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Abstract 

Background: Medulloblastoma accounts for 18% of all paediatric brain cancers with between 50 
and 100 diagnoses in the UK each year. There are four molecular subgroups with distinct clinical 
characteristics, cellular origins and identifying mutations. The four molecular subgroups are WNT, 
SHH, Group 3 and Group 4. The same treatment is given to all patients regardless of subgroup, 
and the majority of patients over three years receive craniospinal irradiation. The WNT and SHH 
subgroups are named after the overactive signalling pathways found in these tumours; these 
signalling pathways are involved in proliferation and response to radiation. The underlying biology 
of the molecular subgroups could contribute to differences in radioresponsiveness through 
differences in intrinsic radiosensitivity, proliferative capacity and extent of tumour hypoxia. An 
understanding of subgroup-specific differences in radioresponsiveness would guide the 
personalisation of treatment based on a tumour’s molecular subgroups.  
 
Aims and Objectives: The aim of this project was to identify factors that might affect differences in 
the radioresponsiveness of the medulloblastoma subgroups. The specific objectives were to 
investigate differences in radiosensitivity, proliferation, tumour hypoxia and cell migration between 
the four molecular subgroups. 
 
Methods: A panel of medulloblastoma cell lines representing the SHH and Group 3 subgroups 
was used in two radiosensitivity assays (a clonogenic and high-throughput assay) and a migration 
(gap closure) assay. The clonogenic assay was carried out with the adherent cell lines under 
normoxic and hypoxic (0.1% oxygen) conditions. The high-throughput assay work was carried out 
under normoxic conditions only. Radiation survival curves were fitted using a linear quadratic 
model. In silico analyses of publically available clinical cohorts were used to investigate a tumour 
radiosensitivity signature. Publically available data for clinical cohorts were also used to investigate 
proliferation measured as the mRNA expression of Ki67 and PCNA, and using a published gene 
signature. Tumour hypoxia was assessed using CAIX and GLUT1 mRNA expression data and 
published gene signatures. The gap closure assay was used with the adherent cell lines using 
barrier (Ibidi insert) and scratch (EssenBio WoundMaker) methods of gap creation. Cells were 
irradiated immediately, 24 h or 7 days prior to gap creation. Gap closure was monitored using time-
lapse microscopy over 24 hours and image analysis carried out using software written for this 
thesis.  
 
Results: The in vitro radiosensitivity assays showed SHH cell lines to be more radiosensitive than 
Group 3 cell lines. The in silico work confirmed this, reporting SHH as the most radiosensitive 
subgroup, followed by the WNT, Group 3 and Group 4 subgroups. Clinical cohort data showed 
proliferation was not prognostic in medulloblastoma, and no significant differences in proliferation 
between the molecular subgroups. The hypoxia biomarkers and gene expression signatures were 
also not prognostic in medulloblastoma. However, the molecular subgroups were associated with 
different patterns of hypoxia-associated gene expression. The least hypoxic subgroup was WNT 
followed by the SHH, Group 4 and Group 3 subgroups. The SHH subgroup cell lines were more 
migratory within the gap closure assay than the Group 3 cell line. Irradiation produced cell line-
specific alterations in gap closure rate but no subgroup-specific alteration of migration following 
radiation treatment was observed.  
 
Discussion: Subgroup-specific differences in intrinsic radiosensitivity and level of hypoxia are 
found within medulloblastoma and may contribute to subgroup-specific differences in 
radioresponsiveness and clinical outcomes. Further clarification of the role of hypoxia in 
medulloblastoma is required to confirm this relationship. 
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1. Introduction 

Cancer causes 25% of all UK deaths1, and it is predicted that half of the population will 

receive a cancer diagnosis during their lifetime2. Across all cancer types, the 10-year survival 

rate is 50%, but this varies from 95% (melanoma3 and testicular4) to <5% (pancreatic4 and 

lung3). Paediatric cancers account for <1% of cancer diagnoses each year5 and 5-year 

overall survival is 84%5 (ranging from 25% for certain brain tumours to almost 100% for 

retinoblastoma6). Although the most common paediatric cancer is leukaemia (LEU), brain 

and central nervous system (CNS) tumours are the most common cause of paediatric 

cancer death5. Cancer treatments require a balance between maximising tumour control to 

increase survival and minimising normal tissue damage to reduce side effects. For paediatric 

patients, these side effects can have a severe impact on quality of life for survivors as 

developing tissues are more vulnerable to cancer treatments such as radiotherapy and 

patients have a longer potential lifespan following successful treatment.  

 

For the paediatric brain tumour medulloblastoma (MBL), side effects of treatment include 

learning disabilities7–9, sensorineural hearing loss7,10 and growth hormone deficiency11,12. 

The classification of MBL has been re-assessed following a series of gene expression 

studies revealing distinct molecular characteristics that define four major molecular 

subgroups13–18. The four molecular subgroups have different clinical characteristics, 

including significantly different overall survival13–18. A natural hypothesis from this re-

classification was that treatment could be re-optimised in order to reduce side effect severity 

in groups being over-treated, to increase survival in groups being under-treated, or to include 

targeted therapies based on underlying molecular biology. One facet of MBL treatment that 

is a candidate for these adjustments is radiotherapy. Radiotherapy contributes to 40% of all 

cancer cures19, and irradiation of the brain and spinal cord is used for almost all MBL 

patients20,21. The reduction of radiation dose to these vulnerable regions based on subgroup 

status could produce real gains in terms of managing side effects by reducing normal tissue 

damage. Patient cohorts and clinical trial opportunities in MBL are limited due to small 

patient numbers and the typically young age of patients. Pre-clinical in vitro work to better 
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understand interactions between molecular features and cancer treatment is vital to 

maximise the information gained from these clinical resources. 

 

In 2018, the Proton Beam Centre at The Christie hospital started treating UK patients with 

proton beam therapy (PBT)22. PBT is hypothesised to provide a better side effect profile due 

to the physics of proton energy deposition and is of particular interest for use in paediatric 

populations such as MBL patients. The radiobiology of PBT is not fully elucidated but certain 

differences between conventional high-energy x-ray radiotherapy and PBT are beginning to 

be reported. The different underlying biology of the MBL molecular subgroups suggests 

potentially different radioresponses between conventional x-rays and PBT. Several biological 

processes and characteristics (including intrinsic radiosensitivity, proliferation and hypoxia) 

affect radioresponse, and these can be investigated by either in vitro or in silico methods.  

 

1.1 Medulloblastoma 

1.1.1 Epidemiology and diagnosis 

MBL is the most common malignant paediatric brain tumour and accounts for 18% of all 

paediatric brain tumours20,23. In the UK, there are between 50 and 100 MBLs diagnosed 

each year24; in the USA, between 250 and 500 children are diagnosed25. Certain genetic 

disorders, such as Li-Fraumeni26., Gorlin26,27. and Turcot26. syndromes (associated with 

mutations in the TP53, PTCH and DNA repair or APC genes respectively), are associated 

with an increased risk of MBL and are found in approximately 5% of MBLs28. Most cases of 

MBL, however, have no associated increased genetic risks and the causes are unknown28,29.  

 

MBLs originate in the cerebellum and metastasis usually occurs along the craniospinal 

axis30. However, as MBL tumours are multiclonal in origin these metastases may represent a 

different predominate clone than the primary tumour31. Because tumours are multiclonal in 

origin, metastases may contain different predominating clones to the primary tumour. 

Tumours are classified as low/standard- or high-risk based on the extent of resection30,32 and 

the presence or absence of metastases30,32. Tumours with MYC amplification or anaplastic 
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histology are also classified as high-risk32. Treatment is based on standard- or high-risk 

status30. Other characteristics known to influence survival and used to define MBLs include 

histological and/or molecular subgroups and TP53 mutation status – although these do not 

currently directly influence treatment decisions. Diagnostic tools for MBL include physical 

examination, brain magnetic resonance imaging (MRI), brain computed tomography (CT), 

histology and lumbar puncture33.  

 

1.1.2 Treatment 

The treatment of MBL involves a combination of surgery, chemotherapy and radiotherapy. 

Standard- and high-risk patients over 3 years of age uniformly receive craniospinal 

irradiation (CSI)20,21. CSI targets the whole brain and the spine in order to irradiate the 

cerebrospinal fluid (CSF) through which MBL can metastasise30,34. For standard-risk disease 

the standard treatment protocol involves 23.4 Gy CSI followed by a posterior fossa and/or 

tumour bed boost30,32. For high-risk patients most regimens increase the CSI dose to either 

36.0 or 39.6 Gy30,32. CSI is often given concurrently with cisplatin and/or cyclophosphamide-

based chemotherapy regimens30,32,35–38. While these treatment protocols are not selected 

based on molecular subgroup status, personalised treatment regimens are currently under 

investigation (although these represent the minority of clinical trials; only 11 out of 28739,40). 

These include reducing CSI and/or chemotherapy regimens for WNT (Wingless-related 

integration site) subgroup tumours41–45, including targeted therapy to inhibit Sonic Hedgehog 

(SHH) pathway activation in SHH subgroup tumours41,45–49 and trialling alternative 

chemotherapy regimens for non-WNT/non-SHH subgroup tumours41,45,50,51.  

 

1.1.3 Survival 

The 5-year overall survival rate for MBL increased over the past sixty years, from 29% in 

195952 to current rates of 70-80% for standard-risk and 60-65% for high-risk patients53,54. 

Significant contributors to survival include patient age, tumour location, extent of resection, 

metastatic status, molecular subgroup and adjuvant treatment status55,56.  
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Radiotherapy significantly contributes to both overall and progression-free survival in MBL 

patients, but CSI is associated with severe side effects such as decline in neurocognitive 

function9,57,58, dementia or learning disability7–9 and sensorineural hearing loss7,10. The age of 

a patient during treatment correlates well with subsequent learning ability, sociability, 

hobbies and relationships, with younger patients displaying larger deficits59. The irradiation 

of the endocrine system can result in growth hormone deficiency11,12, hypothyroidism11,12,60–62 

and early12,63–65 or delayed66 puberty. Spinal irradiation combined with growth hormone 

deficiency can significantly reduce adult height64,65. Additionally, children who survive MBL 

have a higher mortality rate than their healthy peers and an increased risk of a secondary 

malignancy, which often occur in areas that received radiation64,67.  

 

1.1.4 Histological subgroups of medulloblastoma 

In 2002, the Pediatric Oncology Group68 described a histologically based classification of 

MBL defining four histological subgroups which were subsequently incorporated into the 

WHO classification69: Classic, Desmoplastic/Nodular (DN), MBL with Extensive Nodularity 

(MBEN), and Large Cell/Anaplastic (LCA). The majority of tumours show classic histology 

(74%), followed by DN (16%), LCA (7%) and MBEN (2.5%)70. Classic tumours have 

relatively round nuclei71,72, no increase in cell size71,72, no increase in mitotic activity or 

mitoses71 and frequent Homer-Wright rosettes71 (a pathological feature where differentiated 

tumour cells are grouped around a central point73). DN tumours have nodules of 

differentiated cells68,71,72 within the tumour forming rows of cells with irregular nuclei68 and 

show desmoplasia72, where collagen is deposited around the cells71. MBEN tumours are a 

subtype of these DN tumours71 where over 95% of the tumour contains irregular and 

coalesced nodules68,72 (i.e. extensive nodularity). The LCA histological subgroup is a 

conventional grouping of two distinct histologies71 with anaplastic features: anaplastic 

tumours and large cell tumours71. Anaplastic tumours have increased and irregular cell 

sizes68,71,72, excess mitotic activity68 and apoptotic bodies71 and increased nuclear 

moulding68,71 (where the shape of adjacent nuclei show conformity). Large cell tumours have 

increased cell sizes with a round cell morphology and prominent nucleoli68 as well as the 

anaplastic features of frequent mitotic activity and apoptotic bodies71. The identification of 



Page | 21  

 

the histological subgroups using immunohistochemistry (IHC) allows this classification to be 

highly compatible with clinical use. The different histological subgroups are associated with 

slightly different survival outcomes, with DN or MBEN tumours having the best survival 

(82%), closely followed by classic tumours (78%)70. LCA tumours have only a 44% 5-year 

progression-free survival rate70. If the histological features are taken more generally, 

desmoplasia, which occurs in 22% of MBLs, was found to have no connection with clinical 

outcomes68. On the other hand anaplasia, found to some extent in 32% of MBL tumours, 

was found to be significantly associated with a worse overall survival, with a worse outcome 

with a greater extent of anaplasia68.  

 

1.1.5 Molecular subgroups of medulloblastoma 

In 2016, the World Health Organisation (WHO) classification of CNS tumours was updated, 

classifying MBL using molecular subgroup, TP53-mutation status and histology74. The four 

molecular subgroups used in this classification were the consensus of international studies 

using large genomic data sets13–18. These subgroups were named WNT, SHH, Group 3 and 

Group 4 at a consensus meeting of the International Medulloblastoma Working Group35. 

Each subgroup has a distinct clinical profile, cellular origin, tumour location and identifying 

mutations14,75–77. The WNT subgroup is the least common, but has the best overall survival, 

Group 3 tumours have the worst outcome, while SHH and Group 4 have intermediate 

survival rates15.  

 

So far, no subgrouping method is in widespread routine clinical practice. The preferred 

method for assigning a molecular subgroup to a patient sample uses expression or 

methylation profile clustering, however this is expensive, requires technical expertise and the 

application of clustering algorithms require large sample cohorts (though reference cohorts 

are available)13–18,38,76,78–83. Alternative subgrouping methods using more clinically 

compatible techniques include IHC13,76,79,80,84, fluorescence in situ hybridisation (FISH)56,79,80, 

mass spectrometry85 and MRI86,87.  
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Alternative subgrouping classification schemes are regularly described, usually incorporating 

the four consensus subgroups to a greater or lesser extent (Table 1). These later 

classifications will likely lead to a new, better informed scheme in the future, taking into 

account clinical characteristics such as patient age or clinical outcomes88. The incorporation 

of clinical characteristics is not applicable to established MBL cell lines, limiting in vitro 

research to the current consensus subgroups.  

 

TP53 status is included in the 2016 WHO classification74. TP53 codes the protein p53, a 

transcription factor involved in stress responses and cell cycling89. TP53 mutations occur in 

10% to 45%90–92 of MBL patients and are associated with significantly worse overall survival, 

55% compared to 80% for TP53 wild-type (WT) patients91,92.TP53 mutations most commonly 

occur in the WNT and SHH subgroups, with almost all of the germline TP53 mutations 

(found in 2% of all MBLs) occurring within the SHH subgroup90,91. Interestingly, TP53 

mutations have different implications for survival depending on the subgroup. Within the 

SHH subgroup TP53 mutations are associated with worse survival outcomes, while in WNT 

subgroup tumours TP53 mutation status has no effect on the excellent survival 

outcomes91,92.  
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Table 1: Summary of studies reporting subgrouping classifications of medulloblastoma 

Study Cohort 
size 

Subgroup details 

Thompson et al. 
200679 

46 Group A, Group B (WNT), Group C, Group D (SHH), 
Group E 

Kool et al. 
200814 

62 WNT, SHH, Group C (neuronal differentiation genes), 
Group D (neuronal differentiation genes and by 
photoreceptor genes), Group E (photoreceptor genes) 

Northcott et al. 
201113  

103 WNT, SHH, Group C (NPR3-positive tumours), Group D 
(KCNA1-positive tumours) 

Cho et al. 
2011 93 

194 Cluster 1 (MYC), Cluster 2 (Neuronal), Cluster 3 (SHH), 
Cluster 4 (mixed), Cluster 5 (photoreceptor), Cluster 6 
(WNT) 

Remke et al. 
201117  

281 WNT, SHH, Subtype D (non WNT/SHH) 

WHO 
201674 

NA WNT-activated, SHH-activated and TP53-mutant, SHH-
activated and TP53-wild-type, Non-WNT/non-SHH - 
Group 3, Non-WNT/non-SHH - Group 4 

Schwalbe et al. 
2017 94 

4282 

2763 

WNT, SHH-Infant, SHH-Child, Gp3-High Risk*, Gp4-
High Risk*, Gp3-Low Risk*, Gp4-Low Risk* 

Cavalli et al. 
2017 95 

763 WNTα (children, monosomy 6), WNTβ (older patients, 
no monosomy 6), SHHα (children, worst prognosis, 
MYCN amplification, GLI2 amplification. TP53 
mutations), SHHβ (infant, metastatic, PTEN deletions), 
SHHγ (less metastatic, no recurrent amplifications, 
enriched for MBEN histology), SHHδ (adults, TERT 
promoter mutations), Group 3α (metastatic), Group 3β 
(older, infrequently metastatic), Group 3γ (metastatic, 
worst prognosis, i17q, increased MYC copy numbers), 

Group 4α (MYCN amplification), Group 4β (higher 
median age), Group 4γ 

Archer et al. 
201896 

45 WNT, SHHa, SHHb, Group 3a (MYC activated), Group 
3b (Group 3/4), Group 4 

Lastowska et al. 
201897 

68 WNT, SHH, Group 3, Group 3/4 (Intermediate), Group 4 

Castillo-
Rodriguez et al. 
201898 

237 WNT, SHH, Group 3, Group 4α, Group 4β 

Sharma et al. 
201999 

1501 WNT, SHH, GpI (infants, classic, GFI1/GFI1B activation, 
OTX2 amplification), GpII (child, majority metastatic, 
MYC amplification, GFI/GFI1B activation, KBTBD4, 
SMARCA4, CTDNEP1, KMT2D mutation), GpIII (child, 
mostly metastatic, mostly classic, MYC/MYCN 
amplification), GpIV (infant and child, mostly classic, 
mostly metastatic, no driver events), GpV (child, mostly 
class, mostly male, mostly metastatic, MYCN 
amplification), GpVI (child, mostly classic, PRDM6 
activation, MYCN amplification), GPVII (child, classic, 
KBTBD4 mutation), GpVIII (child, male, classic, PRDM6 
activation, KDM6A, ZMYM3, KMT2C mutation) 

WHO – World Health Organisation; CNS – central nervous system; NA – not available; * risk based on 
MYC amplification, chromosome 13 loss, 5-year overall survival; 1 adult only cohort; 2 discovery 
cohort; 3 validation cohort 
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1.1.6 WNT subgroup – clinical features 

WNT tumours overexpress WNT pathway genes13,14 (see Section 1.1.7 for a description of 

the WNT signalling pathway). It is the rarest molecular subgroup accounting for 

approximately 10% of patients15,83,100,101. These tumours respond well to surgery and CSI 

with survival rates over 90%15,38,102,103, although survival in adult patients is significantly 

worse than those under 1617. WNT tumours are more common in children and adults than in 

infants, and there is a roughly equal proportion of male and female patients101. WNT tumours 

are rarely LCA with generally classic histology101. The age distribution and histology 

characteristics of these tumours are favourable because non-infant patients and classic 

histology are associated with better survival.  

 

There are three identifying markers for the WNT subgroup: nuclear β-catenin, mutated 

CTNNB1, and monosomy 616,76,83,104,105. The first two result in or from uncontrolled signalling 

through the WNT pathway. CTNNB1 encodes the β-catenin protein, which is translocated to 

the nucleus upon WNT pathway activation and many of the reported CTNNB1 mutations 

result in more stable nuclear localisation of β-catenin100. The third hallmark, monosomy 6, is 

detected in approximately 80% of cases but its biological impact is unclear15,16.  

 

Upregulated WNT signalling in MBL results in a disrupted blood-brain barrier (BBB) for WNT 

subgroup tumours106. The disrupted BBB gave chemotherapeutic agents better access to 

tumour cells in mouse models, resulting in a better chemotherapeutic response and 

contributing to better survival outcomes within this subgroup106.  

 

1.1.7 WNT subgroup – signalling pathway 

The WNT signalling pathway, outlined in Figure 1, is an important developmental pathway in 

humans, regulating neuronal differentiation and proliferation107. In resting cells, β-catenin is 

bound in a complex with axin, GSK3β (Glycogen synthase kinase-3β), APC (adenomatous 

polyposis coli) and CK1α (casein kinase 1α)108–110. This complex targets β-catenin for 

degradation108–110. WNT signalling proteins bind to Frizzled (FZD) receptors and their co-



Page | 25  

 

receptors LRP-5/6110,111. Activation of these receptors recruits Dishevelled (Dsh) and axin, 

thereby breaking up the axin/GSK3β/APC/CK1α complex112. β-catenin is released and 

translocates to the nucleus where it acts as a transcription factor109,110. Targets of the WNT 

signalling pathway include the genes FGF20 (fibroblast growth factor 20)111, CCND1 (cyclin 

D1)111,113 and MYC (c-myc)111,114. The upregulated WNT signalling in WNT subgroup 

tumours increases expression of MYC mRNA and c-myc protein in these tumours115. The 

expression of c-myc protein is as high in WNT tumours as in Group 3, in which MYC 

amplification is characteristic and associated with worse survival outcomes (see Section 

1.1.10). Unlike Group 3 tumours however, MYC amplification is extremely rare in the WNT 

subgroup and this increased expression is attributed to c-myc being a downstream target of 

WNT signalling116. The negative survival implications of MYC amplification are, therefore, not 

observed in WNT tumours116.  
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Figure 1: The WNT signalling pathway. In the resting cell, β-catenin is targeted for degradation by a 

complex of Axin, GSK-3β, APC and CK1α. WNT signalling through the receptor Frizzled and the co-
receptor LRP-5/6 activates Dishevelled. Activated Dishevelled causes the β-catenin degradation 
complex to break up. Β-catenin is then free to translocate to the nucleus and act as a transcription 
factor. Adapted from Huse and Holland, 2010112. Dsh – Dishevelled, GSK3β – Glycogen synthase 

kinase-3 beta, APC – adenomatous polyposis coli, CK1α – casein kinase 1 alpha, WNT – Wingless-
related integration site, LRP-5/6 – low-density lipoprotein receptor-related protein 5/6.   

 

1.1.8 SHH subgroup – clinical features 

The SHH group contains the 30% of MBLs with overactive SHH pathways13,15 (see Section 

1.1.9 for a description of this pathway). The 5-year overall survival in the SHH subgroup is 

60%15,38,101,117. SHH tumours are predominantly found in infant or adult patients13,15,17,118, 

rarely occurring in children outside of infancy, and there is an equal representation of male 

and female patients15,101. Some classifications further divide the SHH subgroup based on 

patient age, as survival rates for adult patients are better than those for younger patients, 



Page | 27  

 

and adult SHH MBLs have different expression profiles56,95,118. SHH tumours are not linked 

to any particular histological subgroup, and can have classic, DN or LCA histology101. TP53 

mutations are the most important independent risk factor in the SHH subgroup, above age, 

sex, histology and the presence of metastases91. Patients with somatic TP53-mutated SHH 

MBL have a worse prognosis than those without, with 5-year overall survival rates of 41% 

and 81% respectively91,103.  

 

There are no clear, defining markers of SHH MBLs as described for the WNT subgroup. The 

most commonly used identifier is loss of the PTCH1 gene by gene deletion or monosomy 

914,76,83,118–120. Loss of PTCH1 only occurs in 40-50% of SHH tumours however and therefore 

cannot be used as a universal marker for this subgroup14,76,83,118–120.  

 

1.1.9 SHH subgroup – signalling pathway 

The Hedgehog signalling pathway is implicated in the activation of cancer stem cells (CSCs) 

and subsequent tumour maintenance121. Activation of the SHH pathway has been 

associated with worse overall survival in non-small cell lung cancers (NSCLC)122, breast 

cancer123 and pancreatic adenocarcinomas124. Hepatocellular carcinoma (HCC) tissues have 

significantly increased mRNA levels of SHH, PTCH1 (Patched1), SMO (Smoothened) and 

GLI1 (Glioma-associated oncogene 1) compared to non-cancerous tissues125.  

 

The canonical SHH signalling pathway is implicated in MBL and is shown in Figure 2. 

Canonical signalling requires activation of the receptor PTCH1 by SHH ligand (non-

canonical activation occurs independently of these proteins)121. In a resting cell, the surface 

membrane receptor PTCH1 inhibits the surface membrane protein SMO, and intracellularly 

Suppressor of Fused (SUFU) inhibits the GLI transcription factors (GLI1, GLI2 and GLI3). 

When SHH ligand binds the surface receptor PTCH1, the inhibition of SMO by this receptor 

is inhibited. SMO is then able to inhibit SUFU. Disinhibited GLI translocates to the nucleus to 

cause gene transcription. GLI1 targets include CCND2 (cyclin D2)126, BCL-2127,128 and matrix 

metalloproteinases (MMPs)127–130.  
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Figure 2: The SHH signalling pathway. When activated, SHH binds the surface receptor PTCH1 
which disinhibits the cell surface protein SMO leading to the disinhibition of Gli. Free Gli translocates to 
the nucleus and acts as a transcription factor. Adapted from Huse and Holland 2010112. PTCH1 – 
Patched1, SHH – Sonic Hedgehog, Gli – glioma-associated oncogene, SMO – Smoothened, SUFU –
Suppressor of Fused homolog 

 

1.1.10 Group 3 subgroup – clinical features 

The non-WNT/non-SHH subgroups have not yet been associated with specific aberrations or 

signalling pathways and are referred to by the names Group 3 and Group 4. Confirmation of 

Group 3 or Group 4 status is carried out using expression or methylation microarrays71. 

Approximately 30% of MBLs are Group 3, and this subgroup has the worst overall 

survival15,131. Group 3 is the most common subgroup in children, and contains twice as many 
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male patients as female13,101. The classic and LCA histological subgroups are more 

represented within Group 3 tumours101. Patients with Group 3 tumours often present with 

metastases131. MYC amplification which is almost exclusive to Group 3 tumours, is present 

in 60% of cases and is indicative of a worse overall outcome13,15,16.  

 

1.1.11 Group 4 subgroup – clinical features 

Group 4 MBLs are the most common molecular subgroup, accounting for ~35% of cases 

and have intermediate survival outcomes15. Group 4 tumours are more common in child and 

adult patients and there are three times as many male as female patients101. The major 

histological subgroups within Group 4 are classic and LCA101.  

 

In a study investigating irradiation-sparing or irradiation-avoiding treatment strategies in MBL 

patients, Group 4 tumours treated with irradiation-sparing regimens all had subsequent 

disease progression132. Although this was a small study of only nine patients, it is known that 

infant Group 4 patients, who are not routinely treated with radiotherapy, show significantly 

worse survival outcomes compared to older patients and it is possible that radiotherapy is a 

requirement for optimal treatment of this subgroup56.  

 

1.2 Radiotherapy 

Radiotherapy uses ionising radiation to target and kill (cancer) cells. The most common 

modality for radiotherapy uses high-energy x-ray (photon) irradiation. A photon deposits 

energy throughout its transition through the tissue133. Energy deposition produces energised 

electrons which leave and hence ionise atoms134. As energised electrons repel other 

electrons, further ionisations may be caused by these electrons repelling and removing 

additional electrons from other atoms134. 

 

The major process by which ionising radiation causes cell death is DNA interaction and 

damage135. Photons can cause direct DNA damage by interacting with DNA itself or, more 

commonly, indirect DNA damage through interactions with water, producing free 
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radicals134,136–139. The fatal DNA damage resulting from x-ray irradiation is the small 

proportion of double strand breaks (DSBs) which are incorrectly or incompletely 

repaired137,139. Cell death may result soon after irradiation, or it can be delayed if the cell 

survives the initial damage but the repair is inadequate138,140. A cell that has undergone 

reproductive cell death and is no longer able to divide to form daughter cells is deemed to 

have been killed by radiation treatment. Radiation damage is not restricted to cancer cells, 

and the side-effects of radiotherapy are a result of damage to normal tissues. Side-effects 

from radiotherapy can be acute, occurring during or within 90 days of treatment, or late, 

occurring months or years after treatment141,142. Acute side-effects include dermatitis or skin 

reactions at the radiation site, nausea, cystitis, hair loss and bone marrow 

suppression116,142,143. Late side-effects include radiation-induced fibrosis, vascular damage, 

hormone deficiencies and secondary malignancies116,142,143. Generally, acute side effects 

occur in rapidly or actively proliferating tissues such as skin or the gastrointestinal tract while 

late effects occur in more slowly proliferating tissues such as the kidney, CNS or heart142.  

 

Fractionation is where the total radiotherapy dose is delivered in multiple smaller fractions. 

The biology of fractionation, and how effective fractionated treatment is, depends upon the ‘4 

R’s of radiotherapy’ first described by Withers in 1975144 - Repair, Repopulation, 

Reoxygenation and Redistribution. The in vivo benefits of fractionation include: providing 

normal tissue with a chance to repair irradiation-induced damage; reducing side effects 

resulting from normal tissue damage; allowing cells to repopulate and hence regenerate 

normal tissues, thus reducing acute side-effects; allowing time for previously hypoxic regions 

in tumours to undergo reoxygenation and become more radiosensitive (Section 1.5.1); and 

allowing tumour cells previously in a more radioresistant phase of the cell cycle to 

redistribute to a more radiosensitive phase (Section 1.4.1). Disadvantages of fractionation 

are that proliferation of the surviving cancer cells can repopulate the tumour mass and 

tumour cells are also given time to repair damage. Damage is repaired by DNA damage 

response (DDR) pathways, such as Homologous Recombination or Non-Homologous End-

Joining. These DDR pathways are frequently disrupted in tumours compared to normal 

tissues140 and therefore tumour cells are likely to repair DNA damage less efficiently than 
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normal tissues. A fifth R, radiosensitivity, was added in a 1989 paper, radiosensitivity, which 

also contributes to fractionation response145 (see Sections 1.2.2 and 1.2.4).  

 

1.2.1 Radioresponsiveness 

The extent to which a patient or tumour responds to radiotherapy treatment is described as 

the ‘radioresponsiveness’ of that patient or tumour. It has been established that different 

cancer types have different radioresponses and tumours generally show a similar level of 

radioresponsiveness as the tissues from which they originate146. More radioresponsive 

tissues include testis, ovary, lymphatic tissue, foetal tissue and foetus-like blast cells146. 

More radiounresponsive tissues include bone, large blood vessels, fatty tissue and 

muscle146.  

 

Radioresponsiveness of a tumour results from a combination of individual characteristics, 

with those considered the most important being intrinsic radiosensitivity, proliferative 

capacity and the level of hypoxia. Other factors include tumour histology, genetic mutations 

such as p53 or Bcl-2 and CSC abundance146–148. These individual factors could be targeted 

to increase a tumour’s response to radiotherapy.  

 

Across any given patient cohort, a range of individual radioresponses are observed. Most 

radiation treatment regimens, and the maximal tolerated doses within them, are limited by 

the most radiosensitive patients within a population as these patients would be more 

susceptible to more severe side effects at lower radiation doses149. More radioresistant 

patients who could tolerate higher radiation doses may, therefore, be missing out on 

maximal tumour control following radiotherapy149. Identifying the radioresponsiveness of a 

patient prior to treatment would allow for either increases or decreases in dose to maximise 

tumour kill and minimise associated side-effects150.  
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1.2.2 Intrinsic radiosensitivity 

Radiosensitivity describes how susceptible a cell is to death following exposure to radiation. 

Cells that are more susceptible to death following irradiation exposure are more 

radiosensitive, while cells that are more likely to survive irradiation exposure are less 

radiosensitive, i.e. more radioresistant. The intrinsic radiosensitivity of an individual cell is 

genetically determined and therefore an inherent cellular characteristic. The intrinsic 

radiosensitivity of a tumour or cell culture, while still genetically determined, is reflective of 

the intrinsic radiosensitivities of the component individual cells. The actual (observed) 

radiosensitivity of a tumour or culture is affected by external factors such as oxygen 

concentration, pharmacological agents or immune cell activation. Radiosensitivity can be 

measured in vitro, and was correlated with observed clinical radioresponsiveness151,152. 

Some studies have shown that tumour radiosensitivity was prognostic for survival outcomes 

following radiotherapy153,154. Analyses of multiple cell lines showed that the best measures of 

tumour radiosensitivity were parameters that reflected the initial part of the radiation survival 

curves, namely surviving fraction at 2 Gy (SF2), α (parameter describing the initial slope of 

the survival curve) and Dbar (area under the survival curve)151,152,155 (see Sections 1.2.3 and 

1.2.4). 

 

A survey of radiosensitivity studies using human tumour cell lines or patient-derived 

fibroblasts by Fertil and Malaise in 1981 demonstrated that intrinsic radiosensitivity varies 

not only between but also within cancer type151. At doses of 8 Gy, within-type radiosensitivity 

variation was large enough to obscure any differences between cancer types; differences 

were significant at 2 Gy151. This within-type variation has been reported by other cancer cell 

panel work151,152,156,157.  

 

Deacon et al. assigned cancers to categories ranging from most to least 

radiocurable/radioresponsive152. This categorisation, shown in Table 2, was based on both 

observed clinical responses and the total prescribed dose, as a higher prescribed dose is 

likely to be associated with a less radioresponsive tumour type152. This study also reported 

the radiosensitivity of cell lines derived from the different tumour types. Cell line 
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radiosensitivity was measured in vitro using clonogenic assays and reported as SF2 as the 

measure of intrinsic radiosensitivity (see Section 1.2.3). The lower the SF2 value, the greater 

the intrinsic radiosensitivity.  

 

Table 2: Radioresponsiveness of tumours as defined by Deacon 

 Cancer types SF2* 

Radioresponsive Neuroblastoma. Lymphoma, Myeloma 0.187 

 Medulloblastoma, Small-cell lung carcinoma 0.218 

 Breast, bladder, cervix carcinoma 0.460 

 Pancreas, colo-rectal, squamous lung carcinoma 0.428 

Radiounresponsive Melanoma, osteosarcoma, glioblastoma, renal carcinoma 0.518 
Adapted from Deacon et al.152. SF2 – surviving fraction at 2 Gy. *Mean SF2 value reported in paper 

 

As illustrated in Table 2, while more radioresponsive cancer types do generally have higher 

intrinsic radiosensitivity (i.e. lower SF2 values) and there is a correlation, there is not a direct 

relationship. The Deacon et al. publication led to interest in measuring tumour 

radiosensitivity as a potential prognostic factor for radiotherapy outcomes152. As with 

radioresponsiveness, if intrinsic sensitivity could be determined prior to radiotherapy then 

treatment could be personalised to the patient or tumour. In vitro radiosensitivity assays 

have been applied to patient-derived cells to define patients as radioresistant or 

radiosensitive.  

 

The gold standard radiosensitivity assay, a clonogenic assay, has been applied to patient-

derived samples but the long time frame of approximately 4 weeks and low success rate 

(~70%) prohibits the use of this assay clinically148,153,158–161. Other assays used with varying 

levels of success include those measuring chromosome or DNA damage (e.g. γH2AX-

phosphorylation), cell kill and apoptosis153,154,161–163. These assays use cell cultures 

established from patient biopsy samples. A study of cervical cancer patients demonstrated 

tumour cells with lower SF2 values were associated with better patient survival outcomes153, 

but in glioma patients there was no direct correlation between the two161. In head and neck 

(H&N) cancer patients, while SF2 values were not predictive of patient outcome, the 

calculated cell growth fraction was (i.e. the ratio of cells capable of dividing on day zero, 

calculated by extrapolation of the tumour growth curve of cells that subsequently did divide, 
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over the number of cells initially plated)154. A second study of H&N cancer patients again 

found that SF2 values were not predictive of overall survival rates, but reported lower SF2 

values were associated with higher local control rates159. A study of over 500 patients with 

either breast or H&N cancer showed that radiosensitive patients did not have significantly 

different rates of apoptosis or γH2AX-phosphorylation staining compared to non-

radiosensitive patients162.  

 

It is unlikely that any in vitro assay for measuring radiosensitivity will be clinically useful, as 

the majority have limitations of technical difficulty, long-time courses and/or high costs148. 

Biomarkers and gene signatures present a more practical solution, as, being rapid and high-

throughput, they enable quick reporting of results, which is vital if they are to inform 

treatment decisions. Reported biomarkers include MRE11 (meitotic recombination 11, 

predictive for survival in bladder cancer164–166), EEF1E1 (Eukaryotic translation elongation 

factor 1 epsilon 1, formerly called AIMP3, predictive for survival in bladder cancer167), NBN 

(nibrin, predictive for survival in prostate cancer168) and BABAM2 (BRISC and BRCA1 A 

complex member 2, formerly BRE, predictive for survival in breast cancer169). Published 

gene signatures for intrinsic radiosensitivity include the radiosensitivity index (RSI)170–172, 

Danish Breast Cancer Cooperative Group Radiotherapy Profile173 and Interferon-related 

DNA Damage Resistance signature174. While gene signatures have greater applicability in a 

clinical setting and may be non-cancer-type specific (at least in the case of RSI), they are not 

in routine use. 

 

1.2.3 Measuring radiosensitivity using a clonogenic assay 

The clonogenic assay is considered to be the gold standard radiosensitivity assay175. 

Following irradiation, cells are cultured at very low cell numbers for a prolonged period of 

time until colonies have formed. Only cells that have survived irradiation and successfully 

repaired resulting DNA damage will divide enough times to form a visible colony. These 

colonies are counted and described as the fraction of cells that survived compared to the 

expected number of colonies that would be produced by the number of cells seeded under 

control conditions. The advantages of clonogenic assay include simple methodology, 
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moderate throughput, and the ability to use combinations of treatment (e.g. drug + radiation, 

hypoxia + radiation). The long time-course provides an advantage over other methods of 

assessing radiosensitivity. After radiation, a cell may divide once or twice before undergoing 

reproductive cell death; assays with a short time-course may therefore underestimate 

treatment effect. On the other hand, after irradiation, a cell may take time to repair the DNA 

damage before it begins to divide, and therefore short time-course assays may overestimate 

treatment effect. The required long time-course of the clonogenic assay is, however, a 

practical disadvantage; not only is a long time required to produce results, but also the long 

incubation period increases the chance that colony formation will be disrupted. Other 

disadvantages are that: a clonogenic assay is labour intensive and not amenable for high-

throughput applications; the fixed number of cells seeded per well provides a limited range of 

output; optimisation of the assay is labour intensive; cell lines must be able to survive low 

cell density environments; and significant methodological modifications are required for 

suspension cell lines. Additionally, different laboratories or authors can report significantly 

different surviving fractions implying a lack of reproducibility151. Despite this, there is a 

positive correlation between the survival fraction as reported by a clonogenic assay and the 

tumour control dose151,152. 

  

1.2.4 The linear quadratic model 

The radiation survival curve produced from a clonogenic assay plots the surviving fraction as 

a function of dose and can be fit using a linear quadratic (LQ) equation, a mechanistic model 

of cell kill (Equation 1)176. The initial linear portion of the survival curve is described by the α 

parameter and the subsequent quadratic portion by the β parameter177. 

 

Equation 1 

𝑆𝐹 = 𝑒−(𝛼𝐷+ 𝛽𝐷2) 

SF = Surviving fraction; D = dose 

 

Higher α values indicate the cells from which the curve is derived are more radiosensitive178. 

A greater bend to the survival curve indicates the cells are less radiosensitive151,179. The ratio 
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between the α and β parameters, α/β, indicates the fractionation sensitivity. Lower ratios 

(e.g. α/β = 3 Gy) predict that fractionation of radiotherapy will produce a greater sparing 

effect, where there is less overall cell kill following fractionated treatment177,178,180,181. 

Tumours almost always have an α/β greater than that of late-responding normal tissue, 

indicating that fractionation will result in greater sparing of late-responding normal tissue 

than tumours180. Notable exception to this rule are prostate182 and breast cancers183, where 

studies over the past decade reported the α/β ratios are low in these cancers.  

 

The LQ model includes the assumption that DNA damage is produced proportionally to the 

dose176. This DNA damage includes lethal lesions and DSBs176. In the LQ model, DSBs are 

assumed to be repaired with first-order rate kinetics, that is a constant proportion of DSBs 

are repaired over each period of time176. Where two DSBs occur spatially and temporally 

close to one another the ends may be switched during the repair process and misrepair may 

occur176. Misrepaired DSBs can be lethal to a cell176. Misrepair requires two ‘hits’ of 

irradiation to the DNA at separate points and is therefore proportional to the square of the 

dose176.  

 

When the LQ model is applied to experimental data, occasionally the α and β parameters 

are reported to be negative151. Fertil and Malaise recommended in these circumstances to 

assign a value of 0 if this falls within the 95% confidence interval (CI) for the curve151. 

 

1.2.5 A high-throughput radiosensitivity assay 

The advantages of the clonogenic assay have kept it as the gold standard since it was first 

described in 1956184. However, the incompatibility of the assay for use in high-throughput 

screens has hindered large-scale assessments of intrinsic radiosensitivity across a range of 

cell lines or conditions. In 2013, a high-throughput intrinsic radiosensitivity assay was 

described, where cells are seeded and irradiated in a 384-well plate then given an extended 

incubation before the end of the assay and where the colony formation endpoint is replaced 

by the CellTiter-Glo (CTG) luminescence assay185. The CTG assay adds an intermediate 

step between the cell’s radiosensitivity and the assay output. In the clonogenic assay, 
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colonies are fixed and stained with a DNA dye and then counted. As each surviving cell 

forms only one colony there is a direct link between cell survival, colony formation and assay 

output. The luminescence method used in the high-throughput assay reflects the 

concentration of adenosine triphosphate (ATP) present within the test well. In the CTG 

assay, cells are lysed to release ATP from the intracellular compartment, at which point ATP 

can catalyse the reaction of luciferin by luciferase to produce photons of light, i.e. produce 

luminescence186. The biggest source of error within the ATP luminescence assay comes 

from manual pipetting errors, as the assay reaction itself is highly reproducible and 

sensitive187. ATP is a marker of viable cells, and therefore the more cells that are 

proliferating, i.e., those cells that have not undergone reproductive cell death, the more ATP 

that is present187. The assumption of the CTG assay is that there is a linear relationship 

between the number of cells present and the amount of ATP produced188. The assumption of 

the high-throughput assay is that this relationship is unaffected by irradiation. If the rate of 

ATP production is reduced by irradiation, the high-throughput assay may report more cell 

death than actually occurred, and vice versa. To date, the effect of irradiation on ATP 

production is unclear. Following a single dose of irradiation, cellular ATP production has 

been reported to be increased, decreased or unchanged in a variety of cell lines189–194. Each 

experiment used different methods to measure ATP production changes, different radiation 

doses and different cell lines, which may be obscuring any trends in response. The changes 

were reported at 10 minutes, 24 h and 32 h after the exposure in different cell lines, with no 

results reported to suggest long-term changes in ATP production compared to control 

cells190,191. Although using an indirect measure of cell survival is a caveat of the high-

throughput assay and should be kept in mind during optimisation, if the high-throughput 

assay accurately reproduces the clonogenic SFs it is a viable alternative to the clonogenic 

assay.  

 

The high-throughput assay was developed using a panel of 18 lung cancer cell lines, only 15 

of which were compatible with the clonogenic assay as one cell line grew in suspension and 

the remaining two did not form colonies185. All 18 cell lines were used in the high-throughput 

assay, demonstrating its compatibility with cell line phenotypes excluded from the clonogenic 
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assay185. The high-throughput assay reports proliferating fraction (PF) as opposed to SF, 

and PF is calculated as the relative luminescence unit (RLU) value at X Gy divided by the 

RLU value at 0 Gy185. The clonogenic assay was carried out at 2, 5 and 8 Gy while the high-

throughput assay used 1, 2, 3, 4, 5, 6, 8 and 10 Gy, and there was a weak correlation 

between PF and SF across all dose points used185. The authors reported a stronger 

correlation between the area under the curve (AUC) for the two assays and selected this as 

their output metric185. The reason for the all-doses comparison is unclear as, if the high-

throughput assay has the purpose of providing an alternative to the clonogenic assay, a 

direct comparison between the SF and PF values at the same dose is of most interest. A 

stronger correlation may be observed when using the direct comparison and in this case the 

AUC metric would not be necessary.  

 

The highest correlation between the clonogenic and the high-throughput assay was found 

when a nine day incubation was used in the high-throughput assay, although the 

corresponding incubation time in the clonogenic assay is not reported185. A nine day 

incubation period was subsequently used in a screen of 533 Cancer Cell Line Encyclopaedia 

(CCLE) cell lines156. The long incubation period is similar to that of a clonogenic assay and 

should take into account any delayed reproductive cell death. The results of the CCLE 

screen reported a wide variation in radiosensitivity within each of the 26 cancer types 

represented by the panel, but across all 533 cell lines radiosensitivity was normally 

distributed156. This work indicated the high-throughput assay method was compatible with a 

wide range of established cell lines across a wide range of cancer types.  

 

1.2.6 The Radiosensitivity Index 

A gene signature is a set of genes that show a characteristic gene expression pattern as a 

result of a biological state, e.g. presence/absence of a disease, susceptibility to a therapeutic 

intervention or expression of a particular disease or cellular phenotype195,196. If a gene 

signature can provide information regarding disease outcomes, it is prognostic197. If a gene 

signature can provide information about the response to a therapeutic intervention, it is 

predictive197. The in vitro methods of determining radiosensitivity are not readily transferable 
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to clinical use due to labour and time requirements. In order to provide a clinically compatible 

method to predict patient benefit from radiotherapy, a gene signature was derived using in 

vitro radiosensitivity data (SF2) from a panel of 35 cell lines198. Using a linear regression 

modelling approach to identify genes with expression levels that correlated with 

radiosensitivity, the RSI was identified and shown to predict SF2 values for a patient 

sample198. Initial validation showed that in rectal and oesophageal cancer cohorts, patients 

who responded to radiotherapy had significantly lower RSI scores than non-responding 

patients171. Subsequent work further validated the signature in H&N patients, where low RSI 

scores were associated with lower loco-regional recurrence rates171. Importantly, the RSI is 

prognostic only in cohorts treated with radiotherapy where the factor being measured could 

have an effect on survival. In breast cancer patients treated with surgery and radiotherapy, 

low RSI scores were associated with better recurrence-free and distant-metastasis-free 

survival, but this was not the case in patients treated with surgery alone172. Similar results 

have been reported in endometrial199, melanoma200, pancreatic201 and glioblastoma (GBM) 

patients202.  

 

The published RSI cohorts use two main methods to classify tumours as radioresistant or 

radiosensitive – the first is a defined cut-off point of 0.3745199–201,203–206 and the second is the 

25th percentile score within the cohort171,172,202,207. The cut-off of 0.3745 was defined based 

on a cohort of colon cancer patients208 and a second containing 10,000 primary solid 

tumours204 where the RSI scores had a bi-modal distribution. The two peaks were assigned 

to be radiosensitive and radioresistant populations, and the cut-off was selected to separate 

the two. 

 

1.2.7 Radioresistant and radiosensitive cancers 

As the RSI was derived from in vitro SF2 values and produces predicted SF2 values for a 

tumour, its success suggests that the results of the clonogenic assay are applicable to 

radiotherapy outcomes in patients198. If the RSI values are interpreted as predicted SF2 

values, then comparisons can be carried out with published SF2 values derived from in vitro 

studies. Figure 3 shows the results of a literature search for published SF2 or RSI values, 
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separated by cancer type/tissue of origin and ranked in order of radiosensitivity. Each data 

point represents the mean value of all reported values for that particular cancer type. As 

some articles only reported a mean or calculated SF2 or RSI value for a set of samples, 

error bars could not be calculated. The raw data can be found in Appendix 1. A value of 1 

indicates high radioresistance and 0 indicates high radiosensitivity. The RSI cut off of 0.3745 

is represented by a dashed line to indicate which cancer types would be classed as 

radiosensitive or radioresistant. From the perspective of clinical application, this fixed cut-

point approach would not prove effective at stratifying patients in some cancer types. While 

only mean values are published and available for inclusion, Figure 3 suggests that in some 

cancers entire sample sets could be classed as radioresistant (e.g. astrocytoma [AC]) or 

radiosensitive (e.g. LEU and neuroblastoma [NBL]). As the aim of classifying patients into 

radioresistant and radiosensitive populations is the adjustment of radiation treatments, and 

standard radiotherapy protocols vary between cancer types presumably taking into account 

their different radiosensitivities, there is a need for a cohort/disease specific method. For 

example, the 25th percentile cut off was used in rectal or oesophageal cohorts giving a cut-off 

point of 0.46171, in GBM cohorts giving a cut-off point of 0.54202 and in H&N cohort with a cut-

off point of 0.023171. 
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Figure 3: Literature radiosensitivity assay results grouped by different cancer types and ranked 
by radiosensitivity. Results of a literature search for articles reporting surviving fraction at 2 Gy (SF2) 
or radiosensitivity index (RSI) values. SF2 values were taken from stated clonogenic assays using 
established cell lines [SF2 (established)] or from cultures derived from patient samples [SF2 (patient-
derived)]. All RSI studies used patient samples. A detailed results table including study references and 
raw data used to generate this figure can be found in Appendix 1. Each point represents the mean 
value for that cancer type. Cancer types are located along the x-axis and ranked from least to most 
radiosensitive. 
AC – astrocytoma; AoV – Ampullar of Vater adenocarcinoma; BD – bladder; BL – Burkitt lymphoma; 
CL – colon; CR – colorectal; CV – cervical; EM – endometrial; FA – follicular adenoma; FB – fibroblast; 
GBM – glioblastoma; GL – glioma; GS – gliosarcoma; H&N – Head and Neck; KID – kidney; LEU – 
leukaemia; LLC – lung large cell carcinoma; LSC – lung small cell carcinoma; LSQ – lung squamous 
cell carcinoma; LUAD – lung adenocarcinoma; LV – liver; LY – lymphoma; MBL – medulloblastoma; 
MLN – melanoma; MESO – mesothelioma; MYE – myeloma; NBL – Neuroblastoma; NSCLC – non-
small cell lung cancer; OE – oesophageal; OV – ovarian; PANC – pancreatic; PC – penile carcinoma; 
PR - prostate; RAC – rectal adenocarcinoma; SC – sarcoma; ST – stomach; THY – thyroid 

 

1.2.8 WNT and radiosensitivity 

The WNT signalling pathway is activated in response to irradiation, causing increased 

nuclear β-catenin and FZD mRNA expression209–211. Activation of the WNT signalling 

pathway is associated with decreased radiosensitivity, although exactly how WNT signalling 

results in radioresistance is unknown111. Mimicking pathway activation by transfection with β-

catenin resulted in decreased radiosensitivity in the MBL cell line UW22892 and the epithelial 

cell line RPE-1212. In the H&N cancer cell line, CNE-2 overexpression of β-catenin 

significantly increased SF2 compared to control cells (0.58 vs 0.34)213. The tankyrase 
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inhibitor XAV939 is used to inhibit the WNT signalling pathway by increasing β-catenin 

degradation, and WNT inhibition in this manner significantly increased radiosensitivity in 

GBM214 and epithelial cell lines212. Inhibition of WNT signalling by preventing WNT ligand 

secretion using LGK-974 also significantly increased radiosensitivity in HCC cells211. Direct 

inhibition of β-catenin using siRNA targeting β-catenin significantly increased radiosensitivity 

in colorectal cell lines212. Radioresistant cell lines can be generated through repeat radiation 

exposure and culture of the surviving cells. These radioresistant cell lines have increased 

mRNA expression of β-catenin and the WNT pathway targets c-myc and cyclin D1, have 

increased β-catenin protein levels and show an increased response in WNT signalling 

reporter assays compared to parental cell lines209,212,215. Underlying activation of the WNT 

signalling pathway may therefore contribute to greater radioresistance.  

 

1.2.9 SHH and radiosensitivity 

Irradiation activates the SHH signalling pathway. Irradiation of prostate cancer xenografts 

significantly increased protein expression of the pathway components GLI1 and PTCH1, to 

260% and 150% of levels in unirradiated controls respectively216. In cell lines, irradiation 

increased protein expression of SHH and GLI1 and increased the activity in a GLI1 reporter 

assay, demonstrating increases in the SHH pathway signalling activity217–220. 

 

Activation of the SHH signalling pathway decreases radiosensitivity. Using SHH ligand to 

stimulate the pathway decreased radiosensitivity in HCC217,220 and GBM cell lines218. The 

SHH pathway can be pharmacologically inhibited using the GLI1 antagonist GANT61, which 

specifically inhibits GLI, or the SHH pathway inhibitor cyclopamine. Pharmacological 

inhibition of the SHH pathway increased radiosensitivity in prostate216, GBM218, 

oesophageal221, HCC217 and lung cancer cell lines222. In HCC cells, cyclopamine treatment 

alone had no effect on either DNA damage as measured by γH2AX foci or the number of 

apoptotic cells, but when used in combination increased the levels produced by radiation217. 

These data suggest that SHH signalling acts to decrease the amount of DNA damage and 

apoptotic cell death resulting from irradiation exposure, and this might contribute to the 

observed radioresistance. Radioresistant cell lines derived from the oesophageal line 
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ECA109223 and from the osteosarcoma line MG63224 expressed higher baseline levels of the 

SHH pathway proteins GLI1, PTCH1, SMO and SHH compared to the parental cell lines. As 

for the WNT signalling pathway, higher baseline SHH signalling may contribute to decreased 

intrinsic radiosensitivity. The SHH subgroup would then be expected to be less 

radiosensitive due to overactive SHH signalling pathway. In a study investigating the effects 

of irradiation-sparing or irradiation-avoiding treatment strategies, patients under ten years of 

age within the SHH subgroup were shown to have a 10-year overall survival rate of >90% if 

treated with chemotherapy alone, showing that these treatment strategies did not have a 

detrimental effect on survival132. This finding was not influenced by the histological subgroup, 

however it should be noted that TP53 status was unknown for these patients132.  

 

Some contradictory evidence has been published using cell lines with abnormal baseline 

SHH signalling, specifically the MBL cell line DAOY127 and the prostate cell lines 22Rv1216, 

PC3127,216 and DU145216. DAOY is categorised as belonging to the SHH subgroup and 

expresses high levels of SHH pathway proteins indicating an overactive pathway225,226. All 

three prostate cell lines express increased GLI1 and PTCH1 mRNA compared to control 

prostate cells, indicating an active SHH pathway227. The SHH signalling pathway is activated 

in prostate cancer and appears to be involved in proliferation and metastasis in this 

disease228–231. Unlike in MBL where aberrant pathway proteins occur due to gene 

mutations230, SHH signalling in prostate cancer is thought to result from overexpression and 

secretion of the SHH ligand229–231.. GANT61 decreased the expression of PTCH1, GLI1 and 

GLI2 in PC3, DU145 and DAOY, indicating that the SHH signalling pathway was being 

inhibited by GANT61 treatment127,216. Combination of SHH pathway inhibition with irradiation 

significantly increased radiosensitivity in 22Rv1 only, while no effect was seen in PC3, 

DU145 or DAOY127,216. The prostate cell lines PC3 and DU145 are androgen-irresponsive 

and 22Rv1 is androgen-responsive227. The androgen receptor (AR) is reportedly involved in 

non-canonical SHH signalling through interactions with the GLI transcription factors232. AR-

positive prostate cancers have significantly higher SHH protein expression than AR-negative 

tumours229. Increased SHH signalling in the AR-positive cell line 22Rv1 may be through the 

non-canonical pathway, while in the AR-negative cell lines aberrant signalling is through a 
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different mechanism or mutation. As GANT61 is a GLI antagonist, pathway inhibition will still 

occur for AR-mediated non-canonical signalling. Although pathway inhibition by GANT61 

was demonstrated to occur, it had no effect on radiosensitivity in the three cell lines where 

the cause of constitutive SHH signalling has not been defined127,216. It may be the case that 

constitutively active SHH pathways, as found in the SHH subgroup, do not act to decrease 

radiosensitivity.  

 

1.2.10 TP53 status and radiosensitivity 

The TP53 gene, which codes the p53 protein, is a tumour suppressor gene and the most 

frequently mutated gene in all human cancers233. At the simplest level, activation of p53 via 

phosphorylation allows the protein to become more stable and translocate to the nucleus234. 

Functions of p53 in response to DNA damage include activation of DNA repair proteins, 

control of the cell cycle and initiation of apoptosis235–239. Which function results from p53 

activation depends on several factors including the means by which p53 is activated, the 

intracellular environment and presence or absence of transcription cofactors240. TP53 

mutations resulting in inactive p53 protein therefore leave a cell without a key tumour 

suppressor.  

 

One trigger for the activation of p53 is ionising radiation. There is a potentially complex 

relationship between p53 mutation status and radiosensitivity. In normal cells, p53 is 

stabilised in response to ionising radiation, increasing protein expression and coordinating 

the cellular response to the resulting DNA damage241–243. If the p53 response of a cell is not 

available, then cell cycle arrest or an apoptotic response would not be available to the cell244. 

If the DNA damage resulting from irradiation is severe enough to completely prevent a cell’s 

survival unless repaired, then increased radiosensitivity with TP53 mutations would be 

expected. Some human and mouse cell lines with mutated TP53 are more radiosensitive 

than the corresponding WT controls245. On the other hand, if the TP53 mutation prevents an 

apoptotic or DNA repair response to be initiated following DNA damage, there will be an 

increase in radioresistance and genomic instability. Bone marrow cells derived from 

transgenic mice with mutated TP53 were used in a clonogenic assay to show that, compared 
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to non-transgenic litter mates, TP53 mutations increased radioresistance246. H1299 cells 

transfected with WT p53 were significantly more radiosensitive than the parental cell line and 

had a significantly increased percentage of apoptotic cells247. However, HCT166 cells with 

mutant p53 protein showed similar clonogenic survival to p53 WT cells248. In H&N cancer cell 

lines no correlation between the presence of a TP53 mutation and the SF2 was observed249. 

These observations demonstrate that the specific nature of the TP53 mutation can contribute 

to how it affects radiosensitivity. The osteosarcoma cell line Saos-2 was transfected with a 

range of point mutations in TP53, and depending on the location of the mutation, 

radiosensitivity was either significantly increased or decreased compared to WT cells250. The 

point mutations in TP53 that resulted in more radioresistant cells correspond to those found 

more frequently in human cancers250. 

 

1.2.11 MYC and radiosensitivity 

MYC is a proto-oncogene, encoding c-myc protein, which is persistently active in a subset of 

cancers through copy number alterations or gene amplification251–257. MYC mRNA is 

expressed highly within Group 3 tumours, and MYC amplification, where a cell contains 

multiple copies of the MYC gene, is a common characteristic of Group 3 MBL116. C-myc is a 

transcription factor for a range of pro-proliferative genes, and is a target of the WNT and 

SHH signalling pathways114,258–260. Having previously established that these pathways are 

activated following irradiation exposure, it is not surprising that c-myc expression is 

increased following irradiation in MBL261, prostate262 and osteosarcoma263 cell lines.  

Overexpression of MYC in normal human fibroblasts was shown to increase DNA damage, 

measured by γH2AX foci, in irradiated compared to unirradiated control cells264. The 

induction of DSBs in cells overexpressing MYC resulted in more apoptotic cell death264. 

Increased susceptibility to DNA damage and subsequent apoptotic cell death would suggest 

that MYC overexpression causes cells to be more radiosensitive. However, a study using a 

panel of small cell lung cancer cell lines in mouse xenografts found no relationship between 

the level of MYC mRNA and the radiosensitivity of the tumours265. Alternatively, MYC 

overexpression has also been associated with radioresistance. In a study using H&N cancer 

patient-derived cell cultures, clinically assigned as either ‘radioresistant’ or ‘radiosensitive’, 



Page | 46  

 

radioresistant cells were found to have more expression of c-myc protein compared to the 

radiosensitive group266. Radioresistant MCF-7 cells generated following exposure to 60 Gy 

or 80 Gy in 5 Gy fractions, show copy number gain of MYC compared to non-irradiated 

cells267. Radioresistant lines derived from cervical215, lung268 and oesophageal209 cancer 

cells have higher c-myc protein and MYC mRNA expression than the parental cells, although 

this could be attributed to increased WNT signalling. It is difficult to determine whether 

increased expression of c-myc is contributory to or results from the mechanisms of 

radioresistance. 

 

1.2.12 Medulloblastoma and radiosensitivity 

No assessment of the intrinsic radiosensitivity of MBL patient samples has been published. 

While there are some data available for MBL cell lines, almost all has been published as 

controls within wider studies of MBL radiobiology. The intrinsic radiosensitivity of MBL has 

only been directly investigated in two studies, published in 1980269 and 1993270. The first of 

these used a cell line no longer available, TX-7269.The second used the cell lines DAOY and 

D283 and compared the radiosensitivity of MBL with their previous study using glioma cell 

lines270. There is, therefore, a lack of information regarding the intrinsic radiosensitivity of 

MBL cell lines, both in general and in the context of the molecular subgroups. Data from the 

literature is reported in Table 3, which contains both stated parameters and those 

determined from figures within publications.  

 

Table 3: Summary of published medulloblastoma radiosensitivity data 

Subgroup Cell line SF2 SF8 Linear quadratic parameters 

SHH DAOY 0.40271 
0.44270 
0.61272 

0.018272 α – 0.039127 

β – 0.047127 

ONS-76 0.42271 
0.64273 

 α – 0.13273 

β – 0.05273 

UW228-2 - 0.11274  

Group 3 D283 0.17272 
0.18270 

0.0016272  

D425 - 0.09274  

MED8A 0.34272 0.00068272  

 

 



Page | 47  

 

Published SFs suggest that Group 3 cell lines are more radiosensitive than SHH cell lines. 

This agrees with a study using a panel of cell lines which reported the TP53 mutant SHH cell 

lines UW228 and DAOY to be the least radiosensitive, followed by the TP53 WT SHH cell 

line ONS-76, with the Group 3 cell lines D283 and MED8A the most radiosensitive92. 

Transfection of ONS-76, which is WT TP53, with mutant TP53 increased the radioresistance 

of this cell line compared to untransfected cells92. There are some caveats to this study. 

First, the use of the semi-adherent cell line D283 in a standard clonogenic assay, a 

methodology not compatible with suspension cells. Second, the survival curves using the full 

panel of cell lines only extended up to a 5 Gy irradiation dose producing a cell kill below 0.1 

in only one of the five cell lines. Without extending the curve to cover multiple-log cell killing 

the β-portion of the survival curve cannot satisfactorily be represented. Last, the survival 

curves were not fitted with a LQ model and therefore the associated radiosensitivity 

parameters were not calculated and reported.  

 

1.3 Proton Radiation 

Proton therapy was first suggested in 1946 and the first patients were treated in the 1950s 

275. Protons produce a more restricted, higher ionisation density compared to x-rays276. The 

key difference between proton and x-ray radiation is the Bragg peak phenomenon, where 

the amount of energy deposited by a proton is inversely proportional to its energy, so most 

energy is deposited at the end of the path133,277–281. In order for the whole depth of a tumour 

to be treated with the same radiation dose, a spread-out Bragg peak (SOBP) is used. To 

produce a SOBP the initial energy of the proton is altered, changing the depth of the Bragg 

peak278. Multiple Bragg peaks are thus combined to produce a plateau of uniform energy 

deposition which covers the tumour278. The tissue located behind the tumour is exposed to 

practically no radiation, and tissue before the tumour is exposed to a lower dose than with x-

ray radiation. If a lower dose can be given to normal tissue, this will decrease the risk of 

damage to normal tissue282. Alternatively, if side effects and tissue tolerability are already 

acceptable with conventional x-ray therapy, a higher proton therapy dose which irradiates 

normal tissue to the same extent could be given, increasing the tumour dose282.  
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As of June 2021, 98 proton facilities were in operation worldwide283. PBT has been trialled in 

a range of other cancers, including lung cancer284–286, breast cancer281, brain tumours63,287, 

oesophageal cancer288 and sarcomas289. These studies show PBT to be well tolerated, with 

the most common side effects being dermatitis and skin toxicity281,286. The tumour types with 

the most evidence for a clinical advantage of PBT over x-ray therapy are ocular melanoma 

and chordomas due to the higher irradiation doses that are possible290. A 2009 review by the 

Agency for Healthcare Research and Quality looking at 243 clinical trial reporting articles 

concluded that there was no evidence showing PBT to be superior to x-ray therapy in terms 

of clinical outcomes or side effects291.  

 

5-year progression-free survival for MBL patients following PBT is 85% for standard-risk and 

70% for high-risk patients, similar to the survival rates with x-ray radiotherapy287. Despite the 

apparent lack of advantage in survival time, there is interest in using PBT for MBL patients 

due to the tumour location, typical patient age and the potential to reduce the risk of long-

term side-effects292,293. Several clinical studies have used simulations or treatment plans to 

draw conclusions of the potential benefits of PBT in comparison to x-ray beam therapy in 

MBL. A simulated cohort of 5-year old patients treated with surgery, chemotherapy and 

either x-ray radiotherapy or PBT was used to evaluate cost-effectiveness of treatment294. 

Taking long-term side effects and quality-of-life adjusted years into account, proton therapy 

had a lower cost and a better effect294. Although this could be used to argue for the use of 

PBT, there are several concerns with the simulation cohort approach taken, specifically the 

lack of long-term follow-up patient data which is required to produce a reliable model294. Real 

patient data has been used to design both x-ray and proton treatment plans, although these 

plans have not both been carried out295,296. The proton plans had a statistically significant 

reduction in healthy tissue irradiation compared to the x-ray plans295,296. The problem with 

theoretical treatment plans is that, because they are not applied to patients, any benefits of 

reducing the healthy tissue dose cannot be clinically demonstrated and remains theoretical.  

 

An evidence-based review of PBT, carried out in 2012 by ASTRO’s Emerging Technology 

Committee, highlighted the need for more clinical trials in order to determine the clinical 
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benefits of PBT290. A 2016 systematic review of the use of PBT in paediatric cancers 

including MBL concluded that based on the available evidence, neither the use nor disuse of 

proton therapy could be justified293. Despite this overall lack of clear clinical evidence, 

around 15% of paediatric MBLs are given PBT due to the theoretical advantages297. A 

clinical trial investigating reduced side effects following PBT in MBL was opened in 2010 with 

the aim of recruiting 90 patients298. The primary endpoints were ototoxicity, endocrine 

dysfunction and neurocognitive effects, and results are expected in November 2021298. 

 

1.3.1 Protons vs x-rays 

An identical level of biological effect will be produced by differing doses of different 

radiations299. The Relative Biological Effectiveness (RBE) is the ratio between the dose of a 

test radiation type compared to the dose of x-ray radiation when an identical biological effect 

is achieved134,137,299,300. A RBE greater than 1 indicates that radiation is more effective per 

unit dose than x-ray299. The clinically used RBE value for protons compared to x-rays is 

1.1133,278,300,301. Protons therefore provide a small improvement in biological effect at any 

given dose133,278,300,301. Though used clinically, this RBE value was derived as an average of 

many separate experiments over a wide dose range including a large number of irrelevant, 

non-human cell lines and RBE values ranged from 0.86 to 2.1302. The RBE of 1.1, which is 

currently used in treatment planning, may not be representative leading to over- or under-

dosing303. Cell line studies have reported RBE values ranging from 1.01 to 1.77303,304. These 

studies, among others, raise questions regarding the general application of a proton RBE of 

1.1, and, of note, very few tissue specific RBE values have been determined276,305.  

 

As with x-ray radiation, proton therapy causes cell death through DNA damage. Proton 

radiation appears to result in slightly more robust DNA damage and cell apoptosis than x-ray 

radiation276,306. This could be due to the larger numbers of reactive oxygen species that are 

generated following proton radiation, shown in lung276 and GBM306 cancer cells. Additionally, 

DNA repair may be altered in proton-irradiated cells, although this is not consistently 

reported135,306,307. Other differences in DNA damage and repair seen with proton radiation 

include altered cell cycle progression and G2 arrest recovery, altered phosphorylation 
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kinetics of the cell cycle enzymes Chk1 and Chk2, and decreased colony forming 

capabilities276,306.  

 

1.4 Proliferation 

The process by which a cell grows and divides is called proliferation. In healthy tissue, cell 

proliferation is carefully regulated in order to maintain normal tissue function, while a 

hallmark of cancer is uncontrolled cellular proliferation leading to a rapidly expanding 

population of cells forming the tumour mass244,308,309. A higher proliferation rate within a 

tumour has been shown to be associated with worse survival outcomes in CNS310 (including 

MBL311), breast312, bladder313, pancreatic314, gastrointestinal314, lung315,316, cervical317 and 

H&N cancers318.  

 

There are various mechanisms by which cancer cells gain the ability to proliferate 

indefinitely, including growth factor independence and overproduction of growth factor 

ligands and/or receptors309. The processes a cell undergoes to divide into two daughter cells 

form the cell cycle. There are two broad stages to the cell cycle in eukaryotic cells, 

interphase and mitosis319. During mitosis (M-phase) the cell divides into two daughter 

cells319. During interphase the cell is actively growing in size and replicating the intracellular 

and DNA content319. There are several sub-stages during interphase, termed Gap1 (G1) 

phase, Synthesis (S) phase, and Gap2 (G2) phase319. M-phase occurs after G2 and before 

the start of the next cycle at G1319. There are distinct processes that occur during each 

phase – cell mass increases during the G1- and G2-phases while DNA is replicated during 

the S-phase319–321. Cells in the S-phase of the cell cycle are more radioresistant, likely due to 

increased abundance of DNA synthesis enzymes, and more radiosensitive in the M-

phase143,322. The cell cycle is a tightly regulated process and monitoring takes place at cell 

cycle checkpoints where the progress through the cell cycle can be halted if necessary319. 

These occur at the end of G1 and G2 and are highly choreographed signalling events 

between proteins such as cyclins, cyclin-dependent kinases and p53323,324.  

 



Page | 51  

 

Cellular proliferation can be determined in vitro by comparing the proportion of cells at each 

stage in the cell cycle using flow cytometry to determine the relative amount of DNA per 

cell308. During the initial phase of the cell cycle, G1, there is one complete copy (1X) of DNA 

present within a single cell321. During S-phase, where the cell is replicating the DNA, the 

amount varies between 1X and 2X depending on how far through the process the cell is321. 

In G2, which follows on from DNA replication, a single cell contains 2X DNA321. The relative 

proportion of DNA per cell can be determined and the number of cells per cell cycle phase 

can be calculated308. Other techniques include counting the number of living cells in a culture 

to monitor increases resulting from cell proliferation or measuring the conversion of a 

substrate by metabolically active cells to monitor for increasing cell number. In patient or 

tissue samples, the BrdU (bromodeoxyuridine) or IdUrd (Iododeoxyuridine) assays can be 

used. BrdU325 and IdUrd326 are analogs of the DNA base thymidine which are incorporated 

into newly synthesised DNA during S-phase. IHC staining for BrdU is used to see where and 

how many cells have proliferated since the infusion was administered325,327. The protein and 

mRNA expression levels of proteins associated with proliferation, such as Ki67328,329 and 

PCNA329, can also be used to determine whether a tissue is actively proliferating. 

 

Ki67 is a 359 kDa protein that is involved in the control of cell proliferation314,329. Ki67 was 

first detected in a screen of antibodies produced against a range of nuclear antigens where 

the Ki67 antibody only stained cells known to be proliferative330 and therefore has been used 

subsequently as a marker of proliferation329. The expression of Ki67 mRNA is positively 

correlated with Ki67 protein expression331,332, therefore both mRNA and protein expression 

are indicative of the level of Ki67 in a sample. Ki67 protein expression is found throughout all 

stages of the cell cycle but reaches a maximum during the G2- and M-phases314,329. The 

exact protein function has not been fully elucidated, and inhibition of Ki67 does not prevent 

or alter cellular proliferation in in vivo314,329,333. Ki67 positivity is significantly associated with 

clinical staging and lymphatic metastasis in breast cancer334. The Ki67 proliferation/labelling 

index is the percentage of cells in a sample which have positive nuclear staining for Ki-67328 

and forms part of the diagnostic criteria for gastrointestinal and pancreatic cancers314. The 



Page | 52  

 

Ki-67 labelling index has been significantly associated with local control but not survival rates 

in H&N cancer335.  

 

PCNA (proliferating cell nuclear antigen) is a 29 kDa protein involved in several processes 

during cell proliferation, including during DNA replication where it acts to increase the 

efficiency of DNA polymerases by acting as a scaffold protein329,336. PCNA is frequently used 

as a cell cycle marker as the expression increases during S-phase, and while PCNA protein 

and mRNA levels are not significantly correlated, both correlate with clinical 

outcomes329,337,338. NSCLC338, breast334 and prostate339 tumour samples had significantly 

higher PCNA protein and mRNA expression compared to adjacent normal tissue. Higher 

PCNA expression is associated with shorter overall survival in NSCLC338,340, ampullar of 

Vater carcinoma341 and breast cancer342. The PCNA labelling index was significantly 

associated with local-control but not survival rate in H&N cancer335. Meta-analyses of studies 

in gastric cancer343 and osteosarcoma344 concluded that, again, PCNA expression was 

significantly correlated with overall survival.  

 

1.4.1 Proliferation and radioresponse 

The impact of a proliferative phenotype on radiotherapy outcomes is not straightforward. In 

vitro, immediately following exposure to ionising radiation, a dose-dependent growth delay is 

observed in cultured cells, although the subsequent growth rate is unaffected compared to 

unirradiated control cells265.This growth delay is a result of radiation-induced cell cycle 

arrest, and occurs to allow the cells to repair the DNA damage before continuing to 

proliferate and divide.  

 

Although cell kill and a reduction in viable/proliferating cells is a direct result of radiation 

exposure, surviving cells proliferate to replace the dead cells and repopulate the 

tumour241,345. Subsequent treatment fractions must kill these repopulated cells before any 

further impact on the original tumour volume can be made241. The reduction in total cell 

number following irradiation treatment also reduces the burden of the tumour on its 

microenvironment, increasing the availability of oxygen, glucose, nutrients and space and 
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resulting in conditions more optimal for cell proliferation241. If a cancer is fast growing with 

rapidly proliferating cells there may be significant regrowth between treatment fractions, thus 

reducing the impact on the original tumour mass that each fraction can have241,346. Faster 

growing tumours would therefore be expected to show reduced local control and a faster 

recurrence if treated identically to slower growing tumours346. In patients with H&N cancer, a 

higher BrdU labelling index indicating more proliferative tumours was significantly associated 

with worse local control347. In a cohort of bladder cancer patients, a better response to 

radiation therapy occurred for patients with lower proliferation rates, as determined by Ki67 

expression348. In a selection of ‘radiounresponsive’ or ‘radioresponsive’ patient-derived cell 

cultures, radiounresponsive cultures showed a significantly greater increase in Ki67 staining 

following a 2 Gy radiation dose than the radiosensitive cell lines266. In these studies, high 

cellular proliferation was associated with radioresistance. Survival outcomes in more 

proliferative H&N cancers were significantly improved by the use of a partly accelerated 

radiotherapy regimen, which increased fraction size and reduced time between fractions318. 

The partly accelerated regimen reduced the time period over which re-population could 

occur and increased the amount of dose available to target the original tumour mass once 

re-populated cells had been killed. 

 

Alternatively, rapidly proliferating tumours are expected to contain a larger number of 

individual cells in the more radiosensitive stages of the cell cycle at any one time. They 

therefore have a larger proportion of potential target cells than a slowly proliferating 

tumour241,328. Irradiation of more rapidly proliferating tumours could therefore result in a 

larger cell kill compared to slowly proliferating tumours. In oral squamous cell carcinoma, 

radiotherapy treatment of highly proliferative tumours, as determined by Ki67 staining, 

resulted in improved local control and better overall survival349. Ki-67 positivity in small cell 

lung cancer was found to correlate with complete response following irradiation treatment, 

but not overall survival in a small patient cohort, indicating that a higher proliferation rate 

within a tumour could produce a greater radioresponse328.  
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1.4.2 The meta-PCNA index and proliferative-informative cancers 

The meta-PCNA index (mPI) is the median gene expression across the meta-PCNA gene 

signature350. A higher mPI indicates a higher level of proliferation within that sample. The 

meta-PCNA signature is composed of 131 genes, which are the 1% of genes most 

associated with PCNA mRNA expression350. The data to generate the signature was taken 

from a set of microarray data for 36 normal tissue types350. The gene signature originated as 

part of a survey of published gene signatures and their application in breast cancer patients 

in an investigation into whether signatures remained prognostic when proliferation was taken 

into account350. Subsequently, the mPI was applied to cancer cohorts within The Cancer 

Genome Atlas (TCGA) database351. mPI was significantly higher in tumour tissue compared 

to adjacent normal tissue, and varied between tumours by up to ten-fold (5 counts per million 

(cpm) for kidney carcinoma to 50 cpm for cervical carcinoma351). The survival analysis within 

this study found that mPI was significantly associated with survival for only a subset of 

cohorts351. These cancers were categorised as ‘proliferative informative’ by the study, and 

included kidney, adenoid cystic carcinoma, low-grade gliomas, mesothelioma (MESO), 

pancreatic and lung adenocarcinoma (LUAD)351. Perhaps counterintuitively, these cancers 

were those with the lowest mPI scores, indicating they were less proliferative351. Pathway 

analysis of the proliferative informative cancers showed enrichment of proliferation-related 

pathways (cell cycle, cell division and DNA replication), while non-proliferative informative 

cancers were enriched for cell metabolism, angiogenesis and immune-related pathways351. 

The authors suggest that the influence increasing proliferation of a tumour has on survival 

outcomes is limited, and once a certain rate of proliferation has been exceeded other 

processes, such as invasion or immune suppression, become more influential351.  

 

1.4.3 WNT and proliferation 

Activation of the WNT signalling pathway has been reported to both increase and decrease 

proliferation. Pharmacological activation of the WNT signalling pathway caused an increased 

percentage of proliferating BrdU-positive cells compared to untreated controls in non-

cancerous Sertoli cells115. A rat model using transplanted HCC cells found treatment with the 
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WNT pathway inhibitor WNT-C59 significantly reduced tumour weights compared with those 

given sham treatment, again suggesting that the WNT pathway was increasing 

proliferation352. In contrast, activation of the WNT signalling pathway in the MBL cell line 

UW228-1 significantly reduced cell growth and Ki67 staining, suggesting reduced 

proliferation353. The UW228-1 cell line is a SHH cell line, however, and as the other MBL cell 

lines investigated in this study were not successfully transfected with β-catenin, whether the 

overactive SHH signalling pathway in this cell line confounded these results is unclear353.  

 

1.4.4 SHH and proliferation 

The in vitro evidence connecting the SHH signalling pathway to proliferation repeatedly 

demonstrates that activation increases and inhibition decreases proliferation. Activation of 

the SHH signalling pathway using exogenous SHH or GLI1 significantly increased cell 

proliferation221,354,355. Using shRNA (short-hairpin RNA) to inhibit SHH signalling in HCC cell 

lines resulted in a significant decrease of proliferating cells356, and siRNA (small interfering 

RNA) against GLI1 significantly decreased the number of proliferating cells in the GBM cell 

line U87354. The SHH pathway inhibitor cyclopamine reduced cellular proliferation in bladder 

cancer355, oesophageal cancer221 and renal cell carcinoma cells357. The SMO antagonist 

vismodegib significantly decreased proliferation in NSCLC cells122. The results are not 

replicated in in vivo studies, and treatment of mouse A549 xenografts with a SHH antagonist 

had no effect on Ki67 staining, showing that inhibition of the SHH signalling pathway did not 

alter the proliferation of these tumours222. Additionally, it is unclear whether a constitutively 

active SHH signalling pathway, as occurs in the MBL subgroup, would have the same effect 

as temporary activation using pharmacological agents. 

 

1.4.5 MYC and proliferation 

MYC is pro-proliferative and increased c-myc expression increases cellular proliferation. 

Increased c-myc activity sped up the progress of transfected cells through the cell cycle, 

increased cellular proliferation and decreased Td in rat fibroblasts358 and human stromal 

cells359. In a mouse model of gastric cancer, overexpression of c-myc resulted in increased 
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cell growth and tumour weight compared to control tumours360. Treatment of cells with siRNA 

against MYC caused a reduction in cell growth compared to control cells361. MYC inhibition 

using a MYC inhibitor or siRNA significantly decreased cell viability of two osteosarcoma cell 

lines in a dose-dependent manner362.  

 

1.4.6 Medulloblastoma and proliferation 

In a study of primitive neuroectodermal tumour (PNET) samples, which included a proportion 

of MBL patients, Ki67 positivity was 30% and PCNA was 65%, values which indicate high 

proliferative activity363. The meta-PCNA signature has not been investigated in a MBL 

cohort. If MBL is identified as a proliferative informative cancer by the mPI, differential rates 

of proliferation between the molecular subgroups could be influencing their different survival 

outcomes. Some in vitro work includes control data suggesting different proliferative activity 

between the subgroups. The SHH cell line DAOY is reported to have higher Ki67 protein 

expression (99%) compared to the Group 3 cell lines D341 (14%) and D283 (42%), 

indicating more proliferation within the SHH subgroup364. If MBL is identified as a non-

proliferative cancer, suggesting that the rate of proliferation is not affecting survival 

outcomes, differences between the subgroups would not be expected to influence their 

differential survival rates, however there would potentially be indirect effects on survival 

through influencing the radioresponsiveness.  

 

1.5 Hypoxia 

Hypoxia is the presence of reduced molecular oxygen concentrations and is generally, 

though relatively arbitrarily, defined as oxygen concentrations under 2%365–367. For reference, 

atmospheric oxygen is 21% and physiological oxygen concentrations range from 2-9%366–368. 

Hypoxia is known to be present in various disease states (such as stroke, ischemia and 

inflammation), and it is well-established that solid tumours contain regions of hypoxia 

244,365,366. Hypoxic conditions can cause cells to reduce proliferation, undergo differentiation 

or undergo cell death via apoptosis or necrosis367. It might be anticipated that this would 

hinder tumour survival, however the opposite is usually the case. The adaptations a cell 
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undergoes to survive hypoxia, such as resistance to apoptosis and decreased DNA repair, 

allow cells to take on a more aggressive phenotype, encouraging tumour survival365,369,370. In 

glioma and AC, more aggressive and faster growing tumours were shown to have higher 

levels of hypoxia371. A worse prognosis for patients with lower tumour oxygen levels has 

been reported for H&N carcinoma372, uterine carcinoma373, soft tissue sarcoma374, prostate 

cancer375,376 and cervical carcinoma377.  

 

There can be different biological consequences of hypoxia depending on the exposure time. 

‘Acute hypoxia’ results from temporary obstructions of microvessels, cutting off the oxygen 

supply to a region365. Acute hypoxia occurs on a scale of minutes to hours, and causes 

increases in genomic instability, metastasis, and treatment resistance, mainly via the 

activation of Hypoxia-Inducible Factor (HIF) 1α367,369. Under normoxic conditions, the α 

subunit of HIF undergoes degradation by oxygen-dependent mechanisms; under hypoxic 

conditions stabilised HIF1α forms a heterodimer with HIF1β to form the HIF1 transcription 

factor378. Targets of the HIF1 transcription factor include glycolysis enzymes379, vascular 

endothelial growth factor (VEGF)380,381, transforming growth factor β (TGFβ)380 and 

MMPs382,383. ‘Chronic hypoxia’ occurs when a large tumour diameter causes large distances 

between cells and their nearest blood vessel, leading to long-term deficiencies in oxygen 

supply to that region365. Chronic hypoxia occurs over days and causes long term cellular 

adaptations such as decreased translation, altered transcription, decreased DNA repair and 

increased genomic instability367,369. Both acute and chronic hypoxic conditions can be re-

capitulated in vitro by altering the length of time cells are cultured in a hypoxic environment. 

 

There are several methods for the detection of hypoxia within a tumour, including protein 

expression, gene signature expression and oxygen electrode measurements384–391. 

Identifying whether a patient has a hypoxic tumour can be used to inform treatment 

decisions, such as the inclusion of a hypoxia-modifying element392–398. A meta-analysis of 

hypoxia-modifying treatment in combination with radiotherapy in H&N cancer showed 

significantly improved loco-regional control and disease specific survival393.  
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While the gold standard method for measuring oxygen concentrations is the use of 

Eppendorf oxygen electrodes, there are prohibitive disadvantages as measurements can 

only be taken from accessible tumours, the process is highly invasive and it is difficult to 

implement into the clinic399,400. A more clinically applicable though indirect method to 

measure oxygen concentration detects proteins upregulated by the HIF1 transcription factor 

through IHC or mRNA expression. Frequently used protein markers of hypoxia are carbonic 

anhydrase IX (CAIX) and glucose transporter 1 (GLUT1). Protein markers are easily 

applicable to tumour tissue samples and can be assessed on routine biopsy samples, 

however they are less specific due to expression by hypoxia-independent processes (e.g. 

via oncogenic activation), and protein detection can vary depending on the IHC method and 

antibody specificity400. As the oxygen level within a tumour is not homogeneous, depending 

on which regions of the tumour are sampled there is the potential for under- or over-reporting 

the true extent of hypoxia. 

 

CAIX is a zinc metalloproteinase involved in the maintenance of pH through hydration of 

carbon dioxide401. CAIX is normally expressed in stomach, intestinal and gall bladder tissue, 

however hypoxia increases the expression of CAIX through the HIF1α signalling pathway401. 

CAIX protein significantly correlated with HIF1α protein expression402–405. CAIX mRNA and 

protein expression are significantly correlated406. Higher CAIX protein staining is associated 

with worse survival outcomes in breast404,407 and NSCLC405,407. Some studies using cohorts 

of H&N cancer patients report significantly worse survival outcomes associated with CAIX 

staining408409, but this is not always the case402. In one study, a significant correlation 

between CAIX expression and Eppendorf electrode measurements was reported in cervical 

cancer, and CAIX was a significant prognostic factor for metastasis-free survival410. In 

others, positive staining for CAIX was not significantly associated with measurements taken 

using the Eppendorf oxygen electrode method, disease-free or overall survival in cervical 

cancers411,412.  

 

GLUT1 (coded by the SLC2A1 gene), is a membrane glucose transporter and acts to 

transport glucose into cells. Reduced levels of glucose result in an upregulation of GLUT1. 
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GLUT1 is also upregulated under hypoxic conditions through the HIF1α signalling 

pathway401. GLUT1 protein and mRNA expression levels are significantly correlated413. It is 

highly expressed in the endothelial cells of the BBB414,415. In breast cancer, HIF-1a protein 

expression is significantly correlated with GLUT1 expression403. The overexpression of 

GLUT1 in tumours was associated with worse survival outcomes in H&N416, ovarian417, 

gallbladder418, rectal419 and breast420 cancer and PNET421. There was no correlation between 

GLUT1 expression and overall survival in pancreatic418,422 and cervical carcinomas423 

although GLUT1 expression was correlated with metastasis-free survival in cervical 

carcinoma423. Meta-analyses of studies investigating GLUT1 expression and outcomes in 

solid tumours424, human cancers425, breast carcinoma425 and lung cancer426 all concluded 

that GLUT1 overexpression is significantly correlated with worse overall survival.  

 

Hypoxia gene signatures are gene sets where the expression level is indicative of the level 

of hypoxia within a tumour microenvironment. As with protein markers, this data is generated 

from a sample of the whole tumour and so may not be reflective of the entire tumour 

microenvironment. However, hypoxia gene signatures are easier to place into clinical 

practice than probe measurements and are more reliable than protein markers with respect 

to hypoxia. There are a large number of hypoxia gene signatures in the literature, however, 

following development, few are validated and translated into clinical practice. Hypoxia gene 

signatures identified through a literature search are summarised in Table 4. Of note, hypoxia 

gene signatures are, on the whole, not transferable across multiple cancer types, requiring 

them to be derived for each new cancer type or site of origin389. This is illustrated by the 

components of the 21 gene signatures. If the gene signatures were transferable between 

cancer types, genes that were used to identify hypoxic tumours would be expected to be 

represented in multiple signatures. Across all signatures listed in Table 4, a total of 394 

unique genes are included, and only 72 of these are found in more than one signature. Only 

15 genes, 4%, occurred in at least five of the signatures. The most frequently used genes 

were VEGFA and NDRG1, but these were only found in nine of 21 signatures. The 

differences between the gene signatures suggest that different cancer types have different 

genetic responses to a hypoxic microenvironment.  
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Table 4: Published hypoxia-associated gene signatures 

Study Cancer No.  
genes 

Signature score  Cut-off Outcome* 

Yang 2017391 Bladder 24 Median gene expression Cohort median signature score Prognostic; predictive of benefit from 
CON 

Wang 2020427 Breast 14 Gene coefficient equation Cohort median signature score Prognostic 

Seigneuric 2007428 Breast 79 None Overall gene expression Prognostic 

Hu 2009429 Breast 13 Average gene expression Two cut-offs -0.63 and 0.08 Prognostic (also lung and glioma) 

Ghazoui 2011430 Breast 70 Median gene expression NS Not reported 

Halle 2012431 Cervix 31 Median gene expression Unsupervised clustering Prognostic 

Fjeldbo 2016432 Cervix 6 None Compare to previously defined 
hypoxic tumours 

Prognostic 

Dekervel 2014433 CR 
 

6 Gene coefficient equation Optimal cut-off for cohort (Youden’s 
Index) 

Prognostic 

Wang 2020388 GBM 5 Gene coefficient equation Cohort median signature score Prognostic 

Tardón 2020434 GBM 36 None k-means clustering Prognostic - univariate analysis only 

Lin 2020435 Glioma 5 Gene coefficient equation NS Prognostic 

Van Malenstein 2010386 HCC 7 Gene coefficient equation 0.35  Prognostic 

Eustace 2013436 H&N 
Bladder 

26 Median gene expression Cohort median signature score Not prognostic; predictive of benefit 
from CON in H&N 

Toustrup 2011437 
 

H&N 15 None Compare to previously defined 
hypoxic tumours 

Prognostic; predictive of benefit from 
nimorazole 

Sun 2020438 LUAD 16 Gene coefficient equation Cohort median signature score Prognostic 

Buffa 2010387 Metagene 51 Median gene expression Ranking method Prognostic (H&N, breast, lung) 

Fardin 2010389 NBL 32 None k-means clustering Prognostic 

Ragnum 2015439 Prostate 32 Median gene expression Unsupervised clustering Prognostic 

Yang 2018440 Prostate 28 Gene coefficient equation Cohort median signature score Prognostic; predictive of benefit from 
CON (bladder) 

Yang 2017441 Sarcoma 24 None Compare to previously defined 
hypoxic tumours 

Prognostic 

Winter 2007390 Metagene 99 RNA expression distribution Clustering and ranking of scores Prognostic (H&N) 
*outcome in cohort of patients with cancer the signature was derived in, unless otherwise stated; CON – carbogen and nicotinamide treatment; NS – not stated; GBM – glioblastoma; NBL – 
Neuroblastoma; H&N – head and neck; HCC – hepatocellular carcinoma; LUAD – lung adenocarcinoma; CR – colorectal; NS – not stated 
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The majority of the signatures are prognostic, meaning that their use can identify patients with high 

hypoxia and worse survival outcomes. A few have been shown to be predictive of benefit from the 

hypoxia-modifying therapies carbogen and nicotinamide (CON)391,436,440 or nimorazole437. Carbogen 

is a gas mixture of 98% oxygen with 2% carbon dioxide which is inhaled during the administration 

of radiotherapy. Nicotinamide is a pharmaceutical intervention that increases blood flow to 

tumours, administered several hours prior to treatment. The combination of the two treatments 

work to increase oxygen within a tumour, making the environment less hypoxic and more 

susceptible to radiation damage. Treatment with CON significantly increased the median tumour 

pO2 values in the majority of a cohort of bladder cancer patients397. Nicotinamide decreased the 

total x-ray dose required for local control, and when combined with carbogen this dose was 

reduced even further395. Nimorazole is a hypoxia-targeted radiosensitizer442. Combining nimorazole 

with radiotherapy in a cohort of H&N patients significantly increased loco-regional control and 

disease-specific survival compared to patients treated with placebo and radiotherapy392. The 

predictive gene signatures can identify the patients who will benefit from treatment and those 

where hypoxia-modifying treatments will provide no additional clinical benefit. 

 

1.5.1 Hypoxia and radioresponse 

Under normoxic conditions, DNA is ionised and damaged by the free radicals produced by 

radiation. Ionised DNA then reacts with free molecular oxygen to form a stable but damaged DNA 

molecule. In this way, oxygen makes the DNA damage permanent, although it is important to note 

this damage may still be repaired by DNA repair pathways. Under hypoxic conditions, the lack of 

free molecular oxygen means that the fixation of DNA damage cannot occur. Instead, ionised DNA, 

R·, is reduced to form RH, and DNA is restored to its original, undamaged, state304,365,369,443,444. 

This is the basis of the oxygen fixation hypothesis, which explains relative radioresistance under 

hypoxia. Tissue sections from tumour regions irradiated under high pressure oxygen conditions 

showed a greater extent of damage compared to sections from matched tumour regions irradiated 

under atmospheric oxygen conditions445. Clinically, an hypoxic tumour has been shown to be a 

negative prognostic indicator for survival following radiotherapy in multiple cancers including 

H&N372,446,447, cervical448 and soft tissue sarcoma374.  
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The oxygen enhancement ratio (OER) is a term used in radiobiology to describe changes in 

radiosensitivity resulting from different oxygen concentrations449. The radiation dose required to 

produce a certain biological effect in hypoxic cells is greater than that required for normoxic cells; 

OER is the ratio of these doses444,449,450. For x-rays the OER is usually between 2.5 and 3.0451. The 

greatest increase in OER and radiosensitivity occurs between 0-3% oxygen, and very little change 

in OER occurs at concentrations above 21%444,450,452–456.  

 

1.5.2 Medulloblastoma and hypoxia 

MBLs are assumed to contain regions of hypoxia because they are solid tumours457–459. Very few 

studies have been published examining markers of hypoxia within MBL patient samples. One used 

a small cohort containing both MBL (n=28) and PNET (n=7) utilising IHC staining for the 

expression of CAIX460. Across the whole cohort, 23% of samples had positive CAIX staining, and 

these tumours had worse overall survival460. While this study provides evidence for the occurrence 

of hypoxia within MBL tumours, it was conducted prior to the establishment of the molecular 

subgroups of MBL and so is unable to indicate whether subgroup and hypoxia status are linked. A 

study reporting that the WNT subgroup showed leakier BBBs compared to the remaining three 

subgroups investigated the expression of GLUT1. GLUT1 expression was significantly lower in 

WNT tumours compared to the remaining subgroups106. This study also showed that WNT tumours 

had significantly higher blood vessel density with significantly more vessel branch points than the 

remaining molecular subgroups106. A more comprehensive blood supply in WNT tumours suggest 

that these would be better oxygenated, which is in agreement with the low GLUT1 staining.  

 

1.6 Migration 

Migration is the movement of cells across a surface allowing cells to change their position based 

on external information, either individually or as a collective cell front461–464. Cellular migration is 

required during embryonic development, tissue repair and immune responses462–464. Migration also 

contributes to the development of cancer metastasis462–464. In order to migrate, an external stimulus 

causes a cell to polarise in the desired direction of movement463. This external stimulus could be a 

chemokinetic signalling molecule (telling the cell to be more migratory), a chemotactic/haptotatic 
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gradient (telling the cell to move along said gradient) or simply a lack of contact with surrounding 

cells463. The cell extends a protrusion in the direction of movement and sets down adhesion 

molecules to attach to the surface, then contraction of the cell body along with release of adhesion 

molecules towards the rear cause the whole cell to be dragged towards the destination463. This 

process will be repeated while the external stimulus is present. The speed with which a cell 

progresses through this cycle is cell type dependent – for example fibroblasts are slow migratory 

cells while leukocytes are much faster463.  

 

Migration of cells can be easily and simply measured in vitro using assays such as the gap 

closure/wound healing or transwell migration assays (see Section 1.6.1 and Figure 4). These 

assays can be adapted to measure another metastatic process, invasion. The invasion process 

requires cells to travel through a 3D membrane or matrix, and this process combines degradation 

of the matrix of the matrix with cell migration464. Patient samples can be examined for protein 

markers of the epithelial-mesenchymal transition (EMT), a process by which cells gain a more 

migratory, metastatic phenotype461. The EMT process is required in cancer metastasis to allow 

cells to migrate and invade into other tissues. Markers of EMT include low or decreased expression 

of proteins associated with epithelial cells, such as E-cadherin, and high or increased expression of 

proteins associated with mesenchymal cells, such as N-cadherin or vimentin. These markers can 

also be studied in vitro and levels correspond to the results of in vitro migration and invasion 

assays. For example, in a study of 28 cancer cell lines representing a variety of disease sites, cells 

with a high baseline expression of E-cadherin showed very little cell invasion while those with low 

E-cadherin expression had high rates of invasion465.  

 

1.6.1 Migration and radiation 

Radiation is generally thought to promote the processes of cellular migration and invasion466. This 

relationship has been demonstrated in vivo, where mouse models of implanted lung tumours 

repeatedly demonstrate a significant increase in the number of metastases following radiation 

treatment compared to no radiation treatment467–469. However, in vitro studies are less conclusive. 

Table 5 presents a summary of published studies on the effect of radiation on migration and 

invasion in a range of cell lines.  
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While a substantial number of studies report an increase in migration and/or invasion, in 

concordance with the observations in vivo, the majority found either no change or a reduction in 

migration/invasion. There may be a contribution of the assay methodologies to these contradictory 

results, as several different protocols with experimental parameters are described. 

  

Table 5: Summary of published studies investigating the effect of radiation on migration/invasion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

*All invasion assays carried out using the Transwell/Matrigel invasion assay 
+ transwell migration assay; W – Wound healing assay; C – chemotaxis assay; S – spheroid assay 
CR – colorectal; GBM – glioblastoma; H&N – Head and Neck; HC – hepatocellular; MBL – medulloblastoma; OS - 
osteosarcoma 

 Cell Line Dose (Gy) Result (Migration) Result (Invasion)* 

Breast LM2-4 2.3 No change+ 470  

MCF-7 2.3 No change+ 470  

MDA-MB-231 2.3 
10 

No change+ 470 
IncreasedW 471 

 
Increased471 

CR CaR1 5 IncreasedW 472 Increased472 

DLD1 5 IncreasedW 472 Increased472 

GBM U87MG 1 
3 
6 

No change+ 473 
No change+ 473 
Increased+ 473 

No change473 
Increased473 
Increased473 

LN-18 1 
3, 6 

No change+ 473 
Increased+ 473 

No change473 
Increased473 

LN-229 1, 3 
6  

Increased+ 473 
Increased+ 473 

No change473 
Increased473 

LN229 2 
10 

Increased+ 474 
No change+474 

 

U87MG 2 
10 

Increased+ 474 
No change+ 474 

 

Glioma GaMg 10 ReducedS 475  

U87 5 ReducedS 475  

H&N BHY 2, 5, 8 IncreasedW 476  

Cal27 2, 5, 8 IncreasedW 476  

DDP 8  Reduced477 

HLAC 8  Reduced477 

HN 8 
2, 5, 8 

 
IncreasedW 476 

Reduced477 

HT1080 2 No changeC 478 No change478 

UD5 8  Reduced477 

HC Hep3B 7.5  Increased479 

HepG2 7.5  Increased479 

Huh7 7.5  Increased479 

Lung A549 2 
10 
2.2,  

Reduced+ 480 
Reduced+ 480 
No changeW 481 

No change480 
Reduced480 

EBC-1 2, 10 No change+ 480 No change480 

LLC-LM 2.5, 7.5  Increased468 

MBL DAOY 8 IncreasedW 243 Increased243 

D283 8  Increased243 

OS MG63 2, 4, 6 ReducedW 224 Reduced224 

Pancreatic Panc-1 3, 5, 10 Reduced+ 482 Increased482 

Suit-2 3, 5, 10 Reduced+ 482 Increased482 
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On the largest scale, the method of initiating cell migration varies greatly. The most commonly 

used assay is the transwell assay (Figure 4, top panel). The transwell assay uses a porous 

membrane within a well through which cells can move – cells are seeded on the top of the 

membrane, incubated and then the number of cells that have travelled through the membrane are 

counted to show the migration rate. All invasion studies were conducted using an adaptation of this 

set up, where a layer of Matrigel is added between the cell layer and the membrane (therefore cells 

have to invade through the Matrigel before migrating through the membrane)464. The chemotaxis 

assay uses the transwell membrane method but places a chemotactic agent in the bottom section 

of the well in order to create a chemotactic gradient and a motive for cell movement464. The second 

most commonly used methodology was the wound healing/gap closure assay (Figure 4, middle 

panel). In this assay, cells are seeded to form a confluent monolayer and then a section of this 

monolayer is physically removed, for example by scratching a pipette tip across the well. The 

scratched monolayer is then incubated and gap closure monitored. Often this is done by imaging 

the well immediately after the scratch has been created and then again at 12 h or 24 h post-

scratch. The amount of gap closure can then be calculated. The final method used was the 

spheroid migration assay (Figure 4, bottom panel), where cells are grown in 3D cell culture before 

individual spheroids are plated in 96-well plates and the dispersion of cells from the spheroid is 

monitored464.  

 

The different protocols measure different aspects of migration. In the transwell assay, cells travel 

across a membrane either at random or towards a chemotactic stimulus in the chemotaxis variation 

of the protocol. Cells move from areas of high to low confluency, and cell movement is vertical 

(from the top to the bottom chamber). The assay monitors single cell or chemotactic migration, but 

is not a model of collective cell migration or the EMT464. The transwell assay outputs the number of 

moving cells but does not allow for measuring the rate of migration. Additionally, while the 

chemotaxis assay initially provides cells with a chemotactic gradient towards the bottom chamber, 

due to the porous membrane required to allow cell movement to occur, this gradient becomes 

more diffuse over the course of the assay464. In the wound healing assay, cell movement is 

collectively away from a mass of cells and towards a mass of cells. Additionally, if used, the 

physical scratch will cause physical damage to the cells, causing intracellular signalling responses 
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that may influence the behaviour of the cell monolayer. While the two gap edges close the gap 

through co-ordinated cell movement, it is possible to track individual cells throughout the assay and 

monitor single-cell movement as well as collective cell movement.  

 

The spheroid migration assay monitors the movement of cells away from a cell mass. As cells 

detach and move away from the spheroid, they do not travel at a uniform speed in a straight line. 

Radiation has been reported to significantly increase the displacement of cells from a starting point 

but not the total distance travelled470. While live-cell imaging combined with single-cell tracking can 

be applied to the spheroid migration assay, as the assay measures cell displacement rather than 

distance travelled single images at set time points may be adequate to detect radiation-induced 

alterations in cell movement. 
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Figure 4: In vitro methods for investigating cell migration. Three common set ups for monitoring cell 
movement are the transwell (TW) assay, the wound healing/gap closure (WH) assay and the spheroid 
migration (SM) assay. In the TW assay, cells are seeded in the top chamber of the insert and movement 
across a semi-permeable membrane is monitored. This set-up can be adapted for a chemotaxis assay by 
placing the chemotactic agent in the bottom chamber. In the WH assay, cells are seeded as a confluent 
monolayer, a gap is created and the closure of the gap is monitored. The assay can be scratch based, where 
cells are physically scraped off the surface, and barrier based, where cells are prevented from growing in a 
particular area using a removable stopper. In the SM assay cells a single spheroid is placed in a culture 
vessel. As the spheroid disaggregates, cell movement away from the spheroid is monitored.  
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A parameter that varies widely across the studies is the radiation dose used, ranging from 1 to 10 

Gy (Table 5). In some studies, changes in migration are dose-dependent, while in others an effect 

seen at lower doses is lost at higher doses or vice versa. It is difficult to take into account the 

relative effects on cell survival of these different doses within the migration assay. For example, a 

decreased migration rate at higher doses may actually be a result of increased cell death or longer 

periods of growth delay.  

 

Another important factor in the analysis of cell movement in vitro with regards to radiation-induced 

changes is a time delay between irradiation exposure and assay initiation. Significant alterations in 

migration were not observed until 24 h following irradiation470, while invasion alterations occurred 

40 h after exposure468. Alterations to the cellular biology can take hours to manifest following 

irradiation. By assessing cell movement immediately following irradiation there may not be enough 

time for the biological process of migration to be altered by radiation exposure. 

 

The precise mechanisms by which radiation increases cellular migration are under some debate 

and not clear. Of the studies reported in Table 5, no conclusions were drawn with regards to the 

mechanisms. A subset of the studies had the aim only of investigating the effect of irradiation on 

migration/invasion within particular cell lines rather than the elucidation of underlying biological 

changes and processes that would cause such a change. The most commonly implicated proteins 

in radiation-induced motility changes are MMPs. MMPs are enzymes known to degrade the 

extracellular matrix (ECM), suggesting a mechanism by which cells become more motile466. The 

protein expression of MMP-9 is increased following irradiation of MBL cell lines483. Exogenous 

MMP-2 caused faster gap closure in the wound healing assay484, as did transfection with MMP-

7485. Inhibition of MMP-2 or MMP-9 in retinoblastoma cells significantly slowed the gap closure486.  

 

A wide range of studies across various cell lines, have reported that irradiation affects the 

expression of EMT markers within cell lines. Specifically, the expression of the epithelial marker E-

cadherin is decreased while the expressions of mesenchymal markers vimentin and/or N-cadherin 

are increased by irradiation in colorectal472, MBL487 and lung481 cancer cell lines. After 

chemoradiotherapy, tissue from patients with rectal cancer express significantly greater levels of 
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vimentin and fibronectin, but significantly less E-cadherin472. This may also help explain the 

contradictory results gained from cell line studies, as conditions in which migration and invasion are 

studied in vitro may not be conducive to EMT-driven changes, such as the loss of adhesion 

molecules or increased ECM degradation.  

 

There is some evidence that radioresistance is linked to migration. In radioresistant cell lines 

derived from established cervical215 and oesophageal209 cell lines (HeLa, ECA109 and Kyse150), 

E-cadherin protein and mRNA expression was significantly decreased while N-cadherin and 

vimentin protein and mRNA expression was significantly increased. The radioresistant cell lines 

were more mesenchymal (and therefore more migratory/metastatic) than the parental cell lines.  

 

As the only methods available for determining cellular migration were in vitro monolayer based, 

only the SHH and Group 3 subgroups were the focus of the work presented in this thesis.  

 

1.6.2 SHH and migration 

Activation of the SHH signalling pathway is implicated in increased cellular migration. Activating the 

SHH pathway increases migration in cell lines representing NSCLC488,489, LUAD490, gastric 

cancers491, HCC125,492, ovarian cancers130, GBM493 and in synoviocytes494 (normal cells located 

within joints). Inhibition of the pathway decreases cell migration in NSCLC489, breast carcinoma123 

and cervical carcinoma cell lines495. SHH pathway activation also causes increases in metastases 

and components of the metastatic pathway. Overexpression of SHH in vivo in an orthotopic model 

of pancreatic cancer significantly increased the percentage of mice with metastases compared to 

control subjects129. More metastatic breast123 and HCCs125 have significantly higher expression of 

the SHH signalling pathway components SHH, PTCH1, SMO and GLI1 compared to non-

metastatic tumours123,125. Expression of MMPs at both the protein and mRNA levels are increased 

by SHH signalling in ovarian cancer cell lines (MMP-7)130, HCC cell lines (MMP-2 and MMP-

9)125,492, GBM cell lines (MMP-2, MMP-9)493. Activation also caused a positive response for EMT 

protein markers, with decreased expression of E-cadherin and increased expression of N-cadherin 

and vimentin in bladder cancer355 and NSCLC cell lines489. Inhibition of GLI1 or SMO in lung490 or 

pancreatic496 cancer cells caused an increase in E-cadherin expression. This suggests that the 
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activation of the SHH pathway promotes a more migratory phenotype through the induction of EMT 

and increasing expression of MMPs.  

 

1.6.3 MYC and migration 

MYC staining is significantly higher in metastatic compared to non-metastatic osteosarcoma362, and 

c-myc expression inhibits E-cadherin in an immortalized epithelial cell line497. Inhibiting the 

expression and/or activation of c-myc significantly inhibited migration in MBL498, osteosarcoma362 

and breast cancer499 cell lines. MYC amplification may therefore cause increased in vitro cell 

migration.  

 

1.6.4 Medulloblastoma and migration 

Several MBL cell lines have been assessed in in vitro migration assays, although rarely as part of a 

panel of MBL cell lines to allow for comparisons. Additionally, there is infrequent quantification of 

the rate of migration within these assays, making it difficult to compare between publications. 

Assays that do use the same cell lines do not report similar results. In one study, the MBL cell line 

Madsen showed the greatest invasion of a panel of MBL cell lines, followed by UW228-2, UW228-

3, DAOY then UW228-1500. However, in a transwell assay, ONS-76 cells migrated faster than 

DAOY or UW228 cells501. DAOY cells are more positive for EMT marker expression than ONS-76 

cells, suggesting a more migratory phenotype which was reflected by faster gap closure in the gap 

closure assay502.  

 

In the transwell assay, the SHH cell line DAOY127 and Group 3 cell lines MED8A503 and D425503 

showed reduced cell migration following irradiation. Irradiation also decreased migration of DAOY 

cells in the gap closure assay504. Inhibition of the SHH pathway using GANT61 in combination with 

irradiation resulted in a greater decrease in cell migration in the gap closure assay – although the 

study does not comment on the effect of GANT61 treatment alone127. In contrast, the cell lines 

DAOY and D283 (SHH and Group 3 respectively) showed increased invasion following 

irradiation504. These results illustrate one of the difficulties of in vitro migration assessment – the 
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lack of reproducibility for a cell line across different experimental set ups, quantification 

approaches, experimenters and laboratories.  

 

1.7 Project Aims 

The majority of MBL patients are not given subgroup-specific therapy with the majority are 

prescribed the same treatment. The different clinical outcomes between subgroups demonstrate 

these therapies achieve different levels of success within each subgroup, and there is potential to 

improve outcomes using personalised treatment. Current clinical trials focus on the (arbitrary) 

reduction of treatment severity in the WNT subgroup and targeted treatment for the SHH subgroup 

using previously discovered SHH pathway antagonists. Knowledge of differential chemotherapeutic 

and radiotherapeutic responses of the molecular subgroups could be used to design future clinical 

trials based on empirical evidence. 

 

There is some evidence that the chemotherapeutic response differs across the molecular 

subgroups based on underlying biological mechanisms106. No studies have investigated whether 

the underlying biology affects radioresponsiveness. Based on survival outcomes it was 

hypothesised that the WNT subgroup is the most radioresponsive, followed by SHH, Group 4 and 

Group 3. Major contributing factors to radioresponsiveness are intrinsic radiosensitivity, 

proliferative capacity and the presence of hypoxia. It was predicted that the molecular subgroups 

would show significant differences in these factors causing the different radioresponsiveness.  

 

Activation of the WNT and SHH signalling pathways decrease radiosensitivity and therefore these 

subgroups were hypothesised to be relatively less radiosensitive than Groups 3 and 4. This 

pathway activation can also increase proliferation and therefore these subgroups were also 

hypothesised to be more proliferative. Low radiosensitivity and higher proliferation would indicate a 

lower radioresponsiveness, however these subgroups were initially hypothesised to be more 

radioresponsive. To account for this discrepancy, it was hypothesised that Group 3 and 4 tumours 

would contain more extensive hypoxia. Tumour hypoxia is a known and significant factor in 

decreasing radioresponsiveness and therefore this would account for the initial hypothesis based 

on survival outcomes.  
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Data from the literature indicates MBL is a radioresistant and proliferative tumour type, however, no 

direct comparisons between molecular subgroup with regard to their intrinsic radiosensitivity, 

proliferative capacity or level of hypoxia have been published. The project hypotheses can be 

supported by inferences drawn from separate publications which report the SHH subgroup as less 

radiosensitive than Group 3 and that the WNT subgroup is the least hypoxic. Investigations 

designed to specifically test these characteristics across subgroups would provide more complete 

datasets containing more robust and conclusive data. The radiosensitivity, proliferative capacity 

and extent of tumour hypoxia across the molecular MBL subgroups were investigated using 

publically available patient cohorts downloaded from Gene Expression Omnibus (GEO).  

 

As the panel of MBL cell lines available for this study only represented SHH and Group 3 cell lines, 

the migration analysis was limited to these subgroups and MBL as a whole. The activation of the 

SHH signalling pathway in SHH subgroup cell lines was predicted to result in a higher baseline rate 

of cell migration compared to the Group 3 cell line. Irradiation of MBL cell lines in vitro was 

predicted to result in increased cell migration.  

 

The overall aim of this project was to identify factors that might lead to differences in the 

radioresponsiveness of the four MBL molecular subgroups and could potentially be used in the 

future to personalise treatments.  

 

 The specific objectives were to investigate whether there were differences between MBL 

molecular subgroups in:  

1. Radiosensitivity 

2. Proliferation 

3. Hypoxia 

4. Cell migration. 
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2. Materials and methods 

2.1 Cell culture 

2.1.1 Medulloblastoma cell line panel 

The cell line panel comprised six MBL cell lines (Table 6). The cell lines D425Med, MED8A, 

ONS-76 and UW228-2 were obtained from Dr David Jones (Heidelberg German Cancer 

Research Centre, Germany). D283Med and DAOY were purchased from American Type 

Culture Collection (ATCC) cell biology collection (Manassas VA, USA). Cultures were tested 

for mycoplasma contamination on a bimonthly basis. 

 

2.1.2 Cell line authentication 

Cell lines were authenticated using Short Tandem Repeat (STR) DNA profiling upon receipt 

and on each cell thaw through the Molecular Biology Core Facilities at the Cancer Research 

UK – Manchester Institute. STRs are regions in the DNA profile of 1-6 base pairs, which can 

be used to create a unique profile of a cell line505. DNA from the cell line to be authenticated 

is extracted, amplified using the polymerase chain reaction (PCR), then sequenced505. The 

STR profile of the sample is compared to that of the original cell line and the test cell line is 

considered to be authentic if there is at least an 80% match between the two505. 
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Table 6: Characteristics of the six cell line panel 

SHH – Sonic Hedgehog, WT – wild-type, M- mutant, HLG – high level gain, Amp – amplified  

 

2.1.3 Tissue culture conditions 

Cell lines were maintained in RPMI-1640 (Sigma Aldrich, Poole, UK) with 0.3 g/L L-

glutamine (Sigma Aldrich) and 10% Fetal Bovine Serum (FBS, Lot~ BCBW1009, Sigma 

Aldrich), henceforth referred to as ‘complete medium’. Cultures were maintained at 37°C in a 

95% humidified air and 5% CO2 incubator. Cell culture was conducted using aseptic 

technique and following the British Journal of Cancer Guidelines for the use of cell lines in 

biomedical research518. Adherent cell lines were maintained in Corning Cell Culture Flasks 

with Vent Cap (Corning, Corning, USA) and passaged at 70-80% confluency. Semi-adherent 

cell lines were maintained in CytoOne Non-Treated flasks (Star Labs, Milton Keynes, UK) at 

optimal cell concentrations specific to each cell line (Table 6). Where required, hypoxia was 

maintained using a Whitley H35 Hypoxystation (Don Whitley Scientific, Bingley, UK) to 

provide the required O2 concentration in a humidified atmosphere with 5% CO2 at 37°C. 

 

Cell Line Subgroup p53 
Status 

MYC 
Status 

Phenotype Derivation Split 
Ratio 

D283 Group 3506 
Group 4507 

WT508–

510 
HLG511 Semi-

adherent 
Peritoneal 
metastasis from 
6-year old 
Caucasian male 
patient512 

5x105 
cells/mL 

D425 Group 3506 M510,513 Amp514 Semi-
adherent 

Cerebellar 
tumour from 5 
year old male 
patient514 

3x105 
cells/mL 

DAOY SHH226 M508–

510,513 
- Adherent Posterior fossa 

tumour from 4-
year old 
Caucasian male 
patient515 

1:3 - 
1:10 

MED8A Group 316 WT513 Amp511 Adherent - 1:5 

ONS-76 SHH226 WT513 - Adherent Tumour from 2-
year old east 
Asian female 
patient516 

1:10 - 
1:15 

UW228-2 SHH226 M508,513 - Adherent Posterior fossa 
tumour from 9-
year old female 
patient517 

1:3 – 
1:10 
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2.1.4 Subculture of adherent cell lines 

Subculturing was carried out to maintain cells in the exponential growth phase. The spent 

cell culture medium was removed and discarded to waste. A Phosphate Buffered Saline 

(PBS) wash was carried out, using approximately 2 mL PBS per 10 cm2 culture surface area 

and gently rocking the culture vessel several times. The wash solution was removed and 

discarded and a pre-warmed dissociation reagent was added (~0.5 mL per 10 cm2 culture 

surface area). For MED8A the reagent Accutase (Sigma Aldrich) was used; for all other cell 

lines trypsin-EDTA (0.5 g trypsin, 0.2 g EDTA, Sigma Aldrich) was the dissociation reagent. 

The vessel was gently rocked to ensure complete coverage of the cell layer, before 

incubation at 37°C for 5 min. When over 90% of cells had detached, pre-warmed complete 

medium was added using at least twice the volume of dissociation reagent present. This cell 

suspension was then transferred into daughter culture flasks using appropriate dilutions and 

complete medium added up to the recommended volume for the flask size. Passage 

numbers were recorded at each split to monitor the total number of passages for each cell 

line. After a maximum of 20 passages, new cells were thawed.  

 

2.1.5 Subculture of semi-adherent cell lines 

The subculture of the semi-adherent cell lines was carried out in accordance with the 

following protocols, previously optimised by the group. Spent medium containing suspension 

cells was transferred to a Falcon tube. The culture vessel was washed with PBS, using 

approximately 2 mL per 10 cm2 culture surface area, and the PBS wash added to the spent 

medium and centrifuged for 5 min at 400 x g. After centrifugation the supernatant was 

discarded and the pellet was resuspended in an appropriate amount of pre-warmed 

complete medium using gentle pipette mixing. The cell suspension was counted as 

described in Section 2.1.6. For D283, the cell suspension was diluted to 5x105 cells/mL and 

for D425 the final concentration was 3x105 cells/mL. Two days after subculturing, flasks 

containing semi-adherent cell lines were fed with a volume of complete medium equal to half 

that already in the flask.  
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2.1.6 Harvesting cells and haemocytometry 

Adherent cells were washed with PBS, detached from the culture vessel and diluted with 

complete medium as detailed previously (Section 2.1.4). The cell suspension was 

centrifuged at 400 x g for 5 min to produce a cell pellet. The supernatant was discarded and 

cells re-suspended in appropriate volumes of pre-warmed complete medium and vortexed to 

produce a single cell suspension. Semi-adherent cells were prepared as detailed in Section 

2.1.5. The trypan blue exclusion assay was used to count viable cells by adding 10 µL of cell 

suspension to 10 µL of 0.4% trypan blue solution (Sigma-Aldrich), of which 10 µL was placed 

under a coverslip on a haemocytometer (Neubauer Improved Haemocytometer Counting 

Chamber, Hawksley, London, UK). As trypan blue is only taken up by non-viable cells, 

unstained cells were counted to obtain a viable cell concentration. Cells across the four outer 

grids of the haemocytometer were counted, including cells touching the top and left side of 

each square but excluding those touching the bottom or right sides. The total number of cells 

was divided by four, multiplied by 104, and then multiplied by the trypan blue dilution factor 

(2) to calculate the concentration in cells/mL. The number of dead cells was recorded by 

counting the stained blue cells.  

 

2.1.7 Seeding cells 

After cells had been harvested and counted, the volume of cell suspension containing the 

required number of cells for each experiment could be calculated. This volume was added to 

the appropriate culture vessel, such as a 6-well plate or petri dish, and cells incubated under 

the required experimental conditions.  

 

2.1.8 Preparation of frozen cell stocks 

After initial receipt and authentication of each established culture of each cell line, frozen 

stocks were prepared in freezing medium containing 90% FBS and 10% dimethylsulfoxide 

(DMSO, Sigma-Aldrich). Cells in the exponential growth phase with a viability of greater than 

80% were harvested and counted as described in Section 2.1.6. After a second 

centrifugation at 400 x g for 5 min, the cell pellet was resuspended in the volume of freezing 
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medium required to make a 2x106 cells/mL suspension. Cryovials (1.8 mL Cryovial with 

Internal Thread, E3110-6122, Star Labs) containing 1 mL of cell suspension in freezing 

medium were placed at -80°C in a controlled rate freezing apparatus (Nalgene Mr. Frosty or 

Cool Cell), producing a freezing rate of -1oC per minute. At least 24 h later, vials were 

transferred to storage in liquid nitrogen.  

 

2.1.9 Thawing of frozen cell stocks 

Cryovials were quickly thawed using a 37°C water bath and the contents transferred to a 15 

mL Falcon tube containing 4 mL of pre-warmed complete medium. After centrifugation at 

400 x g for 5 min, the pellet was resuspended in 4 mL of pre-warmed complete medium in a 

T25 culture flask (for semi-adherent cell lines) or 15 mL of pre-warmed complete medium in 

a T75 culture flask (for adherent cell lines). Cells were placed in the incubator and monitored 

until subculturing was required.  

 

2.2 Irradiation of cells 

X-ray irradiation was carried out using either an XStrahl CIX3 irradiator (XStrahl, GA, USA) 

with a dose rate of 2.14 Gy/min (OCRB experiments) or a Faxitron x-ray (Faxitron Bioptics, 

AZ, USA) with a dose rate of 0.95 Gy/min (Stopford experiments) or 1.37 Gy/min (Paterson). 

Cells were irradiated at room temperature under normoxia or under hypoxic conditions (0.1% 

oxygen), which were maintained throughout irradiation using a Micro Pelicase (Peli, CA, 

USA).  

 

Proton irradiation was carried out in The Christie Proton Beam Research Room using a 

Varian Probeam cyclotron (Varian, CA, USA). A dose rate of 0.81 Gy/min was used for the 2 

and 4 Gy doses with 230 meV and 26 nA. A dose rate of 0.78 Gy/min was used for the 6 and 

8 Gy doses with 230 meV and 51 nA. As the proton irradiation experiments were conducted 

during the beam commissioning and testing in the Research Room, only an energy of 230 

meV at the entrance of the SOBP had been fully commissioned and tested. Sample plates 

were therefore positioned and exposed to this energy and cells were irradiated at room 
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temperature under normoxia. Following irradiation, samples were isolated until the activation 

levels had decreased to a safe level, at which point they were transferred to the incubator. 

RBE values were calculated using Equation 2. 

Equation 2 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  
𝑥 − 𝑟𝑎𝑦 𝑑𝑜𝑠𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑎 𝑠𝑒𝑡 𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡

𝑝𝑟𝑜𝑡𝑜𝑛 𝑑𝑜𝑠𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡
 

 

 

2.3 Cell growth assay 

Exponentially growing cells were seeded in 6-well plates (Corning Costar Flat Bottom Cell 

Culture Plates, Corning) on day 0 and maintained in 0.1% or 21% oxygen for 96 h. The 

trypan blue exclusion assay (Section 2.1.6) was used to count cells every 24 h. For each cell 

line, one independent experiment was carried out, with three replicate wells for each 

condition each day. GraphPad Prism v 8.1.2 (GraphPad Software, CA, USA) was used to 

plot growth curves and calculate population doubling times (Td). Statistical analysis (t-tests) 

was carried out using GraphPad Prism v 8.1.2. 

 

2.4 Clonogenic assay 

The protocol used for the clonogenic survival assay was adapted from Franken et al. 

(2006)175.  

 

2.4.1 Colony formation tests 

Exponentially growing cells were seeded into 6-well plates in 4mL of pre-warmed RPMI-

1640 and incubated for up to 14 days. Complete medium was used for all cell lines excluding 

MED8A, where medium containing 20% FBS was used. Seeding densities ranged from 100 

to 1000 cells/well. For each cell line, one independent experiment was carried out, with two 

technical replicates at each seeding density. Plates were inspected on days seven, 11 and 

14 to check colony formation. The endpoint was reached when colonies contained over 50 
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cells and hence were observable by eye. Once suitable colonies had formed, plates were 

fixed, stained and counted (Section 2.4.3).  

 

2.4.2 Clonogenic assays 

Exponentially growing cells were seeded into plug-seal T25 flasks (CytoOne, Star Labs) at 

seeding densities optimized for each cell line and allowed to adhere for 24 h in an incubator. 

After 24 h, flasks for irradiation under hypoxia were transferred to the hypoxia cabinet and 

exposed to 0.1% oxygen for 24 h. Flasks for irradiation under normoxic conditions remained 

in the incubator. Before removal from the hypoxia cabinet the plug-seal lids were secured to 

maintain the oxygen concentration during irradiation. Cells were irradiated with 0, 1, 2, 4, 6, 

8, 10, 12, 16 or 20 Gy of x-rays. Immediately following radiation exposure, cells were 

counted and seeded into 6-well plates using varying seeding densities. Complete medium 

was used for all cell lines excluding MED8A, where medium containing 20% FBS was used. 

At least three biological replicates for each dose point were carried out for each cell line, 

containing three technical replicates per seeding density. Plates were incubated for up to 14 

days until colonies containing over 50 cells had formed, at which point cells were fixed, 

stained and counted (Section 2.4.3).  

 

2.4.3 Fixing, staining and counting of colonies 

For DAOY, ONS-76 and UW228-2 plates, medium was decanted from each well and a PBS 

wash using 2-3 mL per well applied. As the cell line MED8A produced weakly attached 

colonies, the PBS wash step was omitted for this cell line. 2 mL of 0.1% crystal violet 

solution (Sigma-Aldrich) in 50% methanol (Fisher Chemical, Loughborough, UK) was added 

to each well and plates were incubated at room temperature for no more than 1 h. Crystal 

violet solution was removed for re-use or inactivated using sodium hydroxide pellets. Plates 

were washed by submerging in a water bath and then air dried overnight. Inactivated crystal 

violet waste was discarded down a sink. Colonies were counted manually using a colony 

counting pen (eCount Colony Counter Pen, Heathrow Scientific, IL, USA). Alternatively, the 
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plates were scanned on a GelCount colony and spheroid counter (Oxford Optronix, Oxford, 

UK) and the software used to manually identify and count colonies.  

 

2.4.4 Analysis 

Wells with fewer than 10 colonies or too many colonies to count were excluded from 

analysis. The mean number of colonies for each seeding density at each dose was 

calculated. Plating efficiency (PE) was then calculated using Equation 3, and wells that 

displayed a loss of linearity for that dose were also excluded from analysis.  

 

 

Equation 3 

𝑃𝑙𝑎𝑡𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑠𝑒𝑒𝑑𝑒𝑑
𝑥 100 

 

The SF for each seeding density at each dose was calculated using Equation 4 and the 

average 0 Gy PE, then the mean SF value at each dose was reported for that experiment.  

Equation 4 

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑠𝑒𝑒𝑑𝑒𝑑 𝑥 (
0 𝐺𝑦 𝑃𝑙𝑎𝑡𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

100
)
 

 

GraphPad Prism was used to plot the survival curves using an LQ model (Equation 5). 

Survival curve parameters were calculated using GraphPad Prism and the in-house 

alpha_beta software. Statistical analyses, including F-tests and t-tests, were carried out 

using GraphPad Prism v 8.1.2. 

 

Equation 5 

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝐷𝑜𝑠𝑒 (𝐷) =  𝑒− (𝛼𝐷+ 𝛽𝐷2) 

 

The OER was calculated using Equation 6 using the dose to produce a specific biological 

effect following irradiation under hypoxia or normoxia.  
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Equation 6 

𝑂𝑥𝑦𝑔𝑒𝑛 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜 =  
𝐷𝑜𝑠𝑒 𝑖𝑛 ℎ𝑦𝑝𝑜𝑥𝑖𝑎

𝐷𝑜𝑠𝑒 𝑖𝑛 𝑛𝑜𝑟𝑚𝑜𝑥𝑖𝑎
 

 

2.5 CellTiter-Glo assay 

2.5.1 Reagent preparation 

The CellTiter-Glo Luminescent Cell Viability Assay kit (Promega, WI, USA) was used. The 

reagent was prepared according to the manufacturer’s protocol by transferring 100 mL of 

CTG buffer to the CTG substrate and vortexing until a homogeneous solution was obtained. 

The reagent was then stored at -20°C and thawed in the fridge overnight before each assay.  

2.5.2 Response linearity test 

Exponentially growing cells were seeded in increasing cell densities in a 96-well flat clear 

bottom white polystyrene TC-treated microplate (Corning) and incubated for 24 h. The CTG 

reagent and seeded plate were allowed to equilibrate to room temperature for 30 min before 

either 100 μL or 50 μL of reagent was added to each well. Plates were mixed on an orbital 

shaker for 2 min then incubated at room temperature for 10 min. A VarioScan Lux plate 

reader (Thermo Fisher Scientific) was used to record luminescence in RLUs. The number of 

cells seeded was plotted against the RLU value, and the upper and lower limits of the linear 

response were recorded. These were used as cut-off values for the CTG assay, as the 

number of cells present at the point of the assay was not determinable. 

 

2.5.3 CellTiter-Glo assay 

Exponentially growing cells were seeded at low but increasing cell densities in a 96-well flat 

clear bottom white polystyrene TC-treated microplate (Corning) and incubated for 48 h. The 

range of cell densities used across all cell lines was 20 cells/well – 320 cells/well. Following 

the incubation period cells were irradiated with 0, 2, 4, 6 or 8 Gy of x-ray irradiation before 

being returned to the incubator. After a nine day incubation, the CTG reagent and plates 

were allowed to equilibrate to room temperature for 30 min before 50 μL of reagent was 

added to each well. Plates were mixed on an orbital shaker for 2 min then incubated at room 
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temperature for 10 min. The Varioscan Lux plate reader was used to record luminescence 

(in RLU).  

 

2.5.4 Analysis 

For each plate, the 0 cells/well RLU values were used to calculate the background 

luminescence, which was then subtracted across the plate. Individual RLU values that did 

not lie within the linear response range for that cell line, as calculated in Section 2.5.2, were 

excluded in accordance with the manufacturer protocol. A plot of seeding density against 

RLU was used to identify which seeding densities lay within the linear response range for 

each radiation dose. A single seeding density which lay within the linear response range for 

all doses within that experiment was used to calculate the PF (Equation 7).  

 

Equation 7 

𝑃𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑅𝐿𝑈 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝐷𝑜𝑠𝑒 𝑋

𝑅𝐿𝑈 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 0𝐺𝑦
 

 

Response curves were plotted and the AUC calculated using GraphPad Prism. A lower AUC 

value indicates a more radiosensitive cell line. Statistical analyses, including F-tests and t-

tests, were carried out using GraphPad Prism v 8.1.2.  

 

2.6 Bioinformatics analysis 

2.6.1 Data processing and analysis 

Processing and analysis of the gene expression data were carried out using RStudio (R 

version 4.0.3). The packages used for analysis were affy519, affycoretools520, 

AnnotationDbi521, Biobase522, dplyr523, GEOquery524, ggplot2525, gplots526, hgu133plus2.db527, 

hgu133plus2cdf528, hugene11sttranscriptcluster.db529, hugene20sttranscriptcluster.db530, 

matrixStats531, MM2S532, oligo533, pheatmap534, stringr535, survminer536, survival537 and 

writexl538. Probeset IDs were annotated with gene symbols using the relevant annotation 

package for each platform. Where multiple probesets mapped to a single gene symbol, the 

median gene expression value of these probesets was used for analysis. Statistical analyses 
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including the generation of descriptive statistics, ANOVAs and unpaired t-tests were carried 

out using GraphPad Prism v 8.1.2.  

 

2.6.2 Patient cohorts 

Four patient cohorts were downloaded from the GEO database –GSE109401, GSE85217, 

GSE37382 and GSE37418. All cohorts had subgrouping data available. Data were 

downloaded as processed, normalised .CEL files. A cohort containing 34 patients was also 

available (McCabe). Raw data for this cohort were processed and normalised using the RMA 

algorithm. Patient cohort details are shown in Table 7 and Table 8.  
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Table 7: Details of the patient cohorts used in this study 

Sample preparation, microarray, normalisation method and subgroup classification methods reported in cohort papers. Probe pairs per sequence and number of genes are details of the microarrays.  
*25-mer probe length for each probe

Cohort Sample 
preparation 

Microarray Probe 
pairs per 
sequence* 

Number 
of genes 

Normalisation 
method 

Subgroup classification 
method 

Number 
of 
samples 

Sample 
number 

GSE37418 
Finkelstein, 
St Jude, 
2012 cohort 
539,540 

100 ng of 
snap-frozen 
RNA 

Affymetrix 
Human 
Genome U133 
Plus 2.0 Array 

11541 38500541 Mas5 mRNA expression profiling & 
immunohistochemistry 

73 8 WNT 
10 SHH 
16 Group 3 
39 Group 4 

GSE109401 
Rivero-
Hinojosa, 
Washington, 
2018 
cohort542 

15 μg of 
cRNA from 
frozen 
primary tissue  

Affymetrix 
Human Gene 
2.0 ST Array 

21543 48000543 RMA Methylation profiling classifier 
from 
MolecularNeuropathology.org 

19 5 WNT 
5 SHH 
5 Group 3 
4 Group 4 

GSE85217 
Cavalli, 
Toronto, 
2016 
cohort95,544 

400 ng of 
total RNA 
from fresh 
frozen tissue  

Affymetrix 
Human Gene 
1.1 ST Array 

26545 28875545 RMA Integrated gene expression & 
DNA methylation data, 
followed by spectral clustering 

763 70 WNT 
223 SHH 
144 Group 
3 
326 Group 
4  

GSE37382 
Northcott, 
DKFZ, 2012 
cohort16 

400 ng of 
total RNA 
from frozen 
tissue 
biopsies 

Affymetrix 
Human Gene 
1.1 ST Array 

26545 28875545 RMA Custom Nanostring codeset 285 0 WNT 
51 SHH 
46 Group 3 
188 Group 
4 

McCabe, 
unpublished 
cohort 

500ng of total 
RNA from 
frozen 
primary tissue 

Affymetrix 
Human 
Genome U133 
Plus 2.0 Array 

11541 38500541 RMA 22-probeset signature78 32 3 WNT 
10 SHH 
8 Group 3 
11 Group 4 



Page | 85  

 

Table 8: Patient characteristics for the five cohorts 

 
GSE37418 GSE109401 GSE85217 GSE37382 McCabe 

n (76) % n (19) % n (763) % n (285) % n (32) % 

Subgroup WNT 8 11 5 26 70 9 0 0 3 9 
 

SHH 10 13 5 26 223 29 51 18 10 31 
 

Group 3 16 21 5 26 144 19 46 16 8 25 
 

Group 4 39 51 4 21 326 43 188 66 11 34 

Age Group Infant (<3) 0 0 4 21 98 13 21 7 19 59 
 

Child (3-16) 76 100 13 68 520 68 238 84 8 25 
 

Adult (>16) 0 0 0 0 111 15 69 24 5 16 

Gender Male 54 71 10 52 472 62 202 71 16 50 
 

Female 22 29 7 37 247 32 80 28 16 50 

Histology Anaplastic 17 22 - - 0 0 0 0 0 0 
 

Classic 51 67 - - 387 51 200 70 32 100 
 

Desmoplastic 6 8 - - 109 14 21 7 0 0 
 

Large Cell Anaplastic 0 0 - - 72 9 30 11 0 0 
 

MBEN 0 0 - - 18 2 6 2 0 0 
 

Medulloblastoma 0 0 - - 0 0 27 9 0 0 
 

Myo 2 3 - - 0 0 0 0 0 0 

M Stage M0 56 74 13 68 397 52 - - 28* 88 
 

M+ 20 26 3 16 176 23 - - 4+ 13 

MBEN – Medulloblastoma with extensive nodularity. *M0/1; +M2/3
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2.6.3 Subgroup analysis 

Subgroup classification data were available for all five patient cohorts. As the method for 

determining tumour subgroup was not consistent between cohorts, the open-source 

Medullo-Model to Subtypes (MM2S) R package was used532. During MM2S analysis, single-

sample Gene Set Enrichment Analysis (ssGSEA) is performed. The algorithm then selects 

out any enriched genesets that are subgroup specific, and ranks these based on their 

enrichment scores. This procedure produces a ranking matrix for the sample, which is 

processed by the algorithm in a k-nearest neighbour classification model. The sample is 

assigned to a subgroup based on the subgroups of the five nearest neighbours identified 

using this classification model.  

 

2.6.4 Radiosensitivity index analysis 

The RSI is calculated from the gene expression values of 10 genes (Equation 8). Details of 

the 10 genes are given in Table 9. 

 

Equation 8 

Radiosensitivity Index (RSI) = (HDAC1 * -0.020469) + (JUN * 0.0128283) + (PAK2 * -0.0092431) +  
        (PRKCB * -0.0017589) + (RELA * -0.0038171) + (STAT1 * 0.0254522) +  
        (SUMO1 * -0.0002509) + (IRF1 * -0.0441683) + (ABL1 * 0.1070213) +  
        (AR * 0.0098009)  

 

 

Table 9: The 10 genes of the Radiosensitivity Index Signature 

Gene Name Gene Symbol Ensembl ID 

Histone deacetylase 1 HDAC1 ENSG00000116478 

Jun proto-oncogene JUN ENSG00000177606 

p21 activated kinase 2 PAK2 ENSG00000180370 

Protein kinase C beta PRKCB ENSG00000166501 

Rela proto-oncogene RelA ENSG00000173039 

Signal transducer and activator of 
transcription 1 

STAT1 ENSG00000115415 

Small ubiquitin like modifier 1 SUMO1 ENSG00000116030 

Interferon regulatory factor 1 IRF1 ENSG00000125347 

ABL proto-oncogene 1 ABL1 ENSG0000097007 

Androgen receptor AR ENSG00000169083 
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2.6.5 Meta-PCNA index analysis 

The mPI is calculated as the median gene expression value of the 131 genes in the meta-

PCNA signature. The full list of genes in the signature can be found in Appendix 1.  

 

2.6.6 Hypoxia signatures 

No published hypoxia gene signatures have been derived or validated using MBL cell lines 

or patients. A literature search identified 21 published hypoxia gene signatures (Table 4, 

Section 1.5). Of these, 12 were selected for use with the patient cohorts. The three 

signatures derived for brain cancers were included in analyses, as was the NBL signature, 

because these cancers are expected to be more closely related to MBL. Of the remaining 

identified signatures, those that classified patients as high- or low-hypoxia based on the 

median cohort score were included. Signatures that used more complex clustering or 

comparison methods were excluded. Finally, signatures derived in cancer types that were 

not represented in the already selected panel (i.e. a HCC signature and a metagene 

signature) were included in our panel. The 12 included signatures are described in Table 10.  
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Table 10: Published hypoxia signatures used in this study 

Signature Number of 
genes 

Cancer of origin Signature Score Generation 

Yang, 
2018440 

28 Prostate Signature score generated using gene coefficients determined from a Cox survival model. 
Median signature scores stratified patients into high and low hypoxia groups.  

Yang, 
2017391 

24 Bladder Signature score generated as the median of the 24 gene expression values. The median 
signature score for the cohort is used to divide samples into high and low hypoxia groups.  

Tardón, 
2020434 

36 Glioblastoma Patients were grouped into ‘high-risk’ or ‘low-risk’ categories based on signature expression by 
k-means clustering (one minus Pearson correlation metric, k=2).  

Eustace, 
2013436 

26 Head and neck 
Bladder 

Signature score generated as the median of the 26 gene expression values. The median 
signature score for the cohort is used to divide samples into high and low hypoxia groups.  

Sun, 2020438 16 Lung 
adenocarcinoma 

Signature score generated using gene coefficients generated by a LASSO Cox model. The 
median signature score for the cohort is used to divide samples into high and low hypoxia 
groups.  

Lin, 2020435 5 Glioma Signature score generated using gene coefficients generated by a multivariable Cox analysis.  

Fardin, 
2010389 

32 Neuroblastoma Patients were grouped into high or low hypoxia categories based on signature expression by k-
means clustering (Euclidean distance, 100 iterations, k=2).  

Buffa, 
2010387 

51 Metagene Signature score was generated using the median gene expression of the 51 gene expression 
values.  

Van 
Malenstein, 
2010386 

7 Hepatocellular Signature scores were generated by subtracting the mean gene expression of downregulated 
genes (n=3) from the mean gene expression of the upregulated genes (n=4). Patients were 
grouped in high or low hypoxia groups using a cut off value of 0.35.  

Wang, 
2020427 

14 Breast Signature scores were generated using gene coefficients calculated by Cox regression analysis. 
The median signature score for each cohort was used to classify patients as high or low 
hypoxia.  

Wang, 
2020388 

5 Glioblastoma Signature scores were generated using gene coefficients calculated by multivariate Coz 
regression analysis. Median signature scores were used to classify patients as high or low 
hypoxia.  
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2.6.7 Survival analysis 

Clinical outcome data were available for GSE85217. Survival analyses, including generation of 

Kaplan-Meier curves, univariable and multivariable analysis, was carried out in R using the survival 

package537. Only factors that were found to be significant in univariable analysis were included in 

multivariable analysis with one exception. In the case of the hypoxia gene signatures, the gene 

signature with the lowest p-value in univariable analysis was used in the multivariable model.  

 

2.7 IncuCyte assays 

2.7.1 Gap closure assay (WoundMaker) 

This assay was used with the adherent cell lines only. Exponentially growing cells were harvested 

and seeded in a 96-well plate. Plates were incubated for 24 h and then irradiated at 0 Gy, 2 Gy or 8 

Gy and the medium changed to one containing only 1% FBS. For experiments requiring a 24 h 

delay between irradiation and gap creation, another 24 h incubation was then carried out. For 

experiments monitoring gap closure immediately following irradiation, this incubation step was 

omitted. The IncuCyte WoundMaker (Essen Biosciences, Sartorius) was washed once with sterile 

distilled water and once with 70% ethanol for five min each. It was then used to create a scratch in 

all wells of one plate simultaneously. Between plates, the WoundMaker was soaked in sterile 

distilled water for 5 min. After scratching, wells were washed twice with PBS to remove any cell 

debris before fresh medium containing 1% FBS was added. Plates were transferred to an IncuCyte 

Zoom (Essen Biosciences, Sartorius) and images taken every 1 h for a period of 24 h to monitor 

gap closure. For gap measurement at 0 h, immediately following gap creation the wells were 

washed with PBS and fixed with formalin for 10 min. Two more PBS washes were carried out, then 

fixed plates were stored at 4°C until imaging on the IncuCyte Zoom. After use the WoundMaker 

was washed with 0.5% Alconax, 1% Virkon S, sterile distilled water and 70% ethanol for five min 

each.  

 

2.7.2 Gap closure assay (Ibidi inserts) 

This assay was used with the adherent cell lines only and used re-usable ‘Culture-Insert 2 Well for 

self-insertion’ (‘Ibidi inserts’, Ibidi, Germany). The Ibidi inserts were sterilised by soaking in 100% 
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ethanol and then left to air dry under sterile conditions. Once dry, the inserts were placed in the 

centre of each well in a 12-well plate, where they adhered to the culture surface. Exponentially 

growing cells were harvested and seeded into both sides of the insert. Plates were incubated for 24 

h before the inserts were carefully removed using sterilised tweezers from each well to generate 

the gap. Either complete medium or medium containing 1% FBS was added to each well and 

irradiation with either 0, 2 or 8 Gy was carried out. Plates were transferred to an IncuCyte Zoom 

and images taken every 1 h for a period of up to 24 h to monitor gap closure. For experiments 

requiring a delay in gap creation, cells were seeded into a T75 flask, incubated for 24 h and then 

irradiated at 0 Gy, 2 Gy or 8 Gy. For a 24 h delay between irradiation and gap creation, cells were 

harvested, counted and seeded into both sides of the insert. For a 7 day delay between irradiation 

and gap creation, flasks were returned to the incubator for six days before the cells were seeded 

into the inserts. Plates were incubated for 24 h before the inserts were carefully removed from 

each well to generate the gap. Medium containing 1% FBS was added to each well, then plates 

were transferred to an IncuCyte Zoom and images taken every 1 h for a period of 24 h to monitor 

gap closure. After use the Ibidi inserts were washed in distilled water, sterilised with 100% ethanol 

and left to air dry before being stored for future use.  

 

2.7.3 Analysis 

Images were cropped prior to analysis to select the centre of each scratch and therefore only 

horizontal gap closure. Each image provided data for one timepoint. Cropped images were 

analysed using a Python script developed for this thesis. A user interface was designed and 

implemented with the assistance of a Python specialist, Nathaniel Morris. The code is available at 

https://github.com/rcmorris11/Migration-Analysis-Code/. Images were converted to greyscale and a 

mask was applied to assign a value of 0 to any pixels containing cells and a value of 1 to any pixels 

that did not. The mask settings were optimised for each cell line to ensure accurate identification of 

gap or cell pixels. The total of each row within each image was calculated and converted to 

distance using a scaling factor to produce at least 100 measurements of gap width per timepoint. 

The mean gap width for each time point was plotted and the linear period of gap closure was 

determined and used to calculate the gap closure rate. The mean gap closure rate for each assay 

was calculated. Statistical analysis was carried out using GraphPad Prism v 8.1.2.  

https://github.com/rcmorris11/Migration-Analysis-Code/
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3. Results 

3.1 Cell growth curves 

Figure 5 shows the growth curves for the six MBL cell lines studied (Table 6, Section 2.1.1). 

Growth curves were completed over 96 h with cells grown in 21% (normoxia) or 0.1% 

(hypoxia) oxygen concentrations (Section 2.3). The maximum length of time over which cells 

were required to be incubated under hypoxic conditions was 24 h prior to irradiation, and 

therefore the 96 h time frame confirmed that the cells survived under these conditions for the 

duration of the experiments. 

 

 

Figure 5: Growth curves for the six medulloblastoma cell lines under normoxic and hypoxic 
conditions. Cell lines were seeded in triplicate in 6-well plates in RPMI-1640 with 10% FBS and 
exposed to normoxic or hypoxic (0.1% oxygen) conditions for the duration of the experiment. Cell 
counts were made every 24 h for a total of 96 h, counting three wells at each time point. Data points 
represent the mean ± SEM of three technical repeats.  
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Under both normoxic and hypoxic conditions, the four adherent cell lines had an exponential 

growth phase. A plateau phase was seen for ONS-76 (72-96 h) and MED8A (24-48 h) under 

hypoxia only. Under hypoxic conditions, the beginning of a death phase was observed for 

DAOY at 72 h and for MED8A at 48 h. The growth of the semi-adherent cell line D283 was 

relatively unaffected by oxygen concentration over the course of the experiment, resulting in 

a similar live cell count at 96 h at 21% and 0.1% oxygen. The semi-adherent cell line D425 

showed cell death after 48 h under normoxia; under hypoxia loss of viability was seen after 

24 h. For both semi-adherent cell lines the medium is regularly changed in routine culture to 

allow for their continued growth. Under the conditions of the growth curve experiment, 

medium changes were not carried out, which may explain the premature death phase of 

D425 cells. D283 cells have a longer Td so the death phase of the growth curve was not 

reached during this experiment. The calculated Tds are listed in Table 11. The rapid onset of 

the death phase for D425 and MED8A under hypoxia meant Tds could not be calculated.  

 

Table 11: The population doubling time for six MBL cell lines  

Cell line Condition Doubling time (h) 

D283* Normoxia  40  
Hypoxia 46 

D425* Normoxia NC  
Hypoxia NC 

DAOY+ Normoxia 16  
Hypoxia 18 

MED8A* Normoxia 18  
Hypoxia NC 

ONS-76+ Normoxia 12  
Hypoxia 13 

UW228-2+ Normoxia 20  
Hypoxia 17 

               NC – not calculable; * indicates cell line belongs to Group 3; + indicates cell line belongs to SHH 

 

The relative proportions of adherent and suspension cells for the two semi-adherent cell 

lines were recorded (Figure 6). The percentage of suspension D425 cells was higher when 

cells were cultured in hypoxia compared to normoxia. For the D283 cell line, the percentage 

of suspension cells was unchanged by hypoxic conditions. Regardless of oxygen 

concentration, the relative proportions of suspension to adherent cells within a culture 

remained constant over time, which was also observed in routine cell culture. 
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Figure 6: Hypoxia increases the proportion of suspension cells in D425 but not in D283. Cell 

lines were seeded in triplicate in 6-well plates in RPMI-1640 with 10% FBS and exposed to normoxic or 
hypoxic (0.1% oxygen) conditions. The standard cell culture plates were used, as opposed to the 
suspension cell culture vessels used in continuous cell culture. Cell counts were completed every 24 h 
for a total of 96 h. For the two semi-adherent cell lines, the percentage of live cells in suspension was 
monitored. For D283, most cells grew in suspension whether cultured in normoxia or hypoxia. Under 
normoxic conditions >50% of D425 cells were in suspension, while under hypoxic conditions 
suspension cells made up >90% of live cells. No time dependence was observed. Data points 
represent the mean ±SEM of three technical repeats. *p<0.05, **p<0.01 (t-test). 

 

3.2 Intrinsic radiosensitivity 

Intrinsic radiosensitivity was assessed in cell lines using a clonogenic assay and a high-

throughput proliferation-based assay, and in patient cohorts using the RSI. 

3.2.1 Clonogenic assay – method development 

The clonogenic assay (Section 2.4) was optimised to measure radiosensitivity for the four 

adherent cell lines (DAOY, MED8A, ONS-76, UW228-2). Figure 7 shows representative 

images of the colonies formed by the four adherent cell lines at three radiation doses and 

stained with crystal violet before being scanned using the GelCount colony counter.  
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Figure 7: Representative GelCount images of stained colonies for the four adherent cell lines. 
Plates containing fixed and stained colonies were scanned using the GelCount colony counter prior to 
manual counting. Representative images following 0 Gy, 4 Gy or 8 Gy of irradiation under normoxic 
conditions are shown for each of the four adherent cell lines. Due to the faint nature of the scanned, 
stained colonies for DAOY and UW228-2 and irradiated ONS-76 plates, the GelCount colony counter 
software could not accurately count the stained colonies, whereas the distinction between the purple 
stained colonies and the clear plastic wells was clearly visible for manual counting. c/w = cells per well. 
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All four cell lines formed countable colonies across the dose range used, although the 

characteristics of the colonies varied between cell lines. Under control conditions, the 

staining of ONS-76 and DAOY colonies produced clearly defined colonies, compared to the 

more diffuse and faint colonies seen with UW228-2. MED8A colonies tended to form in a 

three-dimensional manner away from the culture surface, with cells attaching to each other 

rather than to the cell culture dish. MED8A had darkly stained colonies with a much smaller 

diameter than seen with the other cell lines. Colony definition decreased with radiation dose 

for DAOY, ONS-76 and UW228-2, shown by the fainter colonies, due to increased cell 

spreading following irradiation. The colonies formed by MED8A cells did not change in 

appearance following irradiation. Each cell line required different initial seeding densities in 

order to form a countable number of colonies, reflecting the different plating efficiencies and 

survival characteristics of each cell line. The number of colonies formed increased linearly 

with seeding density for all four cell lines, although a plateau in colony formation was 

reached at 700 cells/well for MED8A (Figure 8). 

 

Exceeding the linear range for the cell lines DAOY, ONS-76 and UW228-2 resulted in 

overcrowding of colonies within a well. Colony overcrowding prevented an accurate colony 

count, and so data outside of the linear range are not available for these cell lines. The small 

diameter of the colonies formed by MED8A allowed the linear range of colony formation to 

be exceeded while the colonies were still countable, which is shown as a plateau at seeding 

densities over 750 cells/well. The four adherent MBL cell lines routinely showed low plating 

efficiencies (PEs). Here, the PE for DAOY, ONS-76 and UW228-2 was 15% and for MED8A 

it was 10%.  
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Figure 8: Colony formation increases linearly with cell seeding number for the four adherent 
cell lines. Cell lines were seeded in duplicate wells in 6-well plates in RPMI-1640 with 10% FBS, apart 
from MED8A which used 20% FBS and incubated until colonies containing at least 50 cells formed (up 
to 11 days). At this point, colonies were fixed and stained with 0.1% crystal violet in 50% methanol, and 
counted manually. Data points represent the mean ± SEM of two technical repeats from a single 
experiment. A linear trend line was fitted using GraphPad Prism.  

 

Colony formation in MED8A cells was improved by using medium containing 20% FBS 

because lower concentrations of serum reduced the attachment of the MED8A colonies to 

the culture vessel surface and allowed colonies to be washed off during the staining 

procedure. To investigate if increased serum concentration affected colony formation, ONS-

76 cells were seeded into medium containing either 10% or 20% FBS and incubated until 

colonies formed. The PE was not affected by the serum concentration of the medium (Figure 

9). Clonogenic assays were carried out using the optimal FBS concentration for each cell 

line. 
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Figure 9: Increasing the medium serum concentration has no effect on plating efficiency. 
Unirradiated ONS-76 cells were seeded into 6-well plates in media containing either RPMI-1640 with 
20% foetal bovine serum (FBS) or RPMI-1640 with 10% FBS and incubated for 9 days until colonies 
containing at least 50 cells had formed. Colonies were fixed and stained with 0.1% crystal violet in 50% 
methanol and counted manually using a Colony Counting pen. Box and Whisker plots show 
unirradiated cells incubated in medium containing 20% serum did not form significantly more colonies 
than cells incubated in medium containing 10% serum (p=0.31, t-test). Data points are nine replicates 
per serum concentration from a single experiment.  

 

Over the course of the project, three separate laboratories with different irradiator set-ups 

were used. Figure 10 shows survival curves generated at the three locations (Paterson 

building, Stopford building and Oglesby Cancer Research Building [OCRB]) for two of the 

adherent cell lines, ONS-76 and UW228-2. No significant difference between the survival 

curves was observed, and therefore data from the three locations were pooled for each cell 

line.  
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Figure 10: Survival curves generated in three different laboratories for two cell lines are not 
significantly different. Clonogenic assays were carried out using three separate irradiator set-ups in 
the Paterson, Stopford and Oglesby (OCRB) buildings. Survival data at each location were compared, 
and no significant difference was found between the survival curves generated in each location for 
ONS-76 (p=0.32, F-test) or UW228-2 (p=0.90, F-test). Data points represent the mean ± SEM survival 
fraction for ≥2 (Stopford and OCRB) or a single (Paterson) independent experiment/s with ≥2 replicates 
per dose point in each experiment.  

 

An automated colony counting set-up was available and was investigated as a high-

throughput alternative to manual counting. Figure 11A shows a comparison of the number of 

colonies counted by the two methods. Each data point represents a single well and the solid 

lines show the line of concordance. The majority of the data points for all three cell lines lie 

beneath this line, indicating that the GelCount was routinely over counting the number of 

colonies present in each well. The over reporting is reflected by the survival curves, where 
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the manual counts resulted in lower cell survival at higher radiation doses than the GelCount 

ones. Due to the more diffuse nature of the colonies at higher doses, the algorithm settings 

required also detected background dirt, dead cells or scratches on the plastic as colonies. 

The number of these additional colonies remained relatively consistent across doses. 

However, the low number of colonies formed at higher doses did not exceed background 

noise levels, causing falsely elevated colony counts and reported radioresistance at these 

doses. This over counting was a major problem for the fourth cell line MED8A, which 

produced colonies with a very small diameter. While these stained colonies could be easily 

differentiated by eye, the GelCount software was unable to correctly isolate colonies from 

artefacts. It was, therefore, decided to use the manual counting method for all clonogenic 

assays to ensure a more accurate set of results.  
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Figure 11: The automated cell counter reported higher colony counts and surviving fractions 
than manual counting across all three cell lines tested. Test plates containing fixed and stained 
colonies were processed using the GelCount colony counter and manual counting. The number of 
colonies in each well as reported by the GelCount software was plotted against the number counted 
manually (A). The solid line indicates where the colony counts match for the two methods. For all three 
cell lines, the automated counting reported higher colony numbers.  Data points represent colony 
counts from each individual well within a biological replicate and include all countable wells regardless 
of cell seeding density or irradiation dose. The reported colony counts were used to generate surviving 
fractions and plot survival curves (B). The automated colony counter reported the cell lines to be more 
radioresistant than when colonies were counted manually but was only significant for ONS-76 and 
DAOY (p<0.05, F-test). Data points represent the surviving fraction calculated from ≥ 2 technical 
replicate wells per dose within a single experiment.  
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3.2.2 Radiosensitivity measured using a clonogenic assay 

The results of the clonogenic assays (Section 2.4) following irradiation under normoxia or 

hypoxia for the four adherent cell lines are shown in Figure 12. Table 12 summarises the 

radiation survival curve parameters for the four cell lines. All survival curves were fitted using 

the LQ model. The Group 3 cell line MED8A was the least radiosensitive with the highest 

SF2 value under normoxia. For all four cell lines, irradiation under hypoxic conditions 

decreased radiosensitivity, with the OER for all four cell lines between two and three (as 

expected for x-ray irradiation).  

 

 

Figure 12: Survival curves for the four adherent cell lines irradiated under normoxic and 
hypoxic conditions. Cells were irradiated under normoxic or hypoxic conditions then seeded into 6-
well plates in media containing either RPMI-1640 with 20% serum or RPMI-1640 with 10% serum and 
incubated for up to 11 days until colonies containing at least 50 cells had formed. Colonies were fixed 
and stained with 0.1% crystal violet in 50% methanol and counted manually using a Colony Counting 
pen. For all four cell lines, radiosensitivity is significantly decreased following irradiation under hypoxia 
(p<0.05, F-test). Data points represent the mean ± SEM of three biological repeats apart from the 1 Gy 
and 10 Gy (n=2, MED8A) and 20 Gy (n=1, all cell lines) points. Each biological repeat contained >2 
technical replicate wells per dose point.  
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Table 12: Summary of radiation survival curve parameters for the four adherent cell lines 

 
SF21 SF22 α1 ±SEM 

(Gy-1) 
α2 ±SEM  
(Gy-1)  

AUC1  

(Gy) 
AUC2 

(Gy) 
OER 

DAOY+ 0.42 0.84 0.280 ±0.084 0.042±0.040 2.58 5.67 2.67 

MED8A 0.89 0.61 0.086±0.077 0.220±0.062 3.52 4.56 2.00 

ONS-76+ 0.54 0.89 0.078*±0.11 0.130±0.029 2.60 5.35 2.20 

UW228-2+ 0.61 0.63 0.240±0.050 0.100±0.056 2.76 5.11 2.17 
SF2 values experimentally derived, OER manually calculated, other parameters calculated using GraphPad PRISM. 
1 – Normoxia; 2-Hypoxia; *absolute value of α reported as calculated value based on linear quadratic fit is negative. 
+ indicates cell line belongs to SHH subgroup, otherwise Group 3 

 

Figure 13 shows the same survival curves plotted onto single graphs for normoxia and 

hypoxia to allow comparisons between cell lines. No significant difference was detected 

between the four adherent cell lines under either normoxia or hypoxia. Of the three SHH cell 

lines, ONS-76 appears the most radiosensitive under normoxic conditions at radiation doses 

over 4 Gy. Under hypoxia, this difference in radiosensitivity is not observed. Survival curve 

analyses were also carried out using the in-house alpha_beta software, to perform 1000 

Monte Carlo simulations to produce theoretical datasets with statistical parameters that 

match those of the experimental dataset. From these theoretical datasets, the alpha values 

are plotted against the beta values producing ellipses containing 1000 data points (Figure 

13B & D). Ellipses that overlap indicate no statistically significant difference between the 

experimental datasets. Under normoxic conditions, the radiosensitivities of the TP53 mutant 

SHH cell lines DAOY and UW228-2 are not significantly different from one another, but do 

differ from the TP53 WT SHH cell line ONS-76. The Group 3 cell line MED8A is significantly 

different from all three SHH cell lines. Under normoxic conditions the separation of the 

ellipses is mainly due to differences in the β value, seen by greater separation along the y-

axis. The β value describes the quadratic component of the curve. At higher dose points of 

the experimentally defined survival curves (Figure 13A), ONS-76 and MED8A begin to curve 

away from the DAOY and UW228-2 curves and extrapolation of the curve beyond the 

maximum experimental dose may reflect the results of the Monte Carlo simulation. Under 

hypoxic conditions, these differences in radiosensitivity are not observed and all four ellipses 

overlap. 
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Figure 13: Survival curves and alpha_beta Monte Carlo simulation results for the four adherent 
cell lines. Cells were irradiated under normoxic or hypoxic conditions then seeded into 6-well plates in 
media containing either RPMI-1640 with 20% serum or RPMI-1640 with 10% serum and incubated for 
up to 11 days until colonies containing at least 50 cells had formed. Colonies were fixed and stained 
with 0.1% crystal violet in 50% methanol and counted manually using a Colony Counting pen. Figures 
A and C show survival curves for the four cell lines following irradiation under normoxia or 0.1% 
hypoxia respectively. Data points represent the mean ± SEM of ≥ 3 biological repeats apart from at 1 
Gy and 10 Gy (n=2, MED8A) and 20 Gy (n=1, all cell lines). There was no significant difference 
between the cell lines in normoxia (p=0.40, F-test) or hypoxia (p=0.14, F-test). The Monte Carlo 
simulation carried out by alpha_beta analysis results are shown for normoxia (B) and hypoxia (D). 
Alpha_beta analysis calculated theoretical datasets fitting the statistical characteristics of the 

experimental datasets. Each α was plotted against β for a simulation, and 1000 simulations were 
carried out for each dataset. The ellipses produced indicate statistical significance (p<0.05) when they 
do not overlap.  

 

3.2.3 Radiosensitivity measured using a high-throughput assay 

The luminescent response to CTG reagent increases linearly with seeding density until a 

saturation point is reached (Figure 14). The saturation point varies between the cell lines. As 

the high-throughput assay requires an 11-day incubation period between seeding and 

analysis, the number of cells in a well on the day of analysis will not be known. Therefore, 

the relative luminescence unit (RLU) value at which saturation begins to occur for each cell 
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line was used as an upper limit during analysis (Table 13). Any individual wells that reported 

RLU values above these upper limits were excluded from analysis.  

 

Figure 14: Response to CellTiter-Glo reagent increases linearly with cell seeding density.  Cells 
were seeded in increasing cell densities in duplicate 96-well plates one day prior to the addition of the 
CellTiter-Glo reagent. One plate was treated with 50 μL of CellTiter-Glo reagent, while the other was 
treated with 100 μL of CellTiter-Glo reagent. RLUs were background-subtracted, and plotted against 
cell seeding density. Reducing the CellTiter-Glo reagent volume by 50% had no effect on the reported 
values for any of the six cell lines. For all six cell lines, RLU output increases linearly with seeding 
density for a range of cell seeding densities, before plateauing. The upper limit for each cell line is 
shown by the dotted lines. Data points represent the mean ± SEM of three technical replicate wells. 
RLU = Relative luminescence unit. 

Table 13: Upper limits of detection for luminescence in the CellTiter-Glo assay 

Cell line Upper limit of detection (RLU) 

D283* 4.0x106 

D425* 8.3x106 

DAOY+ 8.0x106 

MED8A* 5.5x106 

ONS-76+ 6.6x106 

UW228-2+ 3.0x106 
* indicates cell line belongs to Group 3, + indicates cell line belongs to SHH subgroup 
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The survival curves for the remaining three adherent cell lines were compared between the 

clonogenic and high-throughput assay to confirm that the proliferation-based approach was 

able to replicate the clonogenic assay results in MBL cell lines (Figure 15).  

 

 

 

Figure 15: Radiation survival curves generated using the high-throughput assay recreate the 
clonogenic survival curves. Cells were irradiated under normoxic conditions in 96-well plates. The 
96-well plates were incubated for 9 days then 50 μL CellTiter-Glo reagent was added. For clonogenic 
assays, the surviving fraction at each dose is plotted. For the high-throughput assay, the proliferating 
fraction at each dose is plotted. An F-test confirmed survival curves were not significantly different for 
DAOY (p=0.20, F-test), MED8A (p=0.57, F-test) and UW228-2 (p=0.55, F-test). Proliferating fraction 
data points represent the mean ± SEM of three biological repeats. Each biological replicate contained 
four technical replicates at each dose point. Surviving fraction data points represent the mean ± SEM 
of three biological repeats apart from 1 Gy and 10 Gy for MED8A where n=2. Each biological repeat 

contained ≥ 2 technical replicate wells per dose point. 

 

For all three cell lines, the survival curves produced by the high-throughput assay were not 

significantly different from those generated by the clonogenic assay (F-test, p>0.05). The 

high-throughput assay was better able to replicate the clonogenic results at lower radiation 

doses (<4 Gy). Attempts to generate PFs at doses greater than 8 Gy were unsuccessful. As 

the PF is generated as the fraction of luminescence at the dose compared to the control (0 

Gy), and the seeding density must be consistent between doses, a seeding density that 

produced a response for the higher doses while also producing a response within the linear 

range at 0 Gy was not possible.  

 

As the high-throughput assay was found to adequately measure radiosensitivity for the 

adherent cell lines, the radiosensitivity of the two semi-adherent cell lines was investigated 

(Figure 16). Although no clonogenic assay results were available for comparison, data 
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generated for these cell lines can be fitted with the LQ equation. Doses greater than 6 Gy 

(D283) and 8 Gy (D425) were not achievable with the current experimental parameters.  

 

 

 

Figure 16: Radiation survival curves generated using the CellTiter-Glo assay for the semi-
adherent cell lines D283 and D425. Cells were irradiated under normoxic conditions in 96-well plates. 

The 96-well plates were incubated for 9 days then 50 μL CellTiter-Glo reagent was added. Proliferating 
fraction was calculated as the proportion of luminescence at each dose compared to the control (0Gy) 
plate. Data points represent the mean ± SEM of three biological repeats. Each biological replicate 
contained four technical replicates for each dose point. 

 

The radiation survival curves for all five cell lines produced by the high-throughput 

proliferation-based assay are shown in Figure 17. These radiation survival results suggest 

that the SHH subgroup is more radiosensitive than the Group 3 subgroup. The two SHH cell 

lines (DAOY and UW228-2) did not significantly differ in terms of radiation survival (F-test, 

p>0.05). Two of the Group 3 cell lines (MED8A and D425) did not significantly differ in terms 

of radiation survival (F-test, p>0.05). The third Group 3 cell line, D283, showed more 

similarity to the SHH cell lines than the other Group 3 cell lines. D283 has also been 

classified as Group 3/4.  
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Figure 17: Survival curves under normoxic conditions determined using the CellTiter-Glo assay. 

Cells were irradiated in 96-well plates and incubated for 9 days. 50 μL of CellTiter-Glo reagent was 
added, then plates were mixed on an orbital shaker for 2 min and incubated at room temperature for 10 
min. Luminescence was read using a VarioScan Lux Plate Reader. There was no significant difference 
between the curves within each of the subgroups (p>0.05, F-test). The SHH cell lines (red) were more 
radiosensitive than the Group 3 cell lines MED8A and D425 (black) (p<0.0001, F-test on pooled 
datasets). The cell line D283 is more similar to the SHH cell lines in terms of radiosensitivity, despite 
being classified as a Group 3/4 cell line. Data points represent the mean ±SEM of three biological 
repeats. Each biological replicate contained four technical replicates for each dose point. 

 

Table 14 lists the parameters of the radiation survival curves calculated by GraphPad Prism. 

The SF2 and PF2 values are generated by the clonogenic and proliferation-based assays 

respectively. For D283 and D425, only data from the proliferation-based assay is available; 

for ONS-76, only clonogenic data were available.  

 

Table 14: Parameters for the radiation survival curves 

Cell Line SF2 AUC 
(Clonogenic) 

(Gy) 

PF2 AUC 
(CellTiter-Glo) 

(Gy) 

D283* - - 0.47 2.284 

D425* - - 0.61 3.051 

DAOY+ 0.42 2.581 0.36 2.013 

MED8A* 0.89 3.378 0.69 3.241 

ONS-76+ 0.54 2.534 - - 

UW228-2+ 0.61 2.760 0.53 2.483 
SF2/PF2 experimentally derived, AUC calculated using GraphPad PRISM. * indicates cell line belongs to Group 3, + 
indicates cell line belongs to SHH subgroup 
 

As no significant difference was shown between the two methods for the three adherent cell 

lines, a combination of the two methods was used to generate radiosensitivity rankings. A 
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commonly reported output of the clonogenic assay is the SF2 which was used to rank the 

cell lines in terms of radiosensitivity (Figure 18A). The most resistant cell line was MED8A, 

followed by D425, both Group 3 cell lines. The most radiosensitive cell lines were D283 

(Group 3/4) and DAOY (SHH, TP53 mutant). The output parameter of the high-throughput 

proliferation-based assay is the AUC. The resulting radiosensitivity rankings using the AUC 

are shown in Figure 18B. 

 

 

Figure 18: MED8A is the least radiosensitive cell line according to both radiosensitivity assays 
and rankings. Cell lines were ranked based on the surviving/proliferating fraction (A) or the area under 
the curve (AUC; B). For cell lines where both the clonogenic and high-throughput assay had been 
used, ranking by fraction placed both assay results together. When the AUC parameter was used, the 
clonogenic assay results rankings were higher than the high-throughput assay. For both assays, 
regardless of the parameter used, MED8A was the least radiosensitive cell line. SF2 – surviving 
fraction at 2 Gy; PF2 – proliferating fraction at 2 Gy. 
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Unlike SF2, the AUC rankings separate two of the three cell lines with replicate data 

(UW228-2 and DAOY). With AUC, the most resistant cell line was MED8A, followed by the 

Group 3 cell line D425. The most radiosensitive cell lines were D283 (Group 3/4) and DAOY 

(SHH, TP53 mutant), as measured by the high-throughput assay. 

 

Results from a single biological replicate using proton irradiation were generated for two of 

the cell lines, representing the SHH (DAOY) and Group 3 (MED8A) subgroups (Figure 19). . 

The RBE at 50%, 10% and 1% cell survival for DAOY was calculated 1.01, 1.08 and 1.16 

respectively. The RBE at 50%, 10% and 1% cell survival for MED8A was 1.11, 1.34 and 

1.36 respectively. At higher radiation doses, protons produced a higher cell kill than x-ray 

irradiation in both cell lines.  

 

 

Figure 19: Radiation survival curves using the proliferating fraction for DAOY and MED8A 
generated using either x-ray or proton irradiation. Cells were irradiated under normoxic conditions 

in 96-well plates and incubated for 9 days. 50 μL of CellTiterGlo reagent was added. X-ray irradiation 
was carried out using an Xstrahl CIX3 irradiator. Proton irradiation was carried out using a Varian 
cyclotron. Proton (230meV) irradiation increased cell killing compared to x-rays, although not 
significantly. X-ray data points represent the mean ± SEM of three biological repeats. Each biological 
replicate contained four technical replicates for each dose point. Proton data points represent a single 
biological repeat with four technical replicates for each dose point. The average of the four technical 
replicates was used to calculate the proliferating fraction at each dose.  

 

3.2.4 Radiosensitivity measured using the radiosensitivity index 

To assess the radiosensitivity of clinical samples, the RSI was applied to five patient cohorts 

(Table 7 and Table 8, Section 2.6.2). Most publications using the RSI signature dichotomise 
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into radioresistant or radiosensitive tumours using a single cut-off value of 0.3745199–201,203–

206. In the five patient cohorts used in the current study, only two samples had RSI values 

less than 0.3745 (GSE37418, samples SJMB089 and SJMB001), classifying most tumours 

as radioresistant. An alternative cut-off point in the literature is the 25th percentile171,172,202,207; 

with the bottom quartile deemed to have low RSI scores and to be radiosensitive. When 

applied to GSE85217, patients with low RSI scores had a reduced risk of death compared to 

those with high RSI scores (Hazard ratio [HR] = 0.67, 95% CI = 0.45-1, p=0.048, Figure 20). 

Survival outcome data were not available for the other four patient cohorts. This analysis 

confirmed the relevance of using RSI to measure the radiosensitivity of MBL.  

 

 

Figure 20: Medulloblastoma patients with radiosensitive tumours have better overall survival. 

The 25th percentile RSI score within the cohort was used to dichotomise patients into low and high 
tumour radiosensitivity groups. Patients with low RSI scores had a significantly decreased risk of death 
compared to patients with high RSI values (HR 0.67, 95% CI 0.45-1, p=0.048). 

 

The five patient cohorts used different methods to assign samples to the four molecular 

subgroups of MBL. The R package ‘MM2S’ was applied across all cohorts to re-assign 

samples to the molecular subgroups (Section 2.6.3. The classifications from the cohort data 

and MM2S are shown in Figure 21. For 92% of samples the subgroup assignment by MM2S 
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matched the cohort classification. Over half of the samples that changed subgroup using the 

MM2S package moved from Group 3 to Group 4 or vice versa.  

 

Figure 21: The distribution of samples across the molecular subgroups using the provided and 
re-classified groupings. Subgroup classification data were provided with the patient cohorts (Cohort 
Classification) and generated using the Medullo-Model to Subtypes (MM2S) R package (MM2S 
Classification). For the majority of samples (92%) the subgroup assignment provided was confirmed by 
re-analysis. Both subgroup assignments for each sample were used in the remaining analyses, but did 
not affect the results.  
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Both the provided (cohort) and MM2S classifications were used to investigate the 

percentage of radiosensitive tumours using the 25th percentile for each cohort (Table 15 and 

Table 16 respectively). The cut-off points varied from 0.4903 to 0.6824 across the five 

cohorts. The highest cut-off point was found in the cohort with no WNT representation 

(GSE37382). The lowest was in GSE37418, which was consistent with the lower gene 

expression scores reported across this cohort. It is not possible to determine whether the 

cut-off point was consistent within each microarray platform with the limited number of 

cohorts used. Across all cohorts the SHH subgroup contained the highest percentage of low 

RSI tumours (Table 15), i.e. the group was the most radiosensitive. Group 4 samples 

consistently had the highest proportion of high RSI tumours, followed by Group 3. Although 

WNT subgroup tumours had a higher representation of high scoring tumours overall 

indicating radioresistance, in GSE37418 most of the subgroup were classed radiosensitive.  

 

Table 15: Percentage of medulloblastoma classified as radioresistant* within each of the 
molecular subgroups (cohort classification) in the five patient cohorts 

Cohort Microarray N 25th 
Percentile 

WNT SHH Group 
3 

Group 
4 

GSE85217 1.1 ST1 763 0.6535 51 46 77 97 

GSE37382 1.1 ST1 285 0.6824 N/A 37 50 91 

GSE37418 U1332 76 0.4903 38 30 93 87 

GSE109401 2.0 ST3 19 0.6361 100 50 80 100 

McCabe U1332 32 0.6714 67 50 88 100 

All Cohorts N/A 1175 N/A 59 44 73 95 
*Samples with RSI scores above the 25th quartile cut point within each cohort were classed as radioresistant. 
1Affymetrix Human Gene 1.1 ST Array; 2Affymetrix Human Genome U133 Plus 2.0 Array; 3Affymetrix Human Gene 
2.0 ST Array 

 

 

Table 16: Percentage of medulloblastoma classified as radioresistant* within each of the 
molecular subgroups (MM2S classification) in the five patient cohorts 

Cohort Microarray N 25th 
Percentile 

WNT SHH Group 3 Group 
4 

GSE85217 1.1 ST1 763 0.6535 59 47 79 95 

GSE37382 1.1 ST1 285 0.6824 N/A 36 35 94 

GSE37418 U1332 76 0.4903 44 42 94 86 

GSE109401 2.0 ST3 19 0.6361 100 60 100 100 

McCabe U1332 32 0.6714 50 50 100 100 

All Cohorts N/A 1175 N/A 59 46 71 95 
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*Samples with RSI scores above the 25th quartile cut point within each cohort were classed as radioresistant.  
1Affymetrix Human Gene 1.1 ST Array; 2Affymetrix Human Genome U133 Plus 2.0 Array; 3Affymetrix Human Gene 
2.0 ST Array 
 

The different molecular subgroups also had significantly different RSI scores, with both the 

cohort and MM2S subgrouping classifications (Figure 22 and Figure 23). In all cohorts, the 

SHH subgroup was significantly more radiosensitive than Group 4 tumours. The SHH 

subgroup was also significantly more radiosensitive than Group 3 tumours in all cohorts 

except GSE37382. In the four cohorts containing the WNT subgroup, these were 

significantly more radiosensitive than Group 4. In the larger two cohorts, GSE37418 and 

GSE85217, WNT tumours were significantly more radiosensitive than Group 3 tumours. 

Only the two largest cohorts found significantly reduced radiosensitivity in Group 3 tumours 

compared to Group 4. Overall, these results indicate the WNT and SHH subgroups were 

more radiosensitive than the Group 3 and 4 subgroups, with SHH tumours being most 

sensitive and Group 4 most resistant.  
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Figure 22: Radiosensitivity differs between molecular subgroups (cohort classification) of 
medulloblastoma. Violin plots shown the distribution of radiosensitivity scores for the four subgroups 
within the five patient cohorts, along with the total sample number for each cohort. The subgroup 
assignment was taken from the cohort data. The central line of the violin plot indicates the median. The 
most radiosensitive subgroup in all cohorts is the SHH group, followed by WNT (where represented). 
The least radiosensitive subgroup was Group 4. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001, One-
Way ANOVA.  
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Figure 23: Radiosensitivity differs between molecular subgroups (MM2S classification) of 
medulloblastoma. Violin plots show the distribution of radiosensitivity scores for the four subgroups as 
assigned by the MM2S classification method. The central line of the violin plot indicates the median. 
The most radiosensitive subgroup in all cohorts is the SHH group, followed by WNT. The least 
radiosensitive subgroup was Group 4. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001, One-Way 
ANOVA.  
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For cohorts where the data were available, other patient characteristics were investigated in 

relation to the RSI scores. Higher scores were observed in patients who were male (Figure 

24), younger (3-16 years; Figure 25) and had classic histology tumours (Figure 26). The 

molecular subgroup proportions of the whole cohort were not reflected in these analyses, 

particularly in comparisons where statistical significance was detected. Specifically, in 

GSE37382, the infant and adult groups as well as the group of LCA tumours showed 

underrepresentation of Group 4 but an overrepresentation of SHH tumours compared to the 

cohort as a whole. Cohort GSE37418 had an overrepresentation of WNT tumours and 

underrepresentation of Group 3 tumours in the female patient population. Five of the six 

desmoplastic tumours within GSE37418 fell into the SHH subgroup, and half of the LCA 

tumours were classified as Group 3. In GSE85217, the infant and adult age groups were 

enriched for SHH tumours. Desmoplastic and MBEN tumours within GSE85217 mostly 

belong to the SHH subgroup, while the LCA tumours contained a high proportion of Group 3 

tumours. In cohort GSE109401, three quarters of the female population were classified as 

SHH subgroup, while almost half of the male population were classified as Group 3 tumours.  
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Figure 24: Medulloblastoma is more radiosensitive in female versus male patients. Violin plots 
show a significantly higher radiosensitivity index was found in male patients compared to female 
patients in three of four cohorts analysed. In all cohorts, there were more male than female patients. * 
p<0.05, unpaired t-test. 

 

 

 

Figure 25: Medulloblastoma is less radiosensitive in children, but only in one cohort. For both 
cohorts there were at least twice as many ‘child’ patients than ‘infant’ or ‘adult’. In GSE37382, no 
significance was found between age categories and radiosensitivity index and age group. In 
GSE85217, a higher radiosensitivity index was observed for children compared to infants (<3) and 
adults (>16). **** p<0.0001, One-Way ANOVA.  
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Figure 26: Classic histology medulloblastoma is less radiosensitive than non-classic histology 
medulloblastoma.  For cohorts where histological subgroup status was available, no pattern was 
observed between the radiosensitivity index scores and the histological subgroups. In GSE85217 and 
GSE37418, classic medulloblastomas were significantly less radiosensitive than desmoplastic 
medulloblastomas. In GSE85217 and GSE37382, classic medulloblastomas were significantly less 
radiosensitive than LCA medulloblastomas. In GSE37418, LCA tumours were significantly less 
radiosensitive than desmoplastic tumours. There were a much greater number of classic histology 
tumours than the remaining histological subgroups in all three patient cohorts. * p<0.05, **** p<0.0001, 
One-Way ANOVA. MBEN – medulloblastoma with extensive nodularity. LCA – large cell-anaplastic.  

 

The results of univariable and multivariable analyses are shown in Table 17 and Table 18 

using the cohort and MM2S subgroup classifications respectively. Due to the limited clinical 

data known for this cohort a multivariate analysis, which would strengthen this work by 

investigating the significance of RSI in relation to other risk factors, was not available. 

Metastatic stage was prognostic in both multivariable analyses, as was the cohort 

classification subgroups. The MM2S classification subgroups lost prognostic significance in 

multivariable analyses. Although prognostic in univariable analysis, RSI was not a 

significantly prognostic factor in multivariable analysis.  
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Table 17: Univariable and multivariable analyses for GSE85217 using the cohort subgroup 
classification 

   
Univariable Multivariable 

Variable 
 

N HR 
(95% CI) 

p-value HR 
(95% CI) 

p-value 

Age Group Infant 119 1.00    

Child 499 0.82 
(0.54-1.30) 

0.371   

Adult 111 0.56 
(0.30-1.10) 

0.072   

Gender Female 247 1.00     

Male 472 1.20 
(0.83-1.60) 

0.368   

Metastatic 
stage 

M0 397 1.00  1.00  

M+ 176 1.60 
(1.20-2.30) 

0.004 1.50 
(1.09-2.20) 

0.015 

RSI quartile High 191 1.00   1.00  

Low 572 1.50 
(1.00-2.20) 

0.048 1.40 
(0.85-2.20) 

0.191 

Subgroup 
(Cohort) 

WNT 70 1.00  1.00  

SHH 223 5.30 
(1.60-17.00) 

0.006 4.80 
(1.48-15.8) 

0.009 

Group 3 144 10.9 
(3.40-35.00) 

<0.001 7.40 
(2.29-24.0) 

<0.001 

Group 4 326 6.00 
(1.90-19.00) 

0.002 3.70 
(1.13-11.9) 

0.031 

*values in bold were significant (p<0.05) 

 

Table 18: Univariable and multivariable analyses for GSE85217 using the MM2S subgroup 

classification 

   
Univariable Multivariable 

Variable 
 

N HR 
(95% CI) 

p-
value 

HR 
(95% CI) 

p-
value 

Age Group Infant 119 1.00    

Child 499 0.82 
(0.54-1.30) 

0.37
1 

  

Adult 111 0.56 
(0.30-1.10) 

0.07
2 

  

Gender Female 247 1.00     

Male 472 1.20 
(0.83-1.60) 

0.36
8 

  

Metastatic 
stage 

M0 397 1.00  1.00  

M+ 176 1.60 
(1.20-2.30) 

0.00
4 

1.60 
(1.12-2.30) 

0.009 

RSI quartile High 191 1.00   1.00  

Low 572 1.50 
(1.00-2.20) 

0.04
8 

1.20 
(0.73-1.90) 

0.487 

Subgroup 
(MM2S) 

WNT 54 1.00  1.00  

SHH 229 4.20 
(1.30-13.0) 

0.01
8 

3.60 
(1.12-11.9) 

0.032 

Group 3 126 8.60 
(2.70-28.0) 

<0.0
01 

5.70 
(1.75-18.7) 

0.004 

Group 4 348 5.00 
(1.60-16.0) 

0.00
6 

3.20 
(0.98-10.3) 

0.054 

*values in bold were significant (p<0.05) 
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3.3 Proliferation 

The proliferation of MBL tumours was investigated using the same cohorts studied to 

investigate radiosensitivity. The gene expression data were used to analyse markers of 

proliferation (Ki67, PCNA) and the meta-PCNA signature (Section 2.6).  

 

3.3.1 Gene expression markers of proliferation 

The RNA expression levels of Ki67 and PCNA were assessed in the five patient cohorts. 

IHC staining is generally used to determine the protein levels of these markers and there is 

no convention regarding cut-off point for mRNA expression. For Ki67 the 75th percentile was 

used546. For PCNA the median was used547. In cohort GSE85217, neither Ki67 (HR = 1.1, 

95% CI = 0.8-1.6, p=0.484; Figure 27) nor PCNA (HR = 0.80, 95% CI = 0.58-1.1, p=0.15; 

Figure 28) was prognostic for overall survival.  

 

 

Figure 27: Ki67 gene expression is not prognostic in the GSE85217 cohort. The Kaplan-Meier 
curves compare samples with high and low Ki67 expression, dividing samples using the 75th percentile 
as a cut-off. The survival outcomes are not significantly linked to Ki67 gene expression (HR 1.1, 95% 

CI 0.8-1.6, p=0.484).  
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Figure 28: PCNA gene expression is not prognostic in the GSE85217 cohort. The Kaplan-Meier 

curve comparing samples with high PCNA expression and low PCNA expression, dividing samples 
using the median as a cut-off. The survival outcomes are not significantly linked to PCNA gene 
expression (HR 0.80, 95% CI 0.58-1.1, p=0.15).  

 

The gene expression of Ki67 differed significantly between the molecular subgroups in the 

three larger patient cohorts using both the cohort (Figure 29) and MM2S (Figure 30) 

classifications. In GSE37382, the SHH subgroup had the highest Ki67 expression, followed 

by Group 4 and Group 3. In GSE37418, Group 4 tumours had significantly lower expression 

than the other three subgroups, between which no difference was detected. In GSE85217, 

the WNT subgroup had significantly higher gene expression of Ki67 than the other three 

subgroups. Again, no difference was detected between these other subgroups. There was 

no consistency across cohorts as to which subgroups had greater Ki67 expression and 

therefore which subgroups were consistently more or less proliferative. The gene expression 

of PCNA was also found to differ significantly between the molecular subgroups in the three 

larger patient cohorts, GSE37382, GSE37418 and GSE85217 (Figure 31, given subgroups; 

Figure 32, MM2S subgrouping). 
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Figure 29: No consistent association between molecular subgroup (cohort classification) and 
Ki67 expression. The distribution of Ki67 expression for the four subgroups within the five patient 

cohorts. The central line of the violin plot indicates the median. Although some significant differences 
between Ki67 gene expression and molecular subgroups were detected within individual cohorts, no 
cross-cohort pattern in Ki67 expression in relation to subgrouping was observed. * p<0.05, ** p<0.01, 
*** P<0.001, **** p<0.0001 One-Way ANOVA.  
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Figure 30: No consistent association between molecular subgroup (MM2S classification) and 
Ki67 expression. The distribution of Ki67 expression for the four subgroups as determined by the 

MM2S algorithm within the five patient cohorts. The central line of the violin plot indicates the median. 
No cross-cohort pattern in Ki67 expression and subgroups was observed. * p<0.05, ** p<0.01, *** 
P<0.001, **** p<0.0001 One-Way ANOVA.  
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In GSE37382, the same pattern as Ki67 expression was observed for PCNA, with SHH 

tumours displaying higher gene expression, followed by Group 4 and Group 3. In 

GSE37418, a significant difference was only observed for expression being higher in Group 

3 than in Group 4. In GSE85217, the SHH subgroup was found to have the lowest PCNA 

gene expression, while no difference was observed between the three remaining subgroups. 

As with Ki67 expression, no consistent pattern of increased or decreased PCNA gene 

expression was observed in relation to the molecular subgroups. In GSE37382 both Ki67 

and PCNA expression indicates SHH to be the most proliferative subgroup. In GSE37418 

Ki67 expression indicated Group 4 tumours were the least proliferative with no difference in 

the other subgroups, while PCNA expression showed that only Group 3 tumours were 

significantly more proliferative than Group 4 tumours. In GSE85217 PCNA expression 

showed SHH tumours were less proliferative than the other three subgroups, while Ki67 

expression suggested WNT tumours were more proliferative than the other three subgroups. 
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Figure 31: No consistent association between molecular subgroups (cohort classification) and 
PCNA expression. The distribution of PCNA expression for the four subgroups within the five patient 
cohorts. The central line of the violin plot indicates the median. No cross-cohort pattern in PCNA 
expression and subgroups was observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-Way 
ANOVA. 
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Figure 32: No consistent association between molecular subgroup (MM2S classification) and 
PCNA expression. The distribution of PCNA expression for the four subgroups within the five patient 
cohorts. The central line of the violin plot indicates the median. No cross-cohort pattern in PCNA 
expression and subgroups was observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-Way 
ANOVA.  
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3.3.2 Meta-PCNA index as a marker of proliferation 

The mPI350 has been used to assess proliferation in TCGA cohorts351. The meta-PCNA 

signature showed MBL to be non-proliferative informative, as the top and bottom quartiles of 

the cohort are not prognostic (HR = 0.82, 95% CI = 0.51-1.3, p=0.393; Figure 33). The meta-

PCNA score does not consistently differ between subgroups in different cohorts (Figure 34 

and Figure 35). 

 

 

Figure 33: Medulloblastoma is a non-proliferative informative cancer, as determined by the 
meta-PCNA index.  The Kaplan-Meier curve for the meta-PCNA index (mPI) for GSE85217, 
comparing survival outcomes for the top (High) and bottom (Low) quartiles. A cancer is designated as 
‘proliferative informative’ if the top and bottom quartiles of the mPI rankings are prognostic on Kaplan-
Meier analysis. In the GSE85217 cohort, these two groupings are not significantly separated (HR 0.82, 
95% CI 0.51-1.30, p=0.39), designating medulloblastoma as non-proliferative informative.  
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Figure 34: No consistent association between molecular subgroup (cohort classification) and 
meta-PCNA scores. The distribution of meta-PCNA index scores for the four subgroups within the five 
patient cohorts. The central line of the violin plot indicates the median. No cross-cohort pattern in meta-
PCNA index scores was observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-Way ANOVA. 
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Figure 35: No consistent association between molecular subgroup (MM2S classification) and 
meta-PCNA scores. The distribution of meta-PCNA index scores for the four subgroups within the five 
patient cohorts. The central line of the violin plot indicates the median. No cross-cohort pattern in meta-

PCNA index scores was observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-Way ANOVA. 

 

In the two smallest cohorts (GSE109401, McCabe), no significant differences between mean 

mPI score and subgroup were found. In GSE37382, the SHH subgroup had the highest mPI 

scores, followed by Group 4 and Group 3 tumours. In GSE37418, the mPI score was 

significantly lower than that of SHH or Group 3 tumours, but did not differ from WNT and no 

difference was found between these other three subgroups. In GSE85217, Group 4 tumours 
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have significantly lower scores than the remaining three subgroups. Again, no difference 

between these subgroups was observed. As with the single gene expression data, no 

consistent patterns in subgroup gene expression was observed across the subgroups or 

cohorts.  

 

3.4 Hypoxia 

The presence of hypoxia in MBL tumours was investigated using gene expression markers 

and hypoxia gene signatures (Section 2.6).  

 

3.4.1 Hypoxia assessed using gene/protein expression 

The mRNA expression of CAIX, a widely used marker to detect the presence of hypoxia, 

was investigated in the patient cohorts (Figure 36 and Figure 37). There was no consistent 

pattern of differences in the level of CAIX mRNA expression across the MBL molecular 

subgroups, irrespective of the approach used to identify subgroups. However, three of the 

cohorts were small. In the two largest cohorts, CAIX expression was significantly higher in 

SHH tumours than in Group 3 or Group 4 subgroups. In GSE37382, CAIX expression was 

significantly higher for Group 4 tumours compared to Group 3. CAIX gene expression, 

stratified using the 75th percentile548, was not found to be prognostic in GSE85217 (HR = 0.9, 

95% CI = 0.62-1.3, p = 0.59; Figure 38).  
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Figure 36: No consistent association between molecular subgroup (cohort classification) and 
CAIX mRNA expression.  The distribution of CAIX gene expression for the four subgroups within the 
five patient cohorts. Subgroup assignments were provided with the cohort data. The central line of the 
violin plot indicates the median. No cross-cohort pattern in CAIX expression and subgroups was 
observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-Way ANOVA. 
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Figure 37: No consistent association between molecular subgroup (MM2S classification) and 
CAIX mRNA expression. The distribution of CAIX expression for the four subgroups within the five 

patient cohorts. The central line of the violin plot indicates the median. No cross-cohort pattern in CAIX 
expression and subgroups was observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-Way 
ANOVA.  
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Figure 38: CAIX gene expression is not prognostic in the GSE85217 cohort. The Kaplan-Meier 
curve for CAIX gene expression for GSE85217 when dichotomised by the 75th percentile gene 
expression. High CAIX expression did not indicate a significantly worse outcome than low CAIX 
expression. (HR 1.1, 95% CI 0.81-1.5, p=0.51).  

 

The gene expression of a second marker, GLUT1, had no association with subgroup status 

(Figure 39, Figure 40) and again, no pattern between subgroup status and GLUT1 

expression was observed. In GSE37382, GLUT1 expression was significantly higher in SHH 

tumours than Group 3 or Group 4. In the other large cohort GSE85217 however, SHH 

tumours had significantly lower GLUT1 gene expression than Group 3 or Group 4 tumours. 

Additionally, in GSE85217 cohort GLUT1 expression was significantly higher in Group 3 

tumours than Group 4 or WNT. The median cohort value was used to classify sample 

GLUT1 gene expression as high or low549,550. GLUT1 gene expression was not prognostic 

(HR = 0.98, 95% CI = 0.71-1.3, p=0.877; Figure 41).  
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Figure 39: No consistent association between molecular subgroup (cohort classification) and 
GLUT1 expression.  The distribution of GLUT1 expression for the four subgroups within the five 
patient cohorts. The central line of the violin plot indicates the median. No cross-cohort pattern in 
GLUT1 expression and subgroups was observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-
Way ANOVA. 



Page | 135  

 

 

Figure 40: No consistent association between molecular subgroups (MM2S classification) and 
GLUT1 expression. The distribution of GLUT1 expression for the four subgroups within the five patient 
cohorts. The central line of the violin plot indicates the median. No cross-cohort pattern in GLUT1 
expression and subgroups was observed. * p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001 One-Way 
ANOVA.  
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Figure 41: GLUT1 gene expression is not prognostic in the GSE85217 cohort. The Kaplan-Meier 
curve for GLUT1 gene expression in GSE85217 compares survival outcomes for patients stratified by 
the median. High tumour GLUT1 expression did not indicate a significantly worse outcome than low 

GLUT1 expression (HR 0.98, 95% CI 0.71-1.3, p=0.877).  

 

3.4.2 Hypoxia gene expression signatures 

There are no hypoxia signatures derived using MBL cell lines or patient samples. A literature 

search identified 12 published signatures (Table 10, Section 2.6.6) derived in a variety of 

cancer types that could be tested in the GSE85217 cohort, which had outcome data 

available. Table 19 summarises the results of the analysis, showing that of the 12 signatures 

used none were prognostic. Additionally, whether a patient sample was assigned to the high 

or low hypoxia group by a signature was not consistent across signatures.  
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Table 19: Hazard ratios and log-rank p values for hypoxia gene signatures in GSE85217 

Source Hypoxia Patients HR(95% CI) Log-rank p 

Yang , 2018 
(Prostate)1 

Low 
High 

382 
381 

1.00 
0.87 (0.63-1.20) 

 
0.369 

Yang, 2017 
(Bladder)1 

Low 
High 

381 
382 

1.00 
0.99 (0.72-1.30) 

 
0.929 

Tardón, 2020 
(Glioblastoma)2 

Cluster 1 
Cluster 2 

467 
296 

1.00 
1.20 (0.86-1.60) 

 
0.315 

Eustace, 2013 
(Head & Neck, 
Bladder)1 

Low 
High 

382 
381 

1.00 
1.00 (0.73-1.40) 

 
0.995 

Sun, 2020 
(Lung 
adenocarcinoma)1 

Low 
High 

381 
382 

1.00 
0.81 (0.59-1.10) 

 
0.201 

Lin, 2020 
(Glioma)1 

Low 
High 

381 
382 

1.00 
1.20 (0.88-1.60) 

 
0.261 

Fardin, 2010 
(Neuroblastoma)2 

Cluster 1 
Cluster 2 

557 
206 

1.00 
0.68 (0.45-1.10) 

 
0.084 

Buffa, 2010 
(Metagene)1 

Low 
High 

381 
382 

1.00 
0.84 (0.61-1.10) 

 
0.263 

Van Malenstein, 
2010 
(Hepatocellular)1 

Low 
High 

381 
382 

1.00 
1.20 (0.88-1.60) 

 
0.256 

Wang, 2020 
(Breast)1 

Low 
High 

382 
381 

1.00 
1.00 (0.75-1.40) 

 
0.837 

Wang, 2020 
(Glioblastoma)1 

Low 
High 

381 
382 

1.00 
1.20 (0.87-1.60) 

 
0.273 

Stratification criteria were 1-median, 2-k-means clustering. *values in bold were significant (p<0.05) 

 

The lowest p-value was achieved using the Fardin NBL signature389, and therefore this 

signature was selected for use in multivariable analysis (Table 20, Table 21). NBL, like MBL, 

is an embryonal tumour from immature nerve cells (blasts)551. Only the variables that were 

significant in univariable analysis were included in the multivariable analysis. In univariable 

analysis the hypoxia signature had borderline prognostic significance, which was lost upon 

multivariable analysis, regardless of subgroup classification method.  

 

Across the entire patient cohort, k-means clustering assigned 73% of samples to the ‘high 

hypoxia’ class using the Fardin signature. A similar proportion of ‘high hypoxia’ samples was 

found within each the four molecular subgroups - 67% in WNT, 77% in SHH, 69% in Group 3 

and 74% in Group 4, suggesting the degree of hypoxia may be independent of subgroup 

status.  
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Table 20: Univariable and multivariable analyses for GSE85217 using the cohort subgroup 
classification 

   
Univariable Multivariable 

Variable 
 

n HR 
(95% CI) 

p-value HR 
(95% CI) 

p-value 

Age Group Infant 119 1.00    

Child 499 0.82 
(0.54-1.30) 

0.371   

Adult 111 0.56 
(0.30-1.10) 

0.072   

CAIX Low 381 1.00    

High 382 0.90 
(0.66-1.20) 

0.51   

Fardin Cluster 1 557 1.00   1.00  

Cluster 2 206 0.68 
(0.45-1.10) 

0.084 0.70 
(0.44-1.10) 

0.129 

Gender Female 247 1.00     

Male 472 1.20 
(0.83-1.60) 

0.368   

High 382 1.40 
(1.00-1.90) 

0.051   

Metastatic stage M0 397 1.00  1.00  

M+ 176 1.60 
(1.20-2.30) 

0.004 1.50 
(1.05-2.10) 

0.027 

Subgroup (Cohort) WNT 70 1.00  1.00  

SHH 223 5.30 
(1.60-17.00) 

0.006 4.50 
(1.39-14.8) 

0.012 

Group 3 144 10.9 
(3.40-35.00) 

<0.001 7.90 
(2.46-25.7) 

<0.001 

Group 4 326 6.00 
(1.90-19.00) 

0.002 4.20 
(1.31-13.3) 

0.016 

*values in bold were significant (p<0.05) 
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Table 21: Univariable and multivariable analyses for GSE85217 using the MM2S subgroup 
classification 

   
Univariable Multivariable 

Variable 
 

n HR 
(95% CI) 

p-value HR 
(95% CI) 

p-value 

Age Group Infant 119 1.00    

Child 499 0.82 
(0.54-1.30) 

0.371   

Adult 111 0.56 
(0.30-1.10) 

0.072   

CAIX Low 381 1.00    

High 382 0.90 
(0.66-1.20) 

0.51   

Fardin Cluster 1 557 1.00   1.00  

Cluster 2 206 0.68 
(0.45-1.10) 

0.084 0.68 
(0.43-1.10) 

0.106 

Gender Female 247 1.00     

Male 472 1.20 
(0.83-1.60) 

0.368   

High 382 1.40 
(1.00-1.90) 

0.051   

Metastatic stage M0 397 1.00  1.00  

M+ 176 1.60 
(1.20-2.30) 

0.004 1.55 
(1.09-2.20) 

0.015 

Subgroup (MM2S) WNT 54 1.00  1.00  

SHH 229 4.20 
(1.30-13.00) 

0.018 3.45 
(1.06-11.3) 

0.04 

Group 3 126 8.60 
(2.70-28.00) 

<0.001 6.07 
(1.87-19.7) 

0.003 

Group 4 348 5.00 
(1.60-16.00) 

0.006 3.33 
(1.05-10.6) 

0.042 

*values in bold were significant (p<0.05) 

 

The Fardin389 hypoxia signature uses k-means clustering of gene expression values to 

classify patients as high or low hypoxia tumours. K-means clustering divides n samples into 

k clusters. The number of clusters used to process the samples is defined either by prior 

knowledge of the dataset or by determination of the optimal number of clusters. Commonly, 

the optimal number of clusters is the value of k that minimises the dispersion between them. 

As the purpose of the gene signatures is to assign samples to high or low hypoxia groups, 

the publication and the above analysis used k=2. However, the optimal number of clusters 

for this cohort as determined using the Elbow method to minimise the sum-of-squares 

differences was four. This was also found to be the case for the other clustering based 

signature (Tardón434). Due to the nature of the k-means clustering algorithm, the output will 

always produce k clusters regardless of whether they actually exist in the data. Using k=2 

when k=4 is optimal could produce two clusters that are amalgamations of the four ‘true’ 
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clusters. Using a greater than optimal k value would result in subdivisions of the ‘true’ 

clusters. In order to see if using the optimal number of clusters resulted in statistical 

significance, the clustering analysis was repeated with both the Fardin and Tardón signature 

gene sets and k=4 (Table 22). In the re-analysis, the Tardón signature was prognostic, 

however no significance was found with the Fardin signature. The PCA plots resulting from 

these two values of k are shown in Figure 42. For the Fardin hypoxia signature (Figure 42 A 

and C), the two clusters are more clearly separate groups than the four clusters, which 

matches with the survival analyses where k=2 produces a lower p-value. For the Tardón 

hypoxia signature (Figure 42 B and D) neither k value defined distinct clusters and it looks as 

if one single cluster was split into either 2 or 4 depending on the algorithm parameters. 

However, as the four clusters from the Tardón re-analysis represented the four molecular 

subgroups, which was not the case for the Fardin signature, this clustering may not be as 

arbitrary as it appears (Table 22). 

 

Table 22: Univariable analysis for signatures using k-means clustering 

    
Univariable 

Signature Cluster Number Major Subgroup HR (95% CI) p-value 

Fardin 1 174 SHH (100%) 1.00 
 

2 159 WNT (42%) 
Group 3 (55%) 

1.10 (0.66-1.90) 0.685 

3 80 SHH (55%) 1.70 (0.92-3.00) 0.093 

4 350 Group 4 (85%) 1.40 (0.93-2.20) 0.102 

Tardón 1 223 Group 3 (61%) 1.00   

2 270 Group 4 (90%) 0.65 (0.45-0.93) 0.018 

3 201 SHH (97%) 0.56 (0.37-0.85) 0.006 

4 69 WNT (97%) 0.12 (0.036-0.37) <0.001 

*values in bold were significant (p<0.05) 
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Figure 42: PCA plots of the k-means clustering results for two hypoxia signatures. The Fardin 
(A, C) and Tardón hypoxia gene signatures were applied to the GSE85217 cohort. The k-means 
clustering algorithm was applied using k=2 (A, B), as reported in the literature and k=4 (B, D), which 
was determined to be the optimal number of clusters using the Elbow method to minimise the sum-of-
squares error.  

 

In order to investigate whether the identification of the subgroups would occur at random, a 

thousand randomly selected sets of 36 genes were generated on three separate occasions. 

The resulting clusters were analysed to see if the same level of subgroup distinction 

occurred with the random selections, i.e., three clusters with >80% and a fourth cluster with 

>60% of a unique subgroup. In all three repeats, fewer than 5% of the randomly generated 

gene sets reached this level of subgroup distribution across the cohort, indicating that the 

identification of the subgroups by the Tardón signature was not by chance (Table 23).  

 

Table 23: Number of repeats with a certain level of subgroup identification using randomly 
generated gene sets 

 
Repeat 1 Repeat 2 Repeat 3 

3 clusters with >80% from one subgroup 6.0% 5.0% 7.2% 

3 clusters with >80% from one subgroup & 1 
cluster with >60% from one subgroup* 

3.1% 2.2% 3.1% 

4 clusters with >80% from one subgroup 0.5% 0.3% 0.4% 

*as found with hypoxia signature. values in bold were significant (p<0.05) 
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These results suggest the Tardón signature was able to separate out the four molecular 

subgroups either by identifying different expression levels of hypoxia-associated genes 

across the four molecular subgroups or by containing genes that are subgroup-specific but 

independent of tumour hypoxia status. The Tardón signature also separated the molecular 

subgroups in the second largest cohort, GSE37382. This cohort, which contained no WNT 

tumours, used the optimal k=3. Cluster 1 contained 57% SHH tumours, cluster 2 61% Group 

3 tumours and cluster 3 contained 97% Group 4 tumours. As outcome data were 

unavailable, the prognostic significance of these clusters could not be determined. The 

remaining cohorts were too small to produce robust, reproducible clustering and therefore 

the signature could not be examined within these patients.  

 

3.5 Migration 

During the clonogenic assay work, it was observed that the colonies at higher radiation 

doses were more diffuse. It was hypothesised that radiation was increasing the rate of cell 

migration in the cell lines. The wound healing assay was used to investigate cell migration 

(2.7). The assay involves producing gaps in cell culture and measuring the speed of gap 

closure by measuring the gap width or gap area at selected time points. It is recommended 

that at least 100 measurements are taken per image to generate large data sets for robust 

analysis552. The gap width can be measured by the user manually drawing and measuring 

lines across the digital image using an image processing software such as ImageJ. This 

analysis method is here referred to as ‘Manual Measurements’. Manual Measurements 

restrict the number of images and time points that can realistically be carried out, as the 

process is labour intensive and time-consuming. In order to best utilise the high-throughput 

assay formats and time-lapse microscopy available in our laboratory and to minimise the 

time required and subjectivity in the analysis, an automated approach was investigated prior 

to completing the irradiation experiments. Only one software package was found that was 

compatible with the MBL cell lines, the MRI ImageJ Wound Healing Macro (‘MRI Macro’). 

The other software trialled, including T-Scratch553, PyScratch554 and the IncuCyte in-built 

analysis software555, were unable to accurately detect the gap edges in the initial test images 

and so could not analyse experimental data. The MRI Macro is available to download and 
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works with the ImageJ software to analyse single and series of images. It uses a variance 

filter method to detect regions of an image containing cells, and measures the remaining 

area of the image (Figure 43). Several disadvantages of this software were noted, which 

may impact the precision and accuracy of the reported results. Firstly, the user is required to 

optimise several parameters for the software (‘variance filter radius’, ‘threshold’, ‘radius 

open’ and ‘min. size’). There is little instruction available regarding what these parameters do 

or how best to optimise them, which results in trial-and-error optimisation required for each 

well during analysis. This technique not only increases the time required for analysis but also 

produces an inherent point of subjectivity and variability within the image analysis process. 

Secondly, a single image can report multiple area measurements if the gap is not detected 

as a single entity by the MRI Macro, so each image had to be inspected in order to allocate 

the correct gap area to the correct timepoint (Figure 43). Finally, the desired output metric 

was a gap closure rate, measured in μm/hour. As the MRI Macro reports gap area, further 

data analysis was required.  
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Figure 43: Representative images from the MRI Macro analysis showing multiple gap area 
measurements for a single image.  The MRI Macro measures the gap area within each image. 
During gap closure, the gap is not detected as a single entity, and so at later time points multiple gap 
areas are detected and reported. In the 1 h image, only a single gap is detected. At 3, 7 and 13 h, 10, 
23 and 50 separate portions of the gap are detected. Each gap area is numbered on the image and in 
the macro-generated results sheet. The total gap area for each timepoint must be calculated by cross 
referencing the images with the output sheet and calculating the sum of all detected gaps within a 

single image, which is not done by the MRI Macro.  

 

In order to address these points, an image analysis program was written in-house using the 

Python programming language (‘Python Code’, Section 3.5.1). The performance of the 

Python Code was compared to both the Manual Measurements and the MRI Macro methods 

using a set of test wells (Section 3.5.2). Once the analysis method had been chosen, the 
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experimental parameters were optimised (Section 3.5.3). Specific experimental parameters 

investigated were the method of generating the gap (Ibidi Inserts vs EssenBio 

WoundMaker), cell seeding densities and serum concentrations during the experiment. The 

effect of irradiation on cell migration was then investigated in the panel of adherent cell lines 

(Section 3.5.4).  

 

3.5.1 Python Code development 

The analysis workflow for the Python Code is shown in Figure 44. The data generation and 

image processing steps are carried out by the user, then the processed images are imported 

by the Python Code, which then guides the user through the parameter determination step. 

Mask application, image analysis and data analysis are carried out automatically by the 

Python Code.  

 

The raw data are time-lapse image series of each well taken using the IncuCyte Zoom (for 

representative image, see Figure 45A). The image processing step is carried out manually 

using ImageJ. First, a central portion of the gap was selected to exclude the far ends, which 

undergo gap closure horizontally and vertically (Figure 45B). The frequency distribution of 

number of pixel rows in processed images (Figure 45C) shows that cropped images were 

between 50 and 900 pixel rows in height. Images with <100 rows of pixels were excluded 

from further analysis. No further manual image processing is required.  
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Figure 44: Overview of the Python analysis program (‘Python Code’) process for gap closure 
assay analysis.  
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The software allocates each pixel as belonging to the cell monolayer or to the gap based on 

the pixel intensity. The number of ‘gap’ pixels along each pixel row are counted. The 

distance covered by each pixel is a known characteristic of the objective used to capture the 

image, and is used to convert the number of ‘gap’ pixels into a measurement of distance. 

This process is repeated for each image within the time series. The software then plots and 

presents the gap width over time (Figure 46). Gap width decreases in a linear manner until 

the gap has almost completely closed, at which point the decrease plateaus off. The 

software allows the user to define where the linear portion begins and ends, then calculates 

and reports the gap closure rate by calculating the slope of the line over this portion of the 

graph. 

 

 

Figure 45: Representative images from the IncuCyte Zoom and frequency distribution of 
number of measurements taken for each well. Raw (A) and processed (B) images for a gap closure 
assay are shown for ONS-76, 0 Gy at t=1 h post-scratch. The raw images taken in the migration 
experiment included the whole scratch (A). Images were then cropped to exclude the scratch edges 
(B). The cropped images were then processed by Manual Measurements, the MRI Macro or the 
Python Code analysis methods. In order to produce a statistically robust data set, a minimum of 100 
measurements of gap width per image is recommended (applicable to Manual Measurements and 
Python Code methods only). The Python Code measures gap width along each row of pixels of an 
image. The frequency distribution of the number of measurements per image set across all 
experiments confirms most met this requirement (C). Images with fewer than 100 rows of pixels 
following manual processing were excluded from analysis.  
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Figure 46: Example graphs produced by the Python Code for calculating gap closure rate. 
Representative plots for the cell lines ONS-76 (A) and UW228-2 (B) after 0 Gy of radiation using the 
Ibidi insert gap creation method are shown. The analysis program plotted gap width against time, 
which is then displayed to the user who identifies the linear portion. The slope of the linear portion 
gives giving the gap closure rate. For ONS-76 the slope was calculated between the 2 h and 8 h time 
points. For UW228-2 the linear portion was selected between 1 h and 13 h.  

 

3.5.2 Evaluation of methods for gap closure analysis 

The in-house analysis program (Python Code) was compared with the Manual 

Measurements and MRI Macro. This comparison was carried out on six test wells and two 

cell lines. ONS-76 and UW228-2 were selected to represent a simple and more challenging 
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analysis respectively due to the definition of the gap edge, which affects the ability of the 

automated software to accurately identify it (Figure 47).  

 

 

Figure 47: Representative cropped images of gaps for ONS-76 and UW228-2. For evaluation of 
the analysis software, a cohort of sample data was established using three ONS-76 and three UW228-
2 replicates from WoundMaker experiments. All six wells were unirradiated. A serum concentration of 
1% FBS was used following irradiation to reduce the impact of cellular proliferation. Images were 
manually cropped in the same way for all three analysis methods. These cell lines were selected to test 
the analysis methods as they represent a well-defined gap edge (ONS-76) and a less-well defined gap 
edge (UW228-2).  

 

The first point of comparison was the time required for analysis, which is shown in Figure 48 

as the analysis time taken per well (in minutes) and per image (in seconds). This distinction 

is made to account for the different numbers of images analysed by the automated methods 

compared to the manual methods. As expected, automated analysis methods were 

significantly faster than Manual Measurements, with the Python Code faster than the MRI 

Macro for both cell lines. The Python Code significantly reduced analysis time requirements 

compared to other available methods.  
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Figure 48: The time taken to analyse a single well or image using the three analysis methods. 
Three individual wells for ONS-76 or UW228-2 were analysed and the analysis time taken was 
measured. Manual Measurements took the longest time per well for both ONS-76 (A) and UW228-2 
(B). The Python Code required significantly less time to complete the analysis than the MRI Macro 
(One-way ANOVA followed by Kruskall-Wallis test). To account for the different number of images 
analysed, the analysis time per image was calculated for ONS-76 (C) and UW228-2 (D) cells. Manual 
Measurements took the longest time per image, with the Python Code faster per image than the MRI 

Macro. * p<0.05, ** p<0.01, *** p<0.00, One-Way ANOVA.  

 

The second point of comparison was how accurately the automated methods defined the 

gap edge compared to Manual Measurements. A single image was analysed with all three 

methods (Figure 49). The two automated methods returned suitable contouring when 

compared to the Manual Measurements. The MRI Macro was slightly more cautious at the 

gap edge, tending to apply a margin around cells into the gap. Debris located close to the 

gap edge was brought into the cell layer by both automated methods, but occurred less 

frequently with the Python Code.  
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Figure 49: Comparison of the definition of the gap area between the three analysis methods. A 
representative image of a gap created by the WoundMaker was processed using the three analysis 
methods. (A) Manual Measurements (red) only. (B) Manual Measurements (red) and MRI Macro (blue) 
overlays. (C) Manual Measurements (red) overlay on top of the Python Code image output (gap is 
shown in white). (D) MRI Macro (blue) overlay on top of the Python Code image output (gap is shown 
in white). Both the MRI Macro and the Python Code assigned debris located in the gap as part of the 
gap edge (highlighted in (B) and (C)). The MRI Macro analysis did so to a greater extent, with a larger 

margin than the Python Code (highlighted in (D)). 

 

The initial gap area for the six test wells was calculated for each method and normalised to 

the area reported by Manual Measurements (Figure 50). Automated analysis methods 

reported lower initial gap area for both of the cell lines. Although the decrease in gap area 
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was significant with the MRI Macro, the automated methods should be consistent across all 

time points and therefore the gap closure rate will be unaffected.  

 

 

Figure 50: The initial gap area and width measured by the three analysis methods and 
normalised to the Manual Measurements. Three individual wells for ONS-76 or UW228-2 were 
analysed on three separate occasions, and the average initial gap area (μm; A) or width (μm2; B) was 
calculated from these analyses. To allow for all wells to be pooled, each well was normalised to the 
manually measured gap width/area. There was no difference in the measured initial gap area or width 
between the Manual Measurements and the Python Code. A significantly lower gap area and width 
was reported by the MRI Macro compared to the Manual Measurements. Each data point represents 
measurement of a single well. The y-axis scale does not start at 0 to better show differences in 
analysis methods. ** p<0.01, Friedman test. 

 

Figure 51 shows the gap width plotted against time for a single test well, with the gap width 

measured by the three analysis methods. Due to time requirements of Manual 

Measurements, data are only available for six hours of the experiment.  

 

Figure 51: The change in gap width for a representative well using three analysis methods. A 
single replicate well was analysed by the three analysis methods. The Manual Measurements and 
Python Code methods measure the gap width at various points along the image. Data points for these 
methods represent the mean ± SEM of the gap width measured along each pixel row within the image. 
The MRI Macro only outputs the gap area at each time point. Data points for this method represent the 
total gap area divided by the image height. Although the individual measurements are lower following 
automated analysis, the slope, representing the change in gap width over time is not altered by the 

analysis method used.  
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For both automated analyses, the measured gap width was reduced compared to the 

manually measured gap width. Importantly, however, the slope is consistent across analysis 

methods. The slope is used to calculate the gap closure rate, therefore the slight decrease in 

reported gap width is acceptable.  

 

A key comparison of the three methods is the gap closure rate. Figure 52 shows the 

calculated gap closure rate for the three wells per cell line from the three analysis methods. 

Manual Measurements were carried out on one occasion only, while the automated analyses 

were repeated three times, therefore nine data points are reported. For ONS-76, the gap 

closure rate was significantly higher when calculated using the Manual Measurements 

compared to either of the automated analysis methods. For UW228-2, the MRI Macro 

reported a gap closure rate that was significantly reduced compared to either of the other 

methods. No difference between the Manual Measurements and the Python Code methods 

was observed. ONS-76 cell lines have a much faster gap closure rate and close the gap 

within 10-12 h, while UW228-2 cells often had not completely closed the gap at the final 24 h 

time point. The differences may be because the Manual Measurements method uses only 

two time points to calculate rate of gap closure, unlike the automated analyses, which use 

the complete time-course data and the linear period of gap closure.  

 

 

Figure 52: Gap closure rates generated using three different analysis methods. Three wells of 

each of the two cell lines were analysed manually on one occasion and on three separate occasions 
using the automated analysis methods. The Manual Measurements reported rate of gap closure was 
higher than the rates calculated using the automated methods in both ONS-76 (A) and UW228-2 (B). 
As the Manual Measurements rate is calculated from two time points only, while the automated 
methods use multiple time points to generate a line of best fit and take the rate from the slope, it is not 
unexpected that the Manual Measurements method over-estimates the gap closure rate. * p<0.05, ** 
p<0.01, One-Way ANOVA. 
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The use of automated methods is preferable if they reduce subjectivity within image 

analysis. Subjectivity is reduced by removing points where the user can influence the results. 

A few automated analyses programs have removed these points completely (e.g. 

PyScratch554). Our images could not be analysed with PyScratch because when the program 

did not correctly identify the scratches it was not possible for the user to correct the error. 

The MRI Macro and Python Code retain some user decision points when optimising image 

masking parameters. In the MRI Macro, these are the variance filter radius (VFR), the 

threshold, the radius open (RO) and the minimum size. In the Python Code, these are the 

upper and lower bounds of the mask and the number of iterations carried out. Analysis of the 

test wells was repeated three times at weekly intervals by the same user to assess intra-user 

variation. The user-defined parameters from each week are shown in Table 24.  

 

Table 24: Parameters used for automated analysis for each well over the three weeks.  

  
MRI Macro Python Code 

 
Week VFR Threshold RO Minimum Size UB LB Iterations 

Well 2 

1 1 50 4 1 0.46 0.54 2 

2 1 50 4 1 0.47 0.55 2 

3 1 25 3 1 0.46 0.55 2 

Well 3 

1 1 75 4 1 0.46 0.55 2 

2 2 50 4 1 0.45 0.54 2 

3 1 50 3 1 0.46 0.55 2 

Well 4 

1 1 75 4 1 0.46 0.55 2 

2 5 50 4 1 0.46 0.54 2 

3 1 40 3 1 0.44 0.55 2 

Well 8 

1 10 75 4 1 0.47 0.55 3 

2 3 25 4 1 0.47 0.55 3 

3 1 40 3 1 0.47 0.55 3 

Well 9 

1 10 75 4 1 0.46 0.54 3 

2 3 50 4 1 0.46 0.54 3 

3 1 40 3 1 0.47 0.55 3 

Well 10 

1 1 25 4 1 0.47 0.54 3 

2 2 20 4 1 0.47 0.53 2 

3 1 40 3 1 0.47 0.54 3 

*VFR – variance filter radius; RO – radius open; UB – upper bound; LB – lower bound 
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The parameters for the Python Code were more consistent both between weeks and 

between wells. The parameters for the MRI Macro varied not only between weeks but also 

within the wells of each cell line. While changes in the pixel intensity values used to define 

the mask by the Python Code did vary slightly, these variations did not alter the reported gap 

areas or gap widths (Figure 53). With regard to the gap closure rate output, the calculated 

rate remains consistent across the three week period, with the exception of one ONS-76 well 

(Figure 53C).  

 

Figure 53: The intra-user variation over time when analysing gap closure experiments using the 
Python Code. Three wells of each of the two cell lines were analysed on three separate occasions. 
The initial gap area and initial gap width measurements (A and B respectively) were calculated for 
each well across the three weeks of analysis. The gap closure rate (C) was calculated for all wells of 

UW228-2, which slight variation occurred in the analysis of one well of ONS-76.  
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3.5.3 Migration assay method development 

Two methods of gap creation were used in this work – the Ibidi inserts (Section 2.7.2) and 

the EssenBio WoundMaker (Section 2.7.1). The inserts use an occlusion technique to 

prevent cell adhesion and growth and produce a gap. The WoundMaker physically scrapes a 

line of cells off the culture surface. The method of generating the gap may contribute to the 

response of the cells and the nature of the gap closure. When comparing the results, the 

effect of gap creation method on gap closure rate was different between cells within our 

adherent cell line panel (Figure 54).  

 

 

Figure 54: Gap creation method can affect gap closure rate. Migration experiments using the Ibidi 
inserts or WoundMaker were carried out. Individual well results across multiple experiments were 
pooled and averaged. Data were generated using 1% serum concentration. For DAOY and ONS-76 
the gap creation method did not affect the gap closure rate. For the MED8A cell line, gap closure was 
almost four times faster using the WoundMaker than the Ibidi inserts. For UW228-2 the opposite was 
observed, with the Ibidi inserts producing a faster gap closure rate. The mean ± SEM gap closure rate 
of ≥ 3 replicate wells is shown for each condition. *** p<0.001, t-test. 

 

The gap closure rate was unaffected by creation method for DAOY and ONS-76. In MED8A, 

the insert method resulted in a much slower gap closure rate. For UW228-2, the insert 

method resulted in a faster gap closure rate. As the gap creation method appeared to be an 
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influential factor in gap closure rate, comparisons were only made between experiments 

using the same methodology.  

 

Figure 55 shows the results of seeding density optimisation tests using the two gap creation 

methods (Ibidi inserts and EssenBio WoundMaker). Both methods required a confluent 

monolayer of cells in which to create the gap. In order to confirm whether the number of cells 

used to create a confluent monolayer affected the rate of gap closure, two different seeding 

densities were used. For DAOY, ONS-76 and UW228-2 both seeding densities produced a 

confluent monolayer. For MED8A, only the higher seeding density produced a confluent 

monolayer, and this cell line was the only one to show a difference in gap closure rate 

depending on seeding density.  

 

 

Figure 55: The effect of seeding density on gap closure rate on the four cell lines using the two 
gap creation methods. Migration experiments using the Ibidi inserts (A) or WoundMaker (B) were 
carried out using two seeding densities. The Ibidi insert data were generated over multiple experiments 
and calculated from individual well gap closure rates at 10% serum concentration. The WoundMaker 
data were generated from multiple wells over a single experiment at 1% serum concentration. In all 
experiments, DAOY, ONS-76 and UW228-2 cell seeding densities produced a confluent monolayer. 
For MED8A, only the higher seeding density (50,000 cells/well) produced a confluent monolayer, and 
this was the only cell line where a significant difference in gap closure rate was seen between seeding 
densities. The mean ± SEM gap closure rate of ≥ 3 replicate wells is shown for each condition. *** 
p<0.001, t-test. 

The gap closure may result from cells moving into the gap, or may result from cells 

proliferating into the gap. While cell proliferation can be pharmacologically inhibited, this runs 

the risk of interactions between the inhibiting drug and irradiation. A compromise is made by 
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using a confluent cell monolayer, which should reduce cell proliferation (although this is not 

certain, particularly with cancer cell lines which do not show contact inhibition) and 

minimising the time over which the experiment is conducted, to minimise the number of 

population doublings that can occur. Another measure is to reduce serum concentration, 

thus reducing the concentration of growth factors present within the medium. Figure 56 

compares the gap closure rate calculated following experiments conducted using 1% or 10% 

serum concentration. For the cell lines MED8A and UW228-2, there was no significant 

change in gap closure rate when the serum concentration was reduced. For the cell lines 

DAOY and ONS-76, reducing the serum concentration significantly increased gap closure 

rate. These cell lines have shorter Tds than that of the unaffected cell lines, which may be 

why the serum concentration affects the gap closure rate.  

 

 

Figure 56: Serum concentration can affect gap closure rate. Migration experiments using the Ibidi 
were carried out with the concentration of serum in the medium either kept at 10% throughout the 
experiment, or changed to 1% FBS at the time of irradiation. Individual well results across multiple 
experiments for 0 Gy were pooled and averaged. For MED8A and UW228-2, the serum concentration 
had no effect on the gap closure rate. For DAOY and ONS-6, reducing the serum concentration from 
10% (red) to 1% (blue) significantly reduced the gap closure rate. These two cell lines have shorter 
population doubling times. Reducing the serum concentration in migration experiments is done with the 
aim of reducing the cell proliferation and differentiating between migration into the gap and proliferation 
into the gap. The doubling time of these two cell lines is short enough that affecting it would be 
observed over the 24 h experiment, whereas this is not the case for the other two cell lines. The mean 
± SEM gap closure rate of ≥ 3 replicate wells is shown for each condition. * p<0.05, *** p<0.001, t-test. 

The first image that was practical to generate with time-lapse microscopy was 1 h post 

scratch, due to the equilibration of the microscope and plate once loaded in the incubator. At 

1 h the gap has already begun to close therefore the initial gap width cannot be measured. If 
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the gap closure rate is affected by radiation, the amount of gap closure during the 

equilibration time would not be consistent across the radiation doses. To confirm that the 

initial gap width was unaffected by irradiation, samples were irradiated with 0, 2 or 8 Gy, 

incubated for 24 h then fixed using formalin immediately following gap creation (t=0 h) using 

the WoundMaker (Figure 57). The width of the gap created was consistent across all wells, 

and was not affected by irradiation dose.  

 

 

Figure 57: The initial gap width is not changed by irradiation. A 96-well plate was irradiated with 0 
Gy, 2 Gy or 8 Gy 24 h prior to the migration assay. Immediately after the scratch was made, the 
medium was removed and the cell monolayer was fixed with formalin. Fixed plates were scanned using 
an IncuCyte Zoom and images analysed in the same manner as for the time-lapse images. The initial 
gap width is shown. Increasing radiation dose had no effect on the size of the initial scratch created by 
the WoundMaker.  

 

Figure 58 shows the inter- and intra-assay variation for the gap closure experiments. Intra-

assay variation for each of the four adherent cell lines was high with both the insert and 

WoundMaker methods. As the WoundMaker experiments were a 96-well plate format as 

opposed to the Inserts 12-well layout, a higher number of wells per assay could be carried 

out. For both gap creation methods, the inter-assay variation was found to be relatively high 

and was more obvious in the SHH cell lines, due to their faster rates of gap closure. Gap 

closure rates varied by as much as 50% between assays. 
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Figure 58: The intra- and inter-assay variation observed in gap closure rate experiments. (A)The 
intra-assay variation calculated from either 8 inserts, Ins) or 12 (WoundMaker, WM) technical replicates 
at 0 Gy in a single experiment. (B) The inter-assay variation calculated from 0 Gy wells (n≥2) in each 
assay carried out with either the Insert or WoundMaker method. 

 

3.5.4 Migration assay results 

The effect of radiation on migration was investigated with a series of gap closure 

experiments. Following the development worked described previously, a seeding density to 

produce a confluent monolayer and a 1% FBS concentration was used. Both methods of gap 

creation were included in the radiation work in case the method of gap creation (occlusion vs 

physical removal of cells) influenced the radiation response. Cells were irradiated 0 h, 24 h 

and 7 days prior to the generation of the gap, and gap closure rate was analysed using the 

Python Code. 

 

When the irradiation was carried out immediately prior to the generation of the gap, no 

statistically significant changes in gap closure rates were observed for the cell lines MED8A 

and UW228-2 (Figure 59). No statistically significant changes were observed with the 

remaining cell lines using the Ibidi insert method. Following 8 Gy of irradiation, when DAOY 
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cells were removed with the WoundMaker, gap closure rate was significantly reduced 

compared to 0 Gy. For ONS-76 in the WoundMaker assay, gap closure rate was significantly 

increased following 8 Gy of irradiation compared to 0 Gy. There is a lack of context for this 

result, as, while the insert method allowed a complete data set to be generated for all four 

cell lines at all three doses, the WoundMaker dataset is limited to 8 Gy only. A high number 

of wells were excluded from analysis due to destruction of the cell monolayer and/or 

excessive debris blocking the image field.  

 

Figure 59: The effect of immediate radiation on gap closure in the four adherent cell lines. 
Migration experiments using the Ibidi inserts (A) and WoundMaker (B) were carried out. Cells were 
irradiated 0 h prior to gap creation. When the Ibidi insert method was used immediately following 
irradiation, no effect of radiation on gap closure rate was observed in any of the cell lines. Immediate 
radiation experiments were limited when using the WoundMaker. A high number of well failures 
excluded all 2 Gy replicates from analysis. A slight radiation effect was observed between 0 Gy and 8 
Gy in DAOY, with radiation reducing gap closure rate and in ONS-76, with radiation increasing gap 
closure rate. * p<0.05, Mann-Whitney U test. 
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The complete insert data set indicates a general trend for dose-dependent increases in gap 

closure rate with irradiation, although this trend is not statistically significant. As there is little 

time for any cellular adaptation in response to irradiation in this experimental format, a lack 

of response is unsurprising. A 24 h delay in gap creation following irradiation was added 

(Figure 60). Also shown are the results from Ibidi insert experiments where gap creation was 

carried out 7 days after the cells were irradiated. 

 

Figure 60: The effect of delayed radiation on gap closure rate following irradiation. Migration 
experiments using the Ibidi Inserts or WoundMaker were carried out. Using the Ibidi insert method, 
cells were irradiated at either 24 h (A) or 7 days (B) prior to gap creation. Gap closure rate was 
increased for DAOY cells 7 days after 2 Gy of irradiation (Kruskall-Wallis test, p=0.0066). In MED8A 
and UW228-2 increasing radiation doses decreased gap closure rate. In DAOY and ONS-76, 2Gy 
caused an increase in gap closure rate, but increasing the dose to 8 Gy removed this effect. * p<0.05, 

** p<0.01, *** p<0.001, Kruskall-Wallis test.  

 

As was seen with the immediate radiation, no change in gap closure rate was observed 

using the Ibidi inserts. Again, DAOY showed an exception, as a significant difference 

occurred at 7 days post irradiation, where 2 Gy increased gap closure rate compared to 0 
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Gy. This was in stark contrast to the results with the WoundMaker when a 24 h delay 

between irradiation and gap creation resulted in significant differences between control and 

irradiated cell gap closure for all four cell lines. For DAOY and ONS-76, gap closure rate was 

highest after 2 Gy of radiation. For MED8A and UW228-2, a dose-dependent decrease in 

gap closure rate was seen. These cell line groupings are not consistent with the molecular 

subgroups. 
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4. Discussion 

4.1. Cell growth curves 

4.1.1. The MBL cell line panel 

The in vitro work of this project was conducted using a panel of established human cell lines 

as a model of MBL. The advantages of using established cell lines are that they are better 

characterised, have lower associated costs and are more readily available than primary cell 

cultures. There are well-established in vitro assays to measure parameters of interest such 

as radiosensitivity and cell migration in cell cultures. Our panel contained cells representing 

the SHH and Group 3 subgroups, but included no WNT or Group 4 subgroup cell lines. This 

is reflective of the entire collection of available MBL cell lines as, of the lines that have been 

subtyped, the majority are SHH or Group 3556. In fact, only one cell line has been described 

for each of the WNT557 and Group 4558 subgroups. The established cell lines are not 

reflective of the MBL patient population as all Group 3 cell lines are MYC amplified and 50% 

of SHH cell lines are TP53 mutated, neither of which reflect the clinical situation117. Future 

work would involve expanding the cell line panel to include the WNT and Group 4 cell lines. 

 

D283 and D425 are semi-adherent cell lines, which maintain relatively constant proportions 

of suspension and adherent cells. The semi-adherent phenotype excluded these cell lines 

from use within the standard clonogenic or gap closure assays and therefore their use in this 

thesis was restricted to the high-throughput assay only. The suspension cells within each 

culture grow as clusters suspended in the medium, while the adherent cells grow sparsely 

on the culture vessel surface forming clumps and colonies. Any influencing factors that 

determine the individual phenotypes of the cells within these lines have not been 

investigated, and both cell phenotypes are treated as a single culture in in vitro studies559–563. 

The results from the cell growth curves presented here demonstrate that external conditions 

such as hypoxia can alter the relative proportions of suspension/adherent cells within a 

culture. Under 0.1% oxygen, the proportion of D425 cells in suspension was significantly 

increased. If the change in cell phenotype is a reflection of underlying biological differences, 
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such as CD133-positivity, then these influencing factors warrant further investigation and 

characterisation.  

 

The cell membrane protein CD133 was identified as a marker of haematopoietic stem 

cells564 but has been used as a stem cell marker in colon cancer565, Ewing’s sarcoma566, 

H&N cancer567, HCC568, melanoma569, ovarian cancer570, pancreatic cancer571, prostate 

cancer572 and brain tumours573–575 including MBL273,364,576–578. CD133-positive (CD133+) cells 

are CSC-like and as such are more likely to form spheroids in culture574,576,579, are more 

radioresistant576,578–580 and, when high in human tumours, are associated with a worse 

overall survival577. MBL tumour tissue samples from Group 3 patients have the highest 

CD133 expression577. As shown in Table 25, the Group 3 cell lines within the panel also 

have much higher reported CD133-positivity. The published studies used antibodies against 

CD133 in flow cytometry protocols to calculate the percentage of CD133+ cells. These 

antibodies bind to different epitopes of the CD133 protein and these epitopes are subject to 

glycosylation modifications making them more or less available for binding under different 

conditions581,582. Additionally, using different antibodies on the same sample yields 

significantly different CD133+ percentages583. The variability in reported CD133 positivity 

across different studies using the same cell line, such as for DAOY or ONS-76, likely results 

from these differences in antibody specificity and expression of the target epitopes584.  

 

Table 25: The reported percentage of CD133+ of the medulloblastoma cell lines under normoxia 

Cell Line Subgroup Phenotype % CD133 positivity 

DAOY SHH226 Adherent 20.6578 
5.0501 
0.1364 

ONS-76 SHH226 Adherent 54.5501 
3.8273 

UW228-2 SHH226 Adherent 1.0501 

MED8A Group 316 Adherent 4.8577 

D283 Group 3506 
Group 4507 

Semi-adherent (90% 
suspension) 

99.9578 
90.6364 

D425 Group 3506 Semi-adherent (50% 
suspension) 

45.0585 
39.1577 
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There is not only a much higher proportion of CD133+ cells within the semi-adherent cell 

lines compared to adherent cell lines, but also a similar proportion of CD133+ cells as 

suspension cells reported within these cell lines. As found in the cell growth experiments, 

over 90% of D283 cells were in suspension, within the range of 90-100% of CD133+ cells in 

this cell line. For D425, the cell growth experiments found 40-50% of D425 cells were in 

suspension, again corresponding to the published CD133+ proportions (40-45%). Hypoxic 

conditions increase the number of CD133+ cells586–588., and under hypoxia the proportion of 

suspension cells is increased for D425589. No hypoxia-induced increase was reported for the 

other semi-adherent cell line, D283, however this may be a result of the very high proportion 

of CD133+ cells found under normoxic conditions (99.9% in one report578) leaving little room 

for any increase in response to hypoxia.  

 

It is hypothesised that the CD133+ cells within these cell lines make up the suspension 

population, while the CD133- cells are adherent. If this were the case, there would be 

implications for measuring the radiosensitivity of these cell lines. CD133+ cells are more 

radioresistant, and radiation increases the CD133+ proportion within glioma580, GBM574 and 

MBL576–579 cell lines and in rectal tumours590. Cell lines with higher proportions of CD133-

positivity would be expected to be more radioresistant and show a greater ability to 

repopulate a culture following irradiation as a result of the increased CSC-like proportion. 

This hypothesis would also explain why the radiosensitivity of these cell lines has been 

reported270–274 as being less than either that predicted based on their assignment to the 

Group 3 subgroup or as presented here. Where studies used the clonogenic assay without 

adaptations for semi-adherent cell lines, the cell lines are more radiosensitive than would be 

expected. Based on this hypothesis these assays only measuring the radiosensitivity of the 

CD133-negative portion, which would be expected to be lower.  
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4.2. Radiosensitivity 

The first objective was to investigate whether there were differences between MBL 

subgroups in radiosensitivity. The hypotheses and results are summarised in Figure 61. 

Radioresponsiveness is the extent to which a patient or tumour responds to radiotherapy 

treatment, and results from a combination of individual factors. One of these contributing 

factors is (intrinsic) radiosensitivity. The intrinsic radiosensitivity of a cell describes how 

susceptible a cell is to death following irradiation exposure. Cells that are more 

radiosensitive are more susceptible to death following irradiation, while those that are less 

radiosensitive (also referred to as more radioresistant) are less susceptible to death 

following irradiation. The intrinsic radiosensitivity of a cell can be measured in vitro, and 

correlates with observed clinical radioresponsiveness151,152. It was hypothesised that 

differences in clinical outcomes reflected differences in radioresponsiveness between the 

four molecular subgroups. The WNT subgroup would therefore be the most radioresponsive, 

followed by the SHH, Group 4 and Group 3 subgroups. Although radioresponsive tumours 

are, on average, more radiosensitive than those considered less radioresponsive, the 

molecular characteristics of the molecular subgroups lead to a different hypothesis. 

Activation of the WNT92,111,209,212,213,215 and SHH216–218,220–224 signalling pathways decreases 

radiosensitivity, and literature data indicated that SHH cell lines are less radiosensitive than 

Group 3 cell lines270–274. The radiosensitivity hypothesis was that the WNT and SHH 

subgroups would be relatively less radiosensitive than Groups 3 and 4, despite their better 

clinical outcomes.  

 

The intrinsic radiosensitivity of MBL cell lines and patient samples was assessed. Intrinsic 

radiosensitivity was significantly associated with overall survival in MBL, and there was a 

significant difference between the molecular subgroups. Contrary to the radiosensitivity 

hypothesis of this study and published in vitro data, I found that SHH cell lines were more 

radiosensitive than Group 3. Similarly in patient samples, the SHH subgroup was the most 

radiosensitive, followed by the WNT, Group 3 and Group 4 subgroups. This finding is 

consistent with SHH/WNT molecular subtypes being more radioresponsive than Group 3 

and 4.  
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Figure 61: Summary of the radioresponsiveness and radiosensitivity work. Based on the different 

survival outcomes, it was hypothesised that the radioresponsiveness rankings were, from most to least; 
WNT, SHH, Group 4 then Group 3. Observed radioresponsiveness is a result of several factors, one of 
which is intrinsic radiosensitivity which can be altered by the different subgroup characteristics. Based 
on these underlying features, it was hypothesised that the WNT and SHH subgroups would be less 
radiosensitive and the Group 3 and Group 4 subgroups would be more radiosensitive. Cell line work 
using a clonogenic assay and a high-throughput radiosensitivity assay found that the Group 3 cell lines 
were less radiosensitive than the SHH cell lines. Analysis of patient data using the radiosensitivity 
index found the least radiosensitive subgroup was Group 4 followed by Group 3, WNT and SHH. This 
ranking disagreed with the radiosensitivity hypothesis. There is better agreement with the 
radioresponsiveness hypothesis, as Groups 3 and 4 are less radiosensitive and less radioresponsive. 
Subgroup-specific radiosensitivity alone in part reflects the different clinical outcomes, but other 
contributing factors such as proliferation or tumour hypoxia might influence the radioresponsiveness.  

 

4.2.1. Clonogenic assay – method development 

Following application of a clonogenic assay to the compatible (adherent) cell lines in the cell 

line panel, method development work of a soft agar colony formation assay was undertaken 

to adapt the protocol for the semi-adherent cell lines. The soft agar assay has previously 

been reported to have been applied to D283512,591,592 and D425591. The soft agar colony 

formation assay uses layers of agar to hold individual cells in suspension where they can 

divide to form colonies. The cells are therefore not required to adhere to the culture vessel 

surface in order to be maintained as single cells. In a preliminary experiment, I found 

colonies were formed in this assay by D283 and D425, but they did not take up 

iodonitrotetrazolium violet (INT; a marker of viability). The lack of cell viability in the colonies 
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made it impossible to determine how many cells had survived irradiation (data not shown). 

An alternative assay, the high-throughput assay using CTG, was applied to the cell line 

panel156,185. The radiosensitivity of patient samples was then assessed using the RSI, a gene 

signature previously developed and validated within a range of cancers170,171,207. 

 

All four adherent cell lines formed colonies when seeded at low cell density in 6-well plates. 

Although the plating efficiencies were low (10-15%), the number of colonies seeded 

increased linearly with seeding density. The four adherent cell lines were therefore 

compatible with a clonogenic assay. While the irradiation set-up can influence the clonogenic 

assay results through parameters such as dose rate, temperature or pH changes and time 

required for irradiation175,593,594, survival curves generated at the three sites used during the 

completion of this thesis were not significantly different, allowing data to be pooled. Although 

an automated colony counting set up was available, it was not able to accurately identify and 

count the MBL cell line colonies. The automated method produced higher colony counts than 

manual counts. This appears in contrast to previous comparative studies, where strong 

correlations between manual and automated counting methods are reported595–597. It should 

be noted, however, that these reports were conducted either by the automated method 

developers595,597 or guided by them596. In a study where optimisation of the GelCount 

appears to have been carried out by a ‘standard’ user, similar to the setup here, the number 

of colonies reported by manual counting was significantly lower than the automated 

method598. Without the available expertise required for the GelCount software and in order to 

produce accurate colony counts and SFs across all cell lines, a manual counting method 

was used.  

 

The Group 3 cell line MED8A required a higher medium FBS concentration (20%) in order to 

form colonies following irradiation. The SHH cell lines used complete medium which 

contained 10% FBS. FBS is required in cell culture medium as a source of nutrients, 

mammalian cell hormones, growth factors and attachment factors. The concentration of 

these different components can vary between batches and this is controlled by using a 

single FBS batch throughout a set of experiments. Increasing the FBS concentration in the 



Page | 170  

 

medium enhances colony formation in a dose-dependent manner until a plateau in response 

is reached599. For one of the SHH cell lines, ONS-76, FBS concentration did not significantly 

alter the PE suggesting for this cell line the plateau occurs before 10% FBS. Altering the 

concentration of FBS in the culture medium can affect cellular radiosensitivity, however this 

was only reported to be detectable in synchronised populations of cells600. In unsynchronised 

cell culture, changing the concentration of FBS had no effect on radiosensitivity600. In a 

synchronised population, the elongation of cell cycle phases due to low FBS concentration is 

maximised as all cells are in the same stage of the cell cycle. As different cell cycle phases 

are associated with more or less radiosensitivity, synchronised cell populations will show 

different radiosensitivities depending on the phase they are in during irradiation143,322. The 

work reported here used unsynchronised cells. The SHH cell line clonogenics were not 

repeated using the higher FBS concentration as the PE was not significantly altered and an 

unsynchronised population was used in all experiments.  

 

4.2.2. Radiosensitivity measured using a clonogenic assay 

There was no significant difference in radiosensitivity between the SHH and Group 3 

subgroup adherent cell lines as measured in a clonogenic assay. As expected451, the OER 

was between 2.5 and 3 for x-rays at 0.1% oxygen, showing that radiobiological hypoxia 

decreased radiosensitivity. Previously published data, although limited, reports SFs with 

these cell lines that do not consistently agree with our findings. For the SHH cell line DAOY 

the literature reports SF2 values of 0.40271, 0.44270 and 0.61272, and my calculated SF2 of 

0.42 was within the reported range. For the SHH cell line ONS-76 the literature reports SF2 

values of 0.42271 and 0.64273 while my calculated SF2 was 0.54, again within the reported 

range. For the Group 3 cell line MED8A, there is a single published SF2 of 0.34272, which is 

lower than my 0.89. Inter-assay variation of clonogenic assays, regardless of radiation 

parameters has been shown to be within the levels of precision recommended by the Food 

and Drug Administration (FDA)593,601. This documented consistency of results would suggest 

a different cause for the difference between the SFs from the literature and calculated here.  
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There are known problems with the reporting of clonogenic assays and the robustness of the 

assays – a literature analysis of clonogenics for CCLE cell lines found 30% of papers 

included only one biological repeat and 22% only one technical replicate594. Biological 

repeats are required to mitigate the influence of random biological variation between 

separate experiments602. Technical replicates are required to mitigate the influence of inter-

experimental noise602. Both are required to provide confidence in the generated results602. 

For the literature data on MBL cell lines, all described completing three biological repeats, 

and the majority also contain three intra-assay technical replicates127,270–274.  

 

There are a number of concerns regarding the published data. First some studies used a 

clonogenic assay for semi-adherent cell lines without adapting the methodology92,272. 

Second, some studies did not perform or report appropriate statistical tests, e.g. using t-test 

for each dose point instead of an F-test to compare the whole curves92,272,274. Third, some 

did not generate sufficient data to extend a radiation survival curve to cover enough of the β 

component92,274. Fourth, data were not always fitted to an LQ model92,272,274. Finally, the time 

between seeding and irradiation, while consistent within each study, varied between studies 

with incubations reported as overnight92, 24 h274, 48 h271 and four days272. In colon 

adenocarcinoma cells, the longer the interval between the sub-culture and irradiation of the 

experimental culture, the lower the SF2 value603. The published MBL data suggests the 

reverse for DAOY, where a four day incubation resulted in a higher SF2 value than 48 h 

(0.61272 vs 0.44270), however a direct investigation is required to confirm this. Considering 

this incubation period may be a confounding factor, comparisons between cell lines 

generated using different experimental protocols must be carried out with caution.  

 

The clonogenic assays used to produce the radiosensitivity data presented here for four 

adherent MBL cell lines used at least two technical replicates in at least three biological 

replicates (independent experiments) at each dose point of each cell line, matching the 

replicates for the reported data and providing confidence in the accuracy of the results. The 

survival curves were extended to cover multiple log cell-killing with a minimum of two log-kill 

under normoxia and the LQ equation was fit using two specialist programs, GraphPad Prism 
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and alpha_beta, providing confidence in the fit of the LQ equation. Clonogenic cell survival 

was also replicated in an independent high-throughput radiosensitivity assay conducted the 

following year, confirming reproducibility of the results. The results presented here are 

therefore considered to accurately represent the intrinsic radiosensitivity of the adherent 

MBL cell lines.  

 

Statistical analysis of the survival curve for the adherent cell lines using an F-test showed no 

significant difference between the intrinsic radiosensitivity of the SHH and Group 3 

subgroups. However, the subgroup comparisons are greatly limited by the use of only one 

cell line to represent Group 3. Subgroup specific differences in radiosensitivity may become 

more apparent combining methods such as SHH pathway inhibition or reporter assays, with 

a clonogenic assay.  

 

The experimentally produced survival curves were also analysed using the in-house 

alpha_beta software. The alpha_beta software used Monte Carlo modelling to simulate 1000 

experiments producing data matching the statistical parameters of the experimental data, 

generating 1000 pairs of LQ parameters, specifically the α and β values. Statistical analysis 

of these LQ parameters α and β using the alpha_beta software identified significant 

differences between the shapes of the survival curves under normoxia. Specifically, that 

there was no significant difference between the TP53 mutant SHH cell lines DAOY and 

UW228-2, that the TP53 WT SHH cell line ONS-76 was significantly different from these two 

SHH cell lines and that the Group 3 cell line MED8A was significantly different from all three 

SHH cell lines. The α value is a measure of radiosensitivity, and higher α values indicate the 

cells from which the curve is derived are more radiosensitive178. The simulated α values 

indicate that ONS-76 was the least radiosensitive cell line, and both DAOY and UW228-2 

were the most radiosensitive cell lines. This is in agreement with the parameters calculated 

from the experimental survival curves themselves, where the α values were 0.078 Gy-1 for 

ONS-76, 0.086 Gy-1 for MED8A, 0.240 Gy-1 for UW228-2 and 0.280 Gy-1 for DAOY. 

However, the significant differences between the cell lines found in the alpha_beta analyses 

are, mainly, due to differences in the simulated β values. The β parameter describes the 
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quadratic component of the curve and higher β values reflect a greater curve, i.e. the cell 

survival falls more rapidly with increases in dose. Again, this is reflected in the experimental 

data, where ONS-76 and MED8A curves begin to curve away from the other two cell lines at 

higher radiation doses. This analysis therefore suggests that at lower doses the TP53 WT 

cell lines ONS-76 and MED8A were less radiosensitive, but at higher doses the TP53 mutant 

cell lines were less radiosensitive. 

 

In the clonogenic assay and the subsequent alpha_beta analysis, although not in the high-

throughput radiosensitivity assay, the SHH TP53 mutant cell lines (DAOY, UW228-2) were 

less radiosensitive at higher doses than the SHH TP53 WT cell line (ONS-76). These 

differences were detected as significant in the alpha_beta software analysis, where the 

simulated experiments emphasised them, but not from the experimental datasets (F-test). At 

lower doses, in the α portion of the curve, cell death results from single hit lethal DNA 

damage that cannot be repaired176. At higher doses, in the β portion, multiple-hit damage is 

the cause of cell death176. As multiple hits of DNA are required, there is space both 

temporally and spatially for p53-dependent processes176. In the TP53 WT cells p53 is 

functioning normally to respond to DNA damage, resulting in cell death241–243. In the TP53 

mutant cells, the mutant p53 protein does not recognise and act on DNA damage, causing 

radioresistance246,247,250. These observations can be used to hypothesise that the TP53 

mutations may be enabling the DAOY and UW228-2 cell lines to survive otherwise lethal 

DNA damage, contributing to decreased radiosensitivity. 

 

When the cell irradiations were carried out under hypoxia, the alpha_beta analysis showed 

no significant differences between the cell lines, in contrast to normoxia. As all four cell lines 

reported OERs of 2.5-3, the alpha_beta analysis suggests that not only does hypoxia 

decrease radiosensitivity for all cell lines (as expected) but that for two of the cell lines this 

occurs to a greater extent. Under normoxia, MED8A and ONS-76 were slightly though not 

significantly more radiosensitive than DAOY and UW228-2 at higher radiation doses. Under 

hypoxia, all four cell lines showed similar levels of radiosensitivity at all radiation doses used. 

If the relative radiosensitivity of only MED8A had been lost this could have been 
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hypothesised to be a result of hypoxia-induced SHH pathway activation604,605 decreasing 

Group 3 radiosensitivity. For the SHH cell lines, the SHH pathway is already overactive 

under normoxic conditions, limiting the increase that can result under hypoxia. However, the 

difference between ONS-76 and the remaining SHH cell lines was also lost. Under hypoxic 

conditions, the TP53 mutant cell lines (DAOY and UW228-2) no longer had a survival 

advantage over the TP53 WT cell lines (ONS-76 and MED8A), indicating the TP53 mutation 

status is important. Under hypoxia, TP53 mutant but not WT cells showed a decrease in the 

fraction of cells in S-phase606. Cells in the S-phase of the cell cycle are more resistant, 

therefore under hypoxia TP53 mutant cell lines contain a greater proportion of radiosensitive 

cells compared to normoxia than WT cell lines143,322. The TP53 mutant cell lines would, in 

this way, be relatively more radiosensitive than the WT cell lines, and this has been shown 

using GBM cells607.  

 

Hypoxia can also influence the response of TP53 WT cells to radiation, although this is not in 

a straightforward manner and appears to be cell line dependent. Hypoxic conditions can 

increase or decrease p53 protein in TP53 WT melanoma242, sarcoma456 and NSCLC608 cell 

lines. Altered p53 protein levels under hypoxia would contribute to altered radiosensitivity. In 

a study using three TP53 WT sarcoma cell lines, cultures were pre-incubated in hypoxia 

before being irradiated under normoxic conditions456. Two of the three cell lines showed a 

decrease in radiosensitivity following the hypoxia pre-incubation which, as irradiation was not 

conducted under hypoxic conditions, could not be attributed to the oxygen fixation 

hypothesis456. The two sarcoma cell lines with decreased radiosensitivity also showed 

decreased p53 protein under hypoxia, subsequent suppression of irradiation-induced p53 

activation and decreased protein expression of downstream pro-apoptotic proteins456. In 

cells not pre-incubated in normoxia, p53 was activated by irradiation and resulted in 

increased expression of the pro-apoptotic proteins456. In the sarcoma cell line where the pre-

incubation did not alter radiosensitivity, hypoxia increased the p53 protein expression and 

there was no subsequent alteration in the p53 response to radiation456. Characterisation of 

the p53 protein expression in ONS-76 and MED8A following hypoxia pre-treatment would be 

expected to show a decrease of p53 protein and suppression of irradiation-induced p53 
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activation. The TP53 mutant cell lines would be expected to show suppressed p53 activation 

following irradiation regardless of oxygen concentration due to these mutations. Therefore, 

not only would the TP53 mutant cell lines be made relatively more radiosensitive under 

hypoxia but the TP53 WT cell lines would also be relatively less radiosensitive. This would 

provide an explanation for the results of the alpha_beta analysis.  

 

4.2.3. Radiosensitivity measured using a high-throughput assay 

The high-throughput assay was established and used for five of the six MBL cell lines. This 

assay was found to be a suitable alternative to the gold standard clonogenic assay as (a) a 

screening tool for experimental conditions and cell lines or (b) as an alternative for non-

clonogenic-compatible cell lines as long as a control that was clonogenic compatible was 

included to show the results were comparable. 

 

The high-throughput assay used in the work presented here was based on parameters from 

the CCLE screen of 533 cell lines, on the basis that parameters used for such a wide 

number of cell lines would also be compatible with the MBL cell lines, particularly 

considering three of the cell lines in the MBL panel were included in the screen156. Two 

protocol adaptations were made, first increasing the incubation period between seeding and 

irradiation to 48 h in line with the clonogenic assay method used and second the medium 

removal step prior to the addition of the CTG reagent was excluded in our protocol. The 

medium removal step is not included in the CTG assay protocol itself and made the CCLE 

screen protocol incompatible with semi-adherent or suspension cell lines609. It was also 

decided to use a different output metric for the high-throughput assay results in this project. 

The CCLE screen reported re-scaled AUC values for each cell line. The AUC was calculated 

using the PF and log(dose) then multiplied by 7/log210 to give a value between zero 

(completely radiosensitive) and seven (completely radioresistant)156. The paper does not 

explain why the AUC was re-scaled or how this scaling factor was generated, however the 

reasons may be inferred from context. Considering the doses used within the CCLE screen, 

the maximum raw AUC resulting from 100% cell survival at all dose points would be 

calculated as 3.32, the scaling factor appears to have been selected to convert this to a 
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whole number, 7, presumably for ease although why a scale between zero and seven was 

chosen is unclear. This scaling factor cannot therefore be applied to assays with different 

dose points, such as those used in this thesis.  

 

The choice of the AUC as the output metric is explained in the previous publications, 

however the evidence provided is somewhat unconvincing156,185. During the method 

development on the MBL cell line panel, it was shown that the PF values from a high-

throughput assay replicated the SF values from a clonogenic assay. In fact, in the 

supplementary material from the original high-throughput assay paper, survival curves can 

be generated for their cell line panel and these also show a good replication of the 

clonogenic survival curve by the high-throughput assay. Based on the information included 

within the main text of the publication, the authors decided to compare all doses tested 

across each assay for each cell line156,185. For example, the SF2 was compared to the 

PF10156,185. To demonstrate that the high-throughput assay replicates the clonogenic assay, 

this comparison does not seem logical as the SF and PF values need to be correlated at the 

same dose points only. 

 

The AUC metric also contains some inherent flaws. The AUC was calculated using the 

trapezoidal method, where two neighbouring data points are joined by a straight line, and the 

area under this straight line calculated as the area of the trapezoid formed156,185. In the high-

throughput and clonogenic assays, the neighbouring data points are produced from 

sequential dose points. The more dose points included in the assay the shorter the gap 

between the data points, producing a more arched and smoother curve. In the original 

papers, the clonogenic assays used 0, 2, 5 and 8 Gy while the high-throughput assay used 

0, 1, 2, 3, 4, 5, 6, 8 and 10 Gy156,185. A comparison of AUC values calculated using the 

trapezoidal method is not, therefore, a fair comparison as the curve of the high-throughput 

assay will contain fewer assumptions between dose points. Additionally, the high-throughput 

assay extends to a higher dose than the clonogenic, 10 Gy vs 8 Gy. The AUC for the high-

throughput assay will, at least theoretically, be larger. For the majority of cell lines the SF/PF 

at these high doses is likely to be small enough to make very little difference to the overall 
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AUC value, but for direct comparisons between the two assay methods this discrepancy is 

undesirable. Furthermore, the MBL work indicates that the high-throughput assay is less 

accurate at higher radiation doses and reports a higher cell survival than the clonogenic, 

another difference that would increase the AUC value but could only be detected by plotting 

and comparing the curves from both assays, not from the AUC values alone. The AUC of the 

high-throughput assay may therefore be artificially elevated compared to that of a clonogenic 

assay both due to increased number and extent of dose points and increased reported cell 

survival at higher doses.  

 

The three cell lines used in the CCLE screen were DAOY, ONS-76 and D283 with reported 

AUC values of 1.08, 1.69 and 0.674 respectively156. For comparison, the reported AUC 

values from the CCLE screen have been converted back to raw AUC values by dividing by 

the scaling factor. ONS-76 could not be optimised in this work. The AUC values for DAOY 

and D283 calculated here were 0.98 and 1.14 respectively. The CCLE screen included a 

higher dose point than was done in this work, which, as discussed above, would necessarily 

increase the reported AUC values.  

 

D283 is a semi-adherent cell line, which does not appear to have been taken into account in 

the CCLE screen and thus the radiosensitivity may not have been accurately determined156. 

D283 is not only reported as the most radiosensitive MBL cell line but also one of the most 

radiosensitive cell lines in the entire panel156. The CCLE screen method removes the 

medium from the wells prior to the addition of the CTG reagent. In a semi-adherent cell line 

such as D283, where up to 90% of the cells are in suspension, this step will remove a 

variable but significant proportion of the total cells from each well. Even though the medium 

is being removed from each well, the same number of cells will not be removed from each 

well and so the approach does not provide a compensatory control mechanism. As 

described above (Section 4.1.1), the proportion of suspension cells may be increased by 

irradiation and if this is the case then more cells could be removed from wells treated with 

higher radiation doses than from control wells. The reported number of cells in each well 
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would be reduced, indicating fewer cells had survived and indicating a greater 

radiosensitivity than is the case.  

The cell line ONS-76 was included within the CCLE screen but could not be optimised during 

this project as the 0 Gy control plates showed saturated luminescence in every repeat 

experiment, despite reducing the seeding density to a minimum. The incubation period 

between irradiation and the CTG assay was 9 days as used in the previous screens. The 9 

day incubation for the high-throughput assay was found to produce the most significantly 

similar AUC results to the clonogenic assay185. ONS-76 is the fastest growing cell line in the 

MBL panel, and requires the shortest incubation period in the clonogenic assay. Although 

the 9 day incubation period produced data in the CCLE screen, these results suggest that a 

reduced incubation period may be preferable. Subsequent uses of the high-throughput 

assay in the group have reduced the incubation time with some succession, using visual 

inspection for cell density to determine whether the assay should be terminated. The 

incubation period may need to be optimised for each cell line to account for different cell 

growth characteristics.  

 

The difficultly in optimising the high-throughput assay for ONS-76 revealed an inherent 

limitation of this assay, an upper limit of detection. In the clonogenic assay, as the radiation 

dose increases the seeding density within the wells is increased to account for the 

subsequent decreased SF. The 0 Gy control wells are used to calculate the percentage of 

cells that would form colonies without radiation, and this is used to calculate the number of 

expected colonies in a well based on the number of cells seeded. Therefore, the increases in 

cell seeding density at higher radiation doses can be accounted for and a much higher 

seeding density can be used in an irradiated well than in a control well, allowing for very 

small SFs to be calculated. In the high-throughput assay, the PF is calculated by comparing 

the RLU at 0 Gy with the RLU at the dose point. There is no control for the number of cells 

seeded within a well, and so the number of cells seeded at the control and dose points must 

be the same. The assay is therefore limited, as higher doses require higher seeding 

densities to generate detectable luminescence, but using these higher seeding densities in 

the unirradiated control wells results in saturating the luminescence. The maximum number 
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of cells per well in the assay will be limited by the 0 Gy control, and the maximum number of 

cells per well will limit the maximum dose that can be used. This is reflected in the assay 

results –the high-throughput and clonogenic assays are in close agreement at lower doses 

but differences are observed at the higher dose points where the 0 Gy cells are reaching 

saturation with the number needed to produce a result at the dose point.  

 

The high-throughput assay produced survival curves that did not significantly differ from the 

clonogenic assay results for each of the three cell lines used in both. The high-throughput 

assay was therefore applied to the semi-adherent cell lines as an assessment of 

radiosensitivity. The three Group 3 cell lines, D425, D283 and MED8A showed no significant 

difference in survival curves produced by the high-throughput assay. The cell line D283, 

which is reported as belonging to both the Group 3 and 4 subgroups, is slightly separated 

from the other two16,117,506. While the WNT and SHH subgroups are clearly defined separate 

entities in patients, Groups 3 and 4 show some overlap95. As shown previously and in the 

work here when the MM2S method was applied to confirm subgroup classifications, samples 

more frequently swap between these two groups than any other95. A recent paper with 

patient samples has reported the presence of an intermediate subgroup (Group 3/4) which is 

separate from the other two non-WNT, non-SHH subgroups97. This intermediate group 

contained tumours nominally clustered with Group 3 but containing genes belonging to both 

Group 3 and 497. Group 3/4 has better survival outcomes than Group 3 or Group 497. D283 

may therefore be representing this subgroup, which would be predicted to be more 

radiosensitive than Group 3 based on the clinical outcomes.  

 

The data presented here for the two SHH cell lines with previously published SF2 values are 

in agreement with the literature. The published SF2 values for DAOY are 0.40271, 0.44270 and 

0.61272; here the SF2 was 0.42 and the PF2 was 0.36. The published SF2 values for ONS-

76 were 0.42271 and 0.64273; here the SF2 value was 0.54, with no PF2 values reported. For 

Group 3 however the published survival data indicates they are more radiosensitive than 

found in this work. The published SF2 values for D283 were 0.17272 and 0.18270; here the 

PF2 value was 0.44. The published SF2 value for MED8A was 0.34272; here the SF2 was 
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0.89 and the PF2 was 0.52. No SF2 values have been reported for D425. The published 

SF2 values for D283 have the same issues as previously discussed, in that the clonogenic 

assay removes the medium prior to fixing and staining and D283, as a semi-adherent cell 

line, is not compatible with media removal steps. The reduced SF2 values in the literature 

can therefore be explained in this way. During method development of the clonogenic assay, 

certain adjustments were required for MED8A in order to optimise colony formation. 

Specifically, the FBS concentration for the incubation period was increased, and wash steps 

were removed from the fixing protocol. When the wash steps were included, MED8A 

colonies were washed off the plate meaning that the colonies counted after fixing did not 

represent the number of colonies that had formed. The literature methods do not mention 

such adaptations for the MED8A cell line, therefore the reported low SF2 values may be due 

to systematic errors, as for D283. The decreased radiosensitivity reported in this thesis is 

suggested to reflect the described methodological differences which provide a more 

accurate quantification of the cell radiosensitivity.  

 

The agreement of the results from the clonogenic and high-throughput assays provides 

further confidence in the comparison of the clonogenic results across cell lines. While the 

SHH cell line clonogenic work used the standard complete medium FBS concentration of 

10%, the Group 3 cell line work used 20%. As discussed previously, the FBS concentration 

may have an effect on PE and SF of cell lines and the different FBS concentrations may limit 

subgroup comparisons (Section 4.2.1). The high-throughput assay does not require 

surviving cells to form distinct, fixable colonies and so all cell lines were incubated in the 

same culture medium (complete medium containing 10% FBS). The MED8A survival curve 

produced from the high-throughput assay was not significantly different from that produced 

from the clonogenic assay, indicating that the FBS concentration used for each cell line was 

not significantly affecting the radiosensitivity of this cell line.  

 

The high-throughput assay results were used in conjunction with the clonogenic assay 

results to compare the radiosensitivity of the subgroups. Overall, the in vitro work showed 

SHH cell lines were significantly more radiosensitive than the Group 3 cell lines. Clinically, 
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Group 3 tumours have worse overall survival than SHH, which would be a result of 

decreased radiosensitivity, considering radiotherapy protocols are not tailored to the 

molecular subgroups. Increased SHH pathway activity decreases radiosensitivity and, as 

increased pathway activity is a marker for the SHH subgroup13,15,216–218,220–222, this subgroup 

may be expected to be less radiosensitive. In this case, inhibition of the SHH pathway would 

increase radiosensitivity and cell kill. Work in prostate cancer cells, which also have 

intrinsically increased SHH pathway signalling, showed that inhibiting the SHH pathway in 

these cell lines only increased radiosensitivity in cell lines where the pathway was indirectly 

activated by AR signalling227–231. In the cell lines where the pathway activation could not be 

explained through AR signalling, inhibition of SHH signalling had no effect on 

radiosensitivity227. If constitutive SHH pathway activation does not result in reduced 

radiosensitivity similar to that which occurs following acute pathway activation, SHH pathway 

inhibition would not result in radiosensitisation. What effect the overactive SHH pathway has 

cannot be determined from the results presented here as, while more radiosensitive than 

Group 3 cell lines, the SHH cell lines are radioresistant compared to non-MBL cell 

lines151,152,155,156,160,593,610–635. Future experiments are needed to test the effects of SHH 

pathway inhibition on radiosensitivity. Characterisation of the SHH pathway signalling with 

the MBL cell lines in parallel with the radiosensitivity work could provide a better 

understanding of how SHH signalling contributes to radiosensitivity and potentially suggest 

therapeutic targets to increase tumour radiosensitivity. 

 

Proton irradiation causes a different extent of radiation damage to x-ray irradiation, and this 

is calculated as the RBE134,135,137,276,299,300,306,307. An RBE of 1.1 is generally accepted and 

used clinically however this value is controversial and a wide range of RBE values have 

been reported across cell lines. The high-throughput radiosensitivity assay was identified as 

a potential method for rapidly generating RBE values for a wide number of cell lines. 

Carrying out a screen of cell lines using clonogenic assays would be labour intensive and 

time consuming. Additionally, The Proton Research Room at the Christie hospital has some 

restrictions preventing the extensive use of clonogenics: limited facilities for re-seeding cells 

into the 6-well plates following irradiation; limited facilities for long-term incubation of 6-well 
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plates for colony formation; a horizontal beam requiring culture vessels to be positioned 

vertically during irradiation; and restriction of beam access time to outside of clinical working 

hours. The high-throughput assay addresses some of these issues: there is no re-seeding 

step therefore cell culture facilities are not required; fewer plates are required per experiment 

due to the 96-well plate format; there is a low media volume so the vertical position required 

does not cause media spillage; and the assay protocol can maximise the throughput as the 

plates can be prepared in advance and only the irradiation is required during the night-shift.  

 

Initial proof-of-principle experiments were completed using two MBL cell lines that had 

already been used in the high-throughput assay, DAOY and MED8A. The proton data set 

represents a single experiment conducted on two cell lines. The small nature of this dataset 

means that interpretation must be limited and cautious, but it shows that proton radiation 

caused greater cell kill compared to x-rays. As part of the demonstration of the usefulness of 

the high-throughput assay an exploration of the RBE values for DAOY and MED8A was 

carried out, despite the single biological repeat for proton irradiation. The clinically used RBE 

value is 1.1, which appears to be applicable to DAOY where the RBE at 10% cell survival 

was reported as 1.06127. The RBE at 50%, 10% and 1% cell survival for DAOY was 

calculated 1.01, 1.08 and 1.16 respectively. No RBE value for MED8A has been published. 

The RBE at 50%, 10% and 1% cell survival for MED8A was 1.11, 1.34 and 1.36 

respectively. Our small data set suggests that the Group 3 cell line showed a greater 

increase in cell kill following proton compared to x-ray irradiation compared to the SHH cell 

line. This preliminary work, if reproduced and found to be significant, could suggest 

subgroup specific differences in proton radiosensitivity of the subgroups not reported 

following x-ray irradiation.  

 

The high-throughput assay uses the assumption that ATP production is not altered by 

irradiation. Further validation of the endpoint of the high-throughput assay would require a 

study of the long-term effect of a single radiation dose on ATP production to confirm this 

assumption. The incubation period of the high-throughput assay should also be investigated 

by repeating the initial published experiments extending the incubation time beyond 9 days 
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and comparing the incubation time required in the two radiosensitivity assays for each cell 

line to see if there is a correlation156,185. The in vitro subgroup comparison work would be 

expanded using cell lines representing the remaining two subgroups. Follow up work would 

target the SHH signalling pathway to characterise the response to radiation in the SHH and 

non-SHH subgroups. 

4.2.4. Radiosensitivity measured using the radiosensitivity index 

The RSI was prognostic within the MBL patient cohort GSE85217 demonstrating 

radiosensitivity is important in MBL and affects the probability of survival. RSI should only be 

prognostic in patients treated with radiotherapy. Treatment regimens were unknown for the 

patients within this cohort. Patients under three years of age, representing 13% of the 

GSE85217 cohort, are not routinely treated with radiotherapy, however patient age affects 

survival20,21,55,56. Additionally, the total radiotherapy dose prescribed is dependent upon 

standard- or high-risk status, either 23.4 Gy or 36.0/39.6 Gy respectively30,32. In order to 

minimise the number of assumptions made during analysis that could confound the results, 

and considering the majority of patients would have had some radiotherapy in their treatment 

regimen, the entire cohort was used in all survival analyses. Validation of the RSI within MBL 

requires additional analysis of another large patient cohort with detailed radiotherapy 

regimen information.  

 

The cut-off point for the RSI to determine whether a sample was radiosensitive or 

radioresistant was the 25th percentile for each cohort. Across the five patient cohorts used in 

this study, the 25th percentile cut-off value showed a fairly wide range, from 0.4903 

GSE37418 to 0.6824. The cohort with the lowest 25th percentile, GSE37418, also showed 

lower gene expression values across the entire dataset. The different cohorts were 

generated using different sample preparation and microarray methodologies. It is well 

established that technical differences between the microarrays result in different reported 

values and difficulty in comparing across platforms without certain adjustments636–640. While 

these adjustments can be used to combine individual cohorts into a single large cohort to 

interrogate this was not carried out for this project640. The five patient cohorts provided 

different meta-data, which would limit analysis of a merged cohort. For example, only 
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GSE85217 provided survival data and patient age was only available for GSE37382 and 

GSE85217. Using multiple cohorts also allowed for patterns of gene expression to be 

compared and contrasted.  

 

Using the 25th percentile to distinguish between radiosensitive and radioresistant tumours 

classes 75% of all tumours as radioresistant. There was a different ratio of sensitive to 

resistant tumours within each of the four molecular subgroups, with 95% of Group 4 

tumours, 73% of Group 3, 59% of WNT and 44% of SHH classed as radioresistant. The 

Group 4 subgroup contained more radioresistant tumours than expected, while the WNT and 

SHH subgroups contained fewer. As could be expected, the proportion of radioresistant 

tumours was reflected in the median RSI, where Group 4 tumours had the highest values 

(and therefore the least radiosensitive) in each of the cohorts followed by Group 3, WNT and 

SHH subgroups. This was in agreement with the cell line work, which reported SHH cell lines 

to be more radiosensitive than Group 3. 

 

Patients with the most radioresistant tumours should have worse tumour control and overall 

survival following radiotherapy. The subgroup with the worst overall survival rates, Group 

315,131, would be predicted, therefore, to contain the highest proportion of tumours classed as 

radioresistant by the RSI. Instead, Group 4, which has intermediate survival outcomes15, 

contained the highest proportion (95%) while Group 3 contained the expected number of 

radioresistant tumours using a 25th percentile cut-off (73%). The reduced proportion of 

radioresistant tumours in Group 3 compared to Group 4 might be due to the major clinical 

characteristic of Group 3, MYC amplification. MYC amplification can increase radiosensitivity 

through increased DNA damage and subsequent apoptotic cell death264. As the contribution 

of MYC amplification to radiosensitivity is unclear, and higher levels of c-myc protein266 or 

MYC amplification267 have also been associated with radioresistance, further in vitro 

experimental work investigating irradiation-induced DNA damage in MBL cell lines is 

required to identify the contribution of MBL amplification to radiosensitivity. 
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As mentioned above, the 25th percentile cut-off point used with the RSI would be expected to 

class the majority (75%) of all tumours as radioresistant, however considering the 90% 

survival rates for the WNT subgroup15,38,76,102,103,131,641 the majority of tumours within this 

subgroup were expected to be classed as radiosensitive. In fact, only 41% of WNT subgroup 

patients had radiosensitive tumours, and the SHH subgroup contained a larger proportion of 

radiosensitive tumours (56%). Overactive WNT signalling within this subgroup produces a 

leakier BBB compared to the other subgroup, and this directly affects chemosensitivity106. 

This inherent susceptibility to chemotherapy might counteract the relative radioresistance 

compared to the SHH subgroup and could explain the much improved survival outcomes in 

WNT tumours. Three active clinical trials remove or reduce the radiotherapy component of 

WNT subgroup treatment41,43,44. If the removal of radiotherapy from treatment does not 

significantly reduce the survival outcomes, this will provide evidence that radiosensitivity is 

not an important determinant of survival in this subgroup. If chemotherapy is producing most 

of the tumour control, it may be that differences in chemosensitivity are important.  

 

In the MBL cell line panel, in vitro radiosensitivity assays showed that the SHH cell lines 

were more radiosensitive than the Group 3 cell lines. Cell lines representing the WNT and 

Group 4 subgroups were unavailable, and so the in vitro work is restricted to the SHH and 

Group 3 subgroups. The RSI of a patient sample is a predicted SF2 value for that tumour, if 

a primary cell culture was derived and used in the in vitro radiosensitivity assay. In the MBL 

patient cohorts which contain patients representing all four molecular subgroups, the RSI 

showed the SHH subgroup was more radiosensitive than Group 3, agreeing with the in vitro 

data. The RSI also showed that WNT subgroup samples were slightly less radiosensitive 

than SHH samples but much more radiosensitive than Group 3 samples. Group 4 patients 

had the highest RSI values, indicating this subgroup was the least radiosensitive.  

 

The WNT and SHH subgroups are associated with overactive signalling pathways, and 

activation of either the WNT92,111,212,213 or SHH216–218,220–222 signalling pathway decreases 

radiosensitivity. It was hypothesised that these subgroups would be less radiosensitive. 

However, in comparison to MBL as a whole, the WNT and SHH subgroups are more 
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radiosensitive and it would appear then that the overactive signalling pathways are not 

contributing to radiosensitivity as predicted. As reflected by their generic names, molecular 

features of the Group 3 and Group 4 subgroups are still undefined. It is possible that these 

features are important in the relative radioresistance of Group 3 and Group 4 tumours. For 

example, Group 3 tumours contain a greater proportion of CSCs577, which are intrinsically 

more radioresistant than non-CSCs. While intrinsic radiosensitivity is technically genetically 

determined and inherent to each individual cell, measurements of intrinsic radiosensitivity 

(clonogenic assay, high-throughput radiosensitivity assay and the RSI gene signature) 

quantify the intrinsic radiosensitivity of a population of cells. If that population of cells 

contains a greater proportion of more radioresistant cells, such as CSCs, then the intrinsic 

radiosensitivity of that cell population will be reduced. The observed radiosensitivity of Group 

3 tumours would therefore be decreased and the WNT and SHH subgroups, which contain 

fewer radioresistant CSCs, would appear relatively radiosensitive. Alternatively, the 

constitutive activation of the WNT and SHH signalling pathways is acting differently than the 

temporary activation observed in in vitro experiments, either by having no effect or 

increasing radiosensitivity. Repetition of the in vitro radiosensitivity work using SHH pathway 

inhibitors would help quantify the contribution of the SHH signalling pathway to 

radiosensitivity and identify if the underlying overactive pathway contributes to the 

radiosensitivity of the SHH subgroup.  

 

The RSI scores demonstrate a significant difference in radiosensitivity across the subgroups. 

This difference somewhat reflects clinical outcomes and hypothesised radioresponsiveness, 

and therefore could be clinically exploited in terms of personalising radiotherapy regimens 

between subgroups. Specifically, greater tumour control could result from higher 

radiotherapy doses for subgroups with lower intrinsic radiosensitivity (Groups 3 and 4), 

normal tissue tolerance permitting. For the WNT and SHH subgroups which are more 

radiosensitive, a reduction in radiation dose may produce the same level of tumour control 

but reduce side effect severity. The radiosensitivity rankings within MBL are inconsistent with 

the current understanding of the subgroup molecular biology, as the WNT and SHH groups 

have defined aberrant signalling pathways known to decrease radiosensitivity. However, 
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MBL as a single entity is a more radioresistant tumour type and these overactive pathways 

may contribute to this decreased radiosensitivity for the WNT and SHH subgroups. Evidence 

that constitutive WNT and SHH pathway activation d in these subgroups could be used to 

argue for a benefit of concurrent inhibition of these pathways during radiation treatment. 

However, the mechanism of action of radiation is complicated and involves multiple 

pathways. 

 

DNA damage response (DDR) pathways affect radiosensitivity, and mutations that enhance 

or diminish the DDR following irradiation can decrease or increase radiosensitivity 

respectively. There have been no definitive connections between genes involved in DDR 

pathways and any particular MBL subgroup. The most well-known radiosensitivity 

associated gene is ATM (ataxia-telangiectasia mutated, encoding a DDR kinase642), 

however mutations in the ATM gene are not associated with MBL643. No significant 

differences in mutations of other genes within DNA repair pathways (specifically MSH2, 

RAD50 and NBN) across the molecular subgroups were found in one patient cohort644. The 

authors noted germline mutations in the three genes were absent from all SHH tumours644, 

however as this cohort contained only 102 patients with only 51 assigned to molecular 

subgroups644 the numbers were not large enough to produce statistical significance. A 

second study found that, while germline mutations occurred in all four molecular subgroups, 

the SHH subgroup contained the highest number of BRCA2 and PALB2 mutations645. The 

BRCA2 and PALB2 genes encode proteins involved in the homologous recombination DNA 

repair pathway, and the mutations found in MBLs were indicative of homologous 

recombination repair deficiency645. Mutations in MSH2646, RAD50647, NBN648 and BRCA2649 

can increase radiosensitivity. Although only a small percentage of SHH patients had these 

germline mutations645, an impaired DDR within the SHH pathway could explain the relative 

radiosensitivity of this subgroup. Characterisation of the DDR in cell lines and the relative 

levels of germline mutations in DDR associated genes in patient samples would identify any 

subgroup-specific aberrations in the DDR. 
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The RSI was correlated with other clinical characteristics including gender, age and 

histology. Age and gender are known to influence radiosensitivity, but the influence of the 

molecular subgroups may also be contributing. For example, while males are less 

radiosensitive than females650,651, male patients are also more likely to belong to the less 

radiosensitive Groups 3 and 413,97,101. Radiosensitivity varies throughout life, and children 

and the elderly are more radiosensitive651,652. This is not fully reflected in the MBL patient 

cohorts, where children are less radiosensitive than adult or infant patients. The child age 

group contains fewer radiosensitive SHH tumours than any other subgroup13,15,17,38,101,117,118, 

which would explain the relatively decreased radiosensitivity. Classic tumours were less 

radiosensitive than the remaining histological subtypes combined, however over 50% of the 

classic tumours in these cohorts belong to the least radiosensitive subgroup, Group 4.  

 

Metastatic status, molecular subgroup and RSI were significantly correlated with survival in 

univariable analysis. Higher metastatic status and RSI scores were associated with worse 

overall survival. The WNT subgroup had the best overall survival, followed by the SHH, 

Group 4 and Group 3 subgroups. In multivariable analysis combining these three variables, 

only molecular subgroup and metastatic status remained significantly associated with 

survival. Again, higher metastatic status increased the risk of death, and the same pattern of 

survival was observed for the different subgroups. The RSI scores were no longer 

significantly associated with survival outcomes. Multivariable analysis models are influenced 

by the relationships between the variables, and these relationships can explain the loss of 

significance. A higher proportion of Group 3 patients were positive for metastases than the 

other molecular subgroups; both of these characteristics are associated with an increased 

risk of death so these variables are related and predict overall survival in the same way. The 

mean RSI score is significantly different between the molecular subgroups, however the 

subgroup with the worst risk of death does not contain the most radioresistant patients. The 

RSI score and subgroup status do not agree with respect to prediction of survival outcomes. 

When these two variables are included in the multivariable model the RSI score becomes 

less predictive of overall survival and loses significance. This confirms that, despite the 
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significant differences between the subgroups (SHH/WNT more radiosensitive than Group 

3/Group 4), intrinsic radiosensitivity alone does not explain the different survival outcomes.  

 

4.3. Proliferation 

The second objective of this thesis was to investigate whether there were differences 

between MBL subgroups in proliferation. It was hypothesised that differences in proliferative 

capacity could contribute to survival outcomes, which could not be explained by the intrinsic 

radiosensitivity alone. Activation of the SHH signalling pathway122,221,354–357 or MYC 

overexpression358–362 increases proliferation, suggesting these subgroups would be more 

proliferative. The proliferative capacity of MBL was investigated using gene expression 

biomarkers and the meta-PCNA signature in the five patient cohorts. While cellular 

proliferation can be measured in vitro it is influenced by environmental factors such as cell 

culture medium653,654, FBS batch653, FBS concentration518,653 and seeding density518,654. This 

thesis found that proliferation was not associated with survival, with no significant differences 

between the subgroups of MBL.  

 

4.3.1. Gene expression markers of proliferation 

Gene expression biomarkers are usually investigated in terms of their protein expression 

314,328–330,334,335,338–342,402,404,405,407–412,416–426,655,656. A central dogma of biology states that DNA 

is transcribed to RNA which is translated to protein, however post-translational modifications 

and protein turnover rates mean that there is not a direct correlation between mRNA and 

protein expression657. mRNA expression is at least weakly correlated with protein expression 

however, and increased mRNA expression is indicative of increased protein expression658–

662. The biomarkers of proliferation investigated in this project were Ki67 and PCNA. The 

mRNA expression of Ki67 has been shown to correlate with the protein expression, and 

while this was not the case for PCNA, both PCNA protein and mRNA expression do 

correlate with clinical outcomes and characteristics331,332,337,338.  
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In the MBL cohort GSE85217, neither Ki67 nor PCNA mRNA expression was significantly 

associated with overall survival. Detectable levels of mRNA were reported for both Ki67 and 

PCNA in contrast to non-cancerous brain tissue where Ki67 is not expressed and PCNA is 

only expressed at low levels663,664. Increased Ki67 and PCNA protein expression has been 

reported for PNET tumours including MBL previously, although no survival analysis was 

carried out363. Across all five patient cohorts, the expression patterns were not consistently 

altered between the molecular subgroups. The gene expression biomarkers indicate that 

proliferation is not significantly associated with overall survival in MBL, and there is no 

significant difference between the molecular subgroups.  

 

4.3.2. Meta-PCNA index as a marker of proliferation 

The meta-PCNA signature is a gene signature of proliferation. Gene signatures take into 

account a pattern of gene expression that is associated with a particular phenotype of 

interest. The meta-PCNA signature includes 131 genes whose expression is most up-

regulated in accordance with the proliferation protein PCNA, reflecting a network of gene 

expression that is altered by a cell during proliferation. The median gene expression of this 

signature, the mPI, can be used to determine whether a cancer is proliferative-informative or 

not. A proliferative-informative cancer is one where the proliferation rate significantly affects 

survival outcomes, while non-proliferative-informative cancers show no effect of proliferation 

on survival outcomes351. The MBL cohort GSE85217 showed no significant relationship 

between the mPI score and the survival outcomes, classifying MBL as a non-proliferative-

informative cancer. Non-proliferative informative cancers were those with the highest 

expression of proliferation markers, which agrees with the previous indication from single 

gene markers that proliferation was significantly increased in the MBL samples351. As a non-

proliferative informative cancer the implication is that proliferation no longer contributes 

directly to the survival outcomes, instead other outcomes such as immune activation or 

metastasis do351.  

 

If the proliferative capacity of the tumours were acting to increase or decrease 

radioresponse, and using the assumption that the majority of patients are treated with 
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radiotherapy, then a difference in survival outcomes between tumours with different 

proliferative rates would be expected. By giving MBL the status of non-proliferative 

informative cancer, proliferation is not contributing to survival outcomes and therefore is also 

not significantly contributing to radioresponsiveness.  

 

As for the single gene biomarkers, the mPI showed no consistent differences between 

molecular subgroups. Considering that proliferation is not associated with the risk of death in 

MBL, that the survival outcomes do not show differences in proliferation markers in 

accordance with their different survival outcomes is not surprising. Activation of the WNT 

and SHH signalling pathways increases cellular proliferation115,122,221,352–357 and so the 

constitutive activation within the subgroups may be expected to also increase cellular 

proliferation. Instead, no significant differences are seen within these subgroups. In vitro 

studies using established cell lines and pathway inhibitors would demonstrate whether there 

is a contribution of these signalling pathways to proliferation. As for radiosensitivity, it is 

possible that the constitutively active pathways have a different influence on proliferation 

than the acute activation used in drug or transfection studies, or that Group 3 and 4 

subgroups have underlying molecular aberrations that also increase proliferation.  

 

A large patient cohort with clinical outcomes, molecular subgroup status, mRNA expression 

data and tumour biopsy samples could be used to confirm the results presented here. The 

single gene expression marker results could be confirmed using both mRNA and protein 

expression studies within such a cohort to demonstrate the correlation between the two 

metrics and confirm the findings across the disease as a whole and the molecular 

subgroups.  

4.4. Hypoxia 

The third objective of this thesis was to investigate whether there were differences between 

MBL subgroups in the extent of tumour hypoxia. It was hypothesised that lower tumour 

hypoxia could contribute to the survival outcomes that were not explained by intrinsic 

radiosensitivity alone. The subgroups with higher than expected radiosensitivity, SHH and 

Group 3 were predicted to be more hypoxic than those with lower than expected 
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radiosensitivity, WNT and Group 4. Work carried out for this thesis showed no relationship 

between the degree of tumour hypoxia and patient outcome, and was inconclusive with 

regards to the extent of hypoxia between molecular subgroups but suggested that WNT 

tumours were the most hypoxic.  

 

While MBLs will contain regions of hypoxia because they are solid tumours457–459, only two 

studies report on markers of tumour hypoxia106,460. The first study using a small cohort (n=35, 

28 MBL and 7 PNET) reported approximately 25% of tumours contained some level of CAIX 

staining460. While the number of samples with strong (>30% CAIX-positive cells, n=1), 

moderate (10-30% CAIX-positive cells, n=6) and weak (<10% CAIX-positive cells, n=2) can 

be deduced, which tumours were MBL and which were PNET cannot. This study was carried 

out prior to the consensus on the molecular subgroups and therefore does not report on 

subgroup status and MBL. The second used the hypoxia biomarker GLUT1 and showed 

lower expression of this biomarker within the WNT subgroup compared to the other three 

subgroups as part of an investigation demonstrating WNT tumour vasculature was the most 

extensive106. This study used two patient cohorts with a total of 98 patients comprising 

10WNT, 24 SHH, 22 Group 3 and 32 Group 4 patients, and confirmed downregulation of the 

expression of Slc2a1, the GLUT1 gene in mice106. Although not included in the study, the 

lower level of GLUT1 staining reported within the WNT subgroup may imply there are lower 

levels of hypoxia within this subgroup.  

 

Tumour hypoxia was investigated using gene expression biomarkers and hypoxia gene 

expression signatures in the five patient cohorts. Hypoxia is a feature of the tumour 

microenvironment, and while it can be reproduced in vitro in cell lines this cannot provide 

information regarding the hypoxia status of the original tumours. The patient cohorts were 

investigated with regard to gene expression biomarkers and signatures to detect the 

presence of hypoxia with the tumours. Tumour hypoxia was not associated with survival in 

MBL. A difference between tumour hypoxia across the molecular subgroups was identified 

with one hypoxia gene signature (Group 3 being the most hypoxic followed by Group 4, SHH 
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and WNT), suggesting subgroup-specific differences in tumour hypoxia contribute to the 

different overall survival rates.  

 

4.4.1. Hypoxia assessed using gene/protein expression 

The mRNA expression of two single gene markers of hypoxia, CAIX and GLUT1 was 

investigated in this study. Neither marker was significantly linked to survival outcomes or 

showed consistent differences between the subgroups. This finding contrasts with the 

previous report mentioned above, where the WNT subgroup was shown to have lower 

GLUT1 protein expression than the remaining three molecular subgroups106. The mRNA and 

protein expression levels have been correlated for both of these markers406,413. CAIX mRNA 

expression is enhanced within the normal cerebellum, the brain region where MBLs 

originate, and therefore may not be a suitable hypoxia marker within this region30,665. GLUT1 

has low expression across all brain regions, potentially making it more suitable within this 

context666.  

 

4.4.2. Hypoxia gene expression signatures 

Hypoxia signatures can be developed using patient data where both the mRNA and hypoxia 

status of the tumour are available, or using in vitro cell line data, where cells are cultured 

under a variety of oxygen concentrations and gene expression differences between the two 

compared. There are no hypoxia gene expression signatures derived using MBL samples. 

Specialist bioinformatics knowledge is required to develop a robust and reproducible gene 

signature using the most appropriate models. For hypoxia gene signatures to be applied to 

patients and inform treatment decisions, validation in clinical cohorts is required however a 

lack of validation of hypoxia gene signatures has been highlighted as a barrier to their 

widespread clinical use385,667. Hypoxia gene signatures are rarely validated in cancer types 

outside of those that they were developed in, and when this validation is carried out it 

generally shows that the signatures are not applicable to all cancer types389. 
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A literature search identified 21 hypoxia gene signatures across a range of cancer types and 

12 of these were applied to the MBL patient cohorts. The signatures derived in brain 

cancers388,434,435 and NBL389 were included as these were expected to show the greatest 

overlap with MBL based on tumour location and cells of origin respectively388,389,434,435. 

Signatures which generated a hypoxia score and classified samples as low or high hypoxia 

based on the median cohort score were included388,390,391,427,436,438,440. Signatures which 

required alternative analysis431,433,437,439 or for the results to be compared with previously 

assessed data432,437,441 were excluded. Where multiple signatures were identified from a 

single cancer type, such as for prostate or breast, only one was applied to the MBL patient 

data. Across the 12 signatures, none were prognostic within MBL.  

All but two of the 12 applied signatures used the median hypoxia signature score to classify 

patients as high or low hypoxia. The only available data for MBL reported only 25% of 

samples stained positive for CAIX, suggesting significant hypoxia is present in 25% of 

tumours460. Although the cohort size of this study was small and also included PNET 

tumours, it suggests a median cut-off value might be suboptimal. The two remaining 

signatures used k-means clustering based on the gene expression signature data to assign 

samples to the high or low hypoxia groups. The Tardón GBM signature reported 40% of 

patients in the high hypoxia group, while the Fardin NBL signature reported 70% of patients 

as high hypoxia. Although neither signature was prognostic, the fact that the samples were 

not divided equally between the two groups further suggests that the median score is not a 

suitable cut-off. Using the 25th percentile as a cut-off in the applied signatures reduced the p-

value in the majority of cohorts, although none reached statistical significance. A larger 

sample cohort should be used to confirm the expected proportion of MBL tumours containing 

regions of hypoxia, providing evidence for a re-assessment of the cut-off point.  

 

It was anticipated that gene signatures derived in carcinomas would be least transferable to 

MBL, while those derived in glioma or GBM would be most prognostic. This was found not to 

be the case, and the gene signature that produced groupings with the lowest p-value was 

the Fardin NBL signature389. NBL and MBL share some similarities that are not present with 

gliomas that may contribute to this. NBL and MBL are embryonal tumours originating from 
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blast cells in the peripheral and central nervous systems respectively30,668. Along with their 

embryonic nature, both are more common in early childhood73. Gliomas and GBMs originate 

from glial cells and are more frequent in adults669. NBL and MBL also share similar 

histology73. Cancers with more similar histology have a similar levels of hypoxia441, and 

histological features can be used to assess tumour hypoxia670,671. Cancers of a similar 

histology would appear to share certain gene markers of hypoxia. Across the 21 hypoxia 

gene signatures identified in the literature search, 50% of genes found in more than one 

signature were only found in signatures derived from carcinomas. Half of these carcinoma-

only genes were equally represented in multiple cancer types, i.e. were found in an equal 

number of signatures for at least two cancer types. This may explain why the NBL was more 

applicable to the MBL cohort than the other brain cancer hypoxia gene expression 

signatures.  

 

It could be expected that, based on the potential links between histology and hypoxia, the 

levels of hypoxia would vary across the histological subgroups. The four histological 

subgroups were not well represented across the GSE85217 cohort, with only 18 MBEN 

compared to 387 classic tumours. Two of the histological subgroups, DN and MBEN, did not 

contain enough events to allow survival analysis672. A relationship between histological 

subgroup and hypoxia could not be investigated. Future investigations of hypoxia and MBL 

would benefit from details regarding both the molecular and histological subgroups of each 

sample.  

 

As no signature proved to be prognostic, the multivariable analysis was carried out using the 

classification produced by the Fardin signature. The other variables included in the analysis 

were metastatic status, subgroup status and RSI, which were found to significantly 

contribute to survival in univariable analysis. The multivariable analysis only found metastatic 

status and subgroup status to be significant predictors of survival.  

 

For the two applied signatures which used k-means clustering, Fardin NBL389 and Tardón 

GBM434, both the reported and optimal values of k were used in the algorithm, k=2 and k=4 
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respectively. When the optimal k=4 was used in the Tardón signature, the resulting four 

clusters represented the four molecular subgroups. This gene signature was derived using 

GBM cell lines and validated in glioma and GBM cohorts. It seems unlikely that it is also a 

gene expression signature for the MBL molecular subgroups, especially considering the 36 

genes within the Tardón signature have no known associated with any of the molecular 

subgroups. This finding was replicated in the second largest patient cohort but not in the 

smaller cohorts. It was also demonstrated that this clustering into the subgroups was not 

occurring by chance as it was not seen when random sets of 36 genes were used. This 

result suggests that the different molecular subgroups have different gene expression levels 

of hypoxia-associated genes.  

Survival outcomes of the four Tardón signature clusters, where the cluster with the worst 

survival outcomes is deemed the most hypoxic, showed that the WNT subgroup is the least 

hypoxic, followed by SHH, Group 4 and Group 3. However, as the clusters are so 

representative of the molecular subgroups and this survival follows the clinical patterns for 

the molecular subgroups, confirmation using CAIX or GLUT1 staining of samples with known 

subgroup affiliations should be carried out. GLUT1 staining previously reported the WNT 

subgroup to have the lowest protein expression than the other molecular subgroups, which 

is in agreement with the Tardón signature analysis106. The WNT subgroup was also reported 

to have more vascularity, which would indicate a better blood supply, and hence better 

oxygen supply, to the tumour106. If this pattern of hypoxia across the subgroups is correct, 

then the contribution of hypoxia could explain the different radioresponsiveness across the 

molecular subgroups.  

 

The work presented here is inconclusive, presenting neither a difference nor a similarity in 

hypoxia between the molecular subgroups. While neither of the gene expression biomarkers 

were prognostic within MBL, single gene markers are not reliable400 and, depending on the 

study, can be prognostic or not prognostic in the same cancer type. For example, CAIX 

staining in H&N patient cohorts was prognostic in one study and not in another402,408,409. 

None of the applied gene signatures were prognostic, but as they were not derived using 

MBL samples and, because hypoxia gene signatures are on the whole not transferable, the 
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signatures may not be compatible with MBL389. To address this, a MBL specific hypoxia 

gene expression signature would need to be developed and validated. A MBL specific gene 

signature would then enable a more thorough investigation of subgroup-specific differences 

in hypoxia status, to confirm that the level of hypoxia within the tumours is significantly 

contributing to the radioresponsiveness. Subgroup-specific differences in tumour hypoxia 

could be exploited by including hypoxia-targeted therapies such as CON or nimorazole in 

subgroups with higher levels of hypoxia. As tumours should be routinely assigned to 

molecular subgroups prior to treatment, this approach would be easy to implement and not 

require any additional profiling, such as with a hypoxia gene expression signature.  

 

4.5. Cell migration 

The fourth objective of this thesis was to investigate whether there were differences between 

MBL subgroups in cell migration. Group 3 tumours are more aggressive and more likely to 

be metastatic131 than SHH tumours. Metastasis involves many cell processes including 

migration but also degradation of the ECM, EMT and invasion. In vitro migration rate can be 

an indicator of metastatic potential, therefore the clinical features of Group 3 tumours 

suggest Group 3 cell lines would be more migratory. However, the gap closure assay used 

in this thesis measured cellular migration only, and the activation of the SHH signalling 

pathway clearly increases cellular migration in a range of cell lines123,125,130,488–495. It was 

hypothesised, therefore, that the activation of the SHH signalling pathway in SHH subgroup 

cell lines would result in a higher baseline rate of cell migration in the gap closure assays 

compared to the Group 3 cell line. It was also predicted that radiation would increase the 

rate of cell migration. An in vitro migration assay, the gap closure assay, was optimised to 

assess cellular migration in the MBL cell line panel. The work found that the SHH cell lines 

had a higher baseline rate of gap closure, but that gap closure rate was highly cell line 

dependent. Irradiation-induced effects on gap closure rate were observed for all cell lines, 

however these were also cell line dependent and appeared independent of subgroup status.  
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4.5.1. Python code development 

The gap closure assay, where the closure of a gap in a cell monolayer is measured over 

time, is widely used in the literature to measure migration 224,243,471,472,476,481. Gap closure can 

be measured and reported as gap width at different time points, gap area at different time 

points and the gap closure rate. For measurements of gap width the Nature protocol 

recommends taking at least 100 measurements per time point552, although this has not been 

reported in any of the publications reviewed during this project224,243,471,472,476,481. In fact, the 

accurate measurement of gap width or area and subsequent calculation of gap closure rate 

is rarely reported.  

 

As part of the gap closure assay optimisation, an automated analysis method was sought to 

provide non-subjective and rapid analysis. Several programs were available but none were 

found to be suitable. The companion software for the IncuCyte Zoom live-cell imaging 

system, which was used to capture images during the experiments, was not compatible with 

other experimental parameters including the culture vessel. This software also reported the 

relative wound density rather than the gap width as recommended in the Nature protocol552. 

The TScratch673 and PyScratch554 programs were unable to accurately differentiate the cell 

monolayer from the gap region. The parameters of the image analysis algorithms for these 

two programs were not under user control, and therefore could not be adjusted to optimise 

image analysis for the MBL cell lines. The most suitable, pre-existing program was a macro 

for the ImageJ software, ‘MRI Wound Healing’674. This software does allow the user to alter 

the image analysis algorithm parameters, however the optimisation of these for each well 

was time-consuming and some subjectivity still remained. The macro also reported gap area 

rather than gap width.  

 

An alternative automated analysis method that could fulfil all the analysis requirements was 

devised using the Python programming language. These requirements were: compatible and 

adaptable for a wide range of cell lines; quick analysis of large time-lapse microscopy 

datasets; at least 100 measurements of gap width for each image; produced documentation 

of the experimental and analysis parameters along with the analysed images; and would 
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calculate the gap closure rate for each well. In order for the program to be compatible with a 

wide range of cell lines, the parameters for the image analysis process were user-controlled. 

A separate function was written into the program to provide quick optimisation of these 

parameters for each cell line.  

 

4.5.2. Evaluation of methods for gap closure analysis 

Comparison experiments demonstrated that the in-house python program was as accurate 

at analysing images as the ‘gold standard’ manual measurements. Direct comparisons 

between analysis methods for gap closure assays are rare within the literature, even in 

papers describing a new analysis software. The TScratch software carries out comparisons 

between TScratch and manual analysis, showing no difference in the reported gap area of 

identical data sets by these two methods673. No further comparisons, such as time required 

for analysis, delineation of gap edge or reproducibility of the analysis over time were 

reported673. The more recently published PyScratch software compares between PyScratch 

and the MRI Macro, but no manual analysis was carried out554. There was no significant 

difference between the normalised gap area or gap closure rate reported by the two 

methods for the same dataset554. In this thesis, the MRI Macro reported significantly reduced 

gap width and area measurements compared to the manual measurements. While the 

PyScratch software was not able to be used with the MBL datasets, it may be anticipated 

that PyScratch would also report reduced gap area compared to manual measurements.  

 

There are many metrics that can be generated by the gap closure assay including the gap 

width over time, the gap area over time and gap closure rate675. Both TScratch673 and 

PyScratch554 report the gap area over time, and compare this metric to the chosen 

alternative analysis methods. Gap closure rate removes subjectivity, is independent of the 

initial gap size and does not require complete gap closure675 and therefore was selected for 

use. The gap closure rate should only be measured during the linear portion of gap closure 

as gap closure rate can decrease over time in some cell lines676. The largest difference 

between the manual measurements method and the Python code for the MBL data was the 

gap closure rate. The calculation of the gap closure rate is where the manual measurements 
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method is weakest as the rate is calculated between the first image of the assay and a later 

time point552,675. While this later time point is user selected, the Nature protocols 

recommends selecting just before the gap is completely closed under the conditions that 

produce the fastest gap closure552. As gap closure rate decreased over time676, in the wells 

where gap closure is fastest, this recommendation will include part of the non-linear portion 

of gap closure. The gap closure rate produced by the Python code is therefore more 

comparable across wells and conditions.  

 

4.5.3. Migration assay method development 

A review of the gap closure assay highlighted a lack of standardisation across publications 

with regards to the method of gap creation, culture parameters during the assay and 

quantification of gap closure675. The development of the Python code provided confidence in 

the gap width being accurately and reproducibly quantified. Further method development 

work was undertaken in order to identify the most suitable method of gap creation and 

culture parameters.  

 

Two methods of gap creation were investigated, using Ibidi inserts which physically prevent 

the cell monolayer from forming in a region of the culture surface and using the EssenBio 

WoundMaker which physically scratches a section of a cell monolayer from the culture 

surface. A barrier method such as the Ibidi inserts provide increased gap reproducibility and 

cause minimal damage to both the culture surface and the remaining cell monolayer675,677. 

The Ibidi inserts are claimed to prevent the removal of gap surface ECM residues, vessel 

surface damage, cell damage and the initiation of signalling from necrotic or apoptotic cells, 

all of which can result from a physical scratch678. However, cells can adhere to the inserts 

prior to removal, and the removal of the inserts can cause jagged edges when these 

adhered cells are also removed675. Often, these advantages are in reference to a low-

throughput scratch method, such as using a pipette tip or spatula, in order to create the 

scratch. Each well is individually scratched, and the inevitable variation in pressure and 

extent of cell damage contribute to the reproducibility issues of this assay677. There are gap 

edge effects with scratch-based assays as well, as the cells at the gap edge neighbour those 
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sheared off the surface and may also sustain some cell damage675. The WoundMaker was 

designed to produce a scratch in every well of a 96-well plate using a consistent and even 

pressure, thus removing the problems of gap reproducibility and cell/vessel damage679.  

The two methods of gap creation are relevant to different in vivo biological processes 

involving cell migration. The barrier method is more representative of collective cell migration 

where there has been no physical stimulus, as occurs in metastasis, while a scratch may be 

more representative of processes such as wound healing in response to a physical 

stimulus677. There are many complex processes and signalling events during cancer 

metastasis. The gap closure assay is an attempt to model a single process in a 2D cell 

monolayer containing a single cell type and is perhaps so far removed from the in vivo 

situation that the nuance of gap creation method is inconsequential. Considering a stimulus 

is required to induce cellular migration463, it may be that a physical scratch is required within 

the gap closure assay in order to induce the migration process. Both methods had potentially 

equal value and so both were initially investigated in the four adherent cell lines. 

 

The method of gap creation had a significant difference on gap closure rate within two of the 

cell lines. A small number of studies have also shown that gap creation method can affect 

gap closure rate. In studies comparing a damaging method, such as a physical scratch, to a 

non-damaging method, the scratch produced faster gap closure. For example, comparing a 

scratch made with a pipette tip to a gap from selectively applied trypsin, the physical scratch 

induced faster gap closure680. Barrier methods using custom-made inserts repeatedly 

resulted in slower gap closure than physical scratches681,682. When an agarose strip was 

used to create a physical barrier to cell growth, no difference from a pipette tip generated 

scratch was reported683. However, this study compared the percentage of the initial gap 

width at each time point683. If gap closure rate is constant within a cell line at the same time 

after the gap is created, during the assay the distance travelled over a time period will be the 

same in each well. However, in wells where the initial gap width was larger this will account 

for a smaller percentage change of the initial gap width. Neither the agarose strip nor the 

pipette scratch methods are likely to produce uniform gaps between wells, therefore 

producing a variety of initial gap widths across the assay. The lack of difference between the 
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methods in this study may be a result of the analysis method rather than a true similarity 

between the two. In contrast, no difference was seen when both methods caused cellular 

damage while the gap was created – for example using a pipette tip or a magnet to scratch 

cells from the surface682 or comparing a pipette tip and ultraviolet light to remove the cells684 

 

For MED8A the physical damage of the WoundMaker induces the cells to close the gap 

faster. For UW228-2 cells, the physical damage slowed gap closure. From the data 

available, it is not possible to identify why these two cell lines produced the opposite 

responses, whether this is a biological response or a result of the methodologies, or why the 

remaining two cell lines showed no effect of gap closure method. A potential biological 

explanation would be that the scratch increases SHH signalling in the Group 3 cell line but 

not in the SHH cell lines, where the pathway is already overactive, inducing migration and 

faster gap closure in this cell line. Alternatively, the WoundMaker may damage the culture 

vessel in a manner that prevents gap closure of the better adhered UW228-2 cell line but not 

of the MED8A cell line which is much less well-adhered to the vessel surface. As neither gap 

creation method was able to be selected over the other, both were used in the irradiation 

experiments.  

 

The gap closure assay measures the closure of the gap as a surrogate for cellular 

migration675. While the gap closure may be due to cells moving into the gap through cellular 

migration, the proliferation of cells within the monolayer will also act to close the gap675. 

Cellular proliferation can be inhibited or minimised during the gap closure assay to control for 

this, the most common methods are reducing the FBS concentration in the medium or 

pharmacological inhibition using actinomycin C or mitomycin C675,685,686. The 

pharmacological inhibition of proliferation can result in off-target effects such as increased 

apoptosis which can influence the assay results675,685,686. While a reduced FBS concentration 

can also cause toxic cellular effects, it had been established previously within the group that 

the MBL cell line panel could survive well in 0.1% FBS concentrations for at least 48 h with 

no significant increases in apoptosis. The serum starvation method using the higher 

concentration of 1% was therefore selected for use in this project.  
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Decreasing the serum concentration from 10% to 1% FBS increased gap closure rate in 

DAOY and ONS-76. The lower FBS concentration was expected to reduce proliferation and 

therefore reduce the contribution of proliferation to gap closure and gap closure rate. The 

opposite was observed. It has been previously shown using time-lapse microscopy and 

individual cell tracking that MBL cell lines do not undergo mitosis and migrate at the same 

time687. While this may suggest that cells which divide more frequently spend more time not 

moving, no correlation was found between the number of divisions and the total distance 

migrated across the cell lines687. A reduced FBS concentration elongates the phases of the 

cell cycle600 and thus prolongs the time a cell spends outside of mitosis. The 1% FBS 

concentration would therefore mean that the cells spend a greater proportion of the 24 h 

period of the assay moving compared to 10% FBS, which could result in an increased gap 

closure rate. Alternatively, the reduced FBS concentration induced a more migratory 

phenotype, as reduced FBS concentrations have been found to induce EMT in vitro688,689. As 

the altered gap closure rate was only observed in two cell lines this would suggest that the 

different cell lines were responding differently to the low FBS concentration. However, the 

two cell lines showing increased gap closure with decreased FBS were the faster growing of 

the panel, with doubling times of 16 h for DAOY and 12 h for ONS-76. This would provide an 

explanation for the different responses of the cell lines as DAOY and ONS-76 cells are 

unable to migrate due to mitosis more frequently than MED8A or UW228-2 cells. Profiling of 

EMT protein marker expression under low FBS conditions would be required to completely 

rule out the induction of a migratory phenotype.  

 

4.5.4. Migration assay results 

Under control conditions, the SHH cell lines showed faster gap closure than the Group 3 cell 

line. The SHH signalling pathway increases cellular migration, and in the SHH subgroup this 

pathway is constitutively activated13,15. Two of the SHH cell lines, DAOY and ONS-76, have 

been used in a gap closure assay previously, however the published results showed that 

DAOY243,502 was faster than ONS-76502 while the opposite is reported here. The MBL cell line 

panel only contains one Group 3 cell line, MED8A. MED8A showed a very slow gap closure 
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rate, which was unexpected considering Group 3 tumours are more likely to be metastatic on 

presentation131. This observation may be due to experimental limitations rather than an 

accurate reflection of the metastatic potential of MED8A. This cell line does not form a 

confluent monolayer especially readily and required a very high seeding density in the gap 

closure assay, twice that of the SHH cell lines. Additionally, the MED8A cells only weakly 

adhere to the culture vessel surface which would impede their ability to migrate as this 

process requires adhesions to the culture surface463. Coating of the vessel surface to 

improve adhesion or use of an alternative migration assay, such as the transwell assay, may 

be more suited to this cell line and provide a more accurate measure of cell migration.  

 

For UW228-2 and MED8A, the control gap closure rates remained fairly consistent between 

the insert and WoundMaker assays and across the different time points. These cells were 

not used in the longer-term Ibidi insert assays as they did not form confluent monolayers 

when re-seeded into the inserts following a 24 h or seven day incubation. For ONS-76 the 

control gap closure rates are also consistent, however for DAOY cells the control gap 

closure rate for the seven day insert assay is lower than in the other assays. A significant 

difference is reported between the 0 Gy and 2 Gy results in this assay. As the 0 Gy control 

flasks did not have any growth delay or cell death as a result of radiation treatment, these 

flasks had a higher cell density for longer periods of time during this seven day delay. These 

stressful conditions could explain the reduced gap closure rate in these samples, and the 

reduced gap closure rate in the control accounts for the significantly increased 2 Gy gap 

closure rate.  

 

Biological changes following irradiation take hours-days to manifest, and this is likely to be 

the case for irradiation-induced migration changes. In the work presented here, monitoring 

gap closure immediately following irradiation produced no significant changes in gap closure 

using the Ibidi insert method. A delay between irradiation and gap creation of either 24 h or 7 

days also produced no differences in the gap closure rate, with the exception of DAOY, 

discussed above. In the WoundMaker assay, immediately following irradiation changes were 

observed for two cell lines at the highest radiation dose, 8 Gy, only. For DAOY cells, the gap 
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closure was decreased. This decrease in gap closure may be a result of cell death following 

the high radiation exposure preventing cells from being able to migrate into the gap.  

 

The Ibidi insert method resulted in the same gap closure rate regardless of radiation dose for 

the four cell lines, while the WoundMaker method resulted in significant irradiation-induced 

changes. The stimulus of a physical scratch may be required for irradiation-induced changes 

to cell migration to be observed in the in vitro gap closure assay. The majority of irradiation 

studies were carried out using the transwell migration assay, most of which reported no 

change in migration following irradiation470,473,474,480. The majority of wound healing assays 

from the literature, which use the physical scratch method of gap creation, report irradiation-

induced increases in migration243,471,472,476. If the scratch is required as a stimulus in these 

assays, this may explain the contradictory results from different assay protocols. If there is a 

requirement of a physical scratch to produce altered migration in response to irradiation, this 

would make the in vitro migration assay further removed from the in vivo situation. However, 

radiation increases cell migration, invasion and metastasis in vivo466–469, therefore the ability 

to mimic these could make the scratch-based assay more valuable.  

 

When a 24 h delay between irradiation and gap creation was included, significant alterations 

to gap closure rate were found for all four adherent cell lines. There was a dose-dependent 

increase in gap closure in ONS-76, a dose-dependent decrease in gap closure in MED8A 

and UW228-2 and an increase following 2 Gy but no change following 8 Gy for DAOY. Our 

results for the Group 3 cell lines MED8A, of a decreased gap closure rate following 

irradiation suggesting a decrease in cell migration following irradiation, are in agreement with 

the results from a previously reported transwell assay503. DAOY has been reported as having 

decreased cell migration in the gap closure assay following a 7 Gy dose504. At 8 Gy, this 

project also found a decrease in gap closure rate both immediately following irradiation and 

at 24 h, although the latter was not significant. The previously reported gap closure assay 

included a single dose of 7 Gy and does not report either a delay between irradiation and 

gap creation504, therefore this assay is most similar to the immediate irradiation method 
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described here. No publication has reported the effect of irradiation on the ONS-76 or 

UW228-2 cell lines. 

 

The delayed irradiation results using the WoundMaker method divides the cells into two 

groups, however these are not split by subgroup. The most obvious difference between the 

cell lines that show increased gap closure and those that show decreased gap closure is 

doubling time. DAOY and ONS-76, whose gap closure is increased following irradiation, are 

faster growing cells than UW228-2 and MED8A. The interplay between proliferation and 

migration would appear more influential to the radiation response than the subgroup status 

and associated underlying biological differences. Expansion of the work to investigate EMT 

markers within cells, both before and after irradiation, and patient samples would further 

confirm this if no subgroup-specific expression patterns were observed. An invasion assay 

using Matrigel to simulate the ECM could be used to quantify the semi-adherent as well as 

the adherent cell lines, and investigate literature reports of increased invasion following 

irradiation in MBL cell lines504. Unless a link with the subgroups is demonstrated, repetition of 

the gap closure assay work with SHH pathway inhibitors is only necessary to confirm that 

the faster gap closure in SHH cell lines is a result of the overactive pathway in this subgroup.  

 

4.6. Conclusions 

The overall aim of this thesis was to identify factors that might lead to differences in the 

radioresponsiveness of the four MBL molecular subgroups and could potentially be used in 

the future to personalise treatments. The radioresponsiveness of a tumour describes the 

extent of clinical response to radiotherapy. The different molecular subgroups of MBL have 

significantly different survival outcomes14,75–77, which could reflect differences in 

radioresponsiveness. Three factors which significantly contribute to radioresponse are 

intrinsic radiosensitivity, proliferative capacity and tumour hypoxia and these have been 

investigated in MBL cell lines and patient samples.  

 

Despite the small number of cell lines available to study, the work presented in this thesis 

showed for the first time that the molecular subgroups of MBL have significantly different 
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intrinsic radiosensitivities in vitro. In cell line work, Group 3 cell lines were less radiosensitive 

than SHH cell lines, and within the SHH subgroup TP53 mutant cell lines were less 

radiosensitive than the TP53 WT cell line. Findings in vivo were broadly similar with Group 3 

being less radiosensitive than the SHH subgroup in patient cohorts. However, in the clinical 

cohorts Group 4 tumours, which have intermediate survival outcomes, were the least 

radiosensitive MBL subgroup suggesting that radiosensitivity alone cannot explain the 

different clinical outcomes of MBL. Given the differences found in vitro and that the RSI was 

prognostic in univariable analysis, further study would be worthwhile in more cell lines and 

cohorts. This future work needs to consider radiosensitivity alongside other factors that might 

be important such as the number of CSCs.  

 

The preliminary proton irradiation work represents the first use of the high-throughput 

radiosensitivity assay to generate RBE values for MBL cell lines representing different 

molecular subgroups. Previously, proton and x-ray comparisons using MBL cell lines have 

been done using a single cell line. The Group 3 cell line MED8A had higher RBE values than 

the SHH cell line. If confirmed by completion of the biological replicates for all six MBL cell 

lines in our panel, this finding would indicate that Group 3 tumours would receive greater 

benefit from PBT.  

 

As radiotherapy is a significant, contributing factor to overall survival in MBL7–10,55, other 

factors must influence the radioresponse. MBL was classified as a non-proliferative-

informative cancer, indicating that proliferation does not significantly contribute to survival 

outcomes. The proliferative capacity as measured by single gene expression markers and a 

proliferation gene signature was not shown not to be significantly different between the MBL 

molecular subgroups. Therefore, the conclusion from this thesis is that proliferative capacity 

is unlikely to be contributing to a different radioresponse across the subgroups.  

The final contributing factor to radioresponse investigated in this project was tumour hypoxia. 

The hypoxia biomarkers applied to the MBL patient cohorts were not prognostic and no 

significant difference in expression was found across the molecular subgroups. From the 

work carried out for this thesis, it is not possible to draw any conclusion for a role of hypoxia 
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in subgroup-specific radioresponsiveness in MBL. However, the gene signature work 

generated some evidence for different levels of hypoxia across MBL subgroups and these 

different levels of hypoxia help to explain the different survival outcomes across the 

molecular subgroups. Development of a hypoxia gene signature for MBL and IHC staining of 

subgrouped tumour samples for hypoxia biomarkers is required to confirm these findings.  

 

An investigation into in vitro cellular migration using a gap closure assay found that the SHH 

cell lines tested showed faster baseline gap closure than the Group 3 cell line, but additional 

cell lines are required to confirm this is a subgroup-specific difference. Treatment with 

irradiation did induce dose-dependent changes across the cell line panel, but this was not 

associated with subgroup status in our cell line panel. The interaction of irradiation and 

metastasis-related processes in MBL is worth further study to confirm irradiation-induced 

changes in patient samples and identify potential underlying causes. 

 

This thesis investigated whether subgroup-specific differences in radioresponsiveness affect 

clinical outcomes in MBL. It provides evidence that two factors which influence 

radioresponsiveness, intrinsic radiosensitivity and extent of tumour hypoxia, show subgroup-

specific differences. Intrinsic radiosensitivity was prognostic in MBL, however subgroup-

specific radiosensitivities do not reflect subgroup survival outcomes. Tumour hypoxia was 

not prognostic in MBL, however subgroup-specific differences were identified which did 

reflect survival outcomes. The different levels of tumour hypoxia may mitigate the intrinsic 

radiosensitivity, resulting in the observed radioresponses of the subgroups. In conclusion, 

subgroup-specific differences in intrinsic radiosensitivity and level of hypoxia are found within 

MBL and the resulting subgroup-specific radioresponsiveness may contribute to clinical 

outcomes. 
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6. Appendix 1 

A literature search was conducted for studies reporting radiosensitivity as measured by the 

methods used in this thesis. Journal articles reporting results from a clonogenic assay, the 

high-throughput radiosensitivity assay or application of the RSI gene signature.  

 

PubMed searches were conducted using the following terms: ‘radiosensitivity index’, ‘RSI’, 

and ‘clonogenic assay + surviving fraction’. The search for ‘radiosensitivity index’ produced 

26 results. The search for ‘RSI’ produced 1860 results, but filtering to those published after 

the gene signature (2010), those published in English, specific to the cancer research field 

and restricting to journal articles only reduced this number to 136. The search for ‘clonogenic 

assay’ alone produced 2893 results, and so the ‘surviving fraction’ term was added. The 

search for ‘clonogenic assay + surviving fraction’ produced 116 results.  

 

Additionally PubMed searches were carried out to identify papers that cited the original 

paper describing the high-throughput assay method1 or the initial papers reporting on the 

RSI2–5.  

 

SF2 was selected as the parameter produced by the clonogenic assay. SF2 values were 

only included if they were stated within the paper and were not determined or estimated from 

figures containing surviving curves. The reported metric for the high-throughput 

radiosensitivity assay was the AUC. RSI values for individual patients within a cohort are 

rarely reported, instead the median RSI with the reported error and cohort size are included 

here.  

 

Blank lines have been added in order to keep the cancer type results together.  
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Ampullar of Vater 
carcinoma 
 

SNU478  2.836  

SNU869  4.116  

Patient cohort   0.299 (0.250-0.428, 16)7 

Astrocytoma BECKER  3.236 
 

CCFSTTG1  4.726  

GMS10  4.006 
 

GOS3  4.136 
 

SF268 0.453 2.686 
 

SNB19 0.433  
 

SW1088  4.756 
 

TM31  2.896 
 

U118MG  3.126 
 

Patient-derived 0.518 
0.178 
0.438 

  

Bladder 5637  2.476  

647V  3.376  

BC3C  3.366  

HT1197  4.456  

HT1376  5.2286  

J82  3.1986  

JMSU1  2.7926  

KMBC2  4.1266  

KU1919  3.5036  

MGH-U1 0.729 
0.5210 

  

RT112 0.7311 3.046  

RT4 0.5412 2.946  

SCABER  1.886  

SW1710  3.316  

T24 0.3812 2.376  

TCCSUP  3.546  

UBLC1  2.916  

UMUC1  3.356  

UMUC3 0.3612 3.236  

VMCUB1  4.416  

WX67 0.0911   

Patient cohort   0.438 (0.312-0.509, 193)7 

Burkitt lymphoma P3HR-1 0.1813 
0.1710 

  

Cholangiocarcinoma HUH28  3.886  

SNU245  4.156  

Colorectal WIDR 0.6214   

Patient-derived 0.4815   

Ewings sarcoma A673  1.396  

MHHES1  1.646  

SKES1  1.846  

SKNMC  2.096  

Follicular 
adenoma 

Patient-derived 0.2716 
0.3916 

  

Gallbladder SNU308  5.426  

Leukaemia CCRFCEM 0.193   

HL60 0.323   

MOLT4 0.053   

Glioma H4  3.166  

U373 0.7121   

Patient-derived 0.7221 
0.6121 

  

Patient cohort   0.576 (0.522-0.645, 174)7 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Breast AU565 
 

3.786 
 

BT20 
 

3.496 
 

BT474 
 

5.326 
 

BT549 0.633 3.056 
 

CAL148 
 

1.016 
 

CAL51 
 

2.656 
 

CAMA1 
 

3.956 
 

EFM192A 
 

5.356 
 

HCC1419 
 

6.196 
 

HCC1428 
 

2.876 
 

HCC1569 
 

3.276 
 

HCC1806 
 

3.786 
 

HCC1937 
 

4.706 
 

HCC1954 
 

2.576 
 

HCC202 
 

4.846 
 

HCC38 
 

2.686 
 

HMC18 
 

0.766 
 

HS578T 0.793 
  

HX99 0.5511 
  

MCF7 0.583 
0.9817 
0.3010 

3.216 
 

MDAM B231 0.823 
  

MDAM B435 0.183 
  

MDAMB157 
 

3.076 
 

MDAMB231 0.6618 2.626 
 

MDAMB361 
 

4.796 
 

MDAMB415 
 

3.526 
 

MDAMB453 
 

5.506 
 

MDAMB468 
 

3.626 
 

SF539 0.823 3.396  

SKCO1 
 

1.616 
 

SUM159PT 0.8818 
  

T47D 0.6919 
0.523 

4.176 
 

ZR751 
 

4.616 
 

ZR7530 
 

5.466 
 

Patient-derived 0.2415 
  

Patient cohort  
  

0.51 (0.13-0.75, 285)20 
0.38 (0.05-0.68, 545)20 

0.4 (0.22-0.65, 58)20 
0.41 (0.08-0.61, 98)20 

0.408 (0.330-0.480, 82)7 
0.388 (0.31-0.475, 2487)7 
0.419 (0.336-0.483, 427)7 

Lung CHAGOK1  3.386  

HCC1195  2.286  

HCC366  2.226  

NCIH292  5.286  

NCIH727  4.466  

Hilar 
cholangiocarcinoma  

SNU1196  2.356  

Primary signet-ring 
cell carcinoma 

Patient cohort   0.422 (0.342-0.507, 11)7 

Lymphoma Patient-derived  0.3015   
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Cervical 808 0.3323 
  

Boku 0.4123 
  

C33A 0.5324 
0.2523 
0.5522 

  

C41 0.7214 
0.6322 
0.2724 

  

Caski 0.6624 
0.4723 
0.7514 
0.9222 

  

HCSC1 0.3223 
  

HeLa 0.7024 
0.4123 
0.5322 
0.2713 
0.5213 
0.4613 

  

HeLaS3-1 0.4613   

HeLaS3 0.5213 
0.5013 
0.4213 
0.5413 
0.4713 
0.4313 
0.2613 
0.7513 
0.3613 
0.3113 
0.2713 
0.4813 

  

HT3 0.3523 
0.7714 
0.3622 

  

HX151c 0.2325 
  

HX155c 0.4525 
  

HX156 0.5911 
  

HX156c 0.5625 
  

HX160c 0.3325 
  

HX171c 0.6025 
  

Me180 0.3523 
0.3814 
0.3622 

  

MS751 0.4723 
0.8514 
0.7922 

  

NHIK3025 0.4813 
0.5810 

  

SiHa 0.6724 
0.7523 
0.5114 
0.7322 

  

SKGI 0.2723 
  

SKGII 0.3123 
  

SKGIIIa 0.3723 
  

SW756 0.4223   

SZC 0.4213 
0.4410 

  

Patient cohort   0.347 (0.278-0.453, 17)7 
0.314 (0.268-0.393, 32)7 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Cervical Cont. Patient-derived  0.4326 
0.4326 
0.4826 
0.4826 
0.2127 
0.1827 
0.3227 
0.1527 
0.1927 
0.1827 
0.1827 
0.2127 
0.2927 
0.2928 
0.4329 
0.4415 

  

Endometrial AN3CA  2.536 
 

EFE184  4.856 
 

ESS1  2.366 
 

HEC108  2.796  

HEC151  1.446  

HEC1A  2.556  

HEC1B  2.886  

HEC251  1.036  

HEC265  1.666  

HEC50B  1.726  

HEC59  2.806  

HEC6  1.906  

Ishikawa (Heraklio) 02 ER 1.326  

JHUEM1  1.506  

JHUEM2  1.186  

JHUEM3  4.406  

KLE  2.726  

MFE296  2.046  

MFE319  3.076  

RL952  1.226  

SNGM  1.186  

SNU1077  3.266  

SNU685  3.226  

Patient-derived 0.3028   

Patient cohort   0.42 (0.321-0.485, 554)7 
0.462 (0.385-0.489, 30)7 

0.42 (0.11-0.7, 204)30 
0.533 (0.417-0.595, 27)7 
0.461 (0.373-0.572, 14)7 
0.337 (0.310-0.458, 12)7 

Medulloblastoma D283MED 0.4236 1.426  

Daoy 0.5336 2.276  

MED8A 0.3636   

ONS76  3.566  

TX14 0.2813 
0.3110 

  

TX7 0.2813 
0.3510 

  

Myeloma 7 0.0810   

9 0.2410   

Merkel cell 
carcinoma 

MCC13 0.2338   

MCC14/1 0.3838   

MCC14/2 0.4538   

MCC15 0.2138   
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Colon C2BBE1 
 

2.976 
 

CL11 
 

2.596 
 

CL34 
 

3.366 
 

COLO205 0.693 
  

COLO320 
 

1.906 
 

COLO678 
 

3.686 
 

CW2 
 

1.516 
 

DLD1 0.7510 2.366 
 

GP2D 
 

1.946 
 

HCC-2998 0.443 
  

HCC56 
 

3.116 
 

HCT8 0.6010 
0.5713 

  

HCT116 0.383 
  

HCT15 0.43 0.856 
 

HT115 
 

2.606 
 

HT29 0.793 
0.7231 
0.5510 
0.5613 

5.486 
 

HT55 
 

2.816 
 

HX18 0.1410 
0.1413 

  

KM12 0.423 
  

LOVO 0.4510 
0.4013 

1.536 
 

LS1034 
 

4.016 
 

LS123 
 

3.876 
 

LS180 
 

1.436 
 

LS411N 
 

3.406 
 

LS513 
 

2.266 
 

NCIH508 
 

4.156 
 

RCM1 
 

3.646 
 

RKO 
 

3.156 
 

SKBR3 
 

3.326 
 

SNU1033 
 

5.266 
 

SNU175 
 

2.196 
 

SNU283 
 

3.186 
 

SNU407 
 

1.736 
 

SNU503 
 

5.856 
 

SNU61 
 

3.486 
 

SNU81 
 

2.666 
 

SNUC2A 
 

1.736 
 

SNUC4 
 

2.216 
 

SNUC5 
 

1.586 
 

SW1116 
 

4.126 
 

SW1417 
 

4.266 
 

SW1463 
 

3.096 
 

SW403 
 

2.396 
 

SW48 0.1431 1.436 
 

SW480 0.6931 5.666 
 

SW620 0.623 
  

SW707 0.5031 
  

SW837 
 

5.496 
 

SW948 
 

3.196 
 

T84 
 

1.676 
 

Patient cohort   0.42 (-, 1362)32 
0.421 (0.279-0.47, 1304)7 
0.462 (0.311-0.473, 15)7 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Glioblastoma 42MGBA 
 

3.386 
 

8MGBA 
 

2.636 
 

A2 0.4413   

A3 0.7213   

A7 0.7213   

A172 
 

2.756 
 

AM38 
 

5.306 
 

DBTRG05MG 
 

1.976 
 

DKMG 
 

3.126 
 

GAMG 
 

5.246 
 

GB1 
 

1.796 
 

KALS1 
 

4.006 
 

KNS42 
 

3.916 
 

KNS60 
 

3.356 
 

KNS81 
 

3.806 
 

LN18 
 

2.726 
 

LN229 
 

3.786 
 

M059K 
 

4.316 
 

SF126 
 

3.156 
 

SF295 
 

2.436 
 

SNB75 0.553 3.816 
 

SNU1105 
 

4.996 
 

SNU466 
 

4.546 
 

T98G 
 

3.616 
 

TX13 0.3113   

U251MG 0.573 
0.6133 

3.596 
 

U87MG 
 

3.116 
 

YH13 
 

3.766 
 

YKG1 
 

1.716 
 

Patient-derived 0.468 
0.528 
0.878 
0.178 
0.028 
0.688 
0.608 
0.198 
0.358 
0.188 
0.348 
0.308 
0.028 
0.518 
0.368 
0.198 
0.638 
0.248 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Head and neck A253 
 

1.376 
 

BICR16 
 

3.486 
 

BICR18 
 

3.686 
 

BICR22 
 

1.316 
 

BICR31 
 

3.596 
 

BICR56 
 

3.436 
 

BICR6 
 

1.716 
 

DETROIT562 
 

2.486 
 

FADU 
 

3.766 
 

HSC2 
 

4.916 
 

HSC3 
 

1.836 
 

HSC4 
 

4.246 
 

PECAPJ15 
 

2.616 
 

PECAPJ34CLONEC12 2.436 
 

PECAPJ49 
 

2.816 
 

SCC25 
 

2.116 
 

SCC9 
 

2.426 
 

SNU1041 
 

2.866 
 

SNU1066 
 

2.236 
 

SNU1214 
 

2.616 
 

SNU46 
 

4.236 
 

SNU899 
 

3.266 
 

YD10B 
 

5.356 
 

YD15 
 

3.936 
 

YD38 
 

3.916 
 

YD8 
 

4.916 
 

Patient-derived 
(all SF2)  

0.1934, 0.2334, 0.2434, 0.2435, 0.2534, 0.2534,  
0.2735, 0.3035, 0.3034, 0.3235, 0.3335, 0.3434, 
0.3535, 0.3535, 0.3634, 0.3635, 0.3735, 0.3835,  
0.3834, 0.3835, 0.3835, 0.3935, 0.3935, 0.4035,  
0.4035, 0.4134, 0.4134, 0.4135, 0.4135, 0.4235,  
0.4235, 0.4235, 0.4334, 0.4335, 0.4435, 0.4535,  
0.4535, 0.4635, 0.4635, 0.4635, 0.4635, 0.4634,  
0.4735, 0.4834, 0.4815, 0.4835, 0.4935, 0.4935,  
0.5034, 0.5034, 0.5034, 0.5034, 0.5034, 0.5034,  
0.5135, 0.5135, 0.5135, 0.5235, 0.5235, 0.5635,  
0.5634, 0.5634, 0.5635, 0.5735, 0.5735, 0.5835,  
0.5934, 0.5934, 0.6035, 0.6035, 0.6135, 0.6535,  
0.6635, 0.6735, 0.6735, 0.6734, 0.6734, 0.6835,  
0.6934, 0.7035, 0.7234, 0.7335, 0.7534, 0.7534,  
0.7535, 0.7535, 0.7635, 0.7735, 0.7735, 0.7834, 
0.7935, 0.8734, 0.9334, 0.9435, 0.9635, 1.0034,  

1.0034, 1.0034, 1.0034, 1.0034 
 

Patient cohort 
  

0.394 (0.311-0.476, 95)7 

Mesothelioma ACCMESO1  3.246 
 

DM3  1.786  

ISTMES1  2.946  

JL1  5.246  

MPP89  3.356  

NCIH2052  2.616  

NCIH2452  3.106  

Patient cohort   0.481 (0.393-0.596, 12)7 

Oligodendroglioma HS683  5.626  

Patient-derived  0.488   

Neonatal 
keratinocytes 

Patient-derived 0.4639   

Papillary 
carcinomas 

Patient-derived  0.3916 
0.4216 

  

Penile carcinoma Patient cohort   0.482 (0.215-0.682, 25)40 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Kidney/Renal 7860 0.663 
  

769P 
 

3.126 
 

786O 
 

3.786 
 

A498 0.613 2.686 
 

ACHN 0.723 0.996 
 

CAKI1 0.373 3.376 
 

CAKI2 
 

4.946 
 

CAL54 
 

2.756 
 

KMRC1 
 

4.436 
 

KMRC2 
 

2.786 
 

KMRC3 
 

2.906 
 

OSRC2 
 

4.426 
 

RCC10RGB 
 

5.666 
 

SN12C 0.623 
  

SNU1272 
 

4.646 
 

TUHR10TKB 
 

3.676 
 

UO31 0.623 1.456 
 

VMRCRCW 
 

1.656 
 

VMRCRCZ 
 

2.886 
 

Patient cohort 
  

0.422 (0.322-0.482, 716)7 
0.301 (0.201-0.414, 34)7 

Liver HEP3B217 
 

3.106 
 

HEPG2 
 

5.226 
 

HLF 
 

1.936 
 

HUH1 
 

5.056 
 

JHH1 
 

4.356 
 

JHH2 
 

4.736 
 

JHH4 
 

3.046 
 

JHH5 
 

2.176 
 

JHH6 
 

3.386 
 

LI7 
 

3.906 
 

PLCPRF5 
 

4.396 
 

SKHEP1 
 

2.516 
 

SNU182 
 

3.656 
 

SNU387 
 

3.536 
 

SNU398 
 

2.746 
 

SNU423 
 

3.176 
 

SNU449 
 

3.266 
 

SNU475 
 

5.496 
 

SNU761 
 

4.596 
 

SNU886 
 

2.866 
 

Patient cohort 
  

0.253 (0.177-0.330, 48)7 

Lung large cell HCC1438  3.916 
 

HOP92 0.433 3.616 
 

HX147 0.8211  
 

IALM  3.116  

LC1SQSF  3.626  

LCLC103H  4.146  

LCLC97TM1  1.906  

LU99  2.856  

NCIH1915  2.846  

NCIH661  4.686  

NCIH810  1.266  

T3M10  3.076  

Patient cohort   0.341 (0.274-0.410, 42)7 

lung carcinoid 
tumour 

Patient cohort   0.458 (0.425-0.492, 79)7 

lung carcinoma Patient cohort   0.427 (0.317-0.489, 102)7 
0.45 (0.310-0.525, 63)7 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Lung 
adenocarcinoma 

CALU3 
 

1.786 
 

COLO699 
 

2.806 
 

CORL105 
 

3.506 
 

EKVX 0.703 6.216 
 

HCC1833 
 

3.876 
 

HCC2108 
 

2.356 
 

HCC2279 
 

2.906 
 

HCC4006 
 

2.886 
 

HCC44 
 

4.416 
 

HCC78 
 

1.866 
 

HCC827 
 

2.626 
 

HOP62 0.163 1.786 
 

HX144 0.3011 
  

HX148 0.5511 
  

MORCPR 
 

4.276 
 

NCIH1355 
 

3.896 
 

NCIH1373 
 

3.236 
 

NCIH1395 
 

5.056 
 

NCIH1563 
 

3.476 
 

NCIH1573 
 

3.566 
 

NCIH1623 
 

3.816 
 

NCIH1650 
 

1.636 
 

NCIH1651 
 

1.636 
 

NCIH1666 
 

4.386 
 

NCIH1703 
 

2.436 
 

NCIH1755 
 

3.916 
 

NCIH1781 
 

1.036 
 

NCIH1792 
 

3.146 
 

NCIH2087 
 

3.316 
 

NCIH2122 
 

1.516 
 

NCIH2228 
 

2.976 
 

NCIH2291 
 

3.696 
 

NCIH2342 
 

3.966 
 

NCIH2405 
 

3.346 
 

NCIH322 
 

4.886 
 

NCIH358 
 

2.396 
 

NCIH650 
 

4.626 
 

NCIH747 
 

3.166 
 

RERFLCAD1 
 

4.266 
 

RERFLCAD2 
 

3.916 
 

SKLU1 
 

3.616 
 

VMRCLCD 
 

2.326 
 

Patient cohort 
  

0.374 (0.303-0.47, 1165)7 

Neuroblastoma CHP212  1.836  

HX138 0.1111 
0.1110 

  

HX142 0.1311   

HX143 0.0811   

IMR32  0.636  

KPNSI9S  1.486  

MHHNB11  0.556  

NB1 0.3414 
0.1510 

0.776  

SKNAS  3.796  

SKNFI  3.416  

SKNSH  1.666  

LAN-1 0.3710   

Rhabdoid G401  1.216  

G402  0.816  
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Lung small cell 
carcinoma 

COLO668  1.556 
 

DMS114  2.866 
 

DMS53  3.426 
 

HX33 0.2010 
0.2813 

 
 

H187 0.1410   

H209 0.2210   

H249 0.1510   

H69 0.2710   

H146 0.1010   

LX1 0.1810   

NCIH1048 
 

1.246 
 

NCIH1339 
 

3.246 
 

NCIH1341 
 

3.346 
 

NCIH196 
 

3.816 
 

NCIH211 
 

0.706 
 

NCIH2196 
 

4.216 
 

NCIH2286 
 

2.006 
 

NCIH446 
 

1.026 
 

NCIH69 
 

2.186 
 

NCIH841 
 

2.306 
 

SHP77 
 

2.946 
 

SW1271 
 

3.236 
 

Patient cohort 
  

0.347 (0.287-0.458, 582)7 
0.449 (0.341-0.516, 35)7 

Patient-derived 0.2137 
0.4137 
0.2837 
0.7337 
0.2837 
0.4337 
0.2237 
0.1837 
0.3137 
0.2737 
0.3137 
0.2637 
0.1737 
0.4837 
0.3837 

  

Osteosarcoma G292CLONEA141B1 2.196  

HOS  2.546  

MG63  2.096  

SAOS2  1.396  

SJSA1  2.626  

U2OS  2.766  

TX4 0.3713   

Normal Patient-derived 0.1438 
0.1838 
0.1338 
0.2038 
0.1738 
0.2535 
0.2735 

0.02827 
0.03327 

  

lymphoblast 0.1338   

Rectal 
adenocarcinoma 

HRT18 0.5413 
0.5310 

  

Patient cohort   0.438 (0.290-0.495, 20)7 
0.462 (0.319-0.514, 113)7 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Lung squamous 
cell carcinoma 

CALU1 
 

3.956 
 

EBC1 
 

3.336 
 

EPLC272H 
 

3.946 
 

HARA 
 

3.526 
 

HC12 0.4111 
  

HCC15 
 

2.066 
 

HCC1588 
 

2.856 
 

HCC95 
 

4.286 
 

HX149 0.2611 
  

KNS62 
 

3.636 
 

LK2 
 

2.266 
 

LOUNH91 
 

2.776 
 

LUDLU1 
 

4.126 
 

NCIH1869 
 

5.526 
 

NCIH2170 
 

2.116 
 

NCIH226 
 

3.526 
 

NCIH520 
 

2.146 
 

RERFLCAI 
 

2.396 
 

SKMES1 
 

2.676 
 

SQ1 
 

1.926 
 

SW1573 
 

4.156 
 

Prostate 22RV1  2.146  

DU145 0.523 
0.741 

3.326  

HX32 0.3414   

PC3 0.483 
0.5241 

2.416  

VCAP  4.796  

Patient cohort   0.403 (0.333-0.465, 186)7 

Rhabdomyosarcoma A204  1.966  

HS729  2.946  

HX170c 0.2644   

KYM1  2.226  

RD  2.386  

RH18  2.276  

RH30  1.626  

RH41  0.846  

TE125T  2.036  

TE617T  1.406  

Sarcoma CAL78  3.706  

GCT  2.106  

HS819T  2.586  

Patient cohort   0.552 (0.401-0.631, 102)7 

Soft tissue 
sarcoma 

MESSA  1.506  

SKLMS1  2.416  

SKUT1  1.766  

Testicular 
teratoma 

GCT27 0.4011   

 
 



Page | 252  

 

Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Non-small-cell 
lung cancer 

A549 0.8042 
0.7442 
0.6542 
0.7042 
0.6442 
0.7242 
0.8742 
0.7642 
0.7242 
0.6042 
0.6342 
0.8742 
0.4942 
0.7542 
0.8742 
0.6942 
0.6542 
0.9042 
0.4742 
0.5842 
0.613 

 
 

CAL12T  2.876  

H460 0.843   

HCC1171  3.126  

HCC2935  4.026  

NCIH1299  5.336  

NCIH1435  3.926  

NCIH1568  2.666  

NCIH1793  4.236  

NCIH1838  2.426  

NCIH1944  2.126  

NCIH1975  2.506  

NCIH2030  2.596  

NCIH2110  3.546  

NCIH23 0.0863 0.946  

NCIH522  2.676  

NCIH838  3.636  

PC14  2.156  

RERFLCMS  3.506  

Thyroid 8505C  3.476  

BCPAP  2.956  

BHT101  1.566  

CGTHW1  2.926  

FTC133  2.786  

FTC238  5.626  

ML1  2.916  

SW579  2.956  

TT2609C02  2.686  

Patient cohort   0.524 (0.509-0.543, 28)7 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Melanoma A101D 
 

4.686 
 

A2058 0.5738 2.826 
 

Be211 0.3913   

C32 
 

4.406 
 

CJM 
 

3.276 
 

COLO679 
 

4.326 
 

COLO783 
 

2.506 
 

COLO800 
 

3.136 
 

COLO829 
 

3.496 
 

HMCB 
 

3.426 
 

HMV 0.5713   

HS294T 
 

1.746 
 

HS839T 
 

4.116 
 

HS888T 
 

3.916 
 

HS895T 
 

3.236 
 

HS934T 
 

2.666 
 

HS944T 
 

2.136 
 

HT144 
 

1.286 
 

HX118 0.4311 
  

HX34 0.4711, 0.5413 
  

IGR1 
 

3.876 
 

IGR37 
 

5.066 
 

IGR39 
 

4.406 
 

IPC298 
 

3.126 
 

K029AX 
 

3.826 
 

LeCa (39-4) 0.6113   

LOXIMVI 0.683 
  

M14 0.423 
  

Ma111 0.5213   

MALME3M 0.803 
  

MDAMB435S 
 

4.196 
 

MELHO 
 

2.606 
 

MEWO 0.2213 2.726 
 

MM96L 0.5638 
  

Na11 0.5113   

RVH421 
 

3.566 
 

SKMEL 0.5514 
  

SKMEL2 0.663 1.956 
 

SKMEL24 
 

3.256 
 

SKMEL28 0.743 5.706 
 

SKMEL3 
 

4.346 
 

SKMEL30 
 

3.936 
 

SKMEL5 0.723 3.736 
 

UACC257 0.483 
  

UACC62 0.523 
  

WM115 
 

3.916 
 

WM1799 
 

3.236 
 

WM2664 
 

4.366 
 

WM793 
 

2.126 
 

WM88 
 

2.476 
 

WM983B 
 

3.076 
 

Patient cohort 
  

0.423 (0.337-0.502, 31)7 
0.494 (0.399-0.553, 115)7 
0.481 (0.117-0.71, 410)43 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Oesophagus COLO680N  3.196  

ECGI10 
 

2.586 
 

KYSE140 
 

3.386 
 

KYSE150 
 

3.076 
 

KYSE180 
 

3.626 
 

KYSE30 
 

1.496 
 

KYSE410 
 

4.656 
 

KYSE450 
 

4.686 
 

KYSE510 
 

5.066 
 

KYSE520 
 

3.546 
 

KYSE70 
 

3.906 
 

OE19 
 

3.546 
 

OE21 
 

2.846 
 

OE33 
 

1.536 
 

TE1 
 

2.486 
 

TE10 
 

3.376 
 

TE11 
 

2.506 
 

TE14 
 

3.666 
 

TE15 
 

2.766 
 

TE4 
 

2.666 
 

TE6 
 

3.326 
 

TE8 
 

2.886 
 

TE9  2.236  

Patient cohort 
  

0.364 (0.265-0.470, 53)7 

Stomach AGS  1.266  

ECC12  2.456  

HS746T  4.466  

IM95  2.666  

KATOIII  2.746  

KE39  4.166  

LMSU  3.716  

MKN45  3.806  

MKN7  2.486  

MKN74  3.016  

NCIN87  2.056  

NUGC3  2.126  

NUGC4  2.876  

OCUM1  3.516  

SH10TC  3.506  

SNU216  2.326  

SNU601  0.876  

SNU668  2.966  

SNU719  3.636  

Patient cohort   0.38 (0.282-0.456, 53)7 
0.462 (0.401-0.517, 31)7 
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Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Ovarian A2780 0.2414 0.946 
 

CAOV3 
 

2.246 
 

COV318 
 

2.276 
 

COV362 
 

3.826 
 

COV434 
 

1.846 
 

COV644 
 

5.116 
 

EFO21 
 

3.396 
 

EFO27 
 

1.716 
 

ES2 
 

3.316 
 

FUOV1 
 

3.56 
 

HEYA8 
 

0.756 
 

HOC8 0.4514 
  

IGROV1 
 

2.216 
 

JHOC5 
 

1.726 
 

JHOM1 
 

4.726 
 

JHOS2 
 

3.246 
 

KURAMOCHI 
 

4.866 
 

MCAS 
 

2.626 
 

NIHOVCAR3 
 

2.536 
 

OAW42 0.6914 3.586 
 

OC314 
 

1.706 
 

ONCODG1 
 

3.206 
 

OV 1225 0.0745 
  

OV 166 0.1345 
  

OV B09 0.3845 
  

OV56 
 

2.846 
 

OV7 
 

3.626 
 

OV90 
 

3.026 
 

OVC NOVA 0.2245 
  

OVCAR3 0.553 
  

OVCAR4 0.293 1.486 
 

OVCAR5 0.413 2.636 
 

OVCAR8 0.603 2.506 
 

OVISE 
 

3.456 
 

OVK18 
 

1.216 
 

OVKATE 
 

0.706 
 

OVMANA 
 

3.816 
 

OVSAHO 
 

4.036 
 

OVTOKO 
 

3.276 
 

RMUGS 
 

4.616 
 

SKOV3 0.903 3.646 
 

SNU119 
 

2.436 
 

SNU840 
 

2.286 
 

TOV112D 
 

3.706 
 

TOV21G 
 

0.956 
 

TYKNU 
 

3.696 
 

Patient cohort 
  

0.411 (0.275-0.484, 253)7 

 



Page | 256  

 

Cancer type/site Sample SF2 AUC Median RSI (error, n) 

Pancreas  ASPC1  3.056 
 

BXPC3  2.266  

CAPAN1  3.566  

CAPAN2  1.6126  

CFPAC1  2.856  

DANG  4.046  

HPAFII  3.376  

HS766T  5.096  

HUPT3 
 

3.236 
 

HUPT4 
 

3.126 
 

HX32K 0.3411 
0.2213 
0.2210 

  

HX58 0.2511 
0.3314 

  

KP2 
 

2.256 
 

KP3 
 

3.676 
 

L33 
 

4.086 
 

MIAPACA2 
 

2.966 
 

PANC0203 
 

3.536 
 

PANC0327 
 

2.756 
 

PANC0403 
 

3.286 
 

PANC0504 
 

5.166 
 

PANC0813 
 

3.146 
 

PANC1005 
 

3.626 
 

PATU8902 
 

3.646 
 

PATU8988S 
 

4.356 
 

PATU8988T 
 

4.526 
 

PK1 
 

4.016 
 

PK45H 
 

5.306 
 

PK59 
 

2.336 
 

PSN1 
 

1.526 
 

QGP1 
 

2.926 
 

SU8686 
 

2.506 
 

SW1990 
 

3.716 
 

TCCPAN2 
 

2.926 
 

Patient cohort 
  

0.44 (0.397-0.492, 278)7 
0.475 (0.425-0.527, 53)7 
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7. Appendix 2 – the meta-PCNA gene signature 

The 131 genes in the meta-PCNA gene signature, listed alphabetically.  

Gene Name Symbol Ensembl ID 

ADAM metallopeptidase with thrombospondin type 
1 motif 13 

ADAMTS13 ENSG00000160323 

Alpha haemoglobin stabilizing protein AHSP ENSG00000169877 

5’-aminolevulinate synthase 2 ALAS2 ENSG00000158578 

Apolipoprotein B mRNA editing enzyme catalytic 
subunit 3B 

APOBEC3B ENSG00000179750 

AT-rich interaction domain 3A ARID3A ENSG00000116017 

Anti-silencing function 1B histone chaperone ASF1B ENSG00000105011 

Aurora kinase A AURKA ENSG0000087586 

Aurora kinase B AURKB ENSG00000178999 

Baculoviral IAP repeat containing 5 BIRC5 ENSG00000089685 

Bisphosphoglycerate mutase BPGM ENSG00000172331 

BUB1 mitotic checkpoint serine/threonine kinase B BUB1B ENSG00000156970 

Cyclin A2 CCNA2 ENSG00000145386 

Cyclin B1 CCNB1 ENSG00000134057 

Cyclin B2 CCNB2 ENSG00000157456 

Cell division cycle 20 CDC20 ENSG00000117399 

Cell division cycle 45 CDC45 ENSG0000093009 

Cell division cycle associated 3 CDCA3 ENSG00000111665 

Cell division cycle associated 4 CDCA4 ENSG00000170779 

Cell division cycle associated 8 CDCA8 ENSG00000134690 

Cyclin dependent kinase 1 CDK1 ENSG00000170312 

Cyclin dependent kinase inhibitor 3 CDKN3 ENSG00000100526 

Chromatin licensing and DNA replication factor 1 CDT1 ENSG00000167513 

Centromere protein A CENPA ENSG00000115163 

Centromere protein U CENPU ENSG00000151725 

Chromatin assembly factor 1 subunit A CHAF1A ENSG00000167670 

Chemokine like factor CKLF ENSG00000217555 

CDC28 protein kinase regulatory subunit 1B CKS1B ENSG00000173207 

CDC28 protein kinase regulatory subunit 2 CKS2 ENSG00000123975 

DExD-box helicase 39A DDX39A ENSG00000123136 

DNAJ heat shock protein family member C9 DNAJC9 ENSG00000213551 

Denticleless E3 ubiquitin protein ligase homolog DTL ENSG00000143476 

Erythrocyte membrane protein band 4.2 EPB42 ENSG00000166947 

Extra spindle pole bodies like 1, separase ESPL1 ENSG00000135476 

F-box protein 5 FBXO5 ENSG00000112029 

F-box protein 7 FBXO7 ENSG00000100225 

Ferrochelatase FECH ENSG00000066926 

Flap structure-specific endonuclease 1 FEN1 ENSG00000168496 

Forkhead box M1 FOXM1 ENSG00000111206 

GATA binding protein 1 GATA1 ENSG00000102145 

GINS complex subunit 1 GINS1 ENSG00000101003 

GINS complex subunit 2 GINS2 ENSG00000131153 

GTP binding protein 2 GTPBP2 ENSG00000172432 

G2 and S-phase expressed 1 GTSE1 ENSG00000075218 

Glycophorin A GYPA ENSG00000170180 

Glycophorin B GYPB ENSG00000250361 

H3.3 histone A H3-3A ENSG00000163041 

Holliday junction recognition protein HJURP ENSG00000123485 

Hydroxymethylbilane synthase HMBS ENSG00000256269 
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Gene Name Symbol Ensembl ID 

High mobility group box 2 HMGB2 ENSG00000164104 

High mobility group nucleosomal binding domain 2 HMGN2 ENSG00000198830 

Kell metalloendopeptidase KEL ENSG00000197993 

Kinesin family member 2C KIF2C ENSG00000142945 

Kinesin family member 4A KIF4A ENSG00000090889 

Kinesin family member 18B KIF18B ENSG00000186185 

Kinesin family member 20A KIF20A ENSG00000112984 

Kinesin family member 22 KIF22 ENSG00000079616 

Kruppel like factor 1 KLF1 ENSG00000105610 

Kruppel like factor 15 KLF15 ENSG00000163884 

Lamin B receptor LBR ENSG00000143815 

DNA ligase 1 LIG1 ENSG00000105486 

Lamin B1 LMNB1 ENSG00000113368 

LSM6 homolog LSM6 ENSG00000164167 

LYL1 basic helix-loop-helix family member LYL1 ENSG00000104903 

Mitotic arrest deficient 2 like 1 MAD2L1 ENSG00000164109 

Minichromosome maintenance complex 
component 2 

MCM2 ENSG00000073111 

Minichromosome maintenance complex 
component 3 

MCM3 ENSG00000112118 

Minichromosome maintenance complex 
component 4 

MCM4 ENSG00000104738 

Minichromosome maintenance complex 
component 5 

MCM5 ENSG00000100297 

Minichromosome maintenance complex  MCM6 ENSG0000076003 

Minichromosome maintenance complex 
component 7 

MCM7 ENSG00000166508 

Maternal embryonic leucine zipper kinase MELK ENSG00000165304 

MHC class I polypeptide-related sequence B MICB ENSG00000204516 

MIS18 kinetochore protein A MIS18A ENSG00000159055 

Marker of proliferation Ki-67 MKI67 ENSG00000148773 

Non-SMC condensing I complex subunit D2 NCAPD2 ENSG00000010292 

Non-SMC condensing complex subunit D3 NCAPD3 ENSG00000151503 

Non-SMC condensing II complex subunit G2 NCAPG2 ENSG00000146918 

Nuclear factor, erythroid 2 NFE2 ENSG00000123405 

Nuclear receptor binding SET domain protein 2 NSD2 ENSG00000109685 

Nudix hydrolase 1 NUDT1 ENSG00000106268 

Nucleoporin 37 NUP37 ENSG00000075188 

Nucleoporin 210 NUP210 ENSG00000132182 

Nucleolar and spindle associated protein 1 NUSAP1 ENSG00000137804 

Opa interacting protein 5 OIP5 ENSG00000104147 

Origin recognition complex subunit 6 ORC6 ENSG00000091651 

PCNA clamp associated factor PCLAF ENSG00000166803 

Proliferating cell nuclear antigen PCNA ENSG00000132646 

Platelet factor 4 PF4 ENSG00000163737 

Phosphogluconate dehydrogenase PGD ENSG00000142657 

Plekstrin PLEK ENSG00000115956 

DNA polymerase epsilon 2, accessory subunit POLE2 ENSG00000100479 

Pro-platelet basic protein PPBP ENSG00000163736 

Peptidylprolyl isomerase H PPIH ENSG00000171960 

Protein regulator of cytokinesis 1 PRC1 ENSG00000198901 

Proteasome 26S subunit, non-ATPase 9 PSMD9 ENSG00000110801 

Securin PTTG1 ENSG00000164611 

Rac GTPase activating protein 1 RACGAP1 ENSG00000161800 

RAD51 associated protein 1 RAD51AP ENSG00000111247 

Replication factor C subunit 3 RFC3 ENSG00000133119 
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Gene Name Symbol Ensembl ID 

Replication factor C subunit 4 RFC4 ENSG00000163918 

Ring finger and WD repeat domain 3 RFWD3 ENSG00000168411 

Rh associated glycoprotein RHAG ENSG00000112077 

Rh blood group CcEe antigens RHCE ENSG00000188672 

Rh blood group D antigen RHD ENSG00000187010 

Replication protein A3 RPA3 ENSG00000106399 

Ribose-5-phosphate isomerase A RPIA ENSG00000153574 

Ribonuclease P/MRP subunit p30 RPP30 ENSG00000148688 

Ribonuclease reductase regulatory subunit M2 RRM2 ENSG00000171848 

SHC binding and spindle associated 1 SHCBP1 ENSG00000171241 

Structural maintenance of chromosomes 4 SMC4 ENSG00000113810 

SNF8 subunit of ESCRT-II SNF8 ENSG00000159210 

Small nuclear riboprotein polypeptides B and B1 SNRPB ENSG00000125835 

Small nuclear ribonucleoprotein D1 polypeptide SNRPD1 ENSG00000167088 

Spectrin alpha, erythrocytic 1 SPTA1 ENSG00000163554 

Serine and arginine rich splicing factor 2 SRSF2 ENSG00000161547 

Transforming acidic coiled-coil containing protein 3 TACC3 ENSG00000013810 

TAL bHLH transcription factor 1 TAL1 ENSG00000162367 

Transcription factor 3 TCF3 ENSG00000071564 

Transcription factor Dp-1 TFDP1 ENSG00000198176 

Timeless circadian regulator TIMELESS ENSG00000111602 

DNA topoisomerase II alpha TOP2A ENSG00000131747 

TPX2 microtubule nucleation factor TPX2 ENSG00000088325 

Tripartite motif containing 10 TRIM 10 ENSG00000204613 

Tripartite motif containing 58 TRIM58 ENSG00000162722 

tRNA methyltransferase 5 TRMT5 ENSG00000126814 

Trophinin associated protein TROAP ENSG00000135451 

Translocator protein 2 TSPO2 ENSG0000011212 

Thymidylate synthetase TYMS ENSG00000176890 

Ubiquitin conjugating enzyme E2C UBEC2C ENSG00000175063 

VRK serine/threonine kinase 1 VRK1 ENSG00000100749 

ZW10 interacting kinetochore protein ZWINT ENSG00000122952 
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