reports the out-of-sample results for 1-month return for equity premium approach with VC approach addressing
EWU and VSU simultaneously. Details of models models is given in Table (4.1). MSFE is the mean squared forecast
error. R2

OOS measures the reduction in MSFE for the competing forecast relative to the historical average forecast. MSFE
represents the mean squared forecast error. R2

OOS indicates the reduction in MSFE for the competing forecast relative to
the historical average forecast. MSFE-adjusted is the Clark & West (2007) statistic given in Equation 4.69. *, **, and

*** indicate significance at the 10%, 5%, and 1% levels, respectively. ê
2

represents the squared forecast bias, and var(ê)
indicates the forecast error variance.

Forecasting model MSFE R2
OS (%) MSFE-adj p-value ê

2
var(ê)

Historical Average (HA) 17.224 0.035 17.189

A. Panel Approach

Panel (DIAG) 17.081 0.838∗∗∗ 3.199 0.001 0.001 17.079
Panel (SAMPLE) 17.088 0.792∗∗ 1.711 0.044 0.001 17.088
Panel (SIM) 17.032 0.922∗∗∗ 2.473 0.007 0.004 17.028

B. MeanCOM Approach

Mean (DIAG) 17.087 0.802∗∗∗ 2.571 0.005 0.004 17.083
Mean (SAMPLE) 17.091 0.779∗∗ 2.192 0.014 0.014 17.076
Mean (SIM) 17.066 1.124∗∗∗ 2.808 0.002 0.003 17.064

C. SELCOM Approach

C.1 SELCOM (DIAG)

CV 17.105 0.692∗∗ 2.339 0.010 0.004 17.102
EXP 17.118 0.616∗∗∗ 3.021 0.001 0.023 17.095
ROLL 17.100 0.721∗∗∗ 2.484 0.006 0.022 17.078
Optimal 17.095 0.751∗∗∗ 3.022 0.001 0.008 17.087

C.2 SELCOM (SAMPLE)

CV 17.125 0.578∗∗∗ 2.925 0.002 0.004 17.120
EXP 17.328 −0.602 0.424 0.336 0.001 17.367
ROLL 17.110 0.663∗∗∗ 3.012 0.001 0.029 17.083
Optimal 17.108 0.678∗∗∗ 3.218 0.001 0.031 17.079

C.3 SELCOM (SIM)

CV 17.090 0.781∗∗∗ 2.971 0.001 0.004 17.086
EXP 17.352 −0.738 0.642 0.261 0.003 17.388
ROLL 17.010 1.256∗∗∗ 2.93 0.00 0.023 17.024
Optimal 17.000 1.315∗∗∗ 3.066 0.001 0.028 16.972

D. COMCOM Approach

D.1 COMCOM (DIAG)

CV 17.099 0.732∗∗∗ 2.563 0.006 0.004 17.110
EXP 17.102 0.713∗∗∗ 2.192 0.014 0.023 17.131
ROLL 17.081 0.832∗∗∗ 2.798 0.003 0.014 17.067
Optimal 17.072 0.889∗∗∗ 3.066 0.001 0.014 17.058

D.2 COMCOM (SAMPLE)

CV 17.124 0.583∗∗ 2.175 0.015 0.004 17.120
EXP 17.316 −0.531 0.425 0.337 0.001 17.367
ROLL 17.102 0.709∗∗ 2.339 0.010 0.014 17.088
Optimal 17.097 0.744∗∗∗ 2.925 0.002 0.014 17.082

D.3 COMCOM (SIM)

CV 17.014 1.233∗∗∗ 3.110 0.001 0.004 17.010
EXP 17.344 −0.693 0.642 0.261 0.003 17.341
ROLL 17.006 1.282∗∗∗ 2.971 0.001 0.021 16.984
Optimal 16.998 1.325∗∗∗ 3.417 0.000 0.028 16.971
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Table 4.7: VC approach vs. Benchmark models to address EWU and VSU

This table compares the the out-of-sample results for 1-month return for equity premium with various benchmark
models. The details of VC-SIM and benchmark models are given Table (4.1) and (4.2), respectively. MSFE repre-
sents the mean squared forecast error. R2

OOS indicates the reduction in MSFE for the competing forecast relative
to the historical average forecast. MSFE-adjusted is the Clark & West (2007) statistic given in Equation 4.69. *,

**, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. ê
2

represents the squared forecast
bias, and var(ê) indicates the forecast error variance.

Forecasting model MSFE R2
OS (%) MSFE-adj. p-value ê

2
var(ê)

Historical Average (HA) 17.224 0.035 17.189

A. Variance-covariance approach

Panel (SIM) 17.066 0.922∗∗∗ 2.473 0.007 0.004 17.062
Mean (SIM) 17.066 1.124∗∗∗ 2.808 0.002 0.003 17.064
SELCOM (SIM∗) 17.000 1.215∗∗∗ 3.066 0.001 0.028 16.972
COMCOM (SIM∗) 16.998 1.426∗∗∗ 3.417 0.000 0.028 16.971

B. Benchmark Models to deal with SBU

Mean (EXP) 17.106 0.689∗∗∗ 3.050 0.001 0.029 17.077
Mean (ROLL) 17.122 0.503∗ 1.336 0.091 0.003 17.120
Mean (BP) 17.118 0.618∗∗ 1.646 0.050 0.009 17.109
Mean (SEL-CV) 17.096 0.747∗∗∗ 2.563 0.006 0.005 17.092
Mean (RobW1) 17.108 0.675∗∗∗ 2.584 0.005 0.004 17.104
Mean (RobW2) 17.109 0.673∗∗∗ 2.571 0.005 0.004 17.104
Mean (EW) [AveAve] 17.086 0.808∗∗∗ 2.798 0.003 0.003 17.083
Mean (EW10) 17.093 0.766∗∗∗ 2.339 0.010 0.004 17.089
Mean (LW) 17.090 0.781∗∗∗ 3.218 0.001 0.004 17.086
Mean (VW-MSFE) 17.091 0.777∗∗ 1.899 0.029 0.001 17.090
Mean (ROC) 17.081 0.838∗∗∗ 3.199 0.001 0.001 17.079
Mean (ROC-L) 17.085 0.814∗∗∗ 3.417 0.000 0.002 17.083
Mean (RS) 17.112 0.656∗∗∗ 2.563 0.006 0.005 17.107

C. Standard Benchmark Models in Equity Premium Prediction

C.1 Kitchen Sink

KS 19.613 −12.184 1.899 0.029 0.320 19.294

C.2 Dimension Reduction

PCR1 17.173 0.294∗∗ 1.951 0.026 0.163 17.010
PCR3 17.140 0.491∗∗ 2.173 0.015 0.188 16.951
KP-3PF 17.348 −0.714 0.91 0.18 0.197 17.151

C.3 Shrinkage

LASSO 17.288 −0.374 0.024 0.509 0.000 17.288
Ad-LASSO 17.325 −0.584 0.463 0.322 0.002 17.323
Ridge 17.339 −0.662 0.977 0.164 0.199 17.139
ENet 17.286 −0.362 0.872 0.192 0.000 17.286

C.4 Forecast Combination

Mean 17.106 0.689∗∗∗ 3.050 0.001 0.029 17.077
T-Mean 17.114 0.641∗∗∗ 3.020 0.001 0.029 17.085
Median 17.125 0.576∗∗∗ 3.176 0.001 0.015 17.110
DMSFE (θ = 0.9) 17.099 0.731∗∗∗ 3.116 0.001 0.028 17.071
DMSFE (θ = 1) 17.106 0.688∗∗∗ 3.047 0.001 0.028 17.077
RA1 17.654 −2.439 0.702 0.241 0.000 17.654
RA2 17.435 −1.213 0.038 0.485 0.014 17.421
RA2 17.107 0.684∗∗∗ 4.204 0.000 0.018 17.088
RR 17.165 0.342∗∗ 1.719 0.043 0.024 17.141
VC-SIM (Optimal) 17.086 0.804∗∗∗ 3.063 0.001 0.029 17.057
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Table 4.8: Out-of-sample results over recession and expansion

This tables reports out-of-sample R2
OOS for NBER-dated expansions and recessions. The details of VC-SIM and

benchmark models are given Table (4.1) and (4.2), respectively. *, **, and *** indicate significance at the 10%,
5%, and 1% levels, respectively.

Forecasting model Full Expansion Recession

A. Variance-covariance approach (SIM)

Panel (SIM) 0.922∗∗∗ 0.702∗∗ 1.163∗∗∗

Mean (SIM) 1.124∗∗∗ 0.859∗∗ 1.273∗∗∗

SELCOM (SIM∗) 1.215∗∗∗ 0.892∗∗∗ 2.546∗∗∗

COMCOM (SIM∗) 1.426∗∗∗ 0.934∗∗∗ 2.811∗∗∗

B. Benchmark Models to deal with SBU

Mean (EXP) 0.689∗∗∗ 0.600∗∗∗ 0.949∗∗∗

Mean (ROLL) 0.593∗ 0.098 1.474
Mean (BP) 0.618∗∗ 0.480∗ 1.139∗

Mean (SEL-CV) 0.747∗∗∗ 0.203∗ 1.243∗∗∗

Mean (RobW1) 0.675∗∗∗ 0.225∗ 1.274∗∗

Mean (RobW2) 0.673∗∗∗ 0.225∗ 1.272
Mean (EW) 0.808∗∗∗ 0.369∗∗ 1.399∗∗

Mean (EW10) 0.766∗∗∗ 0.314∗∗ 1.565∗

Mean (LW) 0.781∗∗∗ 0.388∗∗ 1.147∗∗∗

Mean (VW-MSFE) 0.777∗∗ 0.126 1.694
Mean (ROC) 0.838∗∗∗ 0.336∗∗ 1.468∗∗∗

Mean (ROC-L) 0.814∗∗∗ 0.363∗∗ 1.321∗∗∗

Mean (RS) 0.656∗∗∗ 0.212∗ 1.264∗∗∗

C. Standard Benchmark Models in Equity Premium Prediction

C.1 Kitchen Sink

KS −12.184 −13.511 -8.316

C.2 Dimension Reduction

PCR1 0.294∗∗ −0.456 1.222∗∗

PCR3 0.491∗∗ −0.354 2.954∗∗∗

KP-3PF −0.714 −1.499 1.573∗∗

C.3 Shrinkage

LASSO −0.374 −0.216 −1.511
Ad-LASSO −0.584 −0.323 −1.228
Ridge −0.662 −0.282 −1.522
ENet −0.362 −0.180 −1.815

C.4 Forecast Combination

Mean 0.689∗∗∗ 0.600∗∗∗ 0.949∗∗

T-Mean 0.641∗∗∗ 0.526∗∗ 0.975∗∗

Median 0.576∗∗∗ 0.506∗∗ 0.780∗∗

DMSFE (θ = 0.9) 0.731∗∗∗ 0.605∗∗∗ 1.098∗∗

DMSFE (θ = 1) 0.688∗∗∗ 0.542∗∗ 1.028∗∗∗

RA1 −2.439 −2.018 −3.730
RA2 −1.213 −0.332 −3.778
RA3 0.684∗∗∗ 0.571∗∗ 0.997∗∗

RR 0.342∗∗ 0.475∗∗ −0.046
VC-SIM (Optimal) 0.804∗∗∗ 0.613∗∗∗ 1.565∗∗∗
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Table 4.9: Results from asset allocation

The table represents the results of portfolio performance for a mean-variance investor having a relative risk-
aversion level of five allocating the resources between risk-free assets (Treasury bills) and equity. The weights are
determined through the forecasts of equity premium generated either through a given model or historical average
(HA). ∆CER is the annualised certainty equivalent return (CER) gain for an investor who uses underlying model
(VC-SIM or benchmark) instead of the historical average forecast. Turnover refers to relative average turnover
based on a given model given in equation (4.75). ∆CER(50bp) refers to the net CER gain where an investor pays
a is a transaction cost of 50 basis points for each transaction. SR is the Sharpe ratio of portfolio. The details of
VC-SIM and benchmark models are given Table (4.1) and (4.2), respectively.

Forecasting model
∆ (CER)

SR Turnover
∆ (CER)

(ann %) (ann %, 50bp)

A. Variance-covariance approach (SIM)

Panel (SIM) 2.071 0.461 3.357 1.657
Mean (SIM) 2.239 0.483 3.362 1.791
SELCOM (SIM∗) 2.378 0.489 4.405 1.922
COMCOM (SIM∗) 2.524 0.497 4.535 2.019

B. Benchmark Models to deal with SBU

Mean (EXP) 1.076 0.416 3.337 0.828
Mean (ROLL) 0.930 0.442 3.243 0.711
Mean (BP) 0.939 0.447 3.983 1.082
Mean (SEL-CV) 0.925 0.376 3.543 0.648
Mean (RobW1) 0.926 0.376 3.546 0.648
Mean (RobW2) 0.925 0.376 3.539 0.647
Mean (EW) [AveAve] 1.421 0.442 3.638 0.846
Mean (EW10) 1.412 0.420 3.599 0.988
Mean (LW) 0.975 0.380 3.546 0.682
Mean (VW-MSFE) 1.404 0.429 3.894 0.982
Mean (ROC) 1.064 0.392 3.780 0.745
Mean (ROC-L) 0.964 0.383 3.735 0.675
Mean (RS) 0.907 0.369 3.472 0.635

C. Standard Benchmark Models in Equity Premium Prediction

C.1 Kitchen Sink

KS 0.181 0.346 2.943 0.096

C.2 Dimension Reduction

PCR1 0.674 0.380 3.807 0.425
PCR3 1.045 0.429 3.435 0.658
KP-3PF 1.041 0.453 2.529 0.956

C.3 Shrinkage

LASSO 0.226 0.169 3.205 0.129
Ad-LASSO 0.424 0.299 3.406 0.242
Ridge 0.469 0.340 2.355 0.267
ENet 0.249 0.254 3.878 0.142

C.4 Forecast Combination

Mean 1.076 0.416 3.337 0.828
T-Mean 1.052 0.414 3.339 0.810
Median 0.798 0.391 3.754 0.615
DMSFE (θ = 0.9) 1.225 0.431 3.315 0.943
DMSFE (θ = 1) 1.040 0.411 3.606 0.801
RA1 -2.989 0.183 4.953 -3.416
RA2 -0.538 0.335 4.371 -0.948
RA3 1.148 0.423 3.352 0.884
RR 0.789 0.387 3.407 0.608
VC-SIM (Optimal) 1.102 0.430 3.414 0.851
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Table 4.11: R2
OOS for during good, normal, and bad growth periods

This table reports R2
OOS for equity premium forecasts generated through our VC-SIM approaches over different

regimes based on the economic growth rate. Specifically, we use the top, middle, and bottom thirds of sorted rates
of growth to characterise “good”, “normal,” and “bad” regimes. Following Rapach et al. (2010), our analysis uses
growth rates of three variables: i) real profit, ii) real GDP, and iii) real net cash flow, as shown in panels A, B,
and C. The R2 statistics are calculated for the whole forecast testing period (Overall) as well as three subperiods
(regimes). *, **, and *** represent the significance at the 10%, 5%, and 1% levels, respectively.

Overall Good Normal Bad

A. Real GDP growth

Panel (SIM) 0.922∗∗∗ 0.214 0.319 1.482∗∗∗

Mean (SIM) 1.124∗∗∗ 0.286 0.492∗ 1.617∗∗∗

SELCOM (SIM∗) 1.215∗∗∗ 0.372 0.562∗∗ 1.729∗∗∗

COMCOM (SIM∗) 1.426∗∗∗ 0.426 0.618∗∗ 1.922∗∗∗

B. Real profit growth

Panel (SIM) 0.922∗∗∗ 0.098 0.514∗ 1.882∗∗∗

Mean (SIM) 1.124∗∗∗ 0.128 0.668∗∗ 2.109∗∗∗

SELCOM (SIM∗) 1.315∗∗∗ 0.149 0.799∗∗ 2.363∗∗∗

COMCOM (SIM∗) 1.426∗∗∗ 0.158 0.843∗∗ 2.418∗∗∗

C. Real net cash flow growth

Panel (SIM) 0.922∗∗∗ 0.330 1.105∗∗∗ 1.417∗∗∗

Mean (SIM) 1.124∗∗∗ 0.413 1.287∗∗∗ 1.604∗∗∗

SELCOM (SIM∗) 1.315∗∗∗ 0.528∗∗ 1.413∗∗∗ 1.833∗∗∗

COMCOM (SIM∗) 1.426∗∗∗ 0.539∗∗ 1.421∗∗∗ 1.861∗∗∗
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Table 4.12: Correlation between expected equity premium and macro variables

This table reports percentage correlations between our estimated 1-month expected return series under VC-SIM
approaches and various macroeconomic time series consisting of four categories. Panel A consist of Macroe-
conomic activity including industrial production growth, GDP growth, real profit growth, real personal income,
Chicago Fed National Activity Index, recession probability of Chauvet & Piger (2008), Anxious index of Survey of
Professional Forecasters (SPF), unemployment rate, and aggregate book-to-market ratio of aggregate U.S. stock
market. Panel B consists of volatility in macro variables reported in Panel A. In addition, we also consider the
macroeconomic uncertainty index from Bloom et al. (2018). Panel C consists of sentiment variables from Baker
& Wurgler (2006). Panel D consists of credit variables, i.e. term-spread and yield spread. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

Variable Panel (SIM) Mean (SIM) SELCOM (SIM∗) COMCOM (SIM∗)

A. Macroeconomic activity

Industrial Production growth −4.12∗ −5.33∗∗ −6.88∗∗ −8.16∗∗∗

GDP growth −3.95 −7.34∗ −8.68∗ −9.14∗

Real profit growth −2.99 −3.29 −10.67∗∗∗ −11.23∗∗∗

Real personal income −3.64 −5.01 −7.34∗∗ −7.72∗∗

CFNAI −4.04∗ −6.45∗∗∗ −7.99∗∗∗ −8.42∗∗∗

Unemployment rate (FRED) 22.54∗∗∗ 25.79∗∗∗ 30.19∗∗∗ 31.78∗∗∗

CP recession 12.61∗∗ 11.87∗∗ 13.20∗∗∗ 13.89∗∗∗

SPF recession 13.16∗∗ 15.62∗∗ 20.81∗∗∗ 21.90∗∗∗

Agg. Book-to-market 32.16∗∗∗ 36.08∗∗∗ 42.82∗∗∗ 47.71∗∗∗

Surplus consumer ratio −5.14∗ −6.94∗ −8.43∗∗ −8.92∗∗

B. Macroeconomic uncertainty

GDP growth volatility 12.12∗ 16.25∗∗∗ 20.79∗∗∗ 21.65∗∗∗

Consumer growth volatility 12.89∗ 16.50∗∗ 23.87∗∗∗ 24.86∗∗∗

Ind. Pr. growth Volatility 14.05∗ 17.17∗∗ 22.92∗∗∗ 23.87∗∗∗

Real Profit growth Volatility 15.87∗∗ 19.77∗∗∗ 27.54∗∗∗ 28.68∗∗∗

SPF uncertainty 18.40∗∗ 24.77∗∗∗ 28.32∗∗∗ 29.50∗∗∗

Financial Uncertainty 22.05∗∗∗ 26.69∗∗∗ 30.25∗∗∗ 31.51∗∗∗

Macro Uncertainty 21.01∗∗∗ 25.74∗∗∗ 28.53∗∗∗ 29.72∗∗∗

Real Uncertainty 15.113∗∗ 17.55∗∗ 20.96∗∗∗ 21.83∗∗∗

Uncertainty Index 22.51∗∗∗ 25.89∗∗∗ 30.39∗∗∗ 31.65∗∗∗

C. Sentiment (See Baker & Wurgler (2006) for more details on variables)

Index (Baker & Wurgler (2006)) −12.63∗ −18.76∗∗∗ −21.55∗∗∗ −21.87∗∗∗

IPO first day return −13.40∗ −17.79∗∗∗ −20.63∗∗∗ −21.05∗∗∗

IPO volume −17.45∗∗ −19.62∗∗∗ −22.67∗∗∗ −23.14∗∗∗

Closed-end discount −19.40∗∗∗ −21.33∗∗∗ 23.99∗∗∗ 24.08∗∗∗

Equity new issues −12.49∗ −16.84∗∗∗ −18.32∗∗∗ −18.69∗∗∗

4. Credit

Term spread −0.95 −1.07 −2.45 −2.91
Baa-Aaa spread 23.95∗∗∗ 25.43∗∗∗ 30.46∗∗∗ 31.80∗∗∗
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Table 4.13: Macroeconomic Variable Prediction using VC-SIM approach

This table reports out-of-sample results for 1 month time series for industrial production growth, real GDP growth,
real profit growth, Unemployment rate, and GDP growth, Chicago Fed National Activity Index with VC-SIM
approaches. MSFE-adjusted is the Clark & West (2007) given in Equation 4.69. *, **, and *** represent the
significance at the 10%, 5%, and 1% levels, respectively.

Variable Panel (SIM) Mean (SIM) SELCOM (SIM∗) COMCOM (SIM∗)

A. Real profit growth

R2
OS (%) 2.291∗∗∗ 2.621∗∗∗ 3.182∗∗∗ 3.315∗∗∗

MSFE-adjusted 3.020 3.050 3.1162 3.1762

p-value 0.001 0.001 0.001 0.001

B. Industrial Production growth

R2
OS (%) 4.153∗∗∗ 5.327∗∗∗ 7.242∗∗∗ 7.924∗∗∗

MSFE-adjusted 3.921 3.964 4.012 4.123

p-value 0.000 0.000 0.000 0.000

C. GDP growth

R2
OS (%) 3.548∗∗∗ 4.195∗∗∗ 5.492∗∗∗ 5.734∗∗∗

MSFE-adjusted 3.882 3.925 3.972 4.082

p-value 0.000 0.000 0.000 0.000

D. CFNAI

R2
OS (%) 6.772∗∗∗ 7.211∗∗∗ 8.987∗∗∗ 9.723∗∗∗

MSFE-adjusted 3.980 4.024 4.072 4.185

p-value 0.000 0.000 0.000 0.000

E. Unemployment rate (FRED)

R2
OS (%) 3.824∗∗∗ 4.273∗∗∗ 5.482∗∗∗ 5.891∗∗∗

MSFE-adjusted 3.085 3.175 3.932 4.041

p-value 0.001 0.001 0.000 0.000
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Table 4.14: Out-of-sample results: Alternative Sample

This table reports the out-of-sample results for sub-sample, 1974:01 to 2018:12. See Table (4.7) for details.

Forecasting model MSFE R2
OS (%) MSFE-adjusted p-value ê

2
var(ê)

Historical Average (HA) 16.150 0.037 16.113

A. Variance-covariance approach (SIM)

Panel (SIM) 15.939 1.226∗∗∗ 3.012 0.001 0.004 15.934
Mean (SIM) 15.954 1.324∗∗∗ 3.218 0.001 0.003 15.951
SELCOM (SIM∗) 15.894 1.607∗∗∗ 3.361 0.000 0.026 15.868
COMCOM (SIM∗) 15.882 1.686∗∗∗ 3.447 0.000 0.028 15.854

B. Benchmark Models to deal with SBU

Mean (EXP) 15.973 1.103∗∗∗ 3.052 0.001 0.029 15.945
Mean (ROLL) 15.998 0.948∗∗∗ 2.986 0.001 0.003 15.995
Mean (BP) 15.992 0.988∗∗∗ 3.046 0.001 0.009 15.983
Mean (SEL-CV) 15.959 1.195∗∗∗ 3.056 0.001 0.005 15.954
Mean (RobW1) 15.977 1.080∗∗∗ 2.984 0.001 0.004 15.973
Mean (RobW2) 15.977 1.077∗∗∗ 2.971 0.001 0.004 15.973
Mean (EW) 15.943 1.293∗∗∗ 3.398 0.000 0.003 15.940
Mean (EW10) 15.954 1.226∗∗∗ 3.339 0.000 0.004 15.950
Mean (LW) 15.950 1.249∗∗∗ 3.218 0.001 0.004 15.946
Mean (VW-MSFE) 15.951 1.243∗∗∗ 3.05 0.001 0.001 15.951
Mean (ROC) 15.936 1.341∗∗∗ 3.499 0.000 0.001 15.934
Mean (ROC-L) 15.942 1.302∗∗∗ 3.417 0.000 0.002 15.940
Mean (RS) 15.982 1.049∗∗∗ 3.013 0.001 0.005 15.977

C. Standard Benchmark Models in Equity Premium Prediction

C.1 Kitchen Sink

KS 18.015 -10.356 0.981 0.162 0.032 17.983

C.2 Dimension Reduction

PCR1 16.064 0.529∗∗ 1.951 0.026 0.016 16.048
PCR3 16.008 0.884∗∗ 2.173 0.015 0.019 15.989
KP-3PF 16.238 -0.542 0.038 0.486 0.020 16.218

C.3 Shrinkage

LASSO 16.192 -0.262 0.501 0.308 0.000 16.192
Ad-LASSO 16.216 -0.409 0.463 0.322 0.002 16.214
Ridge 16.225 -0.464 0.912 0.181 0.003 16.222
ENet 16.191 -0.253 0.872 0.192 0.000 16.191

C.4 Forecast Combination

Mean 15.973 1.104∗∗∗ 3.052 0.001 0.029 15.945
T-Mean 15.986 1.025∗∗∗ 3.017 0.001 0.029 15.956
Median 16.002 0.922∗∗∗ 2.808 0.002 0.015 15.987
DMSFE (θ = 0.9) 15.963 1.169∗∗∗ 3.121 0.001 0.028 15.935
DMSFE (θ = 1) 15.974 1.101∗∗∗ 3.007 0.001 0.028 15.945
RA1 16.481 -2.012 0.976 0.163 0.000 16.481
RA2 16.303 -0.943 0.039 0.485 0.014 16.289
RA3 15.975 1.093∗∗∗ 3.440 0.000 0.018 15.957
RR 16.062 0.547∗∗ 1.721 0.042 0.024 16.038
VC-SIM (Optimal) 15.960 1.196∗∗∗ 3.102 0.001 0.004 15.956
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Figure 4.3: CumSFE - CV-SIM approaches

Note: This figures plots the Cumulative squared forecast error (CumSFE) for the historical
average (HA) benchmark model minus the CumSFE for our VC-SIM approaches from 1947:1
to 2018:12. When the curve rises, the given VC-SIM model outperforms the benchmark, while
the opposite holds when the curve falls.

Figure 4.4: R2-based Importance of each predictor in OOS equity premium forecast

Note: This figure plots R2-based importance of each predictor which is normalized to sum to
one. Importance is defined as reduction in out-of-sample R2 due to absence of a given predictor.
Importance factor of individual is taken as average over sample-splits (1947-2000).
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Figure 4.5: Importance of each predictor in EP predictability

Note: This figure plots the average optimal weight of individual predictor over full sample
which is normalized to sum to one. Recession and expansion periods are based on NBER dates.

Figure 4.6: Importance of each predictor over optimism and pessimism periods

Note: This figure plots the average optimal weight of individual predictors over sub-sample
(1974:01-2018:12) which is normalized to sum to one. Optimism and pessimism periods are
defined following Baker & Wurgler (2006) where any period with positive (negative) sentiment
index is defined as optimism (pessimism).
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Figure 4.7: Importance of each predictor for NBER-dated recession

Note: This figure plots the average optimal weight of individual predictors over sub-sample
(1974:01-2018:12) which is normalized to sum to one. REC, OPT, PES, and EXP indicate
recession, optimism, pessimism and expansions respectively. Recessions and expansions are
indicated by NBER dates whereas optimism and pessimism periods are defined following Baker
& Wurgler (2006) where any period with positive (negative) sentiment index is defined as
optimism (pessimism).
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Figure 4.8: Contribution of each predictor in optimal OOS equity premium forecast

(a) DP (b) DY (c) EP

(d) DE (e) SVAR (f) BM

(g) NTIS (h) TBL (i) LTY

(j) LTR (k) TMS (l) DFY

(m) DFR (n) INFL

Note: This figure shows the contribution of each predictor in composite equity premium forecast
at each time t. The sample period is 1947:01-2018-12 and shaded area represent NBER recession
periods.
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Figure 4.9: Contribution of equity and non-equity predictors

Note: This figure shows the contribution of predictor groups (financial ratios and macro) in
composite equity premium forecast at each time t. Predictors are grouped into equity (DP, DY,
EP, DP, BM, and SVAR) and non-equity (TBL, LTY, LTR, TMS, DFY, DFR and INFL). The
sample period is 1947:01-2018-12 and shaded area represent NBER recession periods.

Figure 4.10: Equity Premium Forecasts - Monthly returns

Note: This figure plots out-of-sample equity premium forecasts with COMCOM-SIM and his-
torical average over 1947:01 to 2018:12. Following Campbell & Thompson (2008), negative
forecasts are set to zero for better comparison with historical average.
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Chapter 5

Conclusion and Future directions

In this thesis, we analysed two important subjects in Empirical Finance: the Conditional Cap-
ital Asset Pricing Model (CCAPM) and out-of-sample equity premium prediction. Our focus
in three different essays remained on the fact that economic theory does not always define the
functional relationship between the dependent (target) and explanatory (predictor) variables,
nor does it always define a specific set of covariates. This implies that model uncertainty is
widespread in empirical economics and finance. Uncertainty arises when there is a lack of gen-
eral agreement in a particular field of study. In such instances, there are often many different
models and methods attempting to describe the variable of interest. According to Ziyadi & Al-
Qadi (2019), there are three key sources of model uncertainty.1 Figure 5.1 shows these sources,
where the dependent variable (y) is defined as a function of explanatory (independent) vari-
ables (x) and model parameters (α). The three sources of model uncertainty include: i) input
uncertainty (e.g., relevance of explanatory variables, etc.); ii) parameter uncertainty (e.g., un-
certainty of model parameters due to data quality and structural breaks, etc.); and iii) model
form uncertainty (e.g., assumption on relationship between x and y, i.e., linear vs non-linear,
etc.).

Figure 5.1: Three sources of model uncertainty

Source: Ziyadi & Al-Qadi (2019)

This thesis only focuses on the first two sources of model uncertainty, namely input and parame-
ter uncertainties, and assumes that there exists a linear relationship between y and x. Therefore,
this should be considered as a limitation of this study. The input uncertainty (IU) mainly arises
when there is no guidance on the choice of independent variables. The parameter uncertainty
(PU), on the other hand, mainly arises due to structural breaks affecting the underlying rela-
tionship between the variables in the model. Pesaran & Timmermann (2007) show that the
performance of a forecasting model in the presence of structural breaks depends on the number

1For more details, see Clyde & George (2004), Loucks et al. (2005), Young (2018), and others.
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of observations (window length) used to estimate the out-of-sample forecast. However, there
is no clear consensus in the literature on the number of observations to be used in estimation,
which is usually referred to as estimation window uncertainty (EWU) (Pesaran & Timmermann
2007).

Since our objective was to address these two issues from CCAPM and equity premium pre-
diction perspective, therefore, a review of forecasting literature helped us to identify three main
strategies to deal with these issues, which are summarised in Figure 5.2.

Figure 5.2: Strategies to overcome Model Uncertainty
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5.1 Contribution to asset pricing literature

The first two essays were related to the tests of conditional CAPM. The main objective of the first
essay was to address the variable-selection uncertainty (VSU) by applying the dynamic model
selection (DMS) approaches to CCAPM-IV. Specifically, we introduced a CCAPM model where
the choice of conditioning variables, used to capture the variation in conditional betas, is allowed
to vary through time and is selected from a large pool of potential state variables. The main
research question was whether the cross-section of expected returns on 25 Size-B/M portfolios
could be explained by conditional CAPM with variable selection (VS) approaches. Figure 5.3
suggests that the focus of essay one has been on combining information (CI) approaches only
where three different methods of VS were considered. The important contribution of our first es-
say is the introduction of DMS approach that considers each model by its performance in pricing
the assets. We call this approach the dynamically selected beta model (DSBM). Specifically, this
approach selects the beta models that perform the best based on standard asset pricing tests
on past data at each point in time. Results suggest that DSBM performs better than tradi-
tional approaches such as sequential selection (e.g., forward selection, backward elimination, and
stepwise regression), best subset selection (e.g., adjusted R2, AIC (Akaike 1973), BIC (Schwarz
1978), Mallows’s CP (Mallows 1973) and shrinkage methods (e.g., LASSO ((Tibshirani 1996),
Adaptive LASSO (Zou 2006), and Elastic Net (ENet) (Zou & Hastie 2005) by achieving higher
R2. One potential reason for the traditional methods’ poor performance is their reliance on
residuals from CCAPM-IV regression as their primary objective function. However, according
to the CAPM theory, when the returns are measured in excess of the risk-free rate, the intercept
term aIVi indicates the expected abnormal return, which should be zero. Therefore, the DSBM
ensures that a model that minimises the pricing errors is selected to capture beta dynamics.

Figure 5.3: Strategies to overcome VSU used in Chapter 2 (Essay 1)
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However, consistent with Lewellen & Nagel (2006), we find that all the DMS approaches, in-
cluding DSBM, cannot explain the value and momentum anomalies. Using bootstrap methods
to quantify the model uncertainty and instability, we find that DMS approaches do not fully
account for variable-selection uncertainty (VSU). These findings are in line with recent criticism
of DMS approaches regarding their failure to account for variable-selection uncertainty fully and
to achieve model stability (e.g., Smith 2018, Petropoulos et al. 2018, Makridakis et al. 2020).
These findings motivated us to consider alternative strategies from forecasting literature in the
second essay to address variable-selection uncertainty from the CCAPM-IV perspective.

In the second essay, we applied dimension reduction (DR) (e.g., Ludvigson & Ng 2007, Neely
et al. 2014, Kelly & Pruitt 2013), combining forecasts (CF) (e.g., Bates & Granger 1969, Tim-
mermann 2006, Rapach et al. 2010) and a hybrid of combining information (CI) and CF (e.g.,
Huang & Lee 2010, Hirano & Wright 2017, Rapach & Zhou 2020) approaches to CCAPM-IV.2

These approaches are summarised in Figure 5.4. Our second essay contributes to the literature
in the following ways: to the best of our knowledge, this is the first study that provides a com-
prehensive comparison of various well-known approaches identified by literature to deal with
model uncertainty related to variable selection from a CCAPM perspective. Our out-of-sample
results suggest that CF approaches dominate the CI approaches in explaining the cross-section
of assets returns. Finally, consistent with studies as Hirano & Wright (2017), Liu & Xie (2019),
and Rapach & Zhou (2020), we show that a combination of conventional econometric methods
and machine learning methods can outperform the individual methods. For example, we find
the evidence on improved performance of CCAPM-IV with bagging (BAGG) method where, in
each pseudo sample, we first select the subset of variables based on the mean squared forecasting
error (MSFE) in cross-validation sample, and then take a simple average of beta estimates across
all pseudo samples. This method performs as well as the Fama & French (1993) three-factor
model in explaining the cross-sectional returns of 25 Size-B/M, 30 industry and ten momentum
portfolios.

5.2 Future directions for asset pricing literature

Following points summarise the limitations and future directions that can be generalised to both
essay 1 and 2.

5.2.1 Applying (non-linear) machine learning models

One of the limitations of essay 1 and 2 is that they are mainly related to the variable-selection
uncertainty and make assumptions about functional form and parameter uncertainty. Following
mainstream asset pricing literature (e.g., Jagannathan & Wang 1996, Ferson & Harvey 1999,
Lettau & Ludvigson 2001), both essays assume that the relationship between asset returns and
predictor variables is linear. However, some studies evaluate this assumption, Cai et al. (2015),
for example, found strong evidence against the linearity assumption, arguing that such a strong
assumption could lead to model misspecification.3 Inference and estimation based on misspec-
ification can become very deceptive, as Ghysels (1998) indicates. Moreover, Ghysels (1998)
demonstrated that among several well-known time-varying beta models, severe misspecification
could result in highly volatile time variance in the beta, which can lead to significant pricing
errors. On the other hand, both the studies, essay 1 and 2, use a rolling window scheme criticised
in the literature for not choosing the optimal estimation window. As a result, failing to address
the issue of estimation window uncertainty (EWU) (e.g., Pesaran & Timmermann 2007, Inoue
& Rossi 2011).

2Note that the data (sample, test portfolios, and predictor variables) are identical to essay 1.
3Also see Wang (2002) and Wang (2003) on the relationship between return and predictors.
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In future, these two sources of uncertainties (parameter and functional form) can be addressed
from CCAPM-IV perspective. Specifically, recent research shows that non-linear regression
strategies like regression trees and neural networks outperform linear regression techniques in
forecasting (Gu et al. 2020). Moritz & Zimmermann (2016) and Gu et al. (2020) both point
out the limitations of OLS regression when it comes to variable selection in high-dimensional
datasets. From a CCAPM-IV standpoint, it is worthwhile to use these non-linear approaches.
Moreover, the techniques used in Chapter 4 to address the issue of EWU in forecasting equity
premium can be applied in future studies to address the EWU in estimating conditional betas
from a CCAPM-IV perspective.

5.2.2 Applying alternative approaches of CF

A review of the literature summarised in Figure 5.2 suggests that the CF approaches can be
classified into three groups based on combining forecasts: i) across models, ii) across samples,
and iii) across estimation windows. In the second essay, we only considered CF across models and
samples and does not focus on CF across estimation windows. Moreover, CF across models can
be grouped into Bayesian and Non-Bayesian. Under the Bayesian approach, the Bayesian model
averaging (BMA) is well-known in forecasting literature that assumes that prior knowledge is
available on a set of possible models which contains the true model (Leamer 1978). The Non-
Bayesian or Frequentist approach, on the other hand, requires an estimate of the parameter
of interest as well as a related standard error by assigning appropriate weights to each model.
Unlike the Bayesian approach, the Frequentist approach does not involve priors on parameters
and models, and the corresponding estimators are solely based on data. In comparison to the
Bayesian approach, the frequentist approach is thought to be less complicated and easy to
implement. In addition, there is also some criticism on the Bayesian approach, in particular, for
specifying the prior model probabilities. According to Brock et al. (2003) and Ley & Steel (2011),
the chosen prior distributions may significantly impact the outcome of BMA analysis.4 As a
result, we only focused on Non-Bayesian approaches in this thesis, where combining weights are
based on a simple average or other performance criteria like mean squared forecast error (MSFE).
However, BMA might have been used as a benchmark model from a CCAPM perspective to
provide a direct comparison with Frequentist approaches, but we did not consider this because
we used CF approaches in essay 2, which required us to estimate all possible combinations
of predictor variables, which was computationally intensive. Moreover, many studies such as
Rapach et al. (2010) use simple average across univariate models in their applications. For these
reasons, we restrict our CF analysis to combining forecasts from univariate predictor-based
models, requiring only M = K models instead of M = 2K models to be estimated.

4See Moral-Benito (2015), who provides an excellent survey on Bayesian and Frequentist approaches.
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Figure 5.4: Strategies to overcome VSU used in Chapter 3
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This also opens up the possibility of considering other approaches to combining beta forecasts
from all possible models and the complete subset regression (CSR) methodology proposed by
Elliott et al. (2013).5 CSR is a direct and straightforward method for dealing with model un-
certainty, model instability, and estimation error. The CSR approach involves using k out of
K variables (k ≤ K) to fit linear regressions for all possible combinations of the k variables.
K is the total number of predictors. The final forecast is the equally-weighted average forecast
computed from all regressions. In addition, instead of using a simple average, CSR can be ap-
plied to CCAPM-IV using asset pricing criteria to see whether we can address the criticism of
Boot & Nibbering (2020) that there are not enough empirical studies using alternative weighting
schemes and addressing the issues related with optimal model subspace (k). Specifically, there
is a possibility to use value weights based on mean squared forecasting error based on cross-
validation (MSFE-CV) approach and using the same approach MSFE-CV to identify the optimal
k. This should result in developing various strategies to evaluate including: i) value-weighted
forecast for specific k, ii) equally-weighted forecast for optimal k, and iii) value-weighted forecast
for optimal k. Where the standard approach of the equally-weighted forecast for specific k can
serve as a benchmark model.

Next, as shown in Figure 5.4, our essay 2 only covers the CF approach based on simple av-
erage (e.g., Rapach et al. 2010). However, as shown in Chapter 4 that the variance-covariance
(VC) approach that emphasises the consideration of correlation among forecasting errors can
improve the forecast accuracy. Considering this, the VC approach can also be applied in future
studies to CCAPM-IV.

5.2.3 Combining betas across various approaches

The findings of essay 2 suggests that CF approaches applied to CCAPM-IV can outperform
the individual models and CI approaches in explaining the cross-section of asset returns. There
are also some other studies reporting better performance of CF approach in pricing assets.
Specifically, these studies model the beta dynamics by combining betas estimated with different
frequencies without relying on conditioning information variables. For example, Cenesizoglu
& Reeves (2018) model an asset’s conditional beta as a weighted average of short-, medium-
and long-run betas calculated over different periods based on different frequency data, while
González et al. (2012) employ MIDAS (mixed data sampling) regressions to estimate a port-
folio’s conditional beta as a weighted average of a high and low-frequency components. Our
approach in essay 2 differs from these studies in the way that our focus was to apply CF ap-
proaches to estimate asset betas with the same frequency (monthly) based on different predictor
variables. Overall, we have evidence of CF approaches’ effectiveness in combining asset betas
across different frequencies without relying on conditioning information (e.g., Cenesizoglu &
Reeves 2018, González et al. 2012) and combining betas obtained using the same frequency but
different variables (e.g., essay 2).

The application of CF can also be extended to other areas of asset pricing, in particular
CCAPM. For example, we learn from the literature that there are several other methods for
capturing beta-dynamics besides CCAPM-IV. Some of the famous approaches include those
using data-driven filters such as beta calculated from a 60-month rolling window as in Fama
& MacBeth (1973), or a short window approach (Lewellen & Nagel 2006) and high-frequency
data (Andersen et al. 2003), multivariate GARCH (Bollerslev et al. 1988), dynamic conditional
correlation (DCC) (Engle 2002, Bali & Engle 2010), regime-switching model (Vendrame et al.

5CSR has been applied to various research areas, including equity premium (Meligkotsidou et al. 2021),
bond betas Aslanidis et al. (2019), inflation (Garcia et al. 2017), exchange rates (Beckmann & Schüssler 2016),
employment growth (Borup & Schütte 2020), commodity prices (Gargano & Timmermann 2014), and many
others.
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2018), mean-reverting stochastic process (Jostova & Philipov 2005), Kalman filter (Adrian &
Franzoni 2009), and others. Given that betas obtained through CF approaches can outperform
the betas from a single model, the CF approach applied to combine betas obtained through
various above-mentioned approaches may explain the cross-section of asset returns more than a
single approach.

5.2.4 Extending the information set

One of the limitations of essay 1 and 2 is sticking with standard 14 variables of Goyal & Welch
(2008) because among various approaches that we compared is the subset variable selection that
requires estimation of all possible models (2N ). Therefore, a large dataset makes it computation-
ally infeasible to evaluate all possible models. For example, the inclusion of 30 variables means
that we need to estimate more than 1.07 billion models at each period for model selection or
averaging. However, findings from essay 2 suggest that combining univariate beta forecasts, re-
quiring N estimates only, performs better than dynamic model selection (DMS) approaches that
require 2N models. This opens up the possibility to test the CCAPM-IV approach with many
predictors based on CF across univariate predictor-based models and dimension reduction ap-
proaches only. Many asset pricing researchers, in particular, are looking for novel predictive firm
characteristics for explaining anomalies that traditional capital asset pricing and factor models
fail to capture. Several independent analytical studies based on a data science methodology have
recently demonstrated the value of employing a greater number of economically interpretable
predictors relevant to firm characteristics and other common factors (e.g., Moritz & Zimmer-
mann 2016, Gu et al. 2020, Feng et al. 2018). Gu et al. (2020), for example, examine a dataset
of more than 30,000 individual stocks from 1957 to 2016 and identify over 900 baseline signals.
Moreover, the dataset can also be extended to the Federal Reserve Economic Data (FRED)
database (e.g., McCracken & Ng 2016) and new predictor variables that have proved essential in
establishing equity premium predictability. These predictors include technical indicators (Neely
et al. 2014, Lin 2018), investor sentiment and attention (Huang et al. 2015, Ni et al. 2015, Chen
2017, Coqueret 2020, Zhang et al. 2021), manager sentiment (Jiang et al. 2019), the short in-
terest index (Rapach et al. 2016), bitcoin prices (Salisu et al. 2019), and credit quality (Chava
et al. 2015, Narayan et al. 2017), among others.

5.2.5 Introducing Learning

Adrian & Franzoni (2009) suggest that the key explanation for the unconditional CAPM’s
failure is that the model does not mimic the learning process of investors. As a result, they
propose a learning-based CAPM to estimate conditional betas. Their model is based on the
assumption that investors conduct systematic learning activities on observed asset returns, infer
risk loadings from available data, and update them optimally as new data becomes available.
According to their findings, the learning-based CAPM outperforms the unconditional CAPM. In
addition, they show that the introduction of conditioning information in their learning-CAPM
can further improve the performance. However, they only use standard predictors such as lagged
market index, the term spread, the value spread, and the consumption-to-wealth ratio (CAY)
as conditioning variables. Therefore, it can be interesting to evaluate the CCAPM-IV models
introduced in essay 1 and 2 with learning. The analysis will not only based on the extended
set of conditioning information variables but also let the information be optimally selected over
time. In addition, various approaches such as CF and principal component forecast combination
(PCFC) can be considered to estimate the time-varying betas.

5.2.6 Linking optimal conditioning to equity premium forecasts

Our approaches, in particular, DMS and CF are used to estimate time-varying betas. However,
it is worth analysing that the optimally selected information set at a particular period explaining
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the cross-section of asset returns can also forecast the equity premium out-of-sample. This can
be done by using DSBM to select the best subset of variables and using those variables to
generate out-of-sample forecasts of the equity premium. And in the case of CF, the optimal
weights obtained through methods pricing asset at a given time can be applied to equity premium
forecasts to generate combined forecasts.

5.3 Contribution to the equity premium literature

In the third essay, we proposed a new combining forecasts (CF) approach based on a variance-
covariance (VC) method that addresses estimation window uncertainty (EWU) and variable-
selection uncertainty (VSU) simultaneously to improve the out-of-sample forecasts of the equity
premium. Our third essay contributes to the existing literature by complementing the current
literature on methods for directly dealing with EWU in forecasting, such as Pesaran & Tim-
mermann (2007), Pesaran & Pick (2011), Rossi & Inoue (2012), Pesaran et al. (2013), Tian
& Anderson (2014), Wang et al. (2020) and others. This is the first study, to the best of our
knowledge, to apply the VC approach for combining estimation windows of individual models.
We show that considering the correlation among forecast errors across estimation windows can
significantly improve the forecasting accuracy of individual models. Secondly, for the first time in
the forecasting literature, we introduce a panel combination approach based on VC approach to
address the model uncertainty and parameter instability simultaneously. Based on out-of-sample
forecasting results of the equity premium, we show that our new model not only outperforms
the existing AveAve approach of Pesaran et al. (2013) but also existing approaches in equity
premium such as CF (Rapach et al. 2010), dimension reduction methods (Kelly & Pruitt 2013,
Neely et al. 2014) and shrinkage methods (Li & Tsiakas 2017, Zhang et al. 2020).

5.4 Future directions for the equity premium literature

The limitations and future directions of our third essay are discussed below.

5.4.1 Extending EWU and VSU to non-linear models

We introduced the variance-covariance approach to address the issues of VSU and EWU. How-
ever, as discussed earlier, the functional form is the third source of model uncertainty that we
do not consider in our third essay. However, given the success of non-linear machine learning
methods (e.g., Gu et al. 2020), it is worth considering these methods from the perspective of
addressing EWU by applying our proposed methods.

5.4.2 Extending the information set

To respond the critique of Goyal & Welch (2008), recent academic research shows that certain
new predictors and econometric methods can improve the out-of-sample predictability of stock
returns. Our third essay belongs to the second category of studies that use new econometric
methods to addresses parameter instability and variable-selection uncertainty issues using stan-
dard Goyal & Welch (2008) predictors. In future, by expanding the dataset mentioned in section
(5.2.4), the methods introduced in essay 3 can be applied to both linear (already considered in
the third essay) and non-linear models.

5.4.3 Applying hybrid of CI and CF approaches

Figure 5.5 shows that our focus in essay 3 was on the combining forecasts (CF) method, which
is commonly used to address both the estimation window and variable-selection uncertainties.
However, as shown in essay 2 that Bagging and hybrid of CI and CF approaches can improve
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the forecasting performance, there is potential to consider these techniques in addressing VSU
and EWU.

5.4.4 Addressing EWU for other approaches

We demonstrated in essay 3 that our methods based on CF using variance-covariance approach
outperform established well-known methods such as dimension reduction (DR) and shrinkage
methods. However, the comparison is incomplete since we do not consider the EWU for these
models; instead, they are all estimated using an expanding window. According to studies such as
Zhang et al. (2020), addressing EWU for methods like shrinkage improves forecasting accuracy
as compared to estimates made with a single-window, such as rolling or expanding. Given this,
EWU for DR and shrinkage methods in forecasting out-of-sample equity premium forecasts could
be addressed. This is also interesting because it would eventually result in a hybrid model; for
example, the DR method would generate a forecast for each window, which would then be
combined to generate a final forecast. As a result, the strategy effectively combines DR and CF.

Figure 5.5: Strategies to overcome VSU and EWU used in Chapter 4

5.4.5 Applying theoretical constraints

The optimal combining forecast (CF) method uses the variance-covariance approach that is
based on the objective function of minimising the variance of the portfolio. Our study is limited
to the standard approach. However, some studies use some theoretical constraints in gener-
ating the optimal forecast. For example, Hsiao & Wan (2014) implement different geometric
methods in large samples and provide a simple eigenvector approach for combining forecasts.
The authors empirically show that this approach can perform better than the existing optimal
CF and simple average. Most recently, Chan & Pauwels (2018) present a method for analysing
the issue of combining forecasts using various forecast metrics, such as Mean Squared Error
(MSE), and demonstrate that CF outperforms simple average and optimal CF based on stan-
dard approach. Following these studies, theoretical constraints can be applied to the optimal
CF methods discussed in the third essay. In addition, there is also a possibility to apply some of
the other objective functions other than minimum portfolio variance that have been considered
in the application of portfolio optimisation. These methods include: (i) inverse volatility (e.g.,
De Carvalho et al. 2012), ii) equal-risk-contribution (Maillard et al. 2010, Mausser & Romanko
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2014), and iii) maximum diversification (e.g., Choueifaty & Coignard 2008). See Neffelli (2018),
who provide comprehensive details on these methods.

5.4.6 Applying alternative covariance matrices

The variance-covariance approach of optimal CF relies on the estimation of the covariance ma-
trix. Our analysis suggests that the results are sensitive to the selection of covariance-matrix.
For example, single index model (SIM) of Figlewski (1983) outperforms diagonal and sample
covariance matrices. We only considered these three approaches(diagonal, sample, and SIM)
to estimate the error-covariance matrix. This can be considered as a limitation of our study
because Figure 5.6 suggests that there are various methods of estimating covariance-matrix. We
classify them into conventional, factor models, shrinkage, and portfolio of estimators.

Figure 5.6: Approaches to estimate covariance-matrix

The conventional methods include diagonal, sample, constant correlation model (CC) of Elton &
Gruber (1973), Constant covariance model (CCov) of Pantaleo et al. (2011), and exponentially
weighted moving average (EWMA) of Morgan (1996). However, in essay 3, we only considered
two conventional methods, namely diagonal and sample. The number of estimated parameters
to construct a sample covariance matrix grows with the square of the number of predictors,
resulting in high estimation error. Ledoit & Wolf (2003) interpret the sample covariance matrix
consisting of N assets as an N factor model (forecasting models in our case). Imposing a factor
structure on the covariations among assets is a common way to reduce estimation error in the
covariance matrix. Since the factor structure decreases the number of parameters to be calcu-
lated, the estimation error is reduced. However, with just a few factors, the estimated covariance
matrix cannot capture all asset relationships, resulting in specification error. Figlewski (1983)
propose a single index model (SIM) that requires a small number of estimates to construct the
covariance matrix. Following Figlewski (1983), in essay 3, we used average forecast errors as a
single factor. However, instead of using average asset returns as a factor, some studies use a
principal component as the factor (e.g., Fan et al. 2013).
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Ledoit & Wolf (2003) argue that though the single factor covariance model reduces the esti-
mation error, it also increases bias due to its dependence on a single source of risk. According
to the authors, the best trade-off is to find the optimum combination of bias and prediction
error. This resulted in the development of covariance matrix estimators such as linear shrinkage
(Ledoit & Wolf 2004) and extensions thereof (Ledoit & Wolf 2012, Engle et al. 2019, Ledoit
& Wolf 2020). Instead of the optimally weighted shrinkage suggested by Ledoit & Wolf (2003,
2004), Jagannathan & Ma (2003) suggest weighted covariance estimators. The authors argue
that using equal portfolio weights is the best method since little is known about the covariance
structure of the estimation errors of various estimators. For example, taking a simple average
across different covariance matrices such as the diagonal, sample, and single-index model. Thus,
it may be worth applying these alternative covariance methods to obtain combining forecasts
across models and estimation windows.
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