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Abstract

In the first chapter of my thesis, I study the asset pricing implications of being

able to optimally early exercise a plain-vanilla put option, contrasting the expected

returns of equivalent American and European put options. Standard pricing models

with stochastic volatility and asset-value jumps suggest that the expected return

spread between them is positive, can be economically sizable, and widens with a

higher optimal early exercise probability, as induced through a higher moneyness,

shorter time-to-maturity, or lower underlying-asset volatility. Studying single-stock

American put options and equivalent synthetic European options formed from

applying put-call parity to American call options on zero-dividend stocks, my

empirical work supports the theoretical predictions. My results, therefore, indicate

that the early exercise feature can have a strong effect on option returns.

In the second chapter, I introduce a dynamic trading strategy based on a theoretical

proposition of Shreve (2004). Many studies report that American option investors

often exercise their positions suboptimally late. Yet, when that can happen in case of

puts, there is an arbitrage opportunity in perfect markets, mentioned in Shreve (2004),

exploitable by longing the asset-and-riskfree-asset portfolio replicating the put and

shorting the put. Using early exercise data, I show that the arbitrage strategy

also earns a highly significant mean return with low risk in real single-stock put

markets, in which exactly replicating options is impossible. In line with theory, the

strategy performs particularly well on high strike-price puts in high interest-rate

regimes. It further performs well on short time-to-maturity puts on low volatility

stocks, consistent with evidence that investors do not correctly incorporate those

characteristics into their exercise decisions. The strategy survives accounting for

trading and short-selling costs, at least when executed on liquid assets.

In the third chapter, I revisit the value-weighted stock return predictability of

Black-Scholes (1973) option implied volatility spreads. Studies so far have explained

this predictability using investors’ informed trading activities in options ahead of the

stock market and/or frictions in the underlying stock. Nevertheless, for single-stock

American options, I show that the ability of implied volatility spreads to predict

cross sectional stock returns is primarily driven by the friction-induced optimal early

exercise of put options that is not accounted for in calculating implied volatility. The

contribution of other factors to the predictive ability of implied volatility spreads

are largely insignificant. Further evidence suggests that the predictability cannot be

solely explained by the trading activities of informed option investors.
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Chapter 1

The Early Exercise Risk

Premium

Keywords: Empirical asset pricing; cross-sectional option pricing; put options;

early exercise.

1.1 Introduction

Although starting from Black and Scholes (1973) an abundance of studies consider

the valuation of plain-vanilla and exotic options, only recently a much smaller number

have started looking into the systematic risk of these assets. Among those latter

studies, Coval and Shumway (2001) study how the strike price affects the expected

return of a European option, while Hu and Jacobs (2018) and Aretz et al. (2019)

study how underlying-asset volatility does. Surprisingly, however, there is so far no

research into how the ability to optimally early exercise an option influences the

expected option return, perhaps due to the widely-held view that the early exercise

feature of American options has only minimal implications.1 In accordance with that

view, a large empirical literature uses American option data in European option

1This view is often credited to the theoretical studies of Brennan and Schwartz (1977) and
Broadie et al. (2007). Using a wide variety of stochastic processes to model the evolution of the
underlying asset’s value, these studies show that the values of American options are generally close
to those of European options.
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pricing models, effectively assuming that American and European options are “almost

identical” (see, e.g., Bakshi et al. (2003), Carr and Wu (2008), Hu and Jacobs (2018),

Martin and Wagner (2019), and others).

In our paper, we present theoretical and empirical evidence on how being able

to optimally early exercise a plain-vanilla put option affects the option’s expected

return. On the theoretical front, we calculate expected American and European put

option returns through simulating the value of the underlying asset from popular

stochastic processes, showing that the expected return spread between an American

option and its equivalent European option (which we label the “early exercise risk

premium”) is positive and reaches up to 8.14% per month. We further show that the

spread increases with factors positively related to the early exercise probability. On

the empirical front, we study the mean return spread between single-stock American

put options and equivalent synthetic European options, formed from applying put-

call parity to American call options written on zero-dividend stocks. In line with

our theory, our estimate of the early exercise risk premium is positive, reaches up

to 11.74% per month (t-statistic: 12.04), and significantly increases with factors

positively conditioning the early exercise probability.

We rely on Longstaff and Schwartz’s (2001) least-squares method to calculate

the expected returns of American and European options from simulations. More

specifically, we simulate a large number of daily underlying-asset-value paths under

the physical and risk-neutral measure from Geometric Brownian motion, a stochastic

volatility, and a stochastic-volatility jump model (see Bates (1996)). Dividing the mean

maturity option payoff under the physical measure by the mean discounted maturity

payoff under the risk-neutral measure, we obtain the expected European option return.

To calculate the expected American option return, we move backward from maturity,

on each date and for each path comparing the early exercise payoff with the expected

discounted risk-neutral option value from a least-squares regression. Doing so enables

us to delineate the optimal early exercise boundary (i.e., the underlying-asset value

for which an early exercise is as attractive as keeping the option alive). Dividing

12



the mean compounded-up earliest option payoff under the physical measure by the

mean discounted earliest option payoff under the risk-neutral measure, we obtain the

expected American option return.

The simulations show that while, in line with Merton (1973), American options

have higher values than the equivalent European options, they have — in proportional

terms — even higher expected payoffs, leading them to have higher (i.e., less negative)

expected returns than the European options. The intuition behind this result, as first

pointed out by Barraclough and Whaley (2012), is that early exercising an American

put option is equivalent to converting a risky asset into a risk-free bond, skewing

systematic option risk toward zero. The simulations further show that the magnitude

of the early exercise risk premium can meaningfully depend on factors positively

conditioning the early exercise probability. The premium, for example, increases

significantly with a higher option moneyness, a shorter time-to-maturity, and a lower

underlying-asset volatility, while, however, only being mildly affected by stochastic

volatility and asset-value jumps.

We use exchange-traded single-stock American put options and their equivalent

synthetic European options to determine the sign and magnitude of the early

exercise risk premium and its relations with factors conditioning the chance of an

early exercise in the data. We calculate the monthly American put option return

as the compounded early exercise payoff (if there is an optimal early exercise) or

the end-of-month option value (if there is none) to the start-of-month option value,

comparing market option values with early exercise payoffs to identify optimal

early exercises (Barraclough and Whaley’s (2012) “market rule”). To calculate the

monthly European put option return, we first create synthetic European put options.

To achieve that aim, we start from Merton’s (1973) insight that it is never optimal

to early exercise an American call option written on a zero-dividend asset, allowing

us to treat these options as quasi-European options. Prompted by Zivney (1991),

we next recognize that a European put option can be replicated using a portfolio

long the equivalent European call option, long an investment of the discounted

13



strike price into a money market account, and short the underlying asset (“put-call

parity”). We finally calculate the monthly synthetic European put option return as

the end-of-month value of the replication portfolio to its start-of-month value.

In accordance with our theory, portfolio sorts and Fama-MacBeth (FM; 1973)

regressions run on spread portfolios long an American put option and short its

equivalent synthetic European option suggest that the early exercise risk premium is

generally positive and highly significant in the data. In the pooled data, an equally-

weighted portfolio of the above spread portfolios, for example, yields a mean return of

3.66% per month (t-statistic: 8.67, greatly above the bootstrap upper limit of the 95%

confidence interval of 2.11). The mean return of the portfolio of portfolios, however,

significantly increases with a higher option moneyness (calculated as the strike-to-stock

price ratio), a shorter time-to-maturity, and a lower idiosyncratic underlying-asset

volatility derived from the market or Fama-French-Carhart (FFC) model. Among

short (i.e., 30-60 days) time-to-maturity options, the mean return is, for example,

a highly significant 11.74% per month (t-statistic: 12.04) for in-the-money (ITM)

options (moneyness > 1.05) but an only insignificant –0.68% (t-statistic: –0.90) for

out-of-the-money (OTM) options (moneyness < 0.95).

Our empirical evidence relies crucially on it never being optimal to early exercise

an American call option on a zero-dividend asset and put-call parity holding.

Cremers and Weinbaum (2010), Jensen and Pedersen (2016), and Figlewski (2018),

however, report that both these conditions can be violated due to stock and options

market illiquidity and/or short-sales constraints on the underlying asset. To establish

whether such violations confound our early exercise risk premium estimates, we

condition our tests on Amihud’s (2002) mean absolute return-to-dollar trading

volume measure (a stock illiquidity measure), the option bid-ask spread or open

interest (two option illiquidity measures), and the “Daily-Cost-to-Borrowing” score

(DCBS) from Markit (a short-sale constraints measure). Results suggest that while

short-sales constraints do not exert a meaningful effect, controlling for stock and

options illiquidity slightly decreases our early exercise risk premium estimates,
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without, however, rendering them insignificant.

We finally study whether real investors can earn the early exercise risk premium by

longing American put options and shorting the equivalent European option replication

portfolios. To do so, we assume real investors always buy at the midpoint price plus

a fraction of the bid-ask spread, whereas they always sell at the midpoint minus the

same fraction of that spread. Our evidence suggests that real investors can earn a

significantly positive premium for short time-to-maturity deep-ITM options under

reasonably high transaction costs, but not for other options.

Our work adds to an empirical literature studying the spreads in prices between

American options and equivalent European options (labelled the “early exercise

premium”). Zivney (1991) compares the prices of traded American S&P 500 call

or put options with those of equivalent synthetic European options obtained from

put-call parity. Closer to us, de Roon and Veld (1996) and Engström and Nordén

(2000) conduct the same exercise on U.S. stock index options and Swedish single-stock

options for which early exercising the call options is never optimal. Conversely,

McMurray and Yadav (2000) compare the prices of traded American and European

FTSE 100 options with identical times-to-maturity, but slightly different strike prices.

Supporting Merton (1973), all these studies find a significantly positive early exercise

premium. In contrast to them, we study the spread in expected returns — and

not prices — between American and European options. Given that the ability to

early exercise an option affects the expected option payoff and the option price, our

conclusions do not follow mechanically from theirs. In fact, if the expected return

spread between the two types of options were only driven by an effect on the option

price, we would reach exactly the opposite conclusions of those reported in our paper.

We further add to a literature studying stock and option characteristics pricing

the cross-section of option returns. Coval and Shumway (2001) show that, in a

stochastic discount factor model, the expected European call (put) option return

decreases (increases) with moneyness, confirming their predictions using S&P 500

option data. Hu and Jacobs (2018) report that, in a Black and Scholes (1973)
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framework, the same return decreases (increases) with underlying-asset volatility.

Re-examing those relations in a stochastic discount factor model, Aretz et al. (2019)

establish that Hu and Jacobs’ (2018) results only hold for idiosyncratic volatility,

showing that the signs of the relations with systematic volatility are ambiguous and

depend on moneyness. Goyal and Saretto (2009) report that the delta-hedged call or

put option return increases with the realized-minus-implied volatility of the underlying

asset. Cao and Han (2013) show that the same return decreases with idiosyncratic

underlying-asset volatility. We contribute to these studies by identifying another

option characteristic pricing options: the ability to early exercise.

We finally add to studies examining investors’ early exercise policies. Overdahl

and Martin (1994) show that the majority of early exercises of single-stock call and put

options fall within theoretically optimal early exercise boundaries, suggesting rational

exercise policies. Conversely, Brennan and Schwartz (1977) find that American put

options are often exercised significantly earlier or later than advocated by the Black

and Scholes (1973) model. Finucane (1997) shows that investors often early exercise

call options written on zero-dividend underlying assets, conflicting with Merton

(1973). Extending Finucane’s (1997) analysis, Poteshman and Serbin (2003) show

that only individual — but not institutional — investors early exercise those options.

Pool et al. (2008) estimate that total profits lost from failing to optimally early

exercise single-stock call options on ex-dividend dates amount to $491 million over

the 1996-2006 period. Barraclough and Whaley (2012) show that total profits lost

from failing to optimally early exercise single-stock put options are similarly large.

Eickholt et al. (2018) report that suboptimal early exercise policies can be explained

using investor irrationality, transaction costs, and a demand for liquidity and financial

flexibility. Given the widespread evidence on how blatantly investors violate optimal

early exercise policies, it is perhaps surprising that we find that the ability to early

exercise is priced in accordance with neoclassical models assuming optimal policies.

We proceed as follows. Section 1.2 studies the early exercise risk premium inherent

in standard neoclassical finance models. In Section 1.3, we discuss our data and
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methodology. Section 1.4 presents our main cross-sectional evidence, while Section 1.5

presents the results from related robustness tests. Section 1.6 offers our time-series

evidence. Section 1.7 sums up and concludes.

1.2 Theory

In this section, we study the early exercise risk premium in plain-vanilla American

put options in neoclassical finance models. To that end, we conduct a Monte Carlo

simulation exercise, using the Longstaff and Schwartz (2001) least-squares method

together with popular stochastic processes to obtain the expected returns of American

and European put options. We finally study the simulated expected return spread

between equivalent American and European put options, allowing moneyness, time-to-

maturity, and underlying-asset volatility to vary across our simulations.

1.2.1 A Monte Carlo Simulation Exercise

A. Calculating Simulated Expected Option Returns

We conduct a Monte Carlo simulation exercise to gain some broader insights into

the early exercise risk premium. To do so, we use Longstaff and Schwartz’s (2001)

least-squares approach to compute the expected returns of American and European put

options written on a zero-dividend underlying asset, relying on alternative stochastic

processes to model the evolution of the asset’s value. The alternative stochastic

processes studied by us are Geometric Brownian motion (GBM), a stochastic volatility

(SV) process, and a stochastic-volatility jump (SVJ) process (see Bates (1996), Andersen

et al. (2002), and others). We can compactly write these processes as:
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dS(t) = αS(t)dt+ S(t)
√
V (t)dW S(t) + d

N(t)∑
j=1

S(τj−)
[
eZ

s
j − 1

]
− λµ̄S(t)dt,

(1.1)

dV (t) = κv(θv − V (t))dt+ σv
√
V (t)dW v(t), (1.2)

where S(t) and V (t) are, respectively, the asset value and variance at time t, α

the asset value drift rate, κv the variance mean reversion parameter, θv the long-

run variance, and σv the volatility of variance. W S(t) and W v(t) are Brownian

motions, with Corr(W S(t),W v(t)) = ρ. Finally, N(t) is a Poisson process with

intensity λ, S(τj−) is the asset value one instant before a jump, Zs
j ∼ N(µz, σ

2
z), and

µ̄ = eµz+σ2
z/2 − 1. To rule out jumps, the SV model imposes λ = 0. To ensure that

asset-value variance is constant, the GBM model further imposes κv = σv = 0.

We simulate asset values from Equations (1.1) and (1.2) under both the physical,

P, and the risk-neutral, Q, probability measure. As stressed by Cheredito et

al. (2007) and Broadie et al. (2009), the asset value drift rate α, the variance

mean reversion parameter κv, the jump intensity λ, and the expected jump size

µz can all be different under the P and Q measures. To indicate that, we let

α ∈ {αP , αQ = rf}, κv ∈ {κPv , κQv }, λ ∈ {λP , λQ}, and µz ∈ {µPz , µQz }, where the

first entry is the parameter value under the P measure, the second that under the

Q measure, and rf the risk-free rate of return. In line with Broadie et al. (2009),

we however restrict the mean reversion parameters to be identical across physical

and risk-neutral measure (i.e., κPv = κQv ).

Having simulated the evolution of the underlying asset value under the P and

the Q measure using one of the three stochastic processes multiple times, we next

compute the expected European put option return as follows. Separately for each

simulated asset-value path and the two measures, we first calculate the maturity

payoff of the option, max(K − S(T ), 0), where K is the strike price of the option

and S(T ) the maturity value of the underlying asset under either measure. We next
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calculate the expected option payoff as the simple mean of the asset-value-path

specific maturity payoffs of the option under the P measure. Conversely, we calculate

the option value as the simple mean of the same payoffs of the option under the Q

measure, discounted to the option initiation date at the risk-free rate. We finally

scale the expected option payoff by the option value to obtain the expected gross

European put option return over the time-to-maturity.

To compute the expected American put option return, we first use the simulated

asset-value paths to delineate the optimal early exercise threshold (i.e., the highest

underlying asset value for which an exercise is optimal) over the time-to-maturity. To

do so, we compute the maturity payoff of the option under the Q measure. Moving

back from the maturity date to the date directly before (T − T/n, where n is the

number of time steps), we estimate the value of the option conditional on the underlying

asset value using a regression. In particular, we regress the maturity option payoff

per path discounted to time T − T/n on a higher-order polynomial of the underlying

asset value per path, using, however, only observations for which the option is ITM at

time T − T/n. We then assume that the option is early exercised if the early exercise

payoff, max(K − S(T − T/n), 0), is above the fitted regression value. Continuing

in that way, we always move back one period, regress the discounted earliest (early

exercise or maturity) payoff on the same higher-order polynomial, and determine the

optimal early exercise policy. Doing so until the option initiation date, we are able to

estimate the entire early exercise threshold.

Analogous to our European put option calculations, we calculate the expected

payoff of an American put option as the simple mean of the asset-value-path specific

payoffs of the option under the P measure, while we calculate its value as the discounted

simple mean of the asset-value-path specific payoffs of the option under the Q measure.

In case of the American option, the payoff is, however, either the earliest early exercise

payoff compounded to maturity at the risk-free rate of return (if the underlying asset

value drops below the estimated early exercise threshold) or the maturity payoff (if it

does not). We finally again scale the expected option payoff by the option value to
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obtain the expected gross American put option return over the time-to-maturity.

In our simulations, we study an underlying asset whose initial value (S(0)) is 100.

The basecase drift rate, α, and (initial) volatility,
√
V (0), of the underlying asset are

12% and 20% per annum, respectively. We always set the long-run variance, θv, equal

to the initial asset-value variance. The basecase option-contract parameters, the strike

price (K) and time-to-maturity (T ), are 100 and 60 days, respectively. We assume

a risk-free rate of return of 2.5% per annum (rf). We select the basecase parameter

values for the other stochastic process parameters in line with the literature (see, e.g.,

Broadie et al. (2009)). In particular, we set the mean reversion in variance parameters

under both measures, κPv and κQv , to 5.33, the volatility of variance, σv, to 14% per

annum, and the correlation between the asset value and asset variance shocks, ρ, to

–0.52. Turning to the jump parameters, we choose a jump intensity of 0.91 and an

expected jump size of –0.0325 under the physical measure (λP and µPz , respectively)

and of 1.51 and –0.0685 under the risk-neutral measure (λQ and µQz , respectively).

We assume a jump volatility, σz, of 6% under both measures.

Our simulations rely on one million asset-value paths sampled at a daily

frequency to calculate expected option returns. In the Longstaff and Schwartz

(2001) regressions, we use a third-order polynomial to estimate option values,

regressing the discounted earliest option payoff on the underlying-asset value, its

squared value, its cubed value, and a constant.

B. The Early Exercise Risk Premium in Neoclassical Models

Table 1.1 studies the early exercise risk premium inherent in American put options

assuming that the underlying asset value follows GBM. To do so, the table presents the

expected payoffs, values, and expected returns of equivalent American (columns (1) to

(3), respectively) and European (columns (4) to (6), respectively) put options as well

as the differences in these statistics across those types of options.2 Panels A, B, and C

2The N/A entries in Panel C of Table 1.1 arise in situations in which the option is never
optimally exercised over the simulated underlying-asset-value paths under the Q measure, yielding
a zero option value.
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consider ITM (strike-to-stock price ratio = 1.10), at-the-money (ATM; 1.00), and

OTM (0.90) options, respectively.3 Within each moneyness class, we further distinguish

between options with a short (30 days), medium (60), and long (120) time-to-maturity.

Within each maturity class, we distinguish between options written on assets with

a low (10%), medium (20%), and high (30%) annualized idiosyncratic volatility. To

ease comparability, we consistently report the monthly expected return, computed by

dividing the expected return of the medium-term 60-day (long-term 120-day) options

over their entire time-to-maturity by two (four).

Table 1.1 About Here

The table suggests that the early exercise risk premium in put options (i.e.,

the expected return spread between the equivalent American and European put

options shown in the final column) is positive but varies significantly with option

and underlying-asset characteristics. To be specific, the premium ranges from a

minimum of 0.75% per month (see row 7 in Panel C) to a maximum of 8.14%

(see row 4 in Panel A). Variations in the premium can be traced to variations in

moneyness, time-to-maturity, and underlying-asset volatility, with the premium

strongly increasing with moneyness and more weakly decreasing with time-to-

maturity and underlying-asset volatility. Looking at 30 day-to-maturity options

written on underlying assets with an annualized volatility of 20%, the early exercise

risk premium, for example, rises from 1.17% per month for the OTM option to 5.65%

for the ITM option (compare the second rows in Panels A and C). The relations with

the option and underlying-asset characteristics originate from the characteristics

conditioning the optimal early exercise probability, with that probability also

increasing in moneyness but decreasing in time-to-maturity and underlying-asset

volatility.4 Figure 1.1 graphically displays the relations between the early exercise

3We consistently vary option moneyness through varying the option’s strike price K.
4While it is easy to grasp why the optimal early exercise probability increases with moneyness, it

is perhaps harder to understand why it decreases with both time-to-maturity and underlying-asset
volatility. The negative relation with time-to-maturity arises from the optimal early exercise
threshold being a monotonically increasing convex function over the time period to the maturity
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Figure 1.1: The Early Exercise Risk Premium in a GBM World
The figure plots the expected returns of American put options (solid line) and equivalent

European put options (broken line) against moneyness (Panel A), time-to-maturity (Panel B),

and underlying-asset volatility (Panel C) under the assumption that the underlying-asset value

follows GBM. Defining moneyness as the ratio of the strike price to the underlying asset value,

we induce variations in moneyness through variations in the strike price in Panel A. We describe

the basecase parameter values used to produce the figure in the main text.

risk premium and the option and underlying-asset characteristics.

Separately studying the expected returns of the American and European put

options underlying the early exercise risk premium, we find that they are both below

the risk-free rate of return (which is 0.21% per month) and typically negative, in line

with Coval and Shumway’s (2001) theoretical work on European put options (see

columns (3) and (6)). Turning to the components making up the expected return,

which are the expected payoff and value, we find that the American put options

consistently have higher values than the equivalent European options (compare

columns (2) and (5)). The higher values of the American options agree with Merton’s

(1973) insight that the value of an American option equals the value of the equivalent

European option plus the value of the right to early exercise. Notwithstanding, the

American options also have consistently higher expected payoffs than the equivalent

European options, suggesting that being able to optimally early exercise an option

makes the option more profitable in expectation. Comparing the effects of the ability

to optimally early exercise a put option on the option’s expected payoff and value,

date (see Shreve (2004)). The probability that the underlying-asset value hits the optimal early
exercise threshold over some fixed time period is thus lower the further away an option is from
its maturity date. The negative relation with underlying-asset volatility arises since an option
is optimally early exercised when the early exercise payoff exceeds the value of the alive option.
Raising underlying-asset volatility, only the value of the alive option — but not the early exercise
payoff — increases, making it less likely that the early exercise payoff exceeds the value of the
alive option and lowering the early exercise probability.
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the effect on the expected payoff is in proportional terms consistently larger than the

effect on value, explaining why the early exercise risk premium is positive.

Table 1.2 studies how stochastic volatility and asset-value jumps affect the early

exercise risk premium. To do so, the table contrasts the premium under a GBM

underlying-asset value process (repeated in Panel A) with those under a SV (Panel B)

or SVJ (Panel C) process. Comparing Panels A and B, we find that stochastic volatility

has a mild but ambiguous effect on the early exercise risk premium. Allowing for

stochastic volatility, the premium of the 30-day ITM option on a 20% volatility asset,

for example, rises by 7.6% (from 5.65% to 6.08%), while that of the otherwise identical

ATM option drops by 3.6% (from 3.31% to 3.19%). The ambiguous stochastic-volatility

effect originates from our choice of a negative correlation between asset value and

volatility (i.e., ρ = −0.52), possibly inflating the left tail of the future asset-value

distribution. The fatter left tail, however, has a mixed effect. On one hand, the

underlying asset is now able to reach lower values, making an early exercise more likely.

On the other, low underlying-asset values now tend to come with high underlying-

asset volatility, making an early exercise less likely. Depending on the option and

underlying-asset characteristics, either of the channels can dominate, leading the effect

of stochastic volatility on the early exercise risk premium to be ambiguous.

Table 1.2 About Here

A comparison of Panels B and C in Table 1.2 suggests that asset-value jumps

typically decrease the early exercise risk premium. The premium of the 60-day

ATM option written on a 10% volatility asset, for example, drops by 61% (from

3.96% to 1.54%) upon allowing for jumps in addition to stochastic volatility. The

reason is that jumps often contribute to the volatility of the underlying asset’s

value, making investors more reluctant to early exercise. The negative effect

of jumps on the early exercise risk premium does, however, not materialize in

situations characterized by a high moneyness, short time-to-maturity, and high

underlying-asset volatility (see, e.g., the first entry in the final row in Panel C).
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In those situations, jumps significantly affect the underlying asset’s payoff, but

mostly through them decreasing its expectation without boosting volatility. In

turn, option moneyness increases, making investors more likely to early exercise.

Overall, this section offers strong evidence that, under realistic parameter values,

neoclassical asset pricing models predict a positive early exercise risk premium, defined

as the expected return spread between American and equivalent European put options.

The premium increases strongly with moneyness and decreases slightly less strongly

with time-to-maturity and underlying-asset volatility. Conversely, it is only mildly

affected by stochastic volatility, while the effect of asset-value jumps on it comes mostly

through those jumps raising underlying-asset volatility. Due to its strong dependence

on several option and underlying-asset characteristics, the premium can easily become

sizable, with it reaching a maximum of 8.14% per month in our simulations.

1.3 Data and Methodology

In this section, we explain how we calculate the returns of equivalent single-stock

American and European put options, to be used to study the early exercise risk

premium in the data. We first describe our data sources and filters. We next

elaborate on our return calculations.

1.3.1 Data Sources and Filters

We first introduce our data sources and filters. We obtain daily data on American

call and put options written on stocks with zero payouts over the options’ maturity

time (“zero-dividend stocks”), on the stocks underlying the options, and on the term

structure of the risk-free rate of return from Optionmetrics. We source additional

market data on the underlying stocks from CRSP, while we source firm-fundamental

data on them from Compustat. We retrieve data on stock short-sale constraints from

Markit. We finally obtain data on the Fama-French benchmark factors, the VIX

index, the TED spread, and a liquidity factor from Kenneth French’s website, the
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CBOE website, the Fred Database, and Lubos Pastor’s website, respectively.5

We impose standard filters on our options data (see Goyal and Saretto (2009)

and Cao and Han (2013)). To be specific, we exclude option-day observations for

which the option price violates standard arbitrage bounds (as, e.g., the bound that

an American call option’s price must lie between the maximum of zero and the value

of the equivalent long forward, and the stock price), lies below $1, or is less than

one-half the option bid-ask spread. We further exclude observations for which the

option bid-ask spread is negative or the underlying stock’s price is missing.

1.3.2 Calculating Single-Stock Option Returns

We next explain how we calculate American and synthetic European put option

returns over calendar month t. We start with the American options. To calculate

the return on such an option, we need to determine whether the option is optimally

early exercised over month t. To do so, we use Barraclough and Whaley’s (2012)

“market rule,” comparing the option’s early exercise payoff at the end of each

trading day with its traded price at the same time and assuming that an early

exercise occurs if the payoff is equal to or exceeds the price. The upside to using

that approach is that the market rule does not depend on an option value estimate

obtained from a (perhaps misspecified) model. The downside, however, is that,

in the absence of arbitrage opportunities, the early exercise payoff cannot exceed

the traded option price, while, in the presence of minimum tick size rules in stock

and options markets, it also cannot be exactly equal to that price. To overcome

that problem, we assume that an early exercise occurs if the early exercise payoff

is within 1% of the traded option price, that is, if it holds that:

PA(t)−max(K − S(t), 0)

max(K − S(t), 0)
≤ 0.01, (1.3)

5The URL address of Ken French’s website is: <https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/>, while that of Lubos Pastor’s website is: <https://faculty.chicagobooth.edu/lubos.pasto
r/research/>. The VIX data can be retrieved from: <http://www.cboe.com/products/vix-
index-volatility/vix-options-and-futures/vix-index/vix-historical-data)>, and the TED spread from:
<https://fred.stlouisfed.org/series/TEDRATE>.
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where max(K − S(t), 0) is the early exercise payoff and PA(t) the option price,

both measured at the end of day t. While our strategy to identify optimal early

exercises may lead us to overlook some of those, that oversight works against us

finding a positive early exercise risk premium since optimal early exercises raise

the expected option return (see Section 1.2).6

Having identified the trading day on whose end an option is optimally early

exercised (if any), we calculate the American put option return as the ratio of the

early exercise payoff compounded to the end of the month at the risk-free rate (if

there is an early exercise) or the option price at the end of the month (if there is

none) to the option price at the start of the month. Although a large empirical

literature studies the returns of American single-stock options, we are, to the best of

our knowledge, first in incorporating optimal early exercises into those calculations.

Turning to calculating the returns of European put options written on single

stocks, we face the problem that options exchanges exclusively trade in American

(and not European) single-stock options.7 To circumvent that problem, we synthet-

ically create single-stock European put options by trading in American options,

the underlying stock, and the money markets. To do so, we start from Merton’s

(1973) insight that it is never optimal to early exercise an American call option

written on an underlying asset not paying cash. Since we restrict our sample to

options written on stocks not paying out dividends over their time-to-maturity,

our sample American call options are effectively European call options. We next

recognize that a European put option can be replicated by longing the equivalent

European call option, shorting the underlying stock, and investing the discounted

6Using a threshold level of 2% or 5% in Equation (1.3), we continue to find a highly significant
positive early exercise risk premium displaying the same relations with the stock and option
characteristics as reported later. In line with our theoretical result that optimally early exercising
an option raises the option’s expected profitability, we, however, also find that American put
option returns tend to increase with the threshold level.

7While there are European single-stock options traded over-the-counter (OTC), we neither
have data on those nor are their contract terms comparable across one another or with those of
exchange-traded options.
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strike price in the money market, allowing us to write:

P synE
i,K,T = CA

i,K,T − Si +Ke−rfT , (1.4)

where P synE
i,K,T is the price of a synthetic European put option written on stock i and

with strike price K and time-to-maturity T , CA
i,K,T is the price of the exchange-

traded American call option written on the same stock and with the same strike

price and time-to-maturity, Si is stock i’s price, and rf is the risk-free rate of return

over the maturity time (“put-call parity”).

To ensure that the synthetic European put option prices are comparable to those

of the traded American put options, we impose the same data filters on them as on the

American options whenever possible. To be specific, we again exclude option-month

observations for which the synthetic European put option price violates standard

arbitrage bounds (as, e.g., the bound that an European put option’s price must lie

between the maximum of zero and the value of the equivalent short forward contract,

and the strike price) or lies below $1. Since we do not have bid or ask prices for

the synthetic options, we are however unable to impose any of the restrictions based

on those. We finally exclude option-month observations for which the synthetic

European put option price exceeds the price of the traded American put option.

Having derived synthetic European put option prices, we calculate those options’

returns as the ratio of the end-of-month option price to the start-of-month option price.

1.4 Cross-Sectional Evidence

In this section, we offer our cross-sectional evidence on the early exercise risk

premium and its relations with stock and option characteristics. We first present

descriptive statistics on the mean return spread between equivalent American and

European put options, an estimate of the early exercise risk premium. We next

provide the results from portfolio sorts and FM regressions studying the relations

between the premium and stock and option characteristics.
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1.4.1 The Early Exercise Risk Premium in the Data

In Table 1.3, we present descriptive statistics for the monthly returns of single-stock

American and synthetic-European put options (columns (1) to (2), respectively),

the difference in their returns (column (1)–(2)), and their moneyness and days-to-

maturity (columns (3) to (4), respectively). The option-month observations in columns

(1) and (2) are matched along the moneyness and time-to-maturity dimensions, so

that each observation in column (1) is associated with exactly one observation

in column (2) with identical moneyness and time-to-maturity. The descriptive

statistics include the mean, the standard deviation (StDev), the mean’s t-statistic

(Mean/StError), a 95% confidence interval for the t-statistic, several percentiles, and

the number of observations. With the exception of the t-statistic and the confidence

interval, the descriptive statistics are calculated by sample month and then averaged

over time. As a result, we can interpret the means in columns (1) to (2) as the

mean returns of equally-weighted portfolios of the American and European options,

respectively. Again defining moneyness as the strike-to-stock price ratio, we measure

both moneyness and days-to-maturity at the start of the return month.

Table 1.3 About Here

Since option returns are non-normally distributed, as, for example, shown in

Broadie et al. (2009), it is possible that standard asymptotic inference techniques

yield biased conclusions in their case. To guard against that possibility, we follow

Vasquez (2017) and use a boostrap to construct the 95% confidence interval in

Table 1.3. We do so as follows. Separately for the American and European options

and the spread portfolio in columns (1) to (3), respectively, we first impose the null

hypothesis of a zero mean on the time-series of cross-sectional average returns. We next

draw with replacement and an equal probability of being drawn 244 cross-sectional

average returns from that time-series, where 244 is the number of months in our

sample period. We then compute a bootstrap t-statistic using the drawn returns.
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Figure 1.2: Cumulative Profits From Selling American and European
Put Options
The figure plots the cumulative profits from shorting one dollar of the equally-weighted American

(Panel A) or European (Panel B) put option portfolio or from longing one dollar of the American

and shorting the same number of dollars of the European put option portfolio (Panel C) at

the start of each sample month and holding that position over the month. The green areas are

NBER recession periods.

Repeating those steps 20,000 times, we are able to generate a distribution of the

bootstrap t-statistic. The lower and upper limits of the confidence interval are the

2.5th and 97.5th percentiles of that distribution, respectively.

Table 1.3 strongly suggests that the early exercise risk premium is positive.

While both the American and European put options yield significantly negative

mean returns in columns (1) and (2), the mean American option return is a less

negative –12.76% per month (t-statistic: –5.36) compared to the mean European

option return of –16.42% (t-statistic: –7.06). Thus, the mean spread return across

the American and European options is 3.66% per month (t-statistic: 8.67) in column

(3). The t-statistic of the mean spread return is not only remarkable because it

greatly exceeds the upper limit of the bootstrap confidence interval of 2.11, but

perhaps more so because it exceeds the t-statistics of the underlying options’ mean

returns in absolute terms (compare columns (1) to (3)). The reason for the high

t-statistic is that the spread return is far less volatile than the underlying options’

returns, as can be seen from its standard deviation and percentiles. The moneyness

and days-to-maturity statistics in columns (3) and (4) suggest that the average

option pair is close to ATM and has slightly more than two months to maturity.

In Figure 1.2, we contrast the returns of our American and European put options
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over our sample period. To do so, we plot the cumulative profits from shorting an

equally-weighted portfolio of the American (Panel A) or the European (Panel B)

options or from longing the equally-weighted American and shorting the equally-

weighted European option portfolio (Panel C) over each sample month. The green

shaded areas are NBER recession periods. Panels A and B confirm that shorting

put options is profitable except in recessions in which most options are exercised

against their sellers (see the 2000-2001 and 2007-2008 periods). Notwithstanding,

Panel C suggests that shorting European put options is more profitable than shorting

American put options in almost every month. Interestingly, however, the long-short

strategy is far more profitable over the earlier sample period, with it earning close to

70% of its full-sample-period cumulative profits until 2008 (about half of our sample

period). We will return to this observation later on.

1.4.2 Relations with Stock and Option Characteristics

Recalling that our theoretical work in Section B. relates the early exercise risk premium

to several stock and option characteristics, we next use portfolio sorts and FM regressions

to investigate whether we can find these relations in the data. We start with portfolio

sorts based on moneyness and time-to-maturity. At the end of each sample month t−1,

we thus split the universe of American-European put-option pairs into independently

double-sorted portfolios according to these sorting variables. To be specific, we first

sort the option pairs into an ITM (strike-to-stock price above 1.05), an ATM (0.95 to

1.05), and an OTM (below 0.95) portfolio. We then split them into three portfolios

according to whether their maturity time is below 60, between 60 and 90, or above

90 days. The intersection yields the double-sorted portfolios. We equally-weight the

double-sorted portfolio constituents and hold them over month t.

Table 1.4 shows the results from the double-sorted portfolio exercise based on

moneyness and time-to-maturity. The plain numbers are the mean monthly returns

of equally-weighted portfolios of American (column (1)) or European (column (2))

options or spread portfolios long an American and short the equivalent European
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option (column (1)–(2)). The numbers in square parentheses are t-statistics

calculated from Newey and West’s (1987) formula with a twelve-month lag length,

while those in curly parentheses are 95% bootstrap t-statistic confidence bounds.

Panels A, B, and C focus on the ITM, ATM, and OTM options, while the upper,

middle, and lower rows in each panel focus on the below 60, 60 to 90, and above

90 day options, all respectively.

Table 1.4 About Here

Supporting our theory, the table offers strong evidence that the early exercise

risk premium relates positively to moneyness and negatively to time-to-maturity.

The mean spread return of 30-60 day options, for example, rises from an insignificant

–0.68% per month for OTM options in Panel C to a highly significant 11.74% (t-

statistic: 12.04, greatly above the bootstrap upper confidence bound) for ITM

options in Panel A. Conversely, the mean spread return of ATM options rises from a

mildly significant but economically small –0.31% (t-statistic: –2.16) for 90-120 day

options to 4.55% (t-statistics: 7.20, also above the upper confidence bound) for 30-60

day options in Panel B. Turning to the underlying American and European put

options, the mean returns of both types of options become more negative the closer

an option is to maturity, broadly consistent with our theoretical work (compare with

the simulated expected option returns in Table 1.1). Deviating from both Coval and

Shumway’s (2001) and our theoretical work, the same returns, however, also become

sharply more negative with moneyness, which is our single empirical result entirely

inconsistent with neoclassical option pricing theory.8

We next conduct portfolio sorts based on the idiosyncratic volatility of the

underlying stock. At the end of each sample month t− 1, we thus split the universe

of option pairs into quintile portfolios according to idiosyncratic volatility estimates

8The negative relation between mean put option return and moneyness is all the more remarkable
since Coval and Shumway (2001) prove that, in the absence of arbitrage opportunities, the only
condition necessary to produce a positive relation between expected European put option return
and strike price is that the underlying asset’s value and the stochastic discount factor are negatively
correlated, hardly a heroic assumption.
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obtained from either the market model or Fama-French-Carhart (FFC; 1997) model.

We can write the market model as:

Ri,τ = αi + βmkti (Rmkt
τ −Rfτ ) + εi,τ , (1.5)

where Ri,τ is stock i’s return over month τ , Rmkt
τ −Rfτ is the excess market return,

αi and βmkti are parameters, and εi,τ is the residual. We can write the FFC model as:

Ri,τ = αi + βmkti (Rmkt
τ −Rfτ ) + βsmbi Rsmb

τ + βhmli Rhml
τ + βmomi Rmom

τ + εi,τ , (1.6)

where Rsmb
τ , Rhml

τ , and Rmom
τ are the returns of spread portfolios on size, the book-

to-market ratio, and the eleven-month (momentum) past return, respectively, and

βsmbi , βhmli , and βmomi are additional parameters. We estimate both models over the

prior 60 months of monthly data, calculating idiosyncratic volatility as the standard

deviation of the residual, εi,τ . The bottom quintile contains option pairs written on

low idiosyncratic volatility stocks (“Low”), while the top contains option pairs written

on high idiosyncratic volatility stocks (“High”). We also form a spread portfolio

long the top quintile and short the bottom quintile (“H–L”). We equally-weight the

quintile portfolios and the spread portfolios and hold them over month t.

Table 1.5 presents the results from the univariate portfolio exercise based on

idiosyncratic stock volatility, using a table design identical to that of Table 1.4. In

Panels A and B, we sort into portfolios based on market- and FFC-model volatility

estimates, respectively. Again consistent with our theoretical work, the table offers

strong evidence that the early exercise risk premium decreases with idiosyncratic stock

volatility. Using market model estimates, Panel A, for example, suggests that the

mean spread return between American and equivalent European put options drops

from 5.65% (t-statistic: 6.60) for options written on low-volatility stocks to 1.26%

(t-statistic: 3.56) for options written on high-volatility stocks. The difference is a highly

significant –4.39% (t-statistic: –6.37, greatly below the lower bootstrap confidence

bound of –2.31). Looking at the underlying American and European options, their
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mean returns become significantly less negative with stock volatility, in agreement

with our theory results (compare with Table 1.1).

Table 1.5 About Here

While the portfolio sorts above effectively slice our data along the cross-sectional

dimension, we next also slice the data along the time-series dimension, repeating our

double portfolio sorts on moneyness and time-to-maturity in Table 1.4 separately

for the subsample periods until start-2008 and from start-2008. We do so because

Barraclough and Whaley (2012) argue that the incentive to early exercise a put option

becomes more pronounced the higher the risk-free rate of return at which the early

exercise proceeds can be invested. The huge drop in the risk-free rate over our sample

period, from an average of 3.76% until start-2008 to an average of 0.05% after, thus

enables us to conduct a quasi-natural experiment of how an exogenous shock to the

incentive to early exercise a put option affects that option’s early exercise risk premium.

Table 1.6 presents the results from the subperiod tests, repeating the double-sorted

portfolio exercise in Table 1.4 separately by subperiod. While the design of the table

is similar to that of Table 1.4, the table only reports mean spread returns. In complete

agreement with theory, the table suggests that the early exercise risk premium is

generally higher over the earlier (high risk-free rate) than later (low risk-free rate)

period, with the effect, however, only being economically and statistically significant for

options with a meaningful early exercise probability (e.g., high-moneyness options with

a short time-to-maturity; “treated options”). The mean spread return of 30-60 day

ITM options in the first row of Panel A, for example, drops from 13.36% (t-statistics:

12.49) over the earlier period to 8.88% (t-statistic: 5.89) over the later. The difference

is a highly significant –4.49% (t-statistic: –3.26, greatly below the lower bootstrap

confidence bound). Conversely, the mean spread return of 90-120 day OTM options in

the last row of Panel C drops from an economically small –0.60% to an economically
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small –0.96% from the earlier to the later subperiod.

Table 1.6 About Here

Table 1.7 switches to FM regressions to find out whether our portfolio sort results

are robust to variations in methodology. In those regressions, we project the return

spread between an American and the equivalent European put option (Panel A), the

American option’s return (Panel B), or the European option’s return (Panel C) over

month t on moneyness, time-to-maturity (as fraction of a year), and annualized FFC

idiosyncratic stock volatility measured at or until the start of that month. Plain numbers

are monthly premium estimates, the numbers in square parentheses are t-statistics

obtained from Newey and West’s (1987) formula with a twelve-month lag length, and

the numbers in curly parentheses are 95% bootstrap t-statistic confidence bounds.

We construct the bootstrap confidence bounds as follow. Separately for each

regression model and independent variable, we first estimate all cross-sectional

regressions and then impose the null hypothesis by recreating the dependent variable

through adding the fitted regression value excluding the summand involving the

independent variable of interest and the residual. We next resample each cross-

section, drawing with replacement and an equal probability of being drawn a number

of observations for the recreated dependent variable and its related independent

variables equal to that in the original cross-section. We finally run the FM

estimation on the resampled data, yielding a bootstrap t-statistic for the estimate

of the independent variable of interest. Repeating those steps 1,000 times, we

are again able to generate a bootstrap t-statistic distribution from which we can

calculate the lower and upper limits of the confidence interval.

Table 1.7 About Here

The FM regressions in Table 1.7 yield results completely consistent with those

obtained from the portfolio sorts. In particular, while column (1) in Panel A
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reproduces the mean spread return from column (1)–(2) in Table 1.4, columns (2)

to (4) confirm that the spread return is significantly positively related to moneyness

and significantly negatively to time-to-maturity and idiosyncratic stock volatility.

Looking at the most comprehensive model in column (4), the mean spread return

attracts a moneyness coefficient of 0.348 (t-statistic: 19.17), a time-to-maturity

coefficient of –0.399 (t-statistic: –12.57), and a volatility coefficient of –0.052 (t-

statistic: –5.50), with all t-statistics lying greatly outside of their bootstrap confidence

bounds. Conversely, Panels B and C confirm the relations between the returns on

either the American or European put options, respectively, and the stock and option

characteristics established in the portfolio sorts.

Taken together, this section offers empirical evidence suggesting a positive and

economically meaningful early exercise risk premium, as predicted by theory. Further

in accordance with theory, it suggests that the premium rises with moneyness and

falls with both time-to-maturity and underlying stock volatility, and that it is more

pronounced in high rather than low interest-rate regimes. The section finally suggests

that the expected returns of both American and European put options have the

theoretically-anticipated relations with both time-to-maturity and underlying stock

volatility, but that their relations with moneyness significantly deviate from theory.

1.5 Robustness Tests

In this section, we offer robustness test results. Since our evidence crucially hinges

on it never being optimal to early exercise American call options on zero-dividend

stocks and on put-call parity, we first rerun our tests on options for which these

conditions are more likely to be fulfilled. Given that our evidence also relies on

investors being able to correctly anticipate which stocks do not pay out dividends over

an option’s time-to-maturity, we next rerun our tests on options written on stocks

with a virtually zero probability of doing so. We finally implement tests incorporating

bid-ask transaction costs to find out whether real investors benefit from our results.
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1.5.1 Violations of Early Exercise Rules and Put-Call Parity

In our empirical work, we assume that it is never optimal to early exercise American

call options written on zero-dividend stocks, allowing us to use these quasi-European

options in combination with put-call parity to synthetically create European put

options. A problem with that approach is that Jensen and Pedersen (2016) and

Figlewski (2018) show that short-selling constraints in stock markets and transaction

(i.e., bid-ask spread) costs in stock and options markets can lift the early exercise

payoff of an American call option written on a zero-dividend stock above the option’s

value, casting doubt on our assumption that such American options are always

equivalent to European options. Conversely, Cremers and Weinbaum (2010) show

that, under exactly the same conditions, put-call parity can break down, casting

doubt on whether we are always able to convert European call option prices into

meaningful European put option prices.

To study whether violations of the rule to never early exercise an American call

option written on a zero-dividend stock or of put-call parity lead us to produce

biased results, we condition our tests on popular proxies used to measure stock

short-selling constraints and stock and option illiquidity in prior studies. We start

with looking at the effect of stock short-selling constraints on our results. To

measure such constraints, we use the Daily-Cost-to-Borrowing score (DCBS), as

also employed in Jensen and Pedersen (2016). The DCBS value is an integer ranging

from one to ten, with a higher value indicating greater stock short-selling constraints

and stocks with a score below five generally considered as easy to short. Interesting

for our purposes, Jensen and Pedersen (2016) report that far less than one percent

of all deep-ITM American call options written on zero-dividend stocks with a DCBS

value below five are early exercised, whereas almost ten percent of those same

options on stocks with a DCBS value of ten are early exercised.

Table 1.8 reports the results from double portfolio sorts on moneyness and time-

to-maturity conditional on the DCBS value at the start of the return period. While

the table’s design is similar to that of Table 1.4, the table only reports mean spread
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returns, indicating those lying outside of the bootstrap 95% confidence interval with

an asterisk without showing the interval. Columns (1) to (4) focus on options written

on stocks with a non-missing DCBS value and a value below eight, seven, and five,

respectively. Since the DCBS value is only widely available from start-2004, we run the

tests conditional on it starting from that date. The table suggests that, if anything,

stock short-selling constraints work against us finding a positive early exercise risk

premium, with the mean spread return increasing as we progressively exclude options

on hard-to-short stocks. Focusing on 60-90 day ATM options in the middle row of Panel

B, the mean spread return, for example, increases from 0.64% per month (t-statistic:

2.68) to 1.25% (t-statistic: 4.51) going from options on stocks with a non-missing DCBS

value to those on stocks with a value below five.

Table 1.8 About Here

We next study the effect of stock and options illiquidity on top of that of stock

short-selling constraints on our estimates of the early exercise risk premium. To do

so, we follow Amihud (2002) and measure stock illiquidity as the absolute daily stock

return scaled by daily dollar trading volume averaged over the twelve months prior to

the option return period. In line with Cao and Han (2013) and Christoffersen et al.

(2018), we measure option illiquidity as either an option’s bid-ask spread scaled by its

price or the inverse of its open interest scaled by the underlying stock’s dollar trading

volume, both measured at the start of the option return period. Using only options

written on stocks with a DCBS value below five at the start of the same period, we

next sort our option pairs into three sets of univariate portfolios, the first based on

the median of the American put option’s illiquidity measure, the second based on the

median of the American call option’s illiquidity measure, and the third based on the

median of the stock’s illiquidity measure. The intersection of the three sets of univariate

portfolios gives us independently triple-sorted portfolios.

Table 1.9 reports the results from double portfolio sorts on moneyness and time-

to-maturity separately run on the option pairs in the top American put option, top
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American call option, and top stock illiquidity portfolios (H-H-H; “high-illiquidity

assets”) or those in the corresponding bottom portfolios (L-L-L; “low-illiquidity assets”).

While columns (1) to (2) use the bid-ask spread to measure option illiquidity and

columns (3) to (4) option open interest, the table’s design is else similar to that of

Table 1.8. The table suggests that, in contrast to stock short-selling constraints, stock

and options illiquidity can upward bias our early exercise risk premium estimates,

with the mean spread return generated from high-illiquidity assets often exceeding

that generated from low-illiquidity assets. While the mean spread return of 30-60

day ITM options is, for example, 15.01% per month (t-statistic: 8.98) among high-

illiquidity assets when using bid-ask spreads to measure option illiquidity, it is 9.10%

(t-statistic: 6.15) among low-illiquidity assets in that case (see the first row of Panel

A). Notwithstanding, the mean spread returns of high moneyness and short time-to-

maturity options are significantly positive among both high and low-illiquidity assets,

suggesting stock and options market illiquidity does not invalidate our conclusions.

Table 1.9 About Here

1.5.2 Identification of Zero-Dividend Stocks

Another concern with our empirical strategy is that it requires real investors to be

able to correctly identify underlying stocks not paying out dividends over an option’s

maturity time at the start of the option return period. The reason is that only

American call options written on such stocks are equivalent to European call options.

While the observations that the vast majority of firms pay out regular dividends at

exactly the same points within a calendar year, that extraordinary dividends are

rare, and that dividends tend to be announced 3-4 weeks in advance make it likely

that investors are able to do so, we nonetheless run a robustness test to verify that

assumption. In that test, we repeat the double-sorted portfolio exercise in Table 1.4

using only options written on stocks that never paid out a dividend until the start of

the option return period. The idea is that it is extremely unlikely that the stocks
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start doing so over the option’s maturity time.9

Table 1.10 gives the results from the double portfolio sorts on moneyness and

time-to-maturity run using only options written on stocks that never paid out a

dividend. The table’s design is similar to that of Table 1.4. The table suggests that

while the options written on stocks that never paid out a dividend tend to produce

slightly less positive mean spread returns than the full sample, they interestingly also

tend to produce equal or even higher inference levels (compare Tables 1.4 and 1.10).

The mean spread return of the 30-60 day ATM options written on consistently-zero-

dividend stocks is, for example, 3.69% per month, which is slightly lower than the

full sample estimate of 4.55% (see the first row of Panel B in both tables). Despite

that, the corresponding t-statistic is 9.00, which is slightly higher than the equivalent

full-sample t-statistic of 7.20. Most importantly, however, the mean spread returns of

high moneyness and short time-to-maturity options are significantly positive even

among options written on consistently-zero-dividend stocks, suggesting that investors’

ability to anticipate dividends does not drive our conclusions.

Table 1.10 About Here

1.5.3 Bid-Ask Transaction Costs

We finally study whether real investors are able to earn the positive early exercise risk

premium suggested by our tests. Studying that question is interesting since Goyal and

Saretto (2009) and Cao and Han (2013) show that high bid-ask transaction costs in

options markets greatly eat into the profits of the option trading strategies advocated

by them, often rendering those profits insignificant. To find out whether bid-ask

transaction costs in stock and options markets also render our estimate of the early

exercise risk premium insignificant, we assume that investors consistently buy at the

quoted stock and option price plus S times the bid-ask spread and sell at the same

price minus S times the bid-ask spread, where S is zero, 0.10, 0.25, or 0.50. When S is

9Since CRSP is a more comprehensive stock market data source than Optionmetrics, we use
CRSP data to identify stocks that never paid out a dividend to the current month.
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equal to 0.50, investors consistently buy at the ask price and sell at the bid price.

Table 1.11 gives the results from the double portfolio sorts on moneyness and

time-to-maturity incorporating bid-ask transaction costs, run on either all option

pairs in Panel A or only those relying on low illiquidity assets and written on stocks

with a DCBS value equal to or below five in Panel B (i.e., the option pairs in the

L-L-L portfolio in Table 1.9). In columns (1) to (4), we report mean spread returns

calculated from S equal to zero, 0.10, 0.25, and 0.50, respectively. Panel A suggests

that accounting for bid-ask transaction costs greatly reduces our early exercise risk

premium estimates, which is perhaps unsurprising since setting up the spread portfolio

involves us trading in two options and one underlying stock. Notwithstanding, the

first row of the panel reveals that the mean return of the deepest ITM and shortest

time-to-maturity spread portfolio remains significantly positive up until S equal to

0.25, with it being 4.45% per month (t-statistic: 4.66) at that value. In case of all

other types of options, the mean spread returns, however, become insignificant or

even significantly negative already at S equal to 0.10.

Table 1.11 About Here

Importantly, Panel B suggests that we can improve the mean spread portfolio

returns net of bid-ask transaction costs by using only highly liquid assets and easy-

to-short stocks in the portfolio sorts. Doing so, the mean return of the 30-60 day-to-

maturity ITM portfolio becomes, for example, significantly positive for all S values,

while those of the 60-90 day-to-maturity ITM and the 30-60 day-to-maturity ATM

portfolios become significantly positive for S equal to 0.10.

1.6 Time-Series Evidence

In Table 1.12, we finish our empirical analysis with time-series regressions of the

spread in returns between the equally-weighted American and the equally-weighted

synthetic European put option portfolio on several sets of factors. In column (1),
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we regress on only the excess market return and a constant. Column (2) adds

Fama and French’s (1993) benchmark factors SMB and HML, while column (3) also

adds Carhart’s (1997) MOM factor. Column (4) adds Fama and French’s (2015)

additional benchmark factors PRF and INV. Column (5) finally adds the change

in the VIX index, the TED funding spread, and Pastor and Stambaugh’s (2003)

liquidity factor.10 Plain numbers are monthly premium estimates, while numbers in

parentheses are t-statistics calculated from Newey and West’s (1987) formula with

a twelve-month lag length. An asterisk indicates that the t-statistic of an estimate

lies outside of its bootstrap 95% confidence bounds.

Table 1.12 About Here

We construct the bootstrap confidence bounds as follows. Separately for each

regression model and independent variable, we first estimate the time-series re-

gression and then impose the null hypothesis by recreating the dependent variable

through adding the fitted regression value excluding the summand involving the

independent variable of interest and the residual. We next draw with replacement

and an equal probability of being drawn 244 observations for the recreated depen-

dent variable and its related independent variables. We finally run the time-series

regression on the resampled data, yielding a bootstrap t-statistic for the estimate

of the independent variable of interest. Repeating those steps 1,000 times, we

generate a bootstrap t-statistic distribution from which we can calculate the lower

and upper limits of the confidence interval.

10The SMB factor is the return of a portfolio long small and short big stocks, controlling for
book-to-market, whereas the HML factor is the return of a portfolio long high book-to-market
(“value”) and short low book-to-market (“growth”) stocks, while controlling for size. The MOM
factor is the return of a portfolio long stocks with high returns over the prior twelve months
and short stocks with low returns over that period. The PRF factor is the return of a portfolio
long more profitable and short less profitable stocks, while INV is the return of a portfolio long
low-investment and short high-investment stocks, with both factors controlling for size. See
Kenneth French’s website for more details. The VIX index is a portfolio of options mimicking
option-implied volatility, the TED spread is the difference between the interest rate on short-term
U.S. government debt and the interest rate on interbank loans, and the systematic liquidity factor
is the return of a portfolio long stocks with a high liquidity exposure and short stocks with a low
exposure. See Lubos Pastor’s website for more details.
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Recalling that the time-series constant can be interpreted as an asset’s alpha in

models featuring only tradable factors (Black et al. (1972)), Table 1.12 suggests

that the spread portfolio’s alpha is consistently positive even when controlling for

the factors. Looking at the most comprehensive model featuring all factors, column

(5), for example, suggests that the alpha is a significant 3.77% per month (t-statistic:

9.01). Also interestingly, columns (1) to (4) suggest that, of the Fama-French and

Carhart benchmark factors, the spread portfolio loads only significantly on the excess

market return, with the coefficient implying that, in accordance with theory, the

American options have higher (i.e., less negative) market betas than the European

options. The higher market betas, however, come from a lower exposure to volatility

risk, as shown in column (5). To be more specific, also controlling for the change

in the VIX index, the market beta becomes insignificant, while the VIX beta is a

significant –0.05 (t-statistic: –2.15). Conversely, neither of the other additional factors

in column (5), the TED spread or the liquidity spread portfolio, are significant.

All in all, this section suggests that the American-European put-option spread

return is not spanned by other well-known pricing factors and thus represents a

factor in its own right.

1.7 Concluding Remarks

Spurred by the widely-held belief that American and European option returns are

similar, we offer a theoretical and empirical analysis of the early exercise risk premium

embedded in plain-vanilla put options, contrasting the expected returns of American

put options with those of equivalent European put options. On the theoretical front, we

show that standard neoclassical asset pricing models (including those with stochastic

volatility and asset-value jumps) can produce a sizable premium, with that premium

strongly varying with moneyness, time-to-maturity, and underlying stock volatility. On

the empirical front, we compare the returns of single-stock American put options with

those of equivalent synthetic European put options, formed from applying put-call

parity to American call options written on zero-dividend stocks. The comparisons
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suggest a significantly positive early exercise risk premium, which increases with

moneyness, decreases with time-to-maturity and underlying stock volatility, and is

higher in high rather than low interest-rate regimes. Further tests reveal that our

empirical conclusions are not driven by stock short-sale constraints, stock or options

illiquidity, or the ability to identify zero-dividend stocks. Time-series regressions finally

show that the spread return between American and European put options is not

spanned by well-known pricing factors, as, for example, the Fama-French factors.
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Table 1.1: The Early Exercise Risk Premium in a GBM World

The table presents the expected payoffs, market values, and monthly expected returns of American (columns
(1) to (3), respectively) and equivalent European (columns (4) to (6), respectively) put options plus the
differences in these (remaining columns) across the two types of options. Panels A to C consider in-the-money
(strike-to-stock price=1.10), at-the-money (1.00), and out-of-the-money (0.90) options. Within each money-
ness class, we consider options with 30, 60, and 120 days-to-maturity. Within each maturity class, we finally
consider options written on an underlying asset with an annualized volatility of 10%, 20%, and 30%. We
calculate the options’ expected payoffs and market values using Longstaff and Schwartz’s (2001) least-squares
method applied to simulated underlying-asset-value paths obtained from a Geometric Brownian motion
(GBM) process under either the physical P (expected option payoff) or risk-neutral Q (option market value)
probability measure. In case of each statistic, we rely on 1,000,000 underlying-asset-value paths featuring
a number of time steps equal to an option’s days-to-maturity. The monthly expected option return is the
expected option payoff divided by its market value minus one, scaled by the months-to-maturity. We describe
the basecase parameter values in Section A.

American Put European Put American–European

Days Exp. Exp. Exp. Exp. Exp. Exp.
to Vol. Pay- Market Ret. Pay- Market Ret. Pay- Market Ret.
Mat. (%) off Value (%) off Value (%) off Value (%)

(1) (2) (3) (4) (5) (6) (1)–(4) (2)–(5) (3)–(6)

Panel A: In-The-Money (Strike-to-Stock Price = 1.10)

30 10 10.01 10.00 0.16 9.00 9.78 −7.93 1.01 0.22 8.09
20 9.87 10.03 −1.67 9.19 9.91 −7.31 0.68 0.12 5.65
30 10.15 10.45 −2.81 9.78 10.43 −6.21 0.37 0.02 3.40

60 10 10.03 10.00 0.16 8.04 9.57 −7.98 1.99 0.43 8.14
20 9.76 10.24 −2.36 8.82 10.12 −6.42 0.94 0.13 4.06
30 10.66 11.31 −2.86 10.12 11.24 −5.01 0.55 0.07 2.15

120 10 10.06 9.99 0.16 6.48 9.27 −7.52 3.58 0.73 7.69
20 9.70 10.87 −2.70 8.44 10.66 −5.20 1.25 0.21 2.50
30 11.53 12.79 −2.46 10.72 12.65 −3.81 0.81 0.14 1.35

Panel B: At-The-Money (Strike-to-Stock Price = 1.00)

30 10 0.80 1.06 −24.59 0.72 1.05 −31.00 0.08 0.01 6.41
20 1.92 2.20 −12.65 1.85 2.20 −15.96 0.07 0.00 3.31
30 3.06 3.34 −8.38 2.99 3.35 −10.60 0.07 0.00 2.21

60 10 0.97 1.46 −16.83 0.83 1.43 −20.94 0.14 0.03 4.11
20 2.53 3.06 −8.72 2.38 3.05 −10.96 0.15 0.02 2.23
30 4.14 4.68 −5.76 3.99 4.67 −7.27 0.15 0.01 1.51

120 10 1.09 1.97 −11.19 0.85 1.90 −13.81 0.24 0.07 2.63
20 3.23 4.23 −5.90 2.94 4.18 −7.44 0.29 0.05 1.53
30 5.49 6.50 −3.88 5.19 6.47 −4.93 0.30 0.03 1.05

Panel C: Out-Of-The-Money (Strike-to-Stock Price = 0.90)

30 10 0.00 0.00 N/A 0.00 0.00 N/A 0.00 0.00 N/A
20 0.05 0.07 −29.07 0.05 0.07 −30.24 0.00 0.00 1.17
30 0.36 0.42 −16.09 0.35 0.42 −17.16 0.01 0.00 1.07

60 10 0.00 0.00 N/A 0.00 0.00 N/A 0.00 0.00 N/A
20 0.22 0.32 −15.96 0.21 0.32 −17.22 0.01 0.00 1.26
30 0.95 1.18 −9.39 0.93 1.17 −10.32 0.02 0.00 0.93

120 10 0.01 0.05 −19.33 0.01 0.05 −20.08 0.00 0.00 0.75
20 0.59 0.94 −9.27 0.55 0.93 −10.20 0.04 0.01 0.93
30 1.96 2.52 −5.58 1.87 2.51 −6.34 0.08 0.01 0.76
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Table 1.2: The Early Exercise Risk Premium, Stochastic Volatility, and
Jumps

The table presents the difference in the monthly expected return between American and equiva-
lent European put options under alternative stochastic processes employed to model the evolution
of the underlying asset value. The alternative processes are Geometric Brownian motion (GBM;
Panel A), a stochastic volatility (SV) process (Panel B), and a stochastic volatility-jump (SVJ)
process (Panel C). Columns (1) to (3) consider in-the-money (ITM; strike-to-stock price=1.10),
columns (4) to (6) at-the-money (ATM; 1.00), and columns (7) to (9) out-of-the-money (OTM;
0.90) options. Conversely, columns (1), (4), and (7) consider 30, columns (2), (5), and (8) 60, and
columns (3), (6), and (9) 90 day-to-maturity options. Finally, the first, second, and third row in
each panel consider options written on an underlying asset with an annualized volatility of 10%,
20%, and 30%, respectively. We calculate the options’ expected payoffs and market values using
Longstaff and Schwartz’s (2001) least-squares method applied to simulated underlying-asset-value
paths under either the physical P (expected option payoff) or risk-neutral Q (option market value)
probability measure. In case of each statistic, we rely on 1,000,000 underlying-asset-value paths
featuring a number of time steps equal to an option’s days-to-maturity. The monthly expected
option return is the expected option payoff divided by its market value minus one, scaled by the
months-to-maturity. We describe the basecase parameter values in Section A.

ITM Options ATM Options OTM Options
Vol. Days-to-Maturity Days-to-Maturity Days-to-Maturity

(%) 30 60 120 30 60 120 30 60 120

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Geometric Brownian Motion Model

10 8.09 8.14 7.69 6.41 4.11 2.63 N/A N/A 0.75
20 5.65 4.06 2.50 3.31 2.23 1.53 1.17 1.26 0.93
30 3.40 2.15 1.35 2.21 1.51 1.05 1.07 0.93 0.76

Panel B: Stochastic Volatility (SV) Model

10 8.14 8.24 7.83 6.01 3.96 2.73 N/A N/A 0.36
20 6.08 4.19 2.64 3.19 2.19 1.50 N/A 1.03 0.97
30 3.45 2.22 1.41 2.24 1.54 1.03 1.63 1.32 0.73

Panel C: Stochastic Volatility-Jump (SVJ) Model

10 8.13 8.10 7.23 1.98 1.54 1.21 0.10 0.34 0.48
20 5.40 3.76 2.30 2.34 1.75 1.22 0.48 0.81 0.71
30 3.68 2.25 1.34 2.11 1.51 1.02 0.65 1.15 0.70
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Table 1.3: Descriptive Statistics

The table presents descriptive statistics on the monthly returns of American put options (column
(1)), synthetic European put options (column (2)), and spread portfolios long an American put
option and short its equivalent synthetic European option (column (1)–(2)). The table further
reports the moneyness (column (3)) and time-to-maturity (column (4)) of the American and Euro-
pean option pairs. The descriptive statistics include the mean, the standard deviation (StDev), the
t-statistic for the mean (Mean/StError), the bootstrap 95% confidence interval for the t-statistic
(95%BS-CI ), several percentiles, and the number of observations. The observations used in columns
(1) and (2) are matched along the moneyness and time-to-maturity dimension, so that each observa-
tion in column (1) corresponds to exactly one observation in column (2) with the same moneyness
and time-to-maturity. We calculate moneyness as the ratio of the option strike price to the stock
price. We measure time-to-maturity in terms of calendar days. With the exception of the t-statistic
and the bootstrap 95% confidence interval for the t-statistic, we calculate each statistic as the
time-series average of the cross-sectional statistic.

Monthly
Monthly Synthetic Monthly
American European Spread Money- Days to

Put Option Put Option Portfolio ness Maturity
Return Return Return Option Option
(in %) (in %) (in %) Pair Pair

(1) (2) (1)–(2) (3) (4)

Mean −12.76 −16.42 3.66 1.03 74
StDev 61.19 63.48 22.70 0.09 26
Mean/StError [−5.36] [−7.06] [8.67]
95%BS-CI {−2.19;1.81} {−2.19;1.83} {−1.85;2.11}
Percentile 1 −91.74 −95.88 −45.58 0.83 48
Percentile 5 −83.38 −87.59 −15.47 0.88 49
Quartile 1 −55.13 −59.07 −2.13 0.98 50
Median −23.69 −27.98 0.70 1.04 70
Quartile 3 14.81 10.09 4.61 1.10 99
Percentile 95 93.65 92.41 37.67 1.17 111
Percentile 99 193.69 203.05 89.40 1.19 111
Observations 1,384 1,384 1,384 1,384 1,384
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Table 1.4: Portfolios Double-Sorted on Moneyness and Maturity Time

The table presents the mean returns of moneyness and time-to-maturity-sorted American put option
portfolios (column (1)), synthetic European put option portfolios (column (2)), as well as spread
portfolios long the American and short the European option portfolio (column (1)–(2)). At the
end of each sample month t− 1, we first sort options into portfolios according to whether their
strike-to-stock price ratio (“moneyness”) lies above 1.05 (Panel A), between 0.95 and 1.05 (Panel
B), or below 0.95 (Panel C). Within each moneyness portfolio, we next sort them into portfolios
according to whether their days-to-maturity are below 60, between 60 and 90, or above 90 days. We
equally-weight the portfolios and hold them over month t. The observations used in columns (1)
and (2) are matched, so that each observation in column (1) corresponds to exactly one observation
in column (2) with the same moneyness and time-to-maturity. Plain numbers are mean monthly
portfolio returns (in %), the numbers in square parentheses are t-statistics calculated using Newey
and West’s (1987) formula with a lag length of twelve months, and the numbers in curly parentheses
are bootstrap 95% confidence intervals for the t-statistic.

Monthly
Monthly Synthetic Monthly
American European Spread

Put Option Put Option Portfolio
Return Return Return

Days-to-Maturity (in %) (in %) (in %)

(1) (2) (1)–(2)

Panel A: In-The-Money (Strike-to-Stock Price > 1.05)

30-60 −27.66 −39.39 11.74
[−13.61] [−22.98] [12.04]
{−2.12;1.87} {−2.18;1.80} {−2.07;1.92}

60-90 −10.13 −13.60 3.47
[−5.28] [−7.28] [8.13]

{−2.07;1.90} {−2.09;1.87} {−1.83;2.10}
90-120 −5.02 −6.16 1.14

[−3.19] [−3.88] [4.49]
{−2.12;1.91} {−2.13;1.89} {−1.84;2.11}

Panel B: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

30-60 −20.43 −24.98 4.55
[−7.21] [−9.49] [7.20]

{−2.15;1.80} {−2.27;1.77} {−2.03;1.87}
60-90 −6.76 −7.11 0.35

[−2.63] [−2.76] [1.31]
{−2.17;1.83} {−2.20;1.81} {−1.73;2.24}

90-120 −3.47 −3.16 −0.31
[−1.72] [−1.54] [−2.16]

{−2.12;1.84} {−2.11;1.85} {−1.85;2.08}

Panel C: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

30-60 −7.59 −6.91 −0.68
[−1.83] [−1.55] [−0.90]

{−2.23;1.79} {−2.27;1.77} {−1.78;2.23}
60-90 −5.14 −3.63 −1.50

[−1.38] [−0.84] [−1.82]
{−2.40;1.72} {−2.58;1.65} {−1.40;4.02}

90-120 −3.03 −2.30 −0.73
[−1.16] [−0.83] [−2.65]

{−2.19;1.81} {−2.19;1.83} {−1.85;2.11}
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Table 1.5: Portfolios Univariately-Sorted on Idiosyncratic Volatility

The table presents the mean returns of American put option portfolios, synthetic European put
option portfolios, as well as spread portfolios long the American and short the European option
portfolio sorted on idiosyncratic stock volatility. At the end of each sample month t− 1, we sort
options into portfolios according to the quintile breakpoints of their underlying stock’s market-model
(Panel A) or Fama-French-Carhart model (Panel B) idiosyncratic volatility over the prior 60 months.
We also form a spread portfolio long the top and short the bottom quintile (“High–Low”). We
equally-weight the portfolios and hold them over month t. The American and European option
observations are matched, so that each American option observation corresponds to exactly one
European option observation with the same moneyness and time-to-maturity. Plain numbers are
mean monthly portfolio returns (in %), the numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) formula with a twelve-month lag length, and the numbers in curly
parentheses are bootstrap 95% confidence intervals for the t-statistic.

Idiosyncratic Stock Volatility

1 (Low) 2 3 4 5 (High) High–Low

Panel A: Market Model Idiosyncratic Volatility

Panel A1: American Put Return
−14.31 −13.00 −12.34 −13.34 −10.48 3.83
[−4.99] [−5.85] [−4.71] [−5.55] [−4.20] [1.97]

{−2.26;1.77} {−2.19;1.81} {−2.14;1.83} {−2.12;1.82} {−2.11;1.85} {−1.91;2.01}
Panel A2: Synthetic European Put Return
−19.96 −17.71 −16.18 −16.17 −11.74 8.22
[−6.71] [−8.21] [−6.47] [−6.83] [−4.69] [3.65]

{−2.42;1.72} {−2.16;1.83} {−2.13;1.86} {−2.14;1.85} {−2.12;1.84} {−1.87;2.10}
Panel A3: Spread Portfolio Return

5.65 4.71 3.84 2.83 1.26 −4.39
[6.60] [10.38] [10.01] [8.51] [3.56] [−6.37]

{−1.62;2.42} {−1.95;1.98} {−1.98;1.95} {−2.04;1.92} {−1.87;2.10} {−2.31;1.69}

Panel B: FFC Model Idiosyncratic Volatility

Panel B1: American Put Return
−14.22 −13.09 −12.84 −12.63 −10.86 3.36
[−4.94] [−5.87] [−4.99] [−5.18] [−4.46] [1.74]

{−2.22;1.75} {−2.19;1.79} {−2.13;1.82} {−2.14;1.82} {−2.10;1.85} {−1.94;2.03}
Panel B2: Synthetic European Put Return
−19.80 −17.85 −16.64 −15.61 −12.02 7.78
[−6.61] [−8.30] [−6.72] [−6.54] [−4.92] [3.46]

{−2.43;1.70} {−2.19;1.80} {−2.14;1.80} {−2.13;1.84} {−2.12;1.84} {−1.84;2.17}
Panel B3: Spread Portfolio Return

5.59 4.76 3.80 2.98 1.16 −4.43
[6.32] [10.89] [9.24] [9.51] [3.30] [−6.11]

{−1.61;2.42} {−1.99;1.94} {−1.98;1.92} {−2.05;1.90} {−1.85;2.08} {−2.27;1.66}

51



Table 1.6: Subperiod Tests

The table presents the mean returns of moneyness and time-to-maturity-sorted spread portfolios
long an American and short the equivalent European option portfolio separately calculated over
the January-1996 to December-2008 (column (1)) and the January-2009 to April-2016 (column (2))
subsample periods. The table also reports the differences in mean spread portfolio returns across
the subsample periods (column (2)–(1)). In Panels A, B, and C, we consider in-the-money, at-the-
money, and out-of-the-money options, respectively. Within each panel, we further consider options
with a short, medium, or long time-to-maturity. See the caption of Table 1.4 for details on how the
double-sorted spread portfolios are created. The American and European option observations are
matched, so that each American option observation corresponds to exactly one European option
observation with the same moneyness and time-to-maturity. Plain numbers are mean monthly
portfolio returns (in %), the numbers in square parentheses are t-statistics calculated using Newey
and West’s (1987) formula with a lag length equal to twelve months, and the numbers in curly
parentheses are bootstrap 95% confidence intervals for the t-statistic.

Monthly Spread Portfolio Return (in %)

Days-to-Maturity Until 2008 From 2009 Difference

(1) (2) (2)–(1)

Panel A: In-The-Money (Strike-to-Stock Price > 1.05)

30-60 13.36 8.88 −4.49
[12.49] [5.89] [−3.26]

{−2.03;1.93} {−2.45;1.71} {−1.69;1.69}
60-90 4.16 2.24 −1.92

[7.61] [5.24] [−2.58]
{−1.72;2.23} {−2.17;1.86} {−1.68;1.72}

90-120 1.47 0.56 −0.90
[4.48] [1.92] [−1.94]

{−1.79;2.18} {−1.95;2.02} {−1.71;1.68}

Panel B: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

30-60 5.20 3.39 −1.81
[6.21] [3.52] [−1.32]

{−2.02;1.93} {−2.80;1.67} {−1.63;1.62}
60-90 0.44 0.18 −0.26

[1.22] [0.49] [−0.42]
{−1.61;2.51} {−2.20;1.78} {−1.65;1.61}

90-120 −0.08 −0.71 −0.63
[−0.56] [−3.03] [−1.63]

{−1.84;2.13} {−1.77;2.32} {−1.71;1.76}

Panel C: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

30-60 0.94 −3.55 −4.50
[1.23] [−3.89] [−3.26]

{−1.68;2.37} {−1.78;2.30} {−1.68;1.68}
60-90 −2.00 −0.64 1.36

[−1.61] [−1.19] [0.74]
{−1.34;5.37} {−1.83;2.20} {−1.49;1.66}

90-120 −0.60 −0.96 −0.36
[−1.91] [−1.87] [−0.55]

{−1.84;2.11} {−1.84;2.19} {−1.71;1.67}
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Table 1.7: Fama-MacBeth (1973) Regressions

The table presents the results of Fama-MacBeth (1973) regressions of the return over month t of a
spread portfolio long an American put option and short its equivalent synthetic European option
(Panel A), an American put option (Panel B), or a synthetic European put option (Panel C) on
subsets of stock and option characteristics plus a constant. The characteristics include the strike-to-
stock price ratio (“moneyness”), time-to-maturity (as fraction of a year), and idiosyncratic underlying-
stock volatility, all measured at the start of month t. We calculate idiosyncratic stock volatility from
the Fama-French-Carhart model estimated over the prior 60 months. The American and European
option observations are matched, so that each American option observation corresponds to exactly
one European option observation with the same moneyness and time-to-maturity. The plain numbers
are premium estimates, the numbers in square parentheses are t-statistics calculated using Newey
and West’s (1987) formula with a twelve-month lag length, and the numbers in curly parentheses are
the bootstrap 95% confidence intervals for the t-statistic.

Regression Model:

(1) (2) (3) (4)

Panel A: Spread Portfolio Return

Constant 0.04 −0.24 0.07 −0.22
[9.44] [−13.30] [8.75] [−11.44]

{−1.90;1.90} {−2.08;1.90} {−2.00;2.05} {−1.84;1.95}
Moneyness 0.35 0.35

[19.27] [19.17]
{−2.00;1.89} {−1.99;2.09}

Time-to-Maturity −0.41 −0.40
[−12.22] [−12.57]
{−1.79;2.06} {−2.00;1.93}

Volatility −0.07 −0.05
[−6.21] [−5.50]

{−1.88;1.91} {−1.93;2.06}

Panel B: American Put Option Return

Constant −0.13 0.05 −0.15 0.04
[−6.24] [0.42] [−6.07] [0.31]

{−1.97;2.14} {−2.04;1.90} {−2.03;1.87} {−1.97;1.94}
Moneyness −0.39 −0.38

[−4.41] [−4.30]
{−1.94;1.89} {−1.90;1.96}

Time-to-Maturity 1.08 1.08
[23.27] [24.39]

{−1.93;1.97} {−1.80;2.09}
Volatility 0.04 0.00

[1.51] [0.02]
{−1.86;1.96} {−1.92;1.99}

Panel C: Synthetic European Put Option Return

Constant −0.16 0.29 −0.21 0.26
[−7.74] [2.34] [−8.15] [2.06]

{−1.99;1.81} {−2.03;1.81} {−2.01;1.87} {−1.96;1.89}
Moneyness −0.74 −0.73

[−7.64] [−7.54]
{−1.88;1.98} {−1.90;2.07}

Time-to-Maturity 1.50 1.48
[30.49] [32.88]

{−2.04;1.93} {−2.03;1.84}
Volatility 0.11 0.05

[3.53] [1.84]
{−2.03;1.94} {−1.90;1.90}
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Table 1.8: Controlling for Stock Short-Selling Constraints

The table presents the mean returns of moneyness and time-to-maturity-sorted spread portfolios
long an American and short the equivalent European option portfolio formed from only options
written on stocks with a non-missing DCBS value or one equal to or below eight, seven, and five
at the start of the option return period (columns (1) to (4), respectively). In Panels A, B, and C,
we consider in-the-money, at-the-money, and out-of-the-money options, respectively. Within each
panel, we further consider options with a short, medium, or long time-to-maturity. See the caption
of Table 1.4 for details on how the double-sorted spread portfolios are created. The American and
European option observations are matched, so that each American option observation corresponds
to exactly one European option observation with the same moneyness and time-to-maturity. Plain
numbers are mean monthly portfolio returns (in %), while the numbers in square parentheses are
t-statistics calculated using Newey and West’s (1987) formula with a twelve-month lag length. An
asterisk (*) indicates that the t-statistic lies outside of its bootstrap 95% confidence interval.

Monthly Spread Portfolio Return (in %)

All Stocks Stocks Stocks Stocks
with Available with DCBS with DCBS with DCBS

Days-to-Maturity DCBS Value Value ≤ 8 Value ≤ 7 Value ≤ 5

(1) (2) (3) (4)

Panel A: In-the-Money (Strike-to-Stock Price > 1.05)

30-60 12.12* 12.34* 12.43* 12.68*
[8.13] [8.38] [8.46] [8.74]

60-90 3.58* 3.68* 3.78* 3.89*
[6.51] [6.76] [7.09] [7.39]

90-120 1.18* 1.26* 1.33* 1.43*
[2.94] [3.24] [3.61] [4.12]

Panel B: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

30-60 4.16* 4.41* 4.52* 4.71*
[5.96] [6.19] [6.42] [6.83]

60-90 0.64* 0.83* 1.01* 1.25*
[2.68] [3.22] [3.73] [4.51]

90-120 −0.09 0.14 0.25 0.44*
[−0.42] [0.68] [1.32] [2.35]

Panel C: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

30-60 −1.23 −0.79 −0.51 −0.14
[−1.07] [−0.71] [−0.48] [−0.14]

60-90 −0.74 −0.28 −0.09 0.43
[−1.59] [−0.69] [−0.23] [1.10]

90-120 −0.57 −0.15 0.10 0.43
[−1.64] [−0.42] [0.29] [1.18]
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Table 1.9: Controlling for Stock and Option Illiquidity

The table presents the mean returns of illiquidity-sorted spread portfolios long an American and
short the equivalent European option portfolio formed using only in-the-money (Panel A), at-the-
money (Panel B), or out-of-the-money (Panel C) options with a short, medium, or long time-to-
maturity and on stocks with a DCBS value equal to or below five. See the captions of Tables 1.4
and 1.8 for details on the moneyness, time-to-maturity, and DCBS classifications. At the end of
each sample month t − 1, we first sort the option pairs into portfolios based on the median of
the illiquidity-proxy value for the American call option, then based on the median of that for the
American put option, and finally based on the median of that for the underlying stock. We use
either the inverse of scaled open interest or the scaled bid-ask spread to proxy for option illiquidity
and Amihud’s (2002) measure to proxy for stock illiquidity. The intersection of the three portfolio
sets yields the independently triple-sorted illiquidity portfolios. We equally-weight the triple-sorted
portfolios and hold them over month t. The American and European option observations are
matched, so that each American option observation corresponds to exactly one European option
observation with the same moneyness and time-to-maturity. Plain numbers are mean monthly
portfolio returns (in %), while the numbers in square parentheses are t-statistics calculated using
Newey and West’s (1987) formula with a twelve-month lag length. An asterisk (*) indicates that
the t-statistic lies outside of its bootstrap 95% confidence interval. To conserve space, the table
only reports the mean returns of those triple-sorted portfolios for which either all stocks and options
are in the high (H-H-H) or in the low (L-L-L) univariate illiquidity portfolios.

Monthly Spread Portfolio Return (in %)
Option Illiquidity Proxy

Bid-Ask Spread Inverse Open Interests

Days-to-Maturity H-H-H L-L-L H-H-H L-L-L

(1) (2) (3) (4)

Panel A: In-The-Money (Strike-to-Stock Price > 1.05)

30-60 15.01* 9.10* 10.72* 10.93*
[8.98] [6.15] [7.27] [6.54]

60-90 4.91* 2.00* 3.42* 2.67*
[7.62] [3.24] [4.76] [3.76]

90-120 1.55* 0.50 1.65* 1.27*
[3.23] [1.26] [3.18] [3.70]

Panel B: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

30-60 5.27* 4.01* 5.19* 3.51*
[5.86] [5.11] [4.31] [6.13]

60-90 2.49* 0.64 1.93* 0.31
[4.20] [1.61] [3.27] [0.94]

90-120 0.05 0.20 −0.13 1.29*
[0.07] [0.28] [−0.27] [2.90]

Panel C: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

30-60 1.52 −3.12 1.54 −1.24
[0.80] [−1.42] [1.12] [−1.02]

60-90 3.12 −0.08 2.93 −1.05
[1.85] [−0.16] [1.87] [−1.49]

90-120 1.04 0.17 −0.12 0.22
[1.02] [0.44] [−0.11] [0.38]
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Table 1.10: Stocks That Never Paid Dividends

The table presents the mean returns of moneyness and time-to-maturity-sorted American put option
portfolios (column (1)), synthetic European put option portfolios (column (2)), as well as spread
portfolios long the American and short the European option portfolio (column (1)–(2)) formed
using only options written on stocks that never paid out a dividend until the start of the option
return period. See the caption of Table 1.4 for details on how the double-sorted American put,
European put, and spread portfolios are created. The American and European option observations
are matched, so that each American option observation corresponds to exactly one European option
observation with the same moneyness and time-to-maturity. The plain numbers are mean monthly
portfolio returns (in %), while the numbers in square parentheses are t-statistics calculated using
Newey and West’s (1987) formula with a lag length equal to twelve months. An asterisk (*) indicates
that the t-statistic lies outside of its bootstrap 95% confidence interval.

American Syn. European Spread
Put Option Put Option Portfolio

Return Return Return
Days-to-Maturity (in %) (in %) (in %)

(1) (2) (1)–(2)

Panel A: In-The-Money (Strike-to-Stock Price > 1.05)

30-60 −27.99* −38.06* 10.07*
[−14.54] [−21.93] [12.05]

60-90 −9.79* −12.67* 2.88*
[−5.12] [−6.77] [8.31]

90-120 −5.11* −6.20* 1.08*
[−3.39] [−4.12] [4.36]

Panel B: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

30-60 −20.64* −24.33* 3.69*
[−8.25] [−10.59] [9.00]

60-90 −6.72* −7.04* 0.32
[−2.67] [−2.79] [1.47]

90-120 −4.09* −3.82 −0.26
[−2.14] [−1.95] [−1.63]

Panel C: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

30-60 −8.31* −8.01 −0.30
[−2.10] [−1.90] [−0.42]

60-90 −5.19 −4.12 −1.07*
[−1.56] [−1.15] [−2.48]

90-120 −3.58 −3.03 −0.55
[−1.41] [−1.12] [−1.73]
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Table 1.11: Accounting for Bid-Ask Transaction Costs

The table presents the mean returns of moneyness and time-to-maturity-sorted spread portfolios long
an American and short the equivalent European option portfolio under the assumption that investors
always buy (sell) at the midpoint plus (minus) S times the bid-ask spread. We set S equal to 0.00,
0.10, 0.25, 0.50 in columns (1) to (4), respectively. In Panels A and B, we use either all option pairs
or only those based on low illiquidity assets (those in the L-L-L portfolio in Table 1.9) and on stocks
with a DCBS value equal to or below five, respectively. In subpanels 1, 2, and 3, we then consider
in-the-money, at-the-money, and out-of-the-money options, respectively. Within each subpanel, we
further consider options with a short, medium, or long time-to-maturity. See the caption of Table 1.4
for details on how the double-sorted spread portfolios are created. The American and European
option observations are matched, so that each American option observation corresponds to exactly
one European option observation with the same moneyness and time-to-maturity. Plain numbers
are mean monthly portfolio returns (in %), while the numbers in square parentheses are t-statistics
calculated using Newey and West’s (1987) formula with a twelve-month lag length. An asterisk (*)
indicates that the t-statistic lies outside of its bootstrap 95% confidence interval.

Monthly Spread Portfolio Return (in %)
Bid-Ask Spread Fraction S Equal to:

Days-to-Maturity 0.00 0.10 0.25 0.50

(1) (2) (3) (4)

Panel A: Full Sample

Panel A1: In-The-Money (Strike-to-Stock Price > 1.05)

30-60 11.74* 8.10* 4.45* −0.64
[12.04] [8.96] [4.66] [−0.51]

60-90 3.47* 0.08 −3.89* −9.26*
[8.13] [0.20] [−6.44] [−8.56]

90-120 1.14* −2.13* −6.30* −11.95*
[4.49] [−6.75] [−12.08] [−11.54]

Panel A2: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

30-60 4.55* −0.99 −7.71* −17.18*
[7.20] [−1.62] [−7.27] [−8.52]

60-90 0.35 −5.00* −12.24* −22.76*
[1.31] [−10.73] [−13.04] [−12.05]

90-120 −0.31* −5.63* −12.93* −23.68*
[−2.16] [−15.23] [−16.71] [−15.61]

Panel A3: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

30-60 −0.68 −9.73* −20.90* −35.85*
[−0.90] [−7.34] [−9.74] [−10.71]

60-90 −1.50* −10.48* −22.82* −38.42*
[−1.82] [−9.59] [−9.89] [−11.55]

90-120 −0.73* −9.65* −21.98* −40.05*
[−2.65] [−11.54] [−12.63] [−13.17]

Panel B: Sample with Low Option and Stock Illiquidity and DCBS Value ≤ Five

Panel B1: In-The-Money (Strike-to-Stock Price > 1.05)

30-60 9.10* 8.27* 7.17* 5.14*
[6.15] [5.83] [5.30] [4.01]

60-90 2.00* 1.74* −0.13 −2.89*
[3.24] [2.45] [−0.17] [−3.45]

90-120 0.50 −0.64 −2.42* −5.44*
[1.26] [−1.36] [−4.34] [−6.47]

(continued on next page)
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Table 1.11: Accounting for Bid-Ask Transaction Costs (Cont.)

Monthly Spread Portfolio Return (in %)
Bid-Ask Spread Fraction S Equal to:

Days-to-Maturity 0.00 0.10 0.25 0.50

(1) (2) (3) (4)

Panel B2: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

30-60 4.01* 2.70* −0.02 −4.70*
[5.11] [3.12] [−0.02] [−3.51]

60-90 0.64 −1.18* −3.70* −8.61*
[1.61] [−2.88] [−6.05] [−10.06]

90-120 0.20 −1.76* −5.21* −9.94*
[0.28] [−2.67] [−7.36] [−9.68]

Panel B3: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

30-60 −3.12 −8.99* −17.91* −33.56*
[−1.42] [−3.30] [−4.12] [−3.43]

60-90 −0.08 −4.20* −10.66* −21.30*
[−0.16] [−5.42] [−6.27] [−5.43]

90-120 0.17 −3.83* −9.34* −17.99*
[0.44] [−7.58] [−7.53] [−8.50]
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Table 1.12: Time-Series Asset Pricing Tests

The table shows the results from time-series regressions of the return over month t of a spread portfolio
long an American and short the equivalent European put option on several sets of benchmark factors
measured over the same month and a constant. The factors include the market return minus the risk-
free rate of return (MKT), the return of a spread portfolio long small and short large stocks (SMB),
the return of a spread portfolio long value and short growth stocks (HML), the return of a spread port-
folio long winner and short loser stocks (MOM), the return of a spread portfolio long profitable and
short unprofitable stocks (PRF), the return of a spread portfolio long non-investing and short investing
stocks (INV), the change in the VIX option-implied volatility index (VIX), the three-month LIBOR
rate minus the treasury bill rate (TED), and the return of a spread portfolio long high-liquidity and
short low-liquidity stocks (LIQ). Plain numbers are estimates, while the numbers in square parenthe-
ses are t-statistics calculated using Newey and West’s (1987) formula with a twelve-month lag length.
An asterisk (*) indicates that the t-statistic lies outside of its bootstrap 95% confidence interval.

Time-Series Regression Model:

(1) (2) (3) (4) (5)

MKT 0.22* 0.23* 0.23* 0.28* 0.13
[2.67] [2.64] [2.48] [2.59] [0.96]

SMB −0.10 −0.10 0.03 0.06
[−0.82] [−0.82] [0.24] [0.40]

HML −0.09 −0.09 −0.13 −0.09
[−0.76] [−0.73] [−0.69] [−0.46]

MOM 0.00 −0.01 −0.00
[0.01] [−0.11] [−0.04]

PRF 0.33 0.30
[1.74] [1.58]

INV −0.19 −0.28
[−0.78] [−1.13]

VIX −0.05*
[−2.15]

TED 1.24
[0.72]

LIQ −0.20
[−1.89]

Constant 0.04* 0.04* 0.04* 0.04* 0.04*
[9.16] [9.20] [9.09] [8.52] [9.01]
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Chapter 2

Taking Money Off the Table:

Suboptimal Early Exercises,

Risky Arbitrage, and American

Put Returns

Keywords: Empirical asset pricing; cross-sectional option pricing; put options;

early exercise.

2.1 Introduction

Many studies suggest that American option investors do not always follow optimal

early exercise policies, with them frequently exercising their positions too late. Pool

et al. (2008), for example, estimate that the total profits lost from not optimally

exercising single-stock American calls on ex-dividend dates are about $500 million over

a ten-year period, while Barraclough and Whaley (2012) estimate that those from not

optimally exercising American puts are about $1.9 billion over a twelve-year period.

Yet, when American puts can be exercised too late, there is an arbitrage opportunity in

perfect markets, exploitable by longing a dynamic underlying-asset-and-riskfree-asset
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portfolio replicating the put and shorting the traded put (Shreve (2004)). Intuitively,

after the put should have but has not been exercised, the portfolio consists of one

short underlying asset unit and an investment of the strike price into the money

market, covering any obligations arising from the put but also earning interest. The

earned interest represents the arbitrage profit.

In our paper, we study the profitability and total and systematic risk of the arbitrage

strategy in real markets in which options can only be imperfectly replicated. While real

investors are thus unable to earn a proper arbitrage profit, they may still be able to

earn some profit with an only low risk (“risky arbitrage profit”). In accordance, we find

that longing daily-rebalanced replication portfolios of single-stock American puts and

shorting those puts earns us a highly significant mean return of 4.11% per month before

transaction costs. Suggesting daily rebalancing creates efficient replication portfolios,

the returns on the two legs of that strategy share a mean cross-sectional correlation

of –0.85; the variance of the strategy return is only 30-35% of those on the returns of

the legs; and the strategy only weakly loads on risk factors. In line with theory, the

mean strategy return increases with the strike price and the interest rate. Also, it is

higher for short time-to-maturity puts on low volatility stocks, aligning with further

evidence that investors do not understand how those variables condition the optimal

early exercise decision. Crucially, since the strategy requires frequent rebalancing and

short-selling, we finally show that it survives accounting for trading and shorting costs,

at least when executed on liquid assets.

We use options market data from Optionmetrics and early exercise data from

Bob Whaley to study our arbitrage strategy in real markets. To derive the return on

the long leg of the strategy, we invest the market price of the put into a portfolio

consisting of the underlying stock and the riskfree asset at the start of the strategy

return period, with the number of stocks equal to the (negative) delta of the put. At

the end of each day, we then rebalance the stock holdings in the portfolio to its new

delta. To derive the return on the short leg, we calculate the return of the traded put

over the same period as the compounded early exercise payoff (if there is an early
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exercise) or the market price (if there is none) of the put at the end of that period to

its market price at the start. To find out if and when the put is early exercised, we

recognize that the Option Clearing Corporation randomly assigns exercise obligations

to outstanding short positions (Pool et al. (2008)). We thus assume that the short

leg is terminated over a day if a draw from the univariate distribution lies below the

ratio of early exercised contracts of the put over that day to its open interest at the

end of the prior day (“daily early exercise probability”).1

We finally calculate the return of the risky arbitrage strategy as the spread in

returns between the replication portfolio and the traded put over the strategy return

period. Importantly, however, the strategy return period is not fixed, ranging from

the start of a month to the earlier of the day over which the traded put is exercised

and the end of the month. In other words, we always liquidate the long and the short

leg of the risky arbitrage strategy on the same date.

Our evidence suggests that the risky arbitrage strategy is highly profitable with

an only low total or systematic risk. Longing an equally-weighted portfolio of daily-

rebalanced replication portfolios of all outstanding American puts and shorting an

equally-weighted portfolio of those same puts yields a mean monthly return of 4.11%

(t-statistic: 5.21). While the monthly variances of the returns on the long and the

short leg of the strategy are, respectively, 0.32 and 0.26, the monthly variance of the

strategy return is a much lower 0.09. Regressing the strategy’s return on popular

risk factors, such as the Fama-French (2015) five-factor model factors, we obtain

alphas close to identical to the strategy’s mean return but with higher t-statistics.

In addition, we also obtain factor loadings markedly attenuated compared to those

obtained from the two legs of the strategy. Calculating key performance evaluation

statistic (e.g., the Sharpe (1966) ratio), we find yet more evidence that the strategy

bodes satisfactory risk-adjusted performance.

1Given that the put return depends on draws from a random distribution, it varies each time that
we recalculate it, leading to concern that our empirical results cannot be replicated. Fortunately,
however, those variations almost cancel out in the aggregate, likely due to a law of large numbers.
Recalculating the mean monthly pooled-sample return of the risky arbitrage strategy three times, we,
for example, obtain values of 4.11455%, 4.11022%, and 4.11812%. We plan to include a histogram
of 1,000 mean strategy returns in future versions of our paper.
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We next condition the risky arbitrage strategy on put, stock, and macroeconomic

characteristics including the strike price, the interest rate, moneyness, time-to-maturity,

and underlying stock volatility. While theory suggests that, ceteris paribus, the

strategy is more profitable for high strike-price puts in high interest-rate regimes, it

is hard to generate further predictions since the strategy’s profitability for some class

of puts ultimately hinges on the extent to which investors early exercise puts too late

within that class. Our evidence shows that the mean strategy return significantly

increases with the strike price and the interest rate, but significantly decreases with

moneyness, time-to-maturity, and stock volatility. Corroborating that the relations

with time-to-maturity and stock volatility, but not that with moneyness, originate

from variations in investors’ tendency to exercise puts too late, we offer further

evidence that investors do not seem to understand the negative effects of those

characteristics on the optimal early exercise decision.

We finally turn to the transaction costs incurred by the risky arbitrage strategy.

Assuming that an asset’s trading costs are proportional to its bid-ask spread and that a

stock can be borrowed at Markit’s indicative rate, we show that trading and borrowing

costs greatly eat into the profitability of that strategy. Considering in-the-money (ITM)

puts with 30-60 days-to-maturity, the mean strategy return, for example, drops from

4.83% per month (t-statistic: 5.87) in the no-transaction-cost case to –2.17% (t-statistic:

–2.05) in the 25% bid-ask-spread transaction-cost case. Importantly however, the

strategy remains profitable even net of transaction costs when we restrict our attention

to liquid puts written on liquid underlying assets. Excluding from the above ITM

puts those with a bid-ask spread above the median and/or written on stocks with an

Amihud (2002) illiquidity value above the median, the mean strategy return is, for

example, 3.92% (t-statistic: 3.20) even in the 25% bid-ask-spread transaction-cost case.

We also establish that decreasing the rebalancing frequency of the replication portfolio

can further help to raise the strategy’s profitability net of transaction costs, without it

greatly boosting the volatility of the strategy return.

Our work builds up on empirical studies suggesting that American option investors
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often do not follow optimal early exercise policies. While Overdahl and Martin (1994)

show that most early exercises of single-stock American calls and puts fall within opti-

mal boundaries on the underlying stock’s price, Brennan and Schwartz (1977) document

that the early exercises of such puts are typically inconsistent with the Black-Scholes

(1973) framework. Finucane (1997) finds that investors often early exercise American

calls on non-dividend stocks, conflicting with Merton’s (1973) insight that it is never

optimal to early exercise such calls. Digging deeper into Finucane’s (1997) results,

Poteshman and Serbin (2003) show that only individual but not institutional investors

sometimes early exercise the former calls.2 As already said, Pool et al. (2008) and

Barraclough and Whaley (2012) find that the foregone profits from failing to optimally

early exercise single-stock American calls and puts are economically large. More

generally, Bauer et al. (2009) report that retail investors do not perform well in their

option investments. While we offer further evidence that investors’ early exercise

strategies are often suboptimal, our main contribution to the above literature is to

show how to make money from that suboptimality using a simple trading strategy.

We further add to empirical studies examining the performance of trading strategies.

While stock strategies are dominant among those studies (see, e.g., Fama and French

(1992), Lakonishok et al. (1994), and Carhart (1997)), recent studies have also evaluated

option strategies. Coval and Shumway (2001), for example, report that writing zero-beta

index straddles is profitable even after considering transaction costs. Vasquez (2017)

documents that longing straddles with a high slope of their implied volatility term

structure and shorting those with a low slope yields positive mean cost-adjusted returns.

Conversely, Goyal and Saretto (2009) find that longing options with a large difference

between realized and implied volatility and shorting those with a low difference yields

positive mean “delta-hedged returns” (i.e., the options’ returns neutralized with respect

to their underlying stocks’ returns). Cao et al. (2020) show that sorting options

2The recent studies of Jensen and Pedersen (2016), Battalio et al. (2020), and Figlewski (2019)
highlight that trading costs can make it optimal to early exercise an American call on a non-dividend
asset, implying that some of the early exercises classified as suboptimal by Finucane (1997) could
be optimal. Notwithstanding, Pool et al.’s (2008) evidence that the vast majority of such calls are
early exercised by retail (but not institutional) investors leads one to suspect that Finucane (1997)
correctly classifies most of his early exercises.
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based on characteristics used to predict stock returns also often yields significant mean

delta-hedged returns, which can, however, differ in sign from the corresponding mean

stock returns. We add to this literature by proposing a new risky arbitrage trading

strategy involving single-stock American puts and their delta-replication portfolio firmly

grounded in mathematical finance theory.

We finally add to studies looking into how option prices deviate from the values

of their replication portfolios. While in a Black-Scholes (1973) perfect capital market

the value of any option can be perfectly hedged/replicated using a dynamic asset-and-

riskfree-asset portfolio, Leland (1985) proves that transaction costs can drive a wedge

between the option’s value and the replication portfolio value. Adding underlying-

asset dividends and stochastic volatility, Perrakis and Lefoll (2000) and Gondzio et al.

(2003) come to the same conclusion. Relying on existing mathematical finance theory,

we contribute to this literature by showing that suboptimally late early exercises of

American puts can also make the values of those puts deviate from the values of their

(standard/non-consuming) replication portfolios, not only in theory but also in practice.

We proceed as follows. In Section 2.2, we review the underlying theory. In

Section 2.3, we discuss our methodology and data. In Sections 2.4, 2.5, and 2.6,

we present the historical performance of the risky arbitrage strategy, condition the

strategy on put, stock, and macroeconomic characteristics, and adjust it for trading

and borrowing transaction costs, respectively. Section 2.7 concludes.

2.2 Theory

In this section, we briefly review the mathematical finance theory suggesting that an

ex-ante non-zero probability that an American put is exercised too late creates an

arbitrage opportunity in perfect capital markets. We keep our review as intuitive as

possible, referring to other papers for more technical details. Consider an American

put giving its owner the option to sell an underlying asset worth S(t) at time t for a

constant price of K (“strike price”) in each instant within the time period t ∈ [0, T ]

(“maturity time”). To keep matters simple, the underlying asset does not pay out
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cash over the maturity time, and its value evolves according to the following geometric

Brownian motion (GBM) under the risk-neutral (“martingale”) measure Q:

dS(t) = rS(t)dt+ σS(t)dW̃ (t), (2.1)

where r is the annualized risk-free rate of return, σ is the annualized volatility of the

underlying asset’s return, and dW̃ (t) is the differential of a Brownian motion.

Using risk-neutral pricing techniques, the value of the American put, p(t, S(t)), is:

p(t, S(t)) = maxτ∈Ω(t,T )Ẽ[e−r(τ−t)(K − S(τ))|S(t)], (2.2)

where max is the maximum operator, Ẽ the expectation under the Q measure,

τ the (random) early exercise time associated with some feasible early exercise

strategy (i.e., a strategy based only on information available at the current time),

and Ω(t, T ) the set of early exercise times associated with all feasible strategies.

Karatzas (1988) and Jacka (1991) prove that the optimal feasible strategy is to

early exercise the put as soon as the underlying asset value S(t) drops below some

time-variant boundary L(t), which is bounded and increases convexly with time t.

As long as S(t) > L(t), we can thus replicate the put by investing p(t, S(t)) into a

dynamically rebalanced portfolio containing the underlying asset and the riskfree

asset and ensuring that the underlying asset investment is equal to ∆(t, S(t))S(t)

in each instant, where ∆(t, S(t)) ≡ ∂p(t, S(t))/∂S(t) is the (negative) put delta. It

follows from the replication strategy that:

1

2
σ2S(t)2pSS(t, S(t)) + rS(t)pS(t, S(t)) + pt(t, S(t))− rp(t, S(t)) = 0, (2.3)

where pS ≡ ∂p(t, S(t))/∂S(t), pSS ≡ ∂2p(t, S(t))/∂S(t)2, and pt ≡ ∂p(t, S(t))/∂t.

Conversely, as soon as S(t) ≤ L(t), p(t, S(t)) = K − S(t). A direct computation
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then yields as following:

1

2
σ2S(t)2pSS(t, S(t)) + rS(t)pS(t, S(t)) + pt(t, S(t))− rp(t, S(t)) = rK. (2.4)

We are now in a good position to repeat the insights in Shreve’s (2004) Corol-

lary 8.4.3:

COROLLARY 8.4.3 Consider an agent with initial capital X(0) = p(0, S(0)).

Suppose that, in each instant, this agent holds a portfolio consisting of ∆(t, S(t))

units of the underlying asset and the residual value invested into the risk-free asset.

Further, assume the agent consumes cash, C(t), from that portfolio at rate rK per

time unit if S(t) ≤ L(t) and else at rate zero. Then X(t) = p(t, S(t)) for all times

t ∈ [0, T ]. In particular, X(t) ≥ max(K − S(t), 0) for all times t until T , so the

agent can pay off a short position regardless of when the option is expired.

To prove the corollary, Shreve (2004) starts with applying Itô’s lemma to the

differential of the discounted value of the American put, d(e−rtp(t, S(t)):

d(e−rtp(t, S(t))) = e−rt
[
− rp(t, S(t))dt+ pt(t, S(t))dt+ pS(t, S(t))dS(t)

+
1

2
pSS(t, S(t))dS(t)dS(t)

]
(2.5)

= e−rt
[
− rp(t, S(t)) + pt(t, S(t)) + rS(t)pS(t, S(t))

+
1

2
σ2S(t)2pSS(t, S(t))

]
dt

+e−rtσS(t)pS(t, S(t))dW̃ (t), (2.6)

noting that Equations (2.3) and (2.4) imply that the term in square parentheses

in Equation (2.6) is zero if S(t) > L(t) and else −rK. He then stresses that the

differential of the value of the portfolio containing the underlying asset and the

riskfree asset is equal to:

dX(t) = ∆(t)dS(t) + r(X(t)−∆(t)S(t))dt− C(t)dt, (2.7)
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so that the differential of the discounted value of that portfolio is equal to:

d(e−rtX(t)) = e−rt(−rX(t)dt+ dX(t)) (2.8)

= e−rt(∆(t)dS(t)− r∆(t)S(t)dt− C(t)dt) (2.9)

= e−rtσS(t)pS(t, S(t))dW̃ (t)− e−rtrKIS(t)≤L(t)dt, (2.10)

where IS(t)≤L(t) is an indicator equal to one if S(t) ≤ L(t) and else zero. Comparing

Equations (2.6) and (2.10), it is obvious that the values of the put and the portfolio

are not only the same at the initial time t = 0, but also at any other time t over

the time-to-maturity.

Corollary 8.4.3 implies that the arbitrage profit in dollars, obtained from longing

the asset-and-riskfree-asset portfolio and shorting the put over the period until the put

expires is er×max(tE−τ,0)max(tE − τ, 0)rK in perfect markets, where tE is the actual

expiration date of the put. As a result, the dollar arbitrage profit increases with

the length of the period over which the put should but has not been early exercised

(max(tE − τ, 0)), the risk-free rate of return (r), as well as the strike price (K).

Intuitively, as the underlying asset value S(t) reaches the early exercise boundary

L(t) from above, the replication portfolio consists of one short unit of the underlying

asset and an investment of the strike price K into a money market account. If the

put owner optimally early exercises at that point, we transfer the money market

account to him/her in return for one long unit of the underlying asset, which we use

to extinguish our short position in that asset. Conversely, if he/she does not early

exercise, we hold onto the money market investment and the one short underlying

asset unit, enabling us to earn interest on the money market investment equal to

rKdt in each instant.

Three remarks about the above analysis are in order. First, while we rely on

the simplest possible assumptions in that analysis, Shreve (2004) highlights that the

arbitrage opportunity generally exists in complete markets as long as investors’ subop-

timal exercise policies render the discounted American put value a supermartingale
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under the Q measure. The arbitrage opportunity thus also exists in, for example,

stochastic volatility and mixed jump-diffusion models. Second, while there may be

concern that the arbitrage payoff is negligible due to its dependence on the interest

rate, that payoff can be large even in a low interest rate regime. To see that, consider

an American put with S(0) = K = 30, σ = 0.30, T = 0.25, and r = 0.01, which ends

up being early exercised six weeks too late (i.e., max(tE − τ, 0) = 0.125). Scaling the

compounded arbitrage payoff, e0.01×0.125 × 0.01× 30× 0.125 = 0.0376, by the initial

put value, 1.7659, we obtain a three-month arbitrage return of 2.1%, translating into

a monthly return of 70.80 basis points.3,4 Hence, even when r = 0.01, the arbitrage

return compares well to the mean returns of popular risky stock strategies, such as the

SMB, HML, and MOM strategies. Notwithstanding, the arbitrage return is obviously

much larger in a higher interest rate regime, with it, for example, being 3.8% per

month when r = 0.05. Third, while the arbitrage profit should theoretically depend

on the strike price, the arbitrage return should not. This is because as the strike

price increases, both the arbitrage profit and option value required to calculate the

arbitrage return increase proportionately, making the arbitrage return insensitive

to changes in the strike price in theory.

In the remainder of our study, we evaluate the mean returns and the total and

systematic risk of the arbitrage strategy outlined in this section in real markets. While

many empirical studies suggest that real American put investors often early exercise

their positions too late (a necessary condition for the strategy to be profitable), market

imperfections such as transaction costs and discontinuous trading imply that we cannot

perfectly replicate puts using their underlying assets and the riskfree asset in real

markets. Given that, the arbitrage strategy in perfect markets, with a zero probability

of a loss but a positive probability of a gain, becomes, at best, a risky arbitrage strategy

in real markets, with a low probability of a loss but a high probability of a gain.

3In these calculations, we follow the standard practice in the stock literature to compute the
return of a long-short strategy as the difference in returns between the long and short leg. In our
case, the long and short leg share the same initial value, so that the return of the strategy becomes
the difference in payoffs between the two legs (which is the arbitrage payoff max(tE − τ,0)rK) scaled
by the initial value of the American put.

4We use a binomial tree with 1,000 time steps to calculate the American put value.
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2.3 Methodology and Data

In this section, we review our methodology and data. We first explain how we

calculate the returns of American puts and their replication portfolios with or without

transaction costs, also elaborating on how we decide whether a short put is expired

early. We next discuss how we compute optimal early exercise probabilities conditional

on the Black-Scholes (1973) framework using the Longstaff-Schwartz (2001) approach.

We finally outline our data and data sources.

2.3.1 Calculating the American Put Return

We compute the holding-period gross return of an American put, Rp(t0, tH), as its

compounded-up early exercise payoff (if there is an early exercise over that period)

or its market price at the end of that period (if there is none) to its market price at

the start of that period:

Rp(t0, tH) = v(tH)/p(t0), (2.11)

where t0 and tH are, respectively, the start and end day of the holding period, v(tx)

is the put’s value at the end of day tx, and p(tx) is its market price at the end of

the same day. If the put is early exercised on day tE < tH, its value at the end of

the holding period, v(tH), is: erf (tE ,tH) max(K − S(tE), 0), where rf(tx, ty) is the

net riskfree rate of return from end of day x to end of day y, K is the strike price,

and S(tx) is the underlying asset’s value at the end of day x. Else, the value of the

put on that date is its market price, p(tH), on the same date.5

Keeping in mind that the risky arbitrage strategy requires us to be short in

the put, it is the put owners, not us, who determine if and when they early exercise

their positions. When a put owner decides to early exercise a put, the Options

Clearing Corporation randomly assigns the exercise to an outstanding short position.

5Consistent with convention, Equation (2.11) gives the return on one long unit of the American
put. Given that we are, however, short that put in our risky arbitrage strategy, what we mostly
care about is −Rp(t0, tH), and not Rp(t0, tH). Recognizing that is especially important when we
adjust returns for transaction costs since else one could erroneously gain the impression that our
adjustments increase, and not decrease, returns.
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To mimic that procedure, we do the following. For each day within the holding

period, we first calculate the daily early exercise probability for the entire put issue,

defined as the number of early exercises of that issue over the day scaled by its open

interest at the end of the prior day. Starting with the first day in that period, we

draw a number from the univariate distribution with bounds zero and one, assuming

that our short put position is expired if the drawn number lies below the daily early

exercise probability. Unless the short position is expired, we move to the second day,

again drawing a number from the univariate distribution and assuming the short

position is expired if the number lies below the daily early exercise probability. We

continue in that way until the end of the holding period.

Our return calculations above ignore transaction costs arising from trading the

put. Following Goyal and Saretto (2009) and Cao and Han (2013), we assume

that these costs are proportional to the put’s bid-ask spread, ϕBASp(tx), where

ϕ is a constant and BASp(tx) that spread at the end of day tx. Again keeping in

mind that we are short the put, we compute the transaction-cost-adjusted gross

put return, Rp,tca(t0, tH), in the no-early-exercise case by adding ϕBASp(tH) to

the numerator of Equation (2.11) and subtracting ϕBASp(t0) from its denominator.

Conversely, in the early-exercise case, we add (1− abs(∆(tE)))ϕBASs(tE) to the

early exercise payoff in the numerator, where ϕBASs(tx) and ∆(tx) are, respectively,

the underlying asset’s bid-ask spread and the put’s delta at the end of day tx and

abs is the absolute-value operator, while we again subtract ϕBASp(t0) from the

denominator. Thus, Rp,tca(t0, tH) equals:

Rp,tca(t0, tH) =


e
rf (tE,tH )

(
max(K−S(tE),0)+(1−abs(∆(tE)))ϕBASs(tE)

)
p(t0)−ϕBASp(t0)

; tE ≤ tH ,

p(tH)+ϕBASp(tH)
p(t0)−ϕBASp(t0)

; tE > tH .

(2.12)

The (1− abs(∆(tE)))ϕBASs(tE) adjustment in the early-exercise case arises since

the long leg of our risky arbitrage strategy (the put replication portfolio to be

discussed in the next subsection) is generally short delta underlying asset units on
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the early exercise date. As a result, when the put is early exercised against us, we

use the underlying asset obtained from the put owner to extinguish our short delta

position in that asset, implying that we only need to sell (1− abs(∆(tE))) of that

asset in the market at a unit transaction cost of ϕBASs(tE).6

Using the daily early exercise probabilities above, we also calculate the real-

world early exercise probability of a put within an issue over some other period. To

do so, note that one minus a daily early exercise probability yields the corresponding

daily no-exercise (“survival”) probability. Computing one minus the product of the

daily survival probabilities over the period, we obtain the real-world early exercise

probability over that same period.

2.3.2 Calculating the Replication Portfolio Return

We next consider a dynamic portfolio noisily replicating an American put by shorting

a number of underlying assets close to the put’s delta and investing the remaining

portfolio value into the riskfree asset. Assuming we invest the market price of the

put into that portfolio at the end of day t0 and rebalance at the end of each day in

B ∈ [t1, t2, . . . tN ], where t0 < t1 < . . . < tN and tN is the last date before the earlier

of the put expiration date (tE) and the holding period end date (tH), we calculate the

portfolio’s return, RX(t0, tH), over the holding period as follows. We first calculate

the value of the portfolio at the end of the first rebalancing day, X(t1), as:

X(t1) = ∆(t0)S(t0)R(t0, t1) + (p(t0)−∆(t0)S(t0))Rf (t0, t1), (2.13)

where R(tx, tx+1) and Rf(tx, tx+1) are the gross underlying asset return and the

riskfree rate of return from end of day tx to end of day tx+1, respectively. The

6In case the put owner exercises his/her position on the optimal date or later, the
put replication portfolio contains one unit of the underlying asset, implying that: (1 −
abs(∆(tE)))ϕBASs(tE)

)
= 0. The adjustment thus deals with the unlikely case in which

the put owner exercises his/her position too early.
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portfolio’s value at the end of any other rebalancing date tk is then:

X(tk) = ∆(tk−1)S(tk−1)R(tk−1, tk) + (X(tk−1)−∆(tk−1)S(tk−1))Rf (tk−1, tk),

(2.14)

while its value at the end of the holding period, tH, can be written as:

X(tH) = erf (tE ,tH) (∆(tN)S(tN)R(tN , tE) + (X(tN)−∆(tN)S(tN))Rf (tN , tE))

(2.15)

if the put is expired before the end of the holding period and as:

X(tH) = ∆(tN)S(tN)R(tN , tH) + (X(tN)−∆(tN)S(tN))Rf (tN , tH) (2.16)

if it is not. Notice that the compounding in Equation (2.15) ensures that the portfolio’s

value is measured at time tH even when the put is expired earlier. We finally calculate

the portfolio’s gross return over the holding period by scaling by the initial investment:

RX(t0, tH) = X(tH)/X(t0) = X(tH)/p(t0). (2.17)

While we again abstract from transaction costs in our initial return calculations,

such costs are likely to be even more important for the replication portfolio than

the put due to the potentially frequent underlying-asset buys and sales necessary

to ensure that the replication portfolio and put have similar deltas and due to the

portfolio being short in the underlying asset. Again assuming that an asset’s trading

costs are proportional to its bid-ask spread, the total trading costs of the replication

portfolio at the end of the holding period, CTC(t0, tH), are:

CTC(t0, tH) = ϕ

(
erf (t0,tH)abs(∆(t0))BASs(t0)

+
N∑
i=1

erf (ti,tH)abs(∆(ti)−∆(ti−1))BASs(ti) (2.18)

+ I{tE>tH}abs(∆(tH))BASs(tH)

)
, (2.19)
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where I{tE>tH} is a dummy variable equal to one of tE > tH and else zero. Intuitively,

we only need to buy back the shorted underlying asset if the put is not exercised

against us in the holding period. If it is, we obtain the underlying asset from the

put owner, saving us ϕabs(∆(tH)) BASs(tH) in bid-ask trading costs. Conversely,

the total costs originating from short-selling the underlying asset at the end of the

holding period, CBC(t0, tH), are equal to:

CBC(t0, tH) =
D∑
i=0

erf (i+1,D)rbc(i+ 1)abs(∆(i))S(i), (2.20)

where the sum is taken over all days within the holding period, D is the number of

days in that period, and rbc(i+ 1) is the daily stock-borrowing rate over day i+ 1.

Subtracting the trading and stock-borrowing costs measured at the end of the holding

period from the numerator of the unadjusted portfolio return, the adjusted portfolio

return, RX,tca(t0, tH), is equal to:

RX,tca(t0, tH) =
X(tH)− CTC(t0, tH)− CBC(t0, tH)

p(t0)
. (2.21)

2.3.3 Calculating Theoretical Early Exercise Probabilities

To see whether real investors follow differentially suboptimal early exercise policies

across different types of puts, we also contrast real-world early exercise probabilities with

theoretical probabilities deduced from the optimal policies implied by the Black-Scholes

(1973) model. To calculate the latter probabilities, we use Longstaff and Schwartz’s

(2001) least-squares approach. To be specific, we use a GBM to simulate q underlying-

asset-value paths under the Q measure (see Equation (2.1)), sampling the asset’s value

at times t0 < t1 < . . . < tk = T . We next move backward through the paths, starting

with calculating the path-specific maturity payoff of the put, max(K−S(tk), 0). Moving

to time tk−1, we compare each path’s early exercise payoff at that time, K − S(tk−1),

with the put’s continuation value, which we define as the fitted value from a regression

of the put’s maturity payoffs discounted to time tk−1 on a function of the underlying
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asset value at time tk−1.
7 If the early exercise payoff exceeds the continuation value,

we assume that an early exercise occurs for that path and at that time, replacing the

put’s value with the early exercise payoff.

Moving back to time tk−2, we again regress the put’s future payoff discounted to

time tk−2 on the function of the underlying asset’s value at time tk−2. This time,

however, the future payoff is either the earliest early exercise payoff (if the put is

early exercised in the future) or the maturity payoff (if it is not). As before, we

assume that an early exercise occurs for a path at that time if the early exercise

payoff exceeds the continuation value. We continue in that way until we reach time t0.

We finally compute the unconditional theoretical early exercise probability over the

put’s time-to-maturity and imputed from the Black-Scholes (1973) model as the ratio

of the number of paths over which the put is early exercised to the total number of

paths q. Similarly, we compute the corresponding conditional theoretical probability

over some window within the time-to-maturity as the ratio of the number of paths

over which the put is first early exercised in that window to the total number of

paths without an early exercise at the start of the window.

To implement the above methodology, we use 100,000 simulated underlying-asset-

value paths for each put-month observation, with a number of time steps equal to

the days-to-maturity of the put. We use a third-order polynomial to estimate the

put’s continuation value. While we directly observe the stock and strike price, the

days-to-maturity, and the riskfree rate for each put-month observation, we estimate

the underlying stock’s volatility using monthly returns over the prior 60 months,

allowing us to compute a forward-looking theoretical early exercise probability.

2.3.4 Data and Data Sources

We obtain daily data on American puts written on dividend-paying and non-

dividend-paying single stocks and on those stocks from Optionmetrics. We retrieve

riskfree rates of return from the zero-coupon yield curves also provided by Option-

7To avoid bias, we run the regression on only observations for which the put is in-the-money at
time tk−1.
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metrics, and we always use that riskfree rate in our empirical work whose maturity

date is closest to the date to which we want to compound or discount a cash

flow. We obtain unique early exercise data manually collected from the Option

Clearing Corporation’s archives and containing the daily number of contracts

exercised by put issue and owner (customers, market makers, and firms) from Bob

Whaley.8 Due to the availability of the early exercise data, our sample period is

July 2001 to June 2014. We exclude the months November 2001, January 2002,

July 2002, and January 2006 from that sample period because the early exercise

data are consistently missing in these months. We further omit puts with a strike

price-to-stock price ratio (moneyness) below 0.975 from our sample since such

puts are hardly ever early exercised in real markets. We extract stock short-selling

fees from Markit. We finally obtain the Fama-French benchmark factors, the VIX

index, the TED spread, and a stock liquidity factor from Kenneth French’s website,

the CBOE website, the Fred Database, and Lubos Pastor’s website, respectively.9

We apply standard filters to our data (see Goyal and Saretto (2009) and Cao and

Han (2013)). To be specific, we exclude put-day observations for which the put price

violates standard arbitrage bounds (as, e.g., that the put’s price must lie below its

strike price). We further omit observations (i) for which the put price is below $1 or

one-half the bid-ask spread; (ii) for which the bid-ask spread is negative; or (iii) for

which the underlying stock’s price is missing.

8We are grateful to Bob Whaley for sharing these data with us. The shared data are an
updated version of the data also used in Pool et al. (2008), Barraclough and Whaley (2012), and
Jensen and Pedersen (2016).

9The benchmark factors are obtainable from: <https://mba.tuck.dartmouth.edu/pages/faculty
/ken.french/> and the stock liquidity factor from: <https://faculty.chicagobooth.edu/lubos.pastor
/research/>. The URL for the VIX data are: <http://www.cboe.com/products/vix-index-
volatility/vix-options-and-futures/vix-index/vix-historical-data)>, and for the TED spread:
<https://fred.stlouisfed.org/series/TEDRATE>.
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2.4 The Performance of the Risky Arbitrage

Strategy

In this section, we examine the historical performance of the risky arbitrage strategy

in the absence of transaction costs using the raw returns in Equations (2.11) and

(2.17). We first look at the mean returns and return volatilities of the strategy and its

two legs. We next adjust the mean returns for popular systematic factors, including

firm-characteristic and macroeconomic factors.

2.4.1 Mean Return and Volatility of the Strategy

In Table 2.1, we offer descriptive statistics on the returns of our sample American put

replication portfolios and traded American puts (columns (1) to (2), respectively), the

spread across their returns (column (1)–(2)), and the moneyness and days-to-maturity

of the puts (columns (3) to (4), respectively). We do not adjust returns for transaction

costs, rebalance the replication portfolios daily, and define the strategy period to

be one calendar month long. Each replication portfolio observation in column (1)

corresponds to exactly one put observation in column (2). The descriptive statistics

include the mean, the standard deviation (StDev), the Sharpe (1966) ratio, the mean’s

t-statistic (Mean/StError), several percentiles, and the number of observations. With

the exception of the t-statistic and the Sharpe ratio, we calculate the statistics by

sample month and then average over time. Given that, we can interpret the means in

columns (1) and (2) as the mean returns of equally-weighted portfolios of, respectively,

the replication portfolios and of the puts. We calculate the t-statistic as the mean

divided by the product of the standard deviation and the square root of the number

of observations and the Sharpe (1966) ratio as the mean excess return (i.e., the mean

return minus the riskfree rate of return) divided by the standard deviation. We finally

compute moneyness as the strike-to-stock price ratio and measure both moneyness as
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well as time-to-maturity at the start of the strategy period.

Table 2.1 About Here

Table 2.1 suggests that the risky arbitrage strategy is highly profitable. While

both legs of the strategy yield significantly negative mean monthly returns in columns

(1) and (2), the mean return of the portfolio of replication portfolios (the long leg) is a

less negative –9.08% (t-statistic: –4.09) compared to the –13.20% (t-statistic: –4.88)

mean return of the put portfolio (the short leg). In turn, the mean spread return

across them is 4.11% (t-statistic: 5.21) in column (1)–(2). Crucially, the spread return

is much less volatile than the returns of the legs, as can be seen from the standard

deviations and percentiles. While the annualized standard deviation of the spread

portfolio is, for example, only 30.18%, those of the portfolio of replication portfolios

and of the puts are 56.70% and 51.16%, respectively (compare columns (1), (2), and

(1)–(2)). Using the three standard deviations, we can easily calculate the correlation

between the two legs to be –0.85.10 Indeed, Figure 2.1 graphically shows that the

mean monthly holding period returns for the legs are heavily correlated over time.

Nevertheless, despite being highly correlated, the replicating portfolio generates larger

upward drift than the put option portfolio, as indicated in the cumulative profit graph

in Figure 2.2, enough to make the long-short spread portfolio of our trading strategy

a profitable one. The low volatility of the spread portfolio implies that it has a higher

t-statistic than the two legs in absolute terms, despite it having a far less extreme

mean return. It further implies that the spread portfolio has an impressive annualized

Sharpe ratio of 1.64. The moneyness and days-to-maturity statistics in columns (3)

and (4) suggest that the average put in our risky arbitrage strategy is in-the-money

(moneyness: 1.07) and has slightly more than two months to maturity.

10To wit, 0.56702 + 0.51162 − 2× 0.8482× 0.5670× 0.5116 = 0.30182.
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Figure 2.1: Monthly Returns From Replicating Portfolio and Traded
Put Positions
The figure plots the mean monthly return from longing the equally-weighted replicating portfolio

or traded American put portfolio. Option positions are taken at the start of each sample month

and are held over the month. The grey areas are NBER recession periods.

Figure 2.2: Cumulative Profits From Replicating Portfolio and Traded
Put Positions
The figure plots the cumulative profits from shorting $1 of the equally-weighted replicating

portfolio or traded American put portfolio or from longing $1 of the replicating and shorting

the same amount of the traded put portfolio. Option positions are taken at the start of each

sample month and are held over the month. The grey areas are NBER recession periods.

2.4.2 The Factor Model Alphas of the Strategy

In Table 2.2, we study the performance of the risky arbitrage strategy after

taking its systematic risk into account. To do so, we use Black et al.’s (1972)

time-series methodology and regress the monthly return on the spread portfolio

long the equally-weighted portfolio of replication portfolios and short the equally-
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weighted put portfolio on risk factors, interpreting the constant (“alpha”) from

that regression as the risk-adjusted mean return of the strategy. In column (1), we

use only the excess market return and a constant as exogenous variables. Column

(2) adds Fama and French’s (1993) benchmark factors SMB and HML, while

column (3) also adds Carhart’s (1997) MOM factor. Column (4) adds Fama and

French’s (2015) additional benchmark factors PRF and INV. Column (5) finally

adds the change in the VIX index, the TED funding spread, and Pastor and

Stambaugh’s (2003) liquidity factor.11 Plain numbers in the table are monthly

premium estimates, while numbers in parentheses are t-statistics derived from

Newey and West’s (1987) formula with a twelve-month lag length.

Table 2.2 About Here

Table 2.2 suggests that, independent of the risk factors used in the regressions, the

alpha of the risky arbitrage strategy is always significantly positive, with it, in fact,

hardly differing from the mean strategy return. Considering the most comprehensive

model in column (5), the alpha is, for example, 4.05% per month (t-statistic: 8.70) —

virtually identical to the mean strategy return of 4.11% (t-statistic: 5.21) in Table 2.1.

Notwithstanding, the strategy does load significantly on several risk factors due to

us being unable to perfectly replicate puts in real markets. Columns (1) to (4), for

example, suggest that the strategy loads positively and significantly on MKT, SMB,

and MOM. Interestingly, however, the MKT, SMB, and MOM loadings seem mostly

attributable to volatility and liquidity risk, as can be seen from column (5). Not

11The SMB factor is the return of a portfolio long small and short big stocks controlling for
book-to-market, while the HML factor is the return of a portfolio long high book-to-market
(“value”) and short low book-to-market (“growth”) stocks controlling for size. The MOM factor
is the return of a portfolio long stocks with high returns over the recent past and short stocks with
low returns over that period. The PRF factor is the return of a portfolio long more profitable and
short less profitable stocks, while INV is the return of a portfolio long low-investment and short
high-investment stocks, with both factors controlling for size. See Kenneth French’s website for
more details. The VIX index is a portfolio of options mimicking option-implied volatility, the
TED spread is the difference between the interest rate on short-term U.S. government debt and
on interbank loans, and the systematic liquidity factor is the return of a portfolio long stocks
with a high liquidity exposure and short stocks with a low exposure. See Lubos Pastor’s website
for more details.
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only do VIX and LIQ command significant loadings of, respectively, –0.16 (t-statistic:

–4.67) and 0.44 (t-statistic: 3.65) in that column, but they also drive out the MKT,

SMB, and MOM loadings. Although the risky arbitrage strategy thus loads on some

risks, its loadings are markedly attenuated compared to those of its two legs. While its

univariate MKT loading is, for example, 0.76 in column (1), the portfolio of replication

portfolios (the long leg) and the put portfolio (the short leg) attract corresponding

MKT loadings of –5.52 and –6.27, respectively (unreported to conserve space).

Taken together, the empirical results in this section suggest that the return of the

risky arbitrage strategy is not spanned by those of other well-known trading strategies

and that the strategy thus represents a novel trading opportunity for investors.

2.5 Conditioning the Strategy Return

In this section, we condition the performance of the risky arbitrage strategy on put,

stock, and macroeconomic factors. We start with those factors for which we can

deduce the sign of their conditioning effect from the theory in Section 2.2, which are

the strike price and the interest rate. We then turn to factors which may condition the

strategy’s performance through them capturing variations in investors’ tendency to

early exercise puts too late, namely, moneyness, time-to-maturity, and stock volatility.

We finally offer evidence suggesting that the conditioning ability of the latter factors

indeed comes through suboptimally late early exercises, with us showing that investors

do not seem to correctly condition their early exercise decisions on time-to-maturity

and stock volatility. As in Section 2.4, we continue to ignore transaction costs.

2.5.1 Conditioning on the Strike Price and the Interest

Rate

Assuming that American put investors can sometimes exercise their positions too late,

our theory in Section 2.2 suggests that the performance of the risky arbitrage strategy

is higher for high strike-price puts in high interest-rate regimes. Additionally, the
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theory in Section 2.2 shows that the returns on the strategy should not be conditional

upon changes in the strike price. To test these predictions, we start with sorting our

sample replication portfolios, their associated puts, and the spread portfolios long

a replication portfolio and short its associated put into portfolios according to the

quintile breakpoints of the strike price in month t− 1. We label these portfolios our

“unconditional strike price portfolios.” Since the strike price may, however, relate to

moneyness (defined as the strike-to-stock price ratio), possibly leading moneyness to

confound the unconditional portfolio results, we also construct “strike-price portfolios

controlling for moneyness” in the spirit of An et al. (2014). To do so, we further

split each unconditional portfolio into portfolios based on the quintile breakpoints of

moneyness in month t− 1 and then form equally-weighted portfolios of those portfolios

within the same strike-price classification. For both sets of portfolios, we equally-weight

the portfolios, set up a spread portfolio long the top and short the bottom quintile,

and hold the portfolios over month t.

Table 2.3 presents the results from the univariate portfolio exercise, with Panel A

focusing on the unconditional portfolios and Panel B on those controlling for money-

ness. Plain numbers are mean monthly returns, while those in square parentheses are

t-statistics calculated from Newey and West’s (1987) formula with a twelve-month

lag length. Whilst the theory predicts no relationship between the strike price and

the arbitrage strategy return, the results in Table 2.3 shows that the arbitrage return

increases as the strike price increases, a result that is not consistent with the theory.

Looking at the unconditional portfolios in Panel A, for example, the mean return

of the strategy increases from 2.34% (t-statistic: 3.59) in the lowest strike-price

quintile to 9.02% (t-statistic: 5.22) in the highest quintile. This increase in return is

equal to a statistically significant 6.68% (t-statistic: 4.57), suggesting there is an

anomaly in the relationship between the strike price and the return on the risky

arbitrage strategy. This anomaly is also present in Panel B where we control for

moneyness in the strike-price sorts. A preliminary investigation of the anomaly

reveals a reversed J-shaped pattern in the relationship between the returns on the
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replicating portfolio (the long leg) and changes in the strike price. This pattern,

however, is not present in the relationship between associated put returns (the short

leg) and changes in the strike price. While the American put portfolio shows a

steady decline in option returns as the strike price increases, the returns on the

replicating portfolio abruptly increase, especially for the highest strike-price-sorted

quintile. This creates a significantly higher arbitrage return for this quintile which

is reflected in the very significant difference in returns on the “High” and “Low”

portfolios. To explore whether this anomaly is due to the pattern we observe in the

replicating portfolio returns, we calculate the difference in returns from a strategy

long in the fourth highest (but not the highest) strike-price-sorted quintile and short

in the lowest strike-price-sorted quintile in Panel A. The return on the ”High–Low”

portfolio from this strategy is a much lower and statistically insignificant 0.91%

(t-statistic: 1.79) compared to the 6.68% return on the strategy when we use the

highest quintile portfolio. This suggests that the anomaly mainly arises from the

replicating portfolio return on the highest strike-price-sorted quintile. We plan to

explore this anomaly in greater detail in future research.

Table 2.3 About Here

We next condition on the interest rate on top of the strike price. To do so, we

first remember that our theory in Section 2.2 suggests that the arbitrage profit is

proportional to the interest rate times the strike price (rK) in a perfect market.

We then recognize that the mean interest rate drops significantly from 2.83% per

annum over the first half of our sample period (2001-2007) to only 0.27% over the

second half (2008-2014). Combining these two observations, it becomes obvious that

we can use a difference-in-difference (DID) approach to investigate the effect of the

interest rate on the profitability of the risky arbitrage strategy, relying on the drop

in the interest rate as shock variable and the strike price as treatment variable. To

facilitate that approach, we first calculate the mean returns of the unconditional

strike-price spread portfolios from Panel A of Table 2.3 separately for the 2001-2007
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and 2008-2014 subsample periods. We then calculate the difference in mean returns

for each portfolio over the two periods and finally the difference in those differences

across the highest and lowest strike-price quintile (“DID estimate”).

Table 2.4 presents the results from our DID tests studying how the interest

rate conditions the profitability of the risky arbitrage strategy. As before, the

plain numbers in the table are mean monthly returns, while those in square

parentheses are t-statistics calculated from Newey and West’s (1987) formula with

a twelve-month lag length. In accordance with the theory, the table suggests

that a higher interest rate indeed positively conditions the mean strategy return,

with the positive effect, however, being amplified by the strike price. While the

mean monthly return of the strategy is only an insignificant 0.75 percentage points

(t-statistic: 0.79) higher in the high relative to the low interest rate subsample

period in the lowest strike-price quintile, it is a significant 7.94 points (t-statistic:

4.87) higher in the highest quintile. The difference in these two percentage-point

increases is a highly significant 7.18% (t-statistic: 5.38). It is important to note,

however, that a part of this difference might be attributable to the strike-price

and arbitrage return anomaly reported in Table 2.3. This is something we plan to

investigate in future research.

Table 2.4 About Here

2.5.2 Conditioning on Moneyness, Maturity Time, and

Volatility

While the former subsection supports our theory by establishing that the risky

arbitrage strategy is more profitable on higher strike-price puts in higher interest-rate

regimes, it is conceivable that other factors condition the strategy’s profitability if

they capture variations in investor’s tendency to exercise puts too late (i.e., if they

predict max(tE − τ, 0)). To study that possibility, we now condition the strategy’s

return on a parsimonious set of put and stock characteristics potentially capturing
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such variations, including moneyness, time-to-maturity, and stock volatility. We start

with moneyness and time-to-maturity. At the end of each month t− 1, we first sort

the replication portfolios, the puts, and the spread portfolios into a deep in-the-money

(DITM; strike-to-stock price above 1.10), in-the-money (ITM; 1.025-1.10), and at-the-

money (ATM; 0.975-1.025) portfolio according to the relevant put’s moneyness. We

next independently sort them into a short (below 60 days), medium (60-90 days),

and long (above 90 days) time-to-maturity portfolio according to the relevant put’s

time-to-maturity. The intersection of the two univariate portfolio sorts then yields

3× 3 portfolios double-sorted on moneyness and time-to-maturity. We equally-weight

the constituents of those portfolios. We finally hold the portfolios over month t.

Table 2.5 presents the results from the double-sorted portfolio exercise, with

columns (1), (2), and (1)–(2) focusing on the put replication portfolios, the puts,

and the spread portfolios long a replication portfolio and short the associated

put, respectively. In turn, Panels A, B, and C look into DITM, ITM, and ATM

put strategies, respectively. As before, plain numbers are mean monthly portfolio

returns, whereas the numbers in parentheses are t-statistics calculated from Newey

and West’s (1987) formula with a twelve-month lag length. Column (1)–(2) in the

table offers strong evidence that the profitability of the risky arbitrage strategy

decreases in both moneyness and time-to-maturity. Looking at strategies based

on 30-60 day puts, the mean strategy return, for example, decreases from 9.66%

(t-statistic: 6.53) in the ATM-put portfolio in Panel C to 2.49% (t-statistic: 5.28)

in the DITM-put portfolio in Panel A. Conversely, looking at strategies based on

ITM puts in Panel B, that same return decreases from 4.94% (t-statistic: 6.03)

in the 30-60 day put portfolio to 2.58% (t-statistics: 4.16) in the 90-120 day put

portfolio. Turning to the underlying replication portfolios and puts in columns (1)

and (2), their mean returns drop with moneyness but rise with time-to-maturity,

in line with the put results in Aretz and Gazi (2020).

Table 2.5 About Here
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As a next step, we condition the performance of the risky arbitrage strategy

on the idiosyncratic volatility of the underlying stocks. At the end of each month

t − 1, we thus split the replication portfolios, puts, and the spread portfolios long

a replication portfolio and short the associated put into portfolios according to

the quintile breakpoints of that volatility estimated using the market model or the

Fama-French-Carhart (FFC; 1997) model. We can write the market model as:

Ri,τ = αi + βmkti (Rmkt
τ −Rfτ ) + εi,τ , (2.22)

where Ri,τ is stock i’s return over month τ , Rmkt
τ −Rfτ is the excess market return,

αi and βmkti are parameters, and εi,τ is the residual. We can write the FFC model as:

Ri,τ = αi + βmkti (Rmkt
τ −Rfτ ) + βsmbi Rsmb

τ + βhmli Rhml
τ + βmomi Rmom

τ + εi,τ , (2.23)

where Rsmb
τ , Rhml

τ , and Rmom
τ are the returns of spread portfolios on size, the book-

to-market ratio, and the eleven-month (momentum) past return, respectively, and

βsmbi , βhmli , and βmomi are additional parameters. We estimate both models over the

prior 60 months of monthly data, calculating idiosyncratic volatility as the standard

deviation of the residual, εi,τ . We equally-weight the constituents of the quintile

portfolios and hold them over month t.

Table 2.6 presents the results from the univariate portfolio exercise, with Panels

A and B using market- and FFC-model estimates to proxy for idiosyncratic stock

volatility, respectively. As before, plain numbers are mean monthly returns, whereas

numbers in parentheses are Newey-West (1987) t-statistics. The table offers strong

evidence that the profitability of the risky arbitrage strategy deteriorates with

idiosyncratic stock volatility. Looking at the market-model sorts in Panel A, the

mean strategy return in the third row, for example, drops from 6.07% (t-statistic:

4.70) in the low-volatility portfolio to 2.81% (t-statistic: 5.36) in the high-volatility

portfolio. The difference in those two numbers is a highly significant –3.26%

(t-statistic: –3.19). Turning to the replication portfolios and puts in the first and
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second rows of each panel, their mean returns increase with idiosyncratic stock

volatility, aligning with Aretz and Gazi’s (2020) put results.

Table 2.6 About Here

2.5.3 Jointly Conditioning on All Factors

We next investigate how the strike price, moneyness, time-to-maturity, and stock

volatility jointly condition the performance of the risky arbitrage strategy and verify

that our portfolio results are robust to variations in methodology. To do so, we run

Fama-MacBeth (FM; 1973) regressions of the returns on the replication portfolios, the

puts, and the spread portfolios long a replication portfolio and short its associated put

over month t on combinations of those conditioning factors calculated using only data

until the end of month t− 1. To mitigate outlier effects, we use the log strike price

(instead of the strike price) and time-to-maturity stated as fraction of a year in the

regressions. As before, moneyness is the strike-to-stock price ratio, while stock volatility

is the annualized FFC idiosyncratic volatility estimate, introduced in Section 2.5.2.

Table 2.7 gives the regression results, with Panels A, B, and C using the spread

portfolio return, replication portfolio return, and put return as dependent variable,

respectively. Plain numbers are monthly premium estimates, whereas the numbers in

parentheses are Newey and West (1987) t-statistics with a twelve-month lag length.

The table shows that the regressions yield results almost exactly identical with those

from the portfolio exercises. To be specific, column (1) in Panel A reveals that the

unconditional mean spread return is 4.11% (t-statistic: 7.33) per month, aligning with

column (1)–(2) in Table 2.1. Moreover, columns (2)–(5) in that panel confirm that

the mean spread return significantly rises in the strike price but significantly drops in

moneyness, time-to-maturity, and stock volatility, at least when strike price and stock

volatility are not jointly included as independent variables. Interestingly, when we jointly

include the strike price and stock volatility, as we do in column (6) of Panel A, the

strike-price premium hardly changes, while the stock volatility premium switches from
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being significantly negative to significantly positive. The reason for this unexpected

outcome is that the strike price and stock volatility are negatively correlated, with

higher volatility stocks often having many low strike-price puts written on them.

Table 2.7 About Here

Turning to the replication portfolio and put results in Panels B and C of

Table 2.7, we notice that their monthly premiums on the strike price, moneyness,

time-to-maturity, and stock volatility are of exactly the same sign as those obtained

in the portfolio exercises.

2.5.4 Why Do Moneyness, Time-to-Maturity, and Stock

Volatility Condition the Success of the Risky Arbi-

trage Strategy?

While we argue that the ability of moneyness, time-to-maturity, and stock volatility

to condition the risky arbitrage strategy in Sections 2.5.2 and 2.5.3 is due to those

factors capturing variations in investors’ tendency to exercise puts too late, there

may be other reasons for that ability. To offer more support for the hypothesis

that suboptimally late exercises do indeed lie behind that ability, we next take a

closer look at real investors’ early exercise behavior. We start with benchmarking the

real-world early exercise probabilities of our sample puts against their corresponding

optimal probabilities deduced from the Black and Scholes (1973) model. We calculate

the probabilities as described in Sections 2.3.1 and 2.3.3, respectively. While we

acknowledge that the shortcomings of the Black and Scholes (1973) model imply that

the optimal probabilities deduced from it differ from the true optimal probabilities, we

nonetheless hope to learn some broader lessons about the optimality of real investor’s

early exercise strategies from the comparisons.12

12It is not obvious to us how to calculate more accurate theoretical early exercise probabili-
ties. Switching to a more sophisticated option pricing model, as, for example, the Heston (1993)
model, would require us to estimate additional parameters governing, for example, the mean re-
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To take a first look at how the real-world and Black-Scholes (1973) early exer-

cise probabilities of our sample puts over their entire times-to-maturity are related,

Table 2.8 reports their mean values over portfolios formed according to the decile

breakpoints of the theoretical probabilities at the start of the strategy return period.

We calculate the mean values first by cross-section and then average over time. The

table reveals that the real-world and the Black-Scholes (1973) probabilities are strongly

positively correlated. While the monotonic increase in the mean Black-Scholes (1973)

probabilities over the portfolios from 16.35% to 76.74% is by construction, the mean

real-world probabilities, remarkably, also monotonically increase over them, from

6.27% to 27.05%, sharing an average cross-sectional correlation of 0.23 between the

two probabilities. Notwithstanding, the mean real-world probabilities are consistently

only around one-third of the mean Black-Scholes (1973) probabilities, suggesting that

real-world put investors often wait too long with exercising their positions and that

the necessary condition for a risky arbitrage profit to exist is fulfilled. While relaxing

certain Black-Scholes (1973) assumptions (as, e.g., the constant volatility and/or no

asset-value jumps assumptions) could help to close the gaps between the probabilities,

we deem it unlikely that it can account for the entire gaps.

Table 2.8 About Here

We next investigate how the differences between the real-world and Black-

Scholes (1973) early exercise probabilities relate to moneyness, time-to-maturity,

and stock volatility. To do so, Table 2.9 reports the mean differences in those

probabilities calculated over the strategy return period for portfolios triple-sorted

according to those characteristics. We construct the portfolios as follows. At the

end of month t− 1, we independently sort our puts according to the same money-

ness, time-to-maturity, and FFC idiosyncratic stock volatility breakpoints as in

Tables 2.5 and 2.6, using the intersections of the univariate portfolios to create

version in volatility, the long-run volatility, the correlation between asset value and volatility, etc.
Unfortunately, these additional parameters are tremendously difficult to estimate, especially at the
stock level at which we only have limited amounts of data.
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the triple-sorted portfolios. As before, we calculate the mean probabilities first by

cross-section and then average over time.

Table 2.9 About Here

The table suggests that the difference between the probabilities tends to be more

pronounced for shorter time-to-maturity puts written on lower volatility stocks. Looking

at ITM puts on stocks with a third-quintile volatility in Panel B, the mean difference is,

for example, 24.20% for 30-60 day puts but only 3.58% for 90-120 day puts. Conversely,

looking at ITM puts with 60-90 days-to-maturity in the same panel, the mean difference

is 22.96% for puts written on the lowest-volatility stocks but only 4.22% for those written

on the highest-volatility stocks. The upshot is that real investors seem particularly

bad in timely exercising short time-to-maturity puts on low-volatility stocks, which

may explain why the risky arbitrage strategy works better on such puts. Interestingly,

however, the table further suggests that the difference in the probabilities also tends

to be more pronounced for higher moneyness puts. Looking at 30-60 day puts on

third-quintile volatility stocks, the mean difference is, for example, 36.66% on DITM

puts but only 12.07% on ATM puts. The implication is that variations in real investors’

tendency to early exercise puts too late does not help to explain why the risky arbitrage

strategy works better on lower-moneyness puts.

In Table 2.10, we switch to FM regressions to find out how real investors’ tendency

to exercise puts too late varies with moneyness, time-to-maturity, and stock volatility.

While the dependent variable is the difference between the Black-Scholes (1973) and

real-world early exercise probabilities, the independent variables are the characteristics

defined as in Table 2.7. The regressions deliver results in alignment with the portfolio

exercise results, showing that the difference in the probabilites tends to rise with

moneyness and to drop with time-to-maturity and stock volatility.

Table 2.10 About Here
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2.6 Adjusting for Transaction Costs

In this section, we adjust the profitability of the risky arbitrage strategy for bid-ask

and short-selling transaction costs. As already said, it is crucial to adjust for those

costs since the strategy involves potentially frequent stock purchases and sales

and shorting the stock. In addition, Goyal and Saretto (2009) and Cao and Han

(2013) show that high bid-ask costs in the options market greatly eat into the

profitability of option trading strategies, often rendering profits insignificant or

even negative. To account for transaction costs, we switch from studying the raw

returns in Equations (2.11) and (2.17) to studying the transaction cost adjusted

returns in Equations (2.12) and (2.21), setting ϕ, the proportion of the bid-ask

spread representing trading costs, to either zero, 0.10, 0.25, or 0.50. When ϕ = 0.50,

investors buy at the ask price and sell at the bid price.

Table 2.11 reevaluates the profitability of the double-sorted moneyness and time-to-

maturity portfolios originally studied in Table 2.5 under transaction costs, reporting,

however, only the mean strategy return (and not the mean leg returns). While Panel

A looks into our full sample, Panel B focuses only on strategies executed on liquid

assets. A liquid stock (put) is defined as one with an Amihud (2002) stock illiquidity

estimate (bid-ask spread scaled by put price) below the median, with the liquidity

proxies measured at the start of the strategy period. Conversely, columns (1) to (4)

consider the ϕ = zero, 0.10, 0.25, and 0.50 case, with the final three columns (but not

the first) also adjusting for shorting costs. As in Table 2.5, plain numbers are mean

monthly returns, while those in parentheses are Newey-West (1987) t-statistics. Since

the Markit short-selling data are available from only January 2002, our empirical

work adjusting for transaction costs relies on the sample period from that date to

June 2014 (leading us to lose five sample months).

Table 2.11 About Here

In line with expectations, Panel A of Table 2.11 confirms that adjusting for
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transaction costs greatly reduces the profitability of our risky arbitrage strategy.

Starting with column (1) in that panel, it is obvious that the slight change in

our sample period does not materially affect mean strategy returns (compare the

column with column (1)–(2) in Table 2.5). In contrast, assuming that investors

incur trading costs ϕ equal to 10% of an asset’s bid-ask spread plus stock short-

selling costs, column (2) reveals that the mean strategy return remains significantly

positive only for strategies based on 30-60 day ITM or ATM puts (see Panels

A.2 and A.3). In all other cases, it is either insignificant or, in one case, even

significantly negative. Assuming that investors incur even higher trading costs

(i.e., ϕ = 0.25 or 0.50), columns (3) and (4) finally show that the mean strategy

return becomes highly significantly negative in the vast majority of cases.

Fortunately, Panel B of Table 2.11 suggests that the picture markedly improves

once we restrict our attention to strategies executed on liquid assets. Interestingly,

column (1) in that panel shows that the mean strategy return is generally higher in

case of such strategies, even in the absence of transaction cost adjustments. More

importantly, however, columns (2) to (4) indicate that the mean strategy return

remains positive and significant even under the assumption that investors incur a 10%

(25%) [50%] bid-ask trading cost plus stock short-selling costs in case of nine (six)

[one] out of the nine strategies conditioned on moneyness and time-to-maturity.

In Table 2.12, we aim to decrease transaction costs further by reducing the

frequency with which we rebalance the put replication portfolio, saving us costs

arising from stock purchases and sales over the strategy return period. The downside

is that a lower rebalancing frequency decreases the ability of a replication portfolio to

track its associated put, boosting the volatility of the strategy return and making

the strategy diverge even more from a textbook arbitrage strategy. To study the

effects of a lower rebalancing frequency, Panels A, B, and C of Table 2.12 present the

mean transaction cost adjusted returns of strategies executed on only liquid assets

and using daily, weekly, and no rebalancing, respectively. The no-rebalancing case is

identical to the “buy-and-hold delta-hedging strategy” of Goyal and Saretto (2009),

92



who form replication portfolios at the start of the strategy period and hold those over

the entire period. Within each panel, we consider strategies involving only puts with

a price above $1, $2, and $5 at the start of the strategy return period.

Table 2.12 About Here

The table suggests that a lower rebalancing frequency helps to further increase the

profitability of the risky arbitrage strategy. While, surprisingly, a lower rebalancing

frequency often also boosts the mean strategy return and its t-statistic in the

absence of transaction cost adjustments (see column (1)), the improvements are far

more pronounced in their presence. Looking at the case in which investors incur

a 50% bid-ask trading cost plus stock short-selling costs in column (4), Panel A

shows that only a single mean strategy return out of three is positive and weakly

significant (with a t-statistic of 2.04) under daily rebalancing. In contrast, Panel B

suggests that the corresponding mean returns under no rebalancing are significantly

positive with t-statistics above 3.88.

Overall, this section shows that the risky arbitrage strategy does not only exist

in theory but can profitably be exploited by real investors, at least when executed

on liquid assets.

2.7 Concluding Remarks

We evaluate the profitability of a risky arbitrage strategy exploiting evidence that

real put investors often exercise their positions far too late. Grounded in mathemati-

cal finance theory, the strategy consists of a long position in a stock-and-riskfree-asset

portfolio replicating a put and a short position in the put. Our empirical work suggests

that the strategy yields a highly significant positive mean return, with a low total

as well as systematic risk. Consistent with theory, the mean strategy return rises

with both the strike price and the interest rate. Interestingly, however, it drops

with moneyness, time-to-maturity, and stock volatility, aligning with further evidence
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that investors do not appear to understand the implications of those characteristics

for the optimal early exercise decision. Crucially, we finally show that the strategy

survives accounting for both bid-ask trading costs and shorting costs, at least when it

is executed on liquid assets. The upshot is that the strategy does not only exist on

paper but can be pursued by real investors.
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Table 2.1: The Performance of the Risky Arbitrage Strategy

The table presents descriptive statistics for the monthly returns on daily-rebalanced stock-and-riskfree-
asset portfolios replicating American puts (column (1)), on the puts (column (2)), and on spread
portfolios long a replication portfolio and short the corresponding put (column (1)–(2)). It further
presents descriptive statistics on the moneyness (column (3)) and time-to-maturity (column (4)) of
the puts. The descriptive statistics are the mean, the standard deviation (StDev), the t-statistic
for the mean (Mean/StError), the monthly and annual Sharpe (1966) ratio (Monthly and Annual
Sharpe Ratio, respectively), several percentiles, and the number of observations. Each observation
used in column (1) corresponds to one observation used in column (2). We calculate moneyness as
the strike-to-stock price ratio and time-to-maturity as the number of calendar days until maturity,
both at the start of the return period. With the exception of the t-statistic and the Sharpe ratio, we
calculate each statistic as the time-series mean of the cross-sectional statistic. The t-statistic is the
mean scaled by the standard error of the mean. The Sharpe ratio is the difference between mean
return and riskfree rate scaled by the standard deviation of the mean in column (1) and (2), and the
mean scaled by the standard deviation of the mean in column (1)–(2).

Monthly Monthly Monthly
Replication American Spread

Portfolio Put Option Portfolio
Return Return Return Money- Days to
(in %) (in %) (in %) ness Maturity

(1) (2) (1)–(2) (3) (4)

Mean −9.08 −13.20 4.11 1.07 73
StDev 56.70 51.16 30.18
Mean/StError [−4.09] [−4.88] [5.21]
Monthly Sharpe Ratio 0.47
Annual Sharpe Ratio 1.64
Percentile 1 −105.50 −90.63 −39.39 0.98 49
Percentile 5 −80.26 −79.94 −17.27 0.99 49
Quartile 1 −43.35 −48.79 −2.87 1.02 50
Median −14.99 −20.04 2.72 1.07 62
Quartile 3 15.89 12.17 8.73 1.12 96
Percentile 95 78.65 76.95 21.66 1.18 111
Percentile 99 169.58 152.01 67.66 1.20 111
Observations 5,612 5,612 5,612 5,612 5,612

97



Table 2.2: Adjusting the Strategy’s Performance for Systematic Risk

The table shows the results from time-series regressions of the month-t return of a spread portfolio
long a stock-and-riskfree-asset portfolio replicating a put and short the put on several sets of
benchmark factors measured over the same month and a constant. The factors include the market
return minus the risk-free rate of return (MKT); the return of a spread portfolio long small and
short large stocks (SMB); the return of a spread portfolio long value and short growth stocks
(HML); the return of a spread portfolio long winner and short loser stocks (MOM); the return of a
spread portfolio long profitable and short unprofitable stocks (PRF); the return of a spread port-
folio long non-investing and short investing stocks (INV); the change in the VIX option-implied
volatility index (VIX); the three-month LIBOR rate minus the Treasury bill rate (TED); and
the return of a spread portfolio long high-liquidity and short low-liquidity stocks (LIQ). Plain
numbers are estimates, while the numbers in square parentheses are t-statistics calculated using
Newey and West’s (1987) formula with a twelve-month lag length.

Time-Series Regression Model:

(1) (2) (3) (4) (5)

MKT 0.76 0.67 0.82 0.81 0.03
[6.89] [5.67] [6.31] [5.63] [0.17]

SMB 0.48 0.45 0.48 0.34
[2.19] [2.09] [2.21] [1.74]

HML −0.03 0.03 0.15 0.64
[−0.12] [0.14] [0.65] [3.04]

MOM 0.27 0.27 0.16
[2.54] [2.41] [1.58]

PRF 0.08 −0.25
[0.26] [−0.96]

INV −0.46 −0.52
[−1.42] [−1.85]

VIX −0.16
[−4.67]

TED −3.03
[−1.72]

LIQ 0.44
[3.65]

Constant 0.04 0.04 0.04 0.04 0.04
[7.51] [7.25] [7.18] [6.96] [8.70]
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Table 2.3: Conditioning the Strategy on the Strike Price

The table presents the mean returns of portfolios of stock-and-riskfree-asset portfolios replicating
a put and of the associated puts sorted on the strike price. It further presents the mean returns
of the corresponding spread portfolios long the portfolios of put replication portfolios and short
the put portfolios. At the end of each sample month t− 1, we first sort each of those assets into
portfolios according to the quintile breakpoints of the associated strike price, without controlling
for the strike-to-stock price ratio (“moneyness;” Panel A). Within each strike price portfolio, we
next sort them into further portfolios according to the quintile breakpoints of moneyness in month
t − 1. We then form equally-weighted portfolios of those portfolios within the same strike price
classification, averaging out the effect of moneyness (Panel B). We also form a spread portfolio
long the top and short the bottom quintile (“High–Low”). We equally-weight the portfolios and
hold them over month t. The put and replication portfolio observations are matched, so each put
observation corresponds to one replication portfolio observation. Plain numbers are mean monthly
portfolio returns (in %) and the numbers in square parentheses are t-statistics calculated using
Newey and West’s (1987) formula with a twelve-month lag length.

Strike Price, K

1 (Low) 2 3 4 5 (High) High–Low

Panel A: Univariate Strike-Price Portfolios

Replication Portfolio −8.52 −10.89 −11.83 −11.60 −6.32 2.21
[−4.19] [−4.95] [−5.28] [−4.89] [−2.26] [1.26]

American Put Option −10.86 −12.87 −14.22 −14.85 −15.33 −4.47
[−4.31] [−4.66] [−5.06] [−5.07] [−5.06] [−2.80]

Spread Portfolio 2.34 1.99 2.40 3.25 9.02 6.68
[3.59] [2.98] [3.68] [4.70] [5.22] [4.57]

Panel B: Strike-Price Portfolios Controlling for Moneyness

Replication Portfolio −8.49 −10.72 −11.73 −11.51 −6.23 2.26
[−4.20] [−4.90] [−5.26] [−4.86] [−2.23] [1.27]

American Put Option −10.87 −12.74 −14.18 −14.81 −15.34 −4.47
[−4.33] [−4.63] [−5.05] [−5.06] [−5.06] [−2.77]

Spread Portfolio 2.38 2.02 2.44 3.29 9.10 6.72
[3.62] [3.01] [3.72] [4.72] [5.24] [4.58]

99



Table 2.4: Conditioning the Strategy on the Strike Price and Interest
Rate

The table presents the mean returns of spread portfolios long an equally-weighted portfolio of put
replication portfolios and short an identically-weighted portfolio of the associated puts sorted on the
strike price and separately calculated over the July-2001 to December-2007 (column (1)) and the
January-2008 to June-2014 (column (2)) subsample periods. The table also reports the differences in
mean spread portfolio returns across the subsample periods (column (1)–(2)). At the end of each
sample month t − 1 within a subsample period, we first sort the spread portfolios into portfolios
according to the quintile breakpoints of the strike price of the associated put. We also form a spread
portfolio long the top and short the bottom quintile (“High–Low”). We equally-weight the portfolios
and hold them over month t. The replication portfolio and put observations are matched, so that
each replication portfolio observation corresponds to one put observation. Plain numbers are mean
monthly portfolio returns (in %), and the numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) formula with a twelve-month lag length.

Strike Price, K Until 2007 From 2008 Difference

(1) (2) (1)–(2)

1 (Low) 2.75 1.99 0.75
[5.95] [1.85] [0.79]

2 2.00 1.98 0.03
[4.57] [1.74] [0.03]

3 2.57 2.24 0.33
[5.55] [2.04] [0.32]

4 3.72 2.85 0.87
[6.48] [2.52] [0.81]

5 (High) 13.32 5.38 7.94
[6.33] [3.97] [4.87]

High–Low 10.57 3.39 7.18
[5.39] [4.90] [5.38]
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Table 2.5: Conditioning the Strategy on Moneyness and Maturity Time

The table presents the mean returns of portfolios of stock-and-riskfree-asset portfolios replicating
a put (column (1)) and of the associated puts (column (2)) sorted on the puts’ moneyness and
time-to-maturity. It further presents the mean returns of the corresponding spread portfolios
long the portfolios of put replication portfolios and short the put portfolios (column (1)–(2)). At
the end of each sample month t− 1, we first sort each of these assets into portfolios according
to whether the strike-to-stock price ratio (“moneyness”) of the associated put lies above 1.10
(Panel A), between 1.025 and 1.10 (Panel B), or between 0.975 and 1.025 (Panel C). Within each
moneyness portfolio, we next sort them into portfolios according to whether their days-to-maturity
are below 60, between 60 and 90, or above 90 days. We equally-weight the portfolios and hold
them over month t. The observations used in columns (1) and (2) are matched, so that each
observation in column (1) corresponds to one observation in column (2). Plain numbers are mean
monthly portfolio returns (in %) and the numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) formula with a lag length of twelve months.

Monthly Monthly Monthly
Replication American Spread

Portfolio Put Option Portfolio
Return Return Return

Days-to-Maturity (in %) (in %) (in %)

(1) (2) (1)–(2)

Panel A: Deep In-The-Money (Strike-to-Stock Price > 1.10)

30-60 −15.31 −17.80 2.49
[−7.61] [−7.94] [5.28]

60-90 −8.67 −10.46 1.79
[−5.17] [−5.31] [3.72]

90-120 −5.80 −7.28 1.48
[−3.61] [−3.85] [3.90]

Panel B: In-The-Money (Strike-to-Stock Price 1.025 to 1.10)

30-60 −13.33 −18.27 4.94
[−5.23] [−6.08] [6.03]

60-90 −7.10 −10.42 3.32
[−3.29] [−3.92] [3.95]

90-120 −4.58 −7.16 2.58
[−2.30] [−2.90] [4.16]

Panel C: At-The-Money (Strike-to-Stock Price 0.975 to 1.025)

30-60 −7.36 −17.01 9.66
[−2.49] [−4.55] [6.53]

60-90 −5.83 −11.19 5.36
[−2.17] [−3.34] [3.92]

90-120 −4.43 −8.03 3.60
[−1.86] [−2.65] [4.12]
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Table 2.6: Conditioning the Strategy on Idiosyncratic Stock Volatility

The table presents the mean returns of portfolios of stock-and-riskfree-asset portfolios replicating a
put and of the associated puts sorted on the idiosyncratic volatility of the stock. It further presents
the mean returns of the corresponding spread portfolios long the portfolios of put replication port-
folios and short the put portfolios. At the end of each sample month t − 1, we sort each of these
assets into portfolios according to the quintile breakpoints of a stock’s market-model (Panel A) or
Fama-French-Carhart-model (Panel B) idiosyncratic volatility. We estimate the models over the
prior 60 months, defining idiosyncratic volatility as the volatility of the residual. We also form a
spread portfolio long the top and short the bottom quintile (“High–Low”). We equally-weight the
portfolios and hold them over month t. The replication portfolio observations and put observations
are matched, so that each replication portfolio observation corresponds to one put observation. Plain
numbers are mean monthly portfolio returns (in %), and the numbers in square parentheses are
t-statistics calculated using Newey and West’s (1987) formula with a twelve-month lag length.

Idiosyncratic Stock Volatility

1 (Low) 2 3 4 5 (High) High–Low

Panel A: Market Model Idiosyncratic Volatility

Replication Portfolio −8.99 −9.70 −9.92 −9.50 −7.30 1.69
[−3.27] [−4.43] [−4.57] [−4.36] [−3.38] [1.07]

American Put Option −15.06 −14.37 −13.99 −12.47 −10.11 4.95
[−4.71] [−5.10] [−5.26] [−4.77] [−4.02] [3.25]

Spread Portfolio 6.07 4.67 4.07 2.96 2.81 −3.26
[4.70] [4.83] [5.22] [4.38] [5.36] [−3.19]

Panel B: FFC Model Idiosyncratic Volatility

Replication Portfolio −9.04 −9.78 −9.63 −9.56 −7.41 1.63
[−3.29] [−4.46] [−4.24] [−4.45] [−3.57] [1.05]

American Put Option −14.94 −14.56 −13.63 −12.67 −10.21 4.73
[−4.63] [−5.16] [−5.03] [−4.86] [−4.21] [3.03]

Spread Portfolio 5.90 4.77 4.00 3.11 2.80 −3.10
[4.76] [4.82] [5.12] [4.40] [5.57] [−3.18]
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Table 2.7: Fama-MacBeth (1973) Regressions

The table presents the results of Fama-MacBeth (1973) regressions of the month-t return of a spread
portfolio long a stock-and-riskfree-asset portfolio replicating a put and short the put (Panel A), of
the replication portfolio (Panel B), and of the put (Panel C) on subsets of stock and option charac-
teristics plus a constant. The characteristics are the log strike price, the strike-to-stock price ratio
(“moneyness”), time-to-maturity as fraction of a year, and idiosyncratic stock volatility, all measured
at the start of month t. We calculate idiosyncratic volatility using the Fama-French-Carhart model
estimated over the prior 60 months. The replication portfolio observations and put observations are
matched, so that each replication portfolio observation corresponds to one put observation. The plain
numbers are premium estimates, and the numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) formula with a twelve-month lag length.

Regression Model:

(1) (2) (3) (4) (5) (6)

Panel A: Spread Portfolio Return

Strike Price 0.04 0.04 0.04
[8.34] [7.91] [8.03]

Moneyness −0.26 −0.29 −0.26
[−6.70] [−7.46] [−6.96]

Time-to-Maturity −0.17 −0.18 −0.16
[−13.85] [−14.06] [−13.78]

Volatility −0.03 −0.02 0.04
[−3.81] [−2.59] [5.02]

Constant 0.04 −0.10 0.22 0.05 0.40 0.20
[7.33] [−6.26] [4.63] [7.25] [8.07] [4.04]

Panel B: Replication Portfolio Return

Strike Price 0.02 0.02 0.03
[2.27] [2.07] [3.31]

Moneyness −0.32 −0.37 −0.35
[−5.00] [−5.79] [−5.53]

Time-to-Maturity 0.49 0.49 0.50
[14.21] [14.18] [14.64]

Volatility 0.05 0.08 0.11
[2.17] [3.24] [4.11]

Constant −0.09 −0.16 0.09 −0.12 0.17 0.04
[−4.38] [−4.91] [1.02] [−4.89] [1.86] [0.38]

Panel C: Put Return

Strike Price −0.02 −0.02 −0.01
[−3.67] [−3.45] [−1.99]

Moneyness −0.06 −0.08 −0.08
[−0.77] [−0.93] [−1.00]

Time-to-Maturity 0.66 0.67 0.67
[18.68] [18.92] [19.00]

Volatility 0.08 0.09 0.07
[3.39] [3.94] [2.62]

Constant −0.13 −0.06 −0.13 −0.17 −0.22 −0.16
[−5.52] [−1.81] [−1.07] [−6.21] [−1.92] [−1.33]
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Table 2.8: Mean Black-Scholes Vs. Real-World Early Exercise Proba-
bilities

The table presents the mean optimal Black-Scholes (1973; column (1)) and real-world (column (2))
early exercise probabilities of our sample puts separately by moneyness. We calculate both probabili-
ties over the remaining time-to-maturity of the puts. At the end of each sample month t− 1, we first
sort the puts into moneyness portfolios according to the decile breakpoints of their Black-Scholes
(1973) probabilities. We then calculate means first by portfolio and sample month and then average
over our sample period by portfolio. We also report the mean differences between the two proba-
bilities (column (1)–(2)) and their associated t-statistics calculated using Newey and West’s (1987)
formula with a twelve-month lag length (column (3)).

Mean Mean
Black-Scholes Real-World
Early Exercise Early Exercise t-statistic

Probability Probability Difference of the
(in %) (in %) (in %) Difference

(1) (2) (1)–(2) (3)

1 (Low) 16.35 6.27 10.08 [4.62]
2 25.93 8.28 17.65 [6.82]
3 32.51 10.77 21.74 [8.52]
4 38.19 13.34 24.85 [10.09]
5 43.36 15.11 28.25 [10.33]
6 48.31 17.30 31.01 [11.78]
7 53.06 20.81 32.25 [11.75]
8 58.04 22.35 35.69 [11.30]
9 64.15 24.28 39.87 [11.45]

10 (High) 76.74 27.05 49.69 [13.50]
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Table 2.9: Mean Difference Between Black-Scholes and Real-World
Early Exercise Probabilities By Moneyness, Maturity Time, and
Volatility

The table presents the mean difference between the optimal Black-Scholes (1973) and the real-world
early exercise probability of our sample puts by moneyness, time-to-maturity, and idiosyncratic stock
volatility. We calculate both probabilities over the strategy return period. At the end of each month
t−1, we first sort our sample puts into portfolios according to whether their strike-to-stock price ratio
(“moneyness”) lies above 1.10 (Panel A), between 1.025 and 1.10 (Panel B), or between 0.975 and
1.025 (Panel C). Within each moneyness portfolio, we next sort into portfolios according to whether
their days-to-maturity are below 60, between 60 and 90, or above 90 days. Within each moneyness-
maturity sorted portfolio, we finally sort into portfolios according to the quintile breakpoints of the
Fama-French-Carhart-model idiosyncratic stock volatility. See the captions of Tables 2.5 and 2.6
for details on the sorting variables. We then calculate means first by portfolio and sample month
and then average over our sample period by portfolio. Plain numbers are the mean early exercise
probability differences (in %), while the numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) formula with a twelve-month lag length.

Idiosyncratic FFC Stock Volatility

Days-to-Maturity 1 (Low) 2 3 4 5 (High)

Panel A: Deep In-The-Money (Strike-to-Stock Price > 1.10)

30-60 54.83 44.17 36.66 31.47 25.28
[23.64] [19.23] [17.07] [16.12] [16.96]

60-90 48.86 32.17 21.98 14.29 7.54
[13.25] [10.67] [10.15] [8.75] [8.72]

90-120 38.02 19.93 10.61 5.47 1.98
[8.09] [5.75] [4.92] [4.56] [4.87]

Panel B: In-The-Money (Strike-to-Stock Price 1.025 to 1.10)

30-60 35.00 28.08 24.20 21.12 18.48
[20.18] [29.06] [35.83] [30.90] [37.09]

60-90 22.96 13.93 9.49 6.75 4.22
[7.54] [8.69] [9.34] [11.74] [16.37]

90-120 14.39 6.32 3.58 1.76 0.89
[4.27] [4.07] [3.84] [3.84] [6.73]

Panel C: At-The-Money (Strike-to-Stock Price 0.975 to 1.025)

30-60 13.50 12.58 12.07 12.05 12.07
[35.12] [47.26] [43.46] [58.22] [50.32]

60-90 4.89 3.86 3.41 3.05 2.29
[7.36] [10.54] [10.93] [14.06] [14.05]

90-120 1.69 0.86 0.56 0.37 0.24
[3.04] [2.59] [2.61] [2.49] [6.69]
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Table 2.10: Fama-MacBeth Regressions Explaining the Difference Be-
tween Black-Scholes and Real-World Early Exercise Probabilities

The table presents the results of Fama-MacBeth (1973) regressions of the difference between
Black-Scholes (1973) and real-world early exercise probabilities for our sample puts on subsets
of stock and option characteristics plus a constant. We calculate the two probabilities over the
strategy return period. The characteristics include the strike-to-stock price ratio (“moneyness”),
time-to-maturity as fraction of a year, and idiosyncratic stock volatility, and they are measured
until the start of the strategy return period. We calculate idiosyncratic stock volatility from the
Fama-French-Carhart model estimated over the prior 60 months. The plain numbers are the
average estimates, while the numbers in square parentheses are t-statistics calculated using Newey
and West’s (1987) formula with a twelve-month lag length.

Regression Model:

(1) (2) (3) (4) (5)

Moneyness 1.37 1.47 1.61
[30.97] [33.68] [35.75]

Time-to-Maturity −1.05 −1.15 −1.18
[−35.32] [−39.52] [−41.43]

Volatility −0.24 −0.32
[−16.57] [−20.18]

Constant −1.29 0.39 0.24 −1.16 −1.20
[−29.41] [50.65] [32.59] [−27.39] [−29.27]
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Table 2.11: Adjusting the Strategy for Transaction Costs

The table presents the mean transaction-cost-adjusted returns of spread portfolios long stock-and-
riskfree-asset portfolios replicating a put and short the puts sorted on the puts’ moneyness and
time-to-maturity. To adjust for transaction costs, we assume that investors always buy (sell) at the
midpoint price plus (minus) ϕ times the bid-ask spread. We furthermore assume that investors
can borrow stocks at Markit’s indicative rate. Panel A considers the full sample, while Panel B
restricts attention to only those strategies involving puts with a bid-ask spread below the median
and stocks with an Amihud (2002) illiquidity value below the median, both measured at the start of
the spread return period. At the end of each sample month t− 1, we first sort the spread portfolios
into portfolios according to whether the strike-to-stock price ratio (“moneyness”) of the associated
put lies above 1.10 (Panels A.1 and B.1), between 1.025 and 1.10 (Panels A.2 and B.2), or between
0.975 and 1.025 (Panels A.3 and B.3). Within each moneyness portfolio, we next sort them into
portfolios according to whether their days-to-maturity are below 60, between 60 and 90, or above
90 days. We equally-weight the portfolios and hold them over month t. Plain numbers are mean
monthly portfolio returns (in %) and the numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) formula with a lag length of twelve months.

Borrowing Cost Adjustment/Bid-Ask Spread Fraction ϕ:

Days-to-Maturity No/0.00 Yes/0.10 Yes/0.25 Yes/0.50

(1) (2) (3) (4)

Panel A: Full Sample

Panel A1: Deep In-The-Money (Strike-to-Stock Price > 1.10)

30-60 2.48 −0.08 −3.30 −10.05
[4.92] [−0.16] [−4.42] [−6.26]

60-90 1.76 −0.70 −3.94 −10.45
[3.78] [−1.37] [−5.11] [−6.62]

90-120 1.41 −1.02 −4.38 −11.39
[3.48] [−2.15] [−5.81] [−6.67]

Panel A2: In-The-Money (Strike-to-Stock Price 1.025 to 1.10)

30-60 4.83 1.68 −2.17 −10.37
[5.87] [1.96] [−2.05] [−5.71]

60-90 3.15 0.19 −3.64 −11.67
[4.18] [0.24] [−3.63] [−6.83]

90-120 2.47 −0.37 −4.21 −12.64
[3.72] [−0.52] [−4.52] [−6.84]

Panel A3: At-The-Money (Strike-to-Stock Price 0.975 to 1.025)

30-60 9.49 5.56 1.04 −8.93
[6.25] [3.62] [0.60] [−3.79]

60-90 4.72 1.36 −2.93 −12.29
[4.20] [1.14] [−2.10] [−6.15]

90-120 3.32 0.10 −4.24 −14.16
[3.31] [0.10] [−3.40] [−6.72]

Panel B: High-Liquidity Put and Stock Sample

Panel B1: Deep In-The-Money (Strike-to-Stock Price > 1.10)

30-60 3.93 2.65 1.71 0.14
[3.75] [2.93] [1.83] [0.14]

60-90 3.27 1.93 1.02 −0.52
[3.43] [2.57] [1.32] [−0.65]

90-120 2.57 1.61 0.69 −0.85
[4.41] [2.86] [1.18] [−1.34]

(continued on next page)
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Table 2.11: Adjusting the Strategy for Transaction Costs (Cont.)

Borrowing Cost Adjustment/Bid-Ask Spread Fraction ϕ:

Days-to-Maturity No/0.00 Yes/0.10 Yes/0.25 Yes/0.50

(1) (2) (3) (4)

Panel B2: In-The-Money (Strike-to-Stock Price 1.025 to 1.10)

30-60 6.87 5.09 3.92 1.95
[4.93] [4.24] [3.20] [1.51]

60-90 5.85 4.22 3.10 1.22
[3.96] [3.35] [2.44] [0.93]

90-120 3.79 2.60 1.52 −0.29
[4.01] [2.76] [1.56] [−0.28]

Panel B3: At-The-Money (Strike-to-Stock Price 0.975 to 1.025)

30-60 12.15 9.37 7.98 5.66
[4.93] [4.39] [3.66] [2.48]

60-90 8.32 5.79 4.52 2.40
[3.95] [3.52] [2.72] [1.38]

90-120 5.70 4.35 3.14 1.10
[3.73] [2.86] [2.00] [0.66]
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Table 2.12: Adjusting the Strategy for Transaction Costs Under Dif-
ferent Replication Portfolio Rebalancing Schemes

The table presents the mean transaction-cost-adjusted returns of spread portfolios long stock-and-
riskfree-asset portfolios replicating a put and short the puts using different rebalancing schemes. To
adjust for transaction costs, we assume that investors always buy (sell) at the midpoint price plus
(minus) ϕ times the bid-ask spread. We further assume investors can borrow stocks at Markit’s
indicative rate. In Panels A, B, and C, we consider the daily, weekly, and no rebalancing cases,
respectively. The table restricts attention to only those strategies involving puts with a bid-ask
spread below the median and stocks with an Amihud (2002) illiquidity value below the median, both
measured at the start of the spread return period. Within each panel, we further separately look into
strategies involving only puts with a price above $1, $2, and $5 at the start of the strategy return
period. We equally-weight the portfolios and hold them over month t. Plain numbers are mean
monthly portfolio returns (in %) and the numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) formula with a lag length of twelve months.

Borrowing Cost Adjustment/Bid-Ask Spread Fraction ϕ:

Days-to-Maturity No/0.00 Yes/0.10 Yes/0.25 Yes/0.50

(1) (2) (3) (4)

Panel A: Daily Rebalancing

Put Price ≥$1 5.00 3.51 2.40 0.53
[4.90] [3.86] [2.55] [0.52]

Put Price ≥$2 5.12 3.64 2.61 0.87
[4.65] [3.79] [2.64] [0.83]

Put Price ≥$5 6.54 5.06 4.25 2.89
[4.14] [3.72] [3.08] [2.04]

Panel B: Weekly Rebalancing

Put Price ≥$1 5.29 4.14 3.11 1.39
[6.08] [5.48] [3.98] [1.67]

Put Price ≥$2 5.32 4.21 3.25 1.64
[5.67] [5.19] [3.89] [1.86]

Put Price ≥$5 6.12 4.97 4.21 2.93
[4.73] [4.49] [3.73] [2.51]

Panel C: No Rebalancing

Put Price ≥$1 6.80 5.61 4.72 3.21
[8.27] [9.19] [7.47] [4.78]

Put Price ≥$2 6.56 5.33 4.50 3.10
[7.37] [8.39] [6.88] [4.49]

Put Price ≥$5 6.74 5.35 4.69 3.59
[5.48] [6.10] [5.25] [3.88]
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Chapter 3

Why Does the Implied Volatility

Spread Predict Future Stock

Returns?

Keywords : Empirical asset pricing; cross-sectional option pricing; implied volatil-

ity spread; put options; early exercise; frictions.

3.1 Introduction

Recent studies have shown that the difference in call and equivalent put implied

volatilities, known as the implied volatility spread, can predict cross-sectional stock

returns (see Bali and Hovakimian (2009), Cremers and Weinbaum (2010) and An,

Ang, Bali and Cakici (2014) among others). Focusing on exchange-traded single-

stock American options, these studies obtain option implied volatility values from the

Optionmetrics Ivy DB database. Optionmetrics calculates the implied volatility for

an American option under the Black-Scholes (1973) framework using the Cox-Ross-

Rubinstein (CRR) binomial pricing model. In a Black-Scholes world where trading

frictions play no role, any probable early exercises are conditioned upon characteristics

of the underlying stock and option, characteristics such as whether the underlying stock
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pays a dividend, moneyness, time to maturity and so forth. Thus, in a Black-Scholes

world early exercises do not drive any implied volatility spread between an equivalent

American call/put option pair. A number of recent studies, however, have documented

that the presence of frictions alters the optimal early exercise behaviour of holders

of options (see Jensen and Pedersen (2016), Cao, Ederington and Yadav (2017) and

Figlewski (2020), for example.) Allowing for trading frictions, the Black-Scholes set-up

would underestimate the attractiveness of exercising the option early and thus its

value. More specifically, given Optionmetrics uses a Black-Scholes framework to price

American options, the pricing method used by Optionmetrics will not capture the value

added of being able to exercise the option early in order to minimize trading-friction

costs. This skews implied volatility upwards so that the model price matches the

traded value of an option, in turn leading to an implied volatility spread between

equivalent American call and put option pairs.

In this paper we investigate what drives the ability of implied volatility spreads

to predict stock returns that Cremers and Weinbaum (2010) document. In

particular, we examine the role of the early exercise premium, defined as the

difference between the market price of an American put option and its equivalent

synthetic European price, in predicting cross-sectional stock returns. In a Black-

Scholes world, the early exercise premium should not carry any information about

the corresponding implied volatility spread. However, if, as discussed above, the

presence of trading frictions affects optimal early exercise behaviour it is possible

that the early exercise premium does contain information about the corresponding

implied volatility spread. Decomposing the implied volatility spread into the early

exercise premium and residual frictions, which capture the impact of friction-

driven optimal call early exercises on implied volatility spreads along with any

other factors not related to early exercise, we find that the implied volatility

spread and the early exercise premium are highly correlated with a mean cross-

sectional correlation of −0.63. This is suggestive of a strong relationship between

the implied volatility spread and the (friction-driven) early exercise premium,
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and that the early exercise premium has a significant role to play in explaining

movements in the implied volatility spread. Our empirical evidence appears

to confirm this. We find that when implied volatility spreads are decomposed

into the early exercise premium and residual frictions, only the early exercise

premium significantly predicts stock returns; the contribution of residual frictions

are mostly insignificant. We also show that the predictive ability of the early

exercise premium can not be solely explained by the informed trading activities

of option investors suggested by Cremers and Weinbaum (2010).

In our empirical analysis we use exchange-traded single-stock options written

on underlying assets not paying any cash within these options’ maturity periods

(“zero-dividend stocks”). We start by calculating the implied volatility spread and

the early exercise premium for each individual option in our sample. To calculate

the implied volatility spread for each option, we simply take the difference in call

implied volatility and its equivalent put volatility; both of these implied volatilities

are taken from the Optionmetrics Ivy DB database. To calculate the early exercise

premium, we require equivalent European put option prices. These are not readily

available as single-stock options are only American by design. To obtain European

put prices we use Merton’s (1973) insight that it is never optimal to early exercise

an American call written on a zero-dividend asset, allowing us to treat these calls

as quasi-European call options. Prompted by Zivney (1991), we next recognize that

from European put-call parity a European put option can be synthetically replicated

using a portfolio long the equivalent European call option, long an investment of

the discounted strike price into a money market account, and short the underlying

asset. This gives us a synthetic European put price. We then calculate the early

exercise premium by taking the difference between the exchange-traded American

put option price and its equivalent synthetic European price.

Armed with the early exercise premium and the implied volatility spread for

each option, we proceed to calculate the early exercise premium and the implied

volatility spread at the stock level. To obtain the early exercise premium for a
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particular stock, we weight the early exercise premium for each option written on

that stock by each option’s outstanding open interest. The early exercise premium

at the stock level is then calculated as the open-interest-weighted average of the

individual option early exercise premia. To obtain implied volatility spreads at

the stock level, we follow a similar procedure, calculating open-interest-weighted

average call and put implied volatilities separately and then taking the difference

to arrive at a measure of the implied volatility spread for the stock. To obtain our

measure of residual frictions, we run a cross-sectional regression each month of the

stock-level implied volatility spread on the stock-level early exercise premium. The

error term from this regression then gives us our measure of residual frictions at

the stock level. The cross-sectional-average adjusted R2 is 38.47%, indicating that

a sizable proportion of the variation in the implied volatility spread is explained

by the variation in the early exercise premium.

Forming portfolios sorted on the implied volatility spread, the early exercise

premium and frictions respectively, we find that, consistent with Cremers and

Weinbaum (2010), there is a positive relationship between implied volatility spreads

and future stock returns. Sorting on early exercise premia, we find that there is a

negative relationship between early exercise premia and future stock returns, which

in turn implies that there is a negative association between implied volatility

spreads and early exercise premia. Importantly, the early exercise premium

significantly predicts stock returns: the “High–Low” spread portfolio sorted on

early exercise premia, for example, generates an excess mean return of −0.71%, per

month (t-statistic: −4.34) with a mean monthly Fama-French-Carhart 4-factor-

adjusted alpha of −0.91% (t-statistic: −5.34). Interestingly, however, the “High–

Low” portfolio sorted on residual frictions generates an insignificant excess mean

return of 0.13% per month (t-statistic: 0.62). This suggests that the predictive

ability of the implied volatility spread that Cremers and Weinbaum (2010) identify

comes from the (friction-induced) early exercise premium rather than frictions

more generally. To further investigate this finding, we conduct a double portfolio
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sort on the early exercise premium and frictions to check whether the early exercise

premium truly carries incremental predictive information over residual frictions.

We find that all of the “High–Low” portfolios sorted on early exercise premia while

controlling for frictions generate significant mean excess returns. In contrast, for

portfolios sorted on frictions while controlling for early exercise premia, all but one

of the “High-Low” portfolios generate insignificant mean returns. This additional

evidence suggests that the ability of implied volatility spreads to predict stock

returns comes largely from early exercise premia rather than residual frictions.

Fama and MacBeth (1973) cross-sectional regressions, where we control for a

number of stock and option characteristics, confirm our portfolio sort results that

the early exercise premium is a significant predictor of stock returns.

Our empirical evidence relies crucially on it never being optimal to early

exercise an American call option on a zero-dividend asset and put-call parity

holding. However, as indicated in Jensen and Pedersen (2016) and Figlewski

(2020), both these conditions can be violated due to friction-driven early exercises

for single-stock call options. To establish whether such violations confound our

empirical results, we condition our tests on the option bid-ask spread, which we

use as a measure of option illiquidity, and the Daily-Cost-to-Borrowing Score

(DCBS) from Markit which is a measure of short-sale constraints on the underlying

stock. Our results suggest that neither of these exert any meaningful effect on

our findings. We further show that our results remain even if we change the

definition of stock-level early exercise premia or control for the nonsynchronicity

between stock and option markets.

Our work adds to the empirical strand of the literature studying the implications

of option or option-implied variables for the behaviour of future stock returns.

Manaster and Rendleman (1982) show that model stock prices implied by the Black-

Scholes (1973) universe can predict future market prices and subsequent returns on

a daily basis. Easley, O’Hara and Srinivas (1998), and Pan and Poteshman (2006)

show that stock returns are predictable using raw option trading volume. Cremers
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and Weinbaum (2010) use implied volatility spreads to predict stock returns while

An et al. (2014) also document that call and put implied volatilities separately

have predictive ability. The predictor variable in Bali and Hovakimian (2009) is

calculated as the difference between underlying stock’s realized volatility and its

option implied volatility. Finally, Conrad, Dittmar and Ghysels (2013) show that

option-implied risk neutral moments, calculated using the frameworks in Bakshi and

Madan (2000) and Bakshi, Kapadia and Madan (2003), also predict future stock

returns. We contribute to this literature by identifying another option-based factor

that predicts the cross section of stock returns: the early exercise premium which

we measure as the difference between the American put option market price and its

equivalent synthetic European price.

We also contribute to the literature looking into the drivers of option-to-stock

market predictability. Using single-stock options, Cremers and Weinbaum (2010)

show that the ability of the implied volatility spread to predict stock returns is due

to investors’ informed trading activities in the options market, ahead of the stock

market, although Shang (2017) documents that informed trading is not the sole

driver of the return predictability documented in Cremers and Weinbaum (2010).

Gonclaves-Pinto, Grundy, Hameed, van der Heiden and Zhu (2020), and Hiraki and

Skiadopoulos (2020) show that trading frictions drive implied volatility spreads and

therefore it is ultimately trading frictions that predicts stock returns. Our findings

complement this literature by showing that if we decompose the implied volatility

spread into the (friction-induced) early exercise premium and residual frictions, it is

the friction-induced early exercise premium that predicts stock returns.

The rest of the chapter is organised as follows. Section 3.2 discusses the

data and methodology. In section 3.3, we document the ability of the early

exercise premium to predict returns while controlling for frictions and other cross-

sectional stock and option characteristics. Section 3.4 presents robustness tests

of the results in section 3.3 while in section 3.5, we examine the extent to which

investors’ informed trading activities explain the results in section 3.3. Section 3.6
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summarizes and concludes.

3.2 Data and Methodology

In this section, we describe our data sources, filters, and the calculation of our early

exercise premia and implied volatility spreads, both at the option and stock levels.

3.2.1 Data Sources and Filters

We obtain daily data from the beginning of January 1996 until the end of April 2016

on American call and put options written on zero-dividend stocks, on the stocks

underlying the options, and on the term structure of the risk-free rate of return

from the Optionmetrics IvyDB database. We also extract implied volatilities for

our option sample from this database. Market data on the underlying stocks and

the return on the market comes from CRSP, firm fundamental data comes from

Compustat and data on the size, book-to-market, momentum, profitability and

investment factors come from Kenneth French’s website.1 Finally, data on stock

short-sale constraints comes from Markit.

The filters we impose on our option data are similar to those imposed by

Cremers and Weinbaum (2010). Specifically, we exclude an option pair from an

observation month if either the call or put option of this pair has zero open interest,

missing implied volatility, zero bid price or a price that violates the standard

arbitrage bounds (e.g. the bound that an American call option’s price must lie

between the maximum of zero and the value of the equivalent long forward, and

the stock price) at the end of each calendar month. We also exclude observations

where the option price is below $1 or the stock price is below $5 to avoid any

market micro-structure issues.

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. We would
like to thank Kenneth French for making this data available.
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3.2.2 Calculating The Early Exercise Premium and Im-

plied Volatility Spread

To calculate the early exercise premium, we need the American put option price

and its equivalent European price. However, an issue we face is that exchange-

traded single-stock options are exclusively American options so there is no market

European price. To address this issue, we synthetically create European put

options where we trade in American options, the underlying stocks, and the

risk-free asset. As our sample only consists of options on zero-dividend stocks,

then based on Merton’s (1973) insight that it is never optimal to exercise an

American call option written on a zero-dividend-paying stock early, the American

calls in our sample are effectively European calls. Given this, then from European

put-call parity a European put option can be synthetically replicated using a

portfolio long the equivalent European call option, which given Merton’s (1973)

result and given we only use options on non-dividend-paying stocks we take as the

equivalent American call option, long an investment of the discounted strike price

in the risk-free asset, and short the underlying stock. We can therefore make use

of put-call parity to write,

P synE
i,j = CA

i,j − Sj +Ke−rfT , (3.1)

where P synE
i,j is the price of a synthetic European put option i written on stock

j with strike price K and time-to-maturity T , CA
i,j is the market price of the

exchange-traded American call option written on the same stock with the same

strike price and time-to-maturity, Sj is stock j’s price, and rf is the risk-free

return over the option’s time to maturity.

We calculate the early exercise premium at the option level as the difference between

the exchange-traded American put price and its equivalent synthetic European price:

EEPi,j = PA
i,j − P

synE
i,j , (3.2)
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where EEPi,j and PA
i,j are respectively the early exercise premium and the market

price of an American put option i written on stock j with strike price K and

time-to-maturity T .

The implied volatility spread for each American option pair is the difference

between the implied volatilities of equivalent call and put options written on the

same underlying stock with the same strike price and time-to-maturity. We write the

option-level implied volatility spread as,

IV Sprdi,j = IV CA
i,j − IV PA

i,j , (3.3)

where IV Sprdi,j is the implied volatility spread for an American option pair i written

on stock j with strike price K and time-to-maturity T , and IV CA
i,j and IV PA

i,j are

respectively the implied volatilities of exchange-traded American call and put options

written on the same stock with the same strike price and time-to-maturity.

Armed with option-level implied volatility spreads, we can calculate the implied

volatility spread for a stock. To calculate stock-level spreads, we follow Cremers

and Weinbaum (2010) and take a weighted-average of the option-level call and put

implied volatilities for each stock where the weights are calculated as the relative

open interest of these options:

IV Sprdj = IV C
j − IV P

j =
N∑
i=1

(
wCi,j × IV C

i,j

)
−

N∑
i=1

(
wPi,j × IV P

i,j

)
, (3.4)

where IV Sprdj, IV
C
j and IV P

j are the implied volatility spread, the call implied

volatility and the put implied volatility for stock j, respectively, and wCi,j and wPi,j

are the call and put option weights, respectively. The weights are calculated as

wCi,j =
OICi,j∑N
i=1OI

C
i,j

and wPi,j =
OIPi,j∑N
i=1OI

P
i,j

where OI is the option’s open interest and

N is the number of option pairs written on a particular stock.

We follow a similar procedure to calculate the stock-level early exercise premium

although as only the put option is involved in calculating the early exercise

premium, we weight option-level early exercise premia using the relative open
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interest of the American put only:

EEPj =
N∑
i=1

(
wPi,j × EEPi,j

)
=

N∑
i=1

[
wPi,j ×

(
PA
i,j − P

synE
i,j

)]
(3.5)

where EEPj is the weighted-average early exercise premium for stock j.

3.3 Empirical Results

In this section we present our main results on whether early exercise premia predict

future stock returns. We begin by presenting descriptive statistics for option-level

early exercise premia and other option-specific variables and a number of pre-

formation characteristics for the stock portfolios we form by sorting on stock-level

early exercise premia. We then provide the results from various portfolio sorts

and Fama and MacBeth (1973) regressions studying the relationship between early

exercise premia and future stock returns while controlling for other factors.

3.3.1 Option Data Characteristics

Table 3.1 reports descriptive statistics for option-level early exercise premia and

implied volatility spreads (columns (1) and (2)); option moneyness, defined as

the ratio of the strike price to the underlying stock price, and days-to-maturity

(columns (3) and (4)); and outstanding open interest for call and put options

(columns (5) and (6)). Observations are taken at the end of each calendar month.

The option pairs in columns (1) and (2) are matched along moneyness and time-

to-maturity dimensions so that each option pair in column (1) is associated with

exactly one pair in column (2) with identical moneyness and time-to-maturity.

With the exception of the t-statistic testing the null hypothesis that the mean of

the variable is zero, the descriptive statistics are calculated each sample month

and then averaged over time.

Table 3.1 About Here
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Table 3.1 shows that the month-end option-level early exercise premia are

generally positive in our sample, with a mean of 7.82% (t-statistic: 6.11), indicating

that the price of the American put option is significantly higher than the price of an

equivalent European put. As our implied volatility spread is simply the difference

between equivalent call and put implied volatilities, any positive early exercise

premium induced by frictions should skew the put implied volatility upward,

leading to a negative implied volatility spread for each American option pair. We

should therefore expect a negative association between these two spreads. In our

sample, the mean implied volatility spread at the option level is −1.06% (t-statistic:

−9.12), implying a significantly higher implied volatility for the American put

option on average compared to the implied volatility of the equivalent American

call. The reason for the (in absolute terms) large t-statistic for the implied volatility

spread relative to the early exercise premium is that the implied volatility spreads

are far less volatile than the early exercise premia, as can be seen from their

standard deviations and percentiles.

Looking at the percentiles we can see that, consistent with the findings in Cremers

and Weinbaum (2010), the implied volatility spread in our sample ranges from negative

to positive. The percentiles also show that the early exercise premium ranges from

positive to negative in our sample. This is interesting because in frictionless markets we

should only observe positive early exercise premia. However, the presence of negative

values for the early exercise premium raises the question of what role, if any, market

frictions play and whether the empirical results are driven by the presence of negative

early exercise premia in our sample. We will return to this point later.

The moneyness and days-to-maturity statistics in columns 3 and 4 suggest that

the average option pair is close to at-the-money and has slightly less than two months

to maturity. We can also see that with respect to open interest for both call and put

options, there are a high number of open interests in the 99th percentile and a low

number in the 1st percentile. Overall, an exchange-traded American call option has

higher open interest compared to its equivalent put counterpart.
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3.3.2 Pre-formation Stock Portfolio Characteristics

To begin our empirical analysis, we form stock portfolios by sorting on early

exercise premia calculated at the stock level. At the end of each sample month

t−1, we sort the universe of stocks in our sample into quintile portfolios according

to stock-level early exercise premia. Table 3.2 reports mean values for different

pre-formation characteristics of these portfolios evaluated at or over month t− 1.

The bottom quintile (1, or “Low”) contains stocks with low early exercise premia

while the top quintile (5, or “High”) contains stocks with high early exercise

premia. With the exception of the lagged stock return, the figures in Table 3.2

are time series averages of the equally-weighted cross-sectional means calculated

each month. For lagged stock returns, we calculate the value-weighted mean.

Table 3.2 About Here

Consistent with Cremers and Weinbaum (2010), we observe that stocks with

lower average market capitalization are located in the “Low” and “High” portfolios.

Average betas show little change across the portfolios while stock volatility remains

essentially unchanged across the portfolios. Average monthly lagged stock returns,

calculated over month t− 1, increase near-monotonically across the portfolios from

0.65% per month for the “Low” portfolio to 2.21% per month for the “High” portfolio.

The bottom two rows of Table 3.2 report average early exercise premia and implied

volatility spreads calculated at the stock level. While the increase in early exercise

premia from the “Low” to “High” portfolios is mechanical given we sort the portfolios

on the early exercise premium, interestingly we observe a decrease in average implied

volatility spreads across these portfolios. More importantly, the negative early exercise

premia on average are only associated with positive implied volatility spreads, a pattern

which, as discussed earlier, we would expect to observe.
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3.3.3 Does The Early Exercise Premium Predict Future

Stock Returns?

We now turn our attention to investigating the drivers of the ability of the implied

volatility spread to predict stock returns that Cremers and Weinbaum (2010) identify.

Recall from the discussion earlier that in a Black-Scholes world where markets

are frictionless, the early exercise premium should carry no information about the

corresponding implied volatility spread since any early exercise is conditioned upon

the characteristics of the underlying stock and option, such as whether the stock

pays dividends. However, several recent papers (Jensen and Pedersen (2016), Cao et

al. (2017) and Figlewski (2020), for example) have documented that the presence of

trading frictions can alter the optimal early exercise behavior of option investors.

In particular, the presence of frictions means it may be optimal for investors to

exercise options early when it otherwise would not be. Consequently, in the presence

of trading frictions Black-Scholes-model-based implied volatilities will contain a

component related to friction-induced early exercises. We can therefore decompose

such a model-based implied volatility spread into that part of the spread that comes

from (friction-induced) early exercise, captured by the early exercise premium, and

that part due to residual (other) frictions.

To this end, we start by decomposing stock-level market implied volatility spreads

into early exercise premia and residual frictions. While early exercise premia capture

the effect of friction-induced put early exercises, residual frictions include the impact

of call early exercises along with additional factors not related to early exercise. For

each sample month t−1, we run the following cross sectional regression of stock-level

implied volatility spreads on stock-level early exercise premia:

IV Sprdj = αj + βEEPj EEPj + εj, (3.6)

where αj and β
EEPj

j are the regression parameters and εj is the error term, which

serves as our measure of residual frictions.
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Table 3.3 About Here

Results from these cross sectional regressions are reported in Table 3.3. The

results show that there is a strong negative relationship between the early exercise

premium and the implied volatility spread in our data with β
EEPj

j being a highly

significant −0.19 (t-statistic: −46.99). The adjusted R2 of 38.47% indicates that

a sizable proportion of the cross sectional variation in implied volatility spreads is

explained by the early exercise premium.

Given the results in Table 3.3 provide evidence that a reasonable proportion

of the implied volatility spread can be explained by the early exercise premium,

we examine the extent to which the implied volatility spread, the early exercise

premium and residual frictions are separately related to future excess stock returns.

To do this, we conduct independent portfolio sorts using each of the these (at the

stock level) separately as follows. At the end of sample month t− 1, we split the

stock universe into quintile portfolios based on each factor. The bottom (“Low”)

quintile contains stocks with low values of the factor on which the portfolios are

formed while the top (“High”) quintile contains stocks with high values of the

factor. We also form a “High−Low” spread portfolio that is long the top quintile

and short the bottom quintile. We then hold the portfolios over month t. Table 3.4

reports value-weighted returns in excess of the three month Treasury Bill rate

from these univariate portfolio sorts.

Table 3.4 About Here

Taking the results for the implied volatility spread first we find that, consistent

with Cremers and Weinbaum (2010), future stock returns increase as the implied

volatility spread increases. Indeed, a strategy that is long the “High” portfolio

and short the “Low” portfolio delivers a very significant average monthly return

in excess of the three month Treasury Bill rate of 1.08% (t-statistic: 4.41; see
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the column labelled “High−Low” in Table 3.4). From the table, we also observe

that future stock returns decrease as the early exercise premium increases. The

“High−Low” portfolio from the early exercise premium sort generates average

monthly excess returns of −0.71% (t-statistic: −4.34). That we observe an

opposing pattern between stock returns and implied volatility spreads, and stock

returns and early exercise premia is perhaps not surprising given our earlier finding

that there is a significant negative relationship between the implied volatility

spread and the early exercise premium. In contrast to the clear relationship

between stock returns and the implied volatility spread, and stock returns and

the early exercise premium, stock portfolios sorted on residual frictions show

little change across the portfolios, with the “High−Low” portfolio providing an

insignificant average monthly excess return of 0.13% (t-statistic: 0.62).

The results in Table 3.4 strongly suggest that much of the relationship between

future stock returns and the implied volatility spread that Cremers and Weinbaum

(2010) identify comes from the early exercise premium rather than frictions.

Table 3.5 examines whether the findings in Table 3.4 remain once we have controlled

for commonly used risk factors. To this end, Table 3.5 reports the monthly average

intercept terms (the portfolio αs) from regressing the portfolio returns from the

various sorts in Table 3.4 on the market (the market model), the four factors in

Carhart (1997), which we label FFC (Fama-French-Carhart), and the five fators

in Fama and French (2015), which we label FF5 2 Panel A reports results for

the implied volatility spread sorts, Panel B reports results for the early exercise

premium sorts and Panel C reports results for the (residual) frictions sort.

Table 3.5 About Here

Looking at the “High−Low” column in Table 3.5, we find a positive and

2The four factors in the FFC model are the market, size (SMB) and book-to-market (HML)
factors from Fama and French (1993) and the momentum factor from Carhart (1997) while the
FF5 model includes the three factors from Fama and French (1993) along with a profitability
and an investment factor.
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statistically significant portfolio α for the implied volatility spread sort and

a negative and statistically significant α for the early exercise premium sort,

regardless of the model used. For instance, the mean monthly FFC-model-adjusted

α is a significant 1.27% (t-statistic: 6.59) for the implied volatility sort, and a

significant −0.91% (t-statistic: −5.34) for the early exercise premium sort; the

αs are also of similar orders of magnitude to the average excess returns reported

for these portfolios in Table 3.4. For the residual frictions sort, the αs for the

“High−Low” portfolios are all statistically insignificant. These results suggest

that our findings in Table 3.4 are not due to a failure to adequately control for

the usual asset pricing risk factors. To summarize thus far, Tables 3.4 and 3.5

provide evidence confirming the predictive ability of the implied volatility spread

that Cremers and Weinbaum (2010) document but also suggesting that such

predictability is driven by the early exercise premium rather than frictions.

While the results above provide encouraging evidence about the role of the

early exercise premium in predicting stock returns, an important question still

remains: do we still have that predictability after controlling for frictions and

other characteristics in addition to the usual asset pricing factors? As a first step

in answering this question, we undertake two bivariate portfolio sorts. At the

end of each sample month t − 1, we first split the stock universe into quintile

portfolios according to the first sorting variable. We then split each portfolio from

the first sort into further quintile portfolios based on the second sorting variable.

The bottom quintile for each sort contains stocks with low factor values (“Low”),

while the top contains stocks with high values (“High”). We also form a spread

portfolio long the top quintile and short the bottom quintile (“High−Low”) along

the second sort dimension. We then hold the portfolios over month t and calculate

value-weighted returns on these portfolios.

Table 3.6 About Here

Table 3.6 presents results from our portfolio double sorts. Panel A reports
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results with residual frictions as the first sorting variable and the early exercise

premium as the second. Panel B reports results from reversing the sorting order.

Looking at the results in panel A, we observe significant changes in mean monthly

excess stock returns across different early exercise premium portfolios even after

controlling for stock frictions. Average excess returns on the “High−Low” spread

portfolios in this case range from −1.47% (t-statistic: −4.06) to −0.51% (t-statistic:

−2.15), suggesting that early exercise premia contain predictive information about

stock returns over and above any predictive information frictions contain. In panel

B, we check whether frictions contain any incremental predictive information over

that contained in early exercise premia. We find average excess returns for the

“High−Low” portfolios are only significant for the “High” column, that is, mean

monthly excess returns vary significantly with frictions only when frictions are

high, delivering a mean excess return of 1.28% (t-statistic: 3.77). In all other

cases when frictions is the second sorting variable, average excess returns on the

“High−Low” portfolios are statistically indistinguishable from zero.

In Table 3.7 we report the results of Fama-MacBeth (1973) regressions to test

whether a number of commonly used cross-sectional stock and option-specific

factors can explain the apparent return predictability we document in Tables 3.5

and 3.6. In particular, we control for stock characteristics such as firm size,

the book-to-market ratio, the stock’s beta, the stock’s idiosyncratic volatility,

momentum, reversal and illiquidity as captured by Amihud’s (2002) illiquidity

measure, while our option characteristics include open interest and bid-ask spreads

for exchange-traded call and put options. Since we decompose the implied

volatility spread into the early exercise premium and residual frictions, we begin

by examining whether the implied volatility spread itself still contains predictive

information for stock returns once we control for stock and option characteristics.

Column (1) in Table 3.7 reports these results.

Table 3.7 About Here
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The regression results in column (1) clearly show that the positive and signifi-

cant relationship between the implied volatility spread and stock returns remains

even after controlling for various option- and stock-related characteristics. This

confirms our earlier portfolio-sort findings and reinforces the findings in Cremers

and Weinbaum (2010). The next step in our analysis is to determine whether the

relationship between the implied volatility spread and stock returns is driven by the

(friction-induced) early exercise premium or residual frictions. Column 2 reports

the results from decomposing the implied volatility spread into the early exercise

premium and residual frictions and re-running the regression. The coefficient on

the early exercise premium is a statistically significant −0.21 (t-statistic: −3.71)

while the coefficient on residual frictions is statistically zero. Taken together, then,

the results in this section strongly suggest that the ability of the implied volatility

spread to predict stock returns that Cremers and Weinbaum (2010) identify is

mainly driven by the early exercise premium, with any residual frictions being

insignificant. The question that remains is how robust this finding is. We turn

our attention to this in the next section.

3.4 Robustness Tests

Our results in the previous section rely heavily on our use of Merton’s (1973)

result that it is never optimal to early-exercise American call options written on

zero-dividend stocks, which in turn allows us to use put-call parity to calculate

synthetic European put prices. In this section we investigate how sensitive our

results are to deviations from these. We also examine whether our results are

robust when we group options into various moneyness and time-to-maturity

categories, and whether such factors as nonsynchronous closing times between the

stock and options markets affect our findings.
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3.4.1 Violations of Early Exercise Rules and Put-Call Parity

In calculating the early exercise premium that we have used in our empirical work

thus far, we make use of the result in Merton (1973) that it is never optimal to

exercise American call options written on zero-dividend stocks early. This result

allows us to treat such options as if they were European rather than American.

This then allows us to make use of put-call parity to synthetically create European

put option prices. This approach is potentially problematic because a number of

recent papers (see for example, Jensen and Pedersen (2016), Cao et al. (2017)

and Figlewski (2020) among others) show that short-selling constraints in the

stock market, and transaction costs in options market (the bid-ask spread in

particular) can theoretically make it optimal to exercise American call options

on non-dividend-paying stocks early. This casts doubt on our assumption that

American call options on zero-dividend stocks can be treated as being equivalent

to European ones. In addition, the discussion in Cremers and Weinbaum (2010)

shows that in the presence of such market imperfections deviations from put-call

parity can widen, casting doubt on whether we are always able to use put-call

parity to generate meaningful European put prices.

We begin by looking at the effect of stock short-selling constraints on our results.

We follow Jensen and Pedersen (2016) and use the Daily-Cost-to-Borrowing Score

(DCBS) as our measure of short-selling constraints. The DCBS is an integer ranging

from one to ten, with a high value indicating that a stock has greater short-selling

constraints while stocks with a DCBS below five are generally considered to be easier

to short. To see why the DCBS is useful as a measure of short-selling constraints here,

it is interesting to note that according to Jensen and Pedersen (2016), far less than

one percent of all deep in-the-money American call options written on zero-dividend

stocks with a DCBS value below five are exercised early, whereas almost ten percent

of those same options on stocks with a DCBS value of ten are early-exercised.

Table 3.8 About Here
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Table 3.8 reports the results from quintile portfolio sorts on stock-level early

exercise premia conditional on the DCBS value at the start of the return period.

We calculate early exercise premia at the stock level using options written on

stocks with a non-missing DCBS value and a value less than or equal to eight,

seven and five respectively. Since the DCBS value is only widely available from

the start of 2004, our sample for the results in Table 3.8 starts in 2004. The

results in Table 3.8 suggest that the return on the “High−Low” spread portfolio is

not dependent on the level of short selling constraint: the spread portfolio return

from sorting on the early exercise premium regardless of a stock’s DCBS value, for

example, is −0.59% per month (t-statistic: −3.02) while for stocks with a DCBS

value less than or equal to five, it is −0.54% (t-statistic: −2.76). It seems that

short-selling constraints have little impact on our results.

We next study the impact of American call option illiquidity along with stock

short-selling constraints on our results. Following Cao and Han (2013), and

Christoffersen, Goyenko, Jacobs and Karoui (2018), we measure call illiquidity

as the option’s bid-ask spread scaled by its price, calculated at the end of each

month t− 1. We take the observations for options written on zero-dividend stocks

with a DCBS value less than or equal to five at the end of month t− 1 and sort

them into deciles, quintiles and terciles based on illiquidity. The reason for using

deciles, quintiles and terciles is to see whether the results are robust to narrower

and broader levels of illiquidity. We then exclude those options with the highest

levels of illiquidity (the most illiquid decile, the most illiquid quintile and so forth)

and calculate stock-level early exercise premia using the remaining observations.

We then, as in our earlier analysis, form value-weighted quintile stock portfolios

using these early exercise premia as the sort variable and hold these portfolios

over month t. Table 3.9 reports average excess returns for the portfolios formed

from sorting on the early exercise premium conditioning on stock short-selling
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constraints and American call option illiquidity.

Table 3.9 About Here

The results in Table 3.9 suggest that returns on the spread portfolio formed

from stocks considered relatively easy to short remain largely unchanged even after

we exclude observations where the American call has a higher probability of being

exercised early due to its illiquidity. The “High−Low” portfolio return when we

use deciles for illiquidity with very illiquid options then filtered out, for example,

stands at −0.61% per month (t-statistic: −2.71) while the corresponding return

when we use terciles for illiquidity is −0.60 (t statistic: −2.61.) This is similar

to what we observe in Table 3.8 where the return for the sample of stocks with

a DCBS value less than or equal to five is −0.54% (t-statistic: −2.76) without

filtering out very illiquid options.

3.4.2 Option Moneyness and Time-to-Maturity

In our earlier empirical tests, we calculated value-weighted stock-level early exercise

premia using open interest as the weighting variable, regardless of the individual

option’s moneyness and time-to-maturity. In this subsection we examine whether

our earlier findings on the ability of the early exercise premium to predict stock

returns is driven by moneyness and/or time-to-maturity. To do this, at the end of

each sample month t− 1 we split the universe of American-European put option

pairs into independently double-sorted portfolios according to moneyness and

time-to-maturity. Specifically, we first sort the option pairs into in-the-money

(ITM), at-the-money (ATM) and out-of-the-money (OTM) portfolios.3 We then

split them into three portfolios according to whether option time-to-maturity

is less than 30 days, lies between 30 and 60 days, or is above 60 days. The

intersection yields the double-sorted portfolios. We then use option observations

3We define an option as ITM if the ratio of the strike price to the stock price is greater than
1.05. An option is treated as ATM if this ratio is greater than or equal to 0.95 and less than or
equal to 1.05, and as OTM if the ratio is less than 0.95.
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from each of these portfolios to calculate stock-level early exercise premia from

which we then form value-weighted quintile portfolios which we hold over month t.

Table 3.10 reports the results.

Table 3.10 About Here

The results suggest that not all early exercise premia can significantly predict

the cross section of future stock returns. Looking at the results for ITM options

(Panel A of Table 3.10), the average monthly return for the “High−Low” portfolio

is only statistically different from zero for options that are between 60 and 120 days

from maturity; returns on the spread portfolios for ITM options that are nearer to

maturity are statistically zero. For ATM options, the average monthly return for

the “High−Low” portfolio is only statistically different from zero for options that

are near maturity; returns on the spread portfolios for ATM options that are further

away from maturity are statistically zero. For OTM options, average returns on the

spread portfolios are all statistically zero. The results in Table 3.10, then, suggest

that the predictive ability of the early exercise premium appears to be confined to

near-maturity ATM options and far-from-maturity ITM options.

3.4.3 Further Checks

We also conduct a number of additional tests to confirm the robustness of our

main empirical results. We start by examining whether our findings are driven

by the fact that the stock and option markets have separate closing times.4 This

nonsynchronicity, as shown in the literature (see, for example, Battalio and Schultz

(2006)), can drive violations of put-call parity in the market, thereby allowing for

wider implied volatility spreads and early exercise premia for exchange-traded

American options. To examine whether nonsynchronicity drives our results, we

sort stocks into portfolios using stock-level early exercise premia at the end of

each month t− 1. However, we only start cumulating stock returns from the next

4The options market closes two minutes after the stock market.
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day, avoiding the overnight return as we move from month t − 1 into month t,

the holding month. These results are reported in Panel A of Table 3.11. We also

examine whether an alternative definition of the stock-level early exercise premium

can impede the return predictability that we observe in our main test. To this end,

we follow Shang (2017) and calculate weighted average stock-level spreads using

the dollar value of open interest rather than the number of contracts outstanding.

These results are reported in Panel B of Table 3.11. Panel C examines whether

our results are driven by the inclusion of negative early exercise premia in our

sample while Panel D examines whether the predictability we find is persistent by

using a two-month holding period for the portfolios.

Table 3.11 About Here

The results in Panel A suggests that our empirical evidence is not due to

nonsynchronicity between stock and option market closures. Excluding the

overnight returns still delivers a mean value-weighted return of −0.71% per

month (t-statistic: −4.36) on the “High−Low” portfolio when sorting on the early

exercise premium while the return when sorting on frictions remains insignificant.

Using the dollar value of open interest to calculate the weights used in the stock-

level early exercise premia does not change our earlier findings about the predictive

ability of early exercise premia: we observe a mean monthly “High−Low” portfolio

return of −0.74% (t-statistic: −3.73) when using the dollar value of open interest

compared to a significant −0.71% using the number of contracts outstanding as

the measure of open interest (see Table 3.4 above). The results in Panel C show

that our findings are not driven by the presence of negative early exercise premia

while the results in Panel D suggest that the predictability we observe does not

extend beyond one-period-ahead.
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3.5 The Role of Informed Trading

In this section, we examine whether informed trading can explain the ability of the

early exercise premium to predict stock returns. The motivation for this comes

from several papers in the literature (see Cremers and Weinbaum (2010) and An

et al. (2014), for example) that, based on the sequential trade model of Easley

et al. (1998), explain the ability of the implied volatility spread to predict stock

returns through option investors’ informed trading activities. Informed investors,

having access to private information, first trade in the options market, ahead of

the stock market. The result of this is that because information first appears in

the options market, the options market leads the stock market and hence explains

why the implied volatility spread predicts stock returns. Our results establish that

for exchange-traded American options, early exercise premia form a significant

part of implied volatility spreads. A natural question to ask, therefore, is whether

the return predictability we observe for the early exercise premium can also be

explained by informed trading.

Following Shang (2017), we create a sub-sample of options only including observa-

tions with zero trading volumes, keeping in mind that if informed trading explains our

results we should not observe any return predictability from early exercise premia in

this sub-sample. We then repeat the analysis in Table 3.4 on this sample. The results

from this analysis are presented in Table 3.12.

Table 3.12 About Here

The results show that, even when the sample consists solely of options with

zero trading volume, stock returns significantly decrease as the early exercise

premium increases. For instance, the “High−Low” spread portfolio formed from

the early exercise premium sort produces a value-weighted mean excess return

of −0.63% (t-statistic: −3.65) per month, indicating that the ability of the

early exercise premium to predict stock returns that we identify is not solely
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attributable to the informed trading activities of option investors. Interestingly,

we also observe somewhat significant predictive ability for frictions, with the

friction-sorted “High−Low” spread portfolio delivering a mean monthly excess

return of 0.39% (t-statistic: 2.11). All in all, the evidence in Table 3.12 suggests

that the informed trading activities of option investors cannot fully explain the

ability of the early exercise premium to predict returns that we observe.

3.6 Concluding Remarks

In this paper we investigate the drivers of the ability of the implied volatility

spread to predict stock returns documented in the literature. A number of studies

have described this predictability as arising through the informed trading activities

of option investors and/or frictions in the underlying stock. We decompose the

implied volatility spread into a friction-induced early exercise premium and any

remaining (residual) frictions and examine the extent to which the ability of

the implied volatility spread to predict returns is driven by the early exercise

premium, defined as the difference between the American put price and it’s

equivalent European price. Given that all individual stock options are American,

we make use of put-call parity and Merton’s (1973) finding that it is never

optimal to exercise an American call on a non-dividend-paying stock early to

calculate a synthetic European put price from which we calculate the early exercise

premium that we use in our empirical tests. The error from a regression of implied

volatility spreads on the early exercise premium provides our measure of residual

frictions. Using a barrage of empirical tests and robustness checks we show that

it is the early exercise premium that is a significant predictor of stock returns

while frictions rarely possess any significant predictive power. Further tests show

that our empirical conclusions are not driven by stock short-sale constraints,

options illiquidity, the definition of the stock-level early exercise premium or

nonsynchronicity between the stock and options markets. We finally show that

the ability of the early exercise premium to predict stock returns is not solely
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driven by option investors’ informed trading activities.
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Table 3.1: Descriptive Statistics for the Option Data

The table presents descriptive statistics on the percentage month-end spreads between American put
options and their equivalent synthetic European options (the Early Exercise Premium, column (1)),
and between American call implied volatilities and their equivalent American put volatilities (the
Implied Volatility Spread, column (2)). The table further reports the moneyness (column (3)) and
time-to-maturity (column (4)) of the option pairs along with the open interest, measured as the num-
ber of contracts outstanding, for American call and put options (columns (5) and (6), respectively).
The descriptive statistics include the mean, the standard deviation (StDev), the t-statistic testing
the null hypothesis that the mean is zero (Mean/StError), several percentiles, and the number of
observations. The observation-pairs used in columns (1) and (2) are matched along the moneyness
and time-to-maturity dimension, so that each observation-pair in column (1) corresponds to exactly
one pair in column (2) with the same moneyness and time-to-maturity. We calculate moneyness
as the ratio of the option strike price to the stock price. We measure time-to-maturity in terms of
calendar days. With the exception of the t-statistic, we calculate each statistic as the time-series
average of the respective cross-sectional statistic.

Implied Days to
Early Exercise Volatility Moneyness Maturity Call Put

Premium Spread (by Option (by Option Open Open
(in %) (in %) Pair) Pair) Interest Interest

(1) (2) (3) (4) (5) (6)

Mean 7.82 −1.06 1.03 54 1483 842
StdDev 31.35 18.64 0.08 32 4730 3388
Mean/StdErr [6.11] [−9.12]
Percentile 1 −56.34 −20.74 0.83 19 3 1
Percentile 5 −24.64 −9.16 0.88 19 12 5
Quartile 1 −3.27 −2.46 0.98 22 85 32
Median 4.41 −0.53 1.03 49 313 131
Quartile 3 14.43 1.03 1.09 78 1103 533
Percentile 95 49.79 5.52 1.17 111 6176 3485
Percentile 99 113.30 12.50 1.19 111 19178 11540
Observations 6,932 6,932 6,932 6,932 6,932 6,932
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Table 3.2: Average Preformation Characteristics of Portfolios Sorted
on the Early Exercise Premium

The table presents preformation characteristics of the stock portfolios sorted on the early exercise
premium (the spread between the American put option and its equivalent synthetic European op-
tion), measured at the stock level. At the end of each sample month t, we first sort stocks into
portfolios according to the quintile breakpoints of the stock-level early exercise premium. We then
calculate various stock and option related characteristics of these portfolios based on information
available at time t. The figures reported are averages of the relevant characteristic. The stock charac-
teristics include: market capitalization of the stocks (Market Size); their beta, calculated over the
prior 60 months (Stock Beta); the value-weighted portfolio return over month t− 1 to t (Lag Stock
Return); and idiosyncratic volatility, calculated from the standard deviation of the residuals from the
Fama-French-Carhart regression model (Carhart, 1997) estimated over the prior 60 months (Stock
Volatility). The option characteristics are the percentage early exercise premium and percentage
implied volatility spread, both measured at the stock level.

Early Exercise Premium-Sorted Quintile Portfolios

1 (Low) 2 3 4 5 (High)

Market Size (in $m) 7,438 8,958 9,475 9,163 7,297
Stock Beta 1.29 1.33 1.32 1.27 1.17
Lag Stock Return (in %) 0.65 0.63 1.08 1.59 2.21
Stock Volatility 0.39 0.39 0.38 0.37 0.37
Early Exercise Premium (in %) −14.65 −1.66 3.04 8.33 27.50
IV Spread (in %) 4.28 0.84 −0.88 −2.52 −6.62
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Table 3.3: Decomposing the Implied Volatility Spread

The table presents the results of a Fama-MacBeth (1973) regression of the month t stock-level implied
volatility spread on the month t stock-level early exercise premium. Observations on the implied
volatility spread and the early exercise premium are matched, so that both correspond to the same
underlying stock at t. The numbers in square parentheses are t-statistics calculated using Newey and
West’s (1987) autocorrelation and heteroscedasticity-consistent covariance matrix with the lag length
for the autocorrelation set at 12. Adj. R2 is the adjusted R2.

Dependant Variable: Implied Volatility Spread

(1)

Early Exercise Premium −0.19
[−46.99]

Intercept -1.92×10−3

[−3.65]
Adj. R2 38.47%
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Table 3.4: Univariate Portfolio Sorts

The table presents the mean returns of value-weighted stock portfolios in excess of the three-month
Treasury Bill rate, sorted on the implied volatility spread, the early exercise premium and residual
frictions, all measured at the stock level. At the end of month t− 1, we sort stocks into portfolios
according to the quintile breakpoints of each of the three sorting variables. We also form a spread
portfolio long the top and short the bottom quintile (“High−Low”). We then hold the portfolios over
month t. Observations on the implied volatility spread and the early exercise premium are matched,
so that both correspond to the same underlying stock at t− 1. The numbers in square parentheses
are t-statistics calculated using Newey and West’s (1987) autocorrelation and heteroscedasticity-
consistent covariance matrix with the lag length for the autocorrelation set at 12.

Value-weighted Quintile Portfolios

Sorting Variables 1 (Low) 2 3 4 5 (High) High−Low

Mean Monthly Excess Portfolio Return (in %)

Implied Volatility Spread −0.07 0.56 0.37 0.75 1.01 1.08
[−0.16] [1.40] [0.95] [2.26] [3.06] [4.41]

Early Exercise Premium 0.91 0.78 0.53 0.40 0.19 −0.71
[2.67] [2.07] [1.41] [1.04] [0.48] [−4.34]

Residual Frictions 0.53 0.51 0.62 0.42 0.66 0.13
[1.06] [1.15] [1.90] [1.15] [1.95] [0.62]
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Table 3.5: Portfolio Alphas

The table presents the mean α for each of the stock portfolios sorted separately on the implied
volatility spread (Panel A), the early exercise premium (Panel B) and residual frictions (Panel C), all
measured at the stock level. The α is the intercept estimated from three different regression models:
the Market-model (Market), where portfolio returns in excess of the three month treasury bill rate are
regressed on the market factor; the Fama-French-Carhart four-factor model (FFC), where portfolio
excess returns are regressed on the market, size, book-to-market and momentum factors (Carhart
(1997)); and the Fama and French (2015) five-factor model (FF5), where portfolio excess returns are
regressed on the market, size, book-to-market, profitability and investment factors. At the end of
each sample month t− 1, we sort stocks into portfolios according to the quintile breakpoints of each
of the three sorting variables. We also form a spread portfolio long the top and short the bottom
quintile (“High−Low”). We then hold the portfolios over month t. Observations on the implied
volatility spread and the early exercise premium are matched, so that both correspond to the same
underlying stock at t− 1. The numbers in square parentheses are t-statistics calculated using Newey
and West’s (1987) autocorrelation and heteroscedasticity-consistent covariance matrix with the lag
length for the autocorrelation set at 12.

Value-weighted Quintile Portfolios

Mean Monthly Portfolio Alpha (%)

1(Low) 2 3 4 5(High) High−Low

Panel A: Sorting Variable - Implied Volatility Spread

Market −0.51 0.18 0.04 0.40 0.65 1.16
[−1.53] [0.66] [0.14] [1.50] [2.04] [5.82]

FFC −0.30 0.38 0.21 0.58 0.97 1.27
[−0.93] [1.44] [0.84] [2.25] [3.23] [6.59]

FF5 −0.03 0.63 0.46 0.75 1.17 1.20
[−0.09] [2.34] [1.79] [2.80] [3.75] [5.98]

Panel B: Sorting Variable - Early Exercise Premium

Market 0.53 0.43 0.17 0.05 −0.18 −0.71
[1.76] [1.55] [0.60] [0.20] [−0.64] [−3.85]

FFC 0.84 0.66 0.40 0.22 −0.07 −0.91
[3.00] [2.51] [1.47] [0.87] [−0.25] [−5.34]

FF5 1.10 0.89 0.64 0.41 0.16 −0.94
[3.84] [3.27] [2.29] [1.54] [0.58] [−5.27]

Panel C: Sorting Variable - Frictions

Market 0.07 0.14 0.30 0.09 0.31 0.25
[0.20] [0.47] [1.18] [0.33] [1.09] [1.22]

FFC 0.41 0.36 0.48 0.24 0.45 0.04
[1.30] [1.32] [1.98] [0.96] [1.60] [0.21]

FF5 0.78 0.67 0.64 0.39 0.73 −0.05
[2.43] [2.41] [2.55] [1.50] [2.52] [−0.28]
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Table 3.6: Portfolios Double-Sorted on the Early Exercise Premium
and Residual Frictions

The table presents the mean returns of stock portfolios in excess of the three-month Treasury Bill
rate, double-sorted on the early exercise premium and residual frictions, both measured at the stock
level. Panel A reports results from first sorting on residual frictions and then sorting on the early
exercise premium. At the end of each sample month t− 1, we sort stocks into portfolios according to
the quintile breakpoints of the frictions variable and within each friction-sorted portfolio, we then
further sort based on quintile breakpoints of the early exercise premium. Panel B reports results
from reversing the order of the sorts, that is, at t− 1, we sort stocks into portfolios according to the
quintile breakpoints of the early exercise premium and within each of these portfolios, we then further
sort based on quintile breakpoints of the residual frictions variable. We also form spread portfolios
long the “High” and short the “Low” quintile (“High−Low”) along the second sort dimension in
both panels. We hold the portfolios over month t. Observations on the implied volatility spread
and the early exercise premium are matched, so that both correspond to the same underlying stock
at t − 1. The numbers in square parentheses are t-statistics calculated using Newey and West’s
(1987) autocorrelation and heteroscedasticity-consistent covariance matrix with the lag length for the
autocorrelation set at 12.

Panel A: 1st Sort - Residual Frictions; 2nd Sort - Early Exercise Premium

Value-weighted Quintile Portfolios

Friction

Premium 1(Low) 2 3 4 5(High)

Mean Monthly Excess Portfolio Return (in %)

1(Low) 0.79 0.62 0.96 1.13 1.09
[1.55] [1.53] [2.74] [3.53] [2.55]

2 0.68 0.37 0.83 0.62 1.14
[1.18] [0.72] [2.13] [1.70] [3.29]

3 0.02 0.71 0.57 0.55 0.75
[0.04] [1.52] [1.68] [1.36] [2.00]

4 0.18 0.64 0.44 0.34 0.76
[0.36] [1.21] [1.28] [0.83] [1.93]

5(High) −0.68 0.00 0.44 0.11 0.40
[−1.35] [0.00] [1.19] [0.28] [0.99]

High−Low −1.47 −0.62 −0.51 −1.02 −0.69
[−4.06] [−2.66] [−2.15] [−4.05] [−2.54]

Panel B: 1st Sort - Early Exercise Premium; 2nd Sort - Residual Frictions

Value-weighted Quintile Portfolios

Premium

Friction 1(Low) 2 3 4 5(High)

Mean Monthly Excess Portfolio Return (in %)

1(Low) 0.91 0.50 0.68 −0.12 −0.81
[2.24] [0.94] [1.32] [−0.22] [−1.65]

2 0.68 0.83 0.67 0.36 0.04
[1.71] [1.94] [1.34] [0.71] [0.07]

3 1.05 0.96 0.29 0.59 0.16
[3.39] [3.28] [0.71] [1.36] [0.34]

4 1.22 0.93 0.57 0.15 0.22
[3.34] [2.36] [1.75] [0.35] [0.62]

5(High) 1.22 0.70 0.50 0.43 0.48
[2.87] [1.78] [1.10] [1.21] [1.09]

High−Low 0.31 0.20 −0.19 0.55 1.28
[0.91] [0.56] [−0.61] [1.45] [3.77]
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Table 3.7: Fama-MacBeth (1973) Regressions

The table presents the results of Fama-MacBeth (1973) regressions in which the dependent variable
is excess stock returns over month t. The first regression (Column (1)) includes the implied volatility
spread as the main explanatory variable along with several control variables capturing various stock
and option characteristics. The second regression (Column (2)) decomposes the implied volatility
spread into the early exercise premium and residual frictions. The stock characteristics that we in-
clude as control variables are: Size, as measured by the natural logarithm of the market capitalization
of the stock; the book-to-market ratio; the beta of the stock, estimated over the prior 60 months;
idiosyncratic stock volatility, calculated from the standard deviation of the residuals from the Fama-
French-Carhart regression model (Carhart, 1997) estimated over the prior 60 months; momentum,
measured as the cumulative stock return over months t− 11 to t; reversal, measured as the stock
return over months t− 1 to t; and the Amihud (2002) stock illiquidity measure, calculated as the
absolute stock return divided by its dollar volume. The option characteristics we use as control vari-
ables are: put and call open interest; and the bid-ask spreads of the put and call options. All of the
independent variables are dated t− 1. The numbers in square parentheses are t-statistics calculated
using Newey and West’s (1987) autocorrelation and heteroscedasticity-consistent covariance matrix
with the lag length for the autocorrelation set at 12.

Regression Model:

(1) (2)

Dependant Variable: Monthly Excess Stock Return

Early Exercise Premium −0.21
[−3.71]

Residual Frictions 0.08
[0.42]

Implied Volatility Spread 0.05
[4.23]

Size 0.16 0.16
[2.87] [2.89]

Book-to-Market 0.35 0.37
[1.81] [1.87]

Stock Beta −0.82 −0.93
[−0.36] [−0.41]

Idiosyncratic Volatility 0.21 0.20
[2.49] [2.45]

Momentum 0.46 0.46
[1.68] [1.68]

Reversal −0.23 −0.23
[−3.44] [−3.37]

Stock Illiquidity 0.50 0.51
[2.32] [2.34]

Put Open Interest 0.74 0.74
[1.75] [1.75]

Call Open Interest −0.12 −0.12
[−0.63] [−0.66]

Put Bid-Ask Spread −0.13 −0.15
[−0.98] [−1.15]

Call Bid-Ask Spread 0.24 0.25
[1.07] [1.12]

Intercept -2.23×10−3 -2.23×10−3

[−2.77] [−2.77]
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Table 3.8: Controlling for Stock Short-Selling Constraints

The table presents the mean excess returns of value-weighted stock portfolios sorted on the early
exercise premium, measured at the stock level. The sample consists of observations on stocks with
either non-missing Daily-Cost-to-Borrowing Score (DCBS) values or ones equal to or below the DCBS
values of eight, seven and five at the end of month t− 1. At the end of month t− 1, we sort stocks
into portfolios according to the quintile breakpoints of the stock-level early exercise premium. We
also form a spread portfolio long the top and short the bottom quintile (“High−Low”). We then
hold the portfolios over month t. The numbers in square parentheses are t-statistics calculated using
Newey and West’s (1987) autocorrelation and heteroscedasticity-consistent covariance matrix with
the lag length for the autocorrelation set at 12.

Value-weighted Quintile Portfolios

Sorting Variable: Early Exercise Premium

1(Low) 2 3 4 5(High) High−Low

Mean Monthly Excess Portfolio Return (in %)

With All DCBS Values 0.93 0.71 0.57 0.47 0.34 −0.59
[2.11] [1.90] [1.32] [1.11] [0.70] [−3.02]

With DCBS Value ≤ 8 0.92 0.72 0.55 0.48 0.37 −0.55
[2.08] [1.93] [1.26] [1.13] [0.77] [−2.73]

With DCBS Value ≤ 7 0.93 0.72 0.56 0.47 0.38 −0.55
[2.10] [1.92] [1.30] [1.10] [0.80] [−2.73]

With DCBS Value ≤ 5 0.92 0.72 0.60 0.48 0.39 −0.54
[2.10] [1.91] [1.40] [1.11] [0.81] [−2.76]
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Table 3.9: Controlling for Stock Short-Selling Constraints and Option
Illiquidity

The table presents the mean excess returns of value-weighted stock portfolios sorted on the early
exercise premium, measured at the stock level. The sample consists of observations on stocks with a
Daily-Cost-to-Borrowing Score (DCBS) equal to or below five at the start of the stock return period.
At the end of month t− 1, we first sort American and synthetic European option pairs into decile,
quintile and tercile portfolios based on the scaled bid-ask spread (our proxy for option illiquidity) of
the American call option. We then exclude the highest illiquidity option portfolio from the sample
and calculate stock-level early exercise premia using the remaining observations. We then sort stocks
into value-weighted portfolios according to the quintile breakpoints of these early exercise premia. We
also form a spread portfolio long the top and short the bottom quintile (“High−Low”). We hold the
portfolios over month t. The numbers in square parentheses are t-statistics calculated using Newey
and West’s (1987) autocorrelation and heteroscedasticity-consistent covariance matrix with the lag
length for the autocorrelation set at 12.

Sample With DCBS Value ≤ 5

Value-weighted Quintile Portfolios

Sorting Variable: Early Exercise Premium

1(Low) 2 3 4 5(High) High−Low

Excluding Highest Illiquidity Mean Monthly Excess Portfolio Return (in %)

in Decile Sort 0.97 0.72 0.50 0.55 0.36 −0.61
[2.20] [1.91] [1.14] [1.32] [0.74] [−2.71]

in Quintile Sort 0.98 0.67 0.54 0.56 0.34 −0.64
[2.25] [1.76] [1.26] [1.35] [0.69] [−2.89]

in Tercile Sort 0.95 0.73 0.55 0.56 0.34 −0.60
[2.21] [1.83] [1.27] [1.37] [0.71] [−2.61]
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Table 3.10: Controlling for Option Moneyness and Time-to-Maturity

The table presents the mean excess returns of value-weighted stock portfolios sorted on the early
exercise premium, measured at the stock level. We calculate a number of early exercise premia for
each individual stock using observations on options from various moneyness and time-to-maturity
categories. At the end of each sample month t− 1, we first sort options into portfolios according to
whether their strike-to-stock price ratio (“moneyness”) lies above 1.05 (Panel A), between 0.95 and
1.05 (Panel B), or below 0.95 (Panel C). Within each moneyness portfolio, we next sort them into
portfolios according to whether their days-to-maturity are between 10 and 30, between 30 and 60, or
above 60 days. For each stock, we then use option observations from each of these moneyness and
time-to-maturity-sorted portfolios separately to calculate stock-level early exercise premia. We finally
sort stocks into portfolios separately according to the quintile breakpoints of each version. We also
form separate spread portfolios long the top and short the bottom quintile (“High−Low”). We then
hold the portfolios over month t. The numbers in square parentheses are t-statistics calculated using
Newey and West’s (1987) autocorrelation and heteroscedasticity-consistent covariance matrix with
the lag length for the autocorrelation set at 12.

Value-weighted Quintile Portfolios

Sorting Variable: Early Exercise Premium

Days-to-Maturity 1(Low) 2 3 4 5(High) High−Low

Mean Monthly Excess Portfolio Return (in %)

Panel A: In-The-Money (Strike-to-Stock Price > 1.05)

10 - 30 0.59 0.99 0.56 0.54 0.41 −0.18
[1.40] [2.44] [1.25] [1.22] [0.81] [−0.70]

30 - 60 0.45 0.48 0.68 0.65 0.14 −0.31
[0.95] [1.04] [1.49] [1.76] [0.30] [−1.42]

60 - 120 1.03 0.57 0.60 0.47 0.41 −0.61
[2.28] [1.21] [1.16] [1.14] [0.81] [−2.46]

Panel B: At-The-Money (Strike-to-Stock Price 0.95 to 1.05)

10 - 30 0.92 0.58 0.64 0.45 0.15 −0.77
[2.33] [1.55] [1.69] [1.15] [0.36] [−3.83]

30 - 60 0.63 0.63 0.45 0.44 0.29 −0.33
[1.47] [1.51] [1.26] [1.18] [0.65] [−1.31]

60 - 120 0.94 0.90 0.48 0.34 0.49 −0.45
[2.02] [2.22] [1.05] [0.79] [0.88] [−1.59]

Panel C: Out-Of-The-Money (Strike-to-Stock Price < 0.95)

10 - 30 0.81 1.33 0.53 0.33 0.11 −0.70
[1.04] [1.86] [0.77] [0.52] [0.14] [−1.08]

30 - 60 0.72 0.45 0.44 0.55 0.39 −0.32
[1.31] [0.90] [0.88] [1.01] [0.70] [−1.05]

60 - 120 0.88 0.85 0.40 0.26 0.57 −0.31
[1.80] [1.96] [0.78] [0.50] [0.98] [−1.27]
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Table 3.11: Additional Robustness Tests

The table presents the mean excess returns of value-weighted stock portfolios sorted on the implied
volatility spread, the early exercise premium and residual frictions, all measured at the stock level. At
the end of month t− 1, we sort stocks into portfolios according to the quintile breakpoints of each of
the three sorting variables. We also form a spread portfolio long the top and short the bottom quintile
(“High−Low”). We then cumulate stock returns for each portfolio starting from the next day rather
than starting from the portfolio formation day, that is, we exclude the overnight return from the
portfolio formation day. These results are presented in Panel A. Panel B reports results from using
the dollar value of open interest when calculating the weights used to calculate the implied volatility
spreads and early exercise premia. Panel C reports the returns for portfolios sorted separately on
positive and negative values of the stock-level early exercise premia. For these three panels, we
hold the portfolios over month t. Finally, Panel D reports returns for early exercise premium-sorted
portfolios over the second month after portfolio formation. The numbers in square parentheses are t-
statistics calculated using Newey and West’s (1987) autocorrelation and heteroscedasticity-consistent
covariance matrix with the lag length for the autocorrelation set at 12.

Value-weighted Quintile Portfolios

Sorting Variables 1(Low) 2 3 4 5(High) High−Low

Mean Monthly Excess Portfolio Return (in %)

Panel A: Excluding Overnight Returns

Implied Volatility Spread −0.09 0.58 0.37 0.76 1.00 1.09
[−0.19] [1.49] [0.94] [2.29] [3.06] [4.34]

Early Exercise Premium 0.91 0.78 0.51 0.43 0.19 −0.71
[2.67] [2.10] [1.38] [1.11] [0.48] [−4.36]

Residual Frictions 0.52 0.54 0.60 0.42 0.67 0.15
[1.04] [1.23] [1.85] [1.16] [1.99] [0.68]

Panel B: Using Dollar Value of Open Interests

Implied Volatility Spread −0.06 0.31 0.59 0.68 0.96 1.01
[−0.13] [0.81] [1.70] [1.73] [2.69] [5.91]

Early Exercise Premium 0.97 0.70 0.54 0.39 0.22 −0.74
[3.06] [1.83] [1.47] [1.01] [0.55] [−3.73]

Residual Frictions 0.44 0.53 0.65 0.46 0.66 0.22
[1.00] [1.44] [1.99] [1.19] [1.75] [1.22]

Panel C: Using Positive/Negative Early Exercise Premium

with ’+’ Premium 0.67 0.58 0.45 0.38 0.21 −0.46
[1.95] [1.55] [1.07] [0.95] [0.49] [−2.38]

with ’−’ Premium 0.80 0.75 0.77 0.60 0.58 −0.22
[1.90] [1.73] [1.94] [1.45] [1.42] [−1.19]

Panel D: Mean Excess Return Over Month t+ 2 (in %)

Early Exercise Premium 0.60 0.63 0.65 0.63 0.40 −0.20
[1.66] [1.95] [1.61] [1.77] [0.89] [−0.97]
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Table 3.12: Only Including Observations on Options With Zero Trading
Volume

The table presents the mean excess returns of value-weighted stock portfolios sorted on the implied
volatility spread, the early exercise premium and residual frictions, all measured at the stock level.
We only include option observations with zero trading volume to calculate the implied volatility
spread, the early exercise premium and residual frictions for each stock in our sample. At the end
of month t − 1, we sort stocks into portfolios according to the quintile breakpoints of each of the
three sorting variables. We also form a spread portfolio long the top and short the bottom quintile
(“High−Low”). We hold the portfolios over month t. Observations on the implied volatility spread
and the early exercise premium are matched, so that both correspond to the same underlying stock
at t − 1. The numbers in square parentheses are t-statistics calculated using Newey and West’s
(1987) autocorrelation and heteroscedasticity-consistent covariance matrix with the lag length for the
autocorrelation set at 12.

Value-weighted Quintile Portfolios

Sorting Variables 1(Low) 2 3 4 5(High) High−Low

Mean Monthly Excess Portfolio Return (in %)

Implied Volatility Spread 0.09 0.36 0.55 0.80 0.88 0.79
[0.20] [0.95] [1.49] [2.18] [2.43] [4.12]

Early Exercise Premium 0.90 0.78 0.59 0.40 0.27 −0.63
[2.70] [1.99] [1.62] [1.08] [0.62] [−3.65]

Residual Frictions 0.35 0.51 0.42 0.56 0.74 0.39
[0.79] [1.32] [1.18] [1.71] [1.81] [2.11]
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