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Abstract 
 

Risk prediction models have become embedded into the health system. They are used to 

guide clinical decision making in a variety of settings: risk of death following surgery (should 

we operate?), diagnostic models for cancer (should we screen?), or the probability of having 

a clinical event over a certain time period (should we take preventative measures?). Despite 

clear guidelines on the development and reporting of models, features of models developed 

for the same purpose often differ. Furthermore, in the field of cardiovascular disease (CVD), 

risk thresholds for initiating statin therapy vary across England, Scotland, the US and Europe, 

despite a large body of evidence on when treatment becomes cost effective. This results in 

uncertainty when using these models to guide treatment for a patient, as using different 

models or clinical guidelines may result in a different decision for an individual. This thesis 

focused on identifying sources of uncertainty associated with both parts of this process, 

generating risk predictions, and making clinical decisions based on these risk predictions. Case 

studies consider the primary prevention of CVD, which was chosen due to the high incidence 

of CVD, the saturation of CVD risk prediction models in the literature, and the fierce debate 

over the last 10 years about the best approach for the primary prevention of CVD. 

Chapter 3 found the impact of covariate selection on the risks of individuals to be small, apart 

from a large secular trend. Chapter 4 identified high levels of instability in risk scores when 

using sample sizes of widely used models, and when derived from recently published sample 

size formula. Chapter 5 found that the secular trend in CVD (identified in Chapter 3) caused 

over prediction of risks for patients in the present day and was not driven by increasing statin 

use. Chapter 6 highlighted that a small number of extra CVD events could be prevented by 

delaying statin initiation to when patients are at risks higher than 10% (given the high statin 

discontinuation rates identified in practice). Chapter 7 showed that the reduction of the risk 

threshold for initiating statins for the primary prevention of CVD, from a 10-year CVD risk of 

20% to 10%, had little impact on clinical practice in England. This finding is contrary to current 

evidence. 

The findings in this thesis are a mix of methodological findings of interest to those developing 

models, and those that have a direct impact on the prevention of CVD in the UK. 
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1 General Introduction 

 

1.1 How clinical prediction models are used to drive treatment  

Risk scores from clinical prediction models are used to drive treatment in many disease areas 

and settings.3–11 This may be the risk of having a clinical event at some point in the future 

(prognostic) or the risk of currently having an undiagnosed medical condition (diagnostic). 

These models are often developed on data from cohort studies, where data may be collected 

in a pre-determined cohort of individuals, or from routinely collected data sources such as 

electronic health records or registry data. Depending on the outcome one is trying to predict, 

a range of statistical algorithms can be used to predict either the outcome itself, or probability 

of the outcome occurring (i.e. for binary outcomes). This thesis will focus on the latter, the 

probabilities known more commonly as risks. Risk scores can be generated through a wide 

range of statistical algorithms, ranging from regression modelling techniques to machine 

learning. Based on the risk score derived for a given patient, a certain course of preventive 

action or screening may be taken. There are therefore two key aspects of this process: 1) 

Calculating the risk score of a patient on which clinical decisions will be based, and 2) Deciding 

what action to take for a patient with a given risk score. This thesis will focus on identifying 

areas of uncertainty associated with these two parts of the treatment process. 

Uncertainty when deriving a risk score for a patient is inevitable, as there is no true underlying 

risk to calculate. A patient will either have the event (or underlying health condition), or they 

won’t. This means their ‘true’ underlying risk, if it exists, is either a 0 or a 1. At the prediction 

stage we do not know this underlying truth and assign probabilities that a patient will have 

the event or not, a risk score. There are often many equally valid methods that can be used 

to derive such risk scores, resulting in many possible risk scores for an individual patient. 

Depending on the level of agreement between these risk scores, a clinician may have more 

or less confidence in using a particular risk prediction model as the primary tool for guiding 

treatment. This thesis will use the agreement or discordance between risk scores for an 

individual patient derived from different models as a key metric, explore what the major 

drivers are behind this, and whether the discordance matters in practice. 
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The uncertainty when deciding what action to take for a given patient is arguably less clear 

cut. Historically, a clinician has always decided what action to take for a patient presenting 

with a given set of symptoms/comorbidities. Risk scores act as another ‘symptom’ which the 

clinician and patient can use to help make a decision. However with the current abundance 

of clinical prediction models, and studies to indicate at what risk threshold a treatment 

becomes cost-effective, guidelines are being created to advise clinicians as to the threshold 

at which they should initiate or offer treatment. Given the many components that go into 

creating these guidelines there are many potential sources of uncertainty associated with the 

development of these guidelines. However, uncertainty may also stem from patient-centered 

factors a clinician must also consider, and how they interpret and implement these guidelines, 

rather than in their development. 

 

1.2 Sources of uncertainty associated with using risk prediction models to 

drive treatment 

This section is split into two halves, focusing on the two different aspects of the treatment 

process, the calculation of risk scores, and the clinical decision making process based on the 

risk scores. 

1.2.1 Sources of uncertainty when calculating risk scores 

When talking about sources of uncertainty in calculating a risk score, I am referring to things 

in the model development process that may alter a risk score for a given individual. These can 

be broadly split into two categories: 1) model features (or modelling decisions), and 2) 

sampling variation. I make this distinction as both have the same effect of altering an 

individual’s risk score, but through different guises. Different features of a model result in the 

estimation of a different quantity, or a different estimator of the same quantity. Ultimately a 

different process is undertaken to develop the model, and so a change in risk for a given 

individual is somewhat expected. Uncertainty driven by sampling variation is a purely 

statistical artefact, the exact same steps are taken to develop the model but random 

variability in the sampling process means the model, and resulting risk scores may change. 
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Model features 

There are many decisions to made when developing a risk prediction model (how to define 

the cohort, statistical methods for analysing the data, how to deal with missing data, variable 

selection, etc). A cohort may be selected to best match the target population for the 

treatment of interest; a statistical method may be chosen based on the outcome of interest 

and the assumptions that must be made; an imputation method will be chosen to best suit 

the relationship between variables in the dataset; and predictor variables may be selected to 

include key causal predictors or to maximise model performance. All the key factors that 

should be considered are mentioned in the TRIPOD reporting guidelines.12 When developing 

a model there may be multiple equally correct decisions with advantages and drawbacks, 

resulting in multiple viable models and multiple viable risk scores for an individual. From a 

statistical point of view, there is no issue with this variability, as one would expect different 

modelling decisions to affect the risk scores of an individual. From a patient’s perspective this 

is more problematic as it could alter their treatment pathway.13,14 Much of the literature 

surrounding this uncertainty induced by modelling decisions falls under the ‘reference class 

problem’. 

Reference class problem 

The reference class problem is a well-documented issue caused by using group based risk 

scores for individuals.15 The concept is that an individual belongs to many different groups, 

or reference classes, with each group having a different collective risk. When using group 

based risk scores for an individual, the individual therefore has multiple risk scores 

simultaneously depending on which reference class you assign them to. The issue was first 

noted by John Venn in 1866,16 but has become more prominent since the increase in use of 

clinical prediction models, which naturally produce risk scores based on the subgroups 

defined by the variables included in the model.  

A review of studies that elicited discordance in individual risk estimates was carried out by 

Stern in 201017 who discusses 9 different studies, including the somewhat seminal paper by 

Lemeshow et al.13 Six of these analyse models predicting mortality in intensive care units or 

post-surgery settings, two for breast cancer screenings and one for cardiovascular disease 

(CVD). The authors stated that such discordance is rarely evaluated, and in many of these 
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studies the models that were compared did not have comparable performance, reducing 

their relevance. Other findings were that models with similar predictors suffer from less 

discordance, and that “discordance of individual risk estimates does not weaken the economic 

rationale for their use in allocation of resources, but it does weaken the clinical rationale”. The 

problem is eloquently discussed by Stern18 and Kent,19 who both support the notion that 

disagreement between models does not undermine their use, but does mean the 

interpretation of risk scores is complex and caveated. However there has not been much 

primary research into quantifying the extent of this problem in various disease areas since 

then. Of the 10 citations of the Stern18 paper, and 33 citations of the Kent19 paper, only two 

explicitly compare the risk scores of individuals across models.20,21 Since 2010 (the year of 

Stern’s review) there have been 58 citations of the Lemeshow et al.13 study, but only one that 

directly compared discordance in risk estimates from multiple models.22 While other studies 

exist,23 this phenomenon may be discussed without the term ‘reference class problem’ 

making them difficult to identify. There is a similar stream of work looking at the impact of 

reference class problem on heterogeneous treatment effects,24–26 but this thesis focuses on 

risk predictions.  

Strictly speaking the reference class problem refers to the variability in an individual’s risk 

resulting from a patient belonging to multiple reference classes (defined by variable selection 

in a risk prediction model); but it could be extended to encompass how an individual’s risk 

changes when other model features are altered. Consider altering the statistical model itself, 

the time period of the data used to derive the model, or the inclusion and exclusion criteria 

used to define the cohort. While a patient’s reference class may remain the same (assuming 

the same variables are kept in the model), the estimator of their risk is inherently different. 

It is likely this drives a large portion of discordance between models referenced in the 

literature and ultimately the result is the same as the reference class problem; an individual 

is assigned competing risk scores with no clear way to choose between them. 

Sampling variation 

Quantifying sampling variation is the cornerstone of statistics. An estimate of any population 

level parameter should be provided with a confidence interval which quantifies the 

uncertainty associated with that estimate. This is because the estimate is only ever calculated 

in a sub sample of the overarching target population. Depending on the size of that sub 
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sample, there may be more or less uncertainty associated with that estimate. For example in 

the CONSORT27 (randomised controlled trials), STROBE28 (observational studies) and 

PRISMA29 (systematic reviews) reporting guidelines, confidence intervals of effect estimates 

are expected. In scenarios where the variance of an estimator does not have a closed form 

solution, bootstrap resampling methods can be used to derive the confidence interval 

empirically.30 

It is therefore surprising that most risk prediction calculators do not provide confidence 

intervals associated with risk scores. None of the QSCORES developed from the QResearch 

database31 (e.g. QRisk, QKidney, QCancer, QFracture, QDiabetes) provide a confidence 

interval associated with the risk scores when using their online calculators, and this is 

common practice. There is nothing in the TRIPOD12 statement that indicates confidence 

intervals should be provided alongside risk scores (despite confidence intervals for odds ratios 

and hazard ratios being expected). This may be because an individual’s risk is not viewed as a 

population level parameter and therefore cannot have an associated confidence interval. 

However, the risk calculated is the risk of the subgroup which that patient belongs to, which 

is a population level parameter and is calculated with a degree of statistical uncertainty. This 

is not an issue for the above mentioned models as they are developed on large routinely 

collected datasets; however this is not the case for all models. Systematic reviews of CVD,32 

chronic kidney disease33 and type 2 diabetes34 risk prediction models show large variability in 

the number of patients included for model development. If models are developed on a small 

number of individuals, it may be important to report the statistical uncertainty associated 

with the risk scores. 

Given that historically there has been very little research on sample sizes for risk prediction 

models, underpowered models may be more commonplace than expected. There has 

recently been some progress in this area.35,36 However the work focuses on overfitting, with 

a small section on the precision of effect estimates, which is what would result in precise (low 

degree of statistical uncertainty) risk scores for individuals. 
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1.2.2 Sources of uncertainty in the clinical decision making process 

There may be debate over what the correct threshold is to initiate treatment for a patient. 

This may be preventive treatment, or diagnostic tests to identify the presence of a disease. 

This has happened in breast cancer screening37 where the frequency of screenings was 

questioned in the 40 – 49 age group, and recently work has been published suggesting that 

current blood pressure based thresholds for initiating blood pressure lowering treatment may 

be inadequate.38 There has also been a large debate over the risk at which statins should be 

initiated in patients for primary prevention of CVD, which is discussed in detail in section 

1.3.3. 

The types of analysis carried out to determine a treatment threshold are often a benefit-harm 

analysis,39 to see whether the benefit of a drug outweighs the negative effects, or a cost 

effectiveness analysis,40 to assess the cost of the gain in health, possibly relative to another 

intervention. One area of uncertainty with both of these types of analysis is quantifying the 

possible adverse events caused by a drug. Adverse events may not be well recorded in trials, 

or be underpowered for formal hypothesis testing.41,42 A Cochrane review43 found that the 

type of questioning used may affect the ability to pick up adverse events, and another 

review44 found that systematic reviews of adverse events may compound poor reporting of 

adverse events data in primary studies.  

Beyond the uncertainty induced by the limitations of scientific evidence, there may also be 

social factors to consider in how developed guidelines are interpreted and used. This was the 

case in England when the National Institute for Health and Care Excellence (NICE) reduced 

the threshold for initiating statin treatment from a 10-year risk of incident CVD of 20% to 

10%.45,46 While they found it to be cost effective, this was largely driven by the low cost of 

statins, and there was opposition from clinicians. A group of leading doctors wrote a letter to 

NICE citing six major concerns: “the medicalisation of millions of healthy people; conflicting 

levels of adverse events; hidden data; industry bias; loss of professional confidence; and 

conflicts of interest”.47 Factors such as these, and the opinion of each individual clinician may 

cause differential implementation of guidelines for similar subgroups of the population.  

 



24 
 

1.3 The use of risk prediction models for the primary prevention of CVD 

CVD was chosen as the disease area in which to explore the themes outlined in section 1.2. 

The use of risk prediction models is common in the primary prevention of CVD. The disease 

itself presents a major health risk to most individuals and results in large burdens on health 

systems across the world. Also, access had been gained to the Clinical Practice Research 

Datalink (CPRD),48 linked with Hospital Episode Statistics49 (HES) and Office for National 

Statistics50 (ONS) data. CVD outcomes are well recorded across all three databases, and most 

risk factors are well recorded in primary care enabling the development of high quality CVD 

risk prediction models. 

1.3.1 Cardiovascular disease (CVD) 

CVD is a collective term for coronary heart disease, strokes and transient ischaemic attacks, 

peripheral arterial disease and aortic disease, all conditions which affect the heart or blood 

stream.51 The British Heart foundation estimated that 7.4 million people are living with CVD 

in the UK, and it accounts for 27% of all deaths.52 Bhatnagar et al. summarised the trends in 

the epidemiology of CVD in the UK from 1979 to 2013.53 The reported total CVD mortality 

declined by 68% from 1980 to 2013. Given that this thesis considers models for primary 

prevention of CVD, the CVD incidence rates were of most interest. They do not report directly 

on incidence rates, but state the finished consultant episodes (FCEs) outcome can be used as 

a proxy for incidence. Trends in FCEs for coronary heart disease and stroke both showed an 

overall decrease between 2005 and 2014. This is in agreement with other findings of a 31% 

(female) and 33% (male) reduction in incidence of myocardial infarction between 2002 and 

2010,54 a 30% decrease in the incidence of stroke between 1998 and 2008,55 and a 29% 

decrease in the incidence of stroke from 1981 – 1984 to 2001 – 2004.56 

Despite these reductions incidence rates remain unsatisfactory. In a report from Heart UK, 

after cross party discussions with NHS England, Public Health England and industry partners, 

they highlight that the high number of individuals living with CVD not only presents a major 

public health risk, but also a large burden on the National Health Service.57 However, there is 

huge opportunity to reduce this number as most CVD cases are preventable, through lifestyle 

changes which impact blood pressure, smoking, cholesterol, exercise, diet and medical 

interventions. They recommend prioritising the prevention of CVD in primary, secondary and 
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tertiary actions. This thesis focuses on the use of risk prediction models to help guide 

treatment for primary prevention of CVD. 

1.3.2 CVD risk prediction models 

Risk prediction is extremely common in the field of CVD. One of the first cases of multivariate 

logistic regression was its use in analysing data from the Framingham heart study,58 a cohort 

study designed to assess risk factors for coronary heart disease.59 Since then many more 

models have been developed. A systematic review of risk prediction models for CVD in the 

general population carried out by Damen et al.32 found 363 different models published by 

June 2013. It was of interest for this thesis to review models that are currently being used; to 

understand what modelling choices have been made and what the current best practice is. 

However, the authors of that systematic review found that the usefulness of the majority of 

developed models was unclear (methodological shortcomings, no external validation, 

incomplete presentation). Instead, I reviewed the models that are currently recommended in 

guidelines in various countries across the world and reported on the key model features of 

each. 

In the US and worldwide, historically The Framingham Risk Score6 has been the most 

commonly used algorithm. However recently the pooled cohort equations have been 

recommended by the American College of Cardiology and American Heart Association 

(ACC/AHA).60,61 In England QRISK35 is currently recommended by NICE,62 in Scotland ASSIGN63 

is suggested by the Scottish Intercollegiate Guidelines Network,64 in Europe the SCORE 

equation65 is recommended by the European Society of Cardiology and European 

Atherosclerosis Society (ESC/EAS),66,67 and in New Zealand the PREDICT68 equations are 

recommended by the Ministry of Health NZ.69 Also, recently the GLOBORISK70 equations have 

been released which are designed to be recalibrated for use in various countries across the 

world. While the primary difference in these algorithms is the country in which the data used 

to derive the algorithms comes from, there is also a wide range of different methodological 

features associated with these models. The key features of each model are presented in Table 

1.1. This provides an updated version to the third table from the review of models for 

assessment of CVD risk by Cooney et al.,71 from 2009.  The Reynolds72,73 and PROCAM74 

models have been omitted as they are not recommended in any national guidelines. 
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There are some areas which are very consistent across the models. A Cox75 model is by far 

the most common method for data analysis. None of the models implement a competing risks 

analysis, despite the fact these models will be used frequently in older populations where 

competing risks are most prevalent.76–78 It is possible this is because clinicians are expected 

to consider the competing risk themselves, rather than explicitly trying to model it. There is a 

core set of variables included in all the models (age, gender, smoking status, systolic blood 

pressure and some form of cholesterol measurement). Family history of CVD, diabetic status 

and anti-hypertensive treatment are common but are not in all models. QRISK3 contains far 

more variables than any other calculator. All models produce 10-year risk scores except 

PREDICT in New Zealand, which produces a 5-year risk score. 

The models differ significantly in their sample size, which considering the arguments outlined 

in section 1.2.1 indicates some risk scores will have a much higher level of statistical 

uncertainty than others. There are also significant differences in how the composite outcome 

of CVD is defined. The baseline event rate across studies may therefore be highly variable (on 

top of the fact they are developed in different populations). There is some variability in the 

limits of the age range considered, but all models consider individuals aged 40 – 65. There is 

also a lot of variability in the start of data collection. PREDICT and QRISK are the most recent 

(2002 and 1998 respectively), with many others using data from the 1970’s and 1980’s.  

1.3.3 Statin treatment thresholds around the world and debate in the literature 

There is a wide range of recommended thresholds at which patients become eligible for statin 

treatment in different countries for the primary prevention of CVD. England45 and the US60,61 

have the lowest thresholds at a 10-year CVD risk of 10% and 7.5% respectively. The 

ESC/EAS66,67  recommended threshold is a 10-year risk of a fatal CV-event of 5%, which is 

equates approximately to a 15% risk of any CV-event,66 and in Scotland the threshold is 20% 

for asymptomatic patients.64 In New Zealand a 5-year risk score is used instead and the 

threshold is 5%.69 It should be noted that all guidelines recommend the use of risk scores 

alongside other contextual information such as the patient’s cholesterol, blood pressure, diet 

and exercise levels in a conversation with patient, to help decide the best lifestyle alteration 

for that patient (one of which may be statin treatment).  
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Historically, statins were prescribed only to higher risk patients, and the lower thresholds in 

the US and England have only been brought in since 2013/2014. These decisions were made 

during a high profile debate over what the optimal risk threshold to initiate statins for the 

primary prevention of CVD should be. Below I summarise the arguments on each side of the 

debate. 

Evidence for 

The evidence for these thresholds is based mostly on trial data. The ACC/AHA79,80 and 

ESC/EAS66,67 reviewed a series of high profile statin trials and whether at specific risk 

thresholds the clinical benefits from statin therapy outweigh the potential harm from adverse 

events. A Cochrane review from 2013,81 a systematic review for the US Preventive Services 

Task Force82 and a high profile review in 201683 summarise the results from these trials and 

are consistent in their results. NICE ran their own cost effectiveness simulations84 to work out 

at what threshold statins are deemed cost effective, using trial data from a clinical review to 

inform statin efficacy in the simulations. A variety of cost effectiveness thresholds have also 

been considered for a US population,85 the results supporting the recommended threshold of 

the ACC/AHA. The Scottish guidelines64 acknowledge the lowered threshold in NICE guidance 

from 2014. However, they do not believe the impact of increased workload on the healthcare 

system has been properly evaluated, and propose further research into age dependent 

thresholds before making any changes. The Ministry of Health in NZ state “evidence from a 

meta-analysis of RCT’s that benefits are apparent in all risk groups, although the benefit is 

very small when five-year risk is below 5 percent”, but do not reference the study.69 

Evidence against 

All the evidence quoted by the guideline developers is in general agreement; however there 

has been some conflicting evidence. Abramson et al.86,87 argue that the results from the 2013 

Cochrane review81 are driven mostly by a meta-analysis published in 201288 (results from a 

previous Cochrane review89 by the same authors two years prior without this meta-analysis 

included were consistent with a 20% threshold). They argue a large proportion of the 

outcomes from trials included in this meta-analysis are softer outcomes such as coronary 

revascularisation procedures, and when considering all-cause mortality statins do not have a 

significant effect. Furthermore, they state the meta-analysis did not consider the effect of 
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statins on serious adverse events properly. Redberg et al.90 argued that results from the US 

Preventive Services Task Force’s systematic review included studies with patients taking 

statins for secondary prevention who were likely to have an increased baseline risk (and 

bigger benefit from statins), despite this review being used to make recommendations for 

primary prevention.91 They also note authors did not have access to patient level data, 

increasing potential for bias. Yebyo et al.92 present data indicating that statins only provide a 

net benefit with respect to potential harm at higher risks than is recommended in most 

guidelines. 

Impact assessment of lowering threshold in England 

In England NICE used to recommend prescribing at a 20% threshold. In June 2014, the 

threshold was lowered to 10%.45 This sparked a lot of debate in the UK and led to widespread 

media coverage,93–96 as well as opposition from leading doctors.47 Despite all the discussion 

in the British media and academic literature after NICE lowered the treatment threshold, to 

my knowledge only one study has evaluated the impact of this guideline change in practice.97 

They found a large drop in the average risk of patients initiated on statins after the guideline 

change. However the analysis was restricted to patients who had a coded QRISK score 

recorded in their medical record, of which they state only 72.9% of statin initiators since 2012 

did. 

 

1.4 Thesis structure and motivation for chapters  

This thesis broadly focuses on two aims: 

1) To quantify the main sources of uncertainty associated with the calculation of risk 

predictions 

2) To quantify the main sources of uncertainty associated with the clinical decision making 

process based on the risk predictions 

Each chapter helps answer one of those aims, and is motivated by a combination of output 

from the literature reviewed in sections 1.2 and 1.3, and findings from subsequent chapters. 

All chapters consider CVD risk prediction and statin treatment, and the generalisability of 

each to the wider risk prediction community beyond CVD is variable.  
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Chapter 2 is a data profile. It describes how the dataset for Chapter 3 was derived and reports 

on the steps taken to validate the extraction of this dataset. While slightly different cohorts 

were used in the subsequent chapters, the same variables (or subsets of) were derived for 

each of those cohorts and the code for variable extraction was re-used between studies. 

Chapter 2 therefore acts as a validation on the extraction of the datasets used in Chapters 4 

– 7 as well. It has been included to provide confidence that a structured and careful approach 

was taken to derive the datasets used throughout this thesis, and therefore it doesn’t focus 

on the aims outlined above. Chapters 3 – 5 all focus on different aspects of aim 1, while 

chapters 6 and 7 focus on different aspects of aim 2.  

Chapter 3 compares the risk scores for individuals across a range of CVD risk prediction 

models which progressively include more information about the patient (variables). This acts 

as a way to measure the impact of the reference class problem on CVD risk scores. Section 

1.2.1 highlighted that the reference class problem is a well understood issue, but there is little 

primary research summarising its actual impact in a variety of scenarios. Many of the 

published studies include models developed on small sample sizes, and the reference class 

problem reported may be conflated with sampling variation. Also, in a certain disease areas 

there may be some very strong causal predictors meaning there is less discordance between 

models. The only studies looking at this in CVD risk prediction compare risks from models that 

not only have different predictors, but are developed on different cohorts, where the 

outcome and predictors may have been defined differently.23,98 This chapter considers a 

scenario where models are developed on the same cohort and variables are defined in the 

same way. This means only the impact of patient’s risks being conditioned on different 

variables is assessed, without the impact of underlying differences in databases, variable 

definitions or sampling variation. If only a small effect of the reference class problem was 

found, then in the context of Lemeshow et al.,13 this would support the ‘clinical rationale’ for 

using any CVD risk prediction model defined in a similar way. 

Chapter 4 evaluates the impact of sampling variation on CVD risk scores in models developed 

using different sample sizes. None of the CVD risk prediction models reviewed in Table 1.1 

provide a confidence interval or measure of statistical uncertainty alongside the risk score. 

Depending on the sample size used in model development, the level of uncertainty associated 

with these scores will be variable, and there is a large level of variation in the sample size of 
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these models. This is relevant in the current methodological landscape as sample size formula 

for risk prediction models are now being developed,35,36 however the stability of risk scores 

from models that meet these criteria has not been assessed. This study evaluates the 

statistical uncertainty (precision) of risk scores generated from models that meet these 

sample size criteria, and also ones that match the sample size of widely used CVD risk 

prediction models. How sample size may affect model performance through the stability of 

risk scores is also considered. 

Chapter 5 looks at the secular trend in CVD incidence that is present in England and evaluates 

whether this is being driven by increasing statin use during follow up. This secular trend was 

identified in the literature, however the idea to focus on this in a study arose from the results 

of Chapter 3, which finds calendar time to have a large impact on the predicted risks of 

individuals. The potential miscalibration caused by choosing not to model the secular trend is 

assessed, and also whether it should be modelled. In particular, if the secular trend is driven 

by an increase in statin use, it should not be incorporated into a risk score which is used to 

decide whether a patient should receive statins or not. A marginal structural model is used to 

determine the presence of the secular trend after adjusting for statin use during follow up.  

Chapter 6 explores the relationship between statin discontinuation and the optimal time to 

initiate statin therapy. The work is based on the hypothesis that if discontinuation rates are 

high, it may be beneficial to delay initiation to ensure patients receive treatment when they 

are at a higher risk and will benefit most from it. Section 1.3.3 presented a lot of research that 

has gone into identifying the optimal threshold at which to initiate statin therapy, all of which 

is based around trial data, benefit-harm analyses and cost effectiveness studies. While effect 

estimates from trials do account for poor adherence and discontinuation, none of the 

research considers the effect that statin discontinuation may have on the optimal time at 

which to initiate treatment. In this chapter, our data is used to calculate discontinuation rates 

for the first, second and third time taking statins, which has not been done before. This data 

is then used in a simulation to answer when the optimal time to initiate statin therapy is for 

a patient with a given risk profile, given the discontinuation rates seen in practice.  

Chapter 7 evaluates the impact of NICE reducing the recommended threshold for initiating 

statin therapy (for primary prevention of CVD) from 20% to 10% on prescribing behaviour in 

England. As outlined in section 1.3.3, there was a lot of discussion in the media as well as in 
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academic and clinical settings over the lowering of the risk threshold. However, since 2014 

only one study has evaluated the impact this had on the people being initiated on statins.97 It 

is imperative for NICE to know if their policies are being implemented in practice, given the 

time and resources that are put into developing them. This chapter builds on the analysis 

carried out by Finnikin et al.97 and addresses some limitations in their work, whilst also 

providing a replication of their analysis in CPRD (original analysis carried out in THIN). 

Chapter 8 brings together the findings from each study under a common framework and links 

them back to the original aims of the thesis, considers the broader implications of this work, 

expands on the further work suggestions where necessary and discusses limitations of the 

thesis as a whole. 

 

1.5 Thesis format and author contributions 

This section is recommended by the University of Manchester Presentation of Thesis Policy. 

This thesis is presented in journal format (also known as alternative format), a series of papers 

in manuscript format, which have either been accepted in or are under review in peer 

reviewed journals. A number of appendices have been included, to provide extra clarity over 

methods used, and present results from a variety of extra analyses, all of which are referenced 

in the main body of the thesis.  

Data acquisition was carried out by AP, the application was critically reviewed for important 

intellectual content by TVS, RE and DA (collaborator named in Chapter 3). The author 

contributions of chapters written for publication are as follows: 

Chapter 3: AP, TVS, RE and DA designed the study, AP conducted the analysis and interpreted 

the results in discussion with TVS, RE, DA and BB. AP wrote the initial draft of the manuscript, 

which was then critically reviewed for important intellectual content by all authors. 

Chapter 4: AP designed the study with support from TVS, RE, MS and GM, AP conducted the 

analysis and interpreted the results in discussion with TVS, RE, MS and GM. AP wrote the 

initial draft of the manuscript, which was then critically reviewed for important intellectual 

content by all authors. 
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Chapter 5: AP designed the study with support from TVS and RE. AP conducted the analysis 

and interpreted the results in discussion with TVS and RE. AP wrote the initial draft of the 

manuscript, which was then critically reviewed for important intellectual content by all 

authors. 

Chapter 6: AP and TVS designed the study with support from RAE, AT, GG and RE. AP 

conducted the analysis and interpreted the results in discussion with TVS, RAE, AT, GG and 

RE. AP wrote the initial draft of the manuscript, which was then critically reviewed for 

important intellectual content by all authors. 

Chapter 7: AP designed the study with support from TVS and RE. AP conducted the analysis 

and interpreted the results in discussion with TVS and RE. AP wrote the initial draft of the 

manuscript, which was then critically reviewed for important intellectual content by all 

authors. 
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2 Validation of data extraction 

 

2.1 Introduction 

Throughout this thesis many cardiovascular disease (CVD) risk prediction models were 

developed, and risk predictions were also generated using existing models. This required the 

development of cohorts that included CVD outcomes, CVD risk factors or predictors, and 

statin use. While the cohorts in each individual chapter varied on some inclusion/exclusion 

criteria, the set of variables derived was always a subset of these. Where possible, models 

were based around the QRISK series of models.5,99 These could be viewed as the gold standard 

for CVD risk prediction in the UK (recommended in National Institute for Health and Care 

Excellence (NICE) guidelines,45 externally validated with strong performance,100,101 updated 

yearly, developed on large datasets and methods clearly reported). All of the predictor 

variables included in the QRISK35 model, CVD outcomes and statin use therefore had to be 

derived for the cohorts used in this thesis.  

To do this, access was gained to the Clinical Practice Research Datalink (CPRD) database 

(ISAC:17_125RMn2A2), with linkage to Hospital Episode Statistics49 (HES) and Office for 

National Statistics50 (ONS) data. CPRD is a primary care database representative of the UK in 

terms of age, sex and ethnicity.48 This is similar to QResearch (the database in which QRISK 

models are developed on) which is also a primary care database, and contains all the required 

information for prediction of CVD. HES contains secondary care (hospitalisation) data, and 

ONS contains mortality data. Extracting data from large routinely collected data sources such 

as CPRD and HES is not straightforward and involves a lot of programming. Therefore it was 

important to quality control the extraction process.  

 

2.2 Methods 

2.2.1 Overview 

A CPRD cohort was defined using the same inclusion/exclusion criteria as the QRISK35 

development cohort, and all the required variables were extracted. The distribution of each 
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covariate was then compared against those reported in the QRISK3 development cohort. 

Given the CPRD cohort was developed using the same criteria as the QRISK3 development 

cohort, the distribution of each variable should broadly match up. If this was the case, I was 

happy to re-use the programs when extracting the same variables for other cohorts. However, 

there were some key problems in making this comparison: 

1) CPRD (practices use Vision software) and QResearch (practices use EMIS software), contain 

completely different sets of practices. 

2) Code lists and detailed definitions of covariates used in QRISK3 were not made publicly 

available (apart from the outcome, CVD). 

This meant when comparing the prevalence of certain covariates between the CPRD cohort 

and the QRISK3 cohort, it was hard to distinguish whether differences were due to underlying 

differences in the populations of the two databases, differences in data recording between 

the two software systems, differences in the methods used for derivation of the variables, or 

coding errors on my behalf. For each variable, steps were taken to rule out the possibility that 

the difference was due to coding errors. Differences caused by the other reasons would not 

affect the validity of the work in this thesis, as long as the method of extraction was not 

flawed. 

2.2.2 Derivation of cohort 

The CPRD cohort was developed on the January 2017 extract of CPRD, linked to HES, ONS and 

Townsend deprivation scores.102 It was derived in the same way as the cohort used to develop 

the QRISK3 model. Patients met the initial study inclusion criteria if they had at least one day 

of up-to-standard follow up aged 25 – 84 and within the study follow up period (1st Jan 1998 

– 31st December 2015), and 1 year up-to-standard registration prior to this day. The index 

date was defined as the first day which meets these criteria, alternatively specified as: latest 

of (i) date turned 25, (ii) year valid follow up in CPRD, (iii) 1st January 1998, the study start 

date. Patients who were not eligible for linkage to HES, ONS and Townsend deprivation scores 

were then excluded. Finally, patients were excluded if they had a history of CVD (identified 

through CPRD, HES or ONS) or had received a statin prior to their index date. Code lists for 

CVD outcomes and statin prescriptions are provided on the GitHub page for this thesis.103 

Figure 2.1 contains a flow chart for the derivation of the CPRD cohort.  
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Figure 2.1: Flow chart of derivation of the CPRD cohort 

 

 

There were also a number of decisions made about how to process the data from HES and 

ONS. For both of these sources, only linked data on cardiovascular events was available, 

specified by code lists provided on the GitHub page associated with this thesis.103 In HES, 

hospitalisations that overlapped were combined into a single hospitalisation, retaining the 

primary diagnosis of the first hospitalisation as the primary diagnosis of the hospitalisation. 

We only considered CVD events in HES or ONS where CVD was the primary cause of the 

hospitalisation or death. If a patient had a CVD related death 30 days or less after the date of 

censoring in CPRD, it was brought it forward to the date of censoring and used as an event. 

This was to account for possible delays in recording between the two databases. 

2.2.3 Process for derivation of variables (outcomes and predictors) 

A five stage process was carried out to derive the variables for the CPRD cohort.  

1. Interpretation of the terminology used in QRISK3 

A table was produced containing information provided in the QRISK3 paper about how each 

variable was defined, and how we interpreted and implemented this information to derive 

variables for the CPRD cohort. 
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2. Search for code lists  

For each variable the literature was searched for code lists that could be used to derive each 

variable. Code lists were also available from within our research team from previous studies. 

3. Initial comparison of variables between CPRD cohort and QRISK3 development cohort 

Each variable was derived using information gathered in stage 1 and 2. The CPRD cohort was 

then compared to the QRISK3 development cohorts on the prevalence of comorbidities, the 

mean and standard deviation of continuous covariates, the distribution of categorical 

variables, and the proportion of missing data. For each predictor variable, univariate Cox75 

models were also fitted to the outcome (time until CVD event) to produce hazard ratios as a 

second way to check the validity of the variable. For example if increasing age was associated 

with lower CVD risk it would be clear something was wrong. 

4. Exploration of the reason for differences in relevant variables, and modification of variable 

definitions for the final cohort when deemed necessary 

Where results in the CPRD cohort seemed incorrect, potential reasons for this were assessed 

to help determine whether the variable had in fact been extracted incorrectly. The method 

used to explore each variable was unique to the problem at hand, and is outlined in the 

corresponding part of section 2.3.4. Depending on what was found, the algorithm or code list 

used to derive a given variable may have been changed. However, to avoid chasing the values 

in the QRISK3 development cohort, this was only done in situations that there was strong 

evidence that the initial variable derivation was wrong. 

5. Summary of final cohort  

Upon completion of stage 4, the final cohort was again compared to the QRISK3 development 

cohort. Histograms of continuous variables were also plotted to gain a better understanding 

of the distribution of these variables. 
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2.3 Results 

2.3.1 Interpretation of terminology used in QRISK 

Table 2.1 contains the available information in the QRISK3 manuscript5 (or the online 

calculator104) about variable derivation, and how this information was interpreted and used 

for extraction of the CPRD cohort. 

Table 2.1: Comparison of definition of variables from the QRISK3 manuscript, and how this 

definition was interpreted. 

Variable QRISK3 available information (from 

manuscript, or online calculator) 

How this information was 

interpreted and implemented 

Outcome variable 

Time until first 

CVD event 

“The primary outcome measure was 

the first recorded diagnosis of 

cardiovascular disease recorded on 

the general practice clinical 

computer system or their linked 

ONS death certificate during the 

study period. For this study, we 

included coronary heart disease 

(angina and myocardial infarction), 

stroke, or transient ischaemic 

attacks in the term cardiovascular 

disease but not peripheral vascular 

disease.” 

If a patient died, was transferred 

out of their practice or the 

practice stopped contributing data 

for CPRD, then they were 

censored on this date. 

 

If the time until the first CVD 

event either in primary care 

(CPRD), secondary care (HES) or 

death (ONS) happened before a 

patients censoring date, this was 

recorded.  

Demographics 

Age “Age is defined at the index date.” 

 

“We determined an entry date to 

the cohort for each patient, which 

was the latest of the following: 25th 

birthday, date of registration with 

the practice plus one year, date on 

which the practice computer system 

was installed plus one year, or the 

study start date (1 January 1998).” 

Age was defined as (index date – 

date of birth)/365.25. Only the 

year of birth is provided in CPRD, 

therefore it was assumed 

everybody was born on the 1st July 

on the year of their birth. 

Ethnicity “We used Read codes for self-

assigned ethnicity. The codes were 

Any medical code prior to or after 

the index date was extracted. A 
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grouped into the NHS standard 

16+1 categories28 for the initial 

descriptive analysis. The 16+1 

categories were then further 

grouped into the final nine 

reporting groups to ensure 

sufficient numbers of events to 

enable a meaningful analysis.” 

 

persons ethnicity cannot change 

therefore it didn’t matter if it was 

recorded in the database after the 

index date. 

Test data 

BMI “For clinical values (systolic blood 

pressure and body mass index) and 

smoking status we obtained the 

most recent values recorded before 

the baseline date.” 

We took the most recent value 

before the index date, looking as 

far back as five years prior to the 

index date.  

 

The full algorithm, which deals 

with extreme values, different unit 

measurements, etc, is provided on 

the GitHub page.103 

 

Cholesterol/HDL 

ratio 

“We selected the closest value to 

cohort entry for total cholesterol: 

high density lipoprotein cholesterol 

ratio, restricting values after the 

baseline date to those before the 

patient had a diagnosis of 

cardiovascular disease or was 

censored, and before any statin 

prescriptions.” 

The value taken was the one 

closest to the index date, in 

between five years prior to the 

index date, and minimum of: first 

CVD event, first statin 

prescription, date censored, five 

years after index date.  

 

The full algorithm, which deals 

with extreme values, different unit 

measurements, etc, is provided on 

the GitHub page.103 

Systolic blood 

pressure 

“For clinical values (systolic blood 

pressure and body mass index) and 

smoking status we obtained the 

most recent values recorded before 

the baseline date.” 

We took the most recent value 

before index date, looking as far 

back as five years prior to the 

index date. 

 

The full algorithm, which deals 

with extreme values, different unit 

measurements, etc, is provided on 

the GitHub page.103 
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Systolic blood 

pressure 

variability 

“To assess variability in systolic 

blood pressure, we identified all 

systolic blood pressure values 

recorded in the five years before 

study entry and calculated the 

standard deviation where there 

were two or more recorded values.” 

The standard deviation of all the 

values within the five years prior 

to the index date was calculated. 

At least two values were required 

otherwise this was set to missing.  

 

The full algorithm, which deals 

with extreme values, different unit 

measurements, etc, is provided on 

the GitHub page.103 

Smoking status “For clinical values (systolic blood 

pressure and body mass index) and 

smoking status we obtained the 

most recent values recorded before 

the baseline date.” 

The most recent before index date 

was taken, looking as far back as 

the start of valid follow up. If a 

patient had either a smoker or ex-

smoker entry prior to a non-

smoker entry, the non-smoker 

was changed to an ex-smoker. 

 

The full algorithm, which deals 

with extreme values, different unit 

measurements, etc, is provided on 

the GitHub page.103 

Medical history 

Atrial fibrillation “Atrial fibrillation (including atrial 

fibrillation, atrial flutter, and 

paroxysmal atrial fibrillation” 

A medical code prior to the index 

date was required. 

Atypical 

Antipsychotic 

use 

“Second generation ‘atypical’ 

antipsychotic use (including 

amisulpride, aripiprazole, clozapine, 

lurasidone, olanzapine, 

paliperidone, quetiapine, 

risperidone, sertindole, or 

zotepine)” 

 

“Use of drugs at baseline was 

defined as at least two 

prescriptions, with the most recent 

one no more than 28 days before 

the date of entry to the cohort.” 

At least one prescription in the 28 

days prior to index date, and at 

least two at any point prior to the 

index date was required. 

Chronic kidney 

disease 

“Chronic kidney disease (stage 4 or 

5) and major chronic renal disease 

A medical code prior to the index 

date was required. 
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(including nephrotic syndrome, 

chronic glomerulonephritis, chronic 

pyelonephritis, renal dialysis, and 

renal transplant)” 

 

+ “Expanded definition of CKD (to 

include general practitioner 

recorded diagnosis of CKD stage 

3).” 

Corticosteroid 

Use 

“Corticosteroid use (British National 

Formulary (BNF) chapter 6.3.2 

including oral or parenteral 

prednisolone, betamethasone, 

cortisone, depo-medrone, 

dexamethasone, deflazacort, 

efcortesol, hydrocortisone, 

methylprednisolone, or 

triamcinolone)” 

 

“Use of drugs at baseline was 

defined as at least two 

prescriptions, with the most recent 

one no more than 28 days before 

the date of entry to the cohort.” 

 

At least one prescription in the 28 

days prior to index date, and at 

least two at any point prior to the 

index date was required. 

Erectile 

dysfunction 

“Diagnosis of erectile dysfunction or 

treatment for erectile dysfunction 

(BNF chapter 7.4.5 including 

alprostadil, phosphodiesterase type 

5 inhibitors, papaverine, or 

phentolamine)” 

A medical code prior to index 

date, or at least one prescription 

in the 28 days prior to index date, 

and at least two at any point prior 

to the index date was required. 

Family history of 

coronary heart 

disease 

“Family history of coronary heart 

disease in a first degree relative 

aged less than 60 years” 

 

Online QRISK3 calculator: “Angina 

or heart attack in a 1st degree 

relative < 60” 

A medical code prior to the index 

date was required. 

HIV/AIDS “Diagnosis of HIV or AIDS” A medical code prior to the index 

date was required. 
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Migraine “Diagnosis of migraine (including 

classic migraine, atypical migraine, 

abdominal migraine, cluster 

headaches, basilar migraine, 

hemiplegic migraine, and migraine 

with or without aura)” 

A medical code prior to the index 

date was required. 

Rheumatoid 

arthritis 

“Rheumatoid arthritis (diagnosis of 

rheumatoid arthritis, Felty’s 

syndrome, Caplan’s syndrome, 

adult onset Still’s disease, or 

inflammatory polyarthropathy not 

otherwise specified” 

A medical code prior to the index 

date was required. 

Severe Mental 

Illness 

“Diagnosis of severe mental illness 

(including psychosis, schizophrenia, 

or bipolar affective disease)” 

A medical code prior to the index 

date was required. 

Systemic lupus 

erythematosus 

“Systemic lupus erythematosus 

(including diagnosis of SLE, 

disseminated lupus erythematosus, 

or Libman-Sacks disease” 

A medical code prior to the index 

date was required. 

Treated 

hypertension 

“Diagnosis of hypertension and 

treatment with at least one 

antihypertensive drug.” 

 

Online QRISK3 calculator: “On blood 

pressure treatment?” 

A medical code prior to the index 

date and at least one prescription 

of antihypertensive drug in the 

last 6 months was required. 

Type 1 diabetes “Diabetes (type 1, type 2, or no 

diabetes)” 

A medical code prior to the index 

date was required. 

Type 2 diabetes “Diabetes (type 1, type 2, or no 

diabetes)” 

A medical code prior to the index 

date was required. 
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2.3.2 Search for code lists 

The final set of code lists used to derive the variables is provided on GitHub.103 This section 

details how this set of code lists was determined. 

Code lists for the outcome variable, CVD, were available amongst the supplementary material 

of the QRISK3 paper published online. For all covariates that were included in QRISK2,99 code 

lists were available from the study by Van Staa et al.23 I then also used the code lists available 

from QOF105 (Quality and Outcomes Framework) as an alternative set of code lists, given I was 

not sure what had been used in the QRISK3 paper. 

For variables not in QRISK2, or part of QOF, code lists were not available. These variables were 

atypical anti-psychotic medication, erectile dysfunction, HIV/AIDS, migraine and systemic 

lupus erythematosus. For these variables, codes were either generated through the CPRD 

code browser, or were taken from the Cambridge primary care unit website,106 or on the 

University of Manchester clinical codes repository.107 

For variables where two code lists were available, both were used to derive the variable of 

interest and the impact of using the different code lists was evaluated, results provided in 

section 2.3.4.1. A summary of the variables and the source of the code list used to derive each 

of them is given in Table 2.2. The different possible sources were:  

(i) QRISK: code list was provided either in the main manuscript or supplementary material of 

the QRISK3 publication 

(ii) QOF: code list was taken from the NHS digital website105 

(iii) Previous study: code lists used were available from previously published work by Van Staa 

et al.23, unless another study is explicitly referenced 

(iv) Cambridge: code lists were taken from the Cambridge primary care unit website106 

(v) Clinical codes: code lists were taken from the clinical codes repository107 

(vi) Custom: code lists were generated from scratch using the CPRD code browser 
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Table 2.2: List of variables and source for where the code list was obtained 

Variable Code list source 

Outcome variables 

Time until first 

CVD event 

QRISK 

Demographics 

Age N/A 

Ethnicity Previous study 

Test data 

BMI Previous study 

Cholesterol/HDL 

ratio 

Previous study 

Systolic blood 

pressure 

Previous study 

Systolic blood 

pressure 

variability 

Previous study 

Smoking status Previous study 

Medical history 

Atrial fibrillation Previous study, QOF 

Atypical 

Antipsychotic 

use 

Custom. All drugs with the BNF code 04020102, which refers to second 

generation atypical antipsychotic drugs. 

Chronic kidney 

disease 

Previous study + QOF. Both the codes available from the previous study and 

the QOF website were combined for this definition, as codes for nephrotic 

syndrome, chronic glomerulonephritis, chronic pyelonephritis, renal dialysis, 

and renal transplant, were not included in the QOF code list. 

Corticosteroid 

Use 

QRISK (BNF chapters stated in QRISK3 paper) 

Erectile 

dysfunction 

QRISK and Custom. BNF chapter for prescriptions stated in QRISK3 paper, and 

the medical codes were found from searching ‘erectile’ and ‘dysfunction’ 

separately in the code browser. 

 

Family history of 

coronary heart 

disease 

Previous study 

HIV/AIDS Previous study108 

Migraine Custom, codes were identified through CPRD code browser. 

Rheumatoid 

arthritis 

Previous study, QOF 
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Severe Mental 

Illness 

Cambridge, QOF 

Systemic lupus 

erythematosus 

Custom, codes were identified through CPRD code browser. 

Treated 

hypertension 

Previous study, QOF 

Type 1 diabetes Previous study, QOF 

Type 2 diabetes Previous study, QOF 

 

2.3.3 Initial comparison of variables between CPRD cohort and QRISK3 development 

cohort 

Table 2.3 contains a comparison of the CPRD cohorts (female and male) with the reported 

QRISK3 development cohorts by mean and standard of continuous variables, and distribution 

of categorical variables. Cohen’s D between the two cohorts is also reported for continuous 

variables. After deriving the variables, a univariate Cox model predicting the outcome (CVD) 

was fitted to the data to provide a hazard ratio (HR) for categorical variables. A variable 

highlighted in red warranted further exploration (see section 2.3.4). Reasons why specific 

variables were chosen for further exploration are given in the appropriate sub-section of 

section 2.3.4. Variables highlighted in green indicate strong agreement and I was happy with 

the variable derivation. 

Table 2.3: Demographics at cohort entry date for the QRISK3 development cohort and the first 

derivation of the CPRD cohort 

QRISK3 FEMALE 

N=4,019,956 

QRISK3 MALE 

N=3,869,847 

CPRD FEMALE  

N=1,965,078 

CPRD MALE  

N=1,890,582 

Outcome variables 

 

Incidence of CVD (primary care + HES + ONS) 

Incident cases: 160,549 

 

Person years: 25,943,236 

 

Rate per 1000 person 

years: 6.19 

Incident cases: 203,106 

 

Person years: 24,821,632 

 

Rate per 1000 person 

years: 8.18 

Incident cases: 86,547 

 

Person years: 13,801,919 

 

Rate per 1000 person 

years: 6.27 

Incident cases: 107,051 

 

Person years: 12,977,234  

 

Rate per 1000 person 

years:  8.25 

Incidence of CVD (primary care only) 

NA NA Incident cases:  

65,854 

 

Person years: 13,843,035 

Incident cases:  

83,454 

 

Person years: 13,020,717  
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Rate per 1000 person 

years: 4.76 

 

Rate per 1000 person 

years:  6.41 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE  

Demographics 

 

Age | mean(sd) 

43.3 (15.3) 42.6 (14.0) 43.07 (15.94) 

Cohen’s D: 0.015 

41.84 (14.57) 

Cohen’s D: 0.054 

Ethnicity 

Recorded:64.9% 59.7% 42.07% 38.21%  

White or not recorded: 

88.7% 

88.8% 94.12% 94.48% 

Indian: 1.9% 2.1% 1.14% 1.19% 

Pakistani: 1.0% 1.2% 0.45% 0.49% 

Bangladeshi: 0.8% 1.1% 0.14% 0.19% 

Other Asian: 1.3% 1.2% 0.84% 0.78% 

Black Caribbean: 0.9% 0.8% Black = 1.73% 1.52% 

Black African: 1.9% 1.8% 

Chinese: 0.8% 0.6% 0.33% 0.23% 

Other: 2.6% 2.4% 1.27 % (includes mixed 

race) 

1.12% 

Test data 

 

BMI | mean(sd), %recorded 

 25.4 (5.1), 72.8% 25.9 (4.2), 64% 25.60 (5.60), 68.83% 

Cohen’s D: -0.040 

26.13 (4.53), 53.62% 

Cohen’s D: -0.053 

Cholesterol/HDL ratio | mean(sd), %recorded 

3.7 (1.2), 39.8% 4.4 (1.4), 37.9% 3.72 (1.20), 38.48% 

Cohen’s D: -0.017 

4.48 (1.40), 35.71% 

Cohen’s D: -0.057 

Systolic blood pressure | mean(sd), %recorded 

123.2 (18.2), 82.8% 129.2 (16.3), 68.3% 123.91 (18.28), 81.01% 

Cohen’s D: -0.039 

130.02 (16.48), 59.22% 

Cohen’s D: -0.050 

Systolic blood pressure variability | mean(sd), % recorded 

9.3 (6.2), 77.7% 9.9 (6.8), 64.0% 9.45 (5.96), 50.39% 

Cohen’s D: -0.032 

10.12 (6.79), 20.94% 

Cohen’s D: -0.025 

Smoking status 

Recorded = 85% 

 

Never = 60% 

Ex = 17.3% 

Current = 22.7% 

Recorded = 77.7% 

 

Never = 48.6% 

Ex = 19.8% 

Current = 31.5% 

Recorded = 75.18% 

 

Never = 56.04% 

Ex = 16.97% (HR=1.23) 

Current = 26.99% 

(HR=1.09) 

Recorded = 65.17% 

 

Never = 46.63% 

Ex = 17.38% (HR=1.83) 

Current = 35.99% 

(HR=1.34) 
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QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE  

Medical history 

Atrial Fibrillation 

0.4% 0.5% 0.44% 

HR: 8.60 

0.57% 

HR: 5.48 

Atypical anti-psychotic use 

0.5% 0.5% 0.30% 

HR: 2.57 

0.33% 

HR: 1.37 

CKD (stage 3/4/5) 

0.5% 0.3% 0.32% 

HR: 4.04 

0.25% 

HR: 4.27 

CKD (stage4/5) 

0.2% 0.2% 0.11% 

HR: 4.39 

0.14% 

HR: 4.47 

Corticosteroid use 

2.4% 1.5% 0.47% 

HR: 3.64 

0.29% 

HR: 4.14 

Erectile dysfunction 

NA 2.3% NA 1.45% 

HR: 1.93 

Family history of coronary heart disease in first degree relative < 60 

12% 9.3% 3.12% 

HR: 0.88 

2.49% 

HR: 1.14 

HIV/AIDS 

0.1% 0.2% 0.06% 

HR: 0.25 

0.09% 

HR: 1.07 

Migraine 

6.4% 2.7% 7.27% 

HR: 0.87 

2.94% 

HR: 0.99 

Rheumatoid Arthritis 

1.1% 0.5% 0.69% 

HR: 3.15 

0.26% 

HR: 3.45 

Severe mental illness 

6.8% 4.3% 0.79% 

HR: 1.90 

0.94% 

HR: 1.26 

Systemic lupus erythematosus 

0.1% 0.0% 0.10% 

HR: 1.92 

0.01% 

HR: 1.99 

Treated hypertension 

5.6% 4.2% 6.18% 

HR: 4.41 

4.50% 

HR: 3.79 

Type 1 diabetes 

0.3% 0.3% 0.21% 

HR: 1.70 

0.28% 

HR: 1.53 

Type 2 diabetes 

1.2% 1.5% 1.26% 

HR: 4.85 

1.56% 

HR: 4.22  

*The hazard ratio (HR) associated with each variable is from a univariate Cox model predicting CVD 
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2.3.4 Exploration of the reason for differences in relevant variables, and modification of 

variable definitions for the final cohort when deemed necessary 

First there is an assessment of the code lists that were considered when there was multiple 

available for a single variable. Then there is a separate section for each variable where further 

steps were taken to explore the difference between the CPRD cohort and the QRISK3 

development cohort. If changes were made to the definition of a variable for the final dataset, 

it is reported here. 

2.3.4.1 Choice of code lists 

The variables presented in Table 2.4 are those where two code lists were available. In the 

case of atrial fibrillation, rheumatoid arthritis, treated hypertension, and type 1 and 2 

diabetes, these were available in QOF and from the work by Van Staa et al.23 Severe mental 

illness and depression were available in QOF and on the Cambridge primary care website.106 

In general, differences in prevalence of variables were small. I decided to use the QOF code 

lists for all these variables as a consistent approach. Also there is a mention of using QOF code 

lists to derive the variable severe mental illness in QRISK3 (see section 2.3.4.3), therefore this 

may extend to other variables. The values reported in Table 2.3 are with respect to the code 

lists deduced from this analysis (i.e. the QOF code lists).  

Table 2.4: Comparison of prevalence of variables where two code lists were available for 

derivation 

QRISK3 

female 

QRISK3 male Alternative 

code list 

female 

Alternative 

code list 

male 

QOF code 

list female 

QOF code 

list male 

Atrial Fibrillation 

0.4% 0.5% 0.44% 0.57% 0.44% 0.57% 

Rheumatoid Arthritis 

1.1% 0.5% 0.73% 0.28% 0.69% 0.26% 

Severe mental illness 

6.8% 4.3% 0.85% 0.90% 0.79% 0.94% 

Treated hypertension 

5.6% 4.2% 6.29% 4.57% 6.18% 4.50% 

Type 1 diabetes 

0.3% 0.3% 0.31% 0.41% 0.21% 0.28% 

Type 2 diabetes 

1.2% 1.5% 0.95% 1.18% 1.26% 1.56%  
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2.3.4.2 Ethnicity 

 

Observations 

There was quite a large difference in both the level of recording and also the distribution of 

ethnicities between the CPRD cohort and the QRISK3 development cohort. Therefore I 

wanted to ensure that this was due to the fact that CPRD and QResearch cover different cross 

sections of the UK population, or recording across the two databases is different, and not for 

some other reason.  

Methods 

To do this, I aimed to mimic the results found in this paper by Mathur et al.109 This paper 

reports the prevalence and distribution of ethnicity recording in CPRD, and used the same 

code list for identifying ethnicity that was used in this data extraction. I created a cohort using 

the same steps from their paper and calculated key metrics for comparison. Good agreement 

between the two would indicate that the differences in Ethnicity found between the CPRD 

cohort and the QRISK3 development cohort were in fact due to differences in the databases, 

rather than an error in data extraction. There were two analyses (involving two different 

cohorts) carried out in the paper by Mathur et al. The methods to replicate each are outlined 

next. 

Excerpt from Table 2.3: 

Category QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE  

Ethnicity 

Recorded 64.9% 59.7% 42.07% 38.21%  

White or not 

recorded 

88.7% 88.8% 94.12% 94.48% 

Indian 1.9% 2.1% 1.14% 1.19% 

Pakistani 1.0% 1.2% 0.45% 0.49% 

Bangladeshi 0.8% 1.1% 0.14% 0.19% 

Other Asian 1.3% 1.2% 0.84% 0.78% 

Black Caribbean 0.9% 0.8% Black = 1.73% 1.52% 

Black African 1.9% 1.8% 

Chinese 0.8% 0.6% 0.33% 0.23% 

Other 2.6% 2.4% 1.27 %  1.12% 
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A) Overall completeness of ethnicity recording 

This section looks at how frequently ethnicity is recorded (completeness). The methods 

section in the Mathur paper reads:  

“Hierarchies were extracted for all current and past patients contributing to the July 2012 build of the database.” 

Therefore I needed to replicate the July 2012 database using the Jan 2017 extract that I had 

access to. The paper also reads: 

 “For CPRD completeness was compared between: 

(i) all patients including those who have left or died,  

(ii) currently registered patients (that is all patients who have not died or transferred out of their general practice) 

and  

(iii) patients registered after 1 April 2006 when incentivization of ethnicity recording was introduced to primary 

care.” 

Therefore I created three cohorts for comparison: 

(i) A cohort of all registered patients with valid follow up prior to 1st July 2012, only using 

codes recorded prior to July 2012. This replicated the July 2012 extract as best as possible. 

This is referred to as the ‘all acceptable patients’ comparison. 

(ii) Restricted cohort 1 to those patients who had a censoring date after 1st July 2012. This 

mimicked the currently registered requirement in July 2012. This is referred to as the ‘actively 

registered’ comparison. 

 (iii) Restricted cohort 2 to those patients who were first registered after 1st April 2006. The 

reasoning for applying this extra criteria to cohort 2 (as opposed to all patients), is that they 

explicitly state that the population of patients registered on or after 1st April 2006, and who 

are also still contributing to the database. This is referred to as the ‘registered 1st April 

onwards’ comparison. 

A table was produced to look at the number of patients in each cohort, what proportion have 

an ethnicity code, and what proportion have a usable ethnicity code. They also produced a 

graph looking at the percentage of patients with an ethnicity code stratified by year of 

registration; I also replicated this graph. 
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B) Comparison of the CPRD population with the 2011 UK census population 

In this section, I compare the CPRD cohort with both the 2011 UK census population, and the 

cohort derived in the Mathur paper for this same comparison. The methods section in the 

Mathur paper reads: “The ethnic breakdown of the census population was compared with that of all CPRD 

patients who were actively registered on 27 March 2011”. Therefore a cohort of patients that were 

actively registered on 27th March 2011 was created, and I calculated the distribution of the 

usable ethnicity codes in this cohort. This was compared with the UK census data and the 

cohort used in the Mathur paper. I only considered codes prior to 27th March 2011 when 

extracting the ethnicity variable, to mimic the fact that when the census was taken, 

information from the future could not be considered. 

Results 

A) Overall completeness of ethnicity recording 

The level of ethnicity recording is reported in Table 2.5. For each comparison, there was a fairly 

significant difference in the number of patients in the cohort. However there was a close 

match in the proportion of patients with usable ethnicity codes, with 27.43% of all acceptable 

patients in the CPRD cohort, and 27.1% in the Mathur paper, 49.8% compared to 45.7% for 

those actively registered on July 2012, and 75.89% compared to 78.3% for those registered 

after 1st April 2006. Our data therefore closely matches the level of recording of ethnicity. 

The graph of recorded ethnicity codes stratified by year produced from the CPRD cohort 

(Figure 2.2) is also a good match with the respective image from the Mathur paper (page 

687).109 Both have a sharp increase in 2006 and taper off at about 80%. 
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Table 2.5: Completeness of ethnicity recording for all acceptable patients in the database, 

those actively registered on July 2012, and those registered after April 1st 2006. 

Cohort Detailed description N % with any 

ethnicity code 

recorded 

% with usable 

ethnicity code 

recorded 

All acceptable 

patients 

(CPRD) 

Patients registered 

prior to 1st July2012 
12,620,406 29.79% 27.43% 

All acceptable 

patients 

(Mathur et al.) 

Patients in the July 

2012 extract of CPRD 
12,099,672 29.3% 27.1% 

Actively 

registered 

(CPRD) 

Patients registered 

prior to 1st July2012 

AND not censored by 

1st July 2012 

4,702,098 53.34% 49.48% 

Actively 

registered 

(Mathur et al.) 

Patients actively 

registered in the July 

2012 build   

5,308,411 49.1% 45.7% 

Registered 1st 

April onwards 

(CPRD) 

Patients registered 

prior to 1st July2012 

AND registered after 

1st Apr 2006 AND not 

censored by 1st July 

2012 

1,752,826 82.74% 75.89% 

Registered 1st 

April onwards 

(Mathur et al.) 

Patients registered 

after 1st April 2006 in 

the July 2012 

2,201,065 84.8% 78.3% 

 

 

Figure 2.2: Percentage of patients with an ethnicity code recorded, and a usable ethnicity code 

recorded, stratified by year of registration in the CPRD cohort 
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B) Comparison of the CPRD population with the 2011 UK census population 

Table 2.6 contains the distribution of ethnicities for the CPRD cohort, the cohort from the 

Mathur paper, and the UK census data. The distribution of ethnicities in the CPRD cohort and 

those in the Mathur paper matched quite closely. For example, for those active on census 

day, the biggest difference was in proportion of white people (1.07%), the next biggest 

difference was people in the other category (-0.79%), and then of all the other categories the 

largest difference was in black (-0.33%). 

Table 2.6: Distribution of the usable ethnicity codes for CPRD cohort, Mathur cohort and 

2011 UK census. 

UK population 16 

categories 

(condensed). 

CPRD, active cohort 

on census day 

2011 Census Mathur paper, active 

cohort on census day 

White 87.67% 87.25% 86.60% 

Chinese 0.62% 0.66% 0.56% 

Indian 2.13% 2.3% 2.27% 

Pakistani 1.28% 1.8% 1.34% 

Bangladeshi 0.49% 0.7% 0.48% 

Other Asian 1.98% 1.3% 1.86% 

Black Caribbean 3.4% 0.9% 0.77% 

Black African 1.6% 1.88% 

Black Other 0.4% 1.08% 

Mixed 1.17% 2.0% 1.29% 

Other 1.64% 0.9% 2.43% 

 

Conclusions 

The CPRD cohorts differed in size from those in the Mathur paper. This is likely due to the fact 

they were developed on the January 2017 build of CPRD and then restricted to patients who 

were actively registered in 2012. Patients will have been removed from the database, or 

patients added with their medical history backdated. More importantly, there was strong 

agreement in both the completeness of usable ethnicity codes and the distribution of these 

ethnicity codes. This supports the validity of this variable extraction. Differences in the level 

of recording between the CPRD and QRISK3 development cohorts could be due to the fact 

that recording of ethnicity sharply increased after 2006. If there are more practices in the 
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QResearch database contributing data after 2006 compared to CPRD, this could explain the 

difference. 

 

2.3.4.3 Severe mental illness and depression 

Excerpt from Table 2.3: 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE  

Severe mental illness 

6.8% 4.3% 0.79% 

HR: 1.90 

0.94% 

HR: 1.26 

 

Observations 

The prevalence of severe mental illness in the CPRD cohort was significantly lower in both 

females (6.8% vs 0.85%) and males (4.3% vs 0.90%). There must have been an alternative way 

in which cases were being identified. 

Methods 

Upon further research, I came across an answer in the ‘rapid responses’ section of the BMJ 

where QRISK3 was published, with respect to the severe mental illness variable.110 It reads: 

“Our definition was based on a combination of the Quality and Outcomes Framework (QOF) definition of severe 

mental illness plus a subset of the codes from the QOF definition of depression (having excluded those codes 

indicating mild depression). We based our definition of depression on Read codes indicating moderate or severe 

depression, for example severe depression, major depression, recurrent depression, psychotic depression, 

depressive disorder, endogenous depression.” 

I therefore changed my definition to also include depression codes. The code list for 

depression was identified from QOF. However I augmented the code list to remove all terms 

that could be considered mild depression. 

Results 

The new variable is labelled ‘severe mental illness qrisk’, to differentiate it from severe mental 

illness as a standalone variable. After this change, there was much closer agreement for both 

men and women between the two cohorts (see Table 2.7). 
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Table 2.7: Prevalence of severe mental illness after changes 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE  

Severe mental illness 

NA NA 0.79% 0.94% 

Depression 

NA NA 8.07% 3.83% 

Severe mental illness qrisk (severe mental illness +  depression) 

6.8% 4.3% 8.63% 4.59% 

 

Conclusions 

I used the variable defined in the same way it was outlined in the comment in the rapid 

responses on the BMJ website. This brought the prevalence closer to the prevalence in the 

QRISK3 development cohort.  

 

2.3.4.4 Family history of coronary heart disease in first degree relative < 60 years 

Excerpt from Table 2.3: 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE  

Family history of coronary heart diease in first degree relative < 60 

12.0% 9.3% 3.12% 

HR: 0.88 

2.49% 

HR: 1.14 

 

Observations 

The prevalence of family history of coronary heart disease in first degree relative < 60 in the 

CPRD cohort was significantly lower in both females (12.0% vs 3.12%) and males (9.3% vs 

2.49%). There must have been an alternative way in which cases were being identified. Also, 

the hazard ratios were small, with a protective effect of family history on women. 

Methods 

The initial code list used was a very specific code list, which required that in the read term it 

stated that the relative with history of coronary heart disease was < 60. I created another two 

code lists which were less specific, and compared the prevalence of the variable when using 

each. They were: 
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(i) The initial code list 

(ii) Looking for any family history code where the read term stated that the family history was 

at < 65 (this is the highest number for which this happens) 

(iii) Looking for any family history of coronary heart disease code, that doesn’t require the 

age of the relative to be specified. We hypothesised this could be a reasonable code list to 

use, as GP’s may be less likely to use these codes that specify the age of the relative in older 

patients. There may be many cases where a patient older patients just receive a non-specific 

code for family history of coronary heart disease, even if it was in a young relative. 

Results 

The prevalence of each of the above definitions is provided in Table 2.8. There was not a large 

difference between the first two definitions, as only a couple of extra codes were included. 

However there was a stark difference between definition (iii) and the first two. The 

prevalence for this difference was much more in line with that from the QRISK3 cohort (12% 

vs 15.08% and 9.3% vs 11.02% for females and males respectively).  

 

Table 2.8: Prevalence of family history of coronary heart disease variable after changes 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE 

Family history of coronary heart disease 

12% 9.3% Most specific 

(definition i): 3.12% 

 

HR: 0.88 

Most specific (definition 

i): 2.49% 

 

HR: 1.14 

  Medium specificity 

(definition ii): 3.16% 

 

HR: 0.88 

Medium specificity 

(definition ii): 2.52% 

 

HR: 1.14 

  Least specific 

(definition iii): 15.08% 

 

HR: 1.16 

Least specific (definition 

iii): 11.02% 

 

HR: 1.37 
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Conclusions 

The inclusion of the less specific but more sensitive codes brought the prevalence of this 

variable in line with the QRISK3 cohort. I was wary of chasing statistics purely to match those 

in the QRISK3 development cohort. However in this case, I feel that the definition used in the 

QRISK3 paper must also have been an unspecific definition alike to (iii) given the stark 

differences from definitions (i) and (ii). I believe the difference with the first two definitions 

were too large to be explained purely by differences in population or recording. 

Furthermore, both definition (i) and (ii) had smaller HRs, and in some cases a protective effect 

over the risk of developing CVD. We know that CVD is hereditary, so the associations appear 

confounded in some way. It is possible that those with the specific codes are a younger groups 

of patients. If a patient was themselves over the age of 60, a GP may be less likely to ask 

whether they have a family history of heart disease in relatives under the age of 60. This 

means the codes are given selectively to a younger and therefore healthier subgroup of 

patients. Therefore I will use definition (iii). 

 

2.3.4.5 Diabetes 

Excerpt from Table 2.3: 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE 

  

Type 1 diabetes 

0.3% 0.3% 0.21% 0.28% 

Type 2 diabetes 

1.2% 1.5% 1.26% 1.56%  

 

Observations 

The prevalence of both type 1 and type 2 diabetes were very close to the prevalence reported 

in the QRISK3 cohort. However I noticed when analysing the CPRD data that of all the patients 

with type 1 diabetes, 52.87% also had a type 2 diagnosis (Table 2.9). Although it is possible to 

have both types of diabetes, it is not this common. 
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Table 2.9: Number of type 1 and type 2 diabetes cases in the cohort using original definitions 

All patients Type 1 present Type 1 absent 

Type 2 present 4958 49379 

Type 2 absent 4420 3796903 

 

Methods 

I explored what codes were being used to diagnose the diabetes in the cases where patients 

had a code for both type 1 and type 2 diabetes. 

Results 

Of the 4958 with both a type 1 and type 2 code, 4626 of the codes diagnosing type 2 had a 

non-specific read term such ‘diabetes mellitus’. By non-specific, I refer to any read term 

without the phrase ‘type 2 diabetes’ in it. This is a non-specific read code, for which I initially 

made the assumption that it indicated type 2, given the prevalence of type 2 diabetes 

compared to type 1 in the general population. I therefore added an extra step to the 

algorithm, where if a patient had a type 1 code, and a non-specific type 2 code (i.e. the read 

term didn’t explicitly state ‘type 2 diabetes’), I removed the diagnosis of type 2. After making 

this change, the number of diagnoses and prevalence of diagnoses is presented in Table 2.10 

and Table 2.11. 

Table 2.10: Number of type 1 and type 2 diabetes cases in the cohort using updated definitions 

All patients Type 1 present Type 1 absent 

Type 2 present 332 49379 

Type 2 absent 9046 3796903 

 

Table 2.11: Prevalence of diabetes variables after changes 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE 

  

Type 1 diabetes 

0.3% 0.3% 0.21% 0.28% 

Type 2 diabetes 

1.2% 1.5% 1.16% 1.42% 
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Conclusions 

After the change, the prevalence of both types of diabetes in the CPRD cohort were still close 

to the ones in the QRISK3 cohort, and the proportion of patients with type 1 diabetes that 

also have type 2 diabetes was much more realistic than the initial 52.87%.  

 

2.3.4.6 Chronic kidney disease (CKD) 

Excerpt from Table 2.3: 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE 

CKD (stage 3/4/5) 

0.5% 0.3% 0.32% 0.25% 

CKD (stage4/5) 

0.2% 0.2% 0.11% 0.14% 

 

Observations 

The prevalence of CKD in the CPRD cohort for stage 3/4/5 and 4/5 was smaller by around 40-

50% for females, and 12.5-25% for males, than in the QRISK3 cohort. I hypothesised there 

might have been an alternative way in which cases were being identified.  

Methods 

After speaking with colleagues who specialise in chronic kidney disease, they informed me 

that there were published algorithms to: 

 (i) Calculate eGFR (Estimated Glomerular Filtration Rate) scores from creatinine levels 

(ii) Diagnose chronic kidney disease from eGFR scores 

This means cases could be identified through the test data, as well as the medical codes. 

Calculate eGFR scores 

eGFR scores were extracted using test data from patients’ medical records. This was a 

combination of eGFR scores that were recorded directly, and ones that were calculated from 

creatinine measurements. Of all the eGFR measurements, 59% came from creatinine scores. 

To convert creatinine scores to eGFRs, the recommended equation to use is the CKD-EPI111 
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equation. This is recommended in the KDIGO guidelines,112 and this recent comparison113 

comparing CKD-EPI to the MDRD equation. The comparison shows the CKD-EPI equation to 

be a better predictor of mortality and kidney failure, in a relatively broader population than 

other studies assessing the same question. 

Diagnose chronic kidney disease from eGFR scores 

eGFR scores can be used to diagnose CKD. The method for diagnosing chronic kidney disease 

from eGFR scores was taken from the paper by Jameson et al.114 There must be at least two 

consecutive eGFR scores that are over 90 days apart, and are both below a certain threshold. 

For CKD stage 3, this is below 60, for CKD stages 4 and 5, this is below 30. 

All instances of CKD calculated using test data were extracted and combined with the medical 

diagnoses to make a new definition of CKD stages 3, 4 and 5. 

Results 

The introduction of diagnosis via test data increased the prevalence of CKD stage 3/4/5 in the 

CPRD cohort from 0.32% to 0.45% and 0.14% to 0.32% for females and males respectively 

(Table 2.12). However the increase in CKD stage 4/5 was minimal, only increasing by 0.01% 

for both females and males. 

Table 2.12: Prevalence of CKD variables after changes 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE 

CKD (a specific stage 3/4/5 code) 

0.5% 0.3% 0.45% 0.32% 

CKD (a specific stage4/5 code) 

0.2% 0.2% 0.12% 0.15% 

 

Conclusions 

It was decided to use the updated algorithm that included diagnosis of CKD through eGFR 

scores as it uses a peer reviewed algorithm, is a common method to identify CKD and also 

brings the prevalence of CKD in the CPRD cohort closer the QRISK3 development cohort. 

However there is still a large difference in the prevalence of CKD stage 4/5.  
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One hypothesis is that the same definition of the outcome variable in QKIDNEY115 is used for 

the CKD predictor variable in QRISK3. There is more information on this variable in that 

manuscript given is it the outcome in the QKIDNEY model. The algorithm to derive CKD cases 

from eGFR scores required only one eGFR score below a certain level to diagnose CKD, 

whereas the algorithm used here required two, which could explain the difference. 

 

2.3.4.7 Prescription variables 

Excerpt from Table 2.3: 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE 

  

Atypical anti-psychotic use 

0.5% 0.5% 0.30% 0.33% 

Corticosteroid use 

2.4% 1.5% 0.47% 0.29% 

 

Observations 

The prevalence of both variables (particularly corticosteroid use) was smaller in the CPRD 

cohort than in the QRISK3 development cohort. It was suspected there may be a consistent 

issue in deriving prescription variables that was affecting both. 

Methods 

The variables were broken down to see what proportion of patients had had a prescription in 

the last 28 days, and what proportion had had at least two prior to their index date. Both 

criteria must be met for the definition used in QRISK3. 

Results 

For both variables, the proportion of patients that had received a prescription in the last 28 

days was not high enough to match the number of patients that met both criteria in QRISK3 

(Table 2.13). The proportion of patients with two prescriptions in their history is closer, but 

often still smaller than the proportion of patients that meet both criteria in QRISK3.  
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Table 2.13: Prevalence of atypical anti-psychotic medication use and corticosteroid use 

broken down 

QRISK3 FEMALE QRISK3 MALE CPRD FEMALE  CPRD MALE 

  

Atypical anti-psychotic medication use 

0.5% 0.5% Both criteria: 0.30% Both criteria: 0.33% 

  28 days: 0.31% 28 days: 0.34% 

  2 in history: 0.50% 2 in history: 0.57% 

Corticosteroid use 

2.4% 1.5% Both criteria: 0.48% Both criteria: 0.29% 

  28 days: 0.62% 28 days: 0.4% 

  2 in history: 2.10% 2 in history: 1.42% 

 

Conclusions 

There should have been no problems with the code lists used as explicit BNF chapters are 

provided in the QRISK3 manuscript. Despite this, the proportion of patients classed as being 

on each medication was smaller for males and females in the CPRD cohort. There were 

nowhere near enough patients with a prescription in the last 28 days, which seems to be the 

main factor for the low prevalence’s in the CPRD cohort. Despite this, no changes were made 

to the variable definition as it was not clear how this could be improved. It is more likely these 

are indeed differences in population or data recording, given there was a precise definition 

of how this variable was derived, and an exact code list was used. 
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2.3.5 Summary of final cohort and histograms of continuous variables 

Table 2.14 compares the QRISK3 development cohort and finalised CPRD cohort with the 

adjusted variables. Variables reported in this table use the adjusted definitions based on the 

findings of section 2.3.4. 

Table 2.14: Demographics at cohort entry date for the QRISK3 development cohort and the 

final derivation of the CPRD cohort 

QRISK3 FEMALE 

N=4,019,956 

QRISK3 MALE 

N=3,869,847 

CPRD FEMALE  

N=1,965,078 

CPRD MALE  

N=1,890,582 

Outcome variables 

Incidence of CVD (primary care + HES + ONS) 

Incident cases: 160,549 

 

Person years: 25,943,236 

 

Rate per 1000 person 
years: 6.19 

Incident cases:  

203,106 

 

Person years: 
24,821,632 

 

Rate per 1000 person 
years: 8.18 

Incident cases:  

86,547 

 

Person years: 13,801,919 

 

Rate per 1000 person 
years: 6.27 

Incident cases: 107,051 

 

Person years: 12,977,234  

 

Rate per 1000 person 
years:  8.25 

Incidence of CVD (primary care only) 

NA NA Incident cases:  

65,854 

 

Person years: 13,843,035 

 

Rate per 1000 person 
years: 4.76 

Incident cases:  

83,454 

 

Person years: 13,020,717  

 

Rate per 1000 person 
years:  6.41 

Demographics 

 

Age | mean(sd) 

43.3 (15.3) 42.6 (14.0) 43.07 (15.94) 

HR: 1.09 

41.84 (14.57) 

HR: 1.08 

Ethnicity 

Recorded:64.9% 59.7% 45.03%, or 42.07% when 
‘unclassified’ counts 
towards not recorded 

41.21%, or 38.21% when 
‘unclassified’ counts 
towards not recorded 

White or not recorded:  White or not recorded 

 

88.7% 

White = 36.19% 

 

White or missing = 91.16% 

 

White or missing or 
unclassified = 94.12% 

White = 32.69% 

 

White or missing = 
91.48% 

 

White or missing or 
unclassified = 94.48% 

Indian: 1.9% 2.1% 1.14% 1.19% 

Pakistani: 1.0% 1.2% 0.45% 0.49% 
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Bangladeshi: 0.8% 1.1% 0.14% 0.19% 

Other Asain: 1.3% 1.2% 0.84% 0.78% 

Black Carribean: 0.9% 0.8% Black = 1.73% 1.52% 

Black African: 1.9% 1.8% 

Chinese: 0.8% 0.6% 0.33% 0.23% 

Other: 2.6% 2.4% 1.27 % (includes mixed 
race) 

1.12% 

Test data 

 

BMI | mean(sd), %recorded 

 25.4 (5.1), 72.8% 25.9 (4.2), 64% 25.60 (5.60), 68.83% 

 

HR: 1.04 

26.12 (4.54), 53.62% 

 

HR: 1.04 

Cholesterol/HDL ratio | mean(sd), %recorded 

3.7 (1.2), 39.8% 4.4 (1.4), 37.9% 3.72 (1.20), 38.48% 

 

HR: 1.23 

4.48 (1.40), 35.71% 

 

HR: 1.12 

Systolic blood pressure | mean(sd), %recorded 

123.2 (18.2), 82.8% 129.2 (16.3), 68.3% 123.91 (18.28), 81.01% 

 

HR: 1.04 

130.03 (16.48), 59.21% 

 

HR: 1.03 

Systolic blood pressure variability | mean(sd), % recorded 

9.3 (6.2), 77.7% 9.9 (6.8), 64.0% 9.47 (5.98), 50.39% 

 

HR: 1.06 

10.13 (6.80), 20.94% 

 

HR: 1.04 

Smoking status 

Recorded = 85% 

 

Never = 60% 

Ex = 17.3% 

Current = 22.7% 

Recorded = 77.7% 

 

Never = 48.6% 

Ex = 19.8% 

Current = 31.5% 

Recorded = 75.18% 

 

Never = 56.04% 

Ex = 16.97% (HR=1.23) 

Current = 26.99% 
(HR=1.09) 

Recorded = 65.17% 

 

Never = 46.63% 

Ex = 17.38% (HR=1.83) 

Current = 35.99% 
(HR=1.34) 

Medical history 

 

Atrial Fibrilation 

0.4% 0.5% 0.44% 

HR: 8.60 

0.57% 

HR: 5.48 

Atypical anti psychotic use 

0.5% 0.5% 0.30% 

HR: 2.57 

0.33% 

HR: 1.37 

CKD (a specific stage 3/4/5 code) 

0.5% 0.3% 0.45% 

HR: 4.20 

0.32% 

HR: 4.38 

CKD (a specific stage4/5 code) 

0.2% 0.2% 0.12% 0.15% 
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HR: 4.40 HR: 4.45 

Corticosteroid use 

2.4% 1.5% 0.48% 

HR: 3.99 

0.29% 

HR: 3.74 

Erectile dysfunction 

NA 2.3% NA 1.45% 

HR: 1.93 

Family history of coronary heart disease 

12% 9.3% 15.08% 

HR: 1.16 

11.02% 

HR: 1.37 

HIV/AIDS 

0.1% 0.2% 0.06% 

HR: 0.25 

0.09% 

HR: 1.07 

Migraine 

6.4% 2.7% 7.27% 

HR: 0.87 

2.94% 

HR: 0.99 

Rheumatoid Arthritis 

1.1% 0.5% 0.69% 

HR: 3.15 

0.26% 

HR: 3.45 

Severe mental illness 

NA NA 0.79% 

HR: 1.90 

0.94% 

HR: 1.26 

Depression 

NA NA 8.07% 

HR: 1.39 

3.83% 

HR: 1.51% 

Severe mental illness qrisk (severe mental illness +  depression) 

6.8% 4.3% 8.63% 

HR: 1.43 

4.59% 

HR: 1.48 

Systemic lupus erythematosus 

0.1% 0.0% 0.10% 

HR: 1.92 

0.01% 

HR: 1.99 

Treated hypertension 

5.6% 4.2% 6.18% 

HR: 4.41 

4.50% 

HR: 3.79 

Type 1 diabetes 

0.3% 0.3% 0.21% 

HR: 1.70 

0.28% 

HR: 1.53 

Type 2 diabetes 

1.2% 1.5% 1.16% 

HR: 5.19 

1.42% 

HR: 4.54 

  *The hazard ratio (HR) associated with each variable is from a univariate Cox model predicting CVD 
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While the mean and standard deviation of the test data variables matched the published 

values in QRISK3 closely, there was a higher level of missing data across the board. Histograms 

of each continuous variable were plotted to ensure the data looked sensible. Only the 

histograms for the female cohort are presented as the histograms for the male cohort had 

the same shape (centred on a different mean) and did not provide any extra valuable 

information. 

 

Figure 2.3: Histogram of age 

 

The range of age values looks normal except the spikes early on. This is a consequence of the 

index date definition, to be the max of date turned 25, year valid follow up in CPRD, and 1st 

January 1998. Therefore anyone that has one year of valid follow up prior to 1st Jan 1998, but 

turns 25 after 1st January 1998, will have an age on 25 on their index date. 
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Figure 2.4: Histogram of body mass index (BMI) 

 

The range of BMI values looks normal. 
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Figure 2.5: Histogram of systolic blood pressure (SBP) 

 

The distribution of systolic blood pressure values is odd as it has spikes at values rounded to 

the nearest 10.116 This is because it is not a necessity to have more precise values and so it is 

often only recorded to the nearest 10, although this is not always the case as can be seen by 

the range of other values. I had considered adding a random effect centred on zero to each 

value that had been rounded to smooth out the distribution. However, doing so would add 

nothing to the relationship between systolic blood pressure and CVD. Furthermore, 

techniques now exist to impute non-normal data (i.e. predictive mean matching) so this will 

not be an issue either. 
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Figure 2.6: Histogram of SBP variability 

 

The standard deviation of systolic blood pressure is effected by the same rounding problem 

as systolic blood pressure is. A spike at zero is caused from patients that have had two (or 

more) readings that have all been rounded to the same value. Again I considered adding a 

random effect to the individual systolic blood pressure tests to stop this from happening. 

However, I feel any non-zero value must at least be close to zero, and so adding this variation 

in would unlikely change the relationship between this variable and the outcome. 
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Figure 2.7: Histogram of cholesterol/high density lipoprotein (HDL) ratio 

 

The range of cholesterol/HDL ratio values looks normal. 
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Figure 2.8: Histogram of eGFR values recorded directly in the database 

 

There are huge spikes at 60 and 90. I was informed by clinical colleagues that this is because 

many labs will report anything > 90 as 90, and anything between 60 – 90 as 60. This is not 

problematic for me, given the cut offs for deriving CKD are at 60 and 30. If I was using this as 

a continuous variable, this would be problematic. 
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Figure 2.9: Histogram of eGFR values derived from creatinine measurements 

 

The creatinine measurements give a much smoother distribution of eGFR values. Due to the 

way raw eGFR values are recorded, it is hard to compare the two. However, both have a 

decreasing trend in prevalence from 90 and below, giving some indication that the eGFR 

values derived from creatinine do in fact have a similar distribution to those raw eGFR 

measurements. 

 

2.4 Discussion 

2.4.1 Validation of cohort 

For variables age, BMI, cholesterol/HDL ratio, smoking status, SBP, SBP variability, atrial 

fibrillation, treated hypertension, rheumatoid arthritis and systemic lupus erythematosus, 

the initial derivation appeared valid. The levels of missing data were higher in my cohort than 

the QRISK3 development cohort for all of the test data, however the means, standard 
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deviations and distribution of categories matched up very indicating the data was missing 

under the same mechanism as in the QRISK3 cohort. 

For all the other variables, differences existed between the CPRD and QRISK3 cohorts. 

Tailored strategies were used to investigate was what driving these differences. For some 

variables (such as diabetes or severe mental illness) this resulted in changing the extraction 

method used for the final CPRD cohort. For other variables (such as ethnicity and prescription 

data), the extraction method remained unchanged. There are multiple potential reasons for 

differences between the two cohorts, which do not affect the validity of the work in this 

thesis: 

The underlying samples are different 

If the underlying samples are different, the prevalence of many variables could be different 

across the two cohorts. The samples could be different if patients in each database are not a 

representative distribution of patients across the UK. This possibility is highlighted by the 

difference in Ethnicity distributions. This variable extraction was validated extensively yet 

there were fairly significant differences between the CPRD cohort and the QRISK3 

development cohort. Therefore the distribution of patients between the two databases may 

just be different.  

The recording of patients’ demographics is different across the databases 

CPRD is based on practices that use VISION computer software, whereas QResearch practices 

use EMIS software. The way in which GPs enter information is different between the two 

systems. This could cause certain comorbidities to be recorded at different frequencies. 

Another possible reason for this is that the time in which patients are registered may be 

systematically different across the two databases. It is known that the levels of recording have 

changed over time, so if one database has more patients registered recently, there may be 

different levels of recording for certain variables. 

Method for derivation of variables may be different 

The description of how each predictor variable is calculated in QRISK3 is not completely 

reproducible. For example code lists are not provided for many of the variables and the period 

in which to look for codes is often not reported. Also, the algorithms for deriving test data 
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(how to deal with extreme values, different units, etc) are not given. Exactly how the 

information given to derive the variables was interpreted is detailed in section 2.3.1, and 

alterations to this interpretation throughout section 2.3.4. As long as the definition used for 

this work is valid, it does not matter if it is slightly different from the method used in QRISK3. 

2.4.2 Lessons learnt 

While the main aim was to validate the data extraction process, doing so has highlighted 

many important issues with regards to reproducibility. Without code lists and algorithms 

publicly available it makes going through what should be a straightforward comparison much 

more difficult and time consuming. For example differences in the outcome CVD, where 

QRISK3 provided a published code list and detailed algorithm, can instantly be attributed to 

either differences in underlying population or recording of data, neither of which affect the 

internal validity of this work. However with incomplete information about how some QRISK3 

variables were derived, other possibilities had to be considered. The main conclusion I drew 

from this was to make all the code lists and programs used in this thesis publicly available. 

 

2.5 Software, programs and code lists 

The raw data extraction and creation of analysis datasets was carried out using SAS version 

9.4.117 Copyright © 2013 SAS Institute Inc. SAS and all other SAS Institute Inc. product or 

service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA. 

The analyses of the extracted data throughout this thesis were carried out using R version 

3.4.2.118 

The code used to run the analyses in each chapter is provided on the GitHub page for this 

thesis, along with all the code lists used for data extraction.103 Generally, the code for raw 

data extraction is not provided (with the exception of algorithms to derive test data), but the 

code for running the analyses on the extracted cohorts is. The re-usability of the code varies 

between chapters. For example, the code for some chapters is provided mostly for 

transparency. Whereas for some chapters, the code can all be run from within the chapter 

directory, simulated data is provided to run the code on, and a batch file to run all the 

programs. A README file is provided with the code for each chapter to explain what it 
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contains, and the extent of what can be done with the code. A brief summary of this is 

provided in Table 2.15. 

Table 2.15: Summary of code provided at the GitHub page 

Chapter Extent of what can be done with the code provided 

3 The code used to run all analyses is provided, but the coding structure is poor 

and so it would not be straightforward to provide data with which the code can 

be run. The code is provided mostly for transparency, rather than to be re-used. 

 

4 The code and data is provided within a hierarchical structure of files, from which 

everything can be run relative to the root directory in which the files are placed. 

Simulated patient level data is provided on which the code can be run to produce 

dummy figures. The dummy figures that will be generated are also provided. 

 

5 The code is provided within a hierarchical structure of files, from which 

everything can be run relative to the root directory in which the files are placed. 

However simulated data is not provided as it was not straightforward to produce 

data on which the code could run. The data structure on which code runs is 

referenced in the README file if it is of interest. 

 

6 The code and data is provided within a hierarchical structure of files, from which 

everything can be run relative to the root directory in which the files are placed. 

Real data is provided on which the code can be run to produce the figures that 

appear in Chapter 6. This was possible as the simulation is based off population 

level discontinuation rates (i.e. no patient level data has to be provided in order 

to reproduce the results. 

 

7 The code and data is provided within a hierarchical structure of files, from which 

everything can be run relative to the root directory in which the files are placed. 

Simulated patient level data is provided on which the code can be run to produce 

dummy figures. The dummy figures that will be generated are also provided. 
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3 The uncertainty with using risk prediction models for 

individual decision making: an exemplar cohort study examining 

the prediction of cardiovascular disease in English primary care 

Alexander Pate, Richard Emsley, Darren M Ashcroft, Benjamin Brown, Tjeerd van Staa 

 

3.1 Abstract 

Background: Risk prediction models are commonly used in practice to inform decisions on 

patients’ treatment. Uncertainty around risk scores beyond the confidence interval is rarely 

explored. We conducted an uncertainty analysis of the QRISK prediction tool to evaluate the 

robustness of individual risk predictions with varying modelling decisions. 

Methods: We derived a cohort of patients eligible for cardiovascular risk prediction from the 

Clinical Practice Research Datalink with linked hospitalisation and mortality records (N = 

3,855,660). Risk prediction models were developed using the methods reported for QRISK2 

and 3, before adjusting for additional risk factors, a secular trend, geographical variation in 

risk and the method for imputing missing data when generating a risk score (model A – model 

F). Ten year risk scores were compared across the different models alongside model 

performance metrics.  

Results: We found substantial variation in risk on the individual level across the models. The 

95 percentile range of risks in model F for patients with risks between 9-10% according to 

model A was 4.4% – 16.3% and 4.6% - 15.8% for females and males. Despite this the models 

were difficult to distinguish using common performance metrics (Harrell’s C ranged from 0.86 

to 0.87). The largest contributing factor to variation in risk was adjusting for a secular trend 

(HR per calendar year: 0.96 [0.95 – 0.96] and 0.96 [0.96 – 0.96]). When extrapolating to the 

UK population, we found that 3.8 million patients may be reclassified as eligible for statin 

prescription depending on the model used. A key limitation of this study was that we could 

not assess the variation in risk that may be caused by risk factors missing from the database 

(such as diet or physical activity). 
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Conclusions: Risk prediction models that use routinely collected data provide estimates 

strongly dependent on modelling decisions. Despite this large variability in patient risk, the 

models appear to perform similarly according to standard performance metrics. Decision 

making should be supplemented with clinical judgement and evidence of additional risk 

factors. The largest source of variability, secular trend in CVD incidence, can be accounted for 

and should be explored in more detail. 

 

3.2 Background 

Risk prediction models have become an important part of clinical decision making. They 

provide a quick and simple way to assess a patient’s risk of a given disease or particular event 

which can then guide treatment. A recent review by Damen et al.32 found 363 models for 

predicting a patient’s risk of developing cardiovascular disease (CVD) and a review by 

Goldstein et al. found 107 models from 2009-2014 that use routinely collected data from 

electronic health records (EHRs).119 As of 2018 in the United Kingdom, national guidelines 

recommend that clinicians use a risk prediction model (QRISK299) to determine whether to 

prescribe a statin for primary prevention of CVD (if a patient’s CVD risk is 10% or more46). The 

public availability of these algorithms contradicts the National Institute for Health and Care 

Excellence (NICE) guidance, which emphasises the approximate nature of these algorithms 

when applied to a specific patient and the need for interpreting the risk scores alongside 

informed clinical judgement.46 

The validity and usefulness of risk prediction models are currently assessed using population-

level statistics that measure calibration and discrimination. Calibration120 is a measure of 

predictive accuracy assessing whether the average predicted risk is close to the observed risks 

in the overall population or in subgroups of that population. Discrimination is a relative 

measure of whether patients with higher risks are more likely to have an event (i.e. in a logistic 

regression model) or more likely to have an event sooner (i.e. in a survival analysis) than those 

with lower risks. In logistic regression the Area Under the Curve120 can be calculated, whereas 

for survival models Harrell’s C is a commonly used metric.121 One characteristic of note of 

these measures is that they are population-based and derived from classifying larger groups 

of patients. They do not provide evidence of the level of uncertainty around a risk prediction 
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for an individual patient beyond the statistical confidence interval. Uncertainty on a patient 

level may occur if major risk factors are not considered, models are applied outside the setting 

in which they were developed or different EHR systems or coding dictionaries are being used 

with varying standards in data collection.122,123 Furthermore, modelling decisions such as 

which variables to include or how to define the cohorts for the development of the models 

may also yield different risk predictions for the same patient. Variable selection is often based 

on prior/expert knowledge, risk factors identified from the literature, or data driven selection 

criteria, all of which may result in different models depending which researchers or methods 

are involved. Recent research found that well-established risk prediction models (such as 

Framingham and QRISK2) provided inconsistent predictions for individuals23 despite these 

models having good population-level performance metrics. Uncertainty analyses have been 

proposed in order to establish whether models can be used for individual decisions.124 These 

go beyond the classical statistical confidence interval which evaluates the uncertainty 

associated with the fitted values, a group mean for all patients with the same covariates. 

Instead they evaluate the uncertainty associated with other sources such as the modelling 

decisions that are made. 

The objective of this study was to conduct an uncertainty analysis of the QRISK2 risk 

prediction model for  CVD and to evaluate whether modelling decisions, in particular what 

patient data we choose to include in the model, had a meaningful impact on individual risk 

predictions (i.e., whether they substantially changed individual risk predictions). We focus in 

this study on the type of uncertainty which is known as ‘epistemic’ and caused by a lack of 

knowledge,124 as opposed to aleatory uncertainty, which is inherent due to the complex 

processes going on in the human body. This study consisted of a comparison of alternative 

models, evaluating whether they changed individual risk predictions and population-level 

performance metrics. Clinicians could face substantial uncertainty if alternative models that 

perform equally well give different predictions for their patients. 
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3.3 Methods 

3.3.1 Overview of development of QRISK risk prediction models 

The models developed in this paper are based on the QRISK series of models. These CVD risk 

prediction models were built using routinely collected EHRs from primary care practices in 

the UK. Up until 2019 QRISK299 was the recommended model for assessment of risk in clinical 

practice.46 However since 2019 the third version, QRISK3,5 has been recommended by NICE.62 

All individuals aged 25-84 with no medical history of CVD or prior statin treatment are eligible 

for risk prediction using this model. We have chosen to base the current analysis around these 

because they are widely used in clinical practice, have been developed in very large 

populations (QRISK3 was developed in 4,019,956/3,869,847 females and males),  and have 

been externally validated reporting strong performance (Harrell’s C121 was 0.880 and 0.858 

for female and male models respectively, and the D statistic125 was 2.49 and 2.26 respectively, 

and R2 126 was 59.6 and 55.0 respectively).100,101 Variables proposed for inclusion in these 

models are those that are known or thought to affect CVD from literature and NICE guidelines. 

3.3.2 Study population 

This study used data from the Clinical Practice Research Data link48 (CPRD) linked with 

Hospital Episode Statistics49 (HES), mortality records from the Office for National Statistics50 

(ONS) and Townsend deprivation data. CPRD is a primary care database that is representative 

of the UK in terms age, sex and ethnicity.48 It contains the anonymised EHRs from a large 

group of general practices and is comparable to The Health Improvement Network (THIN) 

database which was used in the external validation of QRISK2.100 The study population was 

derived using the same definitions as specified in QRISK3,5 the most recent version. Overall 

implementation could be followed closely, although code lists for predictor variables and 

algorithms for deriving test data were not available, therefore differences will exist here. It 

included patients aged 25-84 with no history of CVD or statin medication prior to the index 

date. The index date was the latest date of 25th birthday, one year of follow-up for a 

permanently registered patient or the 1st Jan 1998 (study start date). Follow up ended on the 

earliest date of patient’s transfer out of the practice or death, last data collection for practice 

or study end date of 31st December 2015. The outcome of interest was defined as the time 

until the first CVD event (transient ischaemic attack, ischaemic stroke or coronary heart 
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disease) identified either through CPRD, HES or ONS records (code lists provided on 

GitHub103). 

3.3.3 Definition of different risk prediction models 

A series of different risk prediction models were developed in the study population with 

increasing amounts of information. Each model contained all the same covariates as the 

previous one, with some extra variables added to the model. Variables beyond those included 

in QRISK2 or 3 were identified in literature as thought to be predictive, similar to the method 

for identifying variables for inclusion in QRISK. We emphasise the point that by selecting 

variables in such a fashion, we are not trying to answer the question “what is the best 

variables to predict CVD with?”, we are asking “how sensitive are individual risks to the 

addition of new variables?”. The following models were fitted: 

(i) Model A (same covariates as QRISK299) including: Age, body mass index (BMI), atrial 

fibrillation, cholesterol/high-density lipoprotein (HDL) ratio, chronic kidney disease 

(CKD, stage 4/5), ethnicity, family history of CVD, treated hypertension, rheumatoid 

arthritis, systolic blood pressure (SBP), smoking status, type 1 diabetes, type 2 

diabetes, Townsend deprivation score 

(ii) Model B (same covariates as QRISK35), covariates added: atypical antipsychotic use, 

corticosteroid use, CKD (stage 3/4/5 instead of 4/5), erectile dysfunction, HIV/AIDS, 

migraine, severe mental illness, SBP variability,  systemic lupus erythematosus 

(iii) Model C included covariates believed to be predictive of CVD risk as identified from 

literature, covariates added: alcohol abuse,46 anxiety,127 left ventricular 

hypertrophy,23 number of days with a medical record in year prior to index date23 and 

number of prescription items in one year prior to index date23 

(iv) Model D added the calendar time at the patients index date to account for a secular 

trend in CVD53 

(v) Model E added the region the patient resides in to account for regional variation in 

CVD incidence128 (taken at the strategic health authority level, restructured in 2013129 

Strategic Health Authorities now represent 10 geographical locations across England 

The same methods were used to derive variables as in QRISK3 when possible. Detailed 

information on the derivation of all covariates can be found in Chapter 2.  
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3.3.4 Development of risk prediction models 

We used multiple imputation by chained equations to impute missing data for BMI, SBP and 

SBP variability, cholesterol, HDL, smoking status and ethnicity. All predictor variables from 

model E were included as predictors in the imputation procedure, as well as the Nelson Aalen 

estimate of the cumulative baseline hazard at the point of censoring or an event. The program 

used to impute the data was the R package ‘mice’.130 We imputed 20 datasets and carried out 

20 iterations for each dataset. Full details about the imputation process can be found in 

Appendix A.3.1. The same randomly selected 200,000 patients were removed from each 

dataset, with the remaining patients making up the development cohort. All models were 

developed on the same set of 20 imputed datasets. For model development, Cox proportional 

hazards models were fitted, similar to QRISK, predicting the 10-year risks of developing CVD 

and estimating the hazard ratios (HRs) for each of the covariates. Models were developed 

separately for females and males. For model E, a random intercept model was fitted for 

region (strategic health authority level). Fractional polynomials for age and BMI were tested 

when developing model A using the R package mfp,131 and these fractional polynomials were 

used in all subsequent models. Fractional polynomials were tested for secular trend in model 

D and were used in all subsequent models. When developing risk scores, survival estimates 

were combined using Rubin’s rules on the log(-log) scale 132.  

3.3.5 Validation of models  

Key aspects of data and model B were compared with QRISK3 to highlight that the cohort 

used to develop the models were similar. We have chosen to make these comparisons with 

QRISK3 as the cohort is defined over the same time period. We compared incidence rates, 

distribution of covariates, HRs and predicted risks. This was done for model B, as this was 

developed using the same covariates as QRISK3, the comparator. The calibration of model B 

was also tested using internal validation with 200,000 randomly sampled patients to make up 

the test data and the remaining patients to develop the models (split sample approach). 

Average predicted risks were compared with the Kaplan Meier survival estimate at 10 years 

to assess calibration across groups defined by 10th percentile of risk.  

Various model performance measures evaluated the performance of all our models, 

identified from the literature.133–136 These included a variety of discrimination measures 
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(Harrell’s CH,121 Uno’s CU,137 Gonen and Hellers CGH
138 and Royston and Saurbrei’s D 

measure125), two measures of explained randomness (Kent and O Quigley’s ρw,a
139 and ρk from 

O’ Quigley et al.140), one measure of predictive accuracy (Integrated Brier Score (IBS)141,142), 

and four measures of explained variation (Kent and O’Quigleys R2
PM,139 then Roystons R2, 

Roystons R2
D 126 and R2

IBS,141 which are based on the measures ρk, D and IBS respectively). 

These were calculated to validate the models, but also as a key outcome in our study. We 

were interested in knowing to what extent the model performance metrics change between 

models if those models are predicting sizably different risks for individuals. While these 

metrics are not designed to assess model performance on an individual level, they are 

commonly used to evaluate models which are in turn used for individualised risk prediction. 

It is therefore important to know how sensitive they are to changes in risk on that individual 

level. We therefore report a range of metrics to help highlight which types of metric may best 

explain these changes in individual risk. When possible, performance metrics were calculated 

using a split sample approach (validation cohort size 200,000). ρk,R2
K and CGH are based on 

model features rather than event and censoring times, and therefore the split sample 

approach does not apply. CGH was calculated on model developed on a sample of 200,000 

patients as the algorithm used was unable to handle larger sample sizes. 

The three concordance indexes estimate the probability that for a randomly selected pair of 

patients, the higher risk patient will have the event sooner. The range of values is 0.5 – 1, with 

a higher value indicating better performance. The D statistic, which calculates the log HR 

between two groups of patients split at the median of the linear predictor, does not have this 

restriction and may take values between 0 and infinity.  Austin et al.135 found that CH and CU 

were equally sensitive to the inclusion of new novel risk factors, and were more sensitive than 

CGH. They also echo the sentiments of Harrell143 and Uno,137 that concordance statistics may 

not be sensitive when choosing between competing models, and measures of explained 

variation may be more sensitive in detecting differences in predictive ability. The measures 

of explained variation and explained randomness may take values between 0 and 1. Choodari-

Oskooei et al.133 recommended using explained variation measures R2
PM and R2

D for best 

meeting their criteria (independence from censoring, monotonicity, interpretability and 

robustness against outliers). For explained randomness ρw,a, is recommended by both 

Choodari-Oskooei et al.136 and Austin et al.135 despite their differing criteria of importance. 
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This measure is very similar to R2
PM, where the variance error term σ2/6 is replaced by 1. 

Finally the integrated brier score is included as it has a different aim, which is to calculate the 

probability of correctly predicting an event. The development and validation of models was 

checked against the recommendations for reporting in the TRIPOD statement (Appendix 

A.3.2). 

3.3.6 Comparison of predicted risks between different models 

After developing the models the next step was to produce risk scores, replicating the process 

of someone having their risk assessed in practice. In this situation, if a patient has missing 

data for specific covariates, the QRISK calculator will impute this using mean imputation 

based on age, sex and ethnicity144. This involved setting all originally missing values of BMI, 

Cholesterol HDL ratio, SBP and SBP variability, back to missing, and then imputing these using 

mean imputation based on age, sex and ethnicity, giving one mean imputed dataset. The 

same 200,000 patients were then extracted from the mean imputed dataset giving the test 

cohort. For each patient in the test cohort, a predicted risk according to each of model A – E 

was then generated. This is like a split sample approach, apart from the fact the imputation 

method for the development cohort and test cohort is different (as is the case in practice). 

Finally, risks were also generated using model E, but for a test cohort made up of 200,000 

patients from one of the multiply imputed datasets, rather than mean imputed. This 

represents a best estimate of the true values of each patient’s missing data. The aim of this 

was to understand how much variation in patient risk may be masked by using mean 

imputation to generate a risk, as opposed to prospectively collecting their real values, as 

recommended by NICE. This will be referred to as model F. 

The predicted CVD risks for each patient were compared between model A and models B – F. 

We started with model A as this model replicates the risk scores developed using QRISK2, 

which is the model currently used in practice. This evaluated the magnitude in which risks for 

an individual patient change dependent on what patient characteristics were introduced into 

the model. Patients were grouped into risk groups of width 1% according to their risk in model 

A. Then for models B – F, we provide histograms to illustrate the distribution of risks for 

patients from the same group, report the 2.5-97.5 percentile range for each group (average 

95% CI according to model A also provided for comparison), and report the proportion of 
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patients from each group with a risk above or below 10%, which is the threshold for being 

eligible for a statin prescription in England.46 

The final analysis consisted of the extrapolation of results to the population of England in 

order to assess what proportion of patients would have their treatment pathway altered 

depending on the model used. We extrapolated the proportion of patients eligible for CVD 

risk prediction in CPRD on January 1 2016 to the population in England145 and then estimated 

the level of reclassification when using model F instead of Model A (QRISK2). Eligibility for 

patients on January 1st 2016 was the same as in the development cohorts, except index date 

was set to 1st Jan 2016 for all patients. This dataset was mean imputed when calculating risks 

according to model A - E, and one stochastically imputed dataset when calculating risks 

according to model F. 

3.3.7 Sensitivity analyses 

We found a large effect of a secular trend in CVD incidence, resulting in 56% of the patients 

from the 2016 cohort to be re-classified from above to below the statin treatment threshold 

of 10% (see results - extrapolation to English population). We therefore ran two sensitivity 

analyses to validate this finding. First, we verified the existence of the secular trend reporting 

crude incidence rates per calendar year among the model derivation cohort. For the second, 

we evaluated the existence of the secular trend in a cohort of statin users. For this cohort, all 

patients that were eligible for linkage and had more than one statin prescription between 

ages 25 – 85 and dates 1st Jan 1998 to 31st Dec 2015 were included. Follow up started on the 

first statin prescription date, and ended after a 6 month gap with no prescription. A patient 

could re-enter the cohort if they initiated statins again. A patient was not followed up after 

the event of interest (CVD). We check for the presence of this trend amongst the statin users 

cohort as the secular trend in CVD incidence could be explained by an increase in statin use. 

To analyse this data, each patients’ follow up was segmented into time followed up in each 

calendar year. It was also recorded whether a patient had an incident CVD event in that 

calendar year. We then fit a Poisson model to the data, outcome being the CVD event, 

adjusting for calendar year and using the time at risk in each year as an offset. This was done 

for the development cohort and the statin users cohort. Another model was also fit to the 

statin users cohort adjusting for the risk score at the start of the period of statin treatment as 
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well. This model attempts to find out whether the secular trend could also be explained by 

better prescribing of statins to those who are at high risk, through the use of models such as 

QRISK. The secular trend would only be of interest if it is still present in this model, which 

accounts for a potential change in the use of statins. 

 

3.4 Results 

3.4.1 Validation of the models 

CPRD contained 6,869,457 patients with > 1 day follow up aged 25-84 during the study period. 

Of these, 3,855,660 (from 392 practices) were eligible for linkage to HES, ONS and Townsend 

quintiles and were without history of CVD or statin treatment at baseline. Table 3.1 contains 

the baseline characteristics for all patients who met the study eligibility criteria, which 

includes all patients which we generate risk scores for. There was 42.07% and 38.21% of data 

recorded for Ethnicity for the male and female cohorts respectively, 68.83% and 53.62% for 

BMI, 38.48% and 35.71% for Cholesterol/HDL ratio, 81.01% and 59.21% for SBP, 50.39% and 

20.94% for SBP variability and 75.18% and 65.17% for smoking status. The mean ages were 

43.07 and 41.81 for females and males, mean BMI was 25.60 and 26.12, while 

cholesterol/HDL ratio was 3.72 and 4.48 respectively. More importantly, we found these 

values to match closely with those from the derivation cohort of QRISK3 (age 43.3 and 42.6, 

BMI 25.4 and 25.6, Cholesterol/HDL ratio 3.7 and 4.4 respectively). A full comparison has 

already been provided in Table 2.14. Prevalence of medical history variables were broadly 

similar with those in QRISK3. Similarly, the incidence rate of CVD (see Appendix A.3.3) 

matched closely for both datasets (for females, there were 6.19 CVD cases per 1000 person-

years in our study population compared to 6.27 in QRISK3; for males, these were 8.18 vs 8.24, 

respectively).
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Table 3.1: CVD incidence and baseline characteristics of study population 

 

 

 

CPRD FEMALE 

 

N=1 965 078 

CPRD MALE 

 

N=1 890 582 

Outcome variables 

Incident CVD cases 86547 107051 

Person years 13801919 12977235 

Rate per 1000 

person years 

6.27 8.24 

Demographics 

Age 43.07 (15.94) 41.84 (14.57) 

Ethnicity: Recorded 42.07% 38.21% 

White/not recorded 94.12% 94.48% 

Indian 1.14% 1.19% 

Pakistani 0.45% 0.49% 

Bangladeshi 0.14% 0.19% 

Other Asian 0.84% 0.78% 

Black 1.73% 1.52% 

Chinese 0.33% 0.23% 

Other 1.27 % 1.12% 

Test data 

BMI 25.60 (5.60) 26.12 (4.54) 

Cholesterol/HDL 

ratio 

3.72 (1.20) 4.48 (1.40) 

SBP 123.91 (18.28) 130.03 (16.48) 

SBP variability 9.47 (5.98) 10.13 (6.80) 

Smoking status Never = 56.04% 

Ex = 16.97% 

Current = 26.99% 

Never = 46.63% 

Ex = 17.48% 

Current = 35.99% 

Medical History 

Atrial Fibrillation 0.44% 0.57% 

Atypical 

antipsychotic 

medication use 

0.30% 0.33% 

Chronic Kidney 

Disease  

    stage 3/4/5 

0.45% 0.32% 

    stage 4/5 0.12% 0.15% 

Corticosteroid use 0.48% 0.30% 

Erectile dysfunction NA 1.45% 
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Family history of CVD 15.08% 11.02% 

HIV/AIDS 0.06% 0.09% 

Migraine 7.27% 2.94% 

Rheumatoid arthritis 0.69% 0.26% 

Severe Mental Illness 8.63% 4.59% 

Systemic Lupus 

Erythematosus 

0.10% 0.01% 

Treated 

hypertension 

6.18% 4.50% 

Type 1 diabetes 0.21% 0.28% 

Type 2 diabetes 1.16% 1.42% 

Variables not in QRISK 

Number medical 

records in previous 

year 

14.94 (13.97) 8.83 (11.45) 

> 50 medical records 

in previous year 

2.84% 1.37% 

Number of 

prescription items in 

previous year 

9.60 (19.87) 5.72 (16.00) 

Number with > 50 

prescription items in 

previous year 

3.49% 2.04% 

Alcohol abuse 0.65% 1.46% 

Anxiety 13.44% 7.96% 

Left Ventricular 

Hypertrophy 

0.14% 0.18% 

Region*:  North East 1.89% 1.96% 

North west 13.10% 13.38% 

Yorkshire and the 

Humber 

3.93% 3.85% 

East Midlands 3.14% 3.23% 

West Midlands 11.04% 11.28% 

East of England 11.67% 11.68% 

South west 11.99% 11.88% 

South Central 12.84% 12.81% 

London 17.52% 17.18% 

South East Coast 12.88% 12.74% 
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The HRs for model B (Appendix A.3.3) were generally consistent with those reported in 

QRISK3. The HRs for covariates introduced for models C, D and E are reported in Table 3.2. All 

introduced covariates had a sizeable effect on risk. For example, the HRs for patients in the 

North West were 1.17 for females and 1.14 and males, compared to 0.92 and 0.94, 

respectively for patients from South Central. The HR associated with calendar time was also 

large, with a 0.95 and 0.96 reduction for females and males each year.  

The calibration plots for model B showed overall good calibration ( 

Figure 3.1), which is expected considering these are optimistic calibration plots (internal 

validation only). The female model is very well calibrated with the calibration error no larger 

than 0.5% for any 10th percentile group. The largest miscalibration for the male model is for 

group 9, an under prediction by 1.29%. 

The overall performance metrics calculated for each of the models are given in Table 3.3. The 

largest increase is in D and R2
D (which is derived from D), which increase from 2.39 to 2.55 

and 0.58 to 0.61 (females) across the models respectively. There was little change in any of 

the three C statistics across the different models. While Uno’s C, CU, went from 0.85 to 0.88 

for the female cohort, there was not a consistent upwards trend in the male models. Harrell’s 

C, the most commonly reported metric was very insensitive to the model choice.  Measures 

of explained variation and randomness showed an upward trend from model A to model F, 

while measures derived from the IBS were not sensitive to model choice. 
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Table 3.2: HRs (95% CI) of fixed and random effects introduced into models C, D and E. HRs 

reported are all from model E. 

 Female Male 

Fixed effects 

Alcohol abuse 1.36 (1.25 – 1.48) 1.32 (1.25 – 1.39) 

Anxiety 1.10 (1.08 – 1.13) 1.10 (1.07 – 1.12) 

Left ventricular hypertrophy 1.65 (1.53 – 1.78) 1.67 (1.56 - 1.80) 

> 50 medical records in year 

prior to index date 

1.30 (1.25 – 1.36) 1.25 (1.18 – 1.31) 

> 50 prescription items in year 

prior to index date 

1.55 (1.51 – 1.59) 1.49 (1.44 – 1.54) 

Calendar time (by year) 0.96 (0.95 - 0.96) 0.96 (0.96 – 0.96) 

Region (random effect): 

North East 1.07 (1.00 - 1.14) 1.09 (1.08 - 1.09) 

North west 1.17 (1.11 - 1.24) 1.14 (1.13 - 1.15) 

Yorkshire and the Humber 1.11 (1.05 - 1.19) 1.09 (1.08 - 1.10) 

East Midlands 1.00 (0.93 - 1.06) 0.99 (0.98 - 0.99) 

West Midlands 0.99 (0.94 - 1.05) 0.99 (0.99 - 1.00) 

East of England 0.94 (0.89  1.00) 0.94 (0.93 - 0.94) 

South west 0.98 (0.92  1.04) 0.99 (0.99 - 0.99) 

South Central 0.92 (0.87 - 0.98) 0.94 (0.94 - 0.95) 

London 0.89 (0.84 - 0.95) 0.88 (0.88 - 0.89) 

South East Coast 0.96 (0.90 - 1.02) 0.97 (0.97 - 0.97) 

 

Figure 3.1: Calibration plots by 10th percentile of risk for model B 
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Table 3.3: Performance metrics for each of the models 

Measure* Model A Model B Model C Model D Model E Model F 

Female 

IBS 0.02 0.02 0.02 0.02 NA NA 

R2
IBS 0.12 0.13 0.13 0.13 NA NA 

R2
PM 0.65 0.65 0.66 0.67 0.67 0.67 

Ρ2
k 0.85 0.86 0.86 0.86 0.86 NA 

Ρw,a 0.76 0.76 0.76 0.77 0.77 0.77 

R2
 0.62 0.62 0.63 0.63 0.64 NA 

D 2.39 2.42 2.49 2.52 2.52 2.55 

R2
D 0.58 0.58 0.60 0.60 0.60 0.61 

CH 0.86 0.87 0.87 0.87 0.87 0.87 

CU 0.85 0.86 0.86 0.86 0.86 0.88 

CGH 0.81 0.82 0.82 0.82 NA NA 

Male 

IBS 0.03 0.03 0.03 0.03 NA NA 

R2
IBS 0.12 0.12 0.12 0.12 NA NA 

R2
PM 0.62 0.63 0.63 0.63 0.64 0.64 

Ρ2
k 0.78 0.79 0.79 0.79 NA NA 

Ρw,a 0.73 0.73 0.73 0.74 0.74 0.75 

R2 0.49 0.49 0.50 0.50 NA NA 

D 2.12 2.12 2.18 2.21 2.21 2.24 

R2
D 0.52 0.52 0.53 0.54 0.54 0.55 

CH 0.84 0.84 0.84 0.84 0.84 0.85 

CU 0.75 0.74 0.74 0.74 0.74 0.77 

CGH 0.81 0.81 0.81 0.82 NA NA 

 

3.4.2 Analysis of risk scores 

Table 3.4.1 and 3.4.2 show the distribution of changes in predicted CVD risks when using 

Models B-F instead of Model A. Females with a risk between 9-10% with Model A (QRISK2) 

were found to have risks with a 95% percentile range of 8.0 to 13.6 with model B (QRISK3) 

and range of 4.4 to 16.5% with Model F. The impact of the choice of model on the distribution 

of risks increased with higher CVD risks. For females with a risk of 19 to 20% with Model A, 

their risks were between 9.6 and 34.6 (95% percentile) when using Model F. These are shown 

graphically in Figure 3.2.  
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Table 3.4.1: Distribution of risks (2.5th and 97.5th percentile) of patients in the test cohort 

according to each model, stratified by their risk in model A, and average 95% CI for risks in 

model A (female cohort) 

Female cohort 

10 year 
risk using 
model A 

Average 
95% CI in 
model A 

Percentile 
range 
Model B 

Percentile 
range 
Model C 

Percentile 
range 
Model D 

Percentile 
range 
Model E 

Percentile 
range 
Model F 

0-1% 0.3-0.4% 0.1-0.9% 0.1-0.9% 0.1-1.0% 0.1-1.0% 0.1-1.0% 

1-2% 1.4-1.5% 1.0-2.2% 1.0-2.3% 0.6-2.3% 0.6-2.4% 0.6-2.6% 

2-3% 2.3-2.6% 1.9-3.6% 1.9-3.9% 1.2-3.9% 1.1-4.0% 1.1-4.4% 

3-4% 3.3-3.6% 2.8-5.0% 2.7-5.5% 1.7-5.4% 1.6-5.6% 1.5-6.1% 

4-5% 4.3-4.7% 3.7-6.5% 3.6-7.4% 2.3-7.2% 2.2-7.3% 2.1-8.0% 

5-6% 5.3-5.7% 4.5-7.8% 4.4-8.9% 2.8-8.5% 2.6-8.8% 2.5-9.5% 

6-7% 6.2-6.8% 5.4-9.3% 5.3-10.6% 3.3-10.0% 3.1-10.1% 3.0-11.3% 

7-8% 7.2-7.8% 6.3-10.4% 6.1-11.8% 3.8-11.5% 3.6-11.7% 3.5-12.6% 

8-9% 8.2-8.8% 7.1-11.7% 6.8-14.3% 4.3-13.3% 4.1-13.3% 4.0-14.6% 

9-10% 9.1-9.9% 8.0-13.5% 7.7-16.1% 4.9-15.0% 4.6-15.5% 4.4-16.3% 

10-11% 10.1-10.9% 8.8-14.5% 8.5-16.8% 5.3-16.6% 5.1-16.8% 4.9-18.1% 

11-12% 11.1-11.9% 9.8-16.3% 9.4-19.6% 5.9-19.3% 5.6-20.1% 5.4-21.1% 

12-13% 12.1-12.9% 10.7-17.9% 10.1-21.3% 6.4-20.5% 6.0-21.5% 5.8-22.5% 

13-14% 13.0-14.0% 11.4-18.5% 10.9-21.5% 7.1-21.1% 6.7-22.6% 6.6-23.3% 

14-15% 14.0-15.0% 12.2-19.7% 11.6-23.3% 7.5-22.5% 7.3-22.7% 6.9-24.3% 

15-16% 15.0-16.0% 13.1-22.0% 12.3-26.5% 8.2-26.3% 7.7-27.2% 7.6-28.1% 

16-17% 15.9-17.1% 13.9-22.1% 13.0-27.4% 8.5-26.9% 8.0-27.5% 7.9-28.1% 

17-18% 16.9-18.1% 14.9-23.9% 14.1-27.9% 9.2-28.9% 8.8-28.7% 8.7-29.5% 

18-19% 17.9-19.2% 15.7-25.4% 14.8-30.0% 9.8-29.8% 9.6-29.7% 9.1-32.7% 

19-20% 18.8-20.2% 16.6-25.8% 15.7-32.1% 10.5-32.6% 10.0-33.8% 9.7-34.4% 
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Table 3.4.2: Distribution of risks (2.5th and 97.5th percentile) of patients in the test cohort 

according to each model, stratified by their risk in model A, and average 95% CI for risks in 

model A (male cohort) 

Male cohort 

10 year 
risk using 
model A 

Average 
95% CI in 
model A 

Percentile 
range 
Model B 

Percentile 
range 
Model C 

Percentile 
range 
Model D 

Percentile 
range 
Model E 

Percentile 
range 
Model F 

0-1% 0.3-0.4% 0.1-1.0% 0.1-1.0% 0.0-1.0% 0.0-1.0% 0.0-1.1% 

1-2% 1.4-1.6% 1.0-2.0% 1.0-2.1% 0.7-2.2% 0.7-2.2% 0.6-2.7% 

2-3% 2.4-2.6% 2.0-3.2% 2.0-3.3% 1.3-3.4% 1.2-3.5% 1.1-4.4% 

3-4% 3.3-3.6% 2.9-4.5% 2.9-4.8% 1.9-4.7% 1.8-5.0% 1.6-6.0% 

4-5% 4.3-4.7% 3.9-5.7% 3.8-6.2% 2.5-6.0% 2.4-6.3% 2.1-7.5% 

5-6% 5.3-5.7% 4.8-6.9% 4.7-7.7% 3.1-7.6% 2.9-7.6% 2.5-9.3% 

6-7% 6.2-6.7% 5.7-8.2% 5.6-8.9% 3.7-8.9% 3.5-9.0% 3.1-11.1% 

7-8% 7.2-7.8% 6.6-9.5% 6.5-10.7% 4.3-10.4% 4.1-10.6% 3.7-12.9% 

8-9% 8.2-8.8% 7.5-10.6% 7.5-11.8% 4.9-11.5% 4.6-11.9% 4.2-14.1% 

9-10% 9.2-9.8% 8.4-11.8% 8.3-13.8% 5.5-13.2% 5.1-13.7% 4.6-15.8% 

10-11% 10.1-10.8% 9.2-13.0% 9.0-15.3% 6.0-14.9% 5.6-15.1% 5.2-17.8% 

11-12% 11.1-11.9% 10.1-14.2% 9.9-16.5% 6.7-15.8% 6.3-16.0% 5.9-18.9% 

12-13% 12.1-12.9% 11.0-15.5% 10.8-17.8% 7.3-17.0% 6.8-17.8% 6.4-20.5% 

13-14% 13.1-14.0% 12.0-16.8% 11.8-19.6% 8.0-19.2% 7.5-19.9% 6.9-22.6% 

14-15% 14.0-15.0% 12.8-17.8% 12.6-21.7% 8.5-20.3% 8.0-20.8% 7.5-23.3% 

15-16% 15.0-16.0% 13.5-19.2% 13.3-22.8% 9.0-21.7% 8.6-22.2% 8.1-23.8% 

16-17% 16.0-17.0% 14.6-20.4% 14.2-24.0% 9.8-24.0% 9.2-24.7% 8.7-27.4% 

17-18% 16.9-18.1% 15.3-22.8% 15.0-26.9% 10.3-25.5% 9.7-25.5% 9.2-28.6% 

18-19% 17.9-19.1% 16.3-23.8% 15.8-26.7% 10.9-26.8% 10.4-26.7% 10.0-29.5% 

19-20% 18.9-20.2% 17.2-25.2% 16.7-28.7% 11.5-29.5% 10.9-28.9% 10.4-32.1% 

 

Table 3.5 summarises the number of patients in the study population who were reclassified 

with models B – F based on a treatment threshold of 10%. In the female cohort, 8% of those 

with a CVD risk between 7-8% with Model A were reclassified to a risk of ≥ 10% with Model F 

(for risks between 8-9% and 9-10%, this was 17% and 28% respectively).  Substantially more 

patients were reclassified downward with predicted risks reduced. In the female cohort, 32% 

of those with a risk between 12-13% were reclassified to a risk of < 10% with Model F (for 
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risks between 11-12% and 10-11%, this was 43% and 57% respectively). Similar effects on the 

risk scores were found amongst the male cohort. 

Figure 3.2: Distribution of risks according to each model for those with risks 9 – 10% in model 

A 
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3.4.3 Extrapolation to English and population 

Figure 3.3 shows the proportion of patients reclassified from each risk group when model F 

is used, applied to the cohort of patients eligible in CPRD for risk assessment on 1st January 

2016. When using Model F, there was a substantive reclassification downwards across the 

higher risk categories, in which 64% of females and 52% of males with a risk >10% would no 

longer be eligible for statin treatment (Table A.3.8). This shift is caused by the introduction of 

the secular trend. When extrapolating results to the population of  England, there were 

37,273,200 people aged 25 – 84 in England145 in 2016 and 29,382,463 would have been 

eligible for risk assessment using QRISK2 (79% of patients registered on 1st Jan 2016 were 

eligible). 6,652,920of these patients would be classified as high CVD risk (≥ 10%) using Model 

A (QRISK2). If model F was used, 3,792,474(57%) of them would be reclassified downwards 

and cross the treatment threshold. The 57% is calculated as average of the 64% of females 

and 52% of males, weighted by the female/male ratio. A full breakdown of these calculations 

and data used to derive Figure 3.3 is in Appendix A.3.3.1. 

 

Figure 3.3: Percentages of patients registered 1st Jan 2016 who cross the treatment threshold 

when using model F, compared to model A 
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3.4.4 Post HOC and analyses of secular trend 

There was a strong secular trend in CVD incidence in both the female and male derivation 

cohorts as can be seen in Figure 3.4. The RR was 0.96 (0.96-0.96) and 0.97 (0.97-0.97) annually 

for females and males respectively (Table 3.6).  A stronger trend was found in the cohort of 

statin users, with a RR of 0.94 (0.94-0.94) for both cohorts. Adjusting for baseline QRISK2 

score, the annual reduction in CVD incidence was unchanged from 0.94 (0.94-0.94) for the 

female cohort, and changed slightly to 0.94 (0.94 – 0.95) for the male cohort. 

 

Figure 3.4: The secular trend in CVD incidence in the model derivation cohort and the statin 

users cohort 
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Table 3.6: Relative rates (95% CI) associated with calendar year and risk at start of statin 

treatment period, in Poisson models modelling CVD incidence 

 Female Male 

Model Calendar year Risk at start of 

treatment 

Calendar year Risk at start of 

treatment 

Development cohort 0.96 (0.96 – 
0.96) 

NA 0.97 (0.97 – 
0.97) 

NA 

Statin users cohort 0.94 (0.93 – 
0.94) 

NA 0.94 (0.94 – 
0.94) 

NA 

Statin users cohort (also 
adjusting for 10 year risk 
at inception into cohort) 

0.94 (0.94 - 
0.94) 

1.02 (1.02 – 
1.03) 

0.94 (0.94 – 
0.94) 

1.02 (1.02 – 
1.02) 

 

3.5 Discussion 

In this study, we assessed the uncertainty in individual risk predictions by using different 

modelling approaches. A large amount of variability in individual risk predictions was found 

when taking into account different information about the patient. The introduction of secular 

trend substantially changed individual risk predictions. The largest uncertainty in individual 

risk prediction occurred in patients with higher risks (i.e., those who are considered for statin 

treatment) with a large number of patients being reclassified as no longer requiring statin 

treatment.  

The QRISK models did not consider the secular trend and their follow-up was also restricted 

to more historic data (starting in 19985,146). In the present study, the largest contributing 

factor to the within-person variability in the CVD estimates was the secular trend. After 

introducing the secular trend into the modelling, 62% of females and 51% of males in 2016 

would be classified down from a CVD risk ≥ 10% to less than 10% risk and thus no longer be 

eligible for statin treatment according to guidelines. When extrapolating to the population in 

England, this could affect almost 4 million individuals. Other studies have also reported a 

reduction in the CVD incidence over time53–55. A nation-wide study in England reported that 

the rate of hospitalisations for acute myocardial infarction reduced by 5% annual between 

2002 and 2010, which is similar to our estimates.54 Better CVD prevention may have 

contributed to this decline, which could include an increase in statin use.147 Given the use of 

these models is mandated in NICE guidelines, it is quite likely this is caused by QRISK resulting 
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in a prediction paradox,148 and the increase in statin use could explain this secular trend. 

However our analyses found that the cohort of statin users also showed a decreased CVD risk 

over time, suggesting that other factors may have contributed to the decline in CVD 

incidence. It is important that clinicians and patients are made aware of this as inclusion of 

the secular trend into the QRISK models could massively reduce the number of patients who 

were eligible to receive treatment with statin therapy. There are many ways to address a 

secular trend in predictive models. The first is to re-calibrate the model to the time period of 

interest,120,149 which is effectively what QRISK developers do by updating the time period in 

which they derive the model each year. However this still allows for a large un-modelled 

secular trend occurring between the study start and end date. This can also be done on a 

continuous scale using continuous model/Bayesian updating, and can be used with a 

forgetting factor to down weight historical data.149 However this also constitutes developing 

a model in some data, and updating it in light of new data, and therefore suffers the same 

problems. Varying coefficient models are also available which allow the relationship between 

predictors and outcomes to vary over time.149 Our approach is equivalent to a special case of 

these models, where only the intercept is allowed to vary over time. The use of varying 

coefficient models to model the secular trend should be considered in future work,  although 

a more detailed assessment of whether the secular trend in associated with changes in 

database usage, and the role of statin use on the secular trend would have to be carried out. 

Other factors also contributed to non-negligible levels of variability in risk prediction, for 

example the effect of using mean imputation to impute patient data. This is relevant because 

we found there to be missing data among the statin users cohort at statin initiation, which is 

the group of patients who should be having their risk assessed. For these patients, using mean 

imputation adds an avoidable level of uncertainty to the risk score. It is therefore important 

to measure all risk factors and include the measurements rather than relying on mean 

imputed values. Beyond this we highlighted the variability in risk scores caused by introducing 

a variety of risk factors into the models. All factors that were introduced into the models have 

been shown in the literature to be risk factors of CVD23,46,53,127. However there are many other 

factors that we could not evaluate, such as diet150,151, level of physical inactivity,152 an 

accurate measure of alcohol consumption, transaminase levels,153 C-reactive protein levels154 

or biomarkers and genetic information.155,156 This means the level of uncertainty associated 
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with a risk score is likely to be far higher than what we have been able to highlight in this 

paper. Despite this, there is no feasible way for these risk factors to be incorporated into a 

model used at point of care in routine practice, as they are not routinely recorded. We are 

not trying to recommend the collection and inclusion of such factors to improve the current 

models used in practice. Rather, we have highlighted that the introduction of new risk factors 

that could be measured has a sizeable effect on individual risk, and this effect would be bigger 

if one were able to collect such risk factors and incorporate them also. 

This study found that widely used population-level performance metrics of risk predictions 

were not very sensitive with varying modelling approaches in contrast to the individual risk 

predictions. Harrell’s C statistic121 is the most commonly used performance metric but the 

comparisons between models showed marginal change. This finding is consistent with 

literature that reported that in well performing models, C statistics are not sensitive to the 

introduction of new covariates.135,143 The measures of explained variation and randomness 

were more sensitive to the modelling decisions, mostly increasing by 0.02 across all the 

models. The D statistic showed the largest absolute increase, although this is unsurprising 

given it is not bounded by 0 and 1. While none of these metrics were developed to assess 

variability on the individual level, the large variability in individual risk, but lack of variability 

in population level performance metrics is of importance to the patient being treated. It 

should also be noted that there was a general trend of improved performance as variables 

were added to the models, potentially leading to the conclusion that adding any variable that 

may be associated with CVD will improve risk prediction. We do not believe this to be the 

case, and think the trend is likely explained by increasing amounts of overfitting as more 

variables are added to the model. Although split sample techniques were used to derive the 

performance metrics, the sample is very large and the test data is likely to be representative 

of the development cohort. You therefore would expect improved performance as more 

variables were added when carrying out internal validation. National treatment guidelines in 

the UK state that “all CVD risk assessment tools can provide only an approximate value for 

CVD risk” and that “interpretation of CVD risk scores should always reflect informed clinical 

judgement”.46 Our results highlight the importance of this, considering clinical judgement and 

supplementing these model estimates with evidence on additional risk factors. Despite this 

recommendation, our experience is that output from QRISK is regularly used to guide 
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treatment decisions, while confusion remains around its interpretation.157 Furthermore, 

there has been a recent push by Public Health England158,159 for self-assessment by the public 

of risk using a tool JBS3160 which is based on the lifetime QRISK model.161 Arguably, patients 

will need to be informed about the approximate estimates of these tools and the need for 

clinical judgement. This is very much an issue about communication of the limitations of such 

estimates, rather than an issue with the models themselves. It may be important not to  

communicate a single value which does not take into account important risk factors such as 

diet, exercise and life style162, the severity of presenting comorbidities or the uncertainty 

underlying the modelling decisions. 

3.5.1 Limitations 

There are several limitations in this study. While the dataset used to derive the models is 

similar to that used to derive QRISK3 in terms of demographics, there may be many other 

hidden differences between the datasets, for example geographical coverage or coding 

practices between the databases. This means our models do not directly represent the ones 

used in practice in the England. One limitation was that a crude disease classification was 

used to derive many of the predictor variables. A combination of medical and/or prescription 

codes were used which may be sensitive to the choice of the code lists. Another limitation of 

this study was that important information on other risk factors was missing (such as diet or 

exercise), which could explain a large amount of unexplained variation in risk. Frailty models 

were considered to quantify the level of unexplained variation in patient risk due to missing 

covariates.163 However we were unable to fit these models in a consistent fashion to the data, 

while also finding strong arguments against this methodology.164 We also did not consider 

the variability in coding between practices, or between databases. Models may perform 

erroneously when used in a database in which it was not developed an issue which has caused 

issues in recent history.123 For example how will a model perform in a database that uses a 

different coding system? This was not considered in this study as data from two databases 

with different coding systems was not available; however is an important area for future 

research. Finally, this paper focused on uncertainty induced by considering different 

information about the patient. However there may also be uncertainty associated with the 

risk scores caused by various modelling decisions. For example in models developed in this 

way the target population is not well defined. The association of covariates with the outcome 
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may change with age, and although interaction terms are included it is difficult to truly model 

these relationships. Given these models are used to generate risk scores for patients over a 

wide age range, this could also induce uncertainty on the patient level. There are many other 

methodological choices which induce uncertainty, which should be explored in their own 

right. This paper focuses primarily on the choice of what information about the patients to 

include in the models. 

3.5.2 Conclusions 

In conclusion, we found sizeable levels of uncertainty in the prediction of individual CVD risks 

for patients, although this was mostly driven by the introduction of secular trend. This high 

level of instability was not detected with conventional population-level model performance 

metrics (in particular Harrell’s C, the most commonly used measure of discrimination). 

Extrapolating to the population in England, 3.8 million patients could be misclassified as 

requiring statin treatment depending on the model used. Clinical judgement, as 

recommended in national treatment guidelines,46 supplemented with evidence of additional 

risk factors, should be an essential part of individual decision making. Uncertainty analyses 

with varying of modelling choices and quantification of incomplete evidence should routinely 

be conducted to assess uncertainty beyond the confidence interval. 
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4 Impact of sample size on the stability of risk scores from 

clinical prediction models: a case study in cardiovascular disease 

Alexander Pate, Richard Emsley, Matthew Sperrin, Glen P. Martin, Tjeerd van Staa 

4.1 Abstract 

Background: Stability of risk estimates from prediction models may be highly dependent on 

the sample size of the dataset available for model derivation. In this paper, we evaluate the 

stability of cardiovascular disease risk scores for individual patients when using different 

sample sizes for model derivation; such sample sizes include those similar to models 

recommended in national guidelines, and those based on recently published sample size 

formula for prediction models. 

Methods: We mimicked the process of sampling N patients from a population to develop a 

risk prediction model by sampling patients from the Clinical Practice Research Datalink. A 

cardiovascular disease risk prediction model was developed on this sample and used to 

generate risk scores for an independent cohort of patients. This process was repeated 1000 

times, giving a distribution of risks for each patient. N = 100 000, 50 000, 10 000 and Nmin 

(derived from sample size formula) were considered. The 2.5 – 97.5 percentile range of risks 

across these models was used to evaluate instability. Patients were grouped by a risk derived 

from a model developed on the entire population (population derived risk) to summarise 

results. 

Results: For a sample size of 10 000, the median 2.5 – 97.5 percentile range of risks for 

patients across the 1000 models was approximately 60% of their population derived risk. For 

example, for patients with a population derived risk of 9 - 10% or 19 - 20%, the median 

percentile range was 6.25% and 12.59% respectively. Using the formula derived sample size, 

the range was approximately 170% of their average risk score. Restricting this analysis to 

models with high discrimination or good calibration reduced the percentile range, but high 

levels of instability remained. 

Conclusions: Widely used cardiovascular disease risk prediction models suffer from high 

levels of instability induced by sampling variation. Stability of risk estimates should be a 

criterion when determining the minimum sample size to develop models. 
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4.2 Background 

Risk prediction models are used to guide clinical decision-making in a variety of disease areas 

and settings, ranging from the prevention of cardiovascular disease (CVD) in primary care to 

intensive care unit based models such as APACHE or SOFA.3,4,32–34 As such, developing risk 

prediction models appropriately is vital. One aspect of appropriate derivation of prediction 

models is ensuring sufficient sample size in the development dataset; unfortunately, sample 

size calculations for models are often not made, or at best are based on the simplistic “10 

events per predictor” rule.165 Risk prediction models that are recommended in treatment 

guidelines for routine use by clinicians often vary in sample sizes.  As an example, QRISK35 

(recommended by the National Institute for Health and Care Excellence to guide CVD primary 

prevention in England46) was developed on a cohort of 4 019 956 females and 3 869 847 

males, whereas the pooled cohort equations (recommended by American College of 

Cardiology and American Heart Association to guide CVD prevention in the US60) were based 

on 9098 females and 11 240 males for white ethnicity, and 2641 females and 1647 males for 

African-American ethnicity. 

If the sample size is too small, the most commonly cited issue is that of overfitting, which may 

cause extreme predictions outside of the development data set. Another potential issue, of 

which the implications are less clear, is that small sample sizes could lead to instability in the 

risk scores of individuals depending on which sample of the population is used for model 

development. By stability, we mean how risk scores for a given individual vary when 

generated from different prediction models. It is well known that differently defined 

prediction models may produce different risks for individuals, even if the models perform 

similarly on the population level.13–15,18,19 However, if a patient’s risk score, and therefore 

treatment decision, is highly unstable due to sample size, this is undesirable. In this scenario, 

the instability of a patient’s risk score is driven by statistical uncertainty around the risk 

estimate of the subgroup which that patient belongs to, distinguishing this from the reference 

class problem.15 Therefore it is important to minimise this instability if wanting to base clinical 

decisions on risk scores generated from such models. 

The aim of this study was to evaluate the stability of CVD risk predictions for individual 

patients when using different sample sizes in the development of the risk prediction models 
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(including a recommended minimum sample size from work focusing on the issue of 

overfitting, representing state of the art techniques for sample size calculations in risk 

prediction models).35 

 

4.3 Methods 

4.3.1 Data source 

We defined two cohorts from a Clinical Practice Research Datalink (CPRD)48 dataset, which 

comprised primary care data linked with Hospital Episode Statistics (HES),49 and mortality 

data provided by the Office for National Statistics (ONS).50 For the first cohort (referred to as 

historical cohort) the cohort entry date was the latest of: attaining age 25 years; attaining one 

year follow up as a permanently registered patient in CPRD; or 1st Jan 1998. The end of follow 

up was the earliest date of: patient’s transfer out of the practice or death; last data collection 

for practice; or 31st Dec 2015.  Patients were excluded if they had a CVD event (identified 

through CPRD, HES or ONS) or statin prescription prior to their cohort entry date (code lists 

available on GitHub103). The second cohort comprised patients actively registered on 1st Jan 

2016 (referred to as contemporary cohort). This cohort of patients represents a 

contemporary population, for whom a risk prediction model would subsequently be applied 

to estimate their CVD risks. To be eligible for this second cohort, a patient had to be aged 25 

– 85 years on 1st Jan 2016, and be actively registered in CPRD with one year prior follow up 

with no history of CVD or statin treatment. For both cohorts, all predictor variables included 

in the QRISK35 risk prediction model were extracted at cohort entry date. Details on variable 

definitions is provided in Chapter 2. 

4.3.2 Overview of methods 

We mimicked the process of sampling an overarching target population for the development 

of a risk prediction model by randomly sampling N patients from the historical cohort (CPRD 

is representative of the UK in terms of age, sex and ethnicity48). A risk prediction model was 

developed on this sample and used to generate risk scores for the contemporary cohort. This 

process was repeated 1000 times, giving 1000 risk scores for each patient, for each sample 

size. The sample sizes considered were N = 10 000, 50 000, 100 000 and Nmin (minimum 
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sample size required to meet criteria outlined by Riley et al.35). We chose 10 000 as it is similar 

to the number of females and males used to develop ASSIGN63 (6540 and 6757), Framingham6 

(3969 and 4522) and Pooled Cohort Equations60 (9098 and 11 240). The upper limit of 100 

000 was chosen to match the SCORE65 equations, which were developed on 117 098 and 88 

080 females and males respectively. Derivation of Nmin = 1434 (female) and 1405 (male) is 

described in Appendix A.4.1. 

4.3.3 Generation of risk scores 

The historical cohort and contemporary cohort were both split into female and male cohorts 

and imputed using one stochastic imputation using the mice package.130 All variables included 

in QRISK3,5 including the Nelson Aalen estimate of the baseline cumulative hazard at the 

event time and the outcome indicator, were included in the imputation process. The following 

process was then carried out separately for females and males: 100 000 individuals were 

chosen at random from the historical cohort to form an internal validation cohort, the 

remaining individuals formed the development cohort. The development cohort was then 

viewed as the population. For each value of N, we sampled N patients from this population 

without replacement, 1000 times. 

The following process was repeated within each sample. A Cox model was fit to the sampled 

data, where the outcome was defined as the time until the first CVD event. Predictor variables 

included in the model were continuous variables, and categorical variables with > 1% 

prevalence in all categories calculated from the entire development cohort (age, body mass 

index (BMI), cholesterol/high density lipoprotein (HDL) ratio, family history of CVD, treated 

hypertension, smoking status, systolic blood pressure (SBP), Townsend deprivation index and 

type 2 diabetes). This set of variables  reflects the smaller number of variables used in models 

with lower sample sizes in practice.6,60,63 The developed model was used to generate 10 year 

risk scores for the contemporary cohort. Harrell’s C121 statistic for this model, and the 

calibration-in-the-large  (mean predicted risk – observed/Kaplan Meier risk) were calculated 

in the validation cohort. A graphical representation of this process is given in Figure 4.1. 

Finally, we calculated a 10 year risk for each patient in the contemporary cohort using a model 

developed on the entire development cohort, called the population derived risk, and also 

calculated the Harrell’s C and calibration-in-the-large  of this model in the validation cohort. 
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Figure 4.1: A graphical representation of the sampling process 
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4.3.4 Analysis of stability of risk scores 

For each sample size, four different analyses were carried out to summarise the stability of 

risks across the 1000 models. First, the 2.5 – 97.5 percentile range of risks was calculated for 

each patient across the 1000 models. The distribution of these ranges was then plotted in box 

plots stratified by the population derived risk. Second, we split the models into three groups 

of equal size that had the lowest, medium or highest C statistics. We then calculated the 2.5 

- 97.5 percentile range of risks within these subsets of models, and presented in box plots 

stratified by population derived risk. This allowed us to explore whether models with high C 

statistics had more stability than those with lower C statistics. Third, we split the models into 

groups defined by their calibration-in-the-large, and presented boxplots of the 2.5 - 97.5 

percentile range of risks within these subsets of models. Here, the groups were defined as 

models with calibration-in-the-large deviating from the population derived model by less than 

0.1%, 0.25%, 0.5%, and then all models. This allowed us to explore how much of the instability 

of the risk scores was driven by variation in overall calibration. Finally, we grouped patients 

into risk groups of width 1% as defined by their population derived risk. The proportion of the 

1000 models that classified a patient above/below the 10% risk threshold (threshold for statin 

eligibility according to the recommended guidelines in the UK46) was then calculated. 

Also, the shrinkage factor for each model generated using N = Nmin was calculated and is 

provided in Appendix A.4.1. 

 

4.4 Results 

The baseline characteristics for the female development cohort, validation cohort, and the 

contemporary cohort are provided in Table 4.1. See Appendix 0 for the equivalent table for 

the male cohort.  

Figure 4.2 plots the 2.5 – 97.5 percentile range in risks for patients across the 1000 models, 

grouped by population derived risk (female cohort). For N = 100 000, the median 2.5 - 97.5 

percentile range was 0.91%, 1.90%, 2.87% and 3.83% for patients in the 4-5%, 9-10%, 14-15% 

and 19-20% risk groups respectively. For N = 50 000, the median percentile range was 1.31%, 

2.72%, 4.10% and 5.49% in the respective groups, for N = 10 000 it was 2.98%, 6.25%, 9.46% 

and 12.59%, and for N = Nmin it was 8.25%, 17.46%, 26.40% and 35.05%. For each sample size, 
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the median percentile ranges were approximately constant on the relative scale compared to 

the population derived risk of the group, i.e, for a sample size of 10 000 the median percentile 

range was approximately 60% of the population derived risk, and for Nmin it was 

approximately 170%. Results for the male cohort followed a similar pattern, but the level of 

instability was slightly lower (Appendix 0). 

 

Table 4.1: Baseline characteristics of each female cohort 

Variable Category Development 

(n=1 865 078) 

Validation 

(n = 100 000) 

Contemporary 

(n = 387 557) 

Outcome CVD events 82 065 4482 NA 

 Follow up 

(years) 

13 098 449 703 471 NA 

Age  43.07 (15.94) 43.14 (15.96) 48.38 (14.43) 

SBP  123.91 (18.28) 124 (18.22) 123.97 (15.17) 

BMI  25.6 (5.60) 25.56 (5.56) 27.1 (6.31) 

Cholesterol/HDL 

ratio 

 3.72 (1.20) 3.72 (1.21) 3.46 (1.04) 

Smoking status Never 56.04 56.15 46.05 

 Ex 16.97 16.98 31.66 

 Current 27.00 26.87 22.29 

Townsend 1 (least 

deprived) 

21.96% 21.96% 24.95% 

 2 21.99% 21.81% 22.35% 

 3 21.17% 21.46% 21.56% 

 4 20.46% 20.36% 18.70% 

 5 (most 

deprived) 

14.42% 14.41% 12.44% 

Treated 

hypertension 

 6.18% 6.19% 8.45% 

Family history of 

CVD 

 15.08% 15.13% 20.86% 

Type 2 diabetes  1.16% 1.19% 1.15% 
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Figure 4.2: Boxplots of the percentile ranges of risk for individuals across the 1000 models 

(female cohort) 

*Each data point represents the 2.5 = 97.5 percentile range in risk for an individual across 

the 1000 models 

 

The distribution of the C statistic and the calibration-in-the-large of the 1000 models are given 

in Table 4.2. The 97.5th percentile of C statistics was similar for each sample size, but as the 

sample size decreased, the 2.5th percentile got smaller (0.802 vs 0.868 female and 0.805 vs 

0.843 male). All C statistics in the 2.5 – 97.5 percentile range were > 0.8. The variation in the 

calibration-in-the-large decreased as the sample size increased. The 2.5 – 97.5 percentile 
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ranges of the calibration-in-the-large values was 2.61% (female) and 3.12% (male) for N = 

Nmin, decreasing to 0.32% (female) and 0.36% (male) for N = 100 000. 

 

Table 4.2: Quantiles of C statistics and calibration-in-the-large of the 1000 models, for each 

sample size 

 

 Quantiles of C statistic 

Quantiles of calibration-in-the-large 

(as a %) 

 Sample 

size 2.5% 25% 50% 75% 97.5% 2.5% 25% 50% 75% 97.5% 

Fe
m

al
e 

Nmin 0.802 0.852 0.857 0.861 0.864 -2.22 -1.43 -0.95 -0.47 0.39 

10000 0.865 0.866 0.867 0.867 0.868 -1.45 -1.13 -0.95 -0.78 -0.44 

50000 0.867 0.868 0.868 0.868 0.868 -1.18 -1.03 -0.95 -0.87 -0.73 

100000 0.868 0.868 0.868 0.868 0.868 -1.11 -1.01 -0.96 -0.90 -0.79 

M
al

e 

Nmin 0.805 0.827 0.831 0.835 0.839 -2.56 -1.49 -1.01 -0.45 0.56 

10000 0.840 0.841 0.842 0.843 0.843 -1.61 -1.20 -1.01 -0.80 -0.39 

50000 0.843 0.843 0.843 0.843 0.844 -1.28 -1.11 -1.02 -0.93 -0.77 

100000 0.843 0.843 0.843 0.844 0.844 -1.21 -1.08 -1.02 -0.95 -0.85 

*C statistics of population derived models in the validation dataset are 0.868 (female) and 

0.844 (male). Calibration-in-the-large of the population derived models in the validation 

dataset are -0.95% (female) and -1.02% (male). 

 

Figure 4.3 plots the 2.5 – 97.5 percentile range in risks for patients across models stratified 

by the C statistic of the models (female cohort, N = 10 000). The median 2.5 - 97.5 percentile 

range for models with high C statistics was 2.42%, 5.02%, 7.60% and 10.20% for patients in 

the respective risk groups. This equates to an 18 – 20% reduction in the median percentile 

range when using well discriminating models compared to all models (2.98%, 6.25%, 9.46% 

and 12.59%). Results for other sample sizes presented in Appendix 0. 
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Figure 4.4 plots the 2.5 – 97.5 percentile range in risks for patients across models stratified 

by the calibration-in-the-large of the models (female cohort, N = 10 000). The median 2.5 - 

97.5 percentile range across models with the best calibration-in-the-large was 2.72%, 5.70%, 

8.72% and 11.69%, for the respective risk groups. This equates to a 7-9% reduction in the 

median percentile range compared to when using all models (2.98%, 6.25%, 9.46% and 

12.59%). Results for other sample sizes presented in Appendix 0. 

Table 4.3 shows the probability that a patient from a given risk group (according to population 

derived model) may be classified on the opposite side of the 10% threshold by a randomly 

chosen model. For example when using a sample size of Nmin, 26.91% of patients with a 

population derived risk between 14-15% would be classified as having a risk below 10%, 

whereas this is only 2.50% for N = 10 000, 0.01% for 50 000 and < 0.01% for 100 000. 

 

Table 4.3: Probability of being classified on the opposite side of the treatment threshold by a 

randomly selected model of a given sample size, stratified by population derived risk 

  Population derived risk 

Sample 

size 5-6% 6-7% 7-8% 8-9% 9-10% 10-11% 11-12% 12-13% 13-14% 14-15% 

Fe
m

al
e 

Nmin 6.46 12.55 20.49 29.63 38.69 52.48 44.46 37.72 31.95 26.91 

10,000 0.08 0.74 4.25 15.24 35.07 41.17 22.55 11.40 5.50 2.50 

50,000 0.00 0.00 0.08 2.29 24.49 27.67 4.44 0.46 0.06 0.01 

100,000 0.00 0.00 0.00 0.50 18.56 21.50 1.09 0.04 0.00 0.00 

M
al

e 

Nmin 4.32 9.98 18.18 28.54 39.14 50.87 41.97 34.37 28.13 22.97 

10,000 0.03 0.33 2.51 12.40 34.43 38.89 18.84 8.13 3.33 1.34 

50,000 0.00 0.00 0.02 1.28 21.80 26.51 3.07 0.26 0.03 0.00 

100,000 0.00 0.00 0.00 0.23 16.02 19.79 0.63 0.01 0.00 0.00 

*For patients with a population derived risk < 10%, the probabilities represent the chance of being 

classified above the threshold, for patients with a population derived risk > 10%, the probabilities 

represent the chance of being classified below the threshold. 
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4.5 Discussion 

This study found that at sample sizes typically used for developing risk models (e.g. in the CVD 

domain, the pooled cohort equations60 and ASSIGN63 were based on approximately 10 000 

individuals or less), there is substantial instability in risk estimates attributable to sampling 

error. Furthermore, when restricting the analysis to models with high discrimination or good 

calibration, high levels of instability remained. 

This variability in individual risk is especially relevant if using the model to make clinical 

decisions based on whether a risk score is above or below a fixed threshold (a common use 

for risk prediction models). From an individual’s and clinician’s perspective, it is unsatisfactory 

that a different treatment decision may be made dependent on the model used. However 

this is also an issue at the population level. Consider statin therapy in the UK. Initiating statins 

in patients who have a 10-year risk of CVD > 10% has been shown to be cost effective.84 This 

intervention becomes more cost effective the better the performance (calibration and 

discrimination) of the model used to calculate the risk scores. Sample size is strongly 

correlated with model performance, and a small sample size will likely lead to a poorly 

performing model, and less events prevented. However, it is difficult to assess when 

increasing sample size will improve model performance, given that model performance is 

affected by many other factors (prevalence of outcome, inclusion of important predictors, 

strength of association between predictors and outcome). Sample size affects model 

performance through the precision of coefficients, and imprecise estimates will cause the risk 

of fixed subgroups in the population to be miss-calculated (the central theme of this paper). 

Therefore, if the coefficients are precise, and risk estimates are stable, one will unlikely be 

able to improve model performance by increasing the sample size unless doing so allows for 

incorporating more predictors. The stability of risk scores (and ultimately precision of 

coefficients) could therefore be used as a proxy to determine whether increasing sample size 

will improve model performance. When N = 10 000 we see levels of instability that indicate 

the performance of the model could be improved by increasing sample size, resulting in fewer 

CVD events. 

At the sample size suggested by Riley et al.35 the instability in risk is even higher and the issues 

are heightened. However, there are no CVD risk prediction models used in practice with such 

small sample sizes, so the implications are more general. There is often ample data to produce 
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CVD risk prediction models; however this may not be the case for other disease areas, where 

the outcomes are not well recorded in routinely collected datasets. In this scenario one may 

have to actively recruit patients into a cohort and the work by Riley et al.35 could be used in 

order to derive a sample size. We propose that if risk scores from a model are going to be 

used to drive clinical decision making above or below a fixed threshold, section 6 of Riley et 

al.35 “Potential additional criterion: precise estimates of predictor effects”, should be properly 

considered. It is imprecise estimates of the predictor effects that leads to instability of risk 

scores. If this criterion is not met, as is the case for N = Nmin in this paper, risks scores have 

high levels of instability and models poorer performance. The number of patients required to 

ensure stable risk scores will depend on the prevalence of the outcome, the number of 

predictors and the strength of the association between outcomes and predictors among 

other things, and therefore will vary for each model.  

In practice, to ascertain whether a given development cohort has a sufficient sample size, the 

process undertaken in this manuscript could be replicated using bootstrap resampling 

methods. Instead of sampling the population without replacement (not possible in practice), 

sampling the development cohort with replacement (i.e. bootstrapping) can replicate this 

process and one could obtain a similar range of risks for each patient. The stability of the risk 

scores could then be assessed, and a decision made on whether more patients should be 

recruited. One proposal on how to use this information to determine a sufficient sample size 

could be to ensure the bootstrapped 2.5 - 97.5 percentile range for all patients must be 

smaller than x% of their estimated risk. Another proposal may be to ensure that for patients 

whose estimates are a certain distance away from a treatment threshold, that there is a less 

than an x% chance of deriving a risk on the other side of the treatment threshold if one 

resampled. 

4.5.1 Limitations 

There are some limitations that warrant discussion. The first is that the calibration-in-the-

large of the population derived model was poor. We don’t believe this is a problem as a similar 

miss calibration-in-the-large  is found in QRISK3,5 despite the model being well calibrated 

within risk deciles. It is likely caused by incompatible assumptions under how the observed 

risks (Kaplan Meier assumes unconditional independent censoring) and predicted risks (Cox 
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model assumes independent censoring only after conditioning on the covariates) are 

estimated. When looking within risk deciles, the difference in assumptions is not as large and 

good calibration was found. Centring these measurements thus allowed the evaluation of 

whether the instability in risk was being driven by over and under predicting models. A second 

limitation was that one may argue that variation in predicted risk was observed because the 

proper process for deriving risk prediction models wasn’t followed. We didn’t do this as it 

would have resulted in different variables and non-linear terms being selected across the 

models, and we believe this would have increased the variation in risks across the models, 

rather than reduce it. Finally, this study concerned the outcome CVD and used a specific set 

of variables for prediction. However the results are likely to be generalizable to other disease 

areas as the study evaluated the effects of random variability in sampling. 

4.5.2 Conclusions 

In conclusion, CVD risk prediction models developed on randomly sampled cohorts of size 10 

000 or less suffer from high levels of instability in individual risk predictions. There are 

multiple models used in practice that are developed on sample sizes this small. To avoid this, 

models should be developed on larger cohorts such as the QRISK35 and SCORE65 models. 

More generally, if developing a risk prediction model to guide treatment for patients above a 

fixed threshold, consideration should be given to the stability of risks scores and precision of 

effect estimates when choosing a sample size. 



5 An assessment of the potential miscalibration of 

cardiovascular disease risk predictions caused by a secular trend in 

cardiovascular disease in England 

Alexander Pate, Tjeerd van Staa, Richard Emsley 

 

5.1 Abstract 

Background: A downwards secular trend in the incidence of cardiovascular disease (CVD) in 

England was identified through previous work and the literature. Risk prediction models for 

primary prevention of CVD do not model this secular trend, this could result in over prediction 

of risk for individuals in the present day. We evaluate the effects of modelling this secular 

trend, and also assess whether it is driven by an increase in statin use during follow up. 

Methods: We derived a cohort of patients (1998 – 2015) eligible for cardiovascular risk 

prediction from the Clinical Practice Research Datalink with linked hospitalisation and 

mortality records (N = 3,855,660). Patients were split into development and validation cohort 

based on their cohort entry date (before/after 2010). The calibration of a CVD risk prediction 

model developed in the development cohort was tested in the validation cohort. The 

calibration was also assessed after modelling the secular trend. Finally, the presence of the 

secular trend was evaluated under a marginal structural model framework, where the effect 

of statin treatment during follow up is adjusted for. 

Results: Substantial over prediction of risks in the validation cohort was found when not 

modelling the secular trend. This miscalibration could be minimised if one was to explicitly 

model the secular trend. The secular trend was still present under the marginal structural 

model framework, indicating increasing statin use during follow up is not the cause. 

Conclusions: Inclusion of the secular trend into the model substantially changed the CVD risk 

predictions. Models that are being used in clinical practice in the UK do not model secular 

trend and may thus overestimate the risks, possibly leading to patients being treated 

unnecessarily. 
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5.2 Background 

Cardiovascular disease (CVD) risk prediction models such as QRISK are developed on 

longitudinal data spanning a long period of time (QRISK3 runs from 1998 – 20155). These 

models are updated each year to include the most recent data and at times remove old data. 

However, any secular trend in the outcome itself occurring within the time span of the 

development dataset is not modelled. Pate et al.1 found a large downwards secular trend in 

CVD incidence over this time period in England. Downwards secular trends in the incidence 

of coronary heart disease, myocardial infarction, and stroke have also been reported in the 

literature.53–56 Not including this trend in the prediction modelling could be resulting in the 

miscalibration of risk scores for patients in the present day, while including it would cause a 

large reduction in the predicted risks of these patients. Further research around this is 

needed, to quantify the impact of modelling this secular trend, and identify what is driving it 

and whether it should be modelled or not. One important possible cause is if the secular trend 

is being driven by an increase in statin use over time. In this scenario it should not be 

modelled, as it would result in risks predictions becoming lower and patients would be 

subsequently advised not to initiate statin treatment, despite this being the cause for the 

drop in risk.  

In this paper we evaluate the effects of developing a model using the same methodology as 

QRISK3 (in the presence of the secular trend) and producing risk scores for patients in a time 

period after that of model development. We then propose an approach to incorporate secular 

trends in prediction models from longitudinal data, accounting for changes in treatment 

during follow up. This is formalised in four sequential analyses: A) quantifying the 

miscalibration in risk predictions of patients in the present day caused by this secular trend, 

B) assessing the sensitivity of the risk prediction model created to changes in patient 

characteristics, which could explain any miscalibration, C) an attempt to model the secular 

trend to remove miscalibration, D) developing a marginal structural model (MSM) to assess 

secular trend after adjusting for statin use during follow up. 
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5.3 Methods 

All analyses are carried out separately for male and female cohorts, as they have separate 

CVD risk prediction models in practice. 

5.3.1 Data source 

A ‘CVD primary prevention cohort’ was defined from a Clinical Practice Research Datalink 

(CPRD)48 dataset linked with Hospital Episode Statistics49 (HES) and Office for National 

Statistics50 (ONS) using the same criteria as QRISK3.5 The study period was 1st Jan 1998 to 31st 

Dec 2015 and the cohort entry date defined as the latest of: date turned 25; one year follow 

up as a permanently registered patient in CPRD; or 1st Jan 1998. Patients were excluded if 

they had a CVD event (identified through CPRD, HES or ONS) or statin prescription prior to 

their cohort entry date. The end of follow up was: the earliest date of patient’s transfer out 

of the practice or death; last data collection for practice; 31st Dec 2015 or five years follow 

up. Patients were censored after five years as five year risk predictions are used throughout 

this chapter. All predictor variables included in the QRISK35 risk prediction model were 

extracted at cohort entry date. Code lists and detailed information on how variables were 

defined is provided in Chapter 2. 

5.3.2 Quantifying the miscalibration in risk predictions of patients in the present day 

The first step was to quantify the miscalibration induced by developing a model over a time 

period in which a secular trend in CVD was present, and using it to calculate risk predictions 

for patients after this time period. Missing data for body mass index (BMI), systolic blood 

pressure (SBP), SBP variability, cholesterol, high density lipoprotein (HDL), smoking status and 

ethnicity in the CVD primary prevention cohort was imputed using multiple imputation by 

chained equations. The imputation model included all predictor variables from QRISK3, the 

Nelson Aalen estimation of the cumulative baseline hazard at the point of censoring or an 

event, and the outcome indicator. Only one imputed dataset was produced, as running the 

analysis across multiple datasets and combining estimates was not essential to answering our 

hypotheses, and the computational time to do so was significant. This is particularly relevant 

to section 5.3.5 when developing the MSM, and the decision was made across all analyses for 

consistency. The package used to do this was mice.130  
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Patients were then split into two cohorts defined by their cohort entry date. Those with a 

cohort entry date prior to 1st Jan 2010 were put into the development cohort, with the 

remaining patients making up the validation cohort. Patients in the development cohort were 

then censored at 1st Jan 2010 if their follow up extended beyond this point. The data was split 

like this because if QRISK3 was replicated exactly using data from 1998 – 2015 for model 

development, it would not have been possible to assess the calibration of risk scores for 

patients after 2015, as they would have no follow up. 

A Cox proportional hazards model using the same predictor variables as QRISK3 was then fit 

to the development cohort. Fractional polynomials of age, BMI and SBP were tested for using 

the mfp package.131 Five year risk predictions were then generated for both the development 

and validation cohort using this model, and the calibration of these risks was assessed. For 

consistency throughout this manuscript, the Directed Acyclic Graph (DAG) and equation is 

stated for each model used. All DAGs were generated using the dagitty software.166 Figure 

5.1 (DAG-1) and equation (1) correspond to this model, where ℎ(𝑡) denotes the hazard 

function, ℎ0(𝑡) the baseline hazard at time 𝑡, 𝑋0 the vector of predictors at cohort entry date 

and 𝛽𝑋 a vector of the associated coefficients . Unmeasured confounding is left off the DAGs 

to reduce the number of arrows and maintain clarity (particularly for DAG-3), however it may 

be present. The implications of unmeasured confounding are discussed in the limitations 

section. 

Figure 5.1: DAG-1 

 

ℎ(𝑡) = ℎ0(𝑡) ∗ exp⁡(𝛽𝑋. 𝑋0)  (1) 
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5.3.3 Assessing the sensitivity of the risk prediction model created to changes in patient 

characteristics 

The next step was to assess whether the miscalibration in the validation cohort was driven by 

a poor model which did not reflect differences between the cohorts, i.e., if the characteristics 

of the validation cohort were different from the development cohort and explained the 

reduction in risk, but the model was not reflecting this. The characteristics of each cohort 

were compared, and also the predicted risks of the development and validation cohorts, to 

assess whether the changes in predicted risk reflected the changes in the patient 

characteristics. This is not an exact test with a clear outcome, and the results were interpreted 

by the authors. 

5.3.4 Attempt to model the secular trend to remove miscalibration in validation cohort 

Given the miscalibration in the validation dataset, and evidence indicating that the model was 

reflecting changes in patient characteristics, this indicated that the secular trend could not be 

explained by changes in predictor variables alone. This provided support for modelling the 

secular trend in the development cohort, to try and remove the miscalibration in the 

validation cohort. The same Cox model defined by equation (1) was fitted to the development 

cohort, but with cohort entry date included as a variable, referred to as calendar time. This is 

denoted by 𝑇0 in Figure 5.2 (DAG-2) and equation (2). Fractional polynomials for this variable 

were tested using the mfp package.131 Five year risks were generated for validation cohort 

and the calibration of the models was assessed. 
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Figure 5.2: DAG-2 

 ℎ(𝑡) = ℎ0(𝑡) ∗ exp⁡(𝛽𝑇 . 𝑇0 + 𝛽𝑋 . 𝑋0)⁡ (2) 

 

5.3.5 Developing an MSM to assess secular trend after adjusting for statin use during 

follow up. 

MSM – overview 

A major concern was that an increase in statin use over time may have caused some of the 

reduction in CVD incidence. If the secular trend was driven by statin use, then modelling it 

(which would result in lower predicted risks) would make lots of patients whose risk if they 

remained untreated was > 10%, ineligible for treatment. Statin use at baseline could not have 

been driving this secular trend as the development cohort only considered patients who were 

statin free at baseline, however patients could initiate statins during follow up. The aim of 

this section was therefore to assess the presence of the secular trend when adjusting for 

statin use during follow up. 

Consider Figure 5.3, where 𝑘 = 0 denotes baseline, and 𝑘 = 1, 2 two time points during 

follow up (this could be extended to any number of time points). 𝐴𝑘 denotes the statin 

treatment status at time 𝑘, 𝑋𝑘 covariate information prior to time 𝑘, and 𝑇𝑘 calendar time at 

time 𝑘. Note 𝐴0 is not included in DAG-3 as 𝐴0 = 0⁡by definition of the CVD primary 

prevention cohort. It is possible to adjust for changes in 𝑋𝑘 and 𝐴𝑘 post baseline using 

standard regression techniques (such as an interval censored Cox model). This would result 
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in an estimate of the direct effect of calendar time on CVD incidence, the portion of which is 

not explained through changes in 𝑋𝑘 and 𝐴𝑘 during follow up. This would be sufficient for 

assessing our aim of whether the secular trend remained after adjusting for statin use during 

follow up. However it would be useless in a risk prediction setting, as there is no way of 

knowing a patients future set of predictors. Therefore the proposed method to answer our 

question was an MSM.  

MSMs were developed to calculate the causal effect of a time dependent exposure on an 

outcome in an observational setting, where the treatment and outcome are confounded by 

time varying covariates.167,168 Sperrin et al.169 have shown how MSMs can be used to adjust 

for ‘treatment drop in’, the issue of patients starting treatment during follow up in a dataset 

being used for risk prediction. In the absence of unmeasured confounding, they allow for the 

estimation of 𝐸[𝑌(𝐴 = 0)|𝑋0], where A denotes the entire treatment course during follow 

up, as opposed to 𝐸[𝑌(𝐴0 = 0)|𝑋0]. The strategy involves adjusting for variables at baseline 

Figure 5.3: DAG-3  
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as normal and then re-weighting the population by variables that may be on the treatment 

causal pathway, breaking the links from 𝑋𝑘 to 𝐴𝑘. In the resulting pseudo population the 

allocation of treatment during follow up happens at random (within the levels of the variables 

defined at baseline). This allows the generation of risk scores using data at baseline only, but 

also accounting for statin use during follow up. Importantly for this study, if calendar time 

only effected the outcome Y through increasing statin use in follow up, when using an MSM 

the direct effect of 𝑇0 on Y would be zero, and adjusting for calendar time at baseline would 

not result in a drop in the average risk score of patients in the validation cohort. 

The estimator of 𝐸[𝑌(𝐴 = 0)|𝑋0] is only valid under the three identifiability assumptions of 

causal inference (exchangeability, consistency and positivity) and correct specification of the 

marginal structural model, and the model used to calculate the weights. The viability of these 

assumptions in this study is discussed in the limitations (section 5.5.1). 

MSM - data derivation 

The CVD primary prevention cohort was used as a starting point. However in order to derive 

the MSM, patient information was extracted at 10 time points, at 6 month intervals from the 

cohort entry date, denoted as 𝑋𝑘 and 𝐴𝑘 for 𝑘 = 0, 1, 2,…, 9. The variable 𝑋𝑘 contained all 

the QRISK3 predictors evaluated at time 𝑘 (for test data this was the most recent value prior 

to time 𝑘). 𝐴𝑘 = 1 if a patient had initiated statin treatment prior to 𝑘, and 𝐴𝑘 = 0 otherwise. 

As patients were excluded from the cohort if they have had a statin prescription prior to their 

cohort entry date, A0 = 0 for all patients. If a CVD event happened within 6 months of a statin 

initiation, the statin initiation was ignored. This was to stop any effects of poorly recorded 

data (start of statins may have been triggered by the CVD event). 

A key issue in deriving the dataset was missing data. A combination of imputation techniques 

were implemented to maintain consistency in variable information within each patient across 

the 10 time points.  First, where possible, last observation carried forward imputation was 

implemented within each patient. Then, where possible, next observation carried backwards 

imputation was used to impute the remaining missing data. However, there was still missing 

data for patients who had no entries across all 10 time points for a given variable. The data 

at baseline was then extracted and missing values were imputed using one stochastic 

imputation. All predictor variables, Nelson Aalen estimate of baseline hazard and the 
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outcome indicator were included in the imputation model (same process used as the 

imputation in section 5.3.2). These imputed baseline values were then used at each following 

time point (last observation carried forward imputation).  

MSM - Calculation of weights and specification of model 

The MSM was fitted as a weighted interval censored Cox model using the coxph function from 

the survival package.170 The weights themselves were calculated using the IPW package.171 

Stabilised weights were calculated as is common practice to provide more precise estimation 

of the weights. For individual 𝑖, the formula for the weight of interval/time period K was 

defined as: 

 𝑠𝑤𝑖 =∏(𝑝̂𝑘𝑖
∗ )𝐴𝑘𝑖

𝐾

𝑘=0

(1 − 𝑝̂𝑘𝑖
∗ )1−𝐴𝑘𝑖 ∏(𝑝̂𝑘𝑖)

𝐴𝑘𝑖

𝐾

𝑘=0

(1 − 𝑝̂𝑘𝑖)
1−𝐴𝑘𝑖⁄  (3) 

 

where 𝑝̂𝑘𝑖
∗ = 𝑃[𝐴𝑘 = 1|𝐴𝑘−1, 𝑋0] and 𝑝̂𝑘𝑖 = 𝑃[𝐴𝑘 = 1|𝐴𝑘−1, 𝑋𝑘, 𝑋0], and 𝐴𝑘 and 𝑋𝑘⁡denote 

treatment history and covariate history respectively up time point 𝑘 for individual 𝑖. More 

simply put, the denominator is the probability that the individual received the treatment they 

did, based on time varying predictors and predictors at baseline. The numerator is the 

probability that the individual received the treatment they did, based on predictors at 

baseline only. The models used to estimate the probability of treatment when deriving the 

weights were interval censored Cox models. If calendar time at baseline, 𝑇0, was being 

included in the MSM, it was also included as a stabilising factor in the calculation of the 

weights as part of 𝑋0. Detailed information on how to calculate weights is also given in the 

literature168,171,172 and the formula for calculating weights (and notation for variables) 

matches that from the work by Sperrin et al.169 

Two MSM’s were created, one that adjusted for calendar time at baseline and one that did 

not: 

 ℎ(𝑡) = ℎ0(𝑡) ∗ exp⁡(𝛽𝐴. 𝐴𝑡 + 𝛽𝑋 . 𝑋0) (4) 

 

 ℎ(𝑡) = ℎ0(𝑡) ∗ exp⁡(𝛽𝐴. 𝐴𝑡 + 𝛽𝑋. 𝑋0 +⁡𝛽𝑇𝑇0)⁡ (5) 
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The same fractional polynomials of age, BMI, SBP and calendar time that were found to be 

optimal in the Cox models from sections 5.3.2 and 5.3.4 were used in the MSM, and in the 

models used to calculate the weights. Ideally we would have re-calculated the optimal 

fractional polynomials for the weighted model fitted to the interval censored data, however 

software was not available to do this. Using the same fractional polynomials from the 

standard Cox analysis was preferred to having no fractional polynomials, as removing them 

led to poorly calibrated models. The coefficient 𝛽𝐴 is the average causal effect of initiating 

statin treatment after adjusting for all other variables. It is quite common to allow the effect 

of statin treatment to be modified by baseline variables, which could be achieved by including 

interaction terms 𝐴𝑡𝑋0. However the primary aim was to account for statin use in follow up, 

rather than calculate the effect of statin treatment in different subgroups, so we did not feel 

this was necessary. 

As a comparison, unweighted interval censored Cox models using only data at baseline (i.e. 

equation (1) from section 5.3.2 and equation (2) from section 5.3.4 were fitted to the same 

data as the MSM. The effect of modelling the secular trend could then be assessed when 

using normal Cox regression, as well as under the MSM framework. This was preferred to re-

using the models directly from sections 5.3.2 and 5.3.4, as the data they were fitted to 

underwent a different imputation process. 

MSM – analysis of interest 

The MSM was used to generate risk predictions assuming no statin treatment at baseline or 

during follow up, 𝐸[𝑌|𝑋0, 𝐴 = 0], the estimator of 𝐸[𝑌(𝐴 = 0)|𝑋0]. The interval censored 

Cox model only produced risk predictions based on no statin treatment at baseline, 

𝐸[𝑌|𝑋0, 𝐴0 = 0], the estimator of 𝐸[𝑌(𝐴0 = 0)|𝑋0, ]. The outcome of interest was the risk 

ratio of the average predicted risk of patients in the validation cohort, before and after 

adjusting for calendar time at baseline in the MSM framework, 

𝐸[𝑌(𝐴 = 0)|𝑋0, 𝑇0] 𝐸[𝑌(𝐴 = 0)|𝑋0⁄ ]. This was compared to the risk ratio after adjusting for 

calendar time at baseline in the unweighted interval censored Cox models, 

(𝐸[𝑌(𝐴0 = 0)|𝑋0, 𝑇0] 𝐸[𝑌(𝐴0 = 0)|𝑋0⁄ ]). 
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5.4 Results 

5.4.1 Quantifying the miscalibration in risk predictions of patients in the present day 

Figure 5.4 shows the calibration of the model in the development and validation cohorts. 

While the model was well calibrated in the development cohort, as expected, there was a 

large under prediction of risks in the validation cohort. Statin prevalence and incidence rates 

in the primary prevention cohort are provided in Table A.5.1 and Table A.5.2 in Appendix 

A.5.1.  

 

Figure 5.4: Calibration of development (pre 2010) and validation (post 2010) cohorts 
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5.4.2 Assessing the sensitivity of the risk prediction model created to changes in patient 

characteristics 

Differences between the development and validation cohorts are shown in Table 5.1. In the 

validation cohort, patients were generally younger and healthier. As shown in Figure 5.5, the 

predicted risks in the validation cohort were significantly smaller than those in the 

development cohort. This indicates that the model did appropriately reflect the differences 

in baseline predictors between the cohorts, and the secular trend in CVD incidence could not 

be explained by this. 

 

Figure 5.5: Predicted risks in the development and validation cohort 
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Table 5.1: Baseline variables in development and validation cohorts 

 Male 
development 

Male validation Female 
development 

Female 
validation 

N 1,497,511 393,071 1,555,010 410,068 

Age 43.07 (14.84) 37.18 (12.42) 44.56 (16.22) 37.4 (13.41) 

BMI 26.07 (4.43) 26.3 (4.8) 25.54 (5.47) 25.78 (5.96) 

Cholesterol/HDL ratio 4.51 (1.4) 4.32 (1.37) 3.76 (1.21) 3.52 (1.1) 

SBP 130.67 (17.04) 127.71 (14.07) 125.15 (19.04) 119.53 (14.43) 

SBP variability 10.37 (6.92) 9.39 (6.37) 9.66 (6.21) 8.87 (5.17) 

Atrial fibrillation 0.61 0.44 0.48 0.28 

Atypical anti-psychotic 
medication 

0.25 0.62 0.23 0.58 

Corticosteroid use 0.31 0.22 0.51 0.36 

CKD stage 3/4/5 0.25 0.57 0.33 0.95 

Diabetes (type 1) 0.26 0.36 0.19 0.27 

Diabetes (type 2) 1.56 0.93 1.26 0.78 

Ethnicity = Asian other 1.56 2.84 1.49 2.88 

Bangladesh 0.34 0.79 0.24 0.48 

Black 2.93 5.80 3.12 5.90 

Chinese 0.45 0.87 0.56 1.17 

Indian 2.49 4.18 2.21 3.63 

Mixed 0.69 1.47 0.75 1.64 

Other 1.53 2.72 1.45 2.84 

Pakistan 0.92 1.94 0.76 1.64 

White 89.09 79.39 89.42 79.81 

Family history of CHD 10.67 12.36 14.89 15.80 

HIV/AIDS 0.06 0.19 0.04 0.13 

Migraine 2.71 3.85 6.73 9.30 

Rheumatoid arthritis 0.28 0.17 0.74 0.47 

Severe mental illness 4.59 4.55 9.07 6.95 

SLE 0.01 0.01 0.09 0.11 

Smoking = Never 47.37 44.77 57.03 53.30 

Smoking = Ex 16.09 20.59 14.97 22.49 

Smoking = Yes 36.53 34.63 28.00 24.21 

Townsend = 1 (least 
deprived) 

22.79 17.30 23.08 17.70 

Townsend = 2 22.32 18.38 22.76 19.03 

Townsend = 3 20.77 20.82 21.19 21.17 

Townsend = 4 20.23 22.85 19.91 22.53 

Townsend = 5 13.89 20.65 13.06 19.57 

Treated hypertension 4.82 3.28 6.81 3.81 

*BMI, body mass index; CKD, chronic kidney disease; HDL, high-density lipoprotein; SBP, systolic 

blood pressure; SLE, systemic lupus erythematosus. 
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5.4.3 Attempt to model the secular trend to remove miscalibration in validation cohort 

The calibration in the validation cohort after including secular trend into the model is shown 

in Figure 5.6. There was still an under-prediction in the second highest risk group in the 

second highest risk group for both the female and male cohorts, but overall there was a 

substantive improvement in calibration compared to not modelling the secular trend. 

 

Figure 5.6: Calibration of the validation cohort when adjusting for calendar time 

 

 

5.4.4 Developing an MSM to assess secular trend after adjusting for statin use during 

follow up. 

The average predicted risks of patients in the validation cohort before and after adjusting for 

calendar time, in the interval censored Cox and MSM setting, are presented in Table 5.2. The 

risk reduction caused by accounting for secular trend was marginally smaller under the MSM 

framework compared to the standard Cox. This means the effect of secular trend was slightly 

smaller when adjusting for statin use during follow up. However the difference would not be 

clinically significant, and there was still a large drop in risks. The hazard ratios from the two 

MSM’s are provided in Table 5.3, the coefficient of statin initiation is a causal estimate and 

can be used to help verify if the model has been derived correctly. Calibration of the interval 

censored Cox model and the MSM are presented in Appendix A.5.1, both are well calibrated. 
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Table 5.2: Average predicted CVD risk for patients in the validation cohort before and after 

secular trend was introduced, using an MSM and an interval censored Cox model 

 Predicted CVD risk (average) Relative 

reduction in risk 

 Not adjusted for 

secular trend 

Adjusted for 

secular trend 

 

Interval censored Cox 

Female 1.284% 0.826% 35.68% 

Male 1.911% 1.274% 33.31% 

Marginal structural model 

Female 1.287% 0.859% 33.24% 

Male 1.941% 1.307% 32.67% 
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Table 5.3: Hazard ratios of the categorical variables in the marginal structural model with 

and without secular trend included as a predictor variable 

 Female Male 

 Secular trend 
not 
accounted 

Secular trend 
accounted 

Secular trend 
not 
accounted 

Secular trend 
accounted 

Statin initiation 0.71 0.77 0.75 0.81 

Ethnicity: Asian other 0.95 1.07 0.99 1.11 

Bangladeshi 1.27 1.42 2.03 2.22 

Black 0.90 0.99 0.53 0.57 

Chinese 0.81 0.88 0.42 0.46 

Indian 1.27 1.36 1.22 1.29 

Other ethnic group 0.58 0.73 0.82 0.90 

Pakistani 1.24 1.39 1.93 2.12 

Townsend = 2 1.10 1.10 1.01 1.01 

Townsend = 3 1.13 1.13 1.08 1.08 

Townsend = 4 1.20 1.20 1.15 1.16 

Townsend = 5 (most 
deprived) 

1.37 1.35 1.27 1.26 

Atrial fibrillation 1.97 1.97 1.69 1.70 

Atypical antipsychotic 
medication 

1.47 1.69 1.50 1.73 

CKD stage 3/4/5 1.02 1.15 1.30 1.39 

Corticosteroid use 1.62 1.63 1.55 1.52 

Type 1 diabetes 2.31 2.31 1.51 1.49 

Type 2 diabetes 1.91 1.87 1.83 1.79 

Erectile dysfunction   1.17 1.26 

Family history CVD 1.16 1.16 1.28 1.28 

HIV 1.22 1.32 2.72 2.95 

Hypertension 1.20 1.23 1.22 1.25 

Migraine 1.19 1.19 1.21 1.21 

Rheumatoid arthritis 1.32 1.32 1.28 1.28 

Severe mental illness 1.43 1.39 1.32 1.29 

Smoking = Ex  1.12 1.14 1.10 1.12 

Smoking = Current 1.55 1.55 1.57 1.58 

SLE 1.49 1.51 1.29 1.26 

*CKD, chronic kidney disease; SLE, systemic lupus erythematosus. 
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5.5 Discussion 

This results in this paper show that not modelling the secular trend in CVD incidence in 

England causes over prediction of risks for patients in the present day. Also, the secular trend 

in CVD incidence cannot be explained by changes in statin use over time, because when 

adjusting for calendar time in the MSM framework the risk predictions of patients in the 

validation cohort still dropped substantially.  

These findings support the need to adjust for calendar time in prediction models used to drive 

clinical decision making in England. However the drop in risk caused by accounting for this 

secular trend is drastic and changes should not be made in practice without the generation 

of more evidence. Most importantly, these findings should be reproduced in a different 

dataset. This should not be difficult as QRISK3 has been developed in the QResearch database, 

and QRISK2 has been externally validated in the Health Improvement Network database.100 

This means analysis ready datasets exist and could be tested for secular trends in CVD with 

minimal extra work.  

The next step would then be to try and identify what is causing this drop in CVD incidence. In 

this study, we ruled out one potential cause, the use of statins during follow up. If it is driven 

by changing recording practices, this would be another reason not to model it. Primary care 

records in particular may be susceptible to differential recording over time as monetary 

incentives are given for recording specific things. However, a large portion of the events are 

identified in HES and ONS which will not have suffered from the same level of differential 

recording. This is backed up by the trends reported in the literature, which are also not based 

on primary care codes.53–56 Further work in a causal framework to establish what is causing 

this drop would be really valuable and could provide a much stronger argument for modelling 

the secular trend (e.g. if its driven by lifestyle changes). However, given the current evidence, 

there is still not a strong argument against modelling it. 

Risk scores should be based on current data; this is why the series of QRISK models have used 

a rolling window for their development datasets. If there was a much higher incidence of CVD 

in the 1990s due to various differences in healthcare management, we would not want to 

incorporate this into current risk scores as it would inflate the risks. Therefore, there is also 

no reason to assume the incidence of CVD has been the same throughout the time window 
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of data we are using. In this sense, current approaches to risk prediction are contradictory. 

We are happy to omit old data from our cohort periodically to reflect changes in the 

population; but we are not willing to model changes in the population over the time period 

in which we have defined our cohort. If wanting to do so, dynamic models are what should 

be used to model changes over time.  

With respect to the dynamic modelling methods outlined by Jenkins et al.,149 the current 

approach in England implemented by QRISK series is discrete model updating (models are re-

calculated in a more recent dataset each year). In this chapter, we modelled the secular trend 

by including a calendar time variable at baseline. This effectively allowed the intercept (or 

baseline hazard) to vary by calendar time, and is a special case of a varying coefficient model. 

However, there are more complex methods such as Bayesian model updating and varying 

coefficient models that allow changes in predictor coefficients over time, and could give more 

control over how the secular trend is modelled. If a dynamic model was to be developed for 

use in practice, these methods should be considered, alongside how to how to use these 

methods within an MSM framework. Arguably the use of an MSM should be standard 

procedure in the presence of ‘treatment drop in’ during follow up, as a normal Cox model 

under predicts the risk of patients if they were to remain untreated, which is what treatment 

decisions should be based on.169 If modelling a secular trend in the outcome that was being 

partially driven by this treatment drop in (which was not the case in this study), it would be 

even more important to work under an MSM framework. However, currently it is not clear 

how the more complex dynamic modelling approaches would be handled in an MSM 

framework. This is therefore a key area for future research. 

5.5.1 Limitations 

There are several limitations to the study. The first is that the estimate of 𝐸[𝑌(𝐴 = 0)|𝑋0]  is 

only valid if the assumptions of exchangeability, consistency, positivity (identifiability 

assumptions) and correct model specification are all met. The untestable assumption of 

exchangeability, or no unmeasured confounding, represents the fundamental problem with 

deriving causal estimates from observational data. If violated the estimate of statin treatment 

will be biased (and subsequently the risk scores conditional on no statin treatment during 

follow up will be biased too). Given the large number of predictors available we hope that the 
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unmeasured confounding is not too extensive. The consistency assumption, that a subject’s 

counterfactual outcome under their observed exposure history is precisely their observed 

outcome, is generally considered a reasonable assumption when estimating the effects of 

medical treatments.172 This is maybe less true in our data as a patient could initiate statins 

any time over a 6 month period and be assigned the same exposure value. However we did 

not believe that initiating within a 6 month interval would have a significant impact on the 

outcome, and reducing the size of the intervals would have been impractical. The positivity 

assumption, that there were unexposed and exposed individuals at every level of the 

confounders, was reasonable given the large size of the development dataset and the 

resulting number of statin initiations. 

The assumption of correct model specification, as is the case with all models, will have been 

violated to some extent in this study. For example, the fractional polynomials of continuous 

variables calculated from the standard Cox models were used in the MSM. It was not clear 

how to estimate optimal functional forms under the MSM framework, but re-using the 

functional forms from the Cox models provided better model performance than just having 

linear terms. Also, not all variables and interaction terms from the MSM were used in the 

model to calculate the weights. Doing so produced extreme values weights, and therefore 

variables in the weighting models were chosen to minimise this. This follows the advice of 

Cole and Hernan, who state “one may wish to omit control for weak confounders that cause 

severe non-positivity bias because of a strong association with exposure”.172 There is no clear-

cut way to do this, and therefore a more appropriate set of predictors in the weighting model 

may have existed. Finally, we only considered the effect of initiating statin treatment. A more 

detailed MSM which also modelled discontinuation from treatment would allow the 

calculation of a patients risk if they were to initiate treatment at baseline and not discontinue 

(or discontinue after a fixed period of time), as opposed to just the risk if they initiate 

treatment at baseline. However, the density of data available in CPRD, or any other primary 

care electronic health record is probably not sufficient for this. To model statin initiation and 

discontinuation at that granularity, more regular updates on predictor variables would be 

required. 

The second limitation was that the results are not directly applicable to the models used in 

practice in the UK, which are based on 10-year risk scores. However, we have no reason to 
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think the results would not be generalizable because a similar secular trend was found in 

previous work when dealing with 10-year risks.1 The third limitation was the level of missing 

data. Changes in the time varying predictor variables is what drives the weighting in the MSM 

in order to calculate the effect of statin initiation. Therefore not having predictor information 

at each time point, and re-using predictor information from previous time points may have 

led to a biased estimate of statin initiation.  

One way to assess the potential impact of limitations 1 (violating assumptions) and 3 (missing 

data) was to check the hazard ratio for initiating statin treatment (ranging between 0.71 – 

0.81) was in a sensible range. We compared this to the effect estimates of statins from trials 

reported in the appendices of the NICE guidelines (see section L.2.3.4),84 and there is 

reasonable agreement. It should be noted that they report relative rates for specific CVD 

outcomes which are not directly comparable to our composite definition. However, the 

similarities that exist still ease concerns over limitations 1 and 3, and that the model was well 

specified despite these limitations.  

5.5.2 Conclusions 

In conclusion, inclusion of the secular trend into the model substantially changed the CVD risk 

predictions. Models that are being used in clinical practice in the UK do not model secular 

trend and may thus overestimate the risks, possibly leading to patients being treated 

unnecessarily. 
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6 The impact of statin discontinuation and restarting rates on 

the optimal time to initiate statins and on the number of 

cardiovascular events prevented 

Alexander Pate, Rachel A Elliott, Georgios Gkountouras, Alexander Thompson, Richard 

Emsley, Tjeerd van Staa 

 

6.1 Abstract 

Introduction: A patient is eligible for statins in the United Kingdom if they have a 10-year risk 

of cardiovascular disease of 10% or more. We hypothesise that if statin discontinuation rates 

are high it may be better to delay statin initiation until patients are at a higher risk, to 

maximise the benefit of the drug. 

Methods: A four-state health state transition model  was used to assess the optimal time to 

initiate statins after a risk assessment, in order to prevent the highest number of 

cardiovascular events, for a given risk profile (age, gender, risk) and adherence rate. A CPRD 

dataset linked to HES and ONS was used to inform the transition probabilities in this model, 

taking into account observed statin discontinuation and re-continuation patterns.  

Results: Our results suggest, if statins are initiated in a cohort of 50 year old men with a 10% 

10-year risk, we prevent 4.78 events per 100 individuals. If we wait 10 years to prescribe, at 

which point 10 year risk scores are at 20%, we prevent 5.45 events per 100 individuals. If the 

observed discontinuation rate was reduced by a sixth, third or half in the same cohort, we 

would prevent 7.29, 9.01 or 10.22 events per 100 individuals.  

Conclusions: Based on discontinuation rates in England, evidence suggested there could be 

benefit to delaying statin past the 10% threshold in certain scenarios, but this approach has 

ethical concerns. Furthermore, the optimal time to initiate statins was driven by age, not 

cardiovascular risk. 
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6.2 Background 

Cardiovascular disease is the number one cause of death globally accounting for 31% of all 

deaths in 2017,173 and contributes more than any other disease to the total disease burden 

around the globe.174 Treatment for primary prevention of cardiovascular disease is centred 

around lifestyle modifications such as changes to diet and exercise, and cholesterol-lowering 

medication such as hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins). There 

has recently been a lot of debate in the literature over what the risk threshold to be eligible 

for statins in primary prevention of cardiovascular disease should be. Both England45 

(National Institute for Health and Care Excellence guidelines) and the US79 (American College 

of Cardiology/American Heart Association guidelines) have recently dropped their thresholds 

to a 10-year risk of 10% and 7.5%, respectively. However, the European Society of Cardiology 

still recommends a 10-year risk of a fatal cardiovascular event of 5%, which equates to about 

a 15% risk of any cardiovascular event,66 while in Scotland the recommended threshold is 20% 

for asymptomatic individuals.64 In support of higher thresholds, a recent study found that 

statins only provide a net benefit over possible harms at higher 10-year risks than the 

thresholds in current guidelines, and the benefits vary considerably by age and sex.92  

One factor that will affect the real-world impact of these guidelines is the widely reported 

suboptimal long-term adherence to and discontinuation from statins.175–177 Studies 

examining factors affecting adherence to statins report consistent relationships between 

non-adherence and female gender, ethnic minority status, reduced income, lower number of 

concurrent cardiovascular medications, new statin users, use of statins for primary 

prevention, smoking, depression, reduced follow-up and increased copayments,178–181 while 

a recent high profile meta-analysis concluded that exaggerated claims about side-effect rates 

with statin therapy may be responsible for its under-use among individuals at increased risk 

of cardiovascular disease.83 The analyses underpinning the treatment thresholds do not 

incorporate the effects of non-adherence or discontinuation directly. We suggest that policy 

decisions around lowering of treatment thresholds may need to take account of real-world 

statin discontinuation rates in primary prevention. The reason could be that patients are 

initiating statins at a low risk and then discontinuing the drug when at a higher risk (risk 

increases with age), not maximising the benefit of the drug. 

 



140 
 

The overall aim of this study was to assess the optimal time to initiate statins after a risk 

assessment in order to prevent the highest number of cardiovascular events, given a patient’s 

risk profile, and long-term adherence levels derived from real life data. We refer to adherence 

throughout this study specifically in relation to the combination of discontinuation and 

restarting rates. We also developed a range of scenarios where discontinuation rates were 

artificially decreased, allowing us to evaluate the effect that improving adherence would have 

on the number of cardiovascular events prevented. 

 

6.3 Methods 

6.3.1 Overview of simulation model design 

A four-state health state transition model with cycle length of one year was created (Figure 

6.1) to answer our primary aim. Each scenario (age, gender, 10-year cardiovascular risk score 

and assumed adherence rate) represented a patient having their 10 year risk assessment, 

which is when a clinician would decide whether to initiate statin treatment. We varied the 

year of follow-up in which statins were initiated, and calculated the total number of 

cardiovascular events expected. For the main analysis the discontinuation and restarting rates 

were derived directly from the CPRD cohort, then for subsequent analyses the 

discontinuation rate were artificially decreased. The cost effectiveness of statins at various 

risk thresholds has already been extensively covered).84 Instead, this model is set up to 

calculate the number of incident cardiovascular events prevented by initiating statins at 

different times, assuming real life risk profiles and adherence rates, and is what makes this 

study unique. 

6.3.2 Data source 

This project used data from the Clinical Practice Research Datalink (CPRD) linked with Hospital 

Episodes Statistics (HES) and Office for National Statistics (ONS). CPRD is a primary care 

database representative of the UK in terms of age, sex and ethnicity,48 although linkage to 

HES restricts this dataset to England only. The data were used to create two cohorts, a cohort 

of statin users (statin cohort) and a cohort of patients at risk of cardiovascular disease 

(primary prevention cohort). 
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Figure 6.1: Design of the health state transition model 

 

*𝑝𝑐 is the probability of a cardiovascular event; 𝑝𝑐−𝑎𝑑𝑗 is the probability of a cardiovascular 

event, while receiving statin treatment; 𝑝𝑑𝑒 is the probability of death (mortality); 𝑝𝑑𝑖 is the 

probability of discontinuing statin treatment; 𝑝𝑟 is the probability of restarting statin 

treatment. 

 

The primary prevention cohort was defined in the same way as the QRISK3 development 

cohort.5 To be eligible for the cohort, a patient must have had one day of follow up in CPRD 

that met the following inclusion criteria: 1) Aged 25 – 84, 2) Within study period of 1st Jan 

1998 to 31st Dec 2015, 3) at least one year prior follow up. The cohort entry date for a patient 

was defined as the first date that met all these criteria. Patients were excluded if they met 

the following exclusion criteria: 1) Cardiovascular event (identified through CPRD, HES or 

ONS) or statin prescription prior to cohort entry date (code lists provided on GitHub103). 

Patients were censored at the earliest date of transferred out of practice, last data collection 

for practice, death, or 31st Dec 2015.  

Inclusion criteria for the statin cohort was: 1) One or more statin prescriptions between 1st 

Jan 1998 and 31st Dec 2015 (code list for statins on GitHub103), 2) Aged 25 or over on date of 

first statin prescription. Exclusion criteria were: 1) Cardiovascular event prior to first statin, 2) 

Less than one year follow up prior to first statin prescription. Exclusion criteria 2 is to ensure 

all patients are first time users of statins, rather than current users who have transferred from 
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another practice. A patient entered the cohort on the date of their first statin prescription 

and exited the cohort at the end of that statin treatment period (detailed definition in 

Appendix A.6.1). A patient could leave and re-join the cohort (at the start of their next 

treatment period) multiple times before their censoring date. A patient was censored if 

transferred out of practice, at the end of data collection, death or occurrence of a 

cardiovascular event.  

6.3.3 Estimation of transition probabilities  

Cardiovascular event transition probabilities were calculated from the primary prevention 

cohort. A lifetime risk model was fitted using standard techniques for developing lifetime risk 

models.161,182,183 This involved fitting a Cox model with age as the time scale, the outcome 

was time until first cardiovascular event, and the same predictor variables as QRISK35 (atrial 

fibrillation, atypical antipsychotic use, body mass index (BMI), cholesterol/high-density 

lipoprotein (HDL) ratio, chronic kidney disease (CKD, stage 3/4/5), corticosteroid use, erectile 

dysfunction (male model only), ethnicity, family history of CVD, HIV/AIDS, hypertension 

(treated), migraine, rheumatoid arthritis, severe mental illness, systolic blood pressure (SBP), 

SBP variability, smoking status, systemic lupus erythematosus, type 1 diabetes, type 2 

diabetes and Townsend deprivation score; code lists and information about variable 

derivation provided in Chapter 2).  Using the baseline hazard from this model, for a given age 

the hazard ratio could be adjusted to obtain a specific 10 year risk (for each scenario), and 

from this the corresponding lifetime risk could be derived. After deriving this, the conditional 

probability of having a cardiovascular event in each year of follow up was calculated 

(conditional on not having had an event prior to that year), giving the transition probabilities 

𝑝𝑐. Full details on derivation provided in Appendix A.6.2, and calibration of the Cox models 

used in Appendix A.6.3.  

The transition probabilities of a cardiovascular event while on statin treatment were 

calculated as 𝑝𝑐−𝑎𝑑𝑗 = ⁡0.7 ∗ 𝑝𝑐. This estimate of statin effectiveness (relative rate: 0.7) was 

taken from the National Institute for Health and Care Excellence economic model for cost 

effectiveness of statins45,84, based on using high intensity statin regimens.  Given the varying 

incidence of each component of the outcome across different age categories and sexes, any 

single estimate of the relative rate on the composite outcome would be somewhat arbitrary. 
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We therefore chose 0.7 as a conservative estimate for the effect of statins, given that the 

estimated risk ratio for high-intensity statins on Myocardial Infarction and Angina was 0.46, 

and on transient ischaemic attack and stroke was 0.8. 

The probabilities of discontinuing and restarting statins were calculated using the statin 

cohort. The data were split into different groups: first treatment period, off treatment for first 

time, second treatment period, off treatment for second time, etc. Kaplan Meier curves were 

then fit to each group and the probability of a patient discontinuing/restarting during each 

day of follow up was calculated. As the duration of follow-up in the simulation was longer 

than in our data, the discontinuation/restarting rates were extrapolated. If a patient 

discontinued for a third time we made the assumption they did not restart treatment because 

the discontinuation rate in the fourth treatment period was high (76%/90% after 1/2 years), 

and only 314 patients remained in this cohort after 5 years (see results section 6.4.2). For the 

first treatment period discontinuation rates were stratified by age (this was not possible for 

subsequent periods as sample size was deemed too small for some subgroups). A Cox model 

was fit to the discontinuation data from the first treatment period with age as a predictor 

variable, considering fractional polynomials of age using the mfp package.131 This allowed the 

discontinuation rate to be a function of age. Full details of the stratification and extrapolation 

of the discontinuation rates is provided in Appendix A.6.4. 

The transition probabilities of non-cardiovascular related death were calculated using the 

primary prevention cohort. The date of death was based on the data as recorded in primary 

care, shown to have 92% concordance with ONS within two weeks.184 These data were 

combined with ONS, for which we had linkage to cardiovascular disease related deaths. 

Deaths identified in primary care that were cardiovascular disease related were then 

excluded. Incidence rates of death across each age category were then calculated.  

6.3.4 Implementation of the simulation 

Different scenarios were simulated based on a patient having a risk assessment (start of the 

simulation), and the decision of whether to initiate statins straight away, or delay. Variables 

that made up the different scenarios were: age, gender and 10-year cardiovascular disease 

risk at the start of the simulation, the statin initiation date, and an assumed adherence rate. 

The ages considered were 40, 50 and 60. For each age, we considered all 10 year risks within 
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the 1 – 99th percentile range of risk scores calculated for patients in that age group from our 

primary prevention cohort.  The statin initiation date was varied in yearly intervals from the 

start of simulation. Given the discontinuation rate for the first treatment period was stratified 

by age, this meant the age at statin initiation time impacted the discontinuation rate used in 

each scenario. Duration of follow up was from the age at start of the simulation (risk 

assessment), until 90 years of age, and therefore varied depending on the age specified for 

the scenario. Cycle lengths were one year. For each scenario we simulated 10,000 patients 

and calculated the number of cardiovascular events over the course of the entire duration of 

follow up, which was compared with the number of events if no statins were given, providing 

the number of events prevented per 100 people.  

This process was repeated using four different adherence rates. The discontinuation rate 

from the first, second and third treatment periods were altered so that the probability of 

discontinuation was 5/6th, 2/3rd, ½ or 0th (100% adherence) of the rate derived from CPRD. 

6.3.5 Sensitivity analyses 

The simulation was also run assuming a treatment effect of 0.65 and 0.6, given the uncertain 

nature of the estimate used in the primary simulation. Also, simulations were run using 

discontinuation and restarting rates from a cohort of statin users where any single 

prescriptions were removed, a step often taken to identify cohorts of long term statin users. 

 

6.4 Results 

6.4.1 Cohort characteristics 

Table 6.1 contains baseline characteristics of the two study cohorts, stratified by gender. 

Patients were older in the statin cohort, (63.50/59.80 vs 42.07/41.84 for females and males 

respectively), had higher BMI, cholesterol/HDL ratio, systolic blood pressure and fewer never 

smokers compared with the primary prevention cohort. Comorbidities were also more 

common. 
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Table 6.1: Baseline table for statin cohort and CVD primary prevention cohort 

 

 

Statin users 

cohort: female 

Statin users 

cohort: male 

Primary prevention 

cohort: female 

Primary prevention 

cohort: male  

N 161,995 181,090 1,965,078 1,890,582 

Demographics 

Age [mean, (sd)] 63.49 (11.05) 60.07 (11.09) 43.07 (15.94) 41.84 (14.57) 

Townsend: 1 22.84% 24.91% 21.96% 21.65% 

2 23.13% 23.77% 21.98% 21.50% 

3 20.66% 20.40% 21.18% 20.78% 

4 20.06% 18.80% 20.46% 20.78% 

5 13.30% 12.12% 14.42% 15.29% 

Test data 

Body mass index 

[mean, (sd)] 

29.26 (6.33) 28.95 (5.04) 25.60 (5.60) 26.12 (4.54) 

Cholesterol/ high 

density lipoprotein 

ratio [mean, (sd)] 

4.36 (1.48) 4.88 (1.61) 3.72 (1.20) 4.48 (1.40) 

Systolic blood 

pressure [mean, (sd)] 

140.52 (18.39) 140.78 (17.25) 123.91 (18.28) 130.03 (16.48) 

Systolic blood 

pressure variability 

[mean, (sd)] 

13.10 (5.80) 12.15 (5.89) 9.47 (5.98) 10.13 (6.80) 

Smoking status Never = 46.79% 

Ex = 30.33% 

Current = 22.87% 

Never = 32.35% 

Ex = 40.42% 

Current = 27.23% 

Never = 56.04% 

Ex = 16.97% 

Current = 26.99% 

Never = 46.63% 

Ex = 17.48% 

Current = 35.99% 

Medical History 

Atrial Fibrillation 2.85% 3.61% 0.44% 0.57% 

Chronic Kidney 

Disease stage 3/4/5  

7.13% 4.00% 0.45% 0.32% 

Family history of 

coronary heart disease 

29.17% 23.02% 15.08% 11.02% 

Rheumatoid arthritis 2.08% 0.87% 0.69% 0.26% 

Treated hypertension 49.03% 43.84% 6.18% 4.50% 

Type 1 diabetes 1.33% 1.72% 0.21% 0.28% 

Type 2 diabetes 21.28% 22.33% 1.16% 1.42% 
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6.4.2 Discontinuation and restarting of statins 

Figure 6.2 presents the discontinuation (A) and restarting (B) rates over the first 10 years of 

each treatment and restarting period. This demonstrates that 30% patients have stopped 

taking statins by the end of the first year of follow-up during the first treatment period, 38% 

have stopped after 2 years, and by 10 years 60% have stopped. Of all the patients that 

discontinue, 50% have restarted a year after the initial discontinuation, 59% after 2 years, and 

79% after 10 years. The second discontinuation and restarting rates suggest patients are more 

likely to discontinue/restart during the subsequent treatment periods. Graphs for the 

discontinuation rate in the first treatment period stratified by age, extrapolated 

discontinuation and restarting rates beyond our period of data, and discontinuation and 

restarting rates for the cohort of long term statin users (no single prescriptions) are all 

presented in Appendix A.6.4 and A.6.5. 

 

Figure 6.2: Kaplan Meier plots of the time until discontinuation and restarting statins for the 

first, second, third and fourth discontinuation periods, and the first, second and third restarting 

periods. 
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6.4.3 Effect of delaying initiation on cardiovascular events 

Figure 6.3 shows the number of cardiovascular events prevented compared to no statin 

treatment when delaying statin initiation by different amounts (for males; females results are 

in Appendix A.6.6). Each data point in the graphs represents a different scenario. We present 

separate graphs defined by the age at the start of the simulation. Within each graph, we have 

a separate trajectory for each risk group (10-year risk at risk assessment). Within each 

trajectory the cohort of individuals is the same for each data point, the only difference is the 

year of follow up in which we initiated statin treatment (and therefore the risk level of the 

individuals at statin initiation also). We are interested of the maxima of each trajectory, which 

represents the optimal time to initiate statins for this group.  For males aged 40, a delay of 15 

years in starting statins resulted in a marginally higher number of cardiovascular events 

prevented. In contrast, for males aged 60, a delay in starting statins resulted in fewer 

cardiovascular events prevented due to competing effects of mortality. Results were similar 

for the female cohort, although the trajectories were shifted by around five years, with it 

being optimal to prescribe slightly later (Appendix A.6.6). 

Illustrative example: Consider prescribing statins to a cohort of 50-year old men with a 10% 

10-year risk of cardiovascular disease, we prevent 4.78 events per 100 individuals over the 40 

year follow up. If we took this same cohort of men, but instead waited 10 years before 

initiating statins, at which point their 10-year risk of cardiovascular disease would be 

approximately 20%, then we prevent 5.45 events per 100 individuals over the 40 years follow 

up. 
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Figure 6.3: Number of cardiovascular events prevented per 100 people over the duration of 

follow up with different time delays in starting statins, stratified by baseline age and 10 year 

risk of cardiovascular disease (male) 
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6.4.4 Effect of increasing statin adherence on cardiovascular events 

Figure 6.4 shows the effect of reducing the discontinuation rate to 5/6, 2/3, 1/2 of the rate 

we found in practice, and no discontinuation. For each age group, a single 10 year risk (close 

to the median of that age group) was selected to showcase the effects, so all trajectories 

within a plot consider the same group of patients. It’s shown the more adherent to statins 

people are, the more benefit they receive, and this benefit is increased the earlier prescribing 

is initiated (for males; females results are in Appendix A.6.6). This is in contrast to the 

trajectory derived from real-life discontinuation rates, which suggests little difference 

between initiating statins at age 50 or 60.  

Illustrative example: Consider prescribing statins to a cohort of 50-year old men with a 7% 10-

year risk of cardiovascular disease. Per 100 individuals, 4.25 events are prevented if 

discontinuation rates remain as normal, 6.52 if discontinuation is reduced to 5/6, 8.06 events 

if discontinuation is reduced to 2/3, 9.15 events if discontinuation reduced to 1/2, and 10.51 

events if there is no discontinuation. The equivalent number of events prevented for a cohort 

with 10% 10-year cardiovascular risk are 4.76, 7.29, 9.01, 110.22 and 11.77. 

Results from all sensitivity analyses outlined in the methods are provided in Appendix A.6.6. 

A small discussion is also provided, the results echoing those from the primary analysis, 

except there were slightly larger gains to be made by delaying statin initiation in women by 

the same amount. 
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Figure 6.4: Number of cardiovascular events prevented per 100 people over the duration of 

follow up with different time delays in starting statins, stratified by baseline age and 

discontinuation rate (male) 
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6.5 Discussion 

There are three key findings from this study. The first is that between the ages of 40 - 70, the 

statin initiation time had a meaningful effect on the number of events prevented. 

Furthermore, the risk score of a patient had a negligible effect on the optimal time to initiate 

statins, which was driven by age. The second is that discontinuation and restarting rates get 

higher with consecutive treatment periods, underlining a complex pattern of statin usage 

over time. The third is that large gains could be made by improving adherence.  

We see fairly large differences in the number of events prevented when statins were initiated 

between the ages of 40 – 70 with a peak around age 59 (male) or 63 (female), regardless of 

the risk scores of the patients. Initiating statins below the age of 50 was associated with far 

fewer events prevented, however it is unlikely for patients this young to have a risk > 10% 

(the threshold for cost effectiveness), and so this is unlikely to happen in practice. However 

it is not uncommon for a 50 year old to have a risk of 10% or more. Our data indicates that 

delaying statin initiation by 10 years could prevent an extra 0.67 events per 100 men treated, 

and 0.96 events per 100 women treated. These gains are small but not insignificant, and are 

likely driven by the fact that adherence improves with age (until around age 70, see Figure 

A.6.3), but also patients will not take the drug forever, and secondary or tertiary users are 

less likely to continue with treatment (Figure 6.2). There is therefore an optimal spot to be 

found which ensures patients are offered the drug when they are most adherent, at a high 

enough risk to gain benefit, but also that the risk of death or having a CVD event prior to 

receiving treatment is small enough.  

Interestingly, for a given adherence level, the optimal time to prescribe is driven primarily by 

age rather than the 10-year risk (motivation for carrying out this study was that it may be best 

to initiate statins when patients reach a certain risk threshold). In Figure 6.3 the maxima of 

each trajectory are at the same age despite differing risk levels. This suggests that given the 

adherence levels we see in practice, in order to prevent the most events in the population, 

the optimal time to initiate statins for men is around 59 (women 63), irrespective of the risk 

score of the patient. While the risk score drives whether taking statins is cost effective or not, 

it does not drive when the optimal time in a patient’s life to take statins is, which our work 

suggests is driven by age. The distinction can be highlighted by if a patient has perfect 
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adherence (Figure 6.4), the optimal time to initiate statins is as early as possible, but the 

treatment may not be cost effective at this point. 

The potential to prevent more events in the population using such an approach brings up 

some important ethical concerns. Gains would be made from ensuring all patients will receive 

the drug when it will have most benefit (not too early, not too late). However, alongside any 

gains made by delaying statin initiation to a certain age, there will be a cost to adherent 

patients who would have continued treatment if starting at a younger age. Arguably it is 

unethical to improve the health of the population in this manner. In an ideal world we would 

know the adherence of a patient before initiating them on treatment, and could then initiate 

at the most appropriate time for that patient. Unfortunately this is not possible, and we would 

be forced to use population level discontinuation rates, which has these concerns. 

We found inconsistent use of statins by patients in primary prevention. We also found higher 

discontinuation and restarting rates during the later treatment periods. This provides extra 

information beyond the current literature, which reports the initial discontinuation and 

restarting rates.177 Figure 6.4 highlighted improving adherence could have a larger impact 

than adjusting when we initiate patients. This is not unsurprising, given this results in more 

time on treatment, however could be difficult to achieve. The most recent Cochrane review 

of 35 studies of statin adherence improving interventions suggested that only intensified 

patient care interventions (electronic reminders, pharmacist-led interventions) improved 

adherence when compared with usual care.185 Like other studies,177,186 this study suggests 

that people are likely to discontinue their statin when it is newly prescribed. Targeting a 

patient-centred, theory-based low-cost intervention which focuses on patients’ concerns 

during this key initial period has been shown to improve adherence by 11% in a range of 

chronic illnesses,187,188 and forms the basis of a National Health Service commissioned service 

in England (New Medicines Service189). This service is not currently provided to people 

starting statins, however, a randomised controlled trial of delivery of the same intervention 

in long term statins users demonstrated improved adherence.190 This suggests that extension 

of the New Medicine Service into statin users could demonstrate effectiveness.  
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6.5.1 Limitations 

There were three key limitations we identified in this study. 1) We used prescription data as 

a proxy for patients taking statins. This is a limitation as we only know a patient was given a 

prescription by their GP, we do not know if they picked the drug up, or took the drug. 

Therefore there is a possibility discontinuation rates are higher in practice, which would push 

the optimal time to prescribe further back. However there is currently no better way to 

measure adherence in the UK on a large scale, until prescribing and dispensing data are 

linked. Secondly, we only consider patients on treatment if they continually pick up their 

prescriptions (i.e. our algorithm). We think it is unlikely patients will have discontinued 

treatment but continue to pick it up. 2) We extrapolated the statin discontinuation and 

restarting rates for the length of the simulation. Data on statin usage over an individual 

patient’s lifetime would be highly valuable to inform work such as this, but is not available. 3) 

We did not stratify the second and third discontinuation rates or first and second restarting 

rates based on age, despite age being a predictor of statin adherence.191 Our reasoning is that 

this would have significantly reduced the cohort size available to calculate discontinuation 

rates, a particular issue for the second and third treatment periods at 10 years follow up. 

Given we were extrapolating data from this point, this was undesirable. Given the impact of 

discontinuation rates on the optimal time to initiate therapy, further work could be done to 

explore the impact of changes in statin intensity and dose on discontinuation rates, and 

subsequently the best time to implement these changes.  

6.5.2 Conclusions 

In certain scenarios, a small but not insignificant number of extra CVD events could be 

prevented  by delaying statin initiation beyond a risk of 10% until reaching a certain age (59 

for men, 63 for women). These findings are based on the discontinuation and restarting rates 

in England. Currently all thresholds are based around a patient’s risk score, which drives cost 

effectiveness. However a combination of age and adherence levels are the most important 

factors in determining the optimal point in a patient’s life to initiate statins. However, the 

clinical benefit must be weighed up against ethical concerns of such a strategy, which may 

disadvantage the most adherent patients. A less controversial strategy which could result in 
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preventing more events would be to focus on improving adherence, although this may be 

harder to achieve. 
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7 Impact of lowering the risk threshold for initiating statin 

treatment on statin prescribing 

Mr Alexander Pate, Richard Emsley, Tjeerd van Staa 

 

7.1 Abstract 

Background: In 2014 the National Institute for Health and Care Excellence changed the 

recommended threshold for initiating statins from a 10-year risk of cardiovascular disease 

(CVD) of 20% to 10% (CG181), making 4.5 million extra people eligible for treatment. 

Aim: To evaluate the impact of this guideline change on statin prescribing behaviour. 

Design and Setting: A descriptive study using data from Clinical Practice Research Datalink 

(primary care database in England). 

Method: We identified people aged 25–84 being initiated on statins for the primary 

prevention of CVD. CVD risk predictions were calculated for every person using data in their 

medical record (calculated risks), and were extracted directly from their medical record if a 

QRISK score was recorded (coded risks).  The 10-year CVD risks of people initiated on statins 

in each calendar year was compared. 

Results: The average ‘calculated risk’ of all people being initiated on statins was 20.65% in the 

year before the guideline change, and 20.27% after. When considering only the ‘coded risks’, 

the average risk was 21.85% before the guideline change, and 18.65% after. The proportion 

of people initiating statins that had a coded risk score in their medical record increased 

significantly from 2010 – 2017. 

Conclusion: Currently available evidence, which only considers people with coded risk scores 

in their medical record, indicates the guideline change had a large impact on statin 

prescribing. However, that analysis likely suffers from selection bias. Our new evidence 

indicates only a modest impact of the guideline change. Further qualitative research about 

the lack of response to the guideline change is needed. 
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7.2 Background 

In July 2014 the National Institute for Health and Care Excellence (NICE) changed the 

recommended threshold for initiating statin treatment for primary prevention of 

cardiovascular disease (CVD) from a 10-year CVD risk of 20% to 10% (CG181).45 This decision 

came alongside huge debate in academic and clinical literature as lowering thresholds could 

have a huge impact on clinical practice.81,83,86 It was estimated that the guideline change 

would make a total of 11.8 million people in England (37% of adults aged 30 – 84) eligible for 

statins,192 and was met with opposition by a group of leading doctors.47 NICE estimated that 

an additional 4.5 million people would be eligible for statins, preventing up to 28,000 heart 

attacks and 16,000 strokes each year.193 Without an increase in statin prescribing in people 

with risks between 10 – 20%, this number of extra CVD events would not be prevented. 

To our knowledge, only one study has assessed the impact of this major guideline change in 

practice (see section “Impact of NICE guidance”).97 In England, the QRISK35 (previously 

QRISK299) risk prediction model is recommended by NICE for calculating the 10-year risk of a 

CVD event to guide treatment decisions for the primary prevention of CVD. The study 

analysed people that were initiated on statin treatment and had a QRISK2 score recorded in 

their electronic health record. They found that the average risk score of people receiving 

statins dropped from 23.06% before the guideline change to 19.28% after.97 This provides 

evidence the guideline change was impactful and the results are quoted in the NICE impact 

report for cardiovascular disease prevention.194 However the same study also reports that 

since 2012, 72.9% of people initiated on statins did not have a QRISK2 score recorded.  

The aim of the present study was to evaluate the impact of reducing the risk threshold from 

20% to 10% by analysing the risks of all people being initiated on statins for primary 

prevention of CVD. We also replicate the analysis carried out by Finnikin et al.,97 considering 

only people with a QRISK score in their medical record. 
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7.3 Methods 

7.3.1 Cohort definition 

This project used data from the Clinical Practice Research Datalink (CPRD)48. This data was 

linked with Hospital Episodes Statistics49 and Office for National Statistics50 for identifying 

CVD events. Linkage to HES restricts this dataset to England only. Two cohorts were defined, 

a primary prevention cohort and a statin initiation cohort. The primary prevention cohort 

consisted of people aged 25 – 84 with no history of CVD (composite outcome of coronary 

heart disease, ischaemic stroke or transient ischaemic attack) or statin use. The cohort entry 

date was defined as the last of 25th birthday, one year permanently registered in CPRD, or 1st 

Jan 1998. People were excluded if they had a CVD event or statin prescription prior to their 

cohort entry date (code lists in Appendix 1). People were censored at the earliest date of 

transferred out of practice, last data collection for practice, CVD event, death, or 31st Dec 

2017. 

An individual from the primary prevention cohort was included in the statin initiation cohort 

on the date of their first statin prescription if this first statin prescription was issued at least 

one year after the start of follow up  

7.3.2 Statin initiation rate 

The primary prevention cohort was used to calculate the statin initiation rate each year. For 

each calendar year we calculated the total number of statin initiations and the total number 

of days follow up. Follow up for each person stopped either when they were censored or 

initiated on statin treatment. Calendar years ran from the 1st July each year, to match the 

date at which the guidelines were changed (July 2014). The final period (2017 – 2018) finished 

on 31st Dec 2017.  

7.3.3 Comparisons of risks of people initiated on statins each year 

For each individual in the statin initiation cohort, we extracted all the predictors required to 

generate a QRISK35 score from their electronic health record (EHR). A full list of variables, 

code lists, information on variable derivation, the amount of missing data and details of the 

imputation process are in Supplementary Boxes S1 and S2. The 10-year CVD risk of each 
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person at statin initiation was then calculated using QRISK3,5 an R package was used for 

this195. We refer to these as the ‘EHR derived risks’. 

Where recorded, we extracted coded QRISK scores directly from the electronic health record 

if they were within 180 days prior to or 30 days after the first statin prescription (code list in 

Supplementary Box S1). These risk scores are referred to as ‘coded risks’, and are used to 

replicate the analysis by Finnikin et al.97 The coded risks will have been calculated using a mix 

of iterations of the original QRISK196 algorithm and the QRISK299 algorithm.  

The following analyses were carried out using both the EHR derived and coded risks. The 

average risk of people initiated on statins in each calendar year was calculated. Intervals ran 

from 1st July, as to match the date of the threshold change, which was July 2014. We 

calculated the proportion of people initiated on statins each year that were classified as low 

risk (< 10%), intermediate risk (10 – 20%) or high risk (> 20%).  

The agreement between the EHR derived risks and coded risks was evaluated using scatter 

plots. This was done to check agreement between the EHR derived and coded risk scores. A 

higher level of agreement would provide support that the analysis based on the EHR derived 

risks is valid, given the coded risks can be viewed as the gold standard. By using scatter plots, 

we compared agreement on the most granular level possible (i.e., does the EHR derived risk 

match the coded risk in the database for each individual person?). The intraclass correlation 

coefficient197 was also calculated for agreement between the EHR derived and coded risks 

within each calendar year. 

 

7.4 Results 

The primary prevention cohort included 3,892,603 individuals (51% female). The statin cohort 

consisted of 351,553 individuals (47% female). The demographics of the statin cohort are 

provided in Supplementary Table S1. 

The statin initiation rate per 1000 person years by calendar time is presented in Figure 7.1. 

We see a peak of 21.79 in 2005 and a drop until 2010 – 2011 when the incidence rate flattens 

out at around 12.5. The number of people initiated on statins each year is provided in Table 

7.1, as well as the proportion of those people that had a coded risk in their medical record. 
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Prior to 2010 - 2011 less than 5% of the statin initiations had an associated coded risk score. 

After this the proportion increases to 66.29% by 2017 - 2018. 

 

Table 7.1: Number of people initiated on statins each year, and number of those who had a 

coded QRISK score in their medical record 

Date Follow up 

(years) 

Number 
initiated 

Number 
with coded  

score 

Proportion 
with coded 
score 

98-99 1090072.9 3510 26 0.74% 

99-00 887549.2 4240 66 1.56% 

00-01 1141713.0 7498 232 3.09% 

01-02 1318576.6 12335 450 3.65% 

02-03 1449309.0 17908 457 2.55% 

03-04 1547360.7 26959 322 1.19% 

04-05 1563126.1 30529 272 0.89% 

05-06 1588051.6 34604 390 1.13% 

06-07 1591314.4 32967 316 0.96% 

07-08 1598293.4 27432 211 0.77% 

08-09 1601472.2 29554 501 1.70% 

09-10 1569415.3 24883 1053 4.23% 

10-11 1513887.1 18972 1156 6.09% 

11-12 1453955.3 18622 2314 12.43% 

12-13 1402210.8 18181 3219 17.71% 

13-14 1245691.7 14689 3831 26.08% 

14-15 1021942.4 10938 4677 42.76% 

15-16 749647.7 8572 5012 58.47% 

16-17 540323.3 6511 4188 64.32% 

17-18 233582.6 2649 1756 66.29% 
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Figure 7.1: Statin initiation rate in each calendar year 
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Figure 7.2 plots the average EHR derived risk and average coded risk of people being initiated 

on statins each year. The latter is restricted to those who had a coded risk score available. 

There is no clear change to the average EHR derived risk of people being initiated on statins 

from 2013 - 2014 (20.65%) to 2014 – 2015 (20.27%), the year of the guideline change. 

However, there is a drop in the average coded risk from 21.85% to 18.65%. 

 

Figure 7.2: Average 10-year risk of people initiated on statins in each year for primary 

prevention of CVD. The EHR derived risks were calculated for all patients initiated on statins, 

coded risks are restricted to those with coded risks in their medical record 
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Figure 7.3 shows the proportion of people initiated on statins each year that belong to each 

risk category. For the EHR derived risk scores there is a steady increase in the proportion of 

people in the 10 – 20% risk group from 2013 – 2014 onwards. However this happens mostly 

at the expense of people from the < 10% group, as well as some from the > 20% group. For 

the average coded risk score, there is a sharp increase in the proportion of people in the 10 – 

20% risk group, which comes at the expense of people in the > 20% group. 

 

Figure 7.3: Proportion of people initiated on statins each year that belong to each risk 

category (< 10%, 10 – 20%, > 20%). Separate plots for EHR derived risk scores (all statin 

initiators) and coded risk scores (restricted to those with coded risks in their medical record). 
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Figure 7.4 plots the EHR derived risks against the coded risk scores for each individual 

stratified by year, with a blue line added to illustrate perfect correlation. Overall, we see a 

strong positive relationship between the two, although there are quite large levels of 

variation either side of perfect agreement. Also, from 2014 onwards we see more consistent 

over prediction of the EHR derived algorithm compared to the coded risk scores. However, 
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the intraclass correlation coefficient improves between 2011 and 2016 (0.75 in 2011, 0.79 in 

2012, 0.81 in 2013, 0.81 in 2014, 0.82 in 2015, 0.85 in 2016). 

7.5 Discussion 

7.5.1 Summary 

There was a large reduction in the average coded risk of people initiated on statins, which 

closely matches the currently available evidence.97 When viewed in isolation, the reduction 

in the average coded risk score (Figure 7.2) and the change of proportion in each risk category 

(Figure 7.3) indicate a significant change in clinical practice. NICE have quoted this evidence 

in their impact report.194 However, because the coded risk analyses only consider the 

subgroup of people with a coded risk score, this analysis is at risk of cohort selection bias as 

the subgroup may not be representative of all people initiated on statins. This risk is 

exacerbated by the increasing proportion of people initiated on statins that have a coded risk 

score (Table 7.1). As this subgroup increases in size, unless risk scores are recorded at random, 

this will have a significant impact on the average risk of this subgroup. Importantly, the 

changes in risk are driven by changes in who GPs are recording risk scores for, rather than a 

change in who is receiving statins. 

We found no change in the average EHR derived risk of people being initiated on statins after 

the guideline change, and a small increase in the proportion of people that belonged to the 

10 – 20% risk group. This analysis is not affected by the same selection bias, as it considers all 

people initiated on statins each year. Therefore with the extra data presented in this paper 

we believe the response to the guideline change is not as impactful as first thought. 

7.5.2 Comparison with existing literature 

To the authors knowledge, only one other study has measured the impact of CG181 on clinical 

practice.97 We enhance this research with an expanded analysis considering all people 

initiated on statins, and validate their findings by replicating their analysis in CPRD. Our data 

indicates recording practices of GPs had a significant impact on the average coded risk. The 

proportion of people with a coded risk is small and increasing rapidly at this time (26.08% in 

2013 – 2014 and 42.76% in 2014 – 2015). It is highly likely that the subgroup of people 

receiving a coded risk score was changing (it is unreasonable to assume this increase in 
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recording was happening at random), but the typical patient being initiated on statins was 

not. One hypothesis is that GPs became far more likely to calculate the risk of someone in the 

10 – 20% range using a QRISK tool after the guideline change, but their prescribing behaviour 

remained the same.  

We found no reduction in the average EHR derived risk after the guideline change (Figure 

7.2). While this indicates the guideline change had no impact, considering all the results leads 

to a slightly different conclusion. This constant average risk appears to be caused by a 

combination of a small increase in 10 – 20% risk people initiated on statins, and a drop in low 

risk (< 10%) people. In Figure 7.3, we see a steady increase in the proportion of people in the 

10 – 20% risk group, and a decrease in the other two groups (a larger decrease in the < 10% 

risk group). It is possible that the guideline change has had an equal effect on preventing 

statin initiation in low risk (< 10%) people, as it has on increasing statin initiation in the target 

10 – 20% risk group, resulting in no change to the average EHR derived risk.  

The data agrees with a modest impact of the guideline change, but the changes are far more 

subtle than would be concluded if looking at the currently available evidence. These findings 

are important as the numbers in the widely quoted statistic93–96 “prevent up to 28000 heart 

attacks and 16000 strokes each year”,193 are likely far from being achieved.  

7.5.3 Strengths and limitations 

This is the first study to evaluate the impact of the NICE guidance CG181 on the risks of all 

people receiving statins in England. The study cohort is large and results are likely 

generalizable to the English population as CPRD is representative of the UK in terms of age, 

sex and ethnicity48.  

There are two key limitations in this work. The first is the imperfect agreement between the 

EHR derived risks and the coded risks, because the EHR derived risks should represent the 

risks of individuals as closely as possible. Potential reasons for the disagreement between 

these and the coded risks are that the EHR derived risks use the QRISK35 algorithm, whereas 

QRISK299 will have been used in practice over those years; this study used multiple imputation 

to impute missing data, whereas missing data is imputed using mean imputation when coded 

QRISK scores are generated by GPs; we have identified variables using code lists which may 

not perfectly match those used by the algorithm in practice; and this study considers coded 
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risks within a window of six months prior to statin initiation, while patient data could have 

changed in that time. Despite some disagreement, the relationship was strong enough that if 

the people with a coded risk score were a random subset of all people initiated on statins, 

there would have been a large drop in the average EHR derived risk after the guideline change 

(like there was in the average coded risk). This was not the case, indicating the likelihood of 

selection bias in the coded risks analyses. This necessitates the analysis using the EHR derived 

risks, even if the estimated risks are not perfect. The second limitation is that many practices 

left CPRD towards the end of this study, resulting in a risk of selection bias in our cohort if the 

drop out was not at random. However we have no reason to believe that people from 

practices that dropped out were more or less likely to be initiated on statins. Furthermore, 

our results considering the coded risk scores were comparable to those of Finnikin et al.,97 a 

study carried out in The Health Improvement Network database198 which has not suffered 

from this limitation. 

7.5.4 Implications for research and practice 

The change in NICE guidance appears to have had a small effect on statin prescribing by GPs. 

Given NICE invests time and resources into developing these guidelines, it would be 

worthwhile for them to understand why there has been such little response. We propose a 

qualitative study with GPs and patients to assess the barriers to statin initiation for the 

primary prevention of CVD in 10 – 20% risk people. A recent scoping review199 of the current 

literature regarding the use of statins to prevent CVD found only three studies specifically 

considering primary prevention of CVD, and that “it was difficult to interpret how doctors’ or 

patients’ attitudes would vary according to the risk profile of the individual patients”. A 

systematic review provided a comprehensive review on patient attitudes towards taking 

statins,200 however the majority of studies were looking at long term adherence, as opposed 

to statin initiation. No studies had investigated specifically the willingness to initiate at a 10% 

or 20% threshold for primary prevention of CVD. A debate article published in 2016201 

discusses patient attitudes to taking statins in light of the NICE guidance change, attributing 

the lack of uptake in lower risk patients to transferability of evidence from research to 

practice and the potential for side effects. However, the evidence base202–205 for their findings 

pre-dates the large amount of pro-statin research that came about in 2013 that has fuelled 

the statin debate. The authors also noted “there is sparse literature regarding the views of 
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GPs”. Some qualitative research does exist in this area,203,204,206–208 but again no studies have 

been carried out in the wake of the NICE guidance, or on prescribing specifically at 10% 

compared to 20% risks.
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8 General discussion 

 

The aim of this project was to explore two key aspects of the process of using risk prediction 

models to drive treatment for a patient: 1) Calculating the risk prediction of a patient on which 

clinical decisions will be based, and 2) Deciding what clinical action to take for a patient with 

a given risk prediction. These are two very broad areas, and the research in this thesis has 

focused on very specific aspects of them. Chapter by chapter, this discussion will link the 

findings back to the original aims, talk about the broader implications of this research 

(particularly for the clinicians who use these models), and discuss future work ideas in more 

detail than was possible in the chapters which were formatted for publication. The limitations 

of the thesis as a whole are also discussed. 

 

8.1 Chapter 3 

This chapter quantified the extent that cardiovascular disease (CVD) risk predictions for 

individuals varied when extra variables were added to the model. The discussion in the 

Chapter focused on the clinical implications of this uncertainty, here I will focus on its context 

with respect to the reference class problem. The models considered were developed on the 

same cohort, using consistent variable definitions for common variables across the models. 

This reduces the reference class problem to its purest sense, where differences in 

probabilities (risks) are down to conditioning on a different set of variables only. The most 

prominent finding, which was discussed heavily in the chapter, was the extent with which the 

calendar time variable affected the risk scores of individuals. However without the 

introduction of this variable, there were not large levels of variation in risk scores for 

individuals. This means beyond the secular trend, the reference class problem was not having 

a big effect.  

The discordance between individual risk estimates calculated from ASSIGN, QRISK2 and 

Framingham shown in the literature,23 is therefore probably due to the models being 

developed in different populations, using different outcome and predictor variable 

definitions and different cohort selection criteria. These differences are not an issue, as long 
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as when using a model to generate a risk score for an individual, that the individual belongs 

to the population in which the model was developed, the outcome of interest matches exactly 

the outcome in the model, and data on the individual has been collected in the same way as 

the data was for model development. If these criteria are met, and the major CVD risk 

predictors are included in the model (as was the case in our study), our research shows that 

risk scores for an individual will not be overly sensitive to which extra predictor variables are 

conditioned on (the reference class problem is minimised). In this case a clinician may be 

confident in the use of that risk prediction model. Comments outlined in section 1.2.1 stated 

that the reference class problem limits the “clinical utility of risk prediction models”.13,17 I 

argue that in the case of CVD risk prediction models with all the major predictors included, it 

does not. To refer back to the original aim, this is not a major source of uncertainty in the 

generation of risk scores. This is of course ignoring the issue of calendar time, which was 

explored further in chapter 5. 

The future work from this chapter has been largely carried out in Chapter 5 of this thesis, and 

so is not discussed here. 

 

8.2 Chapter 4 

In this chapter a simulation was carried out to quantify the stability of risk scores generated 

from models with various sample sizes. High levels of instability were found at sample sizes 

similar to models used in practice, and very high levels of instability when following recently 

published sample size formula. With respect to the original aims outlined in this thesis, this is 

a major source of uncertainty when deriving risk scores for individuals. The findings also 

provide an alternative explanation for the discordance in risk scores that has been attributed 

to the reference class problem that was reported in section 1.2.1. It is likely a large amount 

of this discordance was driven by sampling variation. The discussion in Chapter 4 argues why 

this uncertainty is an issue, not just on an individual level (patient’s treatment decision 

dependent on a random process), but on a population level as well (imprecise estimation of 

the risk of subgroups of the population will lead to poorer model performance). The broader 

implications are relevant for both those developing models and the clinicians using them. 
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In terms of model development, it is important to develop more clarity over what an 

acceptable level of discrimination is. This is particularly pertinent in survival models. The 

sensitivity and specificity of a logistic model at a certain cut-off is a clear way of assessing 

whether the models performance is clinically acceptable or not. However due to censoring in 

survival data, sensitivity and specificity cannot be calculated. Instead relative measures of 

discrimination are used, such as Harrell’s C,121 which calculates the proportion of pairs of 

patients that both have events, where the patient with the higher risk has the event first. 

Therefore the impact of discrimination on the clinical applicability of a model is not as clear, 

and there is no clear threshold as to what is acceptable. These measures are a good way to 

compare different models, but are they sufficient for assessing the clinical usability of a given 

model?  

I suggest that a requirement for a risk prediction models is that the risk scores are stable, and 

not heavily dependent on sampling variation. This ensures the risks of subgroups defined by 

the predictors included in the model are calculated precisely. If not, there is a high probability 

that the risks of these subgroups in the population (the desired estimate) will be incorrectly 

estimated by any given model. This leads to poorer model performance, and ultimately the 

wrong subgroups of patients receiving treatment. Given the stability of the risk scores from 

models meeting the sample size criteria, it appears this would be a stronger condition than 

minimising overfitting. The two are closely linked, as minimising overfitting ensures the 

optimism of the model performance in the development dataset is below a certain level, 

while minimising instability ensures the model performance in the population reaches its 

upper bound for a given set of predictors. 

The implications for clinicians are that if they are using a CVD risk prediction model developed 

on cohorts of 10 000 or less, they should be concerned. This is the case in America61 and 

Scotland64. The evidence from this study indicates that risk scores for individuals are highly 

dependent on the random sample of patients used for model development. This problem 

could be prevalent across many disease areas, particularly in models predicting rare 

outcomes or where associations between the predictors and the outcome are not as strong. 
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8.2.1 Future work 

In order to implement a strategy which ensures stable risk scores in practice, the main hurdle 

to overcome is how to ensure stability as part of the sample size calculations. The methods 

outlined in this chapter only measure the stability of risks for an existing model (access to the 

development data is necessary). This is useful for assessing the performance of an existing 

model, but not useful for ensuring a certain level of performance from the data collection 

stage. Some techniques for ensuring precise estimates of coefficients in the model are 

discussed in section 6 of the work by Riley et al.,35 however stronger requirements are needed 

to ensure stability of the risk scores themselves, as the linear predictor is a function of all 

these coefficients. Research on how to ensure risk scores will have a pre-defined level of 

stability before collecting the data would be the next step. 

 

8.3 Chapter 5 

The primary aim of this study was to assess the potential miscalibration of risks scores for 

present day patients caused by the drop in incidence of CVD found in Chapter 3, and assess 

whether it was being driven by increasing statin use. If it was, there would be a strong case 

that the drop in CVD incidence should not be modelled, as the treatment decision should be 

based on the risk of a patient if they were not to take statins. However, the results from this 

chapter indicated this was not the case. The cause of the secular trend remained unclear, 

meaning this is a major source of uncertainty associated with the generation of risks scores 

in England, and has major implications for clinicians prescribing statins. 

The drop in risk caused by accounting for this secular trend was drastic. It was estimated in 

Chapter 3 that 3.8 million patients in England would no longer be eligible for statins at a 10% 

threshold. There is already lots of debate over whether to initiate intermediate risk (10 – 20%) 

patients on statin treatment (see section 1.3.3), and the results of this study indicate that 

people in this risk category may have even lower risks than thought. Given the current 

guidelines, this means many patients will be receiving statins unnecessarily. This has a 

negative impact on both patients and the National Health Service. The treatment of healthy 

patients, who may go on to experience side effects is clearly not good. Furthermore, it will be 
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costing the National Health Service money to do so, as they are treating patients at risks which 

are not cost effective to do so, and this money could be spent better elsewhere.  

8.3.1 Future work 

I would first like to stress the desire for this analysis to be repeated in another database. In 

earnest, the results were surprising. The drop in incidence in CVD was very large and effect 

of statin use during follow up on the secular trend was minimal. While it is not obvious why, 

there could be some level of differential recording over time in CPRD practices which is driving 

the secular trend. We discussed in Chapter 5 that this is unlikely given the number of CVD 

events identified through hospital data and mortality records. However, reproducing these 

results in another database would still be valuable. Second, the cause of this secular trend 

remains a mystery. There is no evidence in the literature as to what is causing this drop. This 

is most likely because it is a very difficult question to answer, and the data to do so does not 

really exist. While trends over time can be identified through electronic health records (EHRs), 

establishing a causal effect between two variables is difficult. Potential causes for the drop in 

CVD incidence such as changes in lifestyle factors like diet or exercise are not well recorded 

in EHRs. Furthermore, the estimated causal effect of most variables on the outcome would 

be unverifiable due to a lack of trial data, which was not the case for the effect of statins. A 

body of specialised causal inference work is needed here to identify what are the driving 

factors behind this drop in CVD incidence, although the data may not exist to do so. 

 

8.4 Chapter 6 

Chapter 6 focused on the development of guidelines used to drive the allocation of treatment, 

specifically about the use of statins in England. In some scenarios a benefit was found to 

delaying statin initiation beyond a 10% risk until patients reached a certain age. Surprisingly, 

for a given level of adherence, the risk of an individual was not a major factor in determining 

when a patient should be initiated on statins, it was age. The findings shift the focus of the 

conversation away from what the optimal risk threshold is (section 1.3.3), to whether statin 

initiation should be based on age rather than risk.  
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Age based strategies have been proposed before.209,210 The idea is to reduce the level of 

certain CVD risk factors in the population, rather than treating only the high risk individuals. 

This strategy is viewed as quite radical, but given the strength of age as a predictor in CVD risk 

prediction models, age and sex specific thresholds effectively already exist.211 Given 

opposition already exists in the medical community against these indirect age based 

thresholds,47 explicit use of this type of approach would undoubtedly be met with fierce 

resistance. However, our results provide a different reason for wanting to use an age based 

strategy. Current arguments are that it is cheaper and simpler to use a strategy based only on 

age compared to using risk factor based strategies, and they only perform marginally worse. 

The time and money saved could then be invested elsewhere, so this is a cost effectiveness 

argument. Doing so would result in more patients being treated for the same number of 

events prevented, but for less cost. The reasoning from this chapter puts patient outcomes 

first. If a patient is only going to take the drug for a specific amount of time (due to 

discontinuation), it is best to prescribe it to them at the time at which they will receive most 

benefit from it. This optimal time is driven by their age. Therefore a rule based on adherence 

and age could be applied on top of whatever cost effectiveness threshold has been decided 

(which would be a risk based threshold). If such a rule was implemented, it would pan out as 

follows. 

Based on the discontinuation rates we saw, the optimal time to initiate statins was 59 (male) 

and 63 (female). A white asymptomatic individual at these ages with average body mass index 

(BMI), Cholesterol/high-density lipoprotein (HDL) ratio, systolic blood pressure (SBP) and SBP 

variability would have a 10-year risk of 8.8% (male) or 6.5% (female), calculated using the 

online QRISK3 calculator.104 It would not be cost effective to initiate statin treatment in these 

patients. Therefore by the time it is cost-effective to initiate treatment in these patients, it 

would also be optimal to initiate treatment based on the age threshold, and their treatment 

pathway would be unaffected. The individuals this would affect are symptomatic individuals, 

or individuals from higher risk ethnicities, who will have risks > 10% prior to age 59 or 63. 

For these individuals, this leaves the clinician and patient with a tricky decision. On average, 

given the discontinuation rates of the population, it is better to delay statins until those 

patients are older and will receive more benefit from the drug. However for an individual that 

would be adherent this would not be the best decision. Strategies to initiate treatment at 
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different times in patients we expect to be non-adherent or adherent would therefore 

provide the optimal solution. However it is not possible to know exactly which patients will 

be adherent and which won’t, and it would be unethical to have different rules for different 

subgroups of the population. Therefore using the thresholds based on a population 

discontinuation rate is the only option, yet unideal due to the trade off in outcomes for 

adherent and non-adherent patients. One may argue symptomatic individuals should be 

taking statins with extra emphasis placed on adherence, and with better adherence it 

becomes optimal to initiate statins at a younger age anyway. However, as discussed in 

Chapter 6, improving adherence without intensive patient-centered interventions is difficult.  

The practical implications of these findings are therefore not straightforward. From the policy 

maker’s perspective, there is a chance to prevent extra events in certain subgroups, however 

the ethics of this approach need to be investigated first. From the patient’s perspective, this 

information could aid their decision making. If a patient knows that they do not want to for a 

pro-longed period of time, they may opt to delay their own statin initiation and take the drug 

when it is most beneficial to them. Patients who believe they will be adherent over a long 

period of time could opt to initiate straight away. While similar conversations to this are 

already happening between clinician and patient, there is currently no information on when 

statins are most beneficial to take for an individual. I therefore doubt the findings and thought 

processes from this study are being included in those conversations. 

8.4.1 Future work 

The aim of this work was to assess whether it would be possible to prevent extra CVD events. 

The feasibility of the approach suggested must be discussed by the people actually involved 

with the decision (National Institute for Health and Care Excellence (NICE), the clinicians and 

the patients). Qualitative research to highlight the opinions of these parties in light of the 

findings from this chapter is the next required step.  

 

8.5 Chapter 7 

Chapter 7 focused on how the guidelines developed to drive the allocation of treatment are 

implemented in practice, specifically looking at the use of statins in England. Despite evidence 
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on the whole supporting the use of statins in 10 – 20% risk patients, there was resistance from 

the medical community to adopt this strategy.47 This study provides empirical evidence of this 

resistance in practice. NICE have quoted the results of an analysis restricted to patients with 

QRISK codes,97 in an impact assessment published in 2018.194 They are therefore likely under 

the assumption that the guideline change has had a higher impact than it has. The broader 

implications of this research are not for clinicians, but for NICE. 

First, I would like to put aside the conversation over statin efficacy at lower risk thresholds. 

Let’s assume that statins are cost effective in 10 -20% risk individuals and that their uptake in 

this risk group would cost effectively prevent extra events, which is what the majority of 

evidence suggests. Based on this evidence, NICE made statements saying that this guideline 

change could prevent an extra 28 000 heart attacks and 14 000 strokes a year. To attain 

anywhere near these numbers a drastic change in prescribing habits was required, which did 

not happen. This highlights a shortcoming in NICE’s operations. An extremely detailed 

document was produced providing the evidence behind the new threshold.45,84 This indicates 

a large amount of time and resources was put into developing this guideline. However, for 

the recommendations to have any impact on patient outcomes, it’s equally important for this 

guidance to be properly implemented by the medical community. It is not obvious what steps 

NICE took to assess the feasibility of this guideline being adopted in practice before 

developing it. A better process may have been to first assess whether such a guideline change 

would be accepted. If not, more resources could have been put into figuring out how to 

engage with the medical community to promote uptake of the guideline.  

This case study also points towards a larger issue. It was noted in Chapter 1 (section 1.3.3) 

that the risk thresholds are different in every country, yet every country has access to the 

same evidence. This indicates that the uncertainty in the allocation of treatment may not lie 

in the evidence itself, but in how this evidence is conveyed and how it is interpreted. Maybe 

less quantitative work is needed in this area, with a shift to qualitative work, to better 

understand why this evidence is being interpreted in different ways, and how to bring all 

parties together under a common strategy.  

For example, the main arguments against the efficacy of statins in the 10 – 20% risk group86 

come from the choice of end point used to elicit findings, the way in which adverse events 

were handled, the funding source of the trials that make up the main body of evidence, and 
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the failure to make the patient level data available for re-analysis. All these factors, in my 

opinion, could be easily addressed if data was made available for re-analysis, and the two 

opposing parties83,86 came together in discussion. I do not believe the validity of the trials 

themselves is under question, the disagreement stems from how the evidence is interpreted. 

It is not surprising there is discordance in the guidelines around the world, and variable 

implementation of guidelines themselves, given that leading academics and clinicians do not 

agree over the interpretation of the same evidence. 

One final comment of interest from this chapter is that it provides evidence to support the 

lack of impact of statin use on the secular trend found in Chapter 5. The study by Finnikin et 

al.,97 showed that between 2012 to 2015, only 35% of patients who had a QRISK score 

recorded > 20% were subsequently initiated on statins. This is quite a small proportion of 

those who were classified as high risk. If this proportion was also fairly constant over time, 

we would not expect the reduction in cardiovascular incidence over time to have been caused 

by this. 

8.5.1 Future work 

The need for further qualitative work to understand why the guideline change has had a small 

impact on clinical practice was discussed in detail in Chapter 7. While not technically future 

research, another area of development in the future could be structural changes which allow 

NICE to have direct access to data to enable them to carry out studies such as these. The 

guideline change was implemented in July 2014, and in the six years since then this is the 

second study to assess the impact of this in practice. I am not aware of NICE having direct 

access to routinely collected datasets in order to assess the uptake of their guidelines, instead 

the onus is placed on independent research groups to allocate their resources to do this. The 

impact this has on the speed at which NICE will get access to results is significant, considering 

the need to: A) identify the gap in the literature, B) apply for access to the data, C) undertake 

the study, and D) get the study published. If NICE had access to the data required to assess 

the impact of their guidelines in practice, once the data streams were set up, they could be 

continuously monitored for a relatively small amount of resources. A significant change in 

data sharing processes would be required to make this a possibility, but waiting 6 years to 

find out a major guideline change has had minimal clinical impact is far from ideal. 
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8.6 Overall limitations 

Limitations of each specific project have been discussed within each chapter. I discuss 

overarching limitations of the thesis here, which I believe revolve around the use of CPRD 

data throughout this project. 

The first is that in recent years there has been a drop in practices using the VISION computer 

system, which are the practices that contribute to the dataset I used (see Table 8.1). Aside 

from the loss in power, this would be particularly problematic if the drop out was not at 

random. This would cause a selection bias when assessing key metrics over time. Chapters 3 

– 6 all use data from 1998 – 2015, and the level of drop out by this point is not too bad. In the 

next three years there is quite a significant drop out, so it is possible chapter 7 was affected 

the most by this. We made sure to verify models and trends in the data in comparable studies 

carried out in different databases where possible. For example, comparison of our model with 

QRISK3 in Chapter 3; comparison of the causal effect of statin initiation with trial data in 

Chapter 5; comparison of discontinuation rates with published data in Chapter 6; and 

reproducing a published analysis in Chapter 7 as part of the main analysis. All results provided 

good agreement indicating the drop out from practices was unlikely to be biasing our results 

in any way. 
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Table 8.1: Number of English practices actively registered in CPRD in each calendar year, 

stratified by region 

Year NE NW YORK EM WM E SW SC L SEC Total (N) 

1998 7 41 20 17 31 22 28 15 22 24 227 

1999 9 46 23 19 34 30 31 21 26 25 264 

2000 9 53 24 21 37 35 39 32 36 33 319 

2001 10 65 24 21 44 38 43 39 43 37 364 

2002 9 72 25 23 48 43 46 45 51 43 405 

2003 10 76 26 23 49 46 49 46 54 51 430 

2004 10 76 24 23 53 48 51 48 56 55 444 

2005 10 78 25 22 55 49 53 48 60 57 457 

2006 10 79 25 22 55 49 54 48 64 59 465 

2007 10 78 23 21 56 47 55 48 65 60 463 

2008 11 78 21 20 56 45 55 51 67 60 464 

2009 11 79 17 18 56 43 55 51 66 61 457 

2010 10 77 15 15 54 41 55 51 68 61 447 

2011 10 75 14 11 53 37 51 51 67 60 429 

2012 9 71 9 9 52 35 49 51 70 59 414 

2013 8 69 6 5 49 31 48 50 75 57 398 

2014 6 65 4 1 44 25 40 47 72 55 359 

2015 4 50 4 0 36 21 30 43 53 54 295 

2016 3 32 3 0 24 10 19 28 38 49 206 

2017 3 24 2 0 20 9 13 13 36 35 155 

2018 0 20 1 0 15 6 7 9 33 28 119 

 

Another issue was the high levels of missing data in the primary prevention datasets derived 

from CPRD (see Table 2.14). Particularly Ethnicity (57.95% and 61.79% for female and male), 

Cholesterol/HDL ratio (61.52% and 64.29%) and SBP variability (49.61% and 79.06%). Even for 

variables with lower levels of missing data, SBP (18.99% and 40.78%), Smoking (24.82% and 

34.83%) and BMI (31.17% and 46.38%), the degree was still fairly substantial. The process of 

imputation will potentially introduce bias into estimation of predictor effects (and resulting 

risk predictions) if the untestable assumption of missing at random does not hold. However 

given the nature of the work, this was not always a problem.  
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In Chapters 3 and 4, where the interest was in the variation in individual risk scores when 

following standard processes for developing models, this was not an issue, rather than part 

of the process to be captured. Nor was it a problem in Chapter 5 when quantifying the 

potential miscalibration of models used in practice. It could have had an effect on the 

precision and accuracy of the causal effect estimate of statin initiation, but this estimate 

appeared reasonable. In Chapter 6 when trying to accurately model risk profiles (transition 

probabilities) over time through Cox models, this was more of an issue. The implications of 

the imputation process were not clear as only the trajectory of the baseline hazard was 

required, which was then manually adjusted in order to obtain given risk profiles. However 

by design of the study, the absolute risk over the first 10 years was always correct, all that 

could be wrong was how that risk was distributed (i.e. the shape of the trajectory). Despite 

the missing data, I felt modelling the risk trajectory based on the routinely collected data was 

better than assuming a constant relative rate increase each year, which is what is done in the 

NICE simulations (see section L.2.3.1.384). Missing data was most concerning in Chapter 7 

where the aim was to accurately calculate risks for patients initiated on statins. Bias in the 

imputed values may have resulted in consistently over or under predicted risks of patients 

each year. However, the levels of missing data were much lower here as it is was a cohort of 

statin users (Cholesterol/HDL ratio [17.56% and 16.91%], SBP [1.60% and 2.26%], SBP 

variability [6.26% and 9.77%], Smoking [9.71% and 8.50%] and BMI [18.44% and 20.65%]), 

which minimised the potential bias from the imputation procedure. 

I believe multiple imputation was the best approach to handle the missing data when possible 

(Chapter 5 required a custom imputation process). Multiple imputation has been shown to 

be preferable to using complete case datasets even when data is missing not at random,212 

and also when the percentage of missing data is high.212,213 Given the high number of variables 

included in the imputation models, the missing at random assumption may not be strongly 

violated. Combined with the fact the datasets used were very large resulting in highly 

powered imputation models, I am confident in the imputation process. Checks of the 

imputation process in Chapters 3 and 7 (see Appendices A.3.1 and A.7.1) show that the 

distribution of imputed variables were sensible, and there was strong mixing in the Markov 

chain by the time the algorithm was halted. No new datasets were required to be imputed 
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for Chapters 4 – 6 (using imputed datasets from Chapter 3 where necessary), so imputation 

results were not presented for these. 

One final point to discuss about the imputation was that in Chapters 4 – 6, just one imputed 

dataset was used. For Chapters 4 and 6, the same process as in multiple imputation was used, 

but only one dataset was imputed. Specifically, one of the 20 imputed datasets from Chapter 

3 was used. This choice was made because averaging the analyses across all 20 imputed 

datasets was not necessary to answer the aims in these chapters, and would have 

complicated the analyses. In Chapter 4 the quantity of interest was the uncertainty induced 

by sampling variation, so it made sense to re-sample one complete dataset representing the 

population. The uncertainty associated with those imputed values was not of interest. In 

Chapter 6, an imputed dataset was used to develop the risk trajectories for individuals, and 

risk scores were not calculated (i.e. just the baseline hazard was used). Given the size of the 

dataset, models developed on different datasets from a multiple imputation process should 

have similar baseline hazards. The majority of the variation in risk scores for individuals comes 

from predicting point values for their predictors. Therefore it was not necessary to average 

the baseline hazard across multiple imputed datasets. For Chapter 5, a custom imputation 

procedure was applied to maintain relationships for variables across different time points. 

This mostly involved last observation carried forwards, and next observation carried 

backwards imputation. The random element of multiple imputation, necessitating the 

creation of multiple imputed datasets, was therefore not relevant. 

The final limitation I would like to discuss is the impact of using an EHR as a data source on 

the generalisability of the results, as most CVD risk prediction models are developed using 

data from trials or cohort studies in which data is collected prospectively, UK models being 

the exception (see Table 1.1). This is specific to Chapters 3 and 4, which evaluate the impact 

of modelling decisions on the generation of risk scores. Chapter 3 considers the reference 

class problem, which by nature is not unique to models developed on EHRs. I would expect 

to find similar results in models developed on data from prospective cohort studies or trials, 

but this may not be the case. Chapter 4 looked at the impact of sample size on the precision 

of risk predictions. I think the generalisability of these results to models developed in 

prospective cohort studies is strong. There is no reason why the precision would be different 
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for a model developed on data from such studies, unless there are much stronger associations 

between the predictors and outcomes.  

 

8.7 Main conclusions 

This thesis explored areas of uncertainty associated with using risk prediction models to drive 

clinical decision making for individuals, with a focus on CVD risk prediction. 

The results indicated that the effects of the reference class problem on CVD risk prediction 

were small, and the reported discordance in risk scores was driven primarily by sampling 

variation and using different populations for model development. Clinicians using models 

built on large sample sizes (> 100 000) and including major CVD risk factors can be confident 

in the stability of risks generated. However, risk scores from many models used in practice 

will suffer from high levels of instability induced by their sample size, and this extends to all 

disease areas. A large drop in the incidence of CVD over time in England was also identified 

suggesting the risks of individuals in the present day may be overestimated. 

Results also indicated extra CVD events could be prevented by initiating at higher risks than 

10% for certain subgroups of the population. However, there are ethical implications to 

consider as realistically this must be based on population level discontinuation rates, rather 

than how long an individual would adhere for. It was also shown that the introduction of 

CG181 (risk threshold for initiating statins reduced from 20% to 10%) has only had a small 

impact on clinical practice in England, contrary to current evidence. 
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A.3 Chapter 3 Appendices 

 

A.3.1 Density and convergence plots for imputed variables 

A.3.1.1  Methods 

Methods for running the imputation 

The same imputation process was carried out for female and male cohorts separately. 

Multiple imputation by chained equations was used to impute missing data for body mass 

index (BMI), systolic blood pressure (SBP) and SBP variability, cholesterol, high-density 

lipoprotein (HDL), smoking status and ethnicity. The program used to impute the data was 

the R package ‘mice’.130 There were 20 imputation procedures carried out, with 20 iterations 

for each one.  Variables included in the imputation model were all predictor variables from 

the final model (including interaction terms and fractional polynomials), Nelson Aalen 

estimate of the cumulative hazard at the time of event/censored and the censoring indicator. 

All continuous variables were imputed using predictive mean matching, and polytomous 

regression for categorical variables130. Interactions terms were imputed empirically from the 

two component variables (i.e. not stochastically), and interactions terms were not used to 

impute their component variables. 

Methods for assessment performance of imputation process 

For continuous data the density plots shown assess whether there were any systematic 

differences in for the non-missing data and the imputed data. This also enabled us to check 

that the distribution of imputed values was reasonable (i.e. no extreme values, or a 

distribution shape which clearly indicates an issue with the imputation procedure).  In the 

plots, each red line is a density plot of the imputed data in one of the imputed datasets, and 

the blue line is the density plot of the non-missing data.  

The convergence plots assess whether the Markov chain in the imputation process had 

reached a steady state by the final iteration. The x-axis is the iteration number, y-axis the 

mean or standard deviation of the imputed values, and each coloured line a different 
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imputation process. For categorical variables, the distribution of the variable from each 

imputation stream are presented, as well as the distribution of non-missing values. 

A.3.1.2  Results for imputation of female cohort 

All convergence plots reached a steady state very quickly, well before the 20th. All density 

plots had reasonable distributions with no extreme values. All plots presented below. 

BMI 

Figure A.3.1: BMI convergence plot for imputation of female cohort 

 

 

Figure A.3.2: BMI density plot for imputation of female cohort 
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SBP 

Figure A.3.3: SBP convergence plot for imputation of female cohort 

 

Figure A.3.4: SBP density plot for imputation of female cohort 
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SBP variability 

Figure A.3.5: SBP variability convergence plot for imputation of female cohort 

Figure A.3.6: SBP variability density plot for imputation of female cohort 
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Cholesterol 

Figure A.3.7: Cholesterol convergence plot for imputation of female cohort 

Figure A.3.8: Cholesterol density plot for imputation of female cohort 
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HDL 

Figure A.3.9: HDL convergence plot for imputation of female cohort 

Figure A.3.10: HDL density plot for imputation of female cohort 
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Smoking status 

Table A.3.1: Distribution of real data and imputed data (%) for smoking status in imputation 

of female cohort 

 Smoking status (%) 

Imputation Never Ex Current 

Real data 56.03 16.98 27.00 

1 57.92 16.15 25.93 

2 58.33 16.27 25.40 

3 58.78 15.76 25.47 

4 57.50 15.96 26.55 

5 59.48 15.92 24.61 

6 58.98 16.12 24.90 

7 57.65 15.90 26.45 

8 57.94 15.77 26.29 

9 58.33 15.71 25.96 

10 59.18 15.70 25.12 

11 58.90 16.05 25.05 

12 59.06 15.45 25.49 

13 58.35 15.77 25.88 

14 57.90 16.19 25.91 

15 58.62 15.78 25.60 

16 58.56 16.00 25.44 

17 58.84 15.69 25.46 

18 59.23 15.11 25.66 

19 58.50 15.65 25.85 

20 59.45 15.56 25.00 



204 
 

Ethnicity 

Table A.3.2: Distribution of real data and imputed data (%) for ethnicity in imputation of 

female cohort 

 Ethnicity (%) 

Imputa-
tion # 

Asian 

other 
Bangla-

deshi Black Chinese Indian Mixed 
Other 
Asian Other Pakistani White 

Real data 1.55 0.33 4.13 0.77 2.70 1.06 0.42 1.94 1.07 86.02 

1 1.30 1.00 3.67 1.06 3.20 1.12 1.03 2.19 1.88 83.56 

2 1.30 2.11 3.92 1.79 3.91 2.67 0.28 2.09 1.74 80.19 

3 1.33 0.93 5.07 1.57 4.49 1.87 0.44 2.76 2.00 79.54 

4 1.80 1.58 5.58 0.69 2.56 1.45 0.86 2.81 1.85 80.82 

5 1.26 1.06 4.70 3.32 2.01 0.86 1.52 0.94 1.18 83.16 

6 1.98 0.66 5.78 2.78 2.50 1.48 0.82 1.68 2.67 79.66 

7 1.45 0.62 6.16 0.36 2.28 1.86 0.54 1.02 2.53 83.18 

8 0.89 1.41 4.20 1.58 5.21 1.60 0.47 2.76 2.45 79.43 

9 0.96 0.95 8.73 0.45 2.68 1.25 0.71 1.29 1.35 81.64 

10 0.94 1.59 6.07 0.84 3.33 1.77 0.95 4.29 0.99 79.23 

11 0.55 0.59 5.31 0.69 1.66 0.96 1.34 1.16 1.19 86.56 

12 1.01 1.03 4.60 0.49 2.62 0.45 1.54 0.90 1.19 86.17 

13 1.04 1.28 4.40 0.86 3.04 1.29 1.24 1.13 1.64 84.07 

14 1.33 0.57 4.69 0.40 2.16 0.48 0.73 1.65 1.32 86.68 

15 1.99 1.03 4.15 1.01 2.98 0.51 1.52 1.56 1.39 83.85 

16 1.32 1.05 5.78 0.91 3.61 1.28 1.33 1.99 2.78 79.94 

17 1.46 0.79 5.01 0.73 3.04 1.03 1.26 3.00 2.43 81.24 

18 0.81 1.51 5.93 0.72 3.11 2.07 1.13 1.53 1.56 81.63 

19 1.76 0.47 3.74 0.74 3.38 1.14 0.76 1.44 0.99 85.59 

20 2.00 0.50 4.01 1.36 2.24 1.82 1.49 2.32 7.29 76.97 

 

 

 

 

 

 

 



205 
 

A.3.1.3  Results for imputation of male cohort 

BMI 

Figure A.3.11: BMI convergence plot for imputation of male cohort 

 

Figure A.3.12: BMI density plot for imputation of male cohort 
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SBP 

Figure A.3.13: SBP convergence plot for imputation of male cohort 

Figure A.3.14: SBP density plot for imputation of male cohort 
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SBP variability  

Figure A.3.15: SBP variability convergence plot for imputation of male cohort 

 

Figure A.3.16: SBP variability density plot for imputation of male cohort 
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Cholesterol 

Figure A.3.17: Cholesterol convergence plot for imputation of male cohort 

Figure A.3.18: Cholesterol density plot for imputation of male cohort 
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HDL 

Figure A.3.19: HDL convergence plot for imputation of male cohort 

Figure A.3.20: HDL density plot for imputation of male cohort 
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Smoking 

Table A.3.3: Distribution of real data and imputed data (%) for smoking status in imputation 

of male cohort 

 Smoking status (%) 

Imputation Never Ex Current 

Real data 46.68 17.39 35.93 

1 48.44 17.29 34.27 

2 48.65 17.20 34.15 

3 48.83 17.05 34.12 

4 48.20 17.51 34.29 

5 48.35 17.24 34.40 

6 48.31 17.34 34.35 

7 48.23 17.27 34.50 

8 48.28 17.34 34.39 

9 48.20 17.36 34.44 

10 48.76 17.03 34.22 

11 48.43 17.18 34.39 

12 48.18 17.30 34.51 

13 47.90 17.35 34.75 

14 48.32 17.45 34.23 

15 48.37 17.36 34.27 

16 48.62 17.21 34.18 

17 48.43 17.21 34.35 

18 48.21 17.42 34.37 

19 48.16 17.24 34.60 

20 49.21 17.06       33.70 
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Ethnicity 

Table A.3.4: Distribution of real data and imputed data (%) for ethnicity in imputation of 

male cohort 

 Ethnicity (%) 

Imputa-
tion # 

Asian 

other 

Bangla-
deshi 

Black Chinese Indian Mixed Other 
Asian 

Other Pakistani White 

Real data 1.55 0.5 4.00 0.61 3.11 0.99 0.49 1.95 1.26 85.54 

1 2.62 1.24 3.97 1.64 4.49 2.44 2.39 2.63 3.48 75.11 

2 2.36 1.86 3.58 1.75 1.88 1.68 2.27 1.53 3.39 79.70 

3 2.16 1.20 4.93 0.86 3.54 1.53 1.52 2.69 2.72 78.84 

4 1.17 0.61 6.83 0.17 2.30 1.41 1.12 1.61 1.74 83.04 

5 2.53 2.19 2.39 2.12 2.81 2.59 2.11 1.99 4.74 76.52 

6 2.88 1.35 2.94 2.26 4.70 1.55 1.89 1.81 3.40 77.23 

7 0.82 0.57 2.44 1.35 1.72 1.27 0.79 0.73 2.13 88.19 

8 1.99 1.09 2.02 1.01 1.85 1.45 0.92 1.63 2.72 85.35 

9 1.67 1.10 3.44 0.75 2.56 1.10 1.18 1.02 2.54 84.65 

10 2.69 2.31 3.05 1.06 2.82 2.50 2.00 2.41 4.49 76.66 

11 1.44 0.99 2.19 0.80 1.40 1.50 1.59 0.59 2.07 87.44 

12 1.84 0.91 2.06 1.15 1.74 1.36 0.89 1.94 2.35 85.75 

13 1.42 0.97 1.95 1.31 1.03 1.10 1.65 1.08 1.98 87.51 

14 0.97 0.82 1.87 0.67 3.07 0.83 0.97 1.97 1.66 87.16 

15 1.16 1.17 1.67 1.52 1.14 1.33 1.68 1.38 3.00 85.96 

16 1.54 1.33 2.88 0.93 1.36 1.18 1.68 0.88 2.42 85.81 

17 1.27 0.65 3.94 0.70 3.75 2.64 0.60 1.72 1.56 83.17 

18 1.33 1.08 2.16 0.97 2.72 0.77 0.86 1.51 1.96 86.65 

19 1.59 0.73 2.42 0.71 2.68 0.74 0.68 0.45 1.33 88.66 

20 4.76 1.87 15.10 1.64 4.89 2.42 1.66 7.36 4.60 55.71 
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A.3.2 Tripod statement 

Section/Topic Item  Checklist Item Page 

Title and abstract 

Title 1 D;V 

Identify the study as developing and/or validating a multivariable prediction model, the target 
population, and the outcome to be predicted. 
 
The main objectives for this manuscript are not a model development + validation; therefore 
the title does not follow this format. 
 
The manuscript does however involve the development and internal validation of a risk 
prediction model, and we report on the guidelines below for this process, where relevant. 

74 

Abstract 2 D;V 
Provide a summary of objectives, study design, setting, participants, sample size, predictors, 
outcome, statistical analysis, results, and conclusions. 

74 

Introduction 

Background and 
objectives 

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and rationale 
for developing or validating the multivariable prediction model, including references to 
existing models. 

75 

3b D;V 

Specify the objectives, including whether the study describes the development or 
validation of the model or both. 
 
The main objectives for this manuscript are not a model development + validation, 
therefore the objectives differ from what is requested here. 

76 

Methods 

Source of data 
4a D;V 

Describe the study design or source of data (e.g., randomized trial, cohort, or registry 
data), separately for the development and validation data sets, if applicable. 

77 

4b D;V 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, 
end of follow-up.  

77 

Participants 

5a D;V 
Specify key elements of the study setting (e.g., primary care, secondary care, general 
population) including number and location of centres. 

77 

5b D;V Describe eligibility criteria for participants.  77 

5c D;V Give details of treatments received, if relevant.  NA 

Outcome 

6a D;V 
Clearly define the outcome that is predicted by the prediction model, including how and 
when assessed.  

77/78 

6b D;V 
Report any actions to blind assessment of the outcome to be predicted.  
 
None – routinely collected data 

NA 

Predictors 

7a D;V 
Clearly define all predictors used in developing or validating the multivariable prediction 
model, including how and when they were measured. 

78/Cha
pter 2 . 

7b D;V 

Report any actions to blind assessment of predictors for the outcome and other 
predictors.  
 
None – routinely collected data 

NA 

Sample size 8 D;V 
Explain how the study size was arrived at. 
 
This was all patients that met the eligibility criteria 

77 

Missing data 9 D;V 
Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method.  

79/197 

Statistical 
analysis 
methods 

10a D Describe how predictors were handled in the analyses.  78/79 

10b D 

Specify type of model, all model-building procedures (including any predictor selection), 
and method for internal validation. 
 
Classical predictor selection was not carried out (i.e. backwards selection) as we pre-
specified different sets of predictors for each model, this was a key part of the study. 

79 

10c V For validation, describe how the predictions were calculated.  79 

10d D;V 
Specify all measures used to assess model performance and, if relevant, to compare 
multiple models.  

79/80 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. NA 

Risk groups 11 D;V Provide details on how risk groups were created, if done.  NA 

Development vs. 
validation 

12 V 

For validation, identify any differences from the development data in setting, eligibility criteria, 
outcome, and predictors. 
 
Rather than comparing the development and validation cohorts (which were chosen at random 
from the same cohort), we chose to compare the development cohort with the one from the 
published QRISK algorithm. This is more important for this study as it helps validate the 
generalisability of the results to the models used in practice. This is not meant to be a classical 
model development project. The table was however very large given we had separate male and 
female cohorts, and therefore only the CPRD cohort is presented in the main text, with the 
comparison presented in Chapter 2.  

Chapte
r 2 

Results 
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Participants 

13a D;V 
Describe the flow of participants through the study, including the number of participants 
with and without the outcome and, if applicable, a summary of the follow-up time. A 
diagram may be helpful.  

83 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for 
predictors and outcome.  

, Table 
3.1 

13c V 

For validation, show a comparison with the development data of the distribution of 
important variables (demographics, predictors and outcome).  
 
Validation was not the main aim of this paper, all comparisons have been done with 
QRISK, which is the model used in practice across the UK. See point 12. 

NA 

Model 
development  

14a D Specify the number of participants and outcome events in each analysis.  
Table 
3.1 

14b D 
If done, report the unadjusted association between each candidate predictor and 
outcome. 

NA 

Model 
specification 

15a D 
Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point). 

Table 
3.2/S
upple
ment
ary 

Table 
A.3.7 

15b D Explain how to the use the prediction model. NA 

Model 
performance 

16 D;V 

Report performance measures (with CIs) for the prediction model. 
 
Given the size of the cohort performance metrics took a long time to derive. Confidence 
intervals for majority of these metrics can only be obtained by bootstrapping. This 
would involve deriving the metrics hundreds of times, which could take a lot of 
computational time. Given the size of the cohort I expect the confidence interval to be 
small and therefore I have not done this.  

Table 
3.3 

Model-updating 17 V 
If done, report the results from any model updating (i.e., model specification, model 
performance). 

NA 

Discussion 
 
The discussion has a very different structure as the main aim of this paper was not development and validation of a model to be used in 
practice 

Limitations 18 D;V 
Discuss any limitations of the study (such as nonrepresentative sample, few events per 
predictor, missing data).  

98 

Interpretation 
19a V 

For validation, discuss the results with reference to performance in the development 
data, and any other validation data.  

NA 

19b D;V 
Give an overall interpretation of the results, considering objectives, limitations, results 
from similar studies, and other relevant evidence.  

95/96/
97 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.  NA 

Other information 

Supplementary 
information 

21 D;V 
Provide information about the availability of supplementary resources, such as study protocol, 
Web calculator, and data sets. 
 

Code 
provid
ed on 

GitHub 

Funding 

22 D;V Give the source of funding and the role of the funders for the present study.  

Given 
in 

publis
hed 

manus
cript, 
not 

thesis 
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A.3.3 Supplementary tables and figures 
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Table A.3.7: Comparison of hazard ratios of categorical variables from model B with 

QRISK3 

 Female Male 

 CPRD cohort 
(model B) 

QRISK3 CPRD cohort 
(model B) 

QRISK3 

Atrial fibrillation 3.29 4.92 2.16 2.42 

Atypical antipsychotic 
medication use 

1.33 1.29 1.17 1.14 

Corticosteroid Use 2.22 1.81 1.93 1.58 

CKD (stage 3/4/5) 1.96 1.93 2.02 2.05 

Erectile dysfunction NA NA 1.08 1.25 

Ethnicity:asianother 1.37 1.08 1.13 1.04 

Ethnicity:bangladeshi 1.30 1.34 1.16 1.70 

Ethnicity:black 
(African/Caribbean) 

1.35 0.84/0.67 0.95 0.70/0.67 

Ethnicity:chinese 1.32 0.722 1.01 0.66 

Ethnicity:indian 1.29 1.32 1.18 1.32 

Ethnicity:mixed 1.51 NA 1.09 NA 

Ethnicity:other 1.38 0.84 1.09 0.76 

Ethnicity:pakistani 1.46 1.76 1.19 1.61 

Family history of CVD 1.41 1.58 1.45 1.72 

Hypertension (treated) 1.35 1.66 1.32 1.68 

Migraine 1.23 1.35 1.19 1.29 

Rheumatoid arthritis 1.42 1.24 1.35 1.23 

Severe mental illness  1.30 1.13 1.22 1.13 

Smoker (Ex)  1.28 1.14 1.19 1.21 

Smoker (current | 
light/moderate/heavy) 

1.96 1.75/1.95/
2.34 

1.84 1.74/1.89/
2.20 

Systemic lupus 
erythematosus 

1.55 2.14 1.10 1.55 

Townsend = 2 1.10 NA 1.03 NA 

Townsend = 3 1.27 NA 1.13 NA 

Townsend = 4 1.47 NA 1.26 NA 

Townsend = 5 (most 
deprived) 

1.83 NA 1.40 NA 

Type 1 diabetes 4.29 5.62 2.88 3.44 

Type 2 diabetes 2.92 2.91 2.30 2.36 
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A.3.3.1  Breakdown of calculations for extrapolation to UK population 

Given the secular trend there are very few patients whose risk increases when comparing 

model A to model F. Therefore we solely focus on the proportion of patients who are initially 

classified as high risk, that cross the threshold to low risk. Lots of the data used in the below 

calculations was taken from Table A.3.8. 

1) Number of patients aged 25-84 in England (37,273,000) 

This was taken directly from the reference145 given = 37,273,000 

2) Proportion (number) of patients aged 25-84 eligible for risk assessment = 79% 

(29,382,463) 

The number of patients aged 25-84 that were registered on 1st Jan 2016 and had linked data 

= 938,150. The number of this group that had not had a CVD event or statin treatment prior 

to 1st Jan 2016 = 739,561. We took the ratio of these to be the proportion of patients aged 

25-84 that would be eligible for risk assessment = 79%. 

3) Proportion of patients that would be classified as high risk (> 10%) = 22.64% (6,652,920) 

Of the 739,583 patients, 167,460 patients were classified as high risk = 22.64%. Therefore we 

assumed 22.64% of the English population aged 25-84 would be classified as high risk = 

6,652,920  

4) Proportion (number) of high risk patients that would be reclassified as low risk according 

to model F = 57.00% (3,792,474) 

Of the 167,460 patients classified as high risk, 95,460 are reclassified to low risk = 57.00%. 

Therefore we assumed 57.00% of the high risk group in the English population would also be 

reclassified = 3,792,474. 
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A.4 Chapter 4 Appendices 

 

A.4.1 Calculation of Nmin, minimum required sample size following published 

criteria, and shrinkage factor of models meeting this sample size criteria 

A.4.1.1  Methods 

We followed the criteria outlined by Riley et al.35 for calculating the minimum required 

sample size for a risk prediction model. These are (i) ensure a global shrinkage factor SVH > 

0.9; (ii) ensuring a small absolute difference in the apparent and adjusted R2
Nagelkerke; (iii) 

ensure precise estimate of overall risk (model intercept). The recommended estimate of the 

global shrinkage factor is the shrinkage factor of Van Houwelingen and Le Cessie214, SVH. The 

entity R2
Nagelkerke

215 is an estimate of the proportion of variance explained, that always lies 

between 0 and 1. When estimating this quantity, the apparent estimate will be optimistic, 

and can be adjusted to get an unbiased estimate, which are the two values of interest here. 

The main challenge in following these recommendations is the need to calculate R2
CS_ADJ

216 

(an unbiased estimate of the Cox-Snell217 R2) to calculate the sample size, which can only be 

calculated after fitting the model. It is recommended to use metrics provided by previous 

prediction models developed on similar populations to estimate R2
CS_ADJ. In this study, we can 

use the model developed on the whole development cohort to calculate R2
CS_ADJ directly. This 

value of R2
CS_ADJ allows us to calculate the minimum required sample size for a model 

developed in this population. 

A.4.1.2  Results 

Criteria (i)  

We start by calculating: 

𝑅𝐶𝑆_𝐴𝑃𝑃
2 = 1 − exp (

𝐿𝑅

𝑛
) 

= ⁡0.0780 
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Where 𝑅𝐶𝑆_𝐴𝑃𝑃
2   is a biased estimate of the Cox-Snell217 R2 (based on the work by Magee218) , 

LR = likelihood ratio of the model developed on the entire population, and n = 1,865,078 is 

the size of the cohort used in that model. Next we calculate:  

𝑆𝑉𝐻 = 1 + (
𝑝

𝑛 ∗ ln⁡(1 − 𝑅𝐶𝑆𝐴𝑃𝑃
2 )

) 

= 0.99991 

 

Where 𝑆𝑉𝐻 is the global shrinkage factor of Van Houwelingen and Le Cassie214, and p = 13 is 

the number of predictor variables. There are 9 variables, and but Smoking contributes two 

dummy variables (categories = yes/ex/never) and Townsend contributes 4 dummy variables 

(5 deprivation categories). Then we can calculate: 

𝑅𝐶𝑆_𝐴𝐷𝐽
2 = 𝑆𝑉𝐻 ∗ 𝑅𝐶𝑆_𝐴𝑃𝑃

2  

= 0.0780 

 

To get a model which has a shrinkage of at least SVH = 0.9, as is recommended in the 

guidelines, we use the following formula: 

𝑁𝑚𝑖𝑛 =
𝑝

(𝑆𝑉𝐻 − 1) ∗ 𝑙𝑛 (1 −⁡
𝑅𝐶𝑆_𝐴𝐷𝐽
2

𝑆𝑉𝐻
⁄ )

 

=
13

(0.9 − 1) ∗ 𝑙𝑛(1 −⁡0.0781 0.9⁄ )
 

= 1434 

Criteria (ii)  

In order for the difference between the apparent and adjusted R2
Nagelkerke

215
 to be suitable, 

the following equation must be satisfied: 

𝑆𝑉𝐻 ≥
𝑅𝐶𝑆_𝐴𝐷𝐽
2

𝑅𝐶𝑆_𝐴𝐷𝐽
2 + ⁡𝛿 ∗ 𝑚𝑎𝑥(𝑅𝐶𝑆_𝐴𝑃𝑃

2 )
 

Where 𝑆𝑉𝐻 = 0.9 is the desired shrinkage, 𝛿 is the acceptable difference between the 

apparent and adjusted R2
Nagelkerke, and  
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𝑚𝑎𝑥(𝑅𝐶𝑆_𝐴𝑃𝑃
2 ) = 1 − 𝑒𝑥𝑝 (

2 ∗ ln⁡(𝐿𝑛𝑢𝑙𝑙)

𝑛
) 

= 0.6987 

where 𝐿𝑛𝑢𝑙𝑙  is the log likelihood of the null model with no covariates, and was calculated 

directly from the population derived model. The recommended 𝛿 = 0.05⁡and therefore: 

𝑅𝐶𝑆_𝐴𝐷𝐽
2

𝑅𝐶𝑆_𝐴𝐷𝐽
2 + ⁡𝛿 ∗ 𝑚𝑎𝑥(𝑅𝐶𝑆_𝐴𝑃𝑃

2 )
=

0.0780

0.0780 + ⁡0.05 ∗ 0.6987
⁡ 

= 0.6906 

≤ 0.9 

and the criteria is satisfied. 

Criteria (iii) 

This requires that the confidence interval around the cumulative incidence at t, time point of 

interest, to be smaller than 0.05. We will assume an exponential distribution which is the 

simplest approach to this. 

Let T = total follow up time in years if Nmin is the sample size (average follow up multiplied by 

sample size), 𝜆̂ be the estimated number of events per person year, and t = 10 years is the 

point of interest (time at which we are making risk predictions). Then the confidence interval 

is then calculated as: 

𝐶𝐼⁡ = 1 − 𝑒𝑥𝑝(−(𝜆̂ ± 1.96 ∗ √
𝜆̂

𝑇
) ∗ 𝑡) 

= 1 − 𝑒𝑥𝑝(−(0.0063 ± 1.96 ∗ √
0.0063

7.0230 ∗ 1434
) ∗ 10) 

= (0.0290, 0.0751) 

The size of the confidence interval is 0.0290 < 0.05. 

Therefore the value of Nmin = 1434 satisfies all the criteria and is included as a sample size in 

our main analysis.  
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The exact same process was followed for the male cohort, and the value of Nmin = 1405 was 

found to satisfy all the criteria. 

A.4.1.3  Shrinkage factor of models that have N = Nmin 

For the female cohort, the shrinkage factors of models generated using N = Nmin had a mean 

of 0.898, 2.5th percentile = 0.854, 50th percentile = 0.901, and 97.5th percentile = 0.927.  

For the male cohort, the shrinkage factors of models generated using N = Nmin had a mean 

of 0.898, 2.5th percentile = 0.850, 50th percentile = 0.900, and 97.5th percentile = 0.927. 
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A.4.2 Supplementary tables and figures 

 

Figure A.4.1: Boxplots of the 95% percentile range of risk for individuals across the 1000 

models (male cohort) 
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Figure A.4.2: Boxplots of the 95% percentile range of risk for individuals across subsets of 

the 1000 models, defined by the C-statistic of the models (female cohort) 

Sample size = Nmin 

 

Sample size = 50 000 

 

Sample size = 100 000
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Figure A.4.3: Boxplots of the 95% percentile range of risk for individuals across subsets of 

the 1000 models, defined by the C-statistic of the models (male cohort) 

Sample size = Nmin 

 

Sample size = 10 000 

 

Sample size = 50 000 

 

Sample size = 100 000 
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Figure A.4.4: Boxplots of the 95% percentile range of risk for individuals across subsets of 

the 1000 models, defined by the calibration-in-the-large of the models (female cohort) 

Sample size = Nmin 

 

Sample size = 50 000 

 

Female Figure 3 Sample size = 100 000 
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Figure A.4.5: Boxplots of the 95% percentile range of risk for individuals across subsets of 

the 1000 models, defined by the calibration-in-the-large of the models (male cohort) 

Sample size = Nmin 

 

Sample size = 10 000 

 

Sample size = 50 000 

 

Sample size = 100 000 
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A.5 Chapter 5 Appendices 

 

A.5.1 Supplementary tables and figures 

 

Table A.5.1: Prevalence of statin use each year in CVD primary prevention cohort 

Year Total follow 
up in years 

Prescriptions Prescriptions per 
1000 person years 

1998 738031 8585 11.63 

1999 837959 27044 32.27 

2000 1040735 56827 54.60 

2001 1295439 106348 82.09 

2002 1429880 186787 130.63 

2003 1591167 310417 195.09 

2004 1648158 488761 296.55 

2005 1700595 661788 389.15 

2006 1744492 870761 499.15 

2007 1775518 1030767 580.54 

2008 1801027 1142698 634.47 

2009 1799115 1240413 689.46 

2010 1777610 1263314 710.68 

2011 1712269 1217875 711.26 

2012 1669433 1216451 728.66 

2013 1546937 1152425 744.97 

2014 1325230 1000030 754.61 

2015 1051748 806999 767.29 

2016 204290 154993 758.69 

Total 26689633 12943283 484.96 
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Table A.5.2: Rate of initiation of statin treatment each year in CVD primary prevention 

Year Total follow 
up in years 

Number 
initiated 

Incidence rate per 
1000 person years 

1998 738031 2133 2.89 

1999 837959 3391 4.05 

2000 1040735 5664 5.44 

2001 1295439 9587 7.40 

2002 1429880 15370 10.75 

2003 1591167 22554 14.17 

2004 1648158 31251 18.96 

2005 1700595 30791 18.11 

2006 1744492 37520 21.51 

2007 1775518 29573 16.66 

2008 1801027 29384 16.32 

2009 1799115 28322 15.74 

2010 1777610 22398 12.60 

2011 1712269 18499 10.80 

2012 1669433 19326 11.58 

2013 1546937 16623 10.75 

2014 1325230 13255 10.00 

2015 1051748 10295 9.79 

2016 204290 2330 11.41 

Total 26689633 348266 13.05 
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A.5.1.1  Calibration of the marginal structural model and interval censored Cox model 

Calibration of the models from section 5.4.4 (the marginal structural model (MSM) and the 

interval censored model) are presented here. When assessing the calibration of the MSM (in 

either the development or validation cohorts), it was done on the subset of patients who 

received no statin treatment during follow up. This is because the risk scores generated were 

conditional on having no statin treatment during follow up. The calibration of the interval 

censored Cox model was carried out on the entire development/validation cohorts. The 

interval censored Cox model would under predict the risk of patients who do not receive 

statins during follow up. 

Figure A.5.1 and Figure A.5.2 show that when secular trend was not adjusted for under the 

MSM setting, there was a significant under prediction of risks in the validation cohort, which 

could be accounted for by modelling calendar time. This is very similar to the non-MSM 

setting, for which the calibration of the interval censored Cox model is presented in Figure 

A.5.3 and Figure A.5.4. 

 

Figure A.5.1: Calibration of the MSM in the validation cohort, with or without adjustment 

for calendar time (male cohort) 
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Figure A.5.2: Calibration of the MSM in the validation cohort, with or without adjustment 

for calendar time (female cohort) 

 

Figure A.5.3: Calibration of the interval censored Cox model in the validation cohort, with 

or without adjustment for calendar time (male cohort) 
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Figure A.5.4: Calibration of the interval censored Cox model in the validation cohort, with 

or without adjustment for calendar time (female cohort) 

 

 

It is worth noting here that after adjusting for calendar time, the calibration is slightly poorer 

than in section 5.4.3, where standard cox models were used on data at baseline. I hypothesise 

this is because we were unable to test for fractional polynomials of the continuous variables 

when running an interval censored Cox model, meaning we re-used the same fractional 

polynomials from the standard Cox regression carried out in section 5.4.3. Given that the data 

was imputed differently, these may not be the best fractional polynomials to use. We did 

compare them to using no fractional polynomials, and the models were better calibrated 

when including them. 
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A.6 Chapter 6 appendices 

 

A.6.1 Derivation of statins treatment periods 

A.6.1.1  Definition of treatment period 

The length of a statin treatment period was calculated using data from the prescription 

records in CPRD. First the length of each prescription was estimated using information on the 

quantity prescribed. The quantity variable was present in 99.4% of the recorded prescriptions. 

Of these, 8% were 7 days long, 57% were 28 days long, 29% were 56 days long and 3% were 

84 days long. Given this, the quantity variable was set to missing if the recorded value was > 

84 days. All missing values were imputed with the mode, 28 days. This quantity was then 

divided by the daily dose variable, to give the prescription length. The daily dose variable was 

present in 93.2% of records. Of these, 99% were 1, therefore we set the daily dose to one for 

all entries. 

When the prescription lengths had been calculated, these were combined into treatment 

periods. Each patient’s first treatment period began on the date of their first prescription. At 

the end of this prescription, we looked to see if there was another prescription in the 

following 90 days (defined as the washout period). The treatment period was assumed to be 

over when the gap between the end of the current prescription and the start of the next 

prescription was larger than 90 days. When this condition was met, the current treatment 

period was assumed to be over at the end of the prescription duration. The next treatment 

period, if it occurred, started on the date of the first prescription after the washout period. A 

period of 90 days was chosen due to its usage in other studies,177,219 which allowed us to verify 

our results, and prescription length in the UK is very rarely longer than 56 days for long-term 

condition medicines.220 
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A.6.2 Derivation of CVD transition probabilities (pc) and how they are used to 

run the simulation 

The transition probabilities to CVD represent the probability of having a CVD event each year 

(these are adjusted when on statin treatment). These are calculated using similar methods 

that are used in the QRISK lifetime risk models,161 and are standard methods for lifetime risk 

models. Using such methods, the corresponding life time risk could be calculated for a patient 

of any given age and specified 10-year risk. 

A.6.2.1  Data used to derive transition probabilities 

The primary prevention cohort was used to derive these transition probabilities. This is a 

cohort of patients who were at risk of CVD and not currently undergoing treatment. Patients 

were aged 25 – 84, and were excluded from the cohort if they have had a statin prescription 

or a CVD event prior to their cohort entry date. Cohort entry date was defined as the latest 

of turning aged 25, and 1 year of valid follow up in CPRD. Patients were censored at last data 

collection or death. 

A.6.2.2  Steps for calculation of transition probabilities, for a patient of a given age, gender 

and 10 year risk score, r. 

Note these probabilities ignore the competing risk of death, as this was factored in separately 

when running the simulation. The below steps were carried out separately for males and 

females in order to calculate respective transition probabilities. 

Step 1 – Fit a Cox model to the data where age is used as the time scale.  
 
Using age as the time scale would normally mean a patient enters the cohort at birth and is 

followed up until they either have a CVD event or are censored. However, as no patients in 

the cohort were younger than age 25, we used age 25 as the start of follow up for each 

patient. The data was left truncated for patients that began follow up in CPRD at ages > 25. 

The data was then right censored at the end of follow up in CPRD. The outcome was defined 

using the same code lists as QRISK3.5 This means the CVD event probabilities used in the 

simulation are with respect to the type of event the QRISK3 calculator predicts. Predictor 

variables used in this model were the same as those used in QRISK3,5 except that all the age 

interaction terms were removed, as the relationship between age and CVD was now being 
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modelled in a non-linear fashion through the baseline hazard function (which is a step 

function). 

A standard Cox model can be fitted to data in this form. The only change we made to the data 

was to round all age values to the nearest 0.01, to make the results easier to handle, and to 

remove random variation in the size of steps from each age category. 

Step 2 – Derive the baseline cumulative hazard function and reduce to by year 

The coxph function in R was used to fit this model and derive the baseline cumulative hazard 

function. We were only interested in the probability that an individual has an event in a given 

year therefore we extracted the baseline cumulative hazard at yearly intervals. These values 

are referred to as ℎ𝑎𝑧𝑖 , 𝑓𝑜𝑟⁡𝑖⁡ ∈ ⁡25 ≤ 𝑖 ≤ 89. The nature of a Cox models mean if a patient 

is at a higher or lower risk, the baseline hazard is multiplied by the hazard ratio for that 

patient, to get their individual cumulative hazard. We utilised this property to generate risk 

profiles for patients of the same age, with different risks. 

Step 3 – Calculating the baseline risk of an event between age1 and age2, given a patient 

has reached age1 

From this point onwards we use the terms conditional and marginal probabilities. The 

marginal probability, 𝑝𝑚, refers to the risk of a having an event at given age, whereas the 

conditional probability, 𝑝𝑐, refers to the risk of having an event at a given age, assuming the 

patient has lived to this age without a CVD event. The marginal risk of someone aged 89 is 

therefore much lower than the conditional risk, as there is a high chance they will have an 

event before the age of 89. 

The survival probabilities for the cohort, 𝑠𝑢𝑟𝑣𝑖 , 𝑓𝑜𝑟⁡𝑖⁡ ∈ ⁡26 ≤ 𝑖 ≤ 90, represent the 

probability of surviving to age 𝑖 without having had a CVD event, 𝑃(𝐴 > 𝑖), 𝑓𝑜𝑟⁡𝑖⁡ ∈ ⁡26 ≤ 𝑖 ≤

90. These can be calculated as: 

𝑠𝑢𝑟𝑣𝑖 = exp(−ℎ𝑎𝑧𝑖) , 𝑓𝑜𝑟⁡𝑖⁡ ∈ ⁡26 ≤ 𝑖 ≤ 90 

where ℎ𝑎𝑧𝑖 is the baseline cumulative hazard. The baseline risk, probability of having an event 

before reaching age 𝑖, can be calculated as,  

𝑟𝑖𝑠𝑘𝑖 = 1 − 𝑠𝑢𝑟𝑣𝑖 , 𝑓𝑜𝑟⁡𝑖⁡ ∈ ⁡26 ≤ 𝑖 ≤ 90 



236 
 

These are standard survival analysis relationships.  

The marginal risk of having an event at a given age, 𝑖, is 𝑝𝑚,𝑖 = 𝑟𝑖𝑠𝑘𝑖 − 𝑟𝑖𝑠𝑘𝑖−1, 𝑓𝑜𝑟⁡𝑖⁡ ∈ ⁡26 ≤

𝑖 ≤ 90 

The conditional risk of having an event in each year is then calculated as: 

𝑝𝑐,𝑖 =⁡𝑝𝑚,𝑖⁡𝑓𝑜𝑟⁡𝑖 = 26 

𝑝𝑐,𝑖 =⁡⁡
𝑝𝑚,𝑖

∏ (1 − 𝑝𝑐,𝑗)
𝑖−1
𝑗=1

⁡𝑓𝑜𝑟⁡𝑖 ∈ ⁡27 ≤ 𝑖 ≤ 90 

This comes from the fact that the marginal probability of having an event at a given age, is 

equal to the product of not having an event in any of the subsequent years, multiplied by the 

probability of having an event in that year of interest. 

Finally, we can use these conditional probabilities to calculate the cumulative risk of an event 

between any two ages,⁡𝑟𝑖𝑠𝑘𝑎𝑔𝑒1−𝑎𝑔𝑒2 , conditional on a patient living to that age. To do this, 

we want to calculate the probability of a 50 year old having an event in each year of follow 

up, conditional on the patient having lived to 50 years of age. Assuming a patient is alive at 

age1, we can calculate the marginal probability of an event in each subsequent year, 𝑝𝑚,𝑖|𝑎𝑔𝑒1 

𝑝𝑚,𝑖|𝑎𝑔𝑒1 =⁡𝑝𝑐,𝑖 ⁡ ∏ (1 − 𝑝𝑐,𝑗)

𝑖−1

𝑗=𝑎𝑔𝑒1

, 𝑓𝑜𝑟⁡𝑖⁡ ∈ ⁡⁡𝑎𝑔𝑒1 ≤ 𝑖 ≤ 𝑎𝑔𝑒2 

For each year, this is taking the product the conditional probabilities of not having an event 

in each year, starting at age1, up to the age of interest – 1, and multiplying this with the 

conditional probability of having an event in that year of interest. 

The risk of having an event between age1 and age2, given a patient has reached age1, is the 

sum of these quantities:  

𝑟𝑖𝑠𝑘𝑎𝑔𝑒1,𝑎𝑔𝑒2 = ∑ 𝑝𝑚,𝑘|𝑎𝑔𝑒1

𝑎𝑔𝑒2

𝑘=𝑎𝑔𝑒1+1

 

However note that this is the risk between any two ages, for someone with the baseline 

cumulative hazard. 
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Step 4 – Calculating the hazard ratio to give a specific 10 year risk for a patient of a given 

age 

For this simulation, we needed to calculate the lifetime risk for someone with a given age, 

and a specific 10 year risk. To do this, we had to calculate the hazard ratio which gave us the 

required 10 year risk, for someone of a given age.  

Suppose we wanted to consider the scenario where a patient of is of age = age1, and 10 year 

risk = r. To do this we go back to start of step 3 and multiply the baseline cumulative hazard 

by HR, such that 

𝑟𝑖𝑠𝑘𝑎𝑔𝑒1,𝑎𝑔𝑒1+10 = 𝑟 

The HR which satisfies the above equation is what we solved for. 

Step 5 – Calculating the conditional probabilities of an event in each year of follow up for a 

patient with a given 10 year risk 

After step 4, when we have the HR which gives a 10 year risk of r, we retained the conditional 

probabilities associated with this HR. These are the 𝑝𝑐,𝑖, 𝑓𝑜𝑟⁡𝑖 ∈ ⁡𝑎𝑔𝑒1 ≤ 𝑖 ≤ 90, such that 

𝑟𝑖𝑠𝑘𝑎𝑔𝑒1,𝑎𝑔𝑒1+10 = 𝑟 

These conditional probabilities of an event in each year, 𝑝𝑐,𝑖 , were used in the simulation. 

The patients 10 year risk will be equal to r, the required risk for the scenario of interest. If 

required, we could also calculate the risk between age1 and any age2, 𝑟𝑖𝑠𝑘𝑎𝑔𝑒1,𝑎𝑔𝑒2, using 

the method outlined in step 3. 

Summary 

It should be noted that the way in which we adjust the cumulative hazard function, in order 

to obtain 10 year risks of interest, is exactly how the lifetime risk model is adjusted in practice 

to identify patients of higher and lower risks. Proportional hazards are assumed in this 

scenario (how true this is in practice I very much doubt), and patients with higher and lower 

risks have their cumulative hazard function adjusted by a particular hazard ratio. While in 

practice that hazard ratio is calculated based on a patient’s predictor variables, we just picked 

a hazard ratio in order to obtain the cumulative hazard function that is relevant to each 

scenario in the simulation. 
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A.6.2.3  Implementation of simulation 

When the CVD event probabilities had been derived we allowed patients to move through 

the simulation in the following manner. Each scenario was based on age and 10-year CVD risk 

at the start of the simulation (risk assessment), gender, age at statin initiation and an assumed 

discontinuation and restarting rate. 

First we calculated the CVD transition probabilities for a patient with a given age, gender and 

10-year risks, using the methods from section A.6.2.2. Then we generated discontinuation 

and restarting times of statin treatment over the duration of follow up, based on the statin 

initiation date and the discontinuation and restarting rate. Next we adjusted the CVD 

transition probabilities each year if on statin treatment during that year, as outlined in the 

main manuscript. If a patient was on statin treatment for x% of a year, we reduced the 

treatment effect by this amount. For example if we assumed the relative risk when on statin 

treatment was 0.7, and a patient was on treatment for half a year, we only applied a risk 

reduction of 0.85.  

We were then left with the final set of CVD transition probabilities each year, and probabilities 

of death each year (taken directly from ONS data). We simulated a CVD event time and death 

for a patient using these probabilities. We repeated this process 10,000 times for each 

scenario, and counted the number of CVD events that occurred prior to death over the course 

of the follow up. We compared the number of CVD events with the number occurring in a 

simulation where it was assumed each patient received no statin treatment for the duration 

of follow up, to get the number of events prevented per 100 people. 

 

A.6.3 Calibration plots of Cox models from which transition probabilities 

were derived 

The following section presents internal calibration plots for the Cox model used to derive the 

CVD transition probabilities, which is outlined in section A.6.2.2. It was important these 

models were well calibrated. 
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A.6.3.1  Methods 

The process for developing the Cox model (age as time scale) was presented in section 

A.6.2.2. To produce the following plots, this model was developed on 80% of the primary 

prevention cohort and 20% retained for validation. 10-year risk scores were then generated 

for patients in the validation cohort. Patients were then allocated into 10 equal size groups 

based on their predicted risk (deciles). Within each group, the Kaplan Meier estimate of risk 

at 10 years follow up was calculated (observed risk) and the average predicted risk (expected 

risk). These were then plotted against each other to assess calibration.  

A.6.3.2  Results 

The calibration of the respective male and female models is shown in Figure A.6.1 and Figure 

A.6.2. While these calibration plots are optimistic (split sample internal calibration), they 

indicate both models were well calibrated. 

 

Figure A.6.1: Calibration of female Cox model used to derive CVD transition probabilities 
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Figure A.6.2: Calibration of female Cox model used to derive CVD transition probabilities 

 

 

A.6.4 Age stratification and extrapolation of discontinuation rates 

A.6.4.1  Age stratification of discontinuation rates for first treatment period 

Figure A.6.3 shows the discontinuation rates (Kaplan Meier plots) of patients during the first 

statin treatment period stratified by age (10 year age groups). We see there are fairly large 

differences in the discontinuation rates for different aged patients. We could not use these 

discontinuation rates in our simulation directly as we varied statin initiation age by one year 

intervals, and therefore need the discontinuation rate to be a function of age where age could 

take any integer.  

To do this we opted to fit a Cox proportional hazards model to the data with age as a predictor 

variable, and tested for fractional polynomials of age to allow a non-linear relationship 

between age and discontinuation rate. We felt this model was suitable as the survival curves 

presented in Figure A.6.3 are proportional up until the point where data starts to run low (i.e. 

not many age 70 – 80 year old patients have more than 5 years follow up on treatment), 

making the proportional hazards assumption viable. We felt it was appropriate to test the 
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proportional hazards assumption visually, as any formal test for the proportional hazards 

would find the assumption not to be true due to the large sample size (high power to detect 

any difference) and length of follow up is so long (no data is truly proportional over this length 

of time). 

We found the optimal fractional polynomial of age to be: 𝛽1*(age/100)^3 + 

𝛽2*((age/100)^3)*log(age/100). We then fitted the Cox model and discontinuation rates 

could be generated for any age. Figure A.6.4 shows the discontinuation rates for age = 45, 55, 

65 and 75 from this model, for comparison to the age stratified discontinuation rates 

presented in Figure A.6.3. We felt the agreement between the two graphs was strong. 

Figure A.6.3: Kaplan Meier plots for patients during first treatment period, stratified by age 
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Figure A.6.4: Age stratified discontinuation rates derived from the Cox proportional hazards 

model 
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A.6.4.2  Extrapolation of discontinuation and restarting rates 

The discontinuation/restarting rates were extrapolated using a constant rate from year 13 

(first discontinuation), year 10 (second treatment period, and first and second restarting 

periods) and year 8 (third treatment period) onwards. The discontinuation probability used 

in each day beyond the cut-off point was calculated as the mean daily discontinuation 

probability of the final year prior to the cut-off point. To follow are Figures of the 

extrapolation of the discontinuation and restarting rates. For the first treatment period 

(Figure A.6.5), we plot the extrapolation of the discontinuation rate for a range of ages on the 

same graph, as this discontinuation rate is age stratified. The extrapolated second and third 

discontinuation rates are then plotted together (Figure A.6.6), and the extrapolated first and 

second restarting rate (Figure A.6.7). 
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Figure A.6.5: Extrapolation of the discontinuation rates derived from CPRD for the first 

treatment period, stratified by age, extrapolation made from year 13 onwards. 

 

*Note we only need to extrapolate as far as 90 years old, hence the different extrapolation 

lengths 
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Figure A.6.6: Extrapolation of the discontinuation rates derived from CPRD for the second 

and third treatment periods, extrapolation made from year 10 and year 8 onwards.   
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Figure A.6.7: Extrapolation of the restarting rates derived from CPRD for the first and second 

treatment period. Extrapolation made from 10 years onwards. 

 

 

 

 

 

 

 



247 
 

A.6.5 Discontinuation and restarting rates in the cohort of statin users where 

treatment periods with only one prescription are removed 

 

The Kaplan Meier plots in Figure A.6.8 and Figure A.6.9 show the discontinuation and 

restarting rates for each treatment period, for the cohort of patients used in the sensitivity 

analysis, where treatment periods of length 1 are removed. These plots are the equivalent of 

Figure 6.2, but for this cohort. 

 

Figure A.6.8: Kaplan Meier plots of the time until discontinuing statins for the first, second, 

third and fourth discontinuation, single prescription treatment periods removed 
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Figure A.6.9: Kaplan Meier plots of the time until restarting statins for the first, second and 

third time, single prescription treatment periods removed 
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A.6.6 Results from the female analysis and the sensitivity analyses 

 

The results from the primary analysis for the female cohort are presented here, in Figure 

A.6.10 and Figure A.6.11. The results from all the sensitivity analyses are available on the 

GitHub page,103 as they are numerous and provide little extra context. 

The primary analysis for the female cohort brings similar conclusions to the male cohort. The 

peak of the trajectories was driven by age, rather than risk score, although the peak is shifted 

by about five years to just after 60. This reflects female’s lower risk of death. There are slightly 

larger gains to be made by delaying statin initiation until risks higher than 10% than there was 

for the men. 

The sensitivity analyses echo the findings from the primary analysis. Reducing the relative 

rate (increasing the treatment effect) caused a higher number of events prevented, and 

therefore greater gains to be made by delaying statin initiation. However the shape of the 

trajectories remained the same and the maxima was around the same age. When the cohort 

of statin users excludes treatment periods with only one prescription, the events prevented 

increased slightly but the change is not large. Once again, the maxima of the trajectories were 

at a similar point. 

Supplementary illustrative example 1: If we prescribe statins to a cohort of 50-year old women 

with a 10% 10-year CVD risk, we prevent 4.53 events per 100 individuals over the course of 

40 years. If we took this same cohort of women, but instead waited 10 years before initiating 

statins, at which point there 10-year risk of CVD would be around 20%, then we would prevent 

5.49 events per 100 individuals over the 40 years period of follow up. 

Supplementary illustrative example 2: Consider prescribing statins to a cohort of 50-year old 

women with a 4% 10-year CVD risk (median for that group). Per 100 individuals, 3.64 events 

are prevented if discontinuation rates remain as normal, 5.79 events if discontinuation is 

reduced by a sixth, 7.24 events if discontinuation is reduced by a third, 8.25 events if 

discontinuation is halved, and 9.47 events if there is no discontinuation. The equivalent 

number of events prevented for a cohort with 10% 10-year CVD risk are 4.54, 7.21, 9.05, 10.27 

and 11.83. 
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Figure A.6.10: Number of cardiovascular events prevented over the duration of follow up 

with different time delays in starting statins, stratified by baseline age and 10 year CVD risk 

using the discontinuation rates as observed in the statin cohort (female cohort) 
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Figure A.6.11: Number of cardiovascular events prevented over the duration of follow up 

with different time delays in starting statins, stratified by baseline age and discontinuation 

rate (female cohort)   
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A.7 Chapter 7 appendices 

 

A.7.1 Density and convergence plots of imputed variables 

A.7.1.1  Methods 

Amount of missing data 

The levels of missing data were as follows: cholesterol/HDL ratio [17.56% for females and 

16.91% for males], SBP [1.60% and 2.26%], SBP variability [6.26% and 9.77%], Smoking [9.71% 

and 8.50%] and BMI [18.44% and 20.65%]. Missing data in Ethnicity was combined with white 

to create a ‘white or not stated’ category, as is the case in QRISK3. 

Methods for running the imputation 

Multiple imputation by chained equations was used to impute missing data for body mass 

index (BMI), systolic blood pressure (SBP) and SBP variability, cholesterol, HDL and smoking 

status. The program used to impute the data was the R package ‘mice’.130 There were 20 

imputation procedures carried out, and 30 iterations for each one. Variables included in the 

imputation model were all predictor variables required to produce a risk score using QRISK3 

(including interaction terms). All continuous variables were imputed using predictive mean 

matching, and polytomous regression for categorical variables.130 Interactions terms were 

imputed empirically from the two component variables (not stochastically), and interactions 

terms were not used to impute their component variables. 

Methods for assessment performance of imputation process  

For continuous data the density plots shown assess whether there were any systematic 

differences in for the non-missing data and the imputed data. This also enabled us to check 

that the distribution of imputed values was reasonable (i.e. no extreme values, or a 

distribution shape which clearly indicates an issue with the imputation procedure).  In the 

plots, each red line is a density plot of the imputed data in one of the imputed datasets, and 

the blue line is the density plot of the non-missing data.  

The convergence plots assess whether the Markov chain in the imputation process had 

reached a steady state by the final iteration. The x-axis is the iteration number, y-axis the 
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mean or standard deviation of the imputed values, and each coloured line a different 

imputation process. For categorical variables, the distribution of the variable from each 

imputation stream are presented, as well as the distribution of non-missing values. 

A.7.1.2  Results for imputation of statin initiation cohort 

All convergence plots reached a steady state very quickly, far before the 30th iteration. All 

density plots had reasonable distributions with no extreme values. All plots presented below. 

BMI 

Figure A.7.1: BMI convergence plot for imputation of statin initiation cohort 

 

Figure A.7.2: BMI density plot for imputation of statin initiation cohort 
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SBP 

Figure A.7.3: SBP convergence plot for imputation of statin initiation cohort 

 

 

Figure A.7.4: SBP density plot for imputation of statin initiation cohort 
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SBP variability 
 

Figure A.7.5: SBP variability convergence plot for imputation of statin initiation cohort 

 

Figure A.7.6: SBP variability density plot for imputation of statin initiation cohort 
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Cholesterol 
 

Figure A.7.7: Cholesterol convergence plot for imputation of statin initiation cohort 

 

 

Figure A.7.8: Cholesterol density plot for imputation of statin initiation cohort 
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HDL 
 

Figure A.7.9: HDL convergence plot for imputation of statin initiation cohort 

 

 

Figure A.7.10: HDL density plot for imputation of statin initiation cohort 
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Smoking status 
 

Table A.7.1: Distribution of real data and imputed data (%) for smoking status in imputation 

of statin initiation cohort 

 Smoking status (%) 

Imputation Never Ex Light Moderate Heavy 

Real data 38.92 35.85 9.75 8.06 7.43 

1 37.58 41.82 7.19 7.26 6.16 

2 37.92 40.82 7.10 7.58 6.58 

3 37.00 41.55 7.39 7.95 6.11 

4 36.93 41.71 7.64 7.37 6.35 

5 37.12 41.63 7.04 7.57 6.64 

6 37.30 41.29 7.14 7.78 6.49 

7 37.04 41.47 7.50 7.92 6.07 

8 37.36 41.72 7.26 7.45 6.20 

9 37.01 40.88 7.43 8.02 6.66 

10 37.46 41.52 7.29 7.26 6.47 

11 36.75 42.54 7.00 7.72 5.99 

12 36.36 42.05 7.69 7.84 6.06 

13 37.30 41.40 7.20 7.74 6.36 

14 37.42 41.06 7.51 7.57 6.44 

15 37.48 41.46 7.26 7.79 6.01 

16 37.79 41.10 7.15 7.11 6.84 

17 37.19 41.50 7.16 7.68 6.47 

18 37.20 41.92 7.25 7.45 6.19 

19 37.33 41.59 7.45 7.57 6.07 

20 37.13 41.57 7.34 7.58 6.38 
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A.7.2 Supplementary tables and figures 

 

Table A.7.2: Baseline demographics of statin cohort 

 Female Male 

N 166,209 185,344 

Continuous variables 

Age 63.5 (11.05) 60.08 (11.08) 

Systolic blood pressure 140.33 (18.35) 140.61 (17.2) 

Systolic blood pressure 

variability 

13.07 (5.8) 12.12 (5.89) 

Body mass index 29.26 (6.35) 28.96 (5.05) 

Cholesterol/HDL ratio 4.64 (1.42) 5.21 (1.53) 

Categorical variables 

Atrial fibrillation 2.85% 3.62% 

Atypical antipsychotic 

medication 

0.86% 0.76% 

Corticosteroid use 2.00% 1.23% 

Chronic kidney disease 

stage 3/4/5 

13.61% 7.17% 

Diabetes (type 1) 1.32% 1.70% 

Diabetes (type 2) 21.19% 22.25% 

Ethnicity: Bangladesh 0.13% 0.16% 

Black African 0.40% 0.40% 

Black Caribbean 0.44% 0.34% 

Chinese 0.13% 0.11% 

Indian 0.90% 1.06% 

Other 0.79% 0.83% 

Other Asian 0.59% 0.64% 

Pakistani 0.32% 0.39% 

White 96.30% 96.08% 
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Family history of CVD 29.49% 23.22% 

HIV 0.04% 0.13% 

Treated Hypertension 48.74% 43.70% 

Migraine 10.64% 4.41% 

Rheumatoid Arthritis 2.10% 0.88% 

Smoking: Never 46.47% 32.24% 

Ex 30.60% 40.49% 

Current 22.93% 27.27% 

Systemic lupus 

erythematosus 

0.23% 0.03% 

Severe mental illness 15.87% 8.56% 

 

 

 


