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This thesis studies the dynamic optimality introduced by Pedersen and Peskir [43] in the
mean-variance portfolio selection problem from the dynamic programming perspective. For
a self-financing portfolio, the investor aims to determine the maximal value function defined
by:

V (t,x) = sup
u

[
Et,x(Xu

T )− cVart,x(Xu
T )
]
.

The quadratic nonlinearity introduced by the variance term can be handled by the method
of Lagrange multipliers, and the application of the HJB equation enables us to obtain the
optimal solution. In this thesis, we introduce various different market settings, including
(a) prohibition of short-selling, (b) margin requirements, (c) that the stock that is driven by
the constant elasticity of variance model, and (d) partial information. For these problems,
we investigate (i) time-inconsistent strategies (static optimality) and (ii) the time-consistent
strategies (dynamic optimality), and we compare their performance. Alongside solving the
original optimal problem, we also consider the other two constrained cases where we con-
dition the size of the expectation/variance of the terminal wealth. In Chapter 2, we consider
portfolio selection under a no short-selling constraint, in which a change-of variable for-
mula from [45] is used to replace the viscosity solution to overcome the non-smoothness
of the value function. Under the no short-selling constraint, both static and dynamic opti-
malities naturally prevent bankruptcy. However, static optimality suggests that the investor
should hold all of his wealth in the riskless bond if his wealth is large enough, while dy-
namic optimality encourages the investor to keep holding the risky asset for a higher return.
Inspired by the method applied in Chapter 2, we further consider the margin requirement
for short-selling in Chapter 3. The conclusion analyses the impact of the change of mar-
gin rate on the performance of both static and dynamic optimalities and verifies that some
properties of those two optimalities described in [43] are still valid in this case. In Chapter
4, we study the case where the stock price follows the constant elasticity of variance (CEV)
model. The CEV model can be taken as a natural extension of geometric Brownian motion,
and it has advantages such as explaining the implied volatility smile. We derive static and
dynamic optimalities for both the unconstrained problem and the constrained problems. By
choosing a proper value for the elasticity parameter, we can easily extend our conclusion
to cases where the risky asset follows different processes such as geometric Brownian mo-
tion and the Ornstein-Uhlenbeck process. Hence, the model we set in Chapter 4 can be
seen as a general solution that covers the work of [43]. Besides, the conclusion in Chap-
ter 4 is also valid when there exist arbitrage opportunities for the stock. In Chapter 5, we
consider portfolio selection under partial information, since the investor normally can only
access limited information in a real financial market. The biggest difficulty is that the fil-
tering and optimisation aspects of the problem are hard to separate, which can be handled
by using the separation principle studied in [56]. Under partial information, we obtain both
time-consistent and time-inconsistent solutions.
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Chapter 1

Introduction

In mathematical finance, portfolio selection has always been a core problem and has con-

stantly driven researchers along the path of extending this problem to a broader level. In

1952, Markowitz [37] (see also [36]) introduced his pioneering mean-variance analysis for

the modern portfolio theory, in which the variance of underlying assets is considered as

a determinant for deciding the optimal strategy. Markowitz introduced the principle that

maximises the expected return for each given and fixed value of variance which constructs

the efficient frontier. Merton [38] further derives the explicit efficient frontier for different

cases for the single-period case under different settings. As summarised in [18], one of

the most important features of modern portfolio theory is that the investor should consider

the diversification of risky assets rather than blindly choosing a risky asset by its unique

features.

From the single-period case, this problem has been extended to multi-period cases (for

example [40], [24], [19] and [32]). In [24], Hakansson analyses optimal consumption and

investment as well as lending/borrowing strategies via utility analysis over multiple periods.

Fama [19] observes that in a perfect market setting and with a strictly concave utility func-

tion, the action of the investor in any period is consistent with the conclusion in a single

period. Furthermore, in [32], Li and Ng obtain the mean-variance efficient frontier under

the multi-period setting. In recent years, more practical assumptions and settings have been

added such as the mean-semi-variance model [59] and bankruptcy prohibition [53]. Since

the multi-period case is not the target of this thesis, we will skip further details and focus on

the continuous setting.

There is a series of studies that considers the mean-variance portfolio selection under a

12
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continuous formulation (for example Chapters 4, 5 and 6 of [39]). The martingale method

has played an important role in solving the continuous portfolio selection problem. In [3],

Bielecki, Jin, Pliska, and Zhou adopt the martingale method to study the portfolio selection

under the bankruptcy prohibition. They first design the equivalent martingale measure, and

under the martingale measure, the discounted wealth process is a martingale, from which

the problem is split into two steps: achieving the optimal terminal wealth for the constrained

problem firstly and the optimal control can be obtained by replacing the contingent claim

of the corresponding optimal terminal wealth. The Ito-Clark theorem guarantees the one-

to-one correspondence between the optimal control and the corresponding optimal terminal

wealth. Similar methods can be seen in [42] where the bankruptcy constraint is replaced

by a guaranteed value g, and the conclusion indicates that for the dynamic optimal wealth

process, the terminal wealth will only take either g or the expected terminal wealth β. The

martingale method is applied to handle more challenging cases. In [22], Gao, Xiong, and

Li consider the mean-variance-CVaR (conditional value-at-risk) model and mean-variance-

SFP (safety-first-principle) where the definition of CVaR is described by [47] in which the

safety-first-principle is inspired by the work of [48] and [31] and is described by a disaster

probability.

Besides the martingale approach, dynamic programming has also been wildly applied

in continuous portfolio selection. For example, Zhou and Li consider the continuous mean-

variance problem and handle the nonlinearity caused by variance via converting the problem

into the auxiliary control problem which is solved by the stochastic linear-quadratic method

(see Chapter 6 of [61] for further details about the stochastic LQ framework). Lim and Zhou

[34] further extend the previous work and the LQ optimal control technique to consider the

mean-variance portfolio selection with random parameters. The LQ optimal control ap-

proach has been adopted in more complicated cases. Based upon the previous work [63],

Xie further introduces liability management setting into the portfolio selection problem un-

der regime switching, in which two different Brownian motions drive the stock price process

and the liability process respectively, and obtains explicit optimal solutions and the corre-

sponding efficient frontier. In [60], Yao, Li, and Chen consider the portfolio selection when

the market only consists of risky assets by applying the HJB equation in which they not

only obtain the explicit efficient frontier but also verify the two fund separation principle

that is first introduced by [52] and describes that the linear combination of two efficient
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portfolios will still be efficient. Inspired by those previous works, in this thesis, we will

consider the continuous mean-variance portfolio selection problem under different condi-

tions and assumptions from the dynamic programming perspective, in which we will apply

different techniques such as the change-of-variable formula [45] and Legendre transform

(cf. [27], [21] and [54]) to solve the HJB equation and investigate both time-inconsistent

and time-consistent solutions.

Time-inconsistent and time-consistent solutions have been greatly considered in portfo-

lio theory. In [50], Strotz notes the time inconsistency of the consumption plan and comes

up with two concepts: the pre-commitment strategy and the ‘consistent planning’. Recalling

the formulation of [50], we see that the pre-commitment suggests the investor should follow

the strategy he made at the beginning date while in the consistent planning, the investor

will reject those strategies he will not follow and only consider the optimal plan from the

strategies that he will follow. This ‘consistent planning’ strategy is considered by Peleg and

Yaari in [44], and they point out that this ‘consistent planning’ only gives optimal solutions

when the investor has the ‘stationary preference’ (i.e. the utility function depends on the

consumption rate from the current time and the utility function stays the same at any point

of time). Seeing the limit of the ‘consistent planning’, Peleg and Yaari further introduce

the Nash-equilibrium control which will be able to handle the case when the investor is

changing his preference and note that if there exists an optimal control under the definition

of ‘consistent planning’, then it must be a Nash-equilibrium one. Nash-equilibrium optimal

control has been considered in many studies. Björk and Murgoci [6] introduce the delicate

extended HJB equation to obtain the Nash subgame perfect equilibrium controls, which is

time-consistent, to overcome the time inconsistency. This extended HJB equation has been

used to derive the equilibrium optimal control when the risk aversion rate is state-dependent

[7] and the time consistent portfolio selection under the short-selling constraint [2]. Further-

more, in [43], Pedersen and Peskir [43] adopt the dynamic programming method to solve the

nonlinear mean-variance portfolio selection problem, in which they note that optimal con-

trol depends on the initial point of the underlying wealth process. This concept is referred to

as static optimality (it should be mentioned that the static optimality has been considered as

pre-commitment in [50]). Furthermore, they extend the static optimality to the dynamic op-

timality in which the optimal control is time-consistent. Dynamic optimality claims that for

each new position of the controlled wealth process, there is a new optimal control problem to
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solve based on overruling all the previous problems [43]. It should be mentioned that the dy-

namic optimality introduced by [43] is different from the time-consistent control under the

Nash subgame perfect equilibrium setting. In [43], we have seen the comparison between

the subgame-perfect Nash equilibrium and the dynamic optimality and [43] has shown that

the dynamic optimality outperforms the subgame-perfect Nash equilibrium control. In this

thesis, we will follow the definition and method of [43] to investigate the statically optimal

control and dynamically optimal control under four different settings including no short-

selling constraint, the existence of margin requirement, the stock price follows the constant

elasticity of variance model, and portfolio selection under partial information.

In this thesis, we assume that there is a financial market that consists of two assets, a

riskless bond and a risky stock, and we aim to construct a self-financing portfolio dynami-

cally until the maturity. To optimise the performance of the portfolio, we need to decide the

optimal control by evaluating the following value function:

V (t,x) = sup
u

Et,x(Xu
T )− cVart,x(Xu

T ) (1.1)

in which c> 0 represents the risk aversion rate. Following the idea introduced by Markowitz

[37], the expected return and risk of the portfolio are represented by the expectation and

variance of the value process of the portfolio respectively. Naturally, the variance term in-

troduces the quadratic nonlinearity into this problem. The quadratic nonlinearity makes the

standard optimal control theory (cf. [20]) infeasible, and instead, we follow the methodol-

ogy of [43] to solve the optimal control problem by applying Lagrange multipliers and the

HJB equation. In the following chapters, we will adopt different techniques to solve the HJB

equation because the setting of the market is changing in each chapter. The solution of the

HJB equation shows that the optimal control relates to the initial time and value of the con-

trolled wealth process, and this time-inconsistent solution is named as static optimality in

[43]. From the statically optimal control, we can derive the time-consistent control, i.e. the

dynamic optimality. As [43] mentions that there is a connection between these two controls,

which is, the dynamically optimal control is equivalent to the statically optimal control with

the same initial status. This fact is used to derive the dynamically optimal control from the

static case. Besides the unconstrained case given by (1.1), we further attempt to consider

the other two constrained cases mentioned in [43] where we maximise the expectation of

the terminal wealth or minimise the variance of the terminal wealth when we condition the

size of the variance or expectation of the terminal wealth respectively. More details will
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be exhibited in the formulation section in each chapter as we may change the setting or

notation.

Before we introduce the content of each chapter, we firstly introduce definitions of the

static optimality and dynamic optimality, which are given in [43].

Definition 1.1 (Static optimality) [43]. For a given status (t,x) ∈ [0,T ]×R, an admis-

sible control u∗ is called a statically optimal control in the unconstrained problem V (t,x) =

supu Et,x(Xu
T )− cVart,x(Xu

T ) if there is no other control v such that:

Et,x(Xv
T )− cVart,x(Xv

T )> Et,x(X
u∗
T )− cVart,x(X

u∗
T ). (1.2)

For a given status (t,x) ∈ [0,T ]×R, an admissible control u∗ is called a statically optimal

control in the constrained problem V1(t,x) = supu:Vart,x(Xu
T )≤α Et,x(Xu

T ) if Vart,x(X
u∗
T )≤ α and

there is no other admissible v such that Vart,x(Xv
T )≤ α and:

Et,x(Xv
T )> Et,x(X

u∗
T ). (1.3)

For a given status (t,x) ∈ [0,T ]×R, an admissible control u∗ is called a statically optimal

control in the constrained problem V2(t,x) = infu:Et,x(Xu
T )≥β Vart,x(Xu

T ) if Et,x(X
u∗
T ) ≥ β and

there is no other control v such that Et,x(Xv
T )≥ β and:

Vart,x(Xv
T )< Vart,x(X

u∗
T ). (1.4)

Definition 1.2 (Dynamic optimality) [43]. For each given and fixed pair (t,x)∈ [0,T ]×

R, an admissible control u∗(t,x) is dynamically optimal in the constrained problem V (t,x) =

supu Et,x(Xu
T )− cVart,x(Xu

T ) if, for any admissible control v(t,x) 6= u∗(t,x), there exists a

control w such that w(t,x) = u∗(t,x) and we have:

Et,x(Xv
T )− cVart,x(Xv

T )< Et,x(Xw
T )− cVart,x(Xw

T ). (1.5)

For each given and fixed pair (t,x)∈ [0,T ]×R, an admissible control u∗(t,x) is dynamically

optimal in the constrained problem V1(t,x)= supu:Vart,x(Xu
T )≤α Et,x(Xu

T ) if Vart,x(X
u∗
T )≤α and

for any admissible control v(t,x) 6= u∗(t,x) such that Vart,x(Xv
T ) ≤ α, there exists a control

w such that w(t,x) = u∗(t,x) and Vart,x(Xw
T )≤ α and we have:

Et,x(Xv
T )< Et,x(Xw

T ). (1.6)
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For each given and fixed pair (t,x)∈ [0,T ]×R, an admissible control u∗(t,x) is dynamically

optimal in the constrained problem V2(t,x) = infu:Et,x(Xu
T )≥β Vart,x(Xu

T ) if Et,x(X
u∗
T ) ≥ β and

for any admissible control v(t,x) 6= u∗(t,x) such that Et,x(Xv
T ) ≥ β, there exists a control w

such that w(t,x) = u∗(t,x) and Et,x(Xw
T )≥ β and we have:

Vart,x(Xv
T )> Vart,x(Xw

T ). (1.7)

In these two definitions, we set that ut is the percentage of wealth invested in the stock at

t ∈ [t0,T ] and U is the set of all admissible controls. For any admissible control u, we have

ut = u(t,Xu
t ) where (t,x) 7→ u(t,x) · x is a continuous function from [0,T ]×R into R. For

completeness, following the idea of [43], we define u(t,0) = u(t,0) · 0 = lim06=x 7→0 u(t,x)

because the map x 7→ u(t,x) may not exist at 0.

In Chapter 2, we study nonlinear mean-variance portfolio selection under a no short-

selling constraint, for which we obtain both the statically and the dynamically optimal con-

trols. The short-selling prohibition introduces non-smoothness into the value function of

the HJB equation, and we manage to use the change of variable formula with local time on

the curve to replace the viscosity solution technique to achieve the optimal control, which

has not been noted in other papers. The optimal controls look intuitively similar to that of

[43] as they are the non-negative part of the optimal controls given by the unconstrained

case in [43]. Besides the optimal control, we also derive the strong solutions of the optimal

wealth process for both static and dynamic optimalities. Both strategies naturally prevent

bankruptcy of the investor, however, static optimality suggests that the investor should invest

all his wealth in the riskless bond if his wealth is large enough while dynamic optimality

encourages the investor to keep holding the risky asset for a higher return, which is also

original. Since the distribution of the stopping time of the wealth process is unknown, cal-

culating the expectation and variance of the terminal wealth is not feasible (note there is still

a possible way to calculate the expectation without knowing the distribution of the stopping

time but it is out of the scope of this chapter). The conclusion of the numerical analysis in-

dicates that the performance of those two strategies and their stopping time distributions is

highly impacted by the change of risk aversion rate, and Theorem 2.3 provides the investor

with different risk aversion preferences. Moreover, comparing Theorem 2.3 from Chapter

2 with Theorem 3 of the unconstrained cases in [43], we note that both static and dynamic

optimalities under short-selling prohibition outperform the unconstrained case.
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In Chapter 3, we introduce the margin requirement for short-selling into the mean-

variance portfolio selection, which can be viewed as an extension as Chapter 2. The margin

requirement also introduces the non-smoothness into the value function of the HJB equation.

Hence, following the same method in Chapter 2, we apply the change-of-variable formula

with local time on a curve to replace the Ito formula in the verification theorem to prove

the optimality of the control. For both statically and dynamically optimal controls, the non-

negative part of both controls is also consistent with the unconstrained cases in [43] while

the negative part is smaller than that of [43] as the margin requirement forces the investor to

short sell larger portion of the risky asset. Setting the margin rate to 0 will reduce Theorem

3.1 to the unconstrained case in [43]. Moreover, if the margin rate is large enough, the short-

selling will be forbidden. In the numerical analysis, we further consider the impact of the

margin rate on both of the strategies and note that increasing the margin rate will enhance

the performance of both strategies. This phenomenon only exists under the perfect market

assumption. Moreover, we verify the features of both optimalities observed in [43] are still

valid under the margin requirement.

In the two chapters discussed above, the stock price follows a geometric Brownian mo-

tion; while in Chapter 4, we adopt a constant elasticity of variance (CEV) model to describe

the stock prices in the mean-variance formulation. Due to the CEV model, the HJB equa-

tion turns into a complicated second-order nonlinear partial differential equation. In order

to handle this difficulty, we introduce the Legendre transform and dual theory to transform

the HJB equation to its dual function. From the solution of the dual function, we can easily

derive the optimal control for the prime problem. Choosing a proper value for the con-

stant elasticity parameter β of the CEV model can lead to various cases such as geometric

Brownian motion, the Ornstein-Uhlenbeck process, etc. Hence, we can consider the model

described in Chapter 4 as a general solution and we will see that the conclusion in [43]

will be easily derived from Theorem 4.1 by setting β = 0. In Chapter 4, we also conduct

numerical analysis to further observe the impact of changing the constant elasticity param-

eter to the performances of both static and dynamic optimalities. In the unconstrained case,

numerical analysis indicates that under the CEV model, the static investor will have a dif-

ferent prediction of the future trend of the stock from the dynamic investor. In the numerical

analysis section, we verify that the conclusion under the CEV model will have the same

features as the previous work [43]. However, the only difference is, in the first constrained
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problem where the investor attempts to maximise the expectation of the terminal wealth

while conditioning the size of the variance of the terminal wealth, the static optimality al-

ways outperforms the dynamic optimality if β 6= 0 as the static sample mean µ̄s of terminal

wealth is larger than the dynamic case and β = 0 is the only case that the dynamic optimality

outperforms the static optimality.

In Chapter 5, we consider the mean-variance portfolio selection under partial informa-

tion, in which the drift rate of the geometric Brownian motion that describes the stock price

is unknown and the only information available for the investor is the stock price up to the

current time. The partial information setting naturally leads to a filtering problem in mean-

variance portfolio selection. Adopting the Kalman-Bucy method enables us to obtain the

process for the optimal estimator µt and its error of estimation γt . Moreover, in the past, the

biggest challenge has been to separate the filtering and optimisation. However, [56] verifies

a significant result, the separation principle, which is specifically applicable for the mean-

variance portfolio selection problem, and it enables us to replace the unknown drift rate by

the corresponding conditional expectation in the wealth process for Xu
t and solve the optimal

control problem with respect to the wealth process as the full information case. By adopting

the separation principle and solving the HJB equation by solving a Riccati-type ODE gives

the closed-form solution for the statically optimal control, from which the dynamically opti-

mal control can be easily derived. Apart from solving the unconstrained problem, we extend

the conclusions to two constrained problems.

In [43], Pedersen and Peskir firstly introduce the concept of dynamic optimality for time-

consistency in portfolio selection problem and manage to derive the time-consistent solution

from the time-inconsistent solution. They further prove that the dynamic optimality outper-

forms the static case in constrained cases where they condition the size of the expectation/-

variance of the terminal wealth and analyse optimal wealth process behaviour. Hence, this

thesis extends the work of [43] to four different situations and compares the performance

of both optimalities. In Chapter 2, portfolio selection with a no short-selling constraint, we

manage to use the change of variable formula with local time on the curve to replace the

viscosity solution technique to achieve the optimal control and conduct numerical analysis

to compare the performance of both optimalities and verify the conclusion introduced in

[43]. In Chapter 3, we follow the same method adopted in Chapter 2 to extend the work of
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[43] under the existence of margin requirements and consider the impact of margin require-

ment to the performance of both strategies as well as verifying the features found in [43]. In

Chapter 4, we generalise the work of [43] by introducing the CEV model which is solved by

applying Legendre transform and from Theorem 4.1, we can easily derive the conclusion of

[43]. Furthermore, by numerical analysis, we verify that most of the features of [43] are still

valid except the case where the investor attempts to maximise the expectation of the terminal

wealth while conditioning the size of the variance of the terminal wealth, in which the static

optimality outperforms the dynamic case under the existences of the non-zero value of the

constant elasticity parameter. In Chapter 5, we extend the problem to partial information

case, in which the separation principle is adopted to separate the filtering and optimisation

and obtain both time-inconsistent and time-consistent solutions. Note that the substance of

Chapter 2 has been written up and submitted for publication. The remaining chapters have

also been written so as to form the basis of a set of working papers, which we hope to submit

for publication in the future.



Chapter 2

Optimal Mean-Variance Portfolio

Selection with No Short-Selling

Constraint

2.1 Introduction

In a real financial market, it could be difficult to conduct short-selling of the risky asset for

many reasons such as borrowing a small amount of a single risky asset is not always feasible,

especially for those stocks with low institutional ownership; moreover, the investor may face

public moral censure, especially during a financial crisis (see [30] for further details). Seeing

those restrictions inspires us to introduce a no short-selling constraint into the mean-variance

portfolio selection problem and consider the performance of both the time-inconsistent and

time-consistent strategies.

Various studies consider the mean-variance portfolio selection with a no short-selling

constraint. For instance, in [57] and [58], Shreve and Xu introduce the duality method

and utility analysis for the constrained consumption-portfolio problem under the no short-

selling constraint. Specifically, [57] considers short-selling prohibition in the market with

time-dependent coefficients, which can be seen as a general case, and introduces the method

to construct the primal and dual functions as well as deriving the optimal strategy for the pri-

mal problem from the solution of the dual function. In [57], they rule out the short-selling of

the risky asset by constraining the wealth process to be non-negative during the entire time,

and it turns this problem into a path-wise constrained case, which is solved by the martingale

21
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method. Since [57] considers the linear problem, in the following part, we will see that in the

non-linear problem, this path-wise constraint is not enough to rule out the short-selling case

completely. Furthermore, in the second part work of Shreve and Xu [58], they further ex-

plore the duality analysis for the portfolio selection under the short-selling prohibition when

the market coefficients are given constants by HJB approach. Furthermore, based upon the

work of [15] which considers the log utility function and two risky stocks with uncorrelated

rate of return under the short-selling constraint, [51] investigates the portfolio selection with

CRRA utility function with the borrowing and short-selling constraint. It should be noted

that as [33] states, the utility analysis does not reveal the relationship between the underlying

return and risk explicitly, and the optimal strategy achieved by utility functions normally is

not the mean-variance efficient except the case introduced in [17] where the quadratic utility

function can be related to the mean-variance setting. Li, Zhou and Lim extend their work

from unconstrained mean-variance portfolio selection [34] to the constrained control case

[33] by using stochastic linear-quadratic control technology. In [33], the main difficulty is

that the optimal control obtained by applying the Riccati equation may conflict the constraint

on the admissible control, and there is no classical solution of the Hamilton-Jacobi-Bellman

equation under the constraint on control. In striving for handling this issue, Li, Zhou and

Lim solve the Hamilton-Jacobi-Bellman equation by constructing a viscosity solution intro-

duced in [13] and using the verification theorem introduced in [64] to obtain the optimal

control which is of time-inconsistency for each given and fixed desired terminal expected

wealth, i.e. constructing the efficient frontier. Furthermore, Bensoussan, Wong and Yung [2]

not only manage to extend the time-inconsistent solution of mean-variance portfolio selec-

tion under short-selling prohibition to the time consistent case but also solve the case where

the risk aversion is state-dependent by applying extended Hamilton-Jacobi-Bellman equa-

tion introduced in [6]. Moreover, [2] achieves the subgame-perfect Nash optimal control for

the Lagrangian problem. In Subsection 4 of Section 4 in this chapter, we further consider

two constrained problems when we introduce the constraint on the size of the expectation/-

variance of the terminal wealth.

We aim to construct a self-financing portfolio under the no short-selling constraint dy-

namically in time to achieve the highest return and the lowest risk at maturity in a financial

market consisting of a riskless bond and risky stock. The variance brings the quadratic

nonlinearity into this problem, and we follow the methodology of [43] to solve the optimal
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control problem by applying Lagrange multipliers and the Hamilton-Jacobi-Bellman equa-

tion. However, the classic method (cf. [5]) for solving the HJB equation is not feasible in

the no short-selling problem because this constraint on the admissible control will intro-

duce non-smoothness into the value function of the Hamilton-Jacobi-Bellman system that

precludes the classical way to solve it. In this case, we follow the idea of [33] to construct

the value function. However, instead of achieving viscosity solution and using the viscosity

verification theorem to prove the optimality, we construct a change-of-variable formula with

local time on the curve where the non-smoothness occurs, which can be used to replace Itô’s

formula. We can then apply the verification theorem described in [5] to obtain the optimal

control. It should be pointed out that, based upon our best knowledge, using a change-of-

variable formula instead of applying viscosity solution has not been studied in the portfolio

selection problem.

The solution of the Hamilton-Jacob-Bellman equation shows that the optimal control re-

lates to the initial time and value of the controlled wealth process, and this time-inconsistent

control is named as static optimality in [43]. From the statically optimal control, we can

derive the time-consistent control, i.e. the dynamic optimality, as the dynamically optimal

control is equal to the statically optimal control with the same initial status. Both optimal

controls have been exhibited in Theorem 2.3. Furthermore, the controlled processes cor-

responding to both the statically and dynamically optimal control have been achieved in

Theorem 2.3, from which we note that both the statically optimal control and dynamically

optimal control prevent the bankruptcy naturally. However, comparing both the statically

optimal controlled wealth process and the dynamically optimal one, we can find that the

statically optimal control suggests that the investor should invest all the wealth in the bond

if the current wealth is large enough, which introduces the upper boundary of the controlled

wealth process. However, the dynamically optimal control encourages the investor to keep

holding the risky asset to achieve a higher return, which has not been observed before. Be-

sides that, it should be pointed out that, when comparing the previous work such as [33],

[57] and [58], in this chapter, the optimal control represents the optimal percentage of wealth

investing in the risky asset rather than the optimal total amount of risky asset.

Besides, we investigate the optimal control problems under the constraints on the size

of the expectation and variance of the terminal wealth respectively. In Corollary 2.4, we

achieve the optimal control that maximises the expectation of the terminal wealth of the
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investor, Et,x(Xu
T ), over all admissible control u such that the variance, Vart,x(Xu

T ), is bounded

above by a positive constant. Furthermore, in Corollary 2.5, we achieve the optimal control

that minimises the the variance of the terminal wealth of the investor, Vart,x(Xu
T ), over all

admissible control u such that the expectation, Et,x(Xu
T ), is bounded below by a positive

constant.

Additionally, in Section 4, we conduct numerical analysis for the static optimality and

dynamic optimality. Upon the numerical results, we note that the performance of both

strategies are highly impacted by the risk aversion rate. The static optimality outperforms

the dynamic optimality when the risk aversion is large enough while the dynamic optimal-

ity leads to a more favourable result when risk aversion rate is smaller, which provides the

investors with different levels of risk aversion with different investment strategies and has

practical meaning in the real financial market. Furthermore, changing the risk aversion rate

will change the distribution of the stopping time of both the static and dynamic wealth pro-

cesses. Besides, we observe that, under the no short-selling constraint, both static optimality

and dynamic optimality outperform the static and dynamic strategies introduced by [43] by

setting the unconstrained case as an example. It should be mentioned that in this chapter,

we assume that there is no transaction cost or tax deduction.

2.2 Formulation of the problem

There is a financial market which consists of two assets, a riskless bond and a risky stock.

The price of the riskless bond is indicated by B, which solves the following stochastic dif-

ferential equation:

dBt = rBtdt (2.1)

with initial value Bt0 = b, where b > 0 and the riskless interest rate r ∈R are constants. The

price of the risky stock, S, follows a geometric Brownian motion, which solves

dSt = µStdt +σStdWt (2.2)

where we have the drift rate µ ∈ R and the volatility σ > 0. For this risky stock, we set

the initial value St0 = s for a given constant s > 0. Furthermore, in the probability space

(Ω,F,P), S has the same natural filtration as that of W , where W is a standard Brownian
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motion. It is reasonable to stipulate that the value of µ must be greater than r, which indicates

a risk premium. Otherwise, if µ ≤ r, a wise investor will simply invest all money in the

riskless bond.

Suppose an investor wants to invest in a self-financing portfolio that consists of the two

assets above. If the investor invests dynamically in time until the maturity T > 0 with initial

wealth is x0 > 0, the investor’s wealth can be described by the following stochastic process

or controlled wealth process (see e.g. [5], Chapter 6):

dXu
t = (r+(µ− r)ut)Xu

t dt +σutXu
t dWt . (2.3)

By self-financing, we mean there is no external fund added or withdrawn. In (2.3), ut repre-

sents the percentage of wealth invested in the stock at a given point of time t, where t ∈ [t0,T ]

and t0 ∈ [0,T ), and U represents the set of all admissible controls. In this chapter, we do

not allow short-selling of the stock, which means for any admissible control u ∈U , we have

u≥ 0. However, there is no constraint for borrowing money from the financial market with

the riskless interest rate r, which means 1−u ∈ (−∞,1].

Furthermore, for each admissible control u in (2.3), we assume ut = u(t,Xu
t ) where

(t,x) 7→ u(t,x) · x is a continuous function from [0,T ]×R into R. For completeness, we

define u(t,0) = u(t,0) · 0 = lim0 6=x→0 u(t,x) because the map x 7→ u(t,x) may not exist at

0. In other words, we replace utXu
t by u(t,0) · 0 in (2.3) when Xu

t = 0. Additionally, in

this chapter, we only consider the situation where each admissible control leads to a unique

strong solution Xu in Itô’s sense. (We will omit the case when u leads to the weak solution

here).

Given a probability measure Pt,x, for each admissible control u, Xu
t is a strong Markov

process and takes value x for a given and fixed time t where (t,x) ∈ [0,T ]×R. In the first

constrained problem, we will find the optimal control for the following equation:

V (t,x) = sup
u≥0

[Et,x(Xu
T )− cVart,x(Xu

T )] (2.4)

in which c > 0 is a given constant. For all u ∈U we have u ≥ 0 and Et,x[(Xu
T )

2] < ∞ and a

sufficient condition for this relation is given by

Et,x[
∫ T

t
(1+u2

s )(X
u
s )

2ds] < ∞, (2.5)

which can be proved by Jensen’s inequality and the Burkholder-Davis-Gundy inequality.
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Apart from solving the first constrained problem (2.4), we also solve two constrained

problems, which are defined by:

V1(t,x) = sup
u≥0:Vart,x(Xu

T )≤α

Et,x(Xu
T ) (2.6)

V2(t,x) = inf
u≥0:Et,x(Xu

T )≥β

Vart,x(Xu
T ) (2.7)

where u is the admissible control defined above, α ∈ (0,∞) and β ∈ R are given constants.

The solution of the first constrained problem can be used in the proof of the other two

constrained cases V1 and V2, which will be explained in Corollary 2.4 and 2.5.

In this chapter, we modify the definition of static optimality and dynamic optimality

given by reference [43] to fit the no short-selling constraint.

Definition 2.1 (Static optimality) [43]. For a given status (t,x) ∈ [0,T ]×R, an admis-

sible control u∗ ≥ 0 is called a statically optimal control in the constrained problem (2.4) if

there is no other control v≥ 0 such that:

Et,x(Xv
T )− cVart,x(Xv

T )> Et,x(X
u∗
T )− cVart,x(X

u∗
T ). (2.8)

For a given status (t,x)∈ [0,T ]×R, an admissible control u∗≥ 0 is called a statically optimal

control in the constrained problem (2.6) if Vart,x(X
u∗
T )≤ α and there is no other admissible

v≥ 0 such that Vart,x(Xv
T )≤ α and:

Et,x(Xv
T )> Et,x(X

u∗
T ). (2.9)

For a given status (t,x)∈ [0,T ]×R, an admissible control u∗≥ 0 is called a statically optimal

control in the constrained problem (2.7) if Et,x(X
u∗
T )≥ β and there is no other control v≥ 0

such that Et,x(Xv
T )≥ β and:

Vart,x(Xv
T )< Vart,x(X

u∗
T ). (2.10)

Definition 2.2 (Dynamic optimality) [43]. For each given and fixed pair (t,x)∈ [0,T ]×

R, an admissible control u∗(t,x) ≥ 0 is dynamically optimal in the constrained problem

(2.4) if, for any admissible control v(t,x) 6= u∗(t,x), there exists a control w ≥ 0 such that

w(t,x) = u∗(t,x) and we have:

Et,x(Xv
T )− cVart,x(Xv

T )< Et,x(Xw
T )− cVart,x(Xw

T ). (2.11)
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For each given and fixed pair (t,x)∈ [0,T ]×R, an admissible control u∗(t,x)≥ 0 is dynam-

ically optimal in the constrained problem (2.6) if Vart,x(X
u∗
T ) ≤ α and for any admissible

control v(t,x) 6= u∗(t,x) such that Vart,x(Xv
T ) ≤ α, there exists a control w ≥ 0 such that

w(t,x) = u∗(t,x) and Vart,x(Xw
T )≤ α and we have:

Et,x(Xv
T )< Et,x(Xw

T ). (2.12)

For each given and fixed pair (t,x) ∈ [0,T ]×R, an admissible control u∗(t,x) ≥ 0 is dy-

namically optimal in the constrained problem (2.7) if Et,x(X
u∗
T ) ≥ β and for any admissi-

ble control v(t,x) 6= u∗(t,x) such that Et,x(Xv
T ) ≥ β, there exists a control w ≥ 0 such that

w(t,x) = u∗(t,x) and Et,x(Xw
T )≥ β and we have:

Vart,x(Xv
T )> Vart,x(Xw

T ). (2.13)

2.3 Solution to the constrained problems

In this chapter, we will explain the solution of the constrained problems. The main idea of

the proof below follows the idea in [43].

Theorem 2.3 Consider the control problem V (t,x) = supu[Et,x(Xu
T )− cVart,x(Xu

T )] in

which Xu is the wealth process with Xu
t0 = x0 and solves the SDE (2.3) under the probability

measure Pt0,x0 for (t0,x0) ∈ [0,T ]×R given and fixed. The related risk coefficient is defined

by δ = (µ− r)/σ in which µ,r ∈ R, µ > r and σ > 0. We further assume that δ 6= 0 and

r 6= 0 in the following part. (The cases δ = 0 or r = 0 follow by passage to the limit when

the non-zero δ or r approaches 0.)

(A) The statically optimal control is given by:

us
∗(t,x) = max

[
δ

σ

1
x
[−x+ x0er(t−t0)+

1
2c

eδ2(T−t0)−r(T−t)],0
]

(2.14)

for (t,x) ∈ [t0,T ]×R. The statically optimal controlled wealth process is given by:

If τα < τβ,

X s
t =

x0er(t−t0)+ 1
2ce(δ

2−r)(T−t)[eδ2(T−t0)− e−δ(Wt−Wt0)−
δ2
2 (t−t0)

]
if t ≤ τα

x0er(t−t0)+ 1
2ceδ2(T−t0)−r(T−t) if τα < t

(2.15)
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If τβ < τα,

X s
t =

x0er(t−t0)+ 1
2ce(δ

2−r)(T−t)[eδ2(T−t0)− e−δ(Wt−Wt0)−
δ2
2 (t−t0)

]
if t ≤ τβ

0 if τβ < t
(2.16)

where τα and τβ are given by:

τα = inf
{

t ∈ [t0,T ]|x0er(t−t0)+
1
2c

e(δ
2−r)(T−t)[eδ2(T−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)] (2.17)

= x0er(t−t0)+
1
2c

eδ2(T−t0)−r(T−t)
}

τβ = inf
{

t ∈ [t0,T ]|x0er(t−t0)+
1
2c

e(δ
2−r)(T−t)[eδ2(T−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)]≤ 0

}
(2.18)

for t ∈ [t0,T ] respectively.

(B) The dynamically optimal control is given by:

ud
∗(t,x) = max

[
δ

2cσ

1
x

e(δ
2−r)(T−t),0

]
(2.19)

for (t,x) ∈ [t0,T ]×R. The dynamically optimal controlled wealth process is given by:

Xd
t =

x0er(t−t0)+ 1
2ce(δ

2−r)(T−t)[eδ2(t−t0)−1+δ
∫ t

t0 eδ2(t−s)dWs] if t ≤ τγ

0 if τγ < t
(2.20)

where τγ is given by:

τγ = inf
{

t ∈ [t0,T ]|x0er(t−t0)+
1
2c

e(δ
2−r)(T−t)[eδ2(t−t0)−1 (2.21)

+δ

∫ t

t0
eδ2(t−s)dWs]≤ 0

}
for t ∈ [t0,T ].

Proof. In this proof, we claim that, for each pair of (t0,x0) ∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (2.3) with

initial condition Xu
t0 = x0. Furthermore, for Xu

t , u ∈U is any admissible control we defined

in Section 2.2.

(A): The objective function Et,x(Xu
T )− cVart,x(Xu

T ) can be re-arranged as:

Et,x(Xu
T )− cVart,x(Xu

T ) = Et,x(Xu
T )− c

[
Et,x[(Xu

T )
2]−Et,x(Xu

T )
2] (2.22)
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in which Et,x(Xu
T )

2 brings quadratic nonlinearity into our problem. To handle this difficulty,

we condition the size of Et,x(Xu
T ) by setting Et,x(Xu

T ) = M, and this leads to:

V (t,x) = sup
M∈R

sup
u≥0:Et,x(Xu

T )=M

[
Et,x(Xu

T )− c
[

Et,x[(Xu
T )

2]−Et,x(Xu
T )

2]]
= sup

M∈R

[
M+ cM2− inf

u≥0:Et,x(Xu
T )=M

Et,x[(Xu
T )

2]
]
. (2.23)

In equation (2.23), there is a constrained problem:

VM(t,x) = inf
u≥0:Et,x(Xu

T )=M
Et,x
[
(Xu

T )
2] (2.24)

where M ∈ R given and fixed and u ≥ 0 is any admissible control. Applying Lagrange

multipliers in equation (2.24), we have the following Lagrangian function:

Lt,x(u,λ) = Et,x[(Xu
T )

2]−λ[Et,x(Xu
T )−M] (2.25)

in which λ > 0. Solving equation (2.25) gives the optimal control that minimises (2.24). To

verify this, assume there exists uλ
∗ that is the optimal control in (2.25) such that:

Lt,x(uλ
∗,λ) := inf

u
Lt,x(u,λ). (2.26)

Furthermore, we assume there is a λ = λ(M, t,x)> 0 such that Et,x(X
uλ
∗

T ) = M. Therefore,

VM(t,x) = Lt,x(uλ
∗,λ)≤ Et,x[(Xu

T )
2] (2.27)

for any admissible control u∈U with Et,x(Xu
T ) =M, which indicates that the optimal control

uλ
∗ that minimises (2.26) with Et,x(X

uλ
∗

T ) = M is optimal in (2.24).

2. To solve (2.25) and achieve the optimal control, we need to solve the following

optimal control problem:

V λ(t,x) = inf
u≥0

Et,x[(Xu
T )

2−λXu
T ] (2.28)

where u ∈U is any admissible control. In this chapter, we use the HJB approach to achieve

the optimal control.

According to (2.28) and SDE (2.3), we have the following HJB system:

inf
u≥0

[
V λ

t +(r+(µ− r)u)xV λ
x +

1
2

σ
2u2x2V λ

xx
]
= 0 (2.29)

V λ(T,x) = x2−λx (2.30)
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on [t0,T ]×R. However, because we have constrained the admissible control in [0,∞), which

causes non-smoothness of the value function V λ, the classical method in [5] is no longer

able to handle this problem. To overcome this difficult, we will follow the idea of [33] to

construct a value function V λ(t,x) and prove its optimality.

We define the value function V λ(t,x) as:

V λ(t,x) =

A(t)x2 +B(t)x+C(t) if − δ

σ

1
x [x−

λ

2 e−r(T−t)]≥ 0

E(t)x2 +F(t)x+G(t) if − δ

σ

1
x [x−

λ

2 e−r(T−t)]< 0
(2.31)

where A′(t) = (δ2−2r)A(t)

A(T ) = 1,
(2.32)

B′(t) = (δ2− r)B(t)

B(T ) =−λ,

(2.33)

C′(t) = δ2

4
B(t)2

A(t)

C(T ) = 0,
(2.34)

and E ′(t) =−2rE(t)

E(T ) = 1,
(2.35)

F ′(t) =−rF(t)

F(T ) =−λ,

(2.36)

G′(t) = 0

G(T ) = 0.
(2.37)

Now, we are going to demonstrate (2.31) is the optimal value function. Assume that

there is a (t,x)-plane Γ1 such that:

Γ1 :=
{
(t,x) ∈ [t0,T ]×R | − δ

σ

1
x

[
x− λ

2
e−r(T−t)]> 0

}
. (2.38)
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Solving (2.32)-(2.34) gives:


A(t) = e−(δ

2−2r)(T−t)

B(t) =−λe−(δ
2−r)(T−t)

C(t) =−λ2

4 [1− e−δ2(T−t)].

(2.39)

Clearly, we can observe that (2.31) is sufficiently smooth in Γ1. Hence, substituting the

expressions for V λ
t , V λ

x and V λ
xx into the HJB system (2.29) yields:

V λ
t +(r(1−u)+µu)xV λ

x +
1
2

σ
2u2x2V λ

xx (2.40)

= A′(t)x2 +B′(t)x+C′(t)+ rx[2A(t)x+B(t)]

+ inf
u≥0

{
(µ− r)x(2A(t)x+B(t))u+σ

2x2A(t)u2}
= (δ2−2r)e−(δ

2−2r)(T−t)x2−λ(δ2− r)e−(δ
2−r)(T−t)x+

λ2δ2

4
e−δ2(T−t)

+ rx[2e−(δ
2−2r)(T−t)x−λe−(δ

2−r)(T−t)]

+ inf
u≥0

{
(µ− r)x(2e−(δ

2−2r)(T−t)x−λe−(δ
2−r)(T−t))u+σ

2x2e−(δ
2−2r)(T−t)u2}.

In (2.40), the last term on the right hand side is a quadratic function with respect to u. Due

to the properties of quadratic functions, the unique optimal control u∗ is given by:

u∗(t,x) =− δ

σ

1
x

[
x− λ

2
e−r(T−t)] (2.41)

which is greater than zero in Γ1. Substituting (2.41) back into (2.40), the right hand side

equals zero, which means V λ in (2.31) satisfies the HJB system (2.29)-(2.30) and is the

optimal value function in the region Γ1. Similarly, we define another region Γ2 such that

Γ2 :=
{
(t,x) ∈ [t0,T ]×R | − δ

σ

1
x

[
x− λ

2
e−r(T−t)]< 0

}
. (2.42)

Solving (2.35)-(2.37) gives: 
E(t) = e2r(T−t)

F(t) =−λer(T−t)

G(t) = 0.

(2.43)
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In region Γ2, V λ in (2.31) is smooth enough for the HJB system (2.29)-(2.30). Hence, sub-

stituting the equations V λ
t , V λ

x and V λ
xx into the HJB system (2.29) yields:

V λ
t +(r(1−u)+µu)xV λ

x +
1
2

σ
2u2x2V λ

xx (2.44)

= E ′(t)x2 +F ′(t)x+ rx[2E(t)x+F(t)]

+ inf
u≥0

{
(µ− r)x(2E(t)x+F(t))u+σ

2x2E(t)u2}
=−2re2r(T−t)x2 +λrer(T−t)x+ rx[2e2r(T−t)x−λer(T−t)]

+ inf
u≥0

{
(µ− r)x(2e2r(T−t)x−λer(T−t))u+σ

2x2u2e2r(T−t)}.
The last term in (2.44) is a quadratic function of u and the global optimal control u∗(t,x) is

given by u∗(t,x) = − δ

σ

1
x [x−

λ

2 e−r(T−t)]. However, in Γ2, we have − δ

σ

1
x [x−

λ

2 e−r(T−t)] < 0

and all admissible controls must be greater than or equal to 0. Hence, we claim the optimal

control u∗(t,x) is given by:

u∗(t,x) = 0 (2.45)

which is the locally optimal control in Γ2. To verify (2.45) is the solution of the HJB system,

we substitute (2.45) into (2.44) which leads to zero on the right-hand side. This means (2.45)

is the optimal control and V λ in (2.31) is the optimal value function in Γ2 for the HJB system

(2.29)-(2.30). Now, we define the final region, Γ3 such that:

Γ3 :=
{
(t,x) ∈ [t0,T ]×R | − δ

σ

1
x

[
x− λ

2
e−r(T−t)]= 0

}
. (2.46)

In this region, it can be noted that A(t)x2 +B(t)x+C(t) = E(t)x2 +F(t)x+G(t) =−λ2/4,

which means, for each pair (t,x) ∈ Γ3, V λ(t,x) is continuous. Additionally, we have:V λ
t = A′(t)x2 +B′(t)x+C′(t) = E ′(t)x2 +F ′(t)x+G′(t)

V λ
x = 2A(2)x+B(t) = 2E(t)x+F(t)

(2.47)

which indicates the existence and continuity of V λ
t and V λ

x in Γ3. However, V λ
xx does not

exist in Γ3 because A(t) 6= E(t). This indicates that V λ given by (2.31) is not a C1,2 function

for the HJB system (2.29)-(2.30). To overcome this non-smoothness of the value function

(2.31), we will show V λ can be expressed through a change-of-variable formula including

this curve, and the optimality can be achieved by verification theorem. On this plane Γ3,

where − δ

σ

1
x [x−

λ

2 e−r(T−t)] = 0, we have:

x =
λ

2
e−r(T−t) (2.48)
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where x is a function from R+ to R. For any partition 0 ≤ t0 ≤ t1 ≤ t2 ≤ ...... ≤ tn = T of

[t0,T ], we have:

BV ([t0,T ]) =
n−1

∑
i=0
|λ
2

e−r(T−ti+1)− λ

2
e−r(T−ti)|= λ

2
e−rT

n−1

∑
i=0
|erti+1− erti| (2.49)

=
λ

2
e−rT[ertn− ertn−1 + ertn−1− ertn−2 + ......+ ert1− ert0]

=
λ

2
e−rT[erT− ert0]< ∞

which shows that the curve b(t) = x parameterising Γ3 is of bounded variation. Additionally,

V λ
xx is locally bounded in both of Γ1 and Γ2. Hence, according to Theorem 3.1 in [45], we

conclude that the change-of-variable formula can be applied to V λ on [t0,T ]×R, which

yields:

V λ(t,Xu
t ) =V λ(t0,x0) (2.50)

+
∫ t

t0

(
V λ

t +(r+(µ− r)uXu
s )V

λ
x +

σ2u2Xu
s

2

2
V λ

xx

)
I(Xu

s 6= b(s))ds

+
∫ t

t0
(σuXu

s V λ
x )dWs

where b(s) = λ

2 e−r(T−s). Also, due to the continuity of admissible controls, we claim the

optimal control is given by

u∗(t,x) = max
[
− δ

σ

1
x

[
x− λ

2
e−r(T−t)],0]. (2.51)

Hence, for any admissible control u ∈ U , (2.51) holds. Furthermore, based upon (2.50),

V λ(T,Xu
T ) is given by:

V λ(T,Xu
T ) =V λ(t,x) (2.52)

+
∫ T

t

(
V λ

t +(r+(µ− r)uXu
s )V

λ
x +

σ2u2Xu
s

2

2
V λ

xx

)
I(Xu

s 6= b(s))ds

+
∫ T

t
(σuXu

s V λ
x )dWs.

As we have shown V λ in (2.31) solves the HJB equation in Γ1 and Γ2, hence, we have:(
V λ

t +(r+(µ− r)uXu
s )V

λ
x +

σ2u2Xu
s

2

2
V λ

xx

)
I(Xu

s 6= b(s))≥ 0. (2.53)

Moreover, according to the terminal condition (2.30) of V λ at the maturity T , we can see
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that:

Xu
T

2−λXu
T =V λ(t,x) (2.54)

+
∫ T

t

(
V λ

t +(r+(µ− r)uXu
s )V

λ
x +

σ2u2Xu
s

2

2
V λ

xx)I(X
u
s 6= b(s)

)
ds

+
∫ T

t
(σuXu

s V λ
x )dWs.

Equations (2.53) and (2.54) yield:

V λ(t,x)≤ Xu
T

2−λXu
T −

∫ T

t
(σuXu

s V λ
x )dWs. (2.55)

Taking Et,x on the both side of (2.55), the stochastic integral, a martingale under condition

Et0,x0[maxt0≤t≤T (Xv
t )

2]< ∞, disappears. Then we have the following inequality:

V λ(t,x)≤ Et,x[Xu
T

2−λXu
T ]. (2.56)

Equation (2.56) holds for all admissible controls, which indicates:

V λ(t,x)≤ inf
u

Et,x[Xu
T

2−λXu
T ]. (2.57)

For the reverse inequality, we claim the optimal control is given by (2.51) and for the optimal

control u∗ in Γ1 and Γ2, we have:

V λ
t +(r+(µ− r)u∗)xV λ

x +
1
2

σ
2u∗2x2V λ

xx = 0. (2.58)

Combining (2.58) with (2.54) yields:

V λ(t,x) = Xu∗
T

2−λXu∗
T −

∫ T

t
(σu∗Xu

s V λ
x )dWs. (2.59)

For completeness, on the curve (i.e. (t,x) ∈ Γ3), the optimal control is given by u∗ =

− δ

σ

1
x [x−

λ

2 e−r(T−t)] = 0, and it can easily be seen that:

V λ(t,x) = Xu∗
T

2−λXu∗
T . (2.60)

Hence, for the optimal control u∗ given by (2.51), we always have that:

V λ(t,x) = Et,x[Xu∗
T

2−λXu∗
T ]. (2.61)

Therefore, there is the trivial inequality:

inf
u

Et,x[Xu
T

2−λXu
T ]≤ Et,x[Xu∗

T
2−λXu∗

T ]. (2.62)
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Combining (2.57) with (2.62), we have:

V λ(t,x)≤ inf
u

Et,x[Xu
T

2−λXu
T ]≤ Et,x[Xu∗

T
2−λXu∗

T ] =V λ(t,x). (2.63)

Therefore, according to the verification theorem (cf. [5], Theorem 19.6), we conclude that

V λ given by (2.31) is the optimal value function and u∗ given by (2.51) is the optimal control

for the HJB system (2.29)-(2.30).

3. Observing the optimal control (2.51), it can be seen that:

u(t,x) =− δ

σ

1
x
[x− λ

2
e−r(T−t)]> 0 (2.64)

only if:

0≤ x <
λ

2
e−r(T−t). (2.65)

To describe the controlled process, we define the following two stopping times:

τα = inf
{

t ∈ [t0,T ]|X s
t =

λ

2
e−r(T−t)} (2.66)

τβ = inf
{

t ∈ [t0,T ]|X s
t ≤ 0

}
(2.67)

with Pt0,x0(T < τα) > 0 and Pt0,x0(T < τβ) > 0. The stopping times τα and τβ represent

the first hitting time when the controlled process hits the upper curve b(t) = λ

2 e−r(T−t) and

0 respectively. In the following part, we will focus on the case when u(t,x) = − δ

σ

1
x [x−

λ

2 e−r(T−t)]> 0 (i.e. t ≤ (τα∧ τβ) for all t ∈ [t0,T ]) and achieving the optimal value for λ.

4. Firstly, we define a stochastic process Zt such that

Zt = K− e−r(t−t0)Xu
t (2.68)

where K = λ

2 e−r(T−t0) and Z0 = K− x0 under Pt0,x0 . Using Ito’s formula and the SDE (2.3),

we have:

dZt =−δ
2Ztdt−δZtdWt . (2.69)

Solving SDE (2.69) and using (2.68), we have the following closed form solution:

Xu
t = er(t−t0)

[
K− (K−x0)e−δ(Wt−Wt0)−

3δ2
2 (t−t0)

]
(2.70)
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which gives an unique strong solution of SDE (2.3) under u∗(t,x) when T ≤ (τα∧ τβ).

Considering the condition that Et,x(Xu
T ) = M, we have:

Et0,x0(X
u
T ) = x0e−(δ

2−r)(T−t0)+
λ

2
[
1− e−δ2(T−t0)

]
= M. (2.71)

Rearranging (2.71) yields:

λ = 2
M− x0e−(δ

2−r)(T−t0)

1− e−δ2(T−t0)
. (2.72)

Upon noting (2.70), it can be seen that:

Et0,x0 [(X
u
T )

2] = x0
2e−(δ

2−2r)(T−t0)+
λ2

4
[
1− e−δ2(T−t0)

]
. (2.73)

Combining (2.72) with (2.73), we can find that (2.24) is given by:

VM(t0,x0) = x0
2e−(δ

2−2r)(T−t0)+

(
M−x0e−(δ

2−r)(T−t0)
)2

1− e−δ2(T−t)
. (2.74)

Substituting (2.74) into (2.23) yields:

V (t0,x0) = sup
M∈R

[
M+ cM2− c(x0

2e−(δ
2−2r)(T−t0)+

(M−x0e−(δ
2−r)(T−t0))2

1− e−δ2(T−t)
)
]

(2.75)

which is a quadratic function with respect to M. Noting that the coefficient of the term M2

is strictly negative, there is a unique maximum point in (2.75), which is given by:

M∗ = x0er(T−t0)+
1
2c
[
eδ2(T−t0)−1

]
. (2.76)

Substituting (2.76) into (2.72), we can easily see that:

λ∗ = 2x0er(T−t0)+
1
c

eδ2(T−t0). (2.77)

Substituting (2.77) into (2.51), we achieved the statically optimal control given by (2.14).

Inserting (2.77) into (2.70), we find the statically optimal controlled process for T ≤ (τα∧

τβ). Furthermore, inserting (2.70) and (2.77) into (2.66) and (2.67) respectively, we can

achieve the stopping times given by (2.17) and (2.18). In (2.17), we can see that the curve

where the non-smoothness of the value function occurs is given by

b(t) = x0er(t−t0)+
1
2c

eδ2(T−t0)−r(T−t). (2.78)
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Furthermore, in the case when τα < t for t ∈ [t0,T ], the optimal control is us
∗(t,x) = 0, and

this reduces the SDE (2.3) into dXu
t = rXu

t dt with the initial value Xu
τα

. Solving dXu
t = rXu

t dt

with the initial value Xu
τα

gives:

X s
t = x0er(t−t0)+

1
2c

eδ2(T−t0)−r(T−t) (2.79)

for t ∈ [τα,T ]. Note that once X s
t hits the upper curve b(t), it will stay on the curve until the

maturity and this confirms (2.15).

In another case, when τβ < t, X s
t hits zero at τβ. Once X s

t hits zero, the wealth process will

go beneath 0 with probability one almost surely, and the optimal control (3.1) gives us
∗ = 0.

In this situation, SDE (2.3) will become dXu
t = rXu

t dt with initial value limh→0 Xu
τβ+h =

Xu
τβ
= 0, which gives X s

t = 0 for t ∈ [τβ,T ]. Hence, we have confirmed (2.16) and completed

the first part of the proof.

(B) As we claim that the dynamically optimal control is equal to the statically optimal

control with the same initial state (t,x), replacing x0 and t0 by x and t in (2.14) gives the

candidate dynamically optimal control given in (2.19). To prove the optimality of (2.19),

we set that ud
∗(t0,x0) = w(t0,x0), w(t0,x0) = us

∗(t0,x0), and v(t0,x0) for any admissible such

that v(t0,x0) 6= ud
∗(t0,x0). For a dynamically optimal control, the following relationship must

hold:

Vw(t0,x0) = Et0,x0(X
w
T )− cVart0,x0(X

w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T ) =Vv(t0,x0) (2.80)

for any (t0,x0) ∈ [0,T ]×R based upon the fact that Vw(t0,x0) = V (t0,x0) and w(t0,x0) is

statically optimal in (2.4).

5. To verify (2.80), we set Et0,x0(X
w
T ) = M∗, the value of M∗ is given by (2.76), and

Et0,x0(X
v
T ) = Mv. Let us consider the case when M∗ 6= Mv firstly. For a given pair (t0,x0) ∈

[0,T ]×R such that δ

2cσ

1
x0

e(δ
2−r)(T−t0) > 0, applying (2.75)+(2.76) and (2.24)+(2.74) yields:

Vw(t0,x0) = M∗+ cM∗2− c
(

x0
2e−(δ

2−2r)(T−t0)+

(
M∗−x0e−(δ

2−r)(T−t0)
)2

1− e−δ2(T−t)

)
(2.81)

> Mv + cMv
2− c

(
x0

2e−(δ
2−2r)(T−t0)+

(
Mv−x0e−(δ

2−r)(T−t0)
)2

1− e−δ2(T−t)

)
=Vv(t0,x0)

in which the strict inequality holds because M∗ is the unique and global optimal point of

(2.75). Inequality (2.81) verifies the relation we state in (2.80) when M∗ 6= Mv.
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It should be mentioned that in a special case when x0 = 0, there is w(t0,x0) = us
∗(t0,x0) =

0. In this case, for any other admissible controls v(t0,x0) > 0, there is M∗ = Mv as the

expected value of x0 = 0 must be 0 otherwise there is an arbitrage opportunity. To prove the

optimality of w(t0,x0) under x0 = 0, we claim the following relation:

V λ∗
v (t0,x0) = Et0,x0[(X

v
T )

2−λ∗Xv
T ]>V λ∗(t0,x0) = Et0,x0[(X

w
T )

2−λ∗Xw
T ] (2.82)

in which V λ∗ and λ∗ were defined in (2.28) and (2.77) respectively. By using our previous

proof (2.52)-(2.54), we can see that under the terminal condition of the HJB system (2.30)

and the change-of-variable formula with local time on curve, there is:

V λ∗(T,Xv
T ) = (Xv

T )
2−λ∗Xv

T (2.83)

=V λ∗(t0,x0)

+
∫ T

t0

(
V λ∗

t +[r(1− v)+µv]Xv
s V λ∗

x +
σ2v2

2
Xv

s
2V λ∗

xx

)
I(Xv

s 6= b(s))ds

+MT

in which Mt =
∫ t

t0 σV Xv
s V λ∗

x dWs, under the probability measure Pt0,x0 , is a continuous local

martingale and b(t) = λ∗
2 e−r(T−t) for any t ∈ [t0,T ]. By using Burkholder-Davis-Gundy In-

equality and Jensen’s inequality, we can see that Et0,x0[maxt0≤t≤T (Xv
t )

2] < ∞ upon noting

the condition Et0,x0[
∫ T

t0 (1+v2
t )(X

v
t )

2dt]< ∞. Furthermore, according to Holder’s inequality,

it can be verified that Et0,x0 < M,M >T< ∞ which is sufficient to ensure Mt is a martingale

with Et0,x0(MT ) = 0. Hence, taking Et0,x0 on (2.83) yields:

Et0,x0[(X
v
T )

2−λ∗Xv
T ] =V λ∗(t0,x0)+Et0,x0

[∫ T

t0

[
V λ∗

t +[r(1− v)+µv]Xv
s V λ∗

x (2.84)

+
σ2v2

2
Xv

s
2V λ∗

xx
]
I(Xv

s 6= b(s))ds
]
.

Assuming x0 6= 0 and we define a region Rε = [t0, t0 + ε]× [x0− ε,x0 + ε] for some ε > 0

small enough such that t0 + ε ≤ T , then for all (s,x) ∈ Rε, there is v(s,x) 6= w(s,x), which

can be easily seen by the continuity of v and w. Furthermore, in the previous part, we have

stated that w(t,x) is the unique minimum control of the value function of (2.29) for each

pair of (t,x) ∈ [0,T ]×R. Hence, the value of ε is sufficiently small enough to meet:

V λ∗
t +[r(1− v)+µv]Xv

s V λ∗
x +

σ2v2

2
Xv

s
2V λ∗

xx I(Xv
s 6= b(s))≥ β > 0 (2.85)



2.3. SOLUTION TO THE CONSTRAINED PROBLEMS 39

where β is a positive constant given and fixed and (s,x) ∈ Rε. Hence, setting τε = inf{s ∈

[t0, t0 + ε]|(s,Xv
s ) /∈ Rε}, we can see that:

Et0,x0[(X
v
T )

2−λ∗Xv
T ]≥V λ∗(t0,x0)+β(τε− t0)>V λ∗(t0,x0). (2.86)

This conclusion will hold in the case when x0 = 0, in which case we identify v(t0,0) and

w(t0,0) by v(t0,0) ·0 and w(t0,0) ·0. Hence, according to (2.86), we have verified (2.82).

Moreover, inequality (2.82) indicates that Et0,x0[X
w
T

2]−λ∗M∗<Et0,x0[X
v
T

2]−λ∗Mv, which

yields:

Et0,x0[X
w
T

2]< Et0,x0[X
v
T

2] (2.87)

upon recalling the assumption M∗ = Mv we introduced before. Therefore, according to

(2.23), we have:

M∗+ cM2
∗−Et0,x0[X

w
T

2]> Mv + cM2
v −Et0,x0[X

v
T

2] (2.88)

under the hypothesis M∗ = Mv, which confirms the statement we made in (2.80). Hence, we

conclude that ud
∗ given by (2.19) is the dynamically optimal control.

6. Observing the dynamically optimal control given by (2.19), we can see that ud
∗(t,x) =

0 if and only if x ≤ 0. Hence, to describe the optimal controlled process, we define the

following stopping time:

τγ = inf{t ∈ [t0,T ]|Xd
t ≤ 0} (2.89)

with Pt0,x0(T < τγ)> 0, and this is the first hitting time at 0. When Xd
t hits zero (i.e. τγ ≤ T ),

the wealth process will go beneath 0 with probability one almost surely, and the optimal

control (2.19) gives ud
∗ = 0 which reduces the SDE (2.3) into dXu

t = rXu
t dt. Solving this

deterministic SDE with initial wealth Xd
τγ
= 0 gives Xd

t = 0 for t ∈ [τγ,T ].

In the case if T < τγ, we set Zt = er(T−r)Xd
t and apply Ito’s formula so that:

Xd
t = x0er(t−t0)+

1
2c

e(δ
2−r)(T−t)[eδ2(t−t0)−1+δ

∫ t

t0
eδ2(t−s)dWs

]
. (2.90)

From (2.89) and (2.90), we have confirmed (2.20)-(2.21) and completed the proof. �

So far we have solved the first constrained problem. In [43], we have seen that the

solution of (2.6) and (2.7) can be derived from the solution of (2.4) by choosing a proper
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Lagrange multiplier. Similar conclusion can also be done here. In the following part, we

will derive the solution for (2.6) and (2.7) respectively, and the proof is consistent with the

proof of Corollary 5 and Corollary 7 of [43].

Corollary 2.4. Consider the optimal control problem V1(t,x) = supu:Vart,x(Xu
T )≤α Et,x(Xu

T )

in which Xu is the wealth process with Xu
t0 = x0 under the probability measure Pt0,x0 for

(t0,x0) ∈ [0,T ]×R given and fixed and α ∈ (0,∞). The related risk coefficient is defined

by δ = (µ− r)/σ in which µ,r ∈ R, µ > r and σ > 0. We further assume that r 6= 0 in the

following part. (The cases δ = 0 or r = 0 follow by passage to the limit when the non-zero

δ or r approaches to 0.)

(A) The statically optimal control is given by:

us
∗(t,x) = max

[
δ

σ

1
x

[
x0er(t−t0)−x+

√
α

eδ2(T−t0)−r(T−t)√
eδ2(T−t0)−1

]
,0
]

(2.91)

for (t,x) ∈ [t0,T ]×R. The statically optimal controlled process is given by:

If τc
α < τc

β
,

X s
t =


x0er(t−t0)+

√
α

e(δ
2−r)(T−t)√

eδ2(T−t0)−1

[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
if t ≤ τc

α

x0er(t−t0)+
√

α√
eδ2(T−t0)−1

eδ2(T−t0)−r(T−t) if τc
α < t

(2.92)

if τc
β
< τc

α,

X s
t =


x0er(t−t0)+

√
α

e(δ
2−r)(T−t)√

eδ2(T−t0)−1

[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
if t ≤ τc

β

0 if τc
β
< t

(2.93)

where τc
α and τc

β
are given by:

τ
c
α = inf

{
t ∈ [t0,T ]|x0er(t−t0)+

√
α

e(δ
2−r)(T−t)√

eδ2(T−t0)−1

[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
(2.94)

= x0er(t−t0)+

√
α√

eδ2(T−t0)−1
eδ2(T−t0)−r(T−t)

}

τ
c
β
= inf

{
t ∈ [t0,T ]|x0er(t−t0)+

√
α

e(δ
2−r)(T−t)√

eδ2(T−t0)−1

[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
≤ 0
}

(2.95)
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for t ∈ [t0,T ].

(B) The dynamically optimal control is given by:

ud
∗(t,x) = max

[√
α

δ

σx
e(δ

2−r)(T−t)√
eδ2(T−t)−1

,0
]

(2.96)

for (t,x) ∈ [t0,T ]×R. The dynamically optimal controlled process is given by:

Xd
t =


x0er(t−t0)+2

√
αe−r(T−t)[

√
eδ2(T−t0)−1−

√
eδ2(T−t)−1+ δ

2
∫ t

t0
eδ2(T−s)√
eδ2(T−s)−1

dWs]

if t ≤ τc
γ

0 if τc
γ < t

(2.97)

where τc
γ is given by:

τ
c
γ = inf

{
t ∈ [t0,T ]|x0er(t−t0)+2

√
αe−r(T−t)[√eδ2(T−t0)−1−

√
eδ2(T−t)−1 (2.98)

+
δ

2

∫ t

t0

eδ2(T−s)√
eδ2(T−s)−1

dWs
]
≤ 0
}

for t ∈ [t0,T ].

Proof. In this proof, we claim that, for each pair of (t0,x0) ∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (2.3) with

initial condition Xu
t0 = x0. Furthermore, for Xu

t , u ∈U is any admissible control we defined

in Section 2.2.

(A): Applying Lagrange multipliers in (2.6) yields:

Lt,x(u,c) = Et,x(Xu
T )− c[Vart,x(Xu

T )−α] (2.99)

for c > 0. Based upon Theorem 2.3, the optimal control us
∗ given by (2.14) maximises

Et,x(Xu
T )−cVart,x(Xu

T ) will be the optimal control that maximises (2.99) with c= c(α, t,x)>

0 meeting Vart,x(X
us
∗

T )≤ α. In this case, we state

Lt,x(uc
∗,c) = sup

u
Lt,x(u,c) (2.100)

for c > 0. For the given pair (t,x) ∈ [t0,x0]×R such that uc
∗(t,x)> 0, we can see that:

Et,x(X
uc
∗

T ) = Lt,x(uc
∗,c)≥ Et,x(Xu

T )− c[Vart,x(Xu
T )−α]≥ Et,x(Xu

T ) (2.101)
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in which u is any admissible control that satisfies Vart,x(Xu
T ) ≤ α. In the other case when

uc
∗(t,x) = 0, we have Vart,x(X

uc
∗

T ) = 0 < α. This result indicates that the optimal control uc
∗

given by (2.14) with c(α, t,x)> 0 is the statically optimal control in (2.6).

According to (2.15)-(2.18), we know that the Vart,x(X
uc
∗

T ) does not equal to zero only if

T < (τα∧ τβ). Hence, taking Et0,x0 on the first line of (2.15) with T < (τα∧ τβ) gives:

Vart0,x0(X
uc
∗

T ) =
1

4c2 [e
δ2(T−t0)−1]. (2.102)

Setting (2.102) equal to α, we achieve the optimal value of c, which is:

c =
1

2
√

α

√
eδ2(T−t0)−1. (2.103)

Substituting (2.103) into (2.14)-(2.18), we obtain the statically optimal control and the opti-

mal controlled wealth process, which confirms (2.91)-(2.95) and completes the first part of

the proof.

(B): Replacing t0 and x0 by t and x in the statically optimal control (2.91), we can obtain

the control ud
∗ given in (2.96). We claim this gives the dynamically optimal control for

(2.5). Also, it is clear that (2.80) holds with c given by (2.103). Hence, based upon (2.80),

we can see that for any pair (t0,x0) ∈ [0,T ]×R such that w(t0,x0) = us
∗(t0,x0) > 0 and

Vart0,x0(X
w
T )≤ α, the following inequality holds:

Et0,x0(X
w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T )≥ Et0,x0(X

v
T ) (2.104)

in which v satisfies Vart0,x0(X
v
T )≤ α. Hence, we can conclude that the optimal control given

by (2.96) is the dynamically optimal control for (2.6).

Observing the optimal control (2.96), we can note that ud
∗(t,x) = 0 if and only if x < 0.

Hence, we define the following stopping time:

τγ = inf{t ∈ [t0,T ]|Xd
t ≤ 0} (2.105)

with Pt0,x0(T < τγ) > 0, and this is the first hitting time of Xd
t at 0. When Xd

t hits zero (i.e.

τγ ≤ T ), the wealth process will go beneath 0 with probability one almost surely, and the

optimal control (2.96) gives ud
∗ = 0 which reduces the SDE (2.3) into dXu

t = rXu
t dt. Solving

this deterministic SDE with initial wealth Xd
τγ
= 0 gives Xd

t = 0 for t ∈ [τγ,T ]. If T < τγ,

using Ito’s formula to er(T−t)Xd
t in which we set that Xd = Xud

∗ and SDE (2.3), we can easily

achieve the first line of (2.97). Hence, we can summarise that the dynamic optimal wealth

process is given by (2.97)-(2.98) and complete the proof. �
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Corollary 2.5. Consider optimal control problem V2(t,x) = supu:Et,x(Xu
T )≥β Vart,x(Xu

T )

in which Xu is the wealth process with Xu
t0 = x0 under the probability measure Pt0,x0 for

(t0,x0) ∈ [0,T ]×R given and fixed and β ∈ R. The related risk coefficient is defined by

δ = (µ− r)/σ in which µ,r ∈ R, µ > r and σ > 0. We further assume that r 6= 0 in the

following part. (The cases δ = 0 or r = 0 follow by passage to the limit when the non-zero δ

or r approaches to 0.) Furthermore, we assume that the expectation of the terminal wealth,

β, must satisfy β > x0er(T−t0). For a wise investor, if β≤ x0er(T−t0), he can simply invest all

his wealth in the riskless asset and receive zero variance at the maturity T . Hence, in the

following part, we assume that β > x0er(T−t0).

(A) The statically optimal control is given by:

us
∗(t,x) = max

[
δ

σ

1
x

[
x0er(t−t0)−x+(β−x0er(T−t0))

eδ2(T−t0)−r(T−t)

eδ2(T−t0)−1

]
,0
]

(2.106)

for (t,x) ∈ [t0,T ]×R. The statically optimal controlled process is given by:

If τc
α < τc

β
,

X s
t =


x0er(t−t0)+(β−x0er(T−t0)) e(δ

2−r)(T−t)

eδ2(T−t0)−1

[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
if t≤ τc

α

x0er(t−t0)+ (β−x0er(T−t0))

eδ2(T−t0)−1
eδ2(T−t0)−r(T−t) if τc

α < t
(2.107)

If τc
β
< τc

α,

X s
t =


x0er(t−t0)+(β−x0er(T−t0)) e(δ

2−r)(T−t)

eδ2(T−t0)−1

[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
if t≤ τc

β

0 if τc
β
< t
(2.108)

where τc
α and τc

β
are given by:

τ
c
α = inf

{
t ∈ [t0,T ]|x0er(t−t0) (2.109)

+(β− x0er(T−t0))
e(δ

2−r)(T−t)

eδ2(T−t0)−1

[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
= x0er(t−t0)+

(β−x0er(T−t0))

eδ2(T−t0)−1
eδ2(T−t0)−r(T−t)

}
,

τ
c
β
= inf

{
t ∈ [t0,T ]|x0er(t−t0)+(β−x0er(T−t0))

e(δ
2−r)(T−t)

eδ2(T−t0)−1
(2.110)

×
[
eδ2(t−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
≤ 0
}
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for t ∈ [t0,T ].

(B) The dynamically optimal control is given by:

ud
∗(t,x) = max

[
δ

σ

1
x
(β− xer(T−t))

e(δ
2−r)(T−t)

eδ2(T−t)−1
,0
]

(2.111)

for (t,x) ∈ [t0,T ]×R. The dynamically optimal controlled process is given by:

Xd
t =



e−r(T−t)
[

β− (β−x0er(T−t0)) eδ2(T−t)−1
eδ2(T−t0)−1

×exp(−δ
∫ t

t0
eδ2(T−s)

eδ2(T−s)−1
dWs− δ2

2
∫ t

t0
e2δ2(T−s)

(eδ2(T−s)−1)2
ds)
]

if t ≤ τc
γ

0 if τc
γ < t

(2.112)

and τc
γ is defined by:

τ
c
γ = inf

{
t ∈ [t0,T )|e−r(T−t)[β− (β−x0er(T−t0))

eδ2(T−t)−1
eδ2(T−t0)−1

(2.113)

× exp(−δ

∫ t

t0

eδ2(T−s)

eδ2(T−s)−1
dWs−

δ2

2

∫ t

t0

e2δ2(T−s)

(eδ2(T−s)−1)2
ds)]≤ 0

}
.

for all t ∈ [t0,T ). Furthermore, if T < τc
γ, then Xd

T is given by limt→T Xd
t = β with Pt0,x0-

probability one.

Proof. In this proof, we claim that, for each pair of (t0,x0) ∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (2.3) with

initial condition Xu
t0 = x0. Furthermore, for Xu

t , u ∈U is any admissible control we defined

in Section 2.2.

(A): Applying Lagrangian for the constrained problem (2.7) yields:

Lt,x(u,c) = Vart,x(Xu
T )− c[Et,x(Xu

T )−β] (2.114)

for c > 0. We can take the advantage of the previous conclusion. From (2.114), we can see

that

inf
u≥0

(Vart,x(Xu
T )− c[Et,x(Xu

T )−β]) =−csup
u≥0

[Et,x(Xu
T )−

1
c

Vart,x(Xu
T )]+ cβ (2.115)

and we claim that the optimal control u
1
c
∗ given by (2.14) leads to:

Lt,x(u
1
c
∗ ,c) = infLt,x(u,c) (2.116)
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for c > 0. Furthermore, if there exist c = c(β, t,x) > 0 and (t,x) ∈ [t0,T ]×R such that

Et,x(X
u

1
c∗

T ) = β, it can be easily seen that:

Vart,x(X
u

1
c∗

T ) = Lt,x(u
1
c
∗ ,c)≤ Vart,x(Xu

T )− c[Et,x(Xu
T )−β]≤ Vart,x(Xu

T ) (2.117)

for any admissible u meeting Et,x(Xu
T ) ≥ β, which indicates that u

1
c
∗ is statically optimal

control for (2.6).

Using the fact that Et,x(X
u

1
c∗

T ) = β and taking Et0,x0 in the first line of (2.15) we receive:

Et,x(X
u

1
c∗

T ) = x0er(T−t0)+
c
2
[eδ2(T−t0)−1] = β (2.118)

which gives:

c =
2(β− x0er(T−t0))

eδ2(T−t0)−1
. (2.119)

Furthermore, substituting (2.119) back into (2.14)-(2.18), we receive (2.106)-(2.110) and

this completes the first part of proof.

(B): Replacing t0 and x0 by t and x in (2.106), we can obtain the control ud
∗ given in

(2.111). We claim this gives the dynamically optimal control for (2.7). Also, it is clear that

(2.80) holds with c given by (2.119). Since Et0,x0(X
w
T ) = β, it can be easily seen that (2.80)

leads to:

Vart0,x0(X
w
T )<

1
c

[
β−Et0,x0(X

v
T )+ cVart0,x0(X

v
T )
]
≤ Vart0,x0(X

v
T ) (2.120)

in which Et0,x0(X
v
T ) ≥ β and c is given by (2.119). This indicates that the optimal control

given by (2.111) is the dynamically optimal control we are looking for.

Observing the optimal control (2.111), we can note that ud
∗(t,x) = 0 if and only if x≤ 0.

Hence, we define the following stopping time:

τ
c
γ = inf{t ∈ [t0,T ]|Xd

t ≤ 0} (2.121)

with Pt0,x0(T < τγ)> 0, and this is the first hitting time at 0. When Xd
t hits zero (i.e. τγ ≤ T ),

the wealth process will go beneath 0 with probability one almost surely, and the optimal

control (2.111) gives ud
∗ = 0 which reduces the SDE (2.3) into dXu

t = rXu
t dt. Solving this

deterministic SDE with initial wealth Xd
τγ
= 0 gives Xd

t = 0 for t ∈ [τγ,T ].
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Recalling the proof of Corollary 7 in [43], we can see that in the case if T < τc
γ, applying

Ito’s formula to the following process Z:

Zt = β− er(T−t)Xd
t (2.122)

in which we set that Xd
t = Xud

∗
t and using SDE (2.3), we can easily achieve that:

dZt =−δ
2 Zt

1− e−δ2(T−t)
dt−δ

Zt

1− e−δ2(T−t)
dWt (2.123)

with initial value Zt0 = M− x0er(T−t0) under probability measure Pt0,x0 . Solving (2.123)

yields the following process:

Zt = Zt0 exp
(
−

∫ t

t0

δ

1− e−δ2(T−s)
dWs−

∫ t

t0

[ δ2

1− e−δ2(T−s)
+

1
2

δ2

(1− e−δ2(T−s))2

]
ds
)

(2.124)

for t ∈ [t0,T ) under Pt0,x0 . In (2.124), the continuous martingale M:

Mt =−δ

∫ t

t0

eδ2(T−s)

eδ2(T−s)−1
dWs (2.125)

for t ∈ [t0,T ) is a time-changed Brownian motion W̄ in which case Mt = W̄<M,M>t by

Dambis-Dubins-Schwarz theorem. Moreover, there is:

〈M,M〉t = δ
2
∫ t

t0

e2δ2(T−s)

(eδ2(T−s)−1)2
ds→ ∞ (2.126)

when t→ T . According to the sample path properties of W̄t , there is:

Mt−
1
2
〈M,M〉t = W̄〈M,M〉t −〈M,M〉t →−∞ (2.127)

as t → T with probability one. Using this fact in (2.123) we can see that Xd
t → β as t → T

with Pt0,x0-probability one if T < τc
γ. Moreover, Zt is always positive which guarantees that

β > er(T−t)Xd
t for t ∈ [t0,T ]. Hence, we can conclude that if Xd

t does not hit 0 before the

maturity, it will stay strictly below β under the maturity. �

Hence, we have obtained the solution for two constrained cases (2.6) and (2.7). In

the following part, we will further analysis the performance of both static and dynamic

optimalities.
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2.4 Static optimality vs dynamic optimality

1. In this section, we have found both the statically and dynamically optimal controls for

(2.4)-(2.7) under the no short-selling constraint. In this section, we will compare the dif-

ference between those two optimalities by setting Theorem 2.3 as an example. As we have

seen in [42], the dynamically optimal control ud
∗ from (2.19) rejects all past points (t0,x0)

to consider its performance while the statically optimal control is related to the initial state,

which raises the problem of making a decision between them. Clearly, the dynamically opti-

mal control ud
∗ is time consistent while the statically optimal control is time-inconsistent. In

this chapter, the controlled wealth processes contain stopping times with unknown distribu-

tion, which makes the calculation of the expectation and variance of the controlled process

become difficult. (There is still a way to calculate the expectation without knowing the

distribution but that is beyond the scope of this chapter.) Also, another problem of the com-

parison between the static value Vs(t,x) and the dynamic value Vd(t,x) for (t,x)∈ [t0,T ]×R

is that the optimal control process X s and Xd may never have the same value at a given point

of time t so that the comparison may not be feasible, which is consistent with the conclusion

in [43]. In [43], the authors focus on the terminal value of X s and Xd and compare the value

of Et0,x0[Vs(T,X s
T )] and Et0,x0 [Vd(T,Xd

T )], where they find that the two expectations coincide

and conclude that the optimally dynamic control ud
∗ is as good as us

∗. However, since we

can not achieve the expectation of the wealth process without knowing the distribution of

the wealth process, comparing the expectation of the value function at the terminal time

T becomes infeasible. In this situation, we can still make an intuitive comparison. When

t achieves the terminal time T , there is Vs(t,X s
T ) = X s

T and Vd(t,Xd
T ) = Xd

T . According to

(2.15)-(2.18) and (2.20)-(2.21), the terminal value of the optimally static wealth process

is upper-and-lower bounded, which yields X s
T ∈ [0,x0er(T−t0)+ 1

2ceδ2(T−t0)], while the opti-

mally dynamic wealth process only has lower boundary, which gives Xd
T ∈ [0,∞). Intuitively,

the optimally dynamic control has better potential to achieve a higher portfolio value.

Furthermore, it should be pointed out that the statically optimal control (2.14) suggests

that the investor should invest all the wealth in the bond if the current wealth is large enough,

which causes the upper boundary of the controlled wealth process. This fact is also observed

in [33], in which they achieved time-inconsistent optimal control under the no short selling

constraint. However, the dynamically optimal control (2.19) encourages the investor to keep
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Figure 2.1: The first picture is the simulation of statically optimal controlled wealth pro-
cess based upon (2.15)-(2.18), and it can be clearly seen that the wealth process is bounded
by the upper boundary (orange curve) and the lower boundary (blue line). The second pic-
ture presents the simulation of dynamically optimal controlled wealth process that is only
bounded below (blue line).

holding the risky asset to achieve a higher return, which has not been observed before.

Additionally, following the same idea of [43], from (2.19), it can be noted that the

amount of the dynamically optimal wealth ud
∗(t,x) · x held in the risky asset at time t does

not depend on the amount of the current wealth x. This observation is consistent with the

fact that, in (2.4), the risk is measured by the variance, a quadratic function of the terminal

wealth, while the expectation is a linear function of the terminal wealth which measures

the return. For the stochastic movement of the large wealth, the penalisation caused by the

variance will be more severe than the compensation brought by the expectation (see Remark

4 in [43] for further details). In this point, the dynamic investor is not encouraged to hold

larger amounts of risky assets, and for the dynamic investor, the optimal total amount of
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risky asset ud
∗(t,x) · x is independent of x.

Under the no short-selling constraint, both of the static and dynamic optimality naturally

prevent the bankruptcy of the investor. As we can see in Theorem 2.3, once the value of

wealth hits 0, both of the static and dynamic processes will stay at 0 until the maturity,

which is clearly indicated in Figure 2.1. Coincidentally, similar bankrupt behaviour can be

also seen in [3] and [42] under pathwise constraint. In [3], Bielecki et al developed the

optimal control that prevents bankruptcy by adopting the martingale method. Pedersen and

Peskir [42] achieved the time consistent optimal control under a general pathwise constraint

Xu
s ≥ e−r(T−s)g for any s ∈ [t,T ] and g ∈ R.

2. The observation of the wealth process behaviour leads us to analyse those two strate-

gies in a numerical way. For the numerical analysis, the key idea is to focus on analysing the

terminal wealth. Since V (T,Xu
T ) = Xu

T , comparing the Et0,x0(X
s
T ) and Et0,x0(X

d
T ) will be the

target in the following part. Hence, we firstly simulate both wealth processes and collect the

value of X s
T and Xd

T respectively and form the sample base, from which we can receive the

sample mean µ̄, sample variance m̄, and the distribution of the stopping time. In this section,

we will focus on comparing the value of sample means to decide which strategy will lead to

a better performance. Note that in the case if XT is not well-defined, we take the value of X

at the second last point of time to the maturity T . In the following part, we will have a more

intuitive understanding about the performance of those strategies.

In Tables 2.1 and 2.2, we simulate the static optimality and dynamic optimality under the

no short-selling constraint with respect to different values of risk aversion rate c. Surpris-

ingly, Table 2.1 and Table 2.2 show the opposite results; the static optimality outperforms

the dynamic optimality when c gets larger while the dynamic optimality has a better perfor-

mance when c is smaller. For example, when risk aversion rate c = 0.1, we can see that the

sample mean of the static optimality is µ̄s ≈ 1.12, which is greatly smaller than the dynamic

optimality µ̄d ≈ 2.98. When c increases to 1.6, we can see there is µ̄s ≈ 1.76 > 1.23 ≈ µ̄d .

Moreover, the distribution of the stopping time for both static and dynamic wealth process

also changes with respect to the value of c. In Tables 2.1 and 2.2, we can see that the chance

of the statically optimal wealth process hits the lower boundary 0 or hitting the upper curve

increases alongside with the increase of c while in the dynamic case, the possibility of hit-

ting 0 decreases as c increases. In Figure 2.2, we apply the kernel density estimation (KDE)

to illustrate this change in a more intuitive way. In the static case in Figure 2.2, we see that
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the peaks on both sides increase when c moves from 1 to 2, which indicates that the increase

of the probability of hitting the upper/lower boundary. In the dynamic case, we see that the

probability of hitting 0 disappears when c moves to 2. This observation is consistent with

Tables 2.1 and 2.2. When comparing Table 2.1 and Table 2.2, we can tell that Theorem 2.3

in this chapter gives different strategies to investors with different risk aversion levels, and

this has practical meaning in the real financial market.

Furthermore, we have seen that the optimal wealth processes are bounded, which natu-

rally leads to another problem: will the investor receive a better result under the short-selling

constraint? To compare with the unconstrained case, we simulate Theorem 3 introduced in

[43] in Table 2.3. Overall, the static optimality under the short-selling constraint outper-

forms the static optimality in the unconstrained case, and the difference between µ̄s and µ̄us

increases as c increases. The reasons are: when c is small such as c = 0.1, the chance of the

wealth process hits upper/lower boundary is relatively small so that the effect of bankruptcy

prevention or the limit of the growth of wealth is very small, which leads to the fact that

µ̄s ≈ µ̄us; when c gets larger, the probability of the statically optimal wealth process hits

the upper/lower boundary increases and the chance of hitting 0 is much larger than that of

hitting the upper boundary, which means that the effect of bankruptcy prevention is more

obvious than the limit of the growth of wealth and leads to µ̄s > µ̄us. It should be pointed

out that for the unconstrained case in [43], the wealth process is unbounded so that it still

can reach very high terminal wealth in the extreme case, which is not common during the

simulation. Hence, from this observation, we can conclude that, for a static investor, choos-

ing the static optimality under no short-selling constraint will be a safer choice and it may

overall outperform the unconstrained strategy.

For the dynamic optimality, we have seen in Figure 2.1 that the optimal wealth process

is only bounded by 0, which makes the dynamic optimality in Theorem 2.3 more attractive.

The numerical analysis confirms this guess. Comparing Tables 2.2 and 2.3, we can see that,

under the no short-selling constraint, the dynamic optimality in Theorem 2.3 outperforms

the unconstrained case in [43]. The reasons are: when c is small, the wealth process has

a higher chance to hit 0 and the effect of bankruptcy is more obvious; in the constrained

case, the wealth process has the same potential to reach the high value at the maturity as the

unconstrained case, which makes the dynamic optimality under no short-selling constraint

more favourable than the unconstrained case. The only special case is that, when c gets
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large enough such as c = 1.6 and c = 2.0, and in this situation, the dynamic optimality

wealth process will only have a very low chance to hit the lower boundary 0, which makes

µ̄d ≈ µ̄ud and indicates there is no difference between the constrained and unconstrained

cases. Hence, for a dynamic investor, it will be optimal for him to choose the strategy under

no short-selling constraint no matter the level of his risk aversion.

Figure 2.2: The kernel density estimation (KDE) for the terminal wealth of static optimality
and dynamic optimality with different values of risk aversion rate c.

3. Naturally, we consider if the findings for V1 and V2 in [43] (cf. Remarks 6 and 8 in

[43]) will still be valid for (2.91)-(2.96). For V1, in Table 2.5, we compare the sample mean

and sample variance, from which we can see that the dynamic optimality always leads to a

larger sample mean. This indicates that dynamic optimality outperforms the static optimality

no matter what value α takes. A wise investor should always follow the dynamic optimality

in this situation. Furthermore, similar to the first constrained problem we discussed above,
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Risk aversion Sample mean µ̄s No. of hitting curve No. of hitting 0

0.1 1.11688875 1 0
0.4 1.26921424 9 18
0.8 1.45521204 17 66
1.2 1.61320726 37 139
1.6 1.75307588 41 191
2.0 1.94263783 66 203

Table 2.1: Simulation for the static optimality under no short selling constraint with respect
to different values of c.

Risk aversion Sample mean µ̄d No. of hitting 0

0.1 2.98313262 516
0.4 1.74596633 144
0.8 1.43388909 27
1.2 1.30790685 5
1.6 1.24797581 2
2.0 1.20147576 0

Table 2.2: Simulation for the dynamic optimality under no short selling constraint with
respect to different values of c.

Risk aversion Sample mean µ̄us Sample mean µ̄ud

0.1 1.11838796 2.70643823
0.4 1.27795929 1.65555340
0.8 1.38743068 1.37788403
1.2 1.45383901 1.30356596
1.6 1.67188472 1.24672175
2.0 1.80920598 1.20803812

Table 2.3: Simulation for static optimality and dynamic optimality for the unconstrained
problem of [43] with respect to different values of c.

(Note the related parameters are given by µ = 0.4, σ = 0.3, δ = 1, x0 = 1, r = 0.1, T = 1, t0 = 0, and
the sample size is 2000.)
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α Sample mean µ̄s Sample variance m̄s No. of hitting curve No. of hitting 0

0.4 1.52587802 0.16473329 25 76
0.8 1.67132281 0.35295135 40 153
1.2 1.78574262 0.44878562 32 172
1.6 1.89849498 0.60161303 44 207
2.0 1.96355465 0.76313842 64 232

α Sample mean µ̄d Sample variance m̄d No. of hitting 0

0.4 1.83241904 2.02759367 182
0.8 2.17311476 14.61036095 250
1.2 2.29215003 11.43652527 306
1.6 2.48901354 11.12743796 322
2.0 2.88505624 78.01683357 355

Table 2.5: Simulation for static and dynamic optimalities under the controls given by (2.91)
and (2.96) respectively with respect to different values of α.

(Note the related parameters are given by µ = 0.4, σ = 0.3, δ = 1, x0 = 1, r = 0.1, T = 1, and t0 = 0,
and the sample size is 2,000.)

we can see that the chance of the statically optimal wealth process hits upper boundary or

lower boundary increases as α increases, which indicates that both the effect of bankruptcy

and limit of the growth of the wealth of the static optimality have been enhanced as α

increases. And similar observation can be noted for the dynamic optimality.

Besides, different from [43], our simulation for the dynamic optimality does not show

infinitely large variance. The possible reason is (2.97) is not well-defined at T and our

simulation can not achieve the actual limit of Xt when t ↑ T . Alternatively, we the value of

X at the second last point of time to the maturity T . However, the sample variance of the

dynamic case is still significantly larger than the static case.

In Remark 8 in [43], we see that the dynamic wealth process attains to β as t ↑ T with

probability one. Similar results can be also noted in this chapter. Simulating the wealth

process with respect to (2.106) and (2.111) respectively, we obtain Figure 2.3. Furthermore,

for the numerical analysis in Table 2.7, we can see that the static optimality leads to a

much smaller variance, which indicates that the static optimality outperforms the dynamic

optimality before reaching the maturity. However, at the maturity, if the dynamically optimal

wealth process does not hit 0, it will converge to β at T with probability one, which makes

the variance equal to 0 at the maturity and makes the dynamic optimality outperform the

static case. This fact is also consistent with [43].



54 CHAPTER 2. NO SHORT-SELLING CONSTRAINT

β Sample mean µ̄s Sample variance m̄s No. of hitting curve No. of hitting 0

1.5 1.29947227 0.04236852 13 16
2.0 1.55416621 0.21447791 37 103
2.5 1.77437248 0.45841363 52 172
3.0 1.99439075 0.72966848 46 226
3.5 2.18880178 1.01684948 51 239

β Sample mean µ̄d Sample variance m̄d No. of hitting 0

1.5 6.14219774 25424.941 223
2.0 2.39631266 51.461699 332
2.5 4.37193665 2187.0591 420
3.0 4.20123011 632.97101 509
3.5 5.17520506 4058.9352 574

Table 2.7: Simulation for static and dynamic optimalities under the controls given by (2.106)
and (2.111) respectively with respect to different values of β.

(Note the related parameters are given by µ = 0.4, σ = 0.3, δ = 1, x0 = 1, r = 0.1, T = 1, and t0 = 0,
and the sample size is 2,000.)

4. In [43], we have seen the comparison between the subgame-perfect Nash equilibrium

and the dynamic optimality and [43] has shown that the dynamic optimality outperforms

the subgame-perfect Nash equilibrium control. Furthermore, [2] has achieved the subgame

perfect Nash optimal control under the short-selling constraint, and this naturally leads to the

question: will the dynamic optimality still outperform the subgame-perfect Nash control?

However, there is no simple way to compare these two kinds of controls under no short-

selling constraint. The reasons are: (I) [2] also considers the existence of wealth-dependent

risk aversion rate, which cannot be ignored in the numerical comparison; (II) [2] not only

constrains short-selling of the stock but also constrains borrowing from the market. The

admissible control of [2] is constrained by upper and lower boundaries ptX and qtX , where

pt and qt are finite and the short-selling prohibition is achieved by setting pt = 0 and qt = 1.

In our chapter, there is no upper boundary for the admissible control. Moreover, setting

a borrowing constraint in our chapter is not possible as it will lead to the discontinuity of

the value function for the HJB equation, which will violate our conclusion. Moreover, it

should be pointed out that in Corollary 2.4 and 2.5 in this chapter, we have obtained the

dynamically optimal control under no short-selling constraint for two constrained case (2.6)

and (2.7) while the subgame-perfect Nash optimal control for those constrained cases has

not been presented so far.
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Figure 2.3: The first picture is the simulation of statically optimal controlled wealth pro-
cess based upon (2.107), and the wealth process is bounded by the upper boundary (orange
curve) and the lower boundary (blue line). The second picture presents the simulation of dy-
namically optimal controlled wealth process upon (2.112) that is only bounded below (blue
line).

(Note the related parameters are given by µ = 0.4, σ = 0.3, δ = 1, x0 = 1, r = 0.1, T = 1, and t0 = 0,
and β = 2.)



Chapter 3

Dynamic Mean-Variance Portfolio

Selection under a Margin Requirement

3.1 Introduction

In the previous chapter, we have seen that a change-of-variable with local time on curves,

following the method of [45], can replace the viscosity solution to overcome the non-

smoothness of the value function under the short-selling constraint. This inspires us to apply

this technique in solving more complicated cases. In real financial markets, the broker-dealer

agent normally requires a maintenance margin for short-selling (on account of credit risk),

and the consideration of margin requirements in portfolio selection has a practical meaning.

Hence, in this chapter, we shall consider portfolio selection under margin requirements and

investigate both static optimality and dynamic optimality.

The margin requirement has been considered a series of financial studies. In [14], Cuoco

and Liu introduce margin requirements in the problem of optimal consumption and invest-

ment for portfolio optimisation as well as considering the minimal cost of hedging Euro-

pean contingent claims. By adopting duality techniques, utility analysis, and a martingale

approach, they obtain an explicit solution for optimal investment/consumption for both log-

arithmic utility and CRRA utility. In [25], they consider the impact of margin requirement

on the valuation of call options and prove that the margin requirement will rule out the arbi-

trage opportunity as well as verifying that the Black-Scholes model for call options is still

valid. Most of the studies involving the margin requirements are in the asset pricing area,

and the margin requirement has not been wildly considered in portfolio selection from the

56
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dynamic programming perspective. Zhou and Wu [65] consider this problem by applying

the HJB equation to obtain the explicit solution and construct the efficient frontier. The ex-

istence of the margin requirement leads to an issue that the positive and negative controls

have different coefficients, which is the main difficulty in [65]. To handle this difficult, they

firstly decompose the original problem into two sub-problems and apply the HJB equation

to achieve the optimal solution for each of them, from which the viscosity solution technique

is applied to obtain the optimal control. Since margin requirements have practical implica-

tions, in this chapter, we shall follow the work of [65] to consider the portfolio selection

problem and achieve both time-inconsistent solutions and time-consistent solutions.

For the investor who aims to invest dynamically in time in a self-financing portfolio and

uses variance as the risk measure. In this problem, the variance introduces the quadratic

nonlinearity into this problem, which can be handled by applying Lagrange multipliers and

turns into a set of linear problems. The linear problem can be solved by HJB equation. How-

ever, the existence of the margin requirement introduces non-smoothness into this problem.

Following the idea of [65], we decompose the problem into two sub-problems for three in-

dependent regions and achieve the optimal control for each of them respectively. Different

from [65], we adopt the change-of-variable formula with local time on curve [45] to over-

come the non-smoothness on the value function like the last chapter instead of applying

viscosity solution. The optimality of the solution of the HJB equation can be verified by the

verification theorem described in [5]. The solution of the HJB equation relies on the initial

status (t0,x0), this fact is consistent with the last chapter and this kind of optimal control

is named as the statically optimal control. From the statically optimal control, we derive

the dynamically optimal control which purely depends on the current status (t,x) i.e. time-

consistent. The definition and property of these two optimal control have been introduced

in the introduction and the last chapter. Hence, we will omit the related details here. To the

best of our knowledge, the time-consistent solution of optimal portfolio selection under a

margin requirement has not been considered before.

Like the last chapter, we also consider the other two constrained cases where we con-

strain the size of the expectation/variance of the terminal wealth. The solution of these two

problems can be easily derived from the first case. In Section 4, we further analyse the path

of the optimal wealth process by numerical analysis. The numerical result indicates that

increasing the margin rate will enhance the performance of both strategies under the perfect
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market assumption. Moreover, under the margin requirement, the following Theorem 3.1,

Corollary 3.3 and Corollary 3.4 will have the same properties as the work of [43] .

3.2 Formulation of the problem

Consider an investor who aims to construct a self-financing portfolio consisting of the fol-

lowing riskless bond and risky asset:

dBt = rBtdt (3.1)

with initial value Bt0 = b, where b > 0 and the riskless interest rate r ∈ R are constants; the

price of the risky stock, S solves:

dSt = µStdt +σStdWt (3.2)

where we have the drift rate µ ∈ R and the volatility σ > 0. For the risky stock, we set

the initial value St0 = s0 as a constant s0 > 0, and we condition that the drift rate µ must

be strictly higher than the riskfree rate r, which guarantees the investor will receive risk

premium for bearing risk.

In this chapter, short-selling of the risky asset is allowed; however, to avoid default,

the investor is requested to deposit a part of his wealth with a given and fixed rate. In the

following part, we will follow the setting of [65] to construct the model and denote this

margin rate as θ and θ ∈ [0,+∞]. Recalling [5] and (3.1) and (3.2), we can derive the wealth

process for the self-financing portfolio:

dXt = (r+(µ− r)ut− rθu−t )X
u
t dt +Xu

t utσdWt (3.3)

where u− = max{0,−u} and Xu
t0 = x0. In (3.3), the admissible control u(t,x) = u(t,Xu

t )

represents the percentage of wealth investing in the risky asset and U represents the set of

all admissible controls. Moreover, following the setting of [43], for the admissible control

ut , the mapping (t,x) 7→ u(t,x) · x is a continuous function from [0,T ]×R into R, and there

is u(t,0) = 0 ·u(t,0) for completeness as u(t,x) may not well-defined at 0.

Under the probability measure Pt,x, Xu
t is a strong Markov process for each admissible

control and gives value x at t where (t,x) ∈ [0,T ]×R. In this chapter, we will consider the

following problem:

V (t,x) = sup
u

[
Et,x(Xu

T )− cVart,x(Xu
T )
]

(3.4)
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in which risk aversion rate c > 0 is a given constant. For the admissibility condition of u,

we set that Et,x
[∫ T

t (1+u2
s )(X

u
s )

2ds
]
< ∞.

Similar to the previous chapter, we will attempt to extend our conclusion to the other

constrained cases:

V1(t,x) = sup
u:Vart,x(Xu

T )≤α

Et,x(Xu
T ) (3.5)

V2(t,x) = inf
u:Et,x(Xu

T )≥β

Vart,x(Xu
T ) (3.6)

where u is the admissible control, and α ∈ (0,∞) and β ∈ R are given constants.

The definition for the static and dynamic optimalities are introduced in the Introduction

chapter and we will omit this part here.

3.3 Solution to the problems

In the following part, we will follow the idea and method of [43] to obtain the solution.

Theorem 3.1. Consider the optimal problem V (t,x) = supu[Et,x(Xu
T )− cVart,x(Xu

T )] in

which Xu represents the wealth process and is the solution of the SDE (3.3) with Xu
t0 = x0

under the probability measure Pt0,x0 for (t0,x0) ∈ [0,T ]×R given and fixed. The related

risk coefficient is defined by δ = (µ− r)/σ in which µ,r ∈ R, and the under the margin

requirement, there is ρ = (µ− r+ rθ)/σ. Note that we assume that δ 6= 0 and r 6= 0. (The

cases δ = 0, ρ = 0 or r = 0 follow by passage to the limit when the non-zero δ, ρ or r

approaches 0.)

(A) The statically optimal control is given by:

us
∗(t,x) =


δ

σ

1
x [−x+ x0er(t−t0)+ 1

2ceδ2(T−t0)−r(T−t)] if (t,x) ∈ Γ1∪Γ3

ρ

σ

1
x [−x+ x0er(t−t0)+ 1

2ceδ2(T−t0)−r(T−t)] if (t,x) ∈ Γ2

(3.7)

where Γ1, Γ2, and Γ3 are given by:

Γ1 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− 1

2ceδ2(T−t0)−r(T−t)]< 0
}

Γ2 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− 1

2ceδ2(T−t0)−r(T−t)]> 0
}

Γ3 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− 1

2ceδ2(T−t0)−r(T−t)] = 0
} (3.8)
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for (t,x) ∈ [t0,T ]×R.

(B) The dynamically optimal control is given by:

ud
∗(t,x) =


δ

2cσ

1
x e(δ

2−r)(T−t) if x≥ 0

ρ

2cσ

1
x e(δ

2−r)(T−t) if x < 0
(3.9)

for (t,x) ∈ [t0,T ]×R.

Proof. In this chapter, we claim that, for each pair of (t0,x0)∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (4.3) with

initial condition Xu
t0 = x0. Furthermore, for Xu

t , u ∈U is any admissible control we defined

in Section 3.2.

(A): Similar to what we have done in the previous chapter, we firstly convert the non-

linear problem into a set of a linear problems. Re-arranging the value function gives:

Et,x(Xu
T )− cVart,x(Xu

T ) = Et,x(Xu
T )− c

[
Et,x[(Xu

T )
2]−Et,x(Xu

T )
2]. (3.10)

By setting Et,x(Xu
T ) = M and M ≥ x0er(T−t0), equation (3.10) leads to:

V (t,x) = sup
M∈R

sup
u:Et,x(Xu

T )=M

[
Et,x(Xu

T )− c
[

Et,x[(Xu
T )

2]−Et,x(Xu
T )

2]]
= sup

M∈R

[
M+ cM2− c inf

u:Et,x(Xu
T )=M

Et,x[(Xu
T )

2]

]
(3.11)

in which there exists a linear and constrained problem:

VM(t,x) = inf
u:Et,x(Xu

T )=M
Et,x[(Xu

T )
2]. (3.12)

1. As what we have done in the previous chapter, we firstly introduce Lagrange multi-

pliers in (3.12) and receive:

Lt,x(u,λ) = Et,x[(Xu
T )

2]−λ[Et,x(Xu
T )−M] (3.13)

where λ> 0. Furthermore, we have seen that there exists λ= λ(t,x,M) such that Et,x(X
uλ
∗

T )=

M and

VM(t,x) = Lt,x(uλ
∗,λ)≤ Et,x[(Xu

T )
2] (3.14)

where u ∈U is any admissible control with Et,x(Xu
T ) = M. Hence, solving (3.13) will give

the optimal control that minimises (3.12).
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2. To handle (3.13), let us adopt the HJB equation in the following optimal control

problem:

V λ(t,x) = inf
u

Et,x(Xu
T

2)−λEt,x(Xu
T ). (3.15)

Recalling the SDE (3.3), the corresponding HJB equation is given by:

inf
u
{V λ

t +(r+(µ− r)u− rθu−)xV λ
x +

1
2

x2
σ

2u2V λ
xx}= 0 (3.16)

with terminal condition:

V λ(T,x) = x2−λx. (3.17)

3. In (3.16), we see that the HJB equation contains term u− = max{0,−u}, which

indicates that if u < 0, then there is an extra charge for the short-selling action. In [65],

Zhou and Wu handles this case with general market coefficient by decomposing (3.16) into

a few of sub-problems and achieve the optimal solution the HJB equation in each disjoint

region. Hence, we will follow the idea of [65] but conduct a simplified method. Hence, in

this case, we need to consider the following two cases:infu{V λ
t +(r+(µ− r)u)xV λ

x + 1
2x2σ2u2V λ

xx}= 0 if u(t,x)≥ 0

infu{V λ
t +(r+(µ− r)u+ rθu)xV λ

x + 1
2x2σ2u2V λ

xx}= 0 if u(t,x)< 0
(3.18)

with the same terminal condition as (3.17). This piece-wise condition in (3.18) naturally

leads to non-smoothness in V λ(t,x). These two HJB equations can be seen as the function

of u, hence, according to the quadratic function property, we further assume that V λ
xx > 0.

We firstly design the value function of V λ(t,x) by:

V λ(t,x) =

a(t)x2 +b(t)x+ c(t) if u(t,x)≥ 0

A(t)x2 +B(t)x+C(t) if u(t,x)< 0
(3.19)

with a′(t) = (δ2−2r)a(t)

a(T ) = 1,
(3.20)

b′(t) = (δ2− r)b(t)

b(T ) =−λ,

(3.21)
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4
b(t)2

a(t)

c(T ) = 0
(3.22)

where δ = (µ− r)/σ, and A′(t) = (ρ2−2r)A(t)

A(T ) = 1,
(3.23)

B′(t) = (ρ2− r)B(t)

B(T ) =−λ,

(3.24)

C′(t) = ρ2

4
B(t)2

A(t)

c(T ) = 0,
(3.25)

where ρ = (µ− r+ rθ)/σ. Equations (3.20)-(3.25) can be achieved by substituting (3.19)

into (3.18) and comparing the coefficients for each term. Solving (3.20)-(3.25), we receive:


a(t) = e−(δ

2−2r)(T−t)

b(t) =−λe−(δ
2−r)(T−t)

c(t) =−λ2

4 [1− e−δ2(T−t)],

(3.26)

and 
A(t) = e−(ρ

2−2r)(T−t)

B(t) =−λe−(ρ
2−r)(T−t)

C(t) =−λ2

4 [1− e−ρ2(T−t)].

(3.27)

To further consider the case when u(t,x)≥ 0, we define the following region:

Γ1 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− λ

2
e−r(T−t)]< 0

}
(3.28)
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in which we have V λ(t,x) = a(t)x2+b(t)x+c(t) and V λ is smooth enough in Γ1. Substitut-

ing V λ
t , V λ

x , and V λ
xx back into the first HJB equation of (3.19), we see that:

V λ
t +(r+(µ− r)u)xV λ

x +
1
2

σ
2u2x2V λ

xx (3.29)

= a′(t)x2 +b′(t)x+ c′(t)+ rx[2a(t)x+b(t)]

+ inf
u

{
(µ− r)x(2a(t)x+b(t))u+σ

2x2a(t)u2}
= (δ2−2r)e−(δ

2−2r)(T−t)x2−λ(δ2− r)e−(δ
2−r)(T−t)x+

λ2δ2

4
e−δ2(T−t)

+ rx[2e−(δ
2−2r)(T−t)x−λe−(δ

2−r)(T−t)]

+ inf
u

{
(µ− r)x(2e−(δ

2−2r)(T−t)x−λe−(δ
2−r)(T−t))u+σ

2x2e−(δ
2−2r)(T−t)u2}.

From the last term of (3.28), we can see that:

u∗(t,x) =− δ

σ

1
x

[
x− λ

2
e−r(T−t)] (3.30)

which is positive in Γ1. Substituting (3.30) back into (3.29) we can see that (3.29) equals

to 0, which verifies that the control given by (3.30) and the first value function of (3.19) is

optimal for the first HJB equation in (3.18) in Γ1.

Furthermore, we define the second region:

Γ2 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− λ

2
e−r(T−t)]> 0

}
(3.31)

with V λ(t,x)=A(t)x2+B(t)x+C(t). Similarly, substituting V λ
t , V λ

x and V λ
xx back into (3.18),

we have:

V λ
t +(r+(µ− r)u+ rθu)xV λ

x +
1
2

σ
2u2x2V λ

xx (3.32)

= A′(t)x2 +B′(t)x+C′(t)+ rx[2A(t)x+B(t)]

+ inf
u

{
(µ− r+ rθ)x(2A(t)x+B(t))u+σ

2x2A(t)u2}
= (ρ2−2r)e−(ρ

2−2r)(T−t)x2−λ(ρ2− r)e−(ρ
2−r)(T−t)x+

λ2ρ2

4
e−ρ2(T−t)

+ rx[2e−(ρ
2−2r)(T−t)x−λe−(ρ

2−r)(T−t)]

+ inf
u

{
(µ− r+ rθ)x(2e−(ρ

2−2r)(T−t)x−λe−(ρ
2−r)(T−t))u+σ

2x2e−(ρ
2−2r)(T−t)u2}.

In this case, we can see that the optimal control u is given by:

u∗(t,x) =−ρ

σ

1
x

[
x− λ

2
e−r(T−t)] (3.33)
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Moreover, since ρ := (µ− r+ rθ)/σ > 0, we can see that:

−ρ

σ

1
x

[
x− λ

2
e−r(T−t)]< 0. (3.34)

The first inequality in (3.34) holds as in Γ2 there is 1
x

[
x− λ

2 e−r(T−t)] > 0. Furthermore,

substituting (3.33) back into (3.32), we can see that (3.32) equals 0, which verifies the

control given in (3.33) and the value function are the optimal in Γ2.

For the final region where the non-smoothness occurs:

Γ3 :=
{
(t,x) ∈ [t0,T ]×R |

[
x− λ

2
e−r(T−t)]= 0

}
(3.35)

Hence, under x = λ

2 e−r(T−t), we can easily verify that:

a(t)x2 +b(t)x+ c(t) = A(t)x2 +B(t)x+C(t) =−λ2

4
(3.36)

which indicates that V λ(t,x) is continuous on Γ3. Moreover, there are:V λ
t = A′(t)x2 +B′(t)x+C′(t) = a′(t)x2 +b′(t)x+ c′(t) = 0

V λ
x = 2A(t)x+B(t) = 2a(t)x+b(t) = 0

(3.37)

which indicates the existence and continuity of V λ
t and V λ

x in Γ3. However, in Γ3, we can

see that V λ
xx does not exist on this curve, i.e. Γ3, as A(t) 6= a(t), which indicates that V λ(t,x)

is not a C1,2 function for the HJB equation (3.18). In the previous chapter, we have seen that

the change-of-variable formula [45] enables us to express the value function V λ through the

curve, and the optimality of the candidate control can be achieved by verification theorem

[5]. In Chapter 2, we have shown that the curve b(t) = x = λ

2 e−r(T−t) parameterising Γ3 is

of bounded variation, and V λ
xx is locally bounded in both Γ1 and Γ2. Furthermore, we can

summarise the candidate control by:

u∗(t,x) =

−
δ

σ

1
x

[
x− λ

2 e−r(T−t)] if (t,x) ∈ Γ1∪Γ3

−ρ

σ

1
x

[
x− λ

2 e−r(T−t)] if (t,x) ∈ Γ2.

(3.38)

Again, recalling Theorem 3.1 in [45] and SDE (3.3), we can express the value function

V λ(T,Xu
T ) on [0,T ]×R, which gives:

V λ(T,Xu
T ) =V λ(t,x) (3.39)

+
∫ T

t

(
V λ

t +(rXu
s +(µ− r)u− rθu−)V λ

x +
σ2u2Xu

s
2

2
V λ

xx
)
I(Xu

s 6= b(s))ds

+
∫ T

t
σuXu

s V λ
x dWs
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with b(t) = λ

2 e−r(T−t). We have seen that in Γ1 and Γ2, there is:

(
V λ

t +(rXu
s +(µ− r)u− rθu−)V λ

x +
σ2u2Xu

s
2

2
V λ

xx
)
I(Xu

s 6= b(s))≥ 0. (3.40)

Since V λ(T,Xu
T ) = Xu

T
2−λXu

T , equation (3.39) leads to:

V λ(t,x)≥V λ(T,Xu
T ) = Xu

T
2−λXu

T −
∫ T

t
σuXu

s V λ
x dWs. (3.41)

Taking Et,x on both sides of (3.41), we can see that the stochastic integral term is actu-

ally a martingale under the admissibility condition Et0,x0[maxt0≤t≤T (Xu
T )

2]< ∞ and the term

Et,x
[∫ T

t σuXu
s V λ

x dWs
]

vanishes. Therefore, there is:

V λ(t,x)≥ Et,x
[
Xu

T
2−λXu

T
]

(3.42)

which holds for all admissible controls. Hence, we can see that:

V λ(t,x)≥ inf
u

Et,x
[
Xu

T
2−λXu

T
]
. (3.43)

Furthermore, we further claim that the control given by (3.38) is optimal, hence, for (t,x) in

Γ1 and Γ2, we have:

V λ
t +(rXu∗

t +(µ− r)u∗− rθu∗−)V λ
x +

σ2u∗2Xu∗
t

2

2
V λ

xx = 0 (3.44)

and in Γ3, the integrand term in (3.39) vanishes. Hence, for the optimal control u∗, there is:

V λ(t,x) = Xu∗
T

2−λXu∗
T −

∫ T

t
(σu∗Xu∗

s V λ
x )dWs. (3.45)

Taking expectation Et,x on the both side of (3.45) yields:

V λ(t,x) = Et,x
[
Xu∗

T
2−λXu∗

T
]
. (3.46)

Hence, we have the following trivial inequality:

inf
u

Et,x
[
Xu

T
2−λXu

T
]
≥ Et,x

[
Xu∗

T
2−λXu∗

T
]
. (3.47)

Upon (3.43) and (3.47) we have:

V λ(t,x)≤ Et,x
[
Xu

T
2−λXu

T
]
≤ Et,x

[
Xu∗

T
2−λXu∗

T
]
≤V λ(t,x) (3.48)

Hence, we have verified that the control given by (3.38) is the optimal control for V λ.
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4. Now, the target is to achieve the optimal λ for (3.38). For (t,x) ∈ Γ1∪Γ3, we have

u∗(t,x) =− δ

σ

1
x

[
x− λ

2 e−r(T−t)]. This case is consistent with the conclusion in previous chap-

ter (2.68)-(2.77), hence, we will omit the details and take the advantage from the last chapter.

For (t,x) ∈ Γ1∪Γ3, the corresponding wealth process is given by:

Xu
t = er(t−t0)

[
K− (K−x0)e−δ(Wt−Wt0)−

3δ2
2 (t−t0)

]
(3.49)

where K = λ

2 e−r(T−t0). Recalling Et,x(Xu
T ) = M, there is:

Et0,x0(X
u
T ) = x0e−(δ

2−r)(T−t0)+
λ

2
[
1− e−δ2(T−t0)

]
= M. (3.50)

Rearranging (3.50) yields:

λ = 2
M− x0e−(δ

2−r)(T−t0)

1− e−δ2(T−t0)
. (3.51)

Hence, we can easily calculate Et0,x0(X
u
T

2) and VM(t0,x0), which gives the the value function

V (t0,x0) as a quadratic function of M:

V (t0,x0) = sup
M∈R

[
M+ cM2− c(x0

2e−(δ
2−2r)(T−t0)+

(M−x0e−(δ
2−r)(T−t0))2

1− e−δ2(T−t)
)
]
. (3.52)

Calculating the M∗ directly gives the optimal value of λ∗, which is

λ∗ = 2x0er(T−t0)+
1
c

eδ2(T−t0) (3.53)

which is independent of θ. Substituting (3.53) back into (3.38) gives the optimal control:

us
∗(t,x) =


δ

σ

1
x [−x+ x0er(t−t0)+ 1

2ceδ2(T−t0)−r(T−t)] if (t,x) ∈ Γ1∪Γ3

ρ

σ

1
x [−x+ x0er(t−t0)+ 1

2ceδ2(T−t0)−r(T−t)] if (t,x) ∈ Γ2

(3.54)

where Γ1, Γ2, and Γ3 are given by:

Γ1 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− 1

2ceδ2(T−t0)−r(T−t)]< 0
}

Γ2 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− 1

2ceδ2(T−t0)−r(T−t)]> 0
}

Γ3 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− 1

2ceδ2(T−t0)−r(T−t)] = 0
} (3.55)

which confirms (3.7). Hence, we have obtained the statically optimal control for (3.4)

(B): In striving for the dynamically optimal control, we firstly replace the t0 and x0 in

(3.54) as we have claimed that the dynamically optimal control is equivalent to the statically
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optimal control with the same initial status, which gives:

ud
∗(t,x) =


δ

2cσ

1
x e(δ

2−r)(T−t) if (t,x) ∈ Γ1∪Γ3

ρ

2cσ

1
x e(δ

2−r)(T−t) if (t,x) ∈ Γ2.

(3.56)

Furthermore, we replace t0 and x0 in three regions Γ1, Γ2, and Γ3, we noted that conducting

short-selling or not purely depends on the current wealth. Hence, we can further simplify

Γ1∪Γ3 to {(t,x) ∈ [t0,T ]×R | x≥ 0} and Γ2 := {(t,x) ∈ [t0,T ]×R | x < 0}. To verify the

optimality of (3.56), we follow the previous chapter and set ud
∗(t0,x0) =w(t0,x0), w(t0,x0) =

us
∗(t0,x0), and v(t0,x0) for any admissible such that v(t0,x0) 6= ud

∗(t0,x0). For a dynamically

optimal control, the following relationship must hold:

Vw(t0,x0) = Et0,x0(X
w
T )− cVart0,x0(X

w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T ) =Vv(t0,x0) (3.57)

for any (t0,x0) ∈ [0,T ]×R based upon the fact that Vw(t0,x0) = V (t0,x0) and w(t0,x0) is

statically optimal.

5. To verify the optimality, we need to consider the following cases when x0 > 0, x0 = 0,

and x0 < 0. If x0 > 0, there is ud
∗(t0,x0) =

δ

2cσ

1
x0

e(δ
2−r)(T−t0) > 0, and if x0 = 0, we have

ud
∗(t0,x0) = x0 · ud

∗(t0,x0) = 0. Those two cases are consistent with the conclusion in the

proof of Theorem 2.3 in Chapter 2. The proof of exhibited in (2.81)-(2.88) which proves

(3.56) is the dynamically optimal control when (t0,x0) ∈ Γ1 ∪Γ3 still holds in this case.

Hence, we will omit this part and focus on proving that (3.56) is dynamically optimal when

x0 < 0. For any other admissible control v(t0,x0) 6= w(t0,x0), we set Et0,x0(X
v
T ) := Mv 6=

Mw =: Et0,x0(X
w
T ). Recalling (3.15) and (3.27), we can see that for w(t0,x0) there is:

V λ
∗ (t0,x0) = A(t0)x2

0 +B(t0)x0 +C(t0) (3.58)

= e−(ρ
2−2r)(T−t0)x2

0−λ∗e−(ρ
2−r)(T−t0)x0−

λ2
∗

4
[1− e−ρ2(T−t0)]

where λ∗ is given by (3.53). Since V λ∗(t0,x0) =Et0,x0(X
w
T

2)−λ∗Et0,x0(X
w
T ) and Et0,x0(X

w
T ) =

Mw, there is:

Et0,x0(X
w
T

2) =V λ∗(t0,x0)+λ∗Mw (3.59)

= e−(ρ
2−2r)(T−t0)x2

0−λ∗e−(ρ
2−r)(T−t0)x0−

λ2
∗

4
[1− e−ρ2(T−t0)]+λ∗Mw.
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Substituting (3.59) back into (3.11) yields:

Vw(t0,x0) (3.60)

= Mw + cM2
w− c

(
e−(ρ

2−2r)(T−t0)x2
0−λ∗e−(ρ

2−r)(T−t0)x0−
λ2
∗

4
[1− e−ρ2(T−t0)]+λ∗Mw

)
> Mv + cM2

v − c
(
e−(ρ

2−2r)(T−t0)x2
0−λ∗e−(ρ

2−r)(T−t0)x0−
λ2
∗

4
[1− e−ρ2(T−t0)]+λ∗Mv

)
=Vv(t0,x0)

in which the inequality holds as w(t0,x0) is also statically optimal when x0 < 0, i.e. in Γ2.

Hence, we have verified the optimal control given by (3.56) is dynamically optimal. �

Remark 3.2. In the proof above, the optimal value of λ∗ is given by (3.53), which is

independent of θ and we will explore the reason behind it. Recalling (3.15), (3.26) and

(3.27), there exists:

V λ(t0,x0) = a(t0)x2
0 +b(t0)x0 + c(t0) (3.61)

= e−(δ
2−2r)(T−t0)x2

0−λe−(δ
2−r)(T−t0)x0−

λ2

4
[1− e−δ2(T−t0)]

when 1
x0

[
x0− λ

2 e−r(T−t0)
]
≤ 0. Recalling Lt0,x0(u,λ) = Et0,x0(X

u
T

2)−λEt0,x0(X
u
T )+λM, we

can see that:

Lt0,x0(u,λ) = e−(δ
2−2r)(T−t0)x2

0 +λ
(
M− e−(δ

2−r)(T−t0)x0
)
− λ2

4
[
1− e−δ2(T−t0)

]
(3.62)

which gives an quadratic function of λ. Moreover the condition 1
x0

[
x0− λ

2 e−r(T−t0)
]
≤ 0

implies that λ≥ 2x0er(T−t0). According to the quadratic function property, we have:

λ
∗
1 = 2

M− x0e−(δ
2−r)(T−t0)

1− e−δ2(T−t0)
(3.63)

and we can easily verify that:

λ
∗
1−2x0er(T−t0) =

2
[
M−x0er(T−t0)

]
1− e−δ2(T−t0)

≥ 0 (3.64)

as M ≥ x0er(T−t0), which indicates that λ∗ given in (3.63) is optimal point of (3.62) under

λ≥ 2x0er(T−t0), and Lt0,x0(u,λ) achieves optimal value:

Lt0,x0(u,λ
∗
1) = e−(δ

2−2r)(T−t0)x2
0 +

(M−x0e−(δ
2−r)(T−t0))2

1− e−δ2(T−t0)
> 0. (3.65)
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On the other hand, when 1
x0

[
x0− λ

2 e−r(T−t0)
]
≥ 0, there is λ≤ 2x0er(T−t0), and Lt0,x0(u,λ) is

given by:

Lt0,x0(u,λ) = A(t0)x2
0 +B(t0)x0 +C(t0)+λM (3.66)

= e−(ρ
2−2r)(T−t0)x2

0 +λ(M− e−(ρ
2−r)(T−t0)x0)−

λ2

4
[1− e−ρ2(T−t0)]

with optimal λ∗2:

λ
∗
2 = 2

M− x0e−(ρ
2−r)(T−t0)

1− e−ρ2(T−t0)
(3.67)

However, we can see that:

λ
∗
2−2x0er(T−t0) =

2
[
M−x0er(T−t0)

]
1− e−ρ2(T−t0)

≥ 0 (3.68)

which violates the condition 0 < λ ≤ 2x0er(T−t0) except λ = 2x0er(T−t0). Hence, for (3.66),

λ can only reach its local optimal point at 2x0er(T−t0). It is easily seen that:

Lt0,x0(u,λ
∗
2) = 2x0er(T−t0)M−x2

0e2r(T−t0). (3.69)

Since the target is to achieve the optimal value of Lt0,x0(u,λ), then we can see that:

Lt0,x0(u,λ
∗
1)≥ Lt0,x0(u,λ

∗
2). (3.70)

Hence, λ∗1 is the optimal solution we are looking for, and this is consistent with (3.51). �

Similar to the two corollaries in Chapter 2, we can still extend our conclusion from the

(3.4) to (3.5) and (3.6). As [43] states, V1 and V2 can be derived from the (3.4) by choosing

a proper value of Lagrange multiplier. Hence, we will following the work of proofs of

Corollary 5 and Corollary 7 of [43] to derive the solution for (3.5) and (3.6). Since the work

of this part is very similar to the work of [43], we will only briefly introduce the idea and

omit most of the detailed proof.

Corollary 3.3. Consider the optimal problem V1(t,x) = supu:Vart,x(Xu
T )≤α[Et,x(Xu

T )] in

which Xu represents the wealth process and is the solution of the SDE (3.3) with Xu
t0 = x0

under the probability measure Pt0,x0 for (t0,x0) ∈ [0,T ]×R given and fixed. The related

risk coefficient is defined by δ = (µ− r)/σ in which µ,r ∈ R, and the under the margin

requirement ρ = (µ− r+ rθ)/σ. Note that we assume that δ 6= 0 and r 6= 0. (The cases

δ = 0, ρ = 0 or r = 0 follow by passage to the limit when the non-zero δ, ρ or r approaches

0.)
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(A) The statically optimal control is given by:

us
∗(t,x) =


δ

σ

1
x

[
x0er(t−t0)−x+

√
α

eδ2(T−t0)−r(T−t)√
eδ2(T−t0)−1

]
if (t,x) ∈ Γα

1 ∪Γα
3

ρ

σ

1
x

[
x0er(t−t0)−x+

√
α

eδ2(T−t0)−r(T−t)√
eδ2(T−t0)−1

]
if (t,x) ∈ Γα

2

(3.71)

where Γ1, Γ2, and Γ3 are given by:

Γα
1 :=

{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)−

√
α

eδ2(T−t0)−r(T−t)√
eδ2(T−t0)−1

]
< 0
}

Γα
2 :=

{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)−

√
α

eδ2(T−t0)−r(T−t)√
eδ2(T−t0)−1

]
> 0
}

Γα
3 :=

{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)−

√
α

eδ2(T−t0)−r(T−t)√
eδ2(T−t0)−1

]
= 0
} (3.72)

for (t,x) ∈ [t0,T ]×R.

(B) The dynamically optimal control is given by:

ud
∗(t,x) =


δ

σ

1
x
√

α
e(δ

2−r)(T−t)√
eδ2(T−t)−1

if x≥ 0

ρ

σ

1
x
√

α
e(δ

2−r)(T−t)√
eδ2(T−t)−1

if x < 0
(3.73)

for (t,x) ∈ [t0,T ]×R.

Proof. In this chapter, we claim that, for each pair of (t0,x0)∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (3.3) with

initial condition Xu
t0 = x0 and u ∈U is any admissible control we defined in Section 3.2.

(A): Applying Lagrange multipliers in V1(t,x), there is:

L1
t,x(u,c) = Et,x(Xu

T )− c[Vart,x(Xu
T )−α] (3.74)

= Et,x(Xu
T )− cVart,x(Xu

T )+ cα.

We can see that the statically optimal control given by (3.7) meeting Vart,x(Xu
T ) = α will

maximise (3.74) and is the statically optimal control for (3.5). To determine the optimal

Lagrange multiplier c(α, t,x)> 0, we further assume that for a given pair of (t,x)∈ [t0,x0]×

R such that uc
∗(t,x)> 0. Recalling (3.49) and (3.53), we can calculate that:

Vart0,x0(X
uc
∗

T ) =
1

4c2 [e
δ2(T−t0)−1]. (3.75)

Setting (3.75) equal to α yields:

c =
1

2
√

α

√
eδ2(T−t0)−1. (3.76)
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Substituting (3.76) back into (3.7), we receive the statically optimal control given by (3.71).

(B) In striving for the dynamically optimal control, we first replace t0 and x0 by t and x

in (3.71), which gives the candidate dynamically optimal control given by (3.72). To prove

its optimality, we set w(t0,x0) = ud
∗(t0,x0) and w = us

∗(t0,x0), and v(t0,x0) 6= ud
∗(t0,x0) is any

other admissible control in U . We can see that (3.57) is still valid with c given by (3.76),

and under the constraint that Vart0,x0(X
w
T )≤ α and Vart0,x0(X

v
T )≤ α, we can easily see that:

Et0,x0(X
w
T )− cVart0,x0(X

w
T )≥ Et0,x0(X

w
T )− cα > Et0,x0(X

v
T )− cVart0,x0(X

v
T ) (3.77)

which leads to:

Et0,x0(X
w
T )> Et0,x0(X

v
T )− c(Vart0,x0(X

v
T )−α)> Et0,x0(X

u
T ) (3.78)

and this confirms that (3.79) and finishes the proof. �

Corollary 3.4. Consider the optimal problem V2(t,x) = infu:Et,x(Xu
T )≥β[Vart,x(Xu

T )] in

which Xu represents the wealth process and is the solution of the SDE (3.3) with Xu
t0 = x0

under the probability measure Pt0,x0 for (t0,x0) ∈ [0,T ]×R given and fixed. The related

risk coefficient is defined by δ = (µ− r)/σ in which µ,r ∈ R, and the under the margin

requirement ρ = (µ− r+ rθ)/σ. Note that we assume that δ 6= 0 and r 6= 0. (The cases

δ = 0, ρ = 0 or r = 0 follow by passage to the limit when the non-zero δ, ρ or r approaches

0.) Furthermore, we assume that the expectation of the terminal wealth, β, must satisfy

β > x0er(T−t0). For a wise investor, if β ≤ x0er(T−t0), he can simply invest all his wealth in

the riskless asset and receive zero variance at the maturity T . Hence, in the following part,

we assume that β > x0er(T−t0).

(A) The statically optimal control is given by:

us
∗(t,x) =


δ

σ

1
x

[
x0er(t−t0)−x+(β−x0er(T−t0))eδ2(T−t0)−r(T−t)

eδ2(T−t0)−1

]
if (t,x) ∈ Γ1∪Γ3

ρ

σ

1
x

[
x0er(t−t0)−x+(β−x0er(T−t0))eδ2(T−t0)−r(T−t)

eδ2(T−t0)−1

]
if (t,x) ∈ Γ2

(3.79)

where Γ1, Γ2, and Γ3 are given by:

Γ
β

1 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− (β−x0er(T−t0))eδ2(T−t0)−r(T−t)

eδ2(T−t0)−1

]
< 0
}

Γ
β

2 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− (β−x0er(T−t0))eδ2(T−t0)−r(T−t)

eδ2(T−t0)−1

]
> 0
}

Γ
β

3 :=
{
(t,x) ∈ [t0,T ]×R | 1

x

[
x− x0er(t−t0)− (β−x0er(T−t0))eδ2(T−t0)−r(T−t)

eδ2(T−t0)−1

]
= 0
}

(3.80)



72 CHAPTER 3. PORTFOLIO SELECTION UNDER MARGIN REQUIREMENT

for (t,x) ∈ [t0,T ]×R.

(B) The dynamically optimal control is given by:

ud
∗(t,x) =


δ

σ

1
x (β− xer(T−t))e(δ

2−r)(T−t)

eδ2(T−t)−1
if x≥ 0

ρ

σ

1
x (β− xer(T−t))e(δ

2−r)(T−t)

eδ2(T−t)−1
if x < 0

(3.81)

for (t,x) ∈ [t0,T ]×R.

Proof. In this chapter, we claim that, for each pair of (t0,x0)∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (3.3) with

initial condition Xu
t0 = x0 and u ∈U is any admissible control we defined in Section 3.2.

(A): As we have seen that applying Lagrange multipliers in (3.6) gives:

inf
u

[
Vart,x(Xu

T )− c(Et,x(Xu
T )−β)

]
=−csup

u

[
Et,x(Xu

T )−
1
c

Vart,x(Xu
T )
]
+ cβ (3.82)

from which we can see that the statically optimal control given by (3.7) with Et,x(Xu∗
T ) = β

and risk aversion rate 1/c is the statically optimal control for (3.6). To obtain the optimal

value of 1/c, we further assume that for each (t,x) ∈ [t0,T ]×R, us
∗(t,x) given by (3.7) is

greater than 0. Hence, recalling (3.49) and (3.53), we can calculate that:

β = x0er(T−t0)+
c
2
[eδ2(T−t0)−1] (3.83)

which gives:

c =
2(β− x0er(T−t0))

eδ2(T−t0)−1
. (3.84)

Substituting (3.48) back into (3.7) gives the statically optimal control given by (3.79).

(B) Replacing t0 and x0 by t and x in (3.79) gives the dynamically optimal control.

Similar to the proof in the last corollary, we see that (3.57) is still valid with c given by

(3.84). To prove the optimality of (3.81), we set w(t0,x0) = ud
∗(t0,x0) and w = us

∗(t0,x0), and

v(t0,x0) 6= ud
∗(t0,x0) is any other admissible control in U . For w and v, there are Et,x(Xw

T )≥ β

and Et,x(Xv
T )≥ β. We can easily derive from (3.57) that:

Et0,x0(X
w
T )− cVart0,x0(X

w
T )≥ β− cVart0,x0(X

w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T ) (3.85)

from which we can derive that:

− cVart0,x0(X
w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T )−β⇒ (3.86)

Vart0,x0(X
w
T )< Vart0,x0(X

v
T )−

1
c

[
Et0,x0(X

v
T )−β

]
< Vart0,x0(X

v
T ).

Hence, we have verified that (3.81) is dynamically optimal and completed the proof. �
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3.4 Analysis of the optimal wealth processes

1. In Section 3.3, we have achieved both statically and dynamically optimal controls for

(3.4), (3.5) and (3.6) respectively, in which the margin requirement introduces the curve for

the value function as well as both optimal strategies. The existence of the curve inspires us

to further consider the optimal wealth processes for those two strategies.

In Theorem 3.1, the statically optimal control (3.7) changes when (t,x) moves from

Γ1 ∪Γ3 to Γ2. Hence, for each (t,x) ∈ Γ1 ∪Γ3, the wealth process is consistent with the

cases when t ≤ τα given by (2.15) in Chapter 2, and we will take the advantage of the

previous conclusion and omit details. Therefore, for (t,x) ∈ Γ1∪Γ3, the statically optimal

wealth is

X s1
t = x0er(t−t0)+

1
2c

e(δ
2−r)(T−t)[eδ2(T−t0)− e−δ(Wt−Wt0)−

δ2
2 (t−t0)

]
. (3.87)

Note that the steps of achieving (3.87) can be seen between (2.68)-(2.77) (cf. [43], page

9-10). Since x0 > 0, we can see that the wealth process starts from Γ1∪Γ3 until the wealth

process hits the upper curve or 0. Once it crosses the upper or lower boundary, the stati-

cally optimal control gives negative value, i.e. conducting short-selling, and the new wealth

process will be driven by the optimal control in the second line of (3.7), which gives a new

process starts from this point. To further illustrate this, we assume that at t ′ ∈ (t0,T ), X s1
t

hits the upper curve or 0 with value X s1
t ′ = x′, and the wealth process will across the curve

with probability 1 almost surely. Hence, the static optimality will conduct short-selling and

the new corresponding wealth process starts from x′. The corresponding new optimal wealth

process is given by:

X s2
t = x′er(t−t′)+

1
2c

eδ2(T−t′)−r(T−t)[1− e−ρ(Wt−Wt′)−
3ρ2

2 (t−t′)] (3.88)

where t ∈ [t ′,T ] (note that the step of calculating (3.88) is the the same as the step of ob-

taining (3.87). Similar thing will be observed when X s2
t hits the boundary again, and the

optimal control will gives the process (3.87) but with new initial value. This behaviour will

keep happening until either X s1
t or X s2

t hits the maturity time T .

To illustrate this in a more intuitive way, we simulate this process and plot it in Figure

3.1. And in Figure 3.1, we exhibit the case when X s1
t across the lower boundary 0. The

behaviour is the same when it hits the upper boundary and we will omit this plot.

For the dynamically optimal control given by (3.9), there is only a lower boundary at

0. In Chapter 2, we have obtained the explicit solution for the dynamically optimal wealth
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Figure 3.1: Simulation of statically optimal controlled wealth process for (3.7) based on the
analysis of (3.87)-(3.88). It can be clearly seen that there exist an upper boundary (blue
curve) and a lower boundary (orange line).

Figure 3.2: Simulation of dynamically optimal controlled wealth process for (3.9). It can be
clearly seen that there exists a lower boundary (blue line).

process (2.20). Similar conclusions can be made in the dynamic case, and we plot the

dynamic wealth process in Figure 3.2, in which Xd1
t is the process for ud ≥ 0 and Xd2

t is the

process for ud < 0.

Besides the unconstrained case, in [43] we have seen that for the constrained case where

we constrain the size of the expectation of the terminal wealth, the dynamically optimal

wealth process will converge to the targeted expected terminal wealth with probability one

(see Corollary 7 of [43]). This phenomenon also exists in the previous chapter in Corollary

2.5 in Chapter 2 if the dynamically optimal wealth process does not hit 0 before it approaches
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to the maturity time. Hence, it will be interesting to consider if this phenomenon still exists

under the margin requirement or not. In Figure 3.3, we simulate the dynamically optimal

wealth process for the constrained problem (3.6). In the first figure of Figure 3.3, the wealth

process does not hit 0 during the entire time, and this case is the same as Figure 1 in [43].

Furthermore, in the second figure of Figure 3.3, the wealth process passes through 0 and

the part of process below 0 is driven by the control (3.81) when ud
∗ < 0. However, we can

see that even if in this chapter the wealth process is driven by two different processes, the

dynamically optimal wealth process will still converge to the expected terminal wealth at the

maturity T . This fact can also be proved by investigating the wealth process, and this part

of proof will be consistent with the proof in (2.122)-(2.127). Hence, we will omit further

details here.

2. To further investigate the impact of the margin requirement on the performance of

both strategies, we conduct the sample path analysis by simulating the wealth processes for

each optimal control and collecting the terminal wealth X s
T and Xd

T to form the sample base,

from which we can obtain the sample mean µ̄s and µ̄d as well as the corresponding sample

variance m̄s and m̄d . Note that in the case if XT is not well-defined, we take the value of X

at the second last point of time to the maturity T . In the following part, we firstly consider

the unconstrained case (3.4) as an example.

In Table 3.1, we can see that the sample mean µ̄s is highly impacted by the change of

risk aversion rate, which has been observed in the previous chapter. However, comparing

the sample mean µ̄s under the fixed risk aversion rate with different values of margin rate, it

is surprising to note that the impact of the margin rate is not obvious. Changing the margin

rate slightly increases the sample mean. Since in Table 3.1 the margin rate is relatively

small, we further increase the value of θ to consider some extreme cases. For instance, we

consider the case when the risk aversion c = 2.0 is given and fixed and the margin rate θ

increases to some large values. In Table 3.3, we can see that when θ increases from 1.0 to

15.0, the sample mean increases. However, if we further increase the value of θ we note

that the sample mean µ̄s takes a negative value, which indicates the investor may suffer an

infinite loss. Hence, we may conclude that short-selling should not be conducted when θ

is large enough as it will lead to bankruptcy almost surely. This conclusion is consistent

with [65] in which they claim that if the margin rate is infinitely large, the short-selling will

be forbidden. A similar conclusion can be observed in the dynamic case. In Table 3.5, the
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Figure 3.3: Simulation of the dynamically optimal controlled wealth process for (3.81), in
which the blue line represents the boundary for short-selling.

only intuitive pattern is the sample mean µ̄d reduces as the risk aversion rate increases. The

impact of the margin rate θ is not obvious as there exists the error of simulation. We further

consider the extreme cases when we increase θ to large values in Table 3.7, which exhibits

a more obvious pattern. From Table 3.7, we can see that increasing the value of margin

rate will increase the performance of the dynamic optimality. However, it should be pointed

out that the extreme value of θ is not possible in the real financial industry. Hence, we can

conclude that changing the margin rate will not bring obvious impact on the performance of

both static and dynamic optimalities when θ is small.

3. In Remark 6 of [43], we have seen the dynamic optimality always outperforms the

static optimality, and this conclusion is valid in the previous chapter under the short-selling

constraint. Naturally, it will be interesting to verify this conclusion under the margin re-

quirement and observe if margin rate will affect this conclusion.

As we stated, calculating the analytical expectation can be difficult in this chapter.
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Margin rate θ Risk aversion rate Sample mean µ̄s Sample variance m̄s

0

0.5 2.02300794 0.20356879
1.0 2.79877920 0.70378819
1.5 3.51006684 3.19572603
2.0 4.38865317 4.29249344

0.1

0.5 2.00628372 0.48156230
1.0 2.85193313 0.43348756
1.5 3.66542053 1.19945378
2.0 4.38802536 3.04788508

0.2

0.5 2.01203512 0.14163037
1.0 2.82807101 0.57508790
1.5 3.57955776 2.18991246
2.0 4.40385168 3.87789854

0.4

0.5 2.00621573 0.25380631
1.0 2.84881132 0.41474374
1.5 3.65336612 1.16306604
2.0 4.46565957 1.68974319

Table 3.1: Simulation of static optimality for the unconstrained problem (3.4) with respect
to different values of θ and c.

(Note the related parameters are given by µ = 0.5, σ = 0.25, δ = 1.2, x0 = 1, r = 0.2, T = 1, and
t0 = 0, and the sample size is 1,000.)

Margin rate θ Sample mean µ̄s Sample variance m̄s

1.0 4.82014336 1.52749700
3.0 4.88100671 0.54567696
5.0 5.01756950 0.36420870
7.0 5.04423417 0.33173649
10.0 5.05005605 0.34274342
15.0 5.05668864 0.32547489
20.0 -4.02×e27 1.61× e58

Table 3.3: Simulation for static optimality for the unconstrained problem (3.4) with respect
to large values of θ.

(Note the related parameters are given by c = 2, µ = 0.5, σ = 0.25, δ = 1.2, x0 = 1, r = 0.2, T = 1,
and t0 = 0, and the sample size is 1,000.)
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Margin rate θ Risk aversion rate Sample mean µ̄d Sample variance m̄d

0

0.5 4.35473294 8.60838696
1.0 2.79877920 2.05356981
1.5 2.25720724 0.99281305
2.0 2.03061625 0.52015353

0.1

0.5 4.40609172 8.24263509
1.0 2.84947736 2.04956431
1.5 2.29791417 1.00831042
2.0 2.04731600 0.52691648

0.2

0.5 4.38611524 8.20322457
1.0 2.84035364 2.09775305
1.5 2.27582767 0.94816332
2.0 2.04153863 0.50540597

0.4

0.5 4.36924374 7.75298679
1.0 2.84921284 1.99734659
1.5 2.29810646 0.90868216
2.0 2.01822466 0.53486249

Table 3.5: Simulation for dynamic optimality for the unconstrained problem (3.4) with re-
spect to different values of θ and c.

(Note the related parameters are given by µ = 0.5, σ = 0.25, δ = 1.2, x0 = 1, r = 0.2, T = 1, and
t0 = 0, and the sample size is 1,000.)

Margin rate θ Sample mean µ̄d Sample variance m̄d

1.0 4.49562744 7.49773070
3.0 4.64751518 6.60952526

10.0 4.74286547 6.38234598
30.0 4.78002478 6.30199539
50.0 4.82368995 6.87078233
80.0 4.90232811 12.8843884

150.0 5.24329565 76.4745865

Table 3.7: Simulation for dynamic optimality for the unconstrained problem (3.4) with re-
spect to large values of θ.

(Note the related parameters are given by c = 0.5, µ = 0.5, σ = 0.25, δ = 1.2, x0 = 1, r = 0.2, T = 1,
and t0 = 0, and the sample size is 1,000.)
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Hence, we conduct numerical analysis to receive more insights. From Table 3.9 and Ta-

ble 3.10, we can see that increasing the value of β will strengthen the performance of both

strategies, the sample mean µ̄, if we fix the value of θ and increasing the value of θ will also

improve the sample mean µ̄ of both static and dynamic optimalities for the given and fixed

value of β. Moreover, comparing Table 3.9 and Table 3.10, it can be easily seen that the

dynamic optimality outperforms the static optimality all the time, and we can conclude that

under the existence of margin requirement, the conclusion made in Remark 6 [43] is still

valid.

Besides, we further need to consider the Remark 8 of [43] where they prove that the dy-

namically optimal control of the constrained case outperforms the statically optimal control.

Similar results can be also observed under the margin requirement. In the first part of this

section, we have seen that the dynamically optimal wealth process of (3.6) will converge to

β when t approaches to T . However, since the dynamically optimal control for constrained

problem (3.6) is not well-defined at T , Python cannot simulate the terminal value. Upon the

observation of Figure 3.3, we may conclude that Xd
T = β at the maturity. This fact means

when t = T , the variance of the terminal wealth of the dynamic wealth process will equal to

0. In Table 3.12 and Table 3.13, we see that the variance of the static strategy is significantly

less than that of the dynamic strategy. From this perspective, we can summarise that the

static strategy outperforms the dynamic strategy before the maturity time T . And at the ma-

turity T , dynamic optimality gives the variance as 0, which makes it outperforms the static

optimality.

Also, in Remark 10 of [43], Pedersen and Peskir prove that Vart0,x0(X
d
t )→ ∞ when

t → T . We can also observe this fact under the existence of the margin requirement. The

variance in Table 3.13, we can see that the variance is very large but not infinite. The reason

is when we simulate the wealth process, we can only divide the time interval into a limited

number of steps. If we can further divide the time interval into more steps, we will receive

a larger value of variance in the dynamic case. Since Table 3.13 is enough to verify the

conclusion in Remark 10, we will skip this step.

4. In the analysis above, we have seen that increasing the margin rate will strengthen the

performance of both static and dynamic optimalities. This fact violates common sense as the

margin requirement should be considered as an extra cost and should limit the performance

of the portfolio. However, Theorem 3.1 is set under the perfect market assumption and
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there is no constraint for the investor to borrow money from the market by the risk-free rate.

Setting static optimality as an example. If the broker-dealer requests the margin requirement

for short-selling, Theorem 3.1 gives

ρ

σ

1
x
[−x+ x0er(t−t0)+

1
2c

eδ2(T−t0)−r(T−t)]< 0 (3.89)

for short-selling. Comparing with the control given by the unconstrained case in Theorem

3 in [43], we note that (3.7) will suggest the investor to short sell larger amounts of risk

asset. In this situation, the investor can borrow money from the market with the risk-free

rate to deposit in the margin account and short sell a larger amount of risky asset to invest

in the bond. The time value of money of the margin account will be hedged by the interest

from investing the bond. Moreover, the larger short position will lead to better performance

when the stock price goes down, which yields better performance. However, it should be

kept in mind that this conclusion only exists in the perfect market. In the real financial

market, there exist many constraints for conducting short-selling such as the investor can

not borrow unlimited money from the bank, the short position is constrained, etc. Any

of those constraints will violate Theorem 3.1 and considering other constraints under the

margin requirement will be left for future study.
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Margin rate θ Value of α Sample mean µ̄s Sample variance m̄s

0.1

0.5 2.46484527 0.58768332
1.0 2.99972554 0.68905681
1.5 3.39374216 1.34149399
2.0 3.63191419 3.85247734

1.0

0.5 2.50308404 0.35920460
1.0 3.03992670 0.63366782
1.5 3.52830478 0.83906928
2.0 3.81881015 1.17325717

5.0

0.5 2.62946088 0.09607987
1.0 3.26394946 0.15422624
1.5 3.72830443 0.26067631
2.0 4.16795097 0.31048006

Table 3.9: Simulation for the static optimality for the constrained problem (3.5) with respect
to different values of θ and α.

Margin rate θ Value of α Sample mean µ̄d Sample variance m̄d

0.1

0.5 3.58925300 4.08310046
1.0 4.43799281 8.21504228
1.5 5.34829753 11.9444946
2.0 5.91638425 15.5421517

1.0

0.5 3.58995719 4.04360358
1.0 4.54296061 7.82952493
1.5 5.33156890 12.1885934
2.0 6.14613367 15.5421517

5.0

0.5 3.60192126 3.79639666
1.0 4.64491418 6.89650475
1.5 5.50823356 10.2143093
2.0 6.37682644 13.8118228

Table 3.10: Simulation for the dynamic optimality for the constrained problem (3.5) with
respect to different values of θ and α.

(Note the related parameters are given by µ = 0.5, σ = 0.25, δ = 1.2, x0 = 1, r = 0.2, T = 1, and
t0 = 0, and the sample size is 1,000.)
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Margin rate θ Value of β Sample mean µ̄s Sample variance m̄s

0.1

0.5 0.86225163 0.61685684
1.0 1.34047954 1.14101472
1.5 1.83410985 2.06447222
2.0 2.22716223 3.26000806

1.0

0.5 0.89015532 1.28193829
1.0 1.40715629 0.73702737
1.5 1.90851713 1.37623514
2.0 2.42685763 1.87788770

5.0

0.5 1.07577665 0.14240407
1.0 1.68344999 0.35783756
1.5 2.24464729 0.35783756
2.0 2.79822920 1.21824660

Table 3.12: Simulation for the static optimality for the constrained problem (3.6) with re-
spect to different values of θ and β.

Margin rate θ Value of β Sample mean µ̄d Sample variance m̄d

0.1

0.5 -3.8670093 7177.2189276
1.0 -4.9800826 33449.688192
1.5 1.98351747 7333.4211276
2.0 3.83660568 9758.2559762

1.0

0.5 0.37111224 72.864568828
1.0 6.58788445 17751.168875
1.5 5.07432139 13771.648638
2.0 1.62512695 11931.423438

5.0

0.5 5.74371476 21148.534799
1.0 44.7618918 1397820.5968
1.5 5.14232131 96075.979379
2.0 957.191529 906579607.43

Table 3.13: Simulation for the dynamic optimality for the constrained problem (3.6) with
respect to different values of θ and β.

(Note the related parameters are given by µ = 0.5, σ = 0.25, δ = 1.2, x0 = 1, r = 0.2, T = 1, and
t0 = 0, and the sample size is 1,000.)



Chapter 4

Dynamic Mean-Variance Portfolio

Selection under the Constant Elasticity

of Variance Model

4.1 Introduction

It can be seen that in many works of portfolio selection, the stock price follows geometric

Brownian motion. In this chapter, we will attempt to extend the previous work in [43] to

the constant elasticity of variance model from the dynamic programming perspective and

investigate both the time-inconsistent and time-consistent solutions respectively.

The constant elasticity of variance model was first introduced by Cox in 1975 in a short

note about deriving an option pricing model ([11] and [12]). This model has been widely

studied in the option pricing area ( [11], [12], and [16]). One of the advantages of this model

is that it can explain the implied volatility skew and volatility smile of option pricing. How-

ever, comparing the rich studies in the option pricing field, this model has not attracted great

attention in the portfolio area. Shen, Zhang, and Siu [49] attempt to achieve the explicit solu-

tion of the portfolio with a single risky asset under the constant elasticity of variance model

by applying the stochastic linear-quadratic control approach applied in [34] and backward

stochastic Riccati equation technique. Zhao and Rong [62] consider the case when there

are multiple risky assets in the portfolio, in which they maximise the constant absolute risk

aversion utility function by applying the Hamilton-Jacobi-Bellman technique. Furthermore,

Chang and Rong [8] introduce a constraint on borrowing rate to mean-variance portfolio

83
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selection, in which borrowing money from the market is penalised by a higher rate and the

risky asset follows a constant elasticity variance process. Within the process of achieving

the optimal control, they note the Hamilton-Jacobi-Bellman equation for the value function

is a non-linear second-order partial differential equation, and they adopt Legendre transform

and dual theory to obtain the closed-form solution for each given and fixed expected termi-

nal wealth, and this forms the efficient frontier. In this chapter, we introduce the constant

elasticity of variance model into the mean-variance portfolio selection problem and follow

the methodology in [8] to handle the difficulty caused by Hamilton-Jacobi-Bellman equation

and achieve both of the time-inconsistent and time-consistent solutions.

In this chapter, we assume there is a financial market with a riskless bond and a risky

stock that following the constant elasticity of variance model. We aim to construct a self-

financing portfolio dynamically in time to achieve the highest return and the lowest risk at

maturity. Following the idea introduced by Markowitz [37], the expected return and risk

of the portfolio will be represented by the expectation and variance of the value process of

the portfolio respectively, in which the variance brings the quadratic nonlinearity into this

problem. The quadratic nonlinearity makes the standard optimal control theory (cf. [20]) in-

feasible, and instead we follow the methodology of [43] to solve the optimal control problem

by applying Lagrange multipliers and the Hamilton-Jacobi-Bellman equation. However, un-

der the constant elasticity of variance model, the Hamilton-Jacobi-Bellman equation turns

out to be a nonlinear second-order partial differential equation. In striving to handle this

difficulty, we follow the idea of [8] (Also cf. [9]) and apply Legendre transform and dual

theory to transform the HJB equation to its dual function. Since the HJB system only leads

to a candidate solution, we can then apply the verification theorem described in [5] to prove

the optimality of the solution.

The solution of the Hamilton-Jacob-Bellman equation shows that the optimal control

relates to the initial time and value of the controlled wealth process. Following the same

idea as in [43], we refer to this optimality as the static optimality to distinguish it from the

dynamic optimality in which the optimal control only depends on the current position of

the controlled process. It should be pointed out that, based upon our best knowledge, the

time-consistent optimality has not been studied in the portfolio selection problem under the

constant elasticity of variance model. Moreover, since the constant elasticity of variance

model can be taken as a natural extension or general model of geometric Brownian motion,
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in this chapter, Theorem 4.1 can be seen as a general theorem that covers the conclusion in

[43]. For instance, setting β= 0, the elasticity parameter, we can easily derive the conclusion

of Theorem 3 in [43]. Moreover, by choosing a proper elasticity parameter, Theorem 4.1

gives the optimal solutions for different cases such as portfolio selection where the stock

price follows Ornstein-Uhlenbeck process, and investigating this general model is the main

motivation of this chapter.

Additionally, we investigate the optimal control problems under the constraints on the

size of the expectation and variance of the terminal wealth respectively. In Corollary 4.2,

we achieve the optimal control that maximises the expectation of the terminal wealth of the

investor, Et,x(Xu
T ), over all admissible control u such that the variance, Vart,x(Xu

T ), is bounded

above by a positive constant. Furthermore, in Corollary 4.3, we achieve the optimal control

that minimises the variance of the terminal wealth, Vart,x(Xu
T ), over all admissible control u

such that the expectation, Et,x(Xu
T ), is bounded below by a positive constant. In this chapter,

we assume that there is no transaction cost or tax deduction.

In Section 4, we conduct numerical analysis and verify that, under the CEV model,

the features of Theorem 4.1 and Corollary 4.3 will be consistent with the previous work

[43]. However, in Corollary 4.2, we note that the statically optimal control outperforms the

dynamically optimal control for β 6= 0, and the only case the dynamically optimal control

dominates the statically optimal control is β = 0.

4.2 Formulation of the problem

Consider an investor who aims to construct a self-financing portfolio consisting of two as-

sets, a riskless bond and a risky stock. In the financial market, the price of the riskless bond,

B, is described by:

dBt = rBtdt (4.1)

with initial value Bt0 = b, where b > 0 and the riskless interest rate r ∈R are constants. The

price of the risky stock, S, follows the constant elasticity of variance model, which solves:

dSt

St
= µdt +σSβ

t dWt (4.2)

where we have the drift rate µ ∈ R and the volatility σ > 0. In (4.2), β is named as the

elasticity parameter of the risky stock and Sβ

t σ represents the instantaneous volatility of the
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risky stock for a given point of time t. It should be pointed out that if β = 0, process (4.2)

reduces to a geometric Brownian motion; if β < 0, the decreasing stock price leads to the

increasing value of instantaneous volatility Sβ

t σ, which generates a contribution with a fatter

left tail; if β > 0, we will see reversed and unrealistic situation [21]. In fact, if β > 0, the

instantaneous volatility of the stock price increases when the stock price increases, and this

phenomenon is named as inverse leverage effect in [23]. Furthermore, under the risk-neutral

measure, if β > 0, St is a strictly local martingale, which may lead to arbitrage opportunity

[23] (also cf. [49]). There are studies that consider the value of elasticity parameter such as

[26] in which they analyse the existence of arbitrage opportunities and price bubbles in the

case when β is positive. However, the value of β is not the main purpose of this chapter, and

in the following part, we will see that the model in this chapter will still provide the investor

with the optimal strategies regardless of the existence of the arbitrage opportunity or not.

As we know, the constant elasticity of variance model can be converted into different

models. Except for geometric Brownian motion, there are several examples that can be

derived from (4.2) by choosing a proper value of β. For instance, if we set β = −1, (4.2)

leads to the Ornstein-Uhlenbeck process and if we set β = −1/2, SDE (4.2) leads to a

diffusion process introduced in [12]. Hence, the study of this chapter will help provide us

with a better understanding of mean-variance portfolio selection under different models.

For the risky stock, we set the initial value St0 = s0 as a constant s0 > 0. Furthermore,

in the probability space (Ω,F,P), S has the same natural filtration as that of W , where W is

a standard Brownian motion. Besides, it is reasonable to stipulate that the value of µ must

be greater than r, which indicates the risk premium. Otherwise, a wise investor will simply

invest all money in the riskless bond and receive a riskless return.

Under (4.1) and (4.2), we can derive the SDE for the wealth process of the self-financing

portfolio. Following ([[5], Chapter 6], we can see that the investor’s wealth follows:

dXu
t = (r+(µ− r)ut)Xu

t dt +σutXu
t SβdWt (4.3)

with initial value x0 > 0. In (4.3), we set that ut is the percentage of wealth invested in the

stock at t ∈ [t0,T ] and U is the set of all admissible controls. For any admissible control

u in (4.3), we have ut = u(t,Xu
t ) where (t,x) 7→ u(t,x) · x is a continuous function from

[0,T ]×R into R. For completeness, following the idea of [43], we define u(t,0) = u(t,0) ·

0 = lim06=x 7→0 u(t,x) because the map x 7→ u(t,x) may not exist at 0.

For probability measure Pt,x, Xu
t is a strong Markov process for each admissible control
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u and takes value x for a given and fixed time t where (t,x) ∈ [0,T ]×R. This chapter will

focus on the following unconstrained problem:

V (t,x) = sup
u

[
Et,x(Xu

T )− cVart,x(Xu
T )
]

(4.4)

in which c > 0 is a given constant. For all u ∈U , the admissibility condition is given by:

0 < Et,x
[

max
t0≤t≤T

(Xu
t

2−λXu
t )
]
< ∞ (4.5)

in which λ any positive constant.

Besides, in this chapter, we attempt to consider the other two constrained cases, which

are given by:

V1(t,x) = sup
u:Vart,x(Xu

T )≤α

Et,x(Xu
T ) (4.6)

V2(t,x) = inf
u:Et,x(Xu

T )≥γ

Vart,x(Xu
T ) (4.7)

where u is the admissible control, and α ∈ (0,∞) and γ ∈ R are given constants. In the

following part, we will see that solving (4.4) will naturally leads to the solution of those two

constrained problems, and we will see this in the following part.

In this chapter, definitions of static optimality and dynamic optimality are consistent

with those in [43] and we have exhibited them in the Introduction.

4.3 Solution to the optimal control problem

In this chapter, we will explain the solution of the constrained problems. The main idea of

the proof below follows the idea in [43].

Theorem 4.1. Consider the optimal problem V (t,x) = supu[Et,x(Xu
T )− cVart,x(Xu

T )] in

which Xu represents the wealth process and is the solution of the SDE (4.3) with Xu
t0 = x0

under the probability measure Pt0,x0 for (t0,x0)∈ [0,T ]×R given and fixed. The related risk

coefficient is defined by δ = (µ− r)/σ in which µ,r ∈ R,
√

2r > µ > r and σ > 0. Note that

we assume that δ 6= 0 and r 6= 0. (The cases δ = 0 or r = 0 follow by passage to the limit

when the non-zero δ or r approaches 0.)
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(A) The statically optimal control is given by:

us
∗(t,s,x) =−

δ

σ

1
s2βx

[
x− x0er(t−t0)+

1
2c

(1− e
∫ T

t0
−θ2(s)K(s)ds

)e−r(T−t)

e
∫ T

t0
−2θ2(s)K(s)ds

(1− e
∫ T

t0
θ2(s)K2(s)ds

)

]
K(t) (4.8)

for (t,x) ∈ [t0,T ]×R. In (4.8), related parameters are given by:

θ(t) =
δ

Sβ

t

, (4.9)

K(t) = [1+
2βσB(t)

δ
], (4.10)

B(t) =
z1z2(1− e−2β2σ2(z1−z2)(T−t))

z1− z2e−2β2σ2(z1−z2)(T−t)
, (4.11)

z1 =
−(µ−2r)+

√
2r2−µ2

2βσ2 , (4.12)

and

z2 =
−(µ−2r)−

√
2r2−µ2

2βσ2 (4.13)

for t ∈ [t0,T ].

(B) The dynamically optimal control is given by:

ud
∗(t,s,x) =−

δ

σ

1
s2β

1
x

1
2c

(1− e
∫ T

t −θ2(s)K(s)ds)e−r(T−t)

e
∫ T

t −2θ2(s)K(s)ds(1− e
∫ T

t θ2(s)K2(s)ds)
K(t) (4.14)

for (t,x) ∈ [t0,T ]×R and the related parameters are defined above.

Proof. In this proof, we claim that, for each pair of (t0,x0) ∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (4.3) with

initial condition Xu
t0 = x0. Furthermore, for Xu

t , u ∈U is any admissible control we defined

in Section 4.2.

(A): Recalling the objective function, Et,x(Xu
T )− cVart,x(Xu

T ), we note that it can be re-

arranged as:

Et,x(Xu
T )− cVart,x(Xu

T ) = Et,x(Xu
T )− c

[
Et,x[(Xu

T )
2]−Et,x(Xu

T )
2] (4.15)
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in which term Et,x(Xu
T )

2 introduces quadratic non-linearity into this problem. Hence, to

overcome this difficulty, we condition the size of Et,x(Xu
T ) by assuming Et,x(Xu

T ) = M where

M ∈ R. This naturally leads to:

V (t,x) = sup
M∈R

sup
u:Et,x(Xu

T )=M

[
Et,x(Xu

T )− c
[

Et,x[(Xu
T )

2]−Et,x(Xu
T )

2]]
= sup

M∈R

[
M+ cM2− c inf

u:Et,x(Xu
T )=M

Et,x[(Xu
T )

2]

]
. (4.16)

Equation (4.16) leads to a constrained problem:

VM(t,x) = inf
u:Et,x(Xu

T )=M
Et,x
[
(Xu

T )
2] (4.17)

where M ∈ R given and fixed and u is any admissible control.

1. Applying Lagrange multipliers in equation (4.17), we have the following Lagrangian

function:

Lt,x(u,λ) = Et,x
[
(Xu

T )
2]−λ

[
Et,x(Xu

T )−M
]

(4.18)

in which λ > 0. Solving equation (4.18) gives the optimal solution (4.17). To verify this, we

assume there exists uλ
∗ that minimises (4.18), which leads to:

Lt,x(uλ
∗,λ) := inf

u
Lt,x(u,λ). (4.19)

Furthermore, we assume there exists a λ = λ(M, t,x) > 0 such that Et,x(X
uλ
∗

T ) = M. In this

situation, we can see that:

VM(t,x) = Lt,x(uλ
∗,λ)≤ Et,x

[
(Xu

T )
2] (4.20)

for any admissible control u∈U with Et,x(Xu
T ) =M, which indicates that the optimal control

uλ
∗ that minimises (4.18) with Et,x(X

uλ
∗

T ) = M is optimal in (4.17).

2. To solve (4.18) and achieve the optimal control, we need to consider the following

optimal control problem:

V λ(t,s,x) = inf
u

Et,x
[
(Xu

T )
2−λXu

T |St = s,Xt = x
]

(4.21)

where u ∈U is any admissible control we defined in the previous section. In this chapter,

we apply the HJB approach to achieve the candidate optimal control and then prove the op-

timality of the candidate solution by using verification theorem described in [5]. According



90 CHAPTER 4. PORTFOLIO SELECTION UNDER CEV MODEL

to dynamic programming principle, V λ(t,s,x) can be taken as a smooth enough solution of

the following HJB system (in the following part we will see the explicit form of V λ exists).

Upon the SDE (4.3), the HJB system is given by:

inf
u

[
V λ

t +µsV λ
s +

1
2

σ
2s2β+2V λ

ss +(r+(µ− r)ut)xV λ
x +σ

2s2β+1xuV λ
xs (4.22)

+
1
2

σ
2s2βu2x2V λ

xx
]
= 0

with terminal condition:

V λ(T,s,x) = x2−λx. (4.23)

In striving for the solution, we will follow the idea of [8] to introduce the technique of

Legendre transform and dual theory to convert the HJB equation into its dual equation, from

which we will be able to derive the candidate solution.

3. According to the property of quadratic equation, we obtain:

u =−(µ− r)V λ
x +σ2s2β+1V λ

xs

σ2s2βxV λ
xx

(4.24)

Substituting (4.24) back into HJB equation (4.22) we can see that:

V λ
t +µsV λ

s +
1
2

σ
2s2β+2V λ

ss + rxV λ
x −

1
2σ2s2βV λ

xx

[
(µ− r)V λ

x +σ
2s2β+1V λ

xs
]2

= 0 (4.25)

4. In (4.25), we see a nonlinear second order partial differential equation. Hence, upon

the strictly convexity of the value function V λ, we follow the work described in [27] (also

cf. [46] ) to define the following Legendre transform:

G(t,s,z) = sup
x

[
V λ(t,s,x)− zx

]
(4.26)

in which z is the dual variable to x. Furthermore, as [54] mentioned that, for strictly convex

function V λ, the maximum point of equation (4.26) will only be attained at the unique so-

lution of V λ
x (t,s,x) = z. Furthermore, the optimal value of x that maximises G in (4.26) is

denoted by g(t,s,z) such that:

g(t,s,z) = inf{x|V λ(t,s,x)≥ zx+G(t,s,z)} (4.27)

Functions g and G are related and either of them can be seen as the dual function of V λ.

It should be pointed out that g(t,s,z) = −Gz(t,s,z), and this relationship will help us to
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identify the explicit form of V λ. In the following part, we will focus on analysing g to

obtain the solution. According to terminal condition at maturity, V λ(T,s,x) = x2−λx, there

are:

G(T,s,z) = sup
x

[
x2−λx− zx

]
(4.28)

and

g(T,s,z) = inf{x|x2−λx≥ zx+G(T,s,z)}. (4.29)

From (4.28) and (4.29), we can see that the optimal value x∗ that maximises (4.28) is attained

at V λ
x (T,s,x) = z which leads to:

g(T,s,z) =
1
2

z+
1
2

λ. (4.30)

We have stated that the optimal value x∗ in (4.26) is denoted by

g(t,s,z) = x∗ (4.31)

and this leads to:

G(t,s,z) =V λ(t,s,g)− zg. (4.32)

According to the transformation rules described in [27], [21] and [54], there is:

V λ
t = Gt , V λ

x = z, V λ
xx =−

1
Gzz

(4.33)

V λ
s = Gs, V λ

ss = Gss−
G2

sz

Gzz
, V λ

xs =−
Gsz

Gzz

Substituting (4.33) back into (4.25), there is:

Gt +µsGs +
1
2

σ
2s2β+2Gss + rgz+

(µ− r)2z2Gzz

2σ2s2β
− (µ− r)szGsz = 0. (4.34)

Using the relation that g(t,s,z) =−Gz(t,s,z) and differentiating G(t,s,z) with respect to z,

there is:

gt + rsgs +
1
2

σ
2s2β+2gss +

[
(µ− r)2

σ2s2β
− r
]

zgz +
(µ− r)2

2σ2s2β
z2gzz− (µ− r)szgsz− rg = 0

(4.35)

which gives a second-order linear partial differential equation.
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5. To handle (4.35), we assume the solution g(t,s,z) takes the following form:

g(t,s,z) = f (t,y)z+h(t) and y = s−2β (4.36)

for t ∈ [t0,T ] with terminal condition:

f (T,y) =
1
2
, h(T ) =

1
2

λ. (4.37)

Hence, differentiating (4.36) with respect to t, s, and z respectively, we can easily receive:

gt = ftz+ht , gs = fy(−2β)s−2β−1z, gsz = fy(−2β)s−2β−1, (4.38)

gss = fyy((−2β)s−2β−1)2z+ fy(−2β)(−2β−1)s−2β−2z,

gz = f , gzz = 0.

Substituting (4.38) back into (4.35), there is[
ft +

(
2(µ−2r)βy+β(2β+1)σ2) fy +2β

2
σ

2y fyy (4.39)

+
((µ− r)2

σ2 y−2r
)

f
]
z+ht− rh = 0

from which we can easily see that:

ft +
[
2(µ−2r)βy+β(2β+1)σ2] fy +2β

2
σ

2y fyy +

[
(µ− r)2

σ2 y−2r
]

f = 0 (4.40)

and

ht− rh = 0. (4.41)

Solving (4.41) with the terminal condition h(T ) = λ/2 gives:

h(t) =
λ

2
e−r(T−t) (4.42)

for t ∈ [t0,T ].

To achieve the explicit solution for f (t,y), we follow the idea of [8] and assume that:

f (t,y) = A(t)eB(t)y (4.43)

for t ∈ [t0,T ] with A(T ) = 1/2 and B(T ) = 0. Differentiating (4.43) and connecting it with

(4.40) gives:[
A(t)

dB(t)
dt

+2β(µ−2r)A(t)B(t)+2β
2
σ

2A(t)B2(t)+
(µ− r)2

σ2 A(t)

]
y (4.44)

+
dA(t)

dt
+β(2β+1)σ2A(t)B(t)−2rA(t) = 0.



4.3. SOLUTION TO THE OPTIMAL CONTROL PROBLEM 93

The coefficient term of y and the constant term must be equal to 0. Hence, comparing and

re-arranging the coefficients of (4.44), we can find that:

dA(t)
dt

+β(2β+1)σ2A(t)B(t)−2rA(t) = 0 (4.45)

with A(T ) = 1/2. For the coefficient term of y, we can further move A(t) out of the square

brackets, which gives:

dB(t)
dt

+2β(µ−2r)B(t)+2β
2
σ

2B2(t)+
(µ− r)2

σ2 = 0 (4.46)

with B(T ) = 0. We first consider (4.46) and it leads to:

dB(t)
dt

=−2β(µ−2r)B(t)−2β
2
σ

2B2(t)− (µ− r)2

σ2 (4.47)

with B(T ) = 0. The right-hand side can be seen as a quadratic function with respect to B(t)

and hence the discriminant of this quadratic equation is given by:

∆ = 4β
2(2r2−µ2). (4.48)

In order to achieve the solution of B(t), in this chapter, we assume that β 6= 0 and ∆ > 0 and

this leads to r < µ <
√

2r. The two distinct real roots of the quadratic equation are given by:

z1 =
−(µ−2r)+

√
2r2−µ2

2βσ2 , (4.49)

and

z2 =
−(µ−2r)−

√
2r2−µ2

2βσ2 . (4.50)

Hence, (4.47) leads to:

dB(t)
dt

=−2β
2
σ

2(B(t)− z1
)(

B(t)− z2
)

(4.51)

and there is:

1
z1− z2

∫ T

t

[
1

B(s)− z1
− 1

B(s)− z2

]
dB(s) =−2β

2
σ

2(T − t) (4.52)

which is a simple ODE and can be easily solved. Hence, we have:

B(t) =
z1z2(1− e−2β2σ2(z1−z2)(T−t))

z1− z2e−2β2σ2(z1−z2)(T−t)
(4.53)
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for t ∈ [t0,T ]. In this case, substituting (4.53) back into (4.45), we can solve (4.45) and

obtain:

A(t) =
1
2

e−
∫ T

t [2r−β(2β+1)σ2B(τ)]dτ (4.54)

for t ∈ [t0,T ]. Combining (4.43) and (4.36) gives the explicit solution for g(t,s,z). Moreover,

using the relationship G(t,s,z) =V λ(t,s,g)− zg, and g(t,s,z) = x =−Gz(t,s,z), we can see

the existence of V λ (the solution of the HJB system exists only if the value function V λ

exists).

The last step is to find the optimal control for the HJB system. Under the transformation

rules given by (4.33) above, the control given by (4.24) leads to:

u =−(µ− r)V λ
x +σ2s2β+1V λ

xs

σ2s2βxV λ
xx

(4.55)

=−
(µ− r)V λ

x
V λ

xx
+σ2s2β+1 V λ

xs
V λ

xx

σ2s2βx

=
(µ− r)zGzz−σ2s2β+1Gsz

σ2s2βx

=
−(µ− r)zgz +σ2s2β+1gs

σ2s2βx
.

Since g(t,s,z) = f (t,y)z+h(t) with y = s−2β, there are:

gz = f , gs = z fy(−2β)s−2β−1. (4.56)

Hence, substituting (4.56) into (4.55) gives:

u(t,s,x) =
−(µ− r)zgz +σ2s2β+1gs

σ2s2βx
(4.57)

=
−(µ− r)zgz +σ2s2β+1(−2β)zs−2β−1 fy

σ2s2βx

=
−(µ− r)[g(t,s,z)−h(t)]−2βσ2zA(t)B(t)eB(t)y

σ2s2βx

=
−(µ− r)[g(t,s,z)−h(t)]−2βσ2B(t)[g(t,s,z)−h(t)]

σ2s2βx
.

As we know that h(t) = λ

2 e−r(T−t) and g(t,s,z) = x hence:

u(t,s,x) =−
(µ− r)(x− λ

2 e−r(T−t))+σ2B(t)2β(x− λ

2 e−r(T−t))

σ2s2βx
(4.58)

=−(µ− r)+2βσ2B(t)
σ2s2βx

[
x− λ

2
e−r(T−t)]
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for (t,s,x) ∈ [t0,T ]×R+×R.

It should be noted that, in the previous part, we assume that β 6= 0. As we have stated that

the constantly elasticity of variance model can be seen as a general extension of geometric

Brownian motion, we are going to show that our solution for the HJB equation holds when

β = 0. If β = 0, then y = 1, under which equation (4.39) reduces to:[
ft +(

(µ− r)2

σ2 −2r
)

f
]
z+ht− rh = 0 (4.59)

and it can be easily seen that:

f (t) =
1
2

e−
(

2r− (µ−r)2

σ2

)
(T−t) and h(t) =

λ

2
e−r(T−t). (4.60)

for t ∈ [t0,T ]. Hence, when β = 0, g = f z+ h does not contain s anymore, which leads to

gs = 0 in (4.55). Hence, equation (4.55) can be simplified to:

u =−(µ− r)zgz

σ2x
=−(µ− r)

σ2x

[
x− λ

2
e−r(T−t)] (4.61)

which is the candidate optimal solution for the HJB system (4.22)-(4.23) with β = 0 (when

β = 0, V λ
s , V λ

ss and V λ
xs vanish in (4.22)). Moreover, the optimal control given by (4.61) is

consistent with the conclusion in [43] in which the stock price follows geometric Brownian

motion. Hence, we can conclude that (4.58) holds for all values of β ∈ R.

6. So far, we have achieved the candidate solution for the HJB system (4.22)-(4.23).

Since (4.58) only gives the candidate solution, we are going to prove it is the optimal control

to (4.22)-(4.23) so as to (4.21). To prove the optimality, using ito formula to V λ(t,s,x),

which leads to:

V λ(T,ST ,Xu
T ) =V λ(t,s,x)+

∫ T

t

[
V λ

t (t + p,Sp,Xu
p)+µSpV λ

s (t + p,Sp,Xu
p) (4.62)

+
1
2

σ
2Sp

2β+2V λ
ss(t + p,Sp,Xu

p)+(r+(µ− r)up)Xu
pV λ

x (t + p,Sp,Xu
p)

+σ
2Sp

2β+1Xu
pupV λ

xs(t + p,Sp,Xu
p)+

1
2

σ
2Sp

2βu2
pXu

p
2V λ

xx(t + p,Sp,Xu
p)
]
d p

+
∫ T

t
(σSp

β+1V λ
s (t + p,Sp,Xu

p +σupXu
pSp

βV λ
x (t + p,Sp,Xu

p)dWp

in which u∈U is any admissible control. As we have shown that V λ solves the HJB equation

(4.22)-(4.23), there is:[
V λ

t +µStV λ
s +

1
2

σ
2St

2β+2V λ
ss +(r+(µ− r)ut)Xu

t V λ
x (4.63)

+σ
2St

2β+1Xu
t utV λ

xs +
1
2

σ
2St

2βu2
t Xu

t
2V λ

xx
]
≥ 0
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for t ∈ [t0,T ]. According to the terminal condition (4.23) of V λ at the maturity T , we have:

Xu
T

2−λXu
T =V λ(t,s,x)+

∫ T

t

[
V λ

t (t + p,Sp,Xu
p)+µSpV λ

s (t + p,Sp,Xu
p) (4.64)

+
1
2

σ
2Sp

2β+2V λ
ss(t + p,Sp,Xu

p)+(r+(µ− r)up)Xu
pV λ

x (t + p,Sp,Xu
p)

+σ
2Sp

2β+1Xu
pupV λ

xs(t + p,Sp,Xu
p)+

1
2

σ
2Sp

2βu2
pXu

p
2V λ

xx(t + p,Sp,Xu
p)
]
d p

+
∫ T

t
(σSp

β+1V λ
s (t + p,Sp,Xu

p)+σupXu
pSp

βV λ
x (t + p,Sp,Xu

p))dWp.

Hence, there exists:

V λ(t,s,x)≤Xu
T

2−λXu
T (4.65)

−
∫ T

t
(σSp

β+1V λ
s (t + p,Sp,Xu

p)+σupXu
pSp

βV λ
x )(t + p,Sp,Xu

p)dWp.

Noting that the continuous local martingale Mt =
∫ T

t (σSp
β+1V λ

s +σupXu
pSp

βV λ
x )dWp is a

strictly local martingale when β > 0. Hence, in this case, there exists a sequence of stopping

time τn such that τn ↑ T as n ↑ ∞. Then, for each t ′ ∈ [t,T ], the stopped process:

Mt ′∧τn =
∫ t ′∧τn

t
(σSp

β+1V λ
s (t + p,Sp,Xu

p)+σupXu
pSp

βV λ
x (t + p,Sp,Xu

p))dWp (4.66)

is a martingale. From (4.65), we can see there is:

V λ(t,s,x)≤Xu
t ′∧τn

2−λXu
t ′∧τn

(4.67)

−
∫ t ′∧τn

t
(σSp

β+1V λ
s (t + p,Sp,Xu

p)+σupXu
pSp

βV λ
x (t + p,Sp,Xu

p))dWz.

Taking expectation on the both sides of (4.67), the martingale term vanishes, which leads to:

V λ(t,s,x)≤ Et,x
[
Xu

t ′∧τn
2−λXu

t ′∧τn

]
. (4.68)

Taking limn↑∞ in the right-hand side of (4.68), there is:

Et,x
[
Xu

t ′
2−λXu

t ′
]
= Et,x

[
lim
n↑∞

(Xu
t ′∧τn

2−λXu
t ′∧τn

)

]
. (4.69)

Recalling the admissibility condition:

0 < Et,x[ max
t0≤t≤T

(Xu
t

2−λXu
t )]< ∞ (4.70)

for λ > 0, we can apply Fatou’s lemma, which states if there exists E(Z) < ∞ and for all

n≥ 1 there is Xn ≤ Z, we have:

E(limsup
n→∞

Xn)≥ limsup
n→∞

E(Xn) (4.71)
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and this leads to:

Et,x

[
lim
n↑∞

(Xu
t ′∧τn

2−λXu
t ′∧τn

)

]
≥ lim

n↑∞
Et,x

[
(Xu

t ′∧τn
2−λXu

t ′∧τn
)

]
. (4.72)

Upon (4.68), inequality (4.72) leads to:

lim
n↑∞

Et,x

[
(Xu

t ′∧τn
2−λXu

t ′∧τn
)

]
≥V λ(t,s,x). (4.73)

Hence, we can conclude that:

V λ(t,s,x)≤ Et,x
[
Xu

t ′
2−λXu

t ′
]

(4.74)

which holds for any t ′ ∈ [t,T ]. Hence, we can conclude that:

V λ(t,s,x)≤ Et,x
[
Xu

T
2−λXu

T |St = s,Xu
t = x

]
. (4.75)

Equation (4.75) holds for all admissible controls u ∈U , which means:

V λ(t,s,x)≤ inf
u

Et,x[(Xu
T )

2−λXu
T |St = s,Xt = x]. (4.76)

For the reverse inequality, we claim the optimal control is given by (4.58), and for the

optimal control there is:

[
V λ

t +µStV λ
s +

1
2

σ
2St

2β+2V λ
ss +(r+(µ− r)u∗t)Xu∗

t V λ
x (4.77)

+σ
2St

2β+1Xu∗
t u∗tV λ

xs +
1
2

σ
2St

2βu∗2t Xu
t

2V λ
xx
]
= 0

so that:

V λ(t,s,x) =Xu∗
T

2−λXu∗
T (4.78)

−
∫ T

t
(σSp

β+1V λ
s (t + p,Sp,Xu

p)+σu∗pXu∗
p V λ

x (t + p,Sp,Xu
p))dWp.

Recalling (4.66)-(4.74) and taking expectation on the both sides of (4.78), we can see that

for the optimal control u∗, we always have that:

V λ(t,s,x) = Et,x[Xu∗
T

2−λXu∗
T |St = s,Xu∗

t = x]. (4.79)

Therefore, we have the following trivial inequality:

inf
u

Et,x[Xu
T

2−λXu
T |St = s,Xt = x]≤ Et,x[Xu∗

T
2−λXu∗

T |St = s,Xu∗
t = x] (4.80)
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which leads to:

V λ(t,s,x)≤ inf
u

Et,x[Xu
T

2−λXu
T |St = s,Xt = x] (4.81)

≤ Et,x[Xu∗
T

2−λXu∗
T |St = s,Xu∗

t = x] =V λ(t,s,x).

Therefore, upon on the verification theorem described in [5], we can conclude that the con-

trol given by (4.58) is optimal to the HJB system (4.22)-(4.23).

7. Before we attempt to achieve the optimal value of M, we need to further simplify the

optimal control:

u(t,s,x) =−(µ− r)+2βσ2B(t)
σ2s2βx

(x− λ

2
e−r(T−t)) (4.82)

=− δ

σ

1
s2βx

(x− λ

2
e−r(T−t))K(t)

in which:

K(t) = [1+
2βσB(t)

δ
] (4.83)

for t ∈ [t0,T ]. Substituting (4.82) into SDE (4.3), there is:

dXu
t = (rXu

t −
δ2

s2β
K(t)[Xu

t −
λ

2
e−r(T−t)])dt− δ

sβ
K(t)[Xu

t −
λ

2
e−r(T−t)]dWt (4.84)

with Xu
t0 = x0 > 0. We further assume that θ = δ/sβ, which leads to:

dXu
t =

[
rXu

t −θ
2(t)K(t)Xu

t +θ
2(t)K(t)

λ

2
e−r(T−t)

]
dt−θ(t)K(t)

[
Xu

t −
λ

2
e−r(T−t)

]
dWt.

(4.85)

Taking expectation Et0,x0 on both side of (4.85) gives:

d Et0,x0(X
u
t ) =

[(
r−θ

2(t)K(t)
)

Et0,x0(X
u
t )+θ

2(t)K(t)
λ

2
e−r(T−t)

]
dt (4.86)

which can be taken as an ODE with respect to Et0,x0(X
u
t ). Solving this ODE with the initial

condition Et0,x0(X
u
t0) = x0 > 0 leads to:

Et0,x0(X
u
t ) = x0e

∫ t
t0
(r−θ2(s)K(s))ds

+
λ

2
e−r(T−t)[1− e−

∫ t
t0

θ2(s)K(s)ds] (4.87)

for t ∈ [t0,T ] and it is easy to verify that:

Et0,x0(X
u
T ) = x0e

∫ T
t0
(r−θ2(s)K(s))ds

+
λ

2
[
1− e−

∫ T
t0

θ2(s)K(s)ds]
. (4.88)
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According to Et,x(Xu
T ) = M, there is:

M = x0e
∫ T

t0
(r−θ2(s)K(s))ds

+
λ

2
[
1− e−

∫ T
t0

θ2(s)K(s)ds] (4.89)

which gives:

λ =
2[M− x0e

∫ T
t0
(r−θ2(s)K(s))ds

]

1− e−
∫ T

t0
θ2(s)K(s)ds

. (4.90)

To determine the optimal value of λ, we need to achieve Et0,x0(X
u
T

2). Hence, applying Ito’s

formula to (4.85) gives:

dXu
t

2 =

[
[2r+θ

2(t)(K2(t)−2K(t))]Xu
t

2 (4.91)

−θ
2(t)λe−r(T−t)(K2(t)−K(t))Xu

t +θ
2(t)(

λ

2
e−r(T−t)K(t))2

]
dt

−2θ(t)(Xu
t −

λ

2
e−r(T−t))K(t)Xu

t dWt

where Xu
t0

2 = x2
0. In the chapter, we only need to consider the case the time is at the maturity

T , hence, setting t = T and taking expectation on the both side of (4.91), and solving the

corresponding ODE gives:

Et0,x0(X
u
T

2) =e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds

(x0er(T−t0)− λ

2
)2 (4.92)

+λe
∫ T

t0
−θ2(s)K(s)ds

(x0er(T−t0)− λ

2
)+

λ2

4
.

Inserting (4.90) into (4.92), we can easily see that (4.17) is given by:

VM(t0,x0) =
1

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

[(
e
∫ T

t0
θ2(s)(K(s)2−2K(s))ds−2e

∫ T
t0
−θ2(s)K(s)ds

+1
)
M2

(4.93)

+
(
2x0er(T−t0)e

∫ T
t0
−2θ2(s)K(s)ds−2x0er(T−t0)e

∫ T
t0

θ2(s)(K2(s)−2K(s))ds)M
+ x2

0e2r(T−t0)
(
e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds)]

.

Substituting (4.93) into (4.16), there is:

V (t0,x0) =c

[
1− 1

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

(
e
∫ T

t0
θ2(s)(K(s)2−2K(s))ds−2e

∫ T
t0
−θ2(s)K(s)ds

+1
)]

M2

(4.94)

+

[
1− c2x0er(T−t0)

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2
(e

∫ T
t0
−2θ2(s)K(s)ds− e

∫ T
t0

θ2(s)(K2(s)−2K(s))ds
)

]
M

−
cx2

0e2r(T−t0)

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

(
e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds)

.
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The value function given by (4.94) is a quadratic function with respect to M. Recalling the

property of quadratic function, we can see that the optimal value of V (t0,x0) is attainable

only if

c
[
1− 1

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

(
e
∫ T

t0
θ2(s)(K(s)2−2K(s))ds−2e

∫ T
t0
−θ2(s)K(s)ds

+1
)]

< 0 (4.95)

otherwise the optimal value of V (t0,x0) is not attainable. Inequality (4.95) implies that:

e
∫ T

t0
θ2(s)K2(s)ds

> 1 (4.96)

which always holds and (4.94) has a strictly negative coefficient for the quadratic term M2.

By using the property of quadratic function, we see that the optimal value of M is achieved

at:

M∗ = x0er(T−t0)− 1
2c

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

e
∫ T

t0
−2θ2(s)K(s)ds

[1− e
∫ T

t0
θ2(s)K2(s)ds

]
. (4.97)

Inserting (4.97) into (4.90), we obtain that:

λ∗ = 2x0er(T−t0)− 1
c

(1− e
∫ T

t0
−θ2(s)K(s)ds

)

e
∫ T

t0
−2θ2(s)K(s)ds

(1− e
∫ T

t0
θ2(s)K2(s)ds

)
. (4.98)

Recalling (4.98) and (4.82), we receive the optimal control given by:

us
∗(t,s,x) =−

δ

σ

1
s2β

1
x

[
x− x0er(t−t0)+

1
2c

(1− e
∫ T

t0
−θ2(s)K(s)ds

)e−r(T−t)

e
∫ T

t0
−2θ2(s)K(s)ds

(1− e
∫ T

t0
θ2(s)K2(s)ds

)

]
K(t) (4.99)

which confirms (4.8). In (4.99), it is clear that the optimal control is related to the initial

status (t0,x0), and following the previous definition, we name this optimal control as the

statically optimal control.

(B) In the following part, we are going to consider the dynamically optimal control.

As we claim that the dynamically optimal control is equal to the statically optimal control

with the same initial state (t,x), replacing x0 and t0 by x and t in (4.99) gives the candidate

dynamically optimal control:

ud(t,s,x) =− δ

σ

1
s2β

1
x

1
2c

(1− e
∫ T

t −θ2(s)K(s)ds)e−r(T−t)

e
∫ T

t −2θ2(s)K(s)ds(1− e
∫ T

t θ2(s)K2(s)ds)
K(t). (4.100)

and ud(T,s,x) := limt 7→T ud(t,s,x). To prove the optimality of (4.100), we set that ud
∗(t0,x0)=

w(t0,x0), w(t0,x0)= us
∗(t0,x0), and v(t0,x0) for any admissible such that v(t0,x0) 6= ud

∗(t0,x0).

For a dynamically optimal control, the following relationship must hold:

Vw(t0,x0) := Et0,x0(X
w
T )− cVart0,x0(X

w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T ) =: Vv(t0,x0) (4.101)
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for any (t0,x0) ∈ [0,T ]×R based upon the fact that Vw(t0,x0) = V (t0,x0) and w(t0,x0) is

statically optimal in (4.8).

8. To verify (4.101), we set Et0,x0(X
v
T ) = Mv. For w, there is Et0,x0(X

w
T ) = M∗ and the

value of M∗ is given by (4.97). Let us consider the case when M∗ 6= Mv firstly. Equation

(4.94) is a quadratic function with respect to M, which indicates that the optimal value of

M∗ is uniquely determined. Hence, there is:

Vw(t0,x0) (4.102)

= c

[
1− 1

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

(
e
∫ T

t0
θ2(s)(K(s)2−2K(s))ds−2e

∫ T
t0
−θ2(s)K(s)ds

+1
)]

M2
∗

+

[
1− c2x0er(T−t0)

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2
(e

∫ T
t0
−2θ2(s)K(s)ds− e

∫ T
t0

θ2(s)(K2(s)−2K(s))ds
)

]
M∗

−
cx2

0e2r(T−t0)

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

(
e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds

)

> c

[
1− 1

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

(
e
∫ T

t0
θ2(s)(K(s)2−2K(s))ds−2e

∫ T
t0
−θ2(s)K(s)ds

+1
)]

M2
v

+

[
1− c2x0er(T−t0)

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2
(e

∫ T
t0
−2θ2(s)K(s)ds− e

∫ T
t0

θ2(s)(K2(s)−2K(s))ds
)

]
Mv

−
cx2

0e2r(T−t0)

(1− e
∫ T

t0
−θ2(s)K(s)ds

)2

(
e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds

)
=Vv(t0,x0).

In (4.102), the strictly inequality always holds since M∗ is the unique maximum point of the

quadratic function of M. Hence, we can conclude that (4.101) exists when M∗ 6= Mv. Next,

we need to consider optimality of w when Mv = M∗. Recalling (4.21) and (4.98), we first

claim the following relation:

V λ∗
v (t0,s0,x0) := Et0,x0

[
(Xv

T )
2−λ∗Xv

T |St0 = s0,Xv
t0 = x0

]
(4.103)

> Et0,x0

[
(Xw

T )
2−λ∗Xw

T |St0 = s0,Xw
t0 = x0

]
=: V λ∗(t0,s0,x0).

Recalling the terminal condition (4.23) of the HJB equation and applying Ito formula, we
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receive that:

Xv
T

2−λ∗Xv
T =V λ∗(T,ST ,Xv

T ) (4.104)

=V λ∗(t0,s0,x0)+
∫ T

t0

[
V λ

t (p,Sp,Xv
p)+µSpV λ

s (p,Sp,Xv
p)

+
1
2

σ
2Sp

2β+2V λ
ss(p,Sp,Xv

p)+(r+(µ− r)vp)Xv
pV λ

x (p,Sp,Xv
p)

+σ
2Sp

2β+1Xv
pvpV λ

xs(p,Sp,Xv
p)+

1
2

σ
2Sp

2βv2
pXv

p
2V λ

xx(p,Sp,Xv
p)
]
d p

+
∫ T

t0
(σSp

β+1V λ
s (p,Sp,Xv

p)+σvpXv
pSp

βV λ
x (p,Sp,Xv

p))dWp

in which λ∗ is given by (4.98). In (4.104), the integrand term:

AT =
∫ T

t0

[
V λ

t (p,Sp,Xv
p)+µSpV λ

s (p,Sp,Xv
p) (4.105)

+
1
2

σ
2Sp

2β+2V λ
ss(p,Sp,Xv

p)+(r+(µ− r)vp)Xv
pV λ

x (p,Sp,Xv
p)

+σ
2Sp

2β+1Xv
pvpV λ

xs(p,Sp,Xv
p)+

1
2

σ
2Sp

2βv2
pXv

p
2V λ

xx(p,Sp,Xv
p)
]
d p

is non-negative because of (4.22) with λ = λ∗. Taking Et0,x0 on the both side of (4.104),

there is:

Et0,x0

[
Xv

T
2−λ∗Xv

T
]
=V λ∗

v (t0,s0,x0) (4.106)

=V λ∗(t0,s0,x0)+Et0,x0

∫ T

t0

[
V λ

t (p,Sp,Xv
p)+µSpV λ

s (p,Sp,Xv
p)

+
1
2

σ
2Sp

2β+2V λ
ss(p,Sp,Xv

p)+(r+(µ− r)vp)Xv
pV λ

x (p,Sp,Xv
p)

+σ
2Sp

2β+1Xv
pvpV λ

xs(p,Sp,Xv
p)+

1
2

σ
2Sp

2βv2
pXv

p
2V λ

xx(p,Sp,Xv
p)
]
d p

+Et0,x0

∫ T

t0
(σSp

β+1V λ
s (p,Sp,Xv

p)+σvpXv
pSp

βV λ
x (p,Sp,Xv

p))dWp.

Since we have known that v(t0,s0,x0) 6= w(t0,s0,x0), we can further define a region Rε :=

[t0, t0+ε]× [s0−ε,s0+ε]× [x0−ε,x0+ε] for some ε > 0 small enough such that t0+ε≤ T

and s0− ε≥ 0. Upon the continuity of v and w, there is v(z,s,x) 6= w(z,s,x) for any choice

of (z,s,x) ∈ Rε. Moreover, from (4.22), a quadratic function of u, we can see that w(t,s,x)

is the unique minimum point with λ = λ∗ evaluated at each set of (t,s,x) ∈ [0,T ]×R+×R.

Hence, we can see that the value of ε can be chosen small enough to meet:[
V λ∗

t +µsV λ∗
s +

1
2

σ
2s2β+2V λ∗

ss +(r+(µ− r)v)xV λ∗
x (4.107)

+σ
2s2β+1xvV λ∗

xs +
1
2

σ
2s2βv2x2V λ∗

xx
]
≥ ξ > 0
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where ξ is a constant given and fixed and (t,s,x) ∈ Rε. Hence, setting τε = inf{z ∈ [t0, t0 +

ε]|(z,Sz,Xv
z ) /∈ Rε}, we can see that:

V λ∗
v (t0,s0,x0)≥V λ∗(t0,s0,x0)+ξ(τε− t0) (4.108)

+Et0,x0

∫
τε

t0
(σSp

β+1V λ
s (p,Sp,Xv

p)+σvpXv
pSp

βV λ
x (p,Sp,Xv

p))dWp.

As we have seen in the previous part that Mt =
∫ t

t0(σSp
β+1V λ

s +σvpXv
pSp

βV λ
x )dWp is a local

martingale for t ∈ [t0,T ]. Hence, there exists a sequence of stopping time τn such that τn ↑ T

as n ↑ ∞. Then, in this case the stopped process Mτε∧τn is a martingale. Hence, inequality

(4.108) leads to:

V λ∗
v (t0,s0,x0)≥V λ∗(t0,s0,x0)+ξ(τε∧ τn− t0). (4.109)

Taking limn↑∞ in (4.109) and recalling the dominated convergence theorem, we can see that:

V λ∗
v (t0,s0,x0)≥V λ∗(t0,s0,x0)+ξ(τε− t0)>V λ∗(t0,s0,x0) (4.110)

in which the strict inequality exists as τε > t0 with Pt0,x0−probability one because of the

continuity of Xv. It should be pointed that in the case when x0 = 0, we will take v(t0,0)

and w(t0,x0) as v(t0,0) ·0 and w(t0,x0) ·0, and (4.110) still holds in this case. Therefore, we

have verified (4.103).

9. Recalling (4.18)-(4.20) and the assumption that Mv = M∗, there exists:

V λ∗(t0,x0) = Et0,x0[X
w
T

2]−λ∗M∗ < Et0,x0[X
v
T

2]−λ∗Mv. (4.111)

Hence, according to equation (4.16), there exists:

M∗+ cM2
∗−Et0,x0[X

w
T

2]> Mv + cM2
v −Et0,x0[X

v
T

2] (4.112)

as M∗ = Mv. Inequality (4.112) confirms the statement that Vw(t0,x0) > Vv(t0,x0). Hence,

we conclude that ud
∗ = w is the dynamically optimal control as claimed. �

In the following part, we are going to follow the idea of [43] to solve the two constrained

problems given by (4.6) and (4.7) respectively. We will see that Theorem 43.1 will play an

important part in the following proof. The main part of the following proof is consistent

with Corollary 5 and Corollary 7 in [43].

Corollary 4.2. Consider the constrained problem V1(t,x) = supu:Vart,x(Xu
T )≤α Et,x(Xu

T ) in

which Xu represents the wealth process and is the solution of the SDE (4.3) with Xu
t0 = x0



104 CHAPTER 4. PORTFOLIO SELECTION UNDER CEV MODEL

under the probability measure Pt0,x0 for (t0,x0) ∈ [0,T ]×R given and fixed and α ∈ (0,∞).

The related risk coefficient is defined by δ = (µ− r)/σ in which µ,r ∈ R,
√

2r > µ > r and

σ > 0. We further assume that δ 6= 0 and r 6= 0 in the following part. (The cases δ = 0 or

r = 0 follow by passage to the limit when the non-zero δ or r approaches 0.)

(A) The statically optimal control is given by:

us
∗(t,s,x) =−

δ

σ

1
s2βx

[
x− x0er(t−t0) (4.113)

−
√

α
e−r(T−t)√

(e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds

)

]
K(t)

for (t,x) ∈ [t0,T ]×R. In (4.113), the related parameters are given by:

θ(t) =
δ

Sβ

t

, (4.114)

K(t) = [1+
2βσB(t)

δ
], (4.115)

B(t) =
z1z2(1− e−2β2σ2(z1−z2)(T−t))

z1− z2e−2β2σ2(z1−z2)(T−t)
, (4.116)

z1 =
−(µ−2r)+

√
2r2−µ2

2βσ2 , (4.117)

and

z2 =
−(µ−2r)−

√
2r2−µ2

2βσ2 (4.118)

for t ∈ [t0,T ].

(B) The dynamically optimal control is given by:

ud
∗(t,s,x) =

δ

σ

1
s2βx

[
√

α
e−r(T−t)√

(e
∫ T

t θ2(s)(K2(s)−2K(s))ds− e
∫ T

t −2θ2(s)K(s)ds)

]
K(t) (4.119)

for (t,x) ∈ [t0,T ]×R.

Proof. In this proof, we claim that, for each pair of (t0,x0) ∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (4.3) with

initial condition Xu
t0 = x0. Furthermore, for Xu

t , u ∈U is any admissible control we defined

in Section 4.2.
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(A): By using Lagrange multipliers in (4.6), there exists:

Lt,x(u,c) = Et,x(Xu
T )− c

[
Vart,x(Xu

T )−α
]

(4.120)

for c > 0. Based upon Theorem 4.1, we have known that the optimal control us
∗ given

by (4.8) maximises Et,x(Xu
T )− cVart,x(Xu

T ) under the constant elasticity of variance model.

Hence, we claim (4.8) with c > 0 maximises (4.120). In this case, we state:

Lt,x(uc
∗,c) = sup

u
Lt,x(u,c) (4.121)

for c > 0. Furthermore, there exists c = c(α, t,s,x)> 0 such that:

Vart,x(X
us
∗

T ) = α. (4.122)

Then, for any admissible control u that satisfies Vart,x(Xu
T )≤α, the following relation holds:

Et,x(X
uc
∗

T ) = Lt,x(uc
∗,c)≥ Et,x(Xu

T )− c[Vart,x(Xu
T )−α]≥ Et,x(Xu

T ). (4.123)

This result indicates that the optimal control uc
∗ given by (4.8) with c(α, t,x) > 0 is the

statically optimal control in (4.6).

According to (4.92)-(4.98), we can calculate that the variance Vart0,x0(X
uc
∗

T ) is given by:

Vart0,x0(X
uc
∗

T ) =
1

4c2

(
1− e

∫ T
t0
−θ2(s)K(s)ds)2(

e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds) . (4.124)

Setting (4.124) equal to α, we achieve the value of c, which is:

c =
1

2
√

α

(
1− e

∫ T
t0
−θ2(s)K(s)ds)√

(e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds

)

. (4.125)

Substituting (4.125) into (4.8), we obtain the statically optimal control:

us
∗(t,s,x) =−

δ

σ

1
s2βx

[
x− x0er(t−t0) (4.126)

−
√

α
e−r(T−t)√

(e
∫ T

t0
θ2(s)(K2(s)−2K(s))ds− e

∫ T
t0
−2θ2(s)K(s)ds

)

]
K(t)

which confirms (4.113) and completes the first part of the proof.

(B) Replacing t0 and x0 by t and x in the statically optimal control (4.126), we can obtain

the candidate control ud
∗ given in (4.119). We claim this gives the dynamically optimal
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control for (4.6). To prove its optimality, we take any other admissible control v such that

v(t0,x0) 6= ud
∗(t0,x0) and further assume that there exist w(t0,x0) = us

∗(t0,x0) and w(t0,x0) =

ud
∗(t0,x0). With c given by (4.125), it is clear that (4.101) holds, from which we can see that,

for Vart0,x0(X
w
T ) = α, the following inequality holds:

Et0,x0(X
w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T )≥ Et0,x0(X

v
T ) (4.127)

in which v satisfies Vart0,x0(X
v
T )≤ α. Hence, we can conclude that the optimal control given

by (4.119) is the dynamically optimal control for (4.6). �

Corollary 4.3. Consider optimal control problem V2(t,x) = infu:Et,x(Xu
T )≥γ Vart,x(Xu

T ) in

which Xu represents the wealth process and is the solution of the SDE (4.3) with Xu
t0 = x0

under the probability measure Pt0,x0 for (t0,x0) ∈ [0,T ]×R given and fixed and γ ∈ R. The

related risk coefficient is defined by δ = (µ− r)/σ in which µ,r ∈R,
√

2r > µ > r and σ > 0.

We further assume that r 6= 0 in the following part. (The cases δ = 0 or r = 0 follow by pas-

sage to the limit when the non-zero δ or r approaches to 0.) Furthermore, we assume that

the expectation of the terminal wealth, γ, must satisfy γ > x0er(T−t0). For a wise investor,

if γ ≤ x0er(T−t0), he can simply invest all his wealth in the riskless asset and receive zero

variance at the maturity T . Hence, in the following part, we assume that γ > x0er(T−t0).

(A) The statically optimal control is given by:

us
∗(t,s,x) =−

δ

σ

1
s2βx

[
x− x0er(t−t0)+(x0er(T−t0)− γ)

e−r(T−t)

1− e
∫ T

t0
−θ2(s)K(s)ds

]
K(t) (4.128)

for (t,s,x) ∈ [t0,T ]×R+×R. In (4.8), the related parameters are given by:

θ(t) =
δ

Sβ

t

, (4.129)

K(t) = [1+
2βσB(t)

δ
], (4.130)

B(t) =
z1z2(1− e−2β2σ2(z1−z2)(T−t))

z1− z2e−2β2σ2(z1−z2)(T−t)
, (4.131)

z1 =
−(µ−2r)+

√
2r2−µ2

2βσ2 , (4.132)
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and

z2 =
−(µ−2r)−

√
2r2−µ2

2βσ2 (4.133)

for t ∈ [t0,T ].

(B) The dynamically optimal control is given by:

ud
∗(t,s,x) =−

δ

σ

1
s2βx

[
(xer(T−t)− γ)

e−r(T−t)

1− e
∫ T

t −θ2(s)K(s)ds

]
K(t) (4.134)

for (t,s,x) ∈ [t0,T ]×R+×R.

Proof. In this chapter, we claim that, for each pair of (t0,x0)∈ [0,T ]×R given and fixed,

there exists a probability measure Pt0,x0 under which Xu is the solution of the SDE (4.3) with

initial condition Xu
t0 = x0. Furthermore, for Xu

t , u ∈U is any admissible control we defined

in Section 4.2.

(A): By using Lagrange multipliers in the constrained problem (4.7), there exists:

Lt,x(u,c) = Vart,x(Xu
T )− c

[
Et,x(Xu

T )− γ
]

(4.135)

for c > 0. Re-arranging equation (4.135), the following relation holds:

inf
u

[
Vart,x(Xu

T )− c
[

Et,x(Xu
T )− γ

])
=−csup

u

[
Et,x(Xu

T )−
1
c

Vart,x(Xu
T )
]
+ cγ. (4.136)

Recalling Theorem 4.1, we can see that the optimal control u
1
c
∗ given by (4.8) maximises the

right-hand side of (4.136), which leads to:

Lt,x(u
1
c
∗ ,c) = infLt,x(u,c) (4.137)

for c > 0. Furthermore, we assume exist c = c(γ, t,s,x)> 0 such that:

Et,x(X
u

1
c∗

T ) = γ. (4.138)

Upon (4.138), we can easily see that the following relation holds:

Vart,x(X
u

1
c∗

T ) = Lt,x(u
1
c
∗ ,c)≤ Vart,x(Xu

T )− c[Et,x(Xu
T )− γ]≤ Vart,x(Xu

T ) (4.139)

for any admissible u such that Et,x(Xu
T ) ≥ γ, which indicates that u

1
c
∗ is statically optimal

control for (4.7). Recalling the condition that Et,x(X
u

1
c∗

T ) = γ, there is:

Et,x(X
u

1
c∗

T ) = x0er(T−t0)− c
2

(
1− e

∫ T
t0
−θ2(s)K(s)ds)2

e
∫ T

t0
−2θ2(s)K(s)ds[1− e

∫ T
t0

θ2(s)K2(s)ds] = γ (4.140)
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which leads to:

c = 2(x0er(T−t0)− γ)
e
∫ T

t0
−2θ2(s)K(s)ds[1− e

∫ T
t0

θ2(s)K2(s)ds]
(1− e

∫ T
t0
−θ2(s)K(s)ds

)2
. (4.141)

Furthermore, substituting (4.141) back into (4.8), we receive:

us
∗(t,s,x) =−

δ

σ

1
s2βx

[
x− x0er(t−t0)+(x0er(T−t0)− γ)

e−r(T−t)

1− e
∫ T

t0
−θ2(s)K(s)ds

]
K(t) (4.142)

which confirms (4.128) and completes the first part of proof.

(B): Replacing t0 and x0 by t and x in the statically optimal control (4.142), we can obtain

the control ud
∗ given by:

ud
∗(t,s,x) =−

δ

σ

1
s2βx

[
(xer(T−t)− γ)

e−r(T−t)

1− e
∫ T

t −θ2(s)K(s)ds

]
K(t). (4.143)

We claim this gives the dynamically optimal control for (4.7). To prove its optimality, we

take any other admissible control v such that v(t0,x0) 6= ud
∗(t0,x0) and Et0,x0(X

v
T ) ≥ γ and

assume w(t0,x0) = us
∗(t0,x0) and w(t0,x0) = ud

∗(t0,x0) such that Et0,x0(X
w
T ) = γ. Hence, we

can see that (4.101) holds with c given by (4.141). Since Et0,x0(X
w
T ) = γ, it can be easily seen

that (4.101) leads to:

Vart0,x0(X
w
T )<

1
c

[
γ−Et0,x0(X

v
T )+ cVart0,x0(X

v
T )
]
≤ Vart0,x0(X

v
T ) (4.144)

in which Et0,x0(X
v
T ) ≥ γ and c is given by (4.141). This indicates that the optimal control

given by (4.143) is the dynamically optimal control we are looking for. �

Remark 4.4. As we have mentioned that when β > 0, the solution of (4.2) is a strict

local martingale. A similar conclusion can be also observed in the solution of (4.3), Xu
T ,

which indicates that the self-financing portfolio may admit arbitrage opportunity. However,

Theorem 4.1 will give the statically optimal control and the dynamically optimal control re-

gardless of the existence or not of arbitrage opportunity which, to the best of our knowledge,

has not been discussed previously in the time-consistent control area.

Remark 4.5. In Theorem 4.1, we obtain both the statically and dynamically optimal

controls, which are time-inconsistent and time-consistent respectively. Moreover, Theorem

4.1 gives a general solution for different values of the elasticity parameter of the CEV model

in the mean-variance portfolio selection problem. As we stated above, in the case when

β = 0, the CEV model (4.2) reduces to geometric Brownian motion, under which Theorem
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4.1 will give the same solution as [43]. However, comparing with the conclusion in [43], we

can note that Theorem 4.1 in this chapter constrains the value of µ, i.e. 0 < µ <
√

2r, which

is not observed in [43].

Moreover, it should be noted that in the case β 6= 0, both the static and dynamic optimal-

ities depend on the current value of the risky asset as there exists a term 1/S2β in (4.8) and

(4.14). If β < 0, the investor will be suggested that keep increasing the weight of the risky

asset if the price of the risky asset goes up. Contrarily, the investor will reduce the weight

of risky asset alongside with the decrease of the risky asset price. Moreover, if β > 0, the

optimal strategies in Theorem 4.1 would suggest that the investor reduces the weight on

the risky asset when the stock price increases and increase the weight as the stock price

decreases. This phenomenon is not observed in the previous study [43] under geometric

Brownian motion.

The reason behind this phenomenon is that in the constant elasticity of variance model

(4.2), σSβ

t represents the instantaneous volatility of the stock, and the change of the instan-

taneous volatility will impact the investor behaviour. By setting the case where β < 0 as an

example, we can see that the instantaneous volatility reduces alongside the increase of the

stock price, which leads to the decrease of risk of investing in this risky asset and makes

the investor more willing to invest [10]. Contrarily, the decrease of the stock price will

lead to the higher instantaneous volatility, which makes the risky asset less favourable to the

investor.

4.4 Numerical analysis

In this section, we are providing numerical results for both the static optimality and dynamic

optimality under the constant elasticity of variance model.

1. Firstly, we simulate both the statically optimal control and dynamically optimal con-

trol from Theorem 4.1 with respect to different values of β and compare the difference

when we change the values of the current wealth of the portfolio and the current stock

price. In Figure 4.1, we set Xu
t = 1.8 and St = 1.2 and plot both controls, (4.8) and (4.14),

with β ∈ [−3,7]. Both strategies exhibit monotonicity and approach to 0 when β gets large

enough. It is evident that both strategies suggest the investor avoid investing in the risky

asset when β gets larger. This fact is consistent with the analysis we made in Remark 4.5
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Figure 4.1: This is the simulation of statically optimal control (4.8) and dynamically optimal
control (4.14) with respect to different values of β ∈ [−3,7] when δ = 0.15, t0 = 0, T = 1,
t = 0.5, x0 = 1, c = 1.5, s = 1.2, µ = 0.13, r = 0.1, σ = 0.2, x = 1.8 and s0 = 0.8.

Figure 4.2: This is the simulation of statically optimal control (4.8) and dynamically optimal
control (4.14) with respect to different values of β ∈ [−3,7] when δ = 0.15, t0 = 0, T = 1,
t = 0.5, x0 = 1, c = 1.5, s = 2, µ = 0.13, r = 0.1, σ = 0.2, x = 1.8 and s0 = 0.8.



4.4. NUMERICAL ANALYSIS 111

as larger positive values of β will lead to larger instantaneous volatility of the risky assets,

which makes the risky asset less favourable to the investor. However, the dynamic optimal-

ity encourages the investor to hold large a amount of risky asset when β is small while the

static optimality suggests that the investor should short-sell the risky asset. This indicates

that the static investor and dynamic investor have opposite views of the future trend of the

risky asset when the current wealth of the portfolio is sufficiently larger than the current

stock price.

However, the static optimality changes its speculation on the decline of the risky stock

when the current price of the risky asset exceeds the current value of the wealth process.

This is reflected in Figure 4.2, in which we still set Xu
t = 1.8 but increase St to 2.0. We can

see that the static optimality changes its short-selling strategy and greatly encourages the

investor to hold a long position in the risky asset when β is small enough. Furthermore, in

Figure 4.2 and we can see that the plots of statically optimal control with respect to different

values of β lose the monotonicity, and the plot will never become monotonic again when

we keep increasing the value of St . Figure 4.2 also indicates that the static optimality will

suggest the investor take a long position only if the value of β is small enough when the

current stock price is higher than the current portfolio wealth.

Besides, it should be pointed out that the dynamic optimality holds the monotonicity no

matter which value we choose for Xu
t and St . Moreover, the dynamically optimal control

will always give positive value as long as the current wealth process stays positive, which

can also be seen in the dynamic optimality of [Theorem 3, [43]].

Note that 0 < St < 1 will lead to a reversed conclusion and we will observe the positive

value of β will increase the value of both controls. This phenomenon is exhibited in Figure

4.3 below and we will omit further discussion here.

2. Theorem 4.1 naturally comes up with a question about which strategy will lead to

better performance. In [43], they mentioned that comparing Et0,x0(X
s
T ) and Et0,x0(X

d
T ) gives

the insight into the performance of those two strategies. Since we do not achieve the explicit

solution for the wealth process in this problem, a theoretical comparison will not be feasible.

By using Python, we can still have an intuitive comparison by simulating the wealth process

and taking the terminal value XT (in the case if XT is not well-defined, we take the value of

Xt at the second to the last point of time). In Table 4.1 and Table 4.2, we display the sample µ̄

and sample variance m̄ for both strategies respectively when we fix the value of risk aversion
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Figure 4.3: The first figure the simulation of statically optimal control (4.8) and dynamically
optimal control (4.14) with respect to different values of β ∈ [−3,7] when St = 0.8. And
the second figure is the simulation of both strategies when St = 0.7. The rest parameters
are given by δ = 0.15, t0 = 0, T = 1, t = 0.5, x0 = 1, c = 1.5, s = 1.2, µ = 0.13, r = 0.1,
σ = 0.2, x = 1.8 and s0 = 0.8.
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rate and only consider the impact of changing the value of β. When β < 0, we can see that

the static sample mean µ̄s and the dynamic sample mean µ̄d increase as β decreases. This

indicates that reducing the value of β will enhance the performance of both strategies. Also,

for both optimalities, we see that the sample variance m̄s and m̄d increases as β decreases,

which indicates that the portfolio has larger fluctuation when β is small. However, when β

is positive, we do not observe the obvious pattern. In the data we exhibited in Table 4.1,

the performance of static optimality seems to increase as β increases, however, during our

numerical analysis, we also observed the sample mean µ̄s is always around 2.62 no matter the

change of the value of β. For the dynamic optimality, we can observe a similar conclusion

that µ̄d fluctuates around 2.62-2.63, in which the small fluctuation of the sample mean can

be the estimation error and does not show the clear trend in Table 4.2. A possible reason

is that, in Figure 4.1, we have seen that when we set other parameters fixed, increasing the

value of β will leads to less portion of wealth invested in the risky asset. From Figure 4.1,

we can see that the difference between each value of controls with respect to different values

of positive values of β is getting smaller and smaller as β increases. This action naturally

leads to the fact that the impact of β becomes less important as β gets positively large.

Besides analysing the impact of β, we need to consider the impact of the risk aversion

rate. In the previous two chapters, we have seen that the statically optimal control gives

better performance when risk aversion rate is large while the dynamically optimal control

performs better when risk aversion rate is small. Hence, we can verify if this is still valid

under the existence of β. In Table 4.4 and Table 4.5, it is clear this pattern is still valid under

the CEV model.

3. As we have stated the conclusion of this chapter is connected to the previous work

in [43]. Hence, it would be interesting to further consider whether the remaining features

will be consistent or not. The Remark 6 of [43] states that the dynamically optimal control

outperforms the statically optimal control no matter the value of α. Hence, we simulate the

static and dynamic optimalities for β = 0.5 and β =−0.5 respectively as the result may be

different. Overall, in Table 4.7 and 4.8, we can see that for both cases where β > 0 and

β < 0, the sample mean µ̄s increases as α increases while in Table 4.9 and Table 4.10, the

sample mean µ̄d decreases as α increases. It should be pointed out that during the simulation

we note some outliers because the variance gets larger when α increases, especially when

α > 5. Overall, from the repeated simulation, we can say that the pattern we summarised
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Constant elasticity parameter β Sample mean µ̄s Sample variance m̄s

0.5 2.61062483 0.01483325
1.0 2.61446869 0.00993458
1.5 2.62925411 0.01138159
2.0 2.61053020 0.01377599

-0.5 2.68152529 0.01943475
-1.0 2.69867464 0.03021396
-1.5 2.70934189 0.03925163
-2.0 2.78258761 0.06728610

Table 4.1: Simulation for the static optimality for the unconstrained problem (4.4) with
respect to different values of β.

Constant elasticity parameter β Sample mean µ̄d Sample variance m̄d

0.5 2.62470524 0.01356741
1.0 2.62734534 0.01381014
1.5 2.63923725 0.01402407
2.0 2.63204450 0.01775903

-0.5 2.66738856 0.01943141
-1.0 2.67906846 0.02403912
-1.5 2.73516401 0.03520119
-2.0 2.74193316 0.05436461

Table 4.2: Simulation for the dynamic optimality for the unconstrained problem (4.4) with
respect to different values of β.

(Note the related parameters are given by c = 1, µ = 0.42, σ = 0.5, δ = 0.24, x0 = 2, r = 0.3, T = 1,
and t0 = 0, and the sample size is 500.)



4.4. NUMERICAL ANALYSIS 115

Risk aversion rate c Sample mean µ̄s Sample variance m̄s

1.0 2.64599609 0.01957113
2.0 2.69329501 0.08572060
3.0 2.72763762 0.17225738
4.0 2.74301822 0.33851057
5.0 2.81776247 0.54094099

Table 4.4: Simulation for the static optimality for the unconstrained problem (4.4) with
respect to different values of risk aversion rate c.

Risk aversion rate c Sample mean µ̄d Sample variance m̄d

1.0 2.62814150 0.02193587
2.0 2.61783110 0.00428679
3.0 2.61741930 0.00213929
4.0 2.61255116 0.00158992
5.0 2.61116038 0.00090385

Table 4.5: Simulation for the dynamic optimality for the unconstrained problem (4.4) with
respect to different values of risk aversion rate c.

(Note the related parameters are given by β = −0.5, µ = 0.42, σ = 0.5, δ = 0.24, x0 = 2, r = 0.3,
T = 1, and t0 = 0, and the sample size is 500.)

above exists. Furthermore, different from the Corollary 5 and Remark 6 of [43], Table 4.7-

Table 4.10 indicate that the statically optimal control leads to a larger sample mean than

the dynamically optimal control for each α given and fixed under the existence of β (no

matter β > 0 or β < 0). If β = 0, i.e. we have the same conclusion as Remark 6 in [43], the

performance of dynamically optimal control will be enhanced as the value of α increases

and the dynamic optimality will always outperform the static optimality. To illustrate this,

we can see that µ̄s = 2.96160378 < 3.09161328 = µ̄d where α = 1.0 and the rest parameters

are the same as Table 4.7 (further details can be seen in Remark 6 of [43]).

In Table 4.12 and Table 4.13, we compare the performance of both strategies when

α = 1.5 given and fixed. We can see that the sample mean of static optimality µ̄s increases

as β decreases when β < 0 while under the same condition, the dynamic sample mean µ̄d

decreases as β decreases. This observation is different from the unconstrained cases we

discussed above as in the unconstrained case, the dynamic sample mean will increase as

β decreases (See Table 4.2). However, similar to the unconstrained case, the impact of

changing the value of β is not clear when β > 0. Both static and dynamic optimalities do

not exhibit a clear trend when β changes.

4. One of the signature features in [43] is they found that in the second constrained
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Value of α Sample mean µ̄s Sample variance m̄s

1.0 2.86602056 1.18481662
2.0 3.16744231 4.41832150
3.0 3.70824406 9.36560057
4.0 4.00497455 15.2273346
5.0 4.42380723 25.2066747

Table 4.7: Simulation for the static optimality for the constrained problem (4.6) with respect
to different values of α when β =−0.5.

Value of α Sample mean µ̄s Sample variance m̄s

1.0 2.75094761 0.90511299
2.0 3.18443270 3.55295247
3.0 3.17571402 8.55327903
4.0 3.59177485 13.1009796
5.0 3.80025886 21.4758423

Table 4.8: Simulation for the static optimality for the constrained problem (4.6) with respect
to different values of α when β = 0.5.

α Sample mean µ̄d Sample variance m̄d

1.0 2.23340726 2.97032191
2.0 1.98558919 5.07249573
3.0 1.87565230 8.05671545
4.0 1.41277075 14.8796356
5.0 1.41752098 13.3131525

Table 4.9: Simulation for the dynamic optimality for the constrained problem (4.6) with
respect to different values of α when β =−0.5.

α Sample mean µ̄d Sample variance m̄d

1.0 2.41409850 3.42276108
2.0 2.19476116 7.22315804
3.0 2.16837756 11.5996044
4.0 1.64161181 12.7549176
5.0 1.29378455 15.4335927

Table 4.10: Simulation for the dynamic optimality for the constrained problem (4.6) with
respect to different values of α when β = 0.5.

(Note the related parameters are given by µ = 0.42, σ = 0.5, δ = 0.24, x0 = 2, r = 0.3, T = 1, and
t0 = 0, and the sample size is 500.)
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Constant elasticity parameter β Sample mean µ̄s Sample variance m̄s

0.5 2.87239412 2.10452625
1.0 2.86719573 2.15100396
1.5 2.95696529 2.15138499
2.0 2.97882478 2.09266052
2.5 2.89095134 1.93238464

-0.5 3.07163719 2.14170722
-1.0 3.09705684 2.10295568
-1.5 3.29234736 1.93498371
-2.0 3.46335088 1.75473028
-2.5 3.58664467 1.92066183

Table 4.12: Simulation for the static optimality for the constrained problem (4.6) with re-
spect to different values of β.

Constant elasticity parameter β Sample mean µ̄d Sample variance m̄d

0.5 2.27878837 4.68378032
1.0 2.27102544 6.02839513
1.5 2.25863679 6.62607662
2.0 2.03398082 7.57049577
2.5 2.44191787 9.35754574

-0.5 2.03462623 4.20363618
-1.0 1.95745851 4.18232359
-1.5 1.62370682 3.27018855
-2.0 1.61124399 3.94882739
-2.5 1.61752095 3.09954539

Table 4.13: Simulation for the dynamic optimality for the constrained problem (4.6) with
respect to different values of β.

(Note the related parameters are given by α = 1.5, µ = 0.42, σ = 0.5, δ = 0.24, x0 = 2, r = 0.3,
T = 1, and t0 = 0, and the sample size is 500.)
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problem, the dynamically optimal control drives the wealth strictly below γ for t ∈ [t0,T ]

and achieves Xd
T = γ at maturity (cf. Corollary 7 of [43]). Actually, in Corollary 4.5, the dy-

namically optimal control will also exhibit the similar behaviour under the CEV model. In

Figure 4.4, we simulate both optimal wealth processes. We can clearly see that the dynam-

ically wealth process will stay below γ strictly and converges to γ only when t approaches

to the maturity time T . For the static case, X s
t can move with no restriction, and this ob-

servation is consistent with Remark 8 in [43]. Upon Figure 4.4, we may summarise that

the dynamically optimal wealth process will approach β at maturity, and this fact will be

important to evaluate the performance of both strategies in the following part.

In [43], they prove that the dynamically optimal control will outperforms the statically

optimal control for any γ > x0er(T−t0). In striving for verifying this feature, we simulate both

wealth processes and collect the value of Xu
T at the point of time that is close to the maturity

(note we can not obtain the exact value of Xd
T at the maturity as Python can not handle the

calculation that includes 1/0. hence, we can only take the Xu that is close to the maturity

T ). Observing Table 4.15 and Table 4.16, we can note that the dynamically optimal wealth

process has significantly large sample variance m̄d , and this confirms the Remark 10 of [43]

in which they prove that the variance of the dynamic wealth process fails to converge and

will approach to infinity when t approaches to T . Furthermore, from those tables, the sample

variance of the static strategy is much smaller than the dynamic case, which indicates that

the static strategy outperforms the dynamic strategy before the maturity time T . However,

as we discussed above, the dynamic wealth process will be γ at the maturity almost surely,

which makes the variance of the terminal wealth equal to 0 in the dynamic cases. Hence, this

leads to the conclusion that the static strategy will always outperform the dynamic strategy

no matter the value of γ before the maturity while at the maturity the dynamic case will

outperform the static case. It should be mentioned that the conclusions we made above are

also valid when β > 0, and we will omit the related details here.
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Value of γ Sample mean µ̄s Sample variance m̄s

1.5 1.49551189 0.20610046
2.0 1.96235656 4.58959539
2.5 2.36699180 15.5058445
3.0 2.43396702 58.2153450
3.5 3.92593882 103.569144

Table 4.15: Simulation for the static optimality for the constrained problem (4.7) with re-
spect to different values of γ when β =−0.5.

Value of γ Sample mean µ̄d Sample variance m̄d

1.5 -112.509967 3.4138×e6

2.0 1812.66101 2.4539×e8

2.5 -267103.793 1.2698×e13

3.0 -532276.116 5.0491×e13

3.5 860653.124 6.2851×e13

Table 4.16: Simulation for the dynamic optimality for the constrained problem (4.7) with
respect to different values of γ when β =−0.5.

(Note the related parameters are given by µ = 0.42, σ = 0.5, δ = 0.24, x0 = 2, r = 0.3, T = 1, and
t0 = 0, and the sample size is 500.)

Figure 4.4: This is the simulation of the statically optimal wealth process X s
t and dynami-

cally optimal wealth process Xd
t when β = −1, δ = 0.24, t0 = 0, T = 1, x0 = 2, c = 1.01,

µ = 0.42, r = 0.3, σ = 0.5, γ = 2, and s0 = 0.8.



Chapter 5

Optimal Mean-Variance Portfolio

Selection under Partial Information

5.1 Introduction

In financial markets, the investor, especially the individual investor, can only access limited

information to make decisions. For the individual investor, it may not be possible for them to

fully analyse and access financial statements and other such materials. Most of the time, they

can only observe the stock price up to the current time. Observing this fact motivates us to

further explore the application portfolio theory in such a situation. Hence, in this chapter, we

are going to consider another scenario where the only information available for the investor

is the stock price. This condition leads to the portfolio selection under partial information

and it has financial meaning. Like the previous chapters, the target of this chapter is to solve

the nonlinear mean-variance portfolio selection problem and obtain both time inconsistent

and time-consistent solutions.

There are some previous studies that consider the portfolio selection under partial infor-

mation. Studies [28] and [29] consider the optimal consumption and investment problem

under the partial information by focusing on the utility function. In [29], Lakner finds the

optimal strategies for the logarithmic utility function and the power utility function by mar-

tingale method and notes that the optimal strategy of the logarithmic utility function can be

derived from the corresponding strategy under the full information by replacing the drift rate

by the conditional expectation of the drift under partial information, while the optimal strat-

egy of the power utility function cannot be derived by this way (cf. p86-88 of [29] for further

120
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details). Different from adopting martingale method, the work of [1] applies the dynamic

programming approach, i.e. the Hamilton-Jacobi-Bellman equation, to obtain the optimal

solution of the corresponding utility function under the constraint of short-selling and bor-

rowing prohibition. It should be noted that the utility analysis does not give mean-variance

efficient strategies. For partial information in the mean-variance portfolio selection, one of

the key difficulties is that the filtering and optimisation are hard to separate, however, a sig-

nificant achievement is studied in [56], in which they come up with the separation principle

that is specifically applicable for the mean-variance portfolio problem. As stated in [56],

the separation principle enables us to replace the unknown drift rate with its optimal con-

ditional expectation in the wealth process and then solve the optimal problem with respect

to the wealth process as the full information case. The separation principle has been widely

applied in other works such as [55] and [41]. The work of [41] considers the case when the

market consists of multiple assets under partial information and handles the optimal control

from the HJB system of a linear problem by solving the corresponding Riccati equation as

well as building efficient frontier. In this chapter we will follow the idea of [41] to solve

the HJB equation and then derive both time-inconsistent and time-consistent solution for the

nonlinear problem.

Consider a financial market that offers a riskless bond and a risky stock, for which the

drift rate of the risky asset is unknown. For the investor, the only available information is the

stock price up to the current time, which forms the partial information problem. By using

the separation principle, we derive the innovation process which enables us to obtain the

wealth process that is adapted to the same filtration as the stock price process. Furthermore,

the investor aims to construct a self-financing portfolio and uses the variance as the risk

measure and variance naturally bring the quadratic nonlinearity into this problem. To han-

dle this issue, we firstly employ Lagrange multiplier to reduce the nonlinear problem into a

set of linear problems, which can be solved by HJB equation. Under the partial information

condition, the HJB equation leads to a complicated second-order partial differential equa-

tion. Different from applying the Legendre transform in the previous work, the work of [41]

describes a method which involves solving a Riccati-type ODE gives a simpler solution, and

we will follow this idea. Moreover, as we have done in the previous chapter, the solution of

the HJB equation only gives the candidate solution and its optimality will be proved by the

verification theorem described in [5]. By solving the HJB equation, we receive the optimal
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control that depends on the initial status (t0,x0), and this kind of optimal control is named

as static optimality in [43]. Furthermore, from the static optimality, we derive the time-

consistent control that only depends on the current status (t,x), which is firstly introduced

in [43].

Similarly, in this chapter, we also consider the other two constrained cases where we

constrain the size of the expectation/variance of the wealth process respectively.

5.2 Formulation of the problem

Consider a scene where the the only available information the investor can access is the

stock price up to the current time. This naturally leads to the partial information problem.

In this case, the stock price follows:

dSt = µtStdt +σStdWt (5.1)

with σ > 0 and µt represents the appreciation rate process for t ∈ [t0,T ]. For this risky

asset, we set St0 = s0 for some constants s0 > 0, and the standard Brownian motion W is

completely defined on (Ω,F,P). For the appreciation rate process µt in (5.1), we follow the

setting in [4] (also cf. [41]) and consider that the appreciation rate process µt is a Gaussian

process that follows:

dµt = θµtdt +ξdW̃t (5.2)

in which θ and ξ are given constants and W̃t is a standard Brownian motion defined on

(Ω,F,P). Under partial information constraint, the investor can only observe the stock

price, which indicates that the only information for the investor is the stock price up to t.

Hence, we define:

Gt = σ(S(τ);τ≤ t). (5.3)

It should be pointed out that µt in (5.2) can be a general process that does not need to be

Gt−adapted or even Ft−adapted and hence, for the investor, he can not observe the value

of µt [56]. Hence, we further assume that W̃t is independent of Wt . And in this chapter, we

will only consider the case when µt is unknown and assume σ is given and fixed.
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Besides the risky stock, there is a riskless bond available for the investor, which is de-

scribed by:

dBt = rBtdt (5.4)

with initial value Bt0 = b0, where b0 > 0 and the riskless interest rate r ∈ R are constants.

This investor with initial wealth x0 > 0 aims to construct a self-financing portfolio by

investing these two assets and expects to maximise his wealth up to the maturity time T > 0.

In [5], they describe that the wealth of this self-financing portfolio will follow:

dXu
t = (r+(µt− r)ut)Xu

t dt +σutXu
t dWt (5.5)

in which ut represents the percentage of wealth invested in the risky asset. To obtain the

optimal control which is also Gt−measurable, we apply the separation principle studied in

[56] to convert (5.5) into:

dXu
t = (r+(µ̂t− r)ut)Xu

t dt +σutXu
t dZt . (5.6)

in which µ̂t := E(µt |Gt) is the optimal estimator for µt and the process Zt is called the

innovation process and it is defined by:

dZt =
1
σ

d logSt−
1
σ
(µ̂t−

1
2

σ
2)dt (5.7)

where:

d logSt = (µt−
1
2

σ
2)dt +σdWt . (5.8)

Upon (5.2) and (5.8), we can apply Kalman-Bucy menthod described in Theorem 3 in [35],

which enables us to obtain the process for the optimal estimator µt . Hence, there is:

dµ̂t = θµ̂tdt +
1

σ2

(
σξ+ γt

)[
d logSt− (µ̂t−

1
2

σ
2)dt

]
(5.9)

= θµ̂tdt +
(
ξ+

γt

σ

)
dZt

for t ∈ [t0,T ] and in (5.9), term γt represents the error of estimation and it is described by:

dγt = 2θγt +ξ
2−
(
σξ+ γt

)2

σ2 (5.10)

for t ∈ [t0,T ]. Under those settings, we are facing the optimal filtering problem in the port-

folio selection.
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For the investor, the main problem is to consider:

V (t,x) := sup
u

Et,x(Xu
T )− cVart,x(Xu

T ) (5.11)

For the admissible control u ∈U , it must meet the admissibility condition

0 < max
t≤τ≤T

Et,x
[
Xu

τ −
λ

2
]2

< ∞ (5.12)

where λ> 0 is any given constant. Furthermore, for completeness, we define that when Xt =

0, u(t,0) := u(t,0) ·0 as u(t,x) may not well defined on Xt = 0. Besides the unconstrained

problem (5.11), we also attempt to consider the following two constrained cases:

V1(t,x) = sup
u:Vart,x(Xu

T )≤α

Et,x(Xu
T ) (5.13)

V2(t,x) = inf
u:Et,x(Xu

T )≥β

Vart,x(Xu
T ) (5.14)

in which α ∈ (0,+) and β ∈ (xer(T−t),+∞). In [43], it was proved that the solution of (5.11)

leads to the solution for both (5.13) and (5.14), which can be verified by applying the method

of Lagrange multipliers. In this case, choosing proper values of c in (5.11) will lead to the

solution of (5.13) and (5.14). In this chapter, definitions of static optimality and dynamic

optimality are consistent with those in [43].

5.3 Solution to the unconstrained problem

In this chapter, we will explain the solution of the constrained problems. The main idea of

the proof below follows the idea in [43].

Theorem 5.1. Consider the optimal problem V (t,x) = supu[Et,x(Xu
T )− cVart,x(Xu

T )] in

which Xu represents the wealth process and is the solution of the SDE (5.6) with Xu
t0 = x0

under the probability measure Pt0,x0 for (t0,x0)∈ [0,T ]×R given and fixed. The related risk

coefficient is defined by δ = (µ̂− r)/σ in which r ∈ R, σ > 0, and µ̂ is the optimal estimator

defined in (5.9) and γ(t) is the error of estimation given by (5.10). Note that we assume that

δ 6= 0 and r 6= 0. (The cases δ = 0 or r = 0 follow by passage to the limit when the non-zero

δ or r approaches 0.)
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(A) The statically optimal control is given by:

us
∗(t, µ̂t ,x) =−

1
xσ2 (x− x0er(t−t0)+

1
2c

(1− e
∫ T

t0
−H(s)ds

)

e
∫ T

t0
−2H(s)ds

(1− e
∫ T

t0
h(s)2

σ2 ds
)

e−r(T−t)) (5.15)

×
[
(µ̂t− r)+σK(t)(E(t)+F(t)µ̂t)

]
for (t, µ̂t ,x) ∈ [t0,T ]×R×R. The related parameters are given by:

H(t) =
(µ̂t− r)h(t)

σ2 , (5.16)

h(t) = [(µ̂t− r)+σK(t)(E(t)+F(t)µ̂t)] (5.17)

in which F(t) and E(t) are continuous solutions of:

1
2

Ft +θF(t)− 1
2

K2(t)F2(t)− 1
σ2 −

2K(t)
σ

F(t) = 0 (5.18)

and

Et +θE(t)−K2(t)E(t)F(t)+
2r
σ2 −

2K(t)
σ

E(t)+
2rK(t)

σ
F(t) = 0 (5.19)

with

K(t) = ξ+
γt

σ
(5.20)

(B) The dynamically optimal control is given by:

ud
∗(t, µ̂t ,x) =−

1
xσ2

1
2c

(1− e
∫ T

t −H(s)ds)

e
∫ T

t −2H(s)ds(1− e
∫ T

t
h(s)2

σ2 ds
)

e−r(T−t) (5.21)

×
[
(µ̂t− r)+σK(t)(E(t)+F(t)µ̂t)

]
for (t, µ̂t ,x) ∈ [t0,T ]×R×R. The rest parameters are given above.

Proof. In the first part of proof, we will use t and x to replace t0 and x0 to simplify the

proof, and any admissible control u ∈U follows the definition above.

(A): Firstly, we need to handle the quadratic nonlinearity introduced by the variance

term. Hence, we assume the condition Et,x(Xu
T ) = M, and we can see that:

V (t,x) = sup
u

{
Et,x(Xu

T )− cVart,x(Xu
T )
}

(5.22)

= sup
u:Et,x(Xu

T )=M

{
M− cEt,x[(Xu

T )
2]+ cM2}

= M+ cM2− c inf
u:Et,x(Xu

T )=M

{
Et,x[(Xu

T )
2]
}
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where M ∈ R. For an optimal strategy, u∗, the corresponding values of M∗ and Vart,x(X
u∗)
T )

form the efficient frontier when M∗ ∈ [xer(T−t),∞). From (5.22), we can see that solving the

following constrained problem will naturally leads to the optimal solution for the uncon-

strained problem, which is:

VM(t,x) = inf
u:Et,x(Xu

T )=M

{
Et,x
[
(Xu

T )
2]}. (5.23)

Applying Lagrange multiplier in (5.23) leads to:

Lt,x(u,λ) = Et,x[(Xu
T )

2]−λ[Et,x(Xu
T )−M] (5.24)

in which λ > 0. It can be easily seen that the optimal control u∗(t,x) with λ(M, t,x) > 0

such that Et,x(Xu
T ) = M will lead to:

Lt,x(u∗,λ) = inf
u

Lt,x(u,λ). (5.25)

Hence, achieving the control that minimises (5.24) will gives the desired optimal control for

(5.22).

1. From (5.24), we can see that the key step is to handle the following problem:

V λ(t, µ̂,x) = inf
u

Et,x

[
(Xu

T )
2−λXu

T
∣∣µt = µ̂,Xt = x

]
(5.26)

where u ∈U is any admissible control we defined above. To further simplify the following

calculation, we see that equation (5.26) is equivalent to:

V λ(t, µ̂,x) = inf
u

Et,x

[
(Xu

T −
λ

2
)2∣∣µt = µ̂,Xt = x

]
. (5.27)

In the following part, we mainly focus on two things: (I) solving (5.27) by using Hamilton-

Jacobi-Bellman equation; (II) proving the optimality of the candidate solution we achieve

from the HJB equation by using verification theorem described in [5]. We firstly assume

there exists V λ(t, µ̂,x), a smooth enough solution of the following HJB system (in the fol-

lowing part we will see the explicit form of V λ exists).

2. Recalling the SDE (5.6) and (5.9), we can derive the following HJB equation:

inf
u

[
V λ

t + µ̂θV λ
µ̂ +

1
2
(ξ+

γ

σ
)2V λ

µ̂µ̂ +(r+(µ̂− r)ut)xV λ
x +σux(ξ+

γ

σ
)V λ

xµ̂ (5.28)

+
1
2

σ
2u2x2V λ

xx
]
= 0
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with the terminal condition:

V λ(T, µ̂,x) = (x− λ

2
)2 (5.29)

in which γt = γ is the error of estimation of µ̂t and we will omit the subscript t in this part.

3. Seeing (5.28) is a quadratic function of u, we can easily see that the optimal control

is given by:

u =−
(µ̂− r)V λ

x +σ(ξ+ γ

σ
)V λ

xµ̂

xσ2V λ
xx

. (5.30)

To further simplify the calculation, we set that K = ξ+ γ/σ. Substituting (5.30) back into

(5.28), we can see that:

V λ
t + µ̂θV λ

µ̂ +
1
2

K2V λ
µ̂µ̂ + rxV λ

x −
1

2σ2V λ
xx

[
(µ̂− r)V λ

x +σKV λ
xµ̂
]2

= 0. (5.31)

Equation (5.31) is a nonlinear second-order partial differential equation. Hence, to handle

this case, we further assume that:

z = x− λ

2
e−r(T−t) (5.32)

under which there exists:

H(t, µ̂,z) =V λ(t, µ̂,z+
λ

2
e−r(T−t)). (5.33)

Differentiating H(t, µ̂,z), we can see that:

Ht =V λ
t +

λ

2
re−r(T−t)Vλ

x, (5.34)

and

Hz =V λ
x , Hzz =V λ

xx, Hµ̂ =V λ
µ̂ , Hµ̂µ̂ =V λ

µ̂µ̂, Hµ̂z =V λ
µ̂x (5.35)

Hence, substituting (5.34) and (5.35) back into (5.31):

Ht + µ̂θHµ̂ +
1
2

K2Hµ̂µ̂ + rzHz−
1

2σ2 Hzz

[
(µ̂− r)

Hz

Hzz
+σK

Hzµ̂

Hzz

]2

= 0. (5.36)

We further set that:

H(t, µ̂,x) = f (t, µ̂)z2 (5.37)
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with f (T ) = 1 for all values of µ̂. Differentiating (5.37) with respect to t, µ̂, and z respec-

tively, there is:

Ht = ftz2, Hµ̂ = fµ̂z2, Hµ̂µ̂ = fµ̂µ̂z2, Hz = 2z f , Hzz = 2 f , Hµ̂z = 2z fµ̂ (5.38)

Substituting (5.38) into (5.36), there is:

ft + µ̂θ fµ̂ +
1
2

K2 fµ̂µ̂ +2r f − f
σ2

[
(µ̂− r)+σK

∂ln f
∂µ̂

]2

= 0. (5.39)

We set that f (t, µ̂) is of the following form:

f (t, µ̂) = eD(t)+E(t)µ̂+ 1
2 F(t)µ̂2

(5.40)

with D(T ) = 0, E(T ) = 0, and F(T ) = 0. Hence, differentiating (5.40) with respect to t and

µ̂ respectively gives:

ft = (Dt +Et µ̂+
1
2

Ft µ̂2) f , (5.41)

fµ̂ = (E(t)+F(t)µ̂) f , (5.42)

fµ̂µ = [F(t)+(E(t)+F(t)µ̂)2] f , (5.43)

and

∂ln f
∂µ̂

= E(t)+F(t)µ̂. (5.44)

Inserting (5.41)-(5.44) into (5.39) leads to:

Dt +Et µ̂+
1
2

Ft µ̂2 +θE(t)µ̂+θF(t)µ̂2 +
1
2

K2F(t)− 1
2

K2(E(t)+F(t)µ̂)2 (5.45)

+2r− 1
σ2 (µ̂− r)2− (

2K
σ

)(µ̂− r)(E(t)+F(t)µ̂) = 0.

Re-arranging (5.45) we can see there is a quadratic function of µ̂. Hence, in (5.45), the

coefficient of term µ̂2 is given by:

1
2

Ft +θF(t)− 1
2

K2F2(t)− 1
σ2 −

2K
σ

F(t) = 0 (5.46)

which is an ODE with terminal condition F(T ) = 0. Also, the coefficient term of µ̂ is given

by:

Et +θE(t)−K2E(t)F(t)+
2r
σ2 −

2K
σ

E(t)+
2rK

σ
F(t) = 0 (5.47)
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which is an ODE with terminal condition E(T ) = 0. The coefficient term of (5.45) is given

by:

Dt +
1
2

K2F(t)+2r+
1
2

K2e2(t)− 1
σ2

(
r−σKE(t)

)2
= 0 (5.48)

with D(T ) = 0. The continuous solution of (5.46), (5.47) and (5.48) forms f (t, µ̂). It should

be pointed out that (5.40) leads to V λ
xx > 0, which confirms our assumption above. Further-

more, from (5.40), (5.37) and (5.33), we can easily see the existence of V λ, which confirms

our assumption for the HJB system (5.28) and (5.29).

4. Recalling (5.35) and (5.40) For the candidate optimal control (5.30), there is:

u(t, µ̂,x) =−
(µ̂− r)V λ

x +σ(ξ+ γ

σ
)V λ

xµ̂

xσ2V λ
xx

(5.49)

=−
(µ̂− r)Hz +σ(ξ+ γ

σ
)Hzµ̂

xσ2Hzz

=− 1
xσ2 (x−

λ

2
e−r(T−t)

[
(µ̂− r)+σK(E(t)+F(t)µ̂)

]
.

5. The next step is to prove the optimality of (5.49). Firstly, applying Ito formula to the

value function V λ

V λ(T, µ̂T ,Xu
T ) =V λ(t, µ̂,x)+

∫ T

t

[
V λ

t (t + s, µ̂s,Xu
s )+θµ̂sV λ

µ̂ (t + s, µ̂s,Xu
s ) (5.50)

+(r+(µ̂s− r)us)Xu
s V λ

x (t + s, µ̂s,Xu
s )+

1
2

K(s)2V λ
µ̂µ̂(t + s, µ̂s,Xu

s )

+σK(s)usXu
s V λ

xµ̂(t + s, µ̂s,Xu
s )+

1
2

σ
2u2

s Xu
s

2V λ
xx(t + s, µ̂s,Xu

s )
]
ds

+
∫ T

t
[K(s)V λ

µ̂ (t + s, µ̂s,Xu
s )+σusXu

s V λ
x (t + s, µ̂s,Xu

s )]dZs

in which u is any admissible control we defined above. Since V λ solves the HJB equation

(5.28) and (5.29), we can see there is:

V λ
t +θµ̂sV λ

µ̂ +(r+(µ̂s− r)us)Xu
s V λ

x +
1
2

K(s)2V λ
µ̂µ̂ +σK(s)usXu

s V λ
xµ̂ +

1
2

σ
2u2

s Xu
s

2V λ
xx ≥ 0.

(5.51)

Re-calling the terminal condition (5.29), there is:

(Xu
T −

λ

2
)2 ≥V λ(t, µ̂,x)+

∫ T

t
[K(s)V λ

µ̂ (t + s, µ̂s,Xu
s )+σusXu

s V λ
x (t + s, µ̂s,Xu

s )]dZs (5.52)

in which there exists a local martingale term Mt =
∫ T

t [K(s)V λ
µ̂ + σusXu

s V λ
x ]dZs. For this

local martingale, there exists a sequence of stopping time τn such that τn ↑ T as n ↑∞, under
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which for each t ′ ∈ [t,T ] the stopped process

Mt′∧τn =
∫ t′∧τn

t
[K(s)V λ

µ̂ (t + s, µ̂s,Xu
s )+σusXu

s V λ
x (t + s, µ̂s,Xu

s )]dZs (5.53)

is a martingale. Hence, re-calling (5.52), we can see that:

V λ(t, µ̂,x)≤(Xu
t′∧τn
− λ

2
)2 (5.54)

−
∫ t′∧τn

t
[K(s)V λ

µ̂ (t + s, µ̂s,Xu
s )+σusXu

s V λ
x (t + s, µ̂s,Xu

s )]dZs.

Taking expectation on the both side of (5.54), the martingale term vanishes, which leads to:

V λ(t, µ̂,x)≤Et,x
[
(Xu

t′∧τn
− λ

2
)2]. (5.55)

Taking limn↑∞ in the right-hand side we could easily see that:

Et,x
[
(Xu

t′−
λ

2
)2]= Et,x

[
lim
n↑∞

(Xu
t′∧τn
− λ

2
)2]. (5.56)

Recalling the admissibility condition (5.12), we can apply the Fatou lemma and receive:

Et,x
[

lim
n↑∞

(Xu
t′∧τn
− λ

2
)2]≥ lim

n↑∞
Et,x
[
(Xu

t′∧τn
− λ

2
)2]. (5.57)

Hence, upon (5.57), we can conclude that:

V λ(t, µ̂,x)≤Et,x
[
(Xu

t′−
λ

2
)2] (5.58)

holds for all t ′ ∈ [t,T ]. Hence, at the maturity, there exists:

V λ(t, µ̂,x)≤ Et,x[(Xu
T −

λ

2
)2|µ̂t = µ̂,Xu

t = x] (5.59)

which holds for any admissible control u ∈U . Hence, we can conclude that:

V λ(t, µ̂,x)≤ inf
u

Et,x[(Xu
T −

λ

2
)2|µ̂t = µ̂,Xu

t = x]. (5.60)

For the reverse inequality, we first claim that the control u∗ given by (5.49) is the optimal

control for the HJB sytem (5.28)-(5.29). Hence, we have

V λ
t + µ̂θV λ

µ̂ +
1
2

K2V λ
µ̂µ̂ +(r+(µ̂− r)u∗t )X

u∗
t V λ

x +σu∗Xu∗
t KV λ

xµ̂ (5.61)

+
1
2

σ
2u2(Xu∗

t )2V λ
xx = 0
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in which K = ξ+ γ/σ. Recalling (5.50), we can easily find that:

V λ(t, µ̂,x) = (Xu∗
T −

λ

2
)2−

∫ T

t
[K(s)V λ

µ̂ (t + s, µ̂s,Xu∗
s )+σu∗s Xu∗

s V λ
x (t + s, µ̂s,Xu∗

s )]dZs.

(5.62)

Recalling (5.52)-(5.60) and taking expectation on both side of (5.62), there is:

V λ(t, µ̂,x) = Et,x[(Xu∗
T −

λ

2
)2|µ̂t = µ̂,Xu∗

t = x] (5.63)

and this naturally leads to the trivial inequality:

inf
u

Et,x[(Xu
T −

λ

2
)2|µ̂t ,Xu

t = x] = µ̂,Xu
t = x]≤ Et,x[(Xu∗

T −
λ

2
)2|µ̂t = µ̂,Xu

t = x] (5.64)

which leads to:

V λ(t, µ̂,x) = inf
u

Et,x[(Xu
T −

λ

2
)2|µ̂t = µ̂,Xu

t = x] (5.65)

≤ Et,x[(Xu∗
T −

λ

2
)2|µ̂t = µ̂,Xu

t = x] =V λ(t, µ̂,x).

Therefore, according to the verification described in [5], we can conclude that the control

given by (5.49) is optimal for the HJB system (5.28) and (5.29).

6. For (5.49), we still need to further determine the optimal value of λ∗. To achieve that,

substituting (5.49) back into (5.6) gives:

dXu
t =(rXu

t +(µ̂t− r)(− 1
σ2 (X

u
t −

λ

2
e−r(T−t))[(µ̂− r)+σK(t)(E(t)+F(t)µ̂))dt (5.66)

+σ(− 1
σ2 (x−

λ

2
e−r(T−t))[(µ̂− r)+σK(t)(E(t)+F(t)µ̂)])dZt.

Taking expectation Et0,x0 on both sides of (5.66) and re-arranging both sides gives:

d Et0,x0(X
u
T )

dt
=(r− [(µ̂− r)+σK(t)(E(t)+F(t)µ̂)]

σ2 )Et0,x0(X
u
t ) (5.67)

+
[(µ̂− r)+σK(t)(E(t)+F(t)µ̂)]

σ2
λ

2
e−r(T−t)

which is an ODE with initial value Et0,x0(X
u
t0) = x0. Solving this ODE gives:

Et0,x0(X
u
t ) =

λ

2
e−r(T−t)(1− e

∫ t
t0
−H(s)ds

)+x0er(t−t0)e
∫ t

t0
−H(s)ds (5.68)

where H(t) := (µ̂−r)h(t)
σ2 and h(t) = [(µ̂− r) + σK(t)(E(t) +F(t)µ̂)]for t ∈ [t0,T ]. At the

maturity time T , there is:

Et0,x0(X
u
T ) =

λ

2
(1− e

∫ T
t0
−H(s)ds

)+x0er(T−t0)e
∫ T

t0
−H(s)ds

. (5.69)
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Under the assumption we made above, Et,x(Xu
T ) = M, there is:

M =
λ

2
(1− e

∫ T
t0
−H(s)ds

)+x0er(T−t0)e
∫ T

t0
−H(s)ds (5.70)

so that:

λ =
2
[
M− x0er(T−t0)e

∫ T
t0
−H(s)ds]

1− e
∫ T

t0
−H(s)ds

. (5.71)

To further find the optimal value of λ, we need to consider Et0,x0(X
u
T

2). Applying Ito formula

to X2 and taking expectation, we can calculate that:

Et0,x0(X
u
T

2) = (x0er(T−t0)− λ

2
)2e

∫ T
t0
−2H(s)+ h2(s)

σ2 ds
+

λ2

4
+λ(x0er(T−t0)− λ

2
)e

∫ T
t0
−H(s)ds

.

(5.72)

Hence, substituting (5.71) into (5.72) gives:

VM(t0,x0) =
1

(1− e
∫ T

t0
−H(s)ds

)2

[
e
∫ T

t0
−2H(s)+ h(s)2

σ2 +1−2e
∫ T

t0
−H(s)ds

]
M2 (5.73)

+
1

(1− e
∫ T

t0
−H(s)ds

)2

[
2x0er(T−t0)e

∫ T
t0
−2H(s)ds

(1− e
∫ T

t0
h(s)2

σ2 ds
)

]
M

+
1

(1− e
∫ T

t0
−H(s)ds

)2
x2

0e2r(T−t0)
[

e
∫ T

t0
−2H(s)+ h(s)2

σ2 −1
]
.

Hence, substituting (5.73) back into (5.22), we receive:

V (t0,x0) =

[
c− c

(1− e
∫ T

t0
−H(s)ds

)2

[
e
∫ T

t0
−2H(s)+ h(s)2

σ2 +1−2e
∫ T

t0
−H(s)ds]]M2 (5.74)[

1− c

(1− e
∫ T

t0
−H(s)ds

)2

[
2x0er(T−t0)e

∫ T
t0
−2H(s)ds

(1− e
∫ T

t0
h(s)2

σ2 ds
)
]]

M

− c

(1− e
∫ T

t0
−H(s)ds

)2
x2

0e2r(T−t0)
[

e
∫ T

t0
−2H(s)+ h(s)2

σ2 −1
]
.

Upon the quadratic function property, we can see that the optimal value of M∗ is achieved

at:

M∗ = x0er(T−t0)− 1
2c

(
1− e

∫ T
t0
−H(s)ds)2

e
∫ T

t0
−2H(s)ds(1− e

∫ T
t0

h(s)2

σ2 ds) (5.75)

which leads to the optimal value of λ∗:

λ∗ = 2x0er(T−t0)− 1
c

(1− e
∫ T

t0
−H(s)ds

)

e
∫ T

t0
−2H(s)ds

(1− e
∫ T

t0
h(s)2

σ2 ds
)

. (5.76)
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Hence, this naturally lead to the optimal control, which is given by:

us
∗(t, µ̂,x) =−

1
xσ2 (x− x0er(t−t0)+

1
2c

(1− e
∫ T

t0
−H(s)ds

)

e
∫ T

t0
−2H(s)ds

(1− e
∫ T

t0
h(s)2

σ2 ds
)

e−r(T−t)) (5.77)

×
[
(µ̂− r)+σK(t)(E(t)+F(t)µ̂)

]

and this confirms (5.15).

(B): In the following part, we are going to consider the dynamically optimal control. As

we claim that the dynamically optimal control is equivalent to the statically optimal control

with the same initial state (t,x), replacing x0 and t0 by x and t in (5.77) gives the candidate

dynamically optimal control:

ud
∗(t, µ̂,x) =−

1
xσ2

1
2c

(1− e
∫ T

t −H(s)ds)

e
∫ T

t −2H(s)ds(1− e
∫ T

t
h(s)2

σ2 ds
)

e−r(T−t) (5.78)

×
[
(µ̂− r)+σK(t)(E(t)+F(t)µ̂)

]

and ud(T, µ̂,x) = limt↑T ud(t, µ̂,x). Following the idea of [43] and recalling the definition of

dynamic optimality, we set there is a control w such that ud
∗(t0,x0) =w(t0,x0) and w(t0,x0) =

us
∗(t0,x0). For any admissible control such that v(t0,x0) 6= ud

∗(t0,x0), we claim the following

relationship must hold:

Vw(t0,x0) = Et0,x0(X
w
T )− cVart0,x0(X

w
T )> Et0,x0(X

v
T )− cVart0,x0(X

v
T ) =Vv(t0,x0) (5.79)

for any choice of (t0,x0) ∈ [0,T ]×R.

7. To verify (5.79), we firstly consider the case when M∗ 6= Mv. Since (5.74) is a
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quadratic function and the value of M∗ is uniquely determined, we can see that:

Vw(t0,x0) =

[
c− c

(1− e
∫ T

t0
−H(s)ds

)2

[
e
∫ T

t0
−2H(s)+ h(s)2

σ2 +1−2e
∫ T

t0
−H(s)ds]]M2

∗ (5.80)[
1− c

(1− e
∫ T

t0
−H(s)ds

)2

[
2x0er(T−t0)e

∫ T
t0
−2H(s)ds

(1− e
∫ T

t0
h(s)2

σ2 ds
)
]]

M∗

− c

(1− e
∫ T

t0
−H(s)ds

)2
x2

0e2r(T−t0)
[

e
∫ T

t0
−2H(s)+ h(s)2

σ2 −1
]

>

[
c− c

(1− e
∫ T

t0
−H(s)ds

)2

[
e
∫ T

t0
−2H(s)+ h(s)2

σ2 +1−2e
∫ T

t0
−H(s)ds]]M2

v[
1− c

(1− e
∫ T

t0
−H(s)ds

)2

[
2x0er(T−t0)e

∫ T
t0
−2H(s)ds

(1− e
∫ T

t0
h(s)2

σ2 ds
)
]]

Mv

− c

(1− e
∫ T

t0
−H(s)ds

)2
x2

0e2r(T−t0)
[

e
∫ T

t0
−2H(s)+ h(s)2

σ2 −1
]
= Vv(t0,x0)

which confirms (5.79) when M∗ 6= Mv.

We further consider the case when M∗ = Mv, we claim that:

V λ∗
v (t0, µ̂0,x0) := Et0,x0

[
(Xv

T −
λ∗
2
)2|µ̂t0 = µ̂0,Xv

t0 = x0
]

(5.81)

> Et0,x0

[
(Xw

T −
λ∗
2
)2|µ̂t0 = µ̂0,Xw

t0 = x0
]
=: V λ∗(t0, µ̂0,x0)

in which λ∗ is given by (5.76). Recalling the terminal condition of HJB equation (5.29) and

applying Ito formula, there is:

(Xv
T −

λ∗
2

Xv
T )

2 =V λ(t0, µ̂0,x0)+
∫ T

t0

[
V λ∗

t (s, µ̂s,Xv
s )+θµ̂sV

λ∗
µ̂ (s, µ̂s,Xv

s ) (5.82)

+(r+(µ̂s− r)vs)Xv
s V λ∗

x (s, µ̂s,Xv
s )+

1
2

K(s)2V λ∗
µ̂µ̂ (s, µ̂s,Xv

s )

+σK(s)vsXv
s V λ∗

xµ̂ (s, µ̂s,Xv
s )+

1
2

σ
2v2

s Xv
s

2V λ∗
xx (s, µ̂s,Xv

s )
]
ds

+
∫ T

t0
[K(s)V λ∗

µ̂ (s, µ̂s,Xv
s )+σusXv

s V λ∗
x (s, µ̂s,Xv

s )]dZs

in which the ingredient term:

AT =
∫ T

t0

[
V λ∗

t (s, µ̂s,Xv
s )+θµ̂sV

λ∗
µ̂ (s, µ̂s,Xv

s ) (5.83)

+(r+(µ̂s− r)vs)Xv
s V λ∗

x (s, µ̂s,Xv
s )+

1
2

K(s)2V λ∗
µ̂µ̂ (s, µ̂s,Xv

s )

+σK(s)vsXv
s V λ∗

xµ̂ (s, µ̂s,Xv
s )+

1
2

σ
2v2

s Xv
s

2V λ∗
xx (s, µ̂s,Xv

s )
]
ds
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with λ = λ∗ is non-negative because of the HJB equation (5.28). Taking expectation on the

both sides of (5.82) leads to:

Et0,x0[(X
v
T −

λ∗
2

Xv
T )

2] =V λ(t0, µ̂0,x0)+Et0,x0

∫ T

t0

[
V λ∗

t (s, µ̂s,Xv
s )+θµ̂sV

λ∗
µ̂ (s, µ̂s,Xv

s ) (5.84)

+(r+(µ̂s− r)vs)Xv
s V λ∗

x (s, µ̂s,Xv
s )+

1
2

K(s)2V λ∗
µ̂µ̂ (s, µ̂s,Xv

s )

+σK(s)vsXv
s V λ∗

xµ̂ (s, µ̂s,Xv
s )+

1
2

σ
2v2

s Xv
s

2V λ∗
xx (s, µ̂s,Xv

s )
]
ds

+Et0,x0

∫ T

t0
[K(s)V λ∗

µ̂ (s, µ̂s,Xv
s )+σvsXv

s V λ∗
x (s, µ̂s,Xv

s )]dZs.

Since we have known that v(t0, µ̂0,x0) 6= w(t0, µ̂0,x0), we can further define a region Rε :=

[t0, t0+ε]× [µ̂0−ε, µ̂0+ε]× [x0−ε,x0+ε] for some ε > 0 small enough such that t0+ε≤ T .

Upon the continuity of v and w, there is v(z, µ̂,x) 6= w(z, µ̂,x) for any choice of (z, µ̂,x) ∈ Rε.

Moreover, from (5.28), a quadratic function of u, we can see that w(t, µ̂,x) is the unique

minimum point with λ = λ∗ evaluated at each set of (t,s,x) ∈ [0,T ]×R×R. Hence, we can

see that the value of ε can be chosen small enough to meet:

V λ∗
t (s, µ̂s,Xu

s )+θµ̂sV
λ∗
µ̂ (s, µ̂s,Xu

s )+(r+(µ̂s− r)us)Xu
s V λ∗

x (s, µ̂s,Xu
s ) (5.85)

+
1
2

K(s)2V λ∗
µ̂µ̂ (s, µ̂s,Xu

s )+σK(s)usXu
s V λ∗

xµ̂ (s, µ̂s,Xu
s )+

1
2

σ
2u2

s Xu
s

2V λ∗
xx (s, µ̂s,Xu

s )≥ β > 0

where β is a constant given and fixed and (t, µ̂,x) ∈ Rε. Hence, setting τε = inf{z ∈ [t0, t0 +

ε]|(z, µ̂z,Xv
z ) /∈ Rε}, we can see that:

V λ∗
v (t0, µ̂0,x0)≥V λ(t0, µ̂0,x0)+β(τε− t0) (5.86)

+Et0,x0

∫
τε

t0
[K(s)V λ∗

µ̂ (s, µ̂s,Xv
s )+σvsXv

s V λ∗
x (s, µ̂s,Xv

s )]dZs.

In the previous part that Mt =
∫

τε

t0 [K(s)V λ∗
µ̂ (s, µ̂s,Xv

s ) + σvsXv
s V λ∗

x (s, µ̂s,Xv
s )]dZs is a local

martingale for t ∈ [t0,T ]. Hence, there exists a sequence of stopping time τn such that τn ↑ T

as n ↑ ∞. Then, in this case the stopped process Mτε∧τn is a martingale. Hence, inequality

(5.86) leads to:

V λ∗
v (t0, µ̂0,x0)≥V λ(t0, µ̂0,x0)+β(τε− t0)>V λ(t0, µ̂0,x0) (5.87)

which verifies (5.81). Recalling (5.24), we have:

V λ∗(t0,x0) = Et0,x0[X
w
T

2]−λ∗M∗ < Et0,x0[X
v
T

2]−λ∗Mv. (5.88)
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Hence, according to equation (5.22), there exists:

M∗+ cM2
∗−Et0,x0[X

w
T

2]> Mv + cM2
v −Et0,x0[X

v
T

2] (5.89)

as M∗ = Mv. Inequality (5.89) confirms the statement that Vw(t0,x0)>Vv(t0,x0). Hence, we

conclude that ud
∗ = w is the dynamically optimal control as claimed. �

5.4 Solution to the constrained problems

In the previous chapter, we have extended the conclusion from the unconstrained case to the

constrained case by choosing the proper value of the Lagrange multiplier. Similar work can

be done under in the partial information. Since the following proof will be consistent with

the work exhibited in [43] (see the proof of Corollary 5 and Corollary 7 for further details),

we will skip the details of the proof and focus on the core part.

Rearranging the constrained problem (5.13), we can see that:

L1
t,x(u,c) = Et,x(Xu

T )− c[Vart,x(Xu
T )−α] (5.90)

= Et,x(Xu
T )− cVart,x(Xu

T )+ cα.

In (5.90), we can see that the optimal control given by Theorem 5.1 meeting Vart0,x0(X
u
T )=α

is the optimal control that maximises (5.13). Hence, recalling (5.69), (5.72), and (5.76), we

see that the variance is given by:

Vart0,x0(X
u
T ) =

1
4c2

(
1− e

∫ T
t0
−H(s)ds)2(

e
∫ T

t0
−2H(s)ds− e

∫ T
t0
−2H(s)+ h2(s)

σ2 ds) . (5.91)

Setting (5.91) equal to α, there is:

c =
1

2
√

α

1− e
∫ T

t0
−H(s)ds√

e
∫ T

t0
−2H(s)ds− e

∫ T
t0
−2H(s)+ h2(s)

σ2 ds
. (5.92)

Substituting (5.92) into Theorem 5.1 we receive the following Corollary.

Corollary 5.2. Consider the optimal problem V1(t,x) = supu:Vart,x(Xu
T )≤α Et,x(Xu

T ) in

which Xu represents the wealth process and is the solution of the SDE (5.6) with Xu
t0 = x0

under the probability measure Pt0,x0 for (t0,x0)∈ [0,T ]×R given and fixed. The related risk

coefficient is defined by δ = (µ̂− r)/σ in which r ∈ R, σ > 0, and µ̂ is the optimal estimator
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defined in (5.9) and γ(t) is the error of estimation given by (5.10). Note that we assume that

δ 6= 0 and r 6= 0. (The cases δ = 0 or r = 0 follow by passage to the limit when the non-zero

δ or r approaches 0.)

(A) The statically optimal control is given by:

us
∗(t, µ̂,x) =−

1
xσ2

(
x− x0er(t−t0)+

√
α

e−r(T−t)√
e
∫ T

t0
−2H(s)ds− e

∫ T
t0
−2H(s)+ h2(s)

σ2 ds

)
(5.93)

×
[
(µ̂− r)+σK(t)(E(t)+F(t)µ̂)

]
for (t, µ̂t ,x) ∈ [t0,T ]×R×R. The related parameters are given by:

H(t) =
(µ̂− r)h(t)

σ2 , (5.94)

and

h(t) = [(µ̂− r)+σK(t)(E(t)+F(t)µ̂)] (5.95)

in which F(t) and E(t) are continuous solutions of:

1
2

Ft +θF(t)− 1
2

K(t)2F2(t)− 1
σ2 −

2K(t)
σ

F(t) = 0 (5.96)

and

Et +θE(t)−K(t)2E(t)F(t)+
2r
σ2 −

2K(t)
σ

E(t)+
2rK(t)

σ
F(t) = 0 (5.97)

with

K(t) = ξ+
γt

σ
. (5.98)

(B) The dynamically optimal control is given by:

ud
∗(t, µ̂,x) =−

1
xσ2

(√
α

e−r(T−t)√
e
∫ T

t −2H(s)ds− e
∫ T

t −2H(s)+ h2(s)
σ2 ds

)
(5.99)

×
[
(µ̂− r)+σK(t)(E(t)+F(t)µ̂)

]
for (t, µ̂t ,x) ∈ [t0,T ]×R×R. The rest parameters are given above.

For the other constrained problem (5.14), applying Lagrangian multiplier in (5.14) yields:

Lt,x(u,c) = Vart,x(Xu
T )− c

[
Et,x(Xu

T )−β
]

(5.100)
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for c > 0. Re-arranging equation (5.100) yields:

inf
u

[
Vart,x(Xu

T )− c
[

Et,x(Xu
T )−β

])
=−csup

u

[
Et,x(Xu

T )−
1
c

Vart,x(Xu
T )
]
+ cβ. (5.101)

In (5.101), it can be seen that the optimal control Theorem 5.1 meeting Et0,x0(X
u
T ) = β will

be the optimal control for (5.14). Recalling (5.75), we receive that:

1
c
=−2(β− x0er(T−t0))

(
e
∫ T

t0
−2H(s)ds− e

∫ T
t0
−2H(s)+ h2(s)

σ2 ds)
(1− e

∫ T
t0
−H(s)ds

)2
. (5.102)

Substituting (5.102) back into (5.15)-(5.21) leads to the following corollary.

Corollary 5.3. Consider the optimal problem V2(t,x)= infu:Et,x(Xu
T )≥β Vart,x(Xu

T ) in which

Xu represents the wealth process and is the solution of the SDE (5.6) with Xu
t0 = x0 under

the probability measure Pt0,x0 for (t0,x0) ∈ [0,T ]×R given and fixed. The related risk co-

efficient is defined by δ = (µ̂− r)/σ in which r ∈ R, σ > 0, and µ̂ is the optimal estimator

defined in (5.9) and γ(t) is the error of estimation given by (5.10). Note that we assume that

δ 6= 0 and r 6= 0. (The cases δ = 0 or r = 0 follow by passage to the limit when the non-zero

δ or r approaches 0.)

(A) The statically optimal control is given by:

us
∗(t, µ̂,x) =−

1
xσ2 (x− x0er(t−t0)− (β−x0er(T−t0))

e−r(T−t)

(1− e
∫ T

t0
−H(s)ds

)
) (5.103)

×
[
(µ̂− r)+σK(t)(E(t)+F(t)µ̂)

]
for (t, µ̂t ,x) ∈ [t0,T ]×R×R. The related parameters are given by:

H(t) =
(µ̂− r)h(t)

σ2 , (5.104)

and

h(t) = [(µ̂− r)+σK(t)(E(t)+F(t)µ̂)] (5.105)

in which F(t) and E(t) are continuous solutions of:

1
2

Ft +θF(t)− 1
2

K(t)2F2(t)− 1
σ2 −

2K(t)
σ

F(t) = 0 (5.106)

and

Et +θE(t)−K(t)2E(t)F(t)+
2r
σ2 −

2K(t)
σ

E(t)+
2rK(t)

σ
F(t) = 0 (5.107)
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with

K(t) = ξ+
γt

σ
. (5.108)

(B) The dynamically optimal control is given by:

ud
∗(t, µ̂,x) =

1
xσ2 (β− x0er(T−t0))

e−r(T−t)

(1− e
∫ T

t0
−H(s)ds

)
(5.109)

×
[
(µ̂− r)+σK(t)(E(t)+F(t)µ̂)

]
for (t, µ̂t ,x) ∈ [t0,T ]×R×R. The rest parameters are given above.
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