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Abstract

The continuous growth of computer systems have introduced a new era for comput-
ing. The performance and power gains that came through advancements in transistor
technology driven by Moore’s law have begun to diminish due to the Dennard’s Scal-
ing hitting the physical boundaries. The increasing demand for performance along
with resource constraints have brought energy and power efficiency to the forefront
of research agenda. Power efficiency requirement is imposed by thermal problems in
modern chips while energy efficiency is needed for long lasting batteries and low elec-
tricity costs. The inability of multi-core processors to meet the above requirements
have shifted research towards heterogeneous architectures.

This thesis focuses on single-ISA heterogeneous architectures or asymmetric multi-
cores, where two or more core types are integrated onto the same chip. All core
types implement the same Instruction Set Architecture (ISA), but differ at the micro-
architecture level and/or operating frequency, thus delivering different performance
and power/energy efficiency. A major challenge in single-ISA heterogeneous architec-
tures is scheduling.

This thesis explores scheduling techniques on single-ISA heterogeneous architec-
tures, and more specifically on ARM big.LITTLE systems. The state-of-the-art sched-
ulers for big.LITTLE systems are based on the default Time Preemptive Scheduling

mechanism of Linux kernel which can miss rapid phase changes of the workload. This
thesis proposes a novel scheduling mechanism, called Context Preemptive Scheduling,
that exploits features of ARM architecture to closely track phase changes in running
programs and invokes the migration process of the scheduler in time. More speciff-
ically, it leverages the fact that the ARM PMU creates an interrupt when Hardware
Performance Counters-HPCs overflow. In Context Preemptive Scheduling the HPCs
can be set to such values so as to overflow when the workload changes its behaviour.
The overflow triggers an interrupt which in turn initiates the procedure to check if mi-
gration is needed. This approach, tested under a small set of micro-benchmarks and
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MiBench benchmark, manages to closely track the phase changes of the workload and
can perform process migration more rapidly in cases where it is needed; thus it shows
promise in delivering better run-time performance and energy efficiency compared to
the default time preemptive scheduling mechanism.
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Chapter 1

Introduction

This thesis is an investigation of scheduling techniques on single-ISA (Instruction Set
Architecture) heterogeneous architectures. It targets the Arm big.LITTLE architec-
ture and explores the impact of different scheduling mechanisms and policies on both
power and performance. Specifically, this thesis proposes a novel scheduling mecha-
nism called Context Preemptive Scheduling - CPS, which decouples the check for mi-
gration procedure of the scheduler from the periodic scheduler tick (Time Preemptive

Scheduling - TPS). Context Preemptive Scheduling relies on the Performance Monitor

Unit - PMU and the Hardware Performance Counters - HPCs to notify the scheduler
to check if a process needs to migrate to a different core type. Leveraging the PMU,
the scheduler can get accurate information about the process phase changes and act
(migrate the process to the appropriate core type) upon encountering the phase change.

This chapter introduces the thesis and sets the context of this work. Section 1.1
briefly describes heterogeneous architectures and explains their role in mitigating the
power-performance trade-off in the dark silicon [1] era. Section 1.2 presents two power
management techniques, Dynamic Voltage and Frequency Scaling (DVFS) and Low
Power States, used in modern processors to assist with reducing power consumption.
Although these techniques are out of scope of this work, they are present in this thesis
because they can be used in conjunction with the scheduler on single-ISA heteroge-
neous architectures to tackle the power-performance trade-off. Section 1.3 provides
basic background on single-ISA heterogeneous architectures and describes briefly the
Arm big.LITTLE architecture which this thesis focuses on. Section 1.4 presents the
motivation of this thesis, section 1.5 the contributions and finally section 1.6 describes
the structure of this thesis.

14



1.1. HETEROGENEOUS ARCHITECTURES 15

1.1 Heterogeneous Architectures

The past decades advancements in technology enabled computer architects to accel-
erate applications by building powerful processors. Complex architectures featuring
out-of-order execution, dynamic speculation and simultaneous-multi-threading (SMT)
in combination with high operating frequencies were able to meet the performance
requirements of various applications. Limited power and thermal budgets led the ar-
chitecture community to move towards multi-cores. For some years, performance im-
provements have been achieved by increasing the number of transistors on chip and
building processors with multiple cores that can be exploited by multi-threaded appli-
cations.

However, the ever increasing demand for performance in contemporary computer
systems along with resource constraints have brought energy and power efficiency
again to the forefront of research agenda. The cost of electricity in data centres and the
need for longer battery life in mobile systems have made energy efficiency an impor-
tant factor when designing hardware and developing software. The growth in the use of
hand-held devices such as smartphones, tablets and wearables, have introduced a new
era for computing. Processors used in hand-held devices are expected to deliver as
much performance as those in PCs. However, the power wall problem combined with
the lack of cooling mechanisms on such devices requires extra consideration from both
hardware and software designers. At the other end of computers spectrum, large data
centre farms are trying to minimize energy and power consumption to reduce operating
costs.

The performance and power gains that came through advancements in transistor
technology driven by Moore’s law [2] have begun to diminish due to Dennard’s Scaling
[3] hitting the physical boundaries. High-density packing of transistors resulted in the
inability to operate them at their maximum capabilities due to thermal problems caused
by high power dissipation. Even if there is still the ability to add more transistors on the
chip, they cannot be switched on at the same time due to power and thermal constraints.
This phenomenon is known as dark silicon [1]. The challenge is not anymore just
to improve processor performance, but rather how to increase processor performance
without melting it.

The dark silicon era is shifting research and industry communities towards het-
erogeneous architectures that exhibit diverse power and performance characteristics.
Heterogeneity can be accomplished either by consolidating different-ISA processing
elements such as CPUs, GPUs, DSPs, FPGAs on the same chip, or by integrating
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single-ISA heterogeneous multi-cores [4]. In the later case heterogeneity refers to the
micro-architecture and/or the operating frequency of the cores. Industry is pursuing the
road of heterogeneity with building processors such as the IBM Cell processor which
has 8 special-purpose processing elements and one general-purpose RISC core [5], the
Intel’s Sandy Bridge processor that integrates a GPU [6], the AMD Fusion APUs [7]
and Intel Quick IA prototype [8].

This thesis focuses on single-ISA heterogeneous multi-cores, also known as asym-
metric multi-cores. Commercial products of this type are Arm big.LITTLE [9], which
integrates a high performance processor and an energy efficient one, and NVidia Kal-
El [10], which integrates four performance-tuned cores along with one energy-tuned
core. Arm big.LITTLE technology has been extended to accommodate a third core
type, forming a big.Medium.LITTLE single-ISA heterogeneous architecture, such as
the Mediatek Helio X20 SoC [11].

The rationale behind single-ISA heterogeneous architectures is that different appli-
cations have different resource demands, and that in many cases the same application
has phases with diverse computational needs. A task which is not critical and does
not have high performance requirements can execute on the LITTLE cluster in order
to save power. In case of a demanding task though, power consumption may be sac-
rificed and run the task on the big cores to meet performance requirements. However,
when taking into account real world applications it is usually difficult to classify them
as demanding or not as a whole, since they demonstrate phases of different intensity;
they may have a short computation burst, followed by long idle period, followed by
a medium demand computation and so forth. Such an example is the browser; it has
short computation burst when loading a page and long idle periods when the user reads,
followed again by low computation phases while the user scrolls.

The responsibility of choosing the right core type for a given application at any
point in time is responsibility of the scheduler. The scheduler is the right place to fit
this functionality because it has system wide information, not only for the particular
application but also for everything else that runs on the system. On homogeneous ar-
chitectures the scheduler has mainly two responsibilities: time sharing among the pro-
cesses and load balancing. On single-ISA heterogeneous architectures the scheduler
has a third responsibility; to decide which is the appropriate type for a given application
in accordance with the optimisation target, e.g. performance, power efficiency, fairness
among the processes etc. To decide the appropriate core type for a given application,
the scheduler has to address two questions:
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• When and how often the scheduler should check if migration to another core type
is needed (mechanism)?

• What information (what kind of metric) should the scheduler rely on to decide
the most suitable core type for a given application?

This thesis addresses the first question and proposes a novel mechanism that can keep
track of the application phase changes and invokes the scheduler to perform migration
to another core type whenever indicated by the policy applied.

1.2 Power Management

This section briefly describes two power management techniques targeting power re-
duction: Dynamic Voltage and Frequency Scaling-DVFS and Low Power States . Al-
though this thesis is concerned with scheduling on single-ISA heterogeneous archi-
tectures, these techniques can be used in combination with the scheduler to improve
power efficiency.

Power dissipated in CMOS circuits can be divided into to components dynamic

power (Pd) and static power (Pst) :

Ptotal = Pd +Pst (1.1)

Dynamic power occurs due to the switching of transistors and can be expressed
with the following formula :

Pd = a∗C ∗V 2
dd ∗ f (1.2)

where C is the load capacitance, a is the activity factor (average number of circuit
switches per clock cycle), Vdd is the supply voltage and f the clock frequency. Reduc-
tion in voltage supply can lead to quadratic reduce in power consumption. However,
supply voltage and clock frequency are linearly related and therefore by lowering volt-
age frequency has to be lowered as well.

Static power represents the power consumed when the transistors are not switching
and can be modelled as :

Pst =Vdd ∗ Il (1.3)

where Vdd is the supply voltage and Il is the leakage current, which is the current
flowing between the power source and the ground. As the technology decreases and
transistors are made smaller, the gate thickness also decreases which increases the
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probability of tunneling, resulting in larger leakage currents. Static power is exponen-
tially related to the temperature and as the processor’s temperature rises static power
becomes more significant portion of the total power. Today, static power accounts for
20-40% of total power consumption [12].

1.2.1 DVFS

Dynamic power is dependent on the voltage supply and the clock frequency. DVFS is
a commonly used technique to dynamically adjust the voltage and frequency to reduce
power consumption [13]. According to equation 1.2 lowering the supply voltage will
result in quadratic drop in dynamic power. The voltage required for stable operation is
determined by the clock frequency of the circuit and can be reduced if the frequency is
also reduced [14]. Some processors capable of frequency scaling can switch between
frequency and voltage levels on the fly without any kernel or user involvement, that
can lead to fast frequency scaling [15]. Snapdragon 810 processor [16] used in the
experiments of this thesis (see section 7.1), does not have this capability and therefore
the kernel drives the frequency scaling. In addition, cores within a cluster cannot have
different frequencies. However, the big and LITTLE cluster can operate at different
frequencies.

The cpufreq framework is a subsystem in the Linux kernel responsible for the CPU
frequency scaling. The cpufreq framework can be divided into three layers. The first
layer lies above the hardware and is device specific. Every CPU has its own register
to configure for changing the frequency and the voltage. The device specific layer
implements the actual voltage and frequency scaling.

The second layer is the cpufreq driver. The driver offers the generic mechanism to
change the frequency and abstracts out the details for the next layer. The Linux kernel
separates mechanism from policy. Mechanism offers the way to change frequency
whereas policy is the implementation of a specific algorithm, for example when to
change frequency, how long to stay at this frequency etc.

The third layer is the policy and is called cpufreq governor [17]. There are many
governors for frequency scaling. Next are described some popular frequency scaling
governors: performance, userspace, ondemand, interactive, conservative and power-

save.

• Performance Governor
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The performance governor sets the CPU statically to the highest available fre-
quency. Its goal is to provide as much performance as possible without taking
into account power consumption.

• Userspace Governor
The userspace governor allows the user to statically set the frequency at the
desired level. The user has to select among the frequency levels that are available
for the particular CPU.

• Ondemand Governor
Ondemand is one of the oldest governors in the Linux kernel. This governor sets
the frequency based on the usage of the CPU. When usage is above a predefined
up-threshold the governor will rump-up to the maximum frequency. It has also a
parameter that controls the rate at which it makes decisions on when to decrease
the frequency when running at the highest frequency. Finally, the governor has
a power-save bias parameter based on which the frequency will be increased to
a lower value than the maximum.

• Interactive Governor
This governor is similar to Ondemand but as its name implies reacts faster to
user interaction. Like Ondemand, Interactive will scale the frequency based on
the usage. This governor scales the speed over a course of a timer and for this
reason it utilises better intermediate frequencies.

• Conservative Governor
This governor also shares similarities with Ondemand as it also sets the fre-
quency depending on current usage. However, instead of jumping to highest
speed it will increase and decrease the frequency smoothly. It will choose the
lowest possible frequency for as often as possible. Conservative can also be
called “slow Ondemand”.

• Powersave Governor
This governor sets the CPU statically to the lowest available frequency. Its pur-
pose is to consume as little power as possible.
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1.2.2 Low Power States

When there is no computation going on, the core can be put into low power/idle states
to reduce power consumption. Typically, there are a few idle states implemented in
a CPU with different entry and exit latencies and power saving levels. Each state is
determined by the set of components that are clock-gated or power-gated once the
state is entered. Clock-gating is when the clocks of the core are stopped but it is
still on power supply. This technique aims to eliminate dynamic power consumption
but it cannot reduce static power. In power-gating the affected areas of the chip are
disconnected from the power supply and therefore it removes both static and dynamic
power [18].

The available low power states in a processor is implementation specific. For ex-
ample, Arm cores typically support the following idling states: Standby, Retention,

Power down, Dormant mode and Hotplug [19]. For some of these levels the state of
the core has to be saved and restored before entering and exiting having a not negligi-
ble impact on performance. Selecting the most suitable idle state is responsibility of
the operating system.

The cpuidle framework of Linux kernel is a generic infrastructure to coordinate
idle states of the CPU. CPUs support various idle states with different exit latencies
and power consumption. This framework follows the design principle of Linux kernel
of separating policy (governor) from mechanism (driver), and offers a standardized
infrastructure to independently develop governors and drivers [20].

The cpuidle driver is responsible for the low-level, architecture specific part of idle
states. It detects the idle states available on the platform along with their characteristics
(exit latency, power savings) and provides the cpuidle governor with the appropriate
information. The cpuidle governor is the policy that decides which idle state the core
should enter at any given time. In contemporary Linux systems there are two cpuidle
governors : the menu and the ladder governor.

The ladder governor will first select the shallowest idle state and will go into deeper
states if the time spent in the previous state was long enough. The menu governor does
not necessarily follow this order and it can jump into a deep sleep state if it decides
that this would be beneficial. This governor employs heuristics to predict how long
the core will be idle and chooses the appropriate idle state based on the performance
impact and the energy break-even point. Different idle states have different entry and
exit latencies. Therefore going into a deep idle state may have a negative impact on
performance or energy. The energy spent to enter and exit the idle state may be more
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Figure 1.1: Arm big.LITTLE architecture1

than the energy saved by idling, if the core does not stay in the idle state for long
enough.

1.3 Single-ISA Heterogeneous Architectures

This thesis focuses on single-ISA heterogeneous architectures. This section describes
an industrial realisation of single-ISA heterogeneous architectures, the Arm big.LITTLE
[9], since such a system has been used in this work. The big.LITTLE system was de-
veloped to serve, at least initially, the needs of mobile systems market as it can offer
both performance and energy efficiency. In the big.LITTLE system, as shown in fig-
ure 1.1, a “big” processor is paired with a “LITTLE” processor so that the system
can accomplish both high intensity and low intensity tasks in a more power efficient
manner.

The big processor is a power-hungry, complex processor which delivers high per-
formance, whereas the LITTLE one is a simpler processor that does not provide as
much performance as the big but it is more energy efficient. Both big and LITTLE pro-
cessors are architecturally identical, however they differ in micro-architecture and this
is the reason why they can deliver different performance and energy efficiency. Being
architecturally identical makes big.LITTLE a single-ISA heterogeneous architecture,
which means that the same binary can run on both processors without recompiling.
In the first versions of big.LITTLE systems the big processor is an Arm Cortex-A15
[21] and the LITTLE an Arm Cortex-A7 [22]. These two processors are 32-bits and
they implement the full Arm v7 architecture. In the next generation of big.LITTLE
which supports 64-bits and implements the Arm v8 architecture the big processor is an
Arm Cortex-A57 [23] and the LITTLE an Arm Cortex-A53 [24]. Recent versions of
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Figure 1.2: Software Models for big.LITTLE

big.LITTLE architecture incorporate the Arm Cortex-A73 [25] processor as well.
An important feature of big.LITTLE technology is cache coherency between the

two clusters [26]. big.LITTLE software models require transparent and efficient trans-
fer of data between big and LITTLE processors. Hardware coherency enables this,
transparently to the software. Without hardware coherency, the transfer of data be-
tween big and LITTLE cores would always occur through main memory - this would
be slow and not power efficient. In addition, it would require complex cache manage-
ment software, to enable data coherency between big and LITTLE processors [26].

The rest of this section describes the evolution of the software models used for
big.LITTLE systems; how the operating system views and manages the available cores
of the system. Since the first implementation of big.LITTLE architecture there have
been three software models for scheduling, as shown in figure 1.2.

• Cluster migration
In Cluster migration, only one cluster, the big or the LITTLE, is active at any
given point in time. The scheduler considers the overall load on the currently
active cluster. Typically, this is the load of the core that is busiest in the cluster.
If the load warrants a change from big to LITTLE or from LITTLE to big, the
scheduler synchronises all the cores and then transfers all compute context to the
other cluster.

• CPU Migration
1Image source: https://www.geek.com/chips/arm-cortex-a7-and-big-little-set-to-revolutionize-

mobile-computing-1432465/
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In this model, each big core is paired with a LITTLE core and form a logical
processor. Only one core in each pair is active at any time, with the inactive core
being powered down. The active core in the pair is chosen according to current
load conditions. Operating system is only aware of the logical processor and
unaware of the underlying physical cores. Each logical processor can physically
be a big or LITTLE processor and the appropriate core type is decided by the
cpufreq subsystem and the scheduler. This model requires the same number of
processors in both the clusters and allows a mix of big and LITTLE cores to be
active at any time.

• Global Task Scheduling
In this model the scheduler is aware of the differences in compute capability
between big and LITTLE cores. Using statistical data and other heuristics, the
scheduler tracks the performance requirement for each individual thread, and
uses that information to decide which type of processor to use for each thread.
Unused processors can be powered off. If all processors in a cluster are off, the
cluster itself can be powered off.

The last software model is the most complicated to design and implement but also
the most flexible and can make better use of big.LITTLE architecture. In Global Task
Scheduling model the cpufreq subsystem can be integrated with the scheduler to make
decisions about the appropriate core type and frequency level. This model is the one
currently used and the one that this thesis is concerned with. In the rest of this thesis,
when referring to scheduling on single-ISA heterogeneous architectures, the Global
Task Scheduling software model is assumed, where the operating system can manage
individually all the available cores on the system.

1.4 Motivation

This section describes the motivation of this thesis and presents briefly the proposed
scheduling solution. It is divided into three subsections. The first subsection, section
1.4.1, explains the role and the importance of scheduling on single-ISA heterogeneous
architectures. Section 1.4.2 introduces the terminology used in this thesis. Finally,
section 1.4.3 describes the challenges of scheduling on single-ISA heterogeneous ar-
chitectures, motivates this thesis, and presents a novel scheduling mechanism, called
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Context Preemptive Scheduling, which can overcome the limitations of the current
scheduling mechanism.

1.4.1 Role of Scheduling on Single-ISA Heterogeneous Architec-
tures

On homogeneous architectures the scheduler is mainly responsible for sharing the time
among the processes and load balancing. Consider, for example, a system that runs 20
processes and has two CPUs. The scheduler has to guarantee that each one process
will have a fair share of CPU time in order to make progress. In addition, the scheduler
is responsible for balancing the CPUs. This means that the two CPU should approx-
imately have the same load (same number of processes waiting for execution on each
CPU runqueue)2; the scheduler is responsible to distribute the processes between the
two CPUs to achieve it.

On single-ISA heterogeneous architectures the scheduler has one more responsi-
bility; to schedule the right application on the right core type. The idea behind single-
ISA heterogeneous architectures is that by incorporating a low-power moderate per-
formance cluster and a power-hungry high-performance cluster, applications can run
on the appropriate cluster according to their needs. In order to make the most out
of such systems, it is necessary to run the appropriate application or the appropriate
phase of an application on the right core type. Failing to do so can have adversary
results. Running a low demand workload which does not require a lot of processing
power on a powerful core will result in unnecessary excess power consumption. On
the other hand, running a high demand workload on a moderate performance processor
will most probably have negative impact on performance, harassing user experience or
quality of service. In addition, it may result in higher energy consumption because of
the longer execution time.

1.4.2 Terminology

Table 1.1 introduces the terminology used in the rest of the thesis. The first column
shows the term and the second contains a short description.

2This is the general case for load balancing that the goal is to keep the CPUs balanced. There are
cases, where load balancing will pack as many processes as possible on a subset of the available CPUs,
in order to power down the rest and save power [27].
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Term Description
Time Preemptive Scheduling - TPS Default mechanism triggered by the scheduler tick

Context Preemptive Scheduling - CPS Mechanism introduced in this thesis
Heavy process The process should be scheduled on a big core
Light process The process should be scheduled on a LITTLE core

Intensity Refers to any metric expressing how “heavy” or
“light” a process is

Scheduler tick/Timer tick How often the scheduler is invoked

Table 1.1: Terminology used in this thesis

In the context of single-ISA heterogeneous architectures the scheduler has to de-
cide, based on some criteria, whether to schedule a task on a big/high performance
core or on a little/moderate performance core. It therefore needs to characterise each
task accordingly. In this thesis the terms “heavy” and “light” are used to denote a task
or a phase of a task that should be scheduled on the big or the little core respectively, in
accordance with the optimization target and the policy applied. For example, a given
task can be considered “heavy” if the optimisation target is performance, but if the
optimisation target is energy saving the same task could be characterised as “light”.
Currently, the scheduler on single-ISA heterogeneous architectures is based on time

preemption, as it does on homogeneous architectures. A hardware timer, called system

timer, expires at regular intervals. The rate at which the system timer expires is called
scheduler tick or timer tick and in this thesis these terms are used interchangeably.
Whenever the system timer expires - at every scheduler tick - an interrupt is generated
which in turn causes the scheduler to run. In this thesis, this mechanism is called Time

Preemptive Scheduling. At every scheduler tick the scheduler builds the history of the
currently running process by monitoring its load or its demand. The load and the de-

mand of a process are metrics used to quantify how “heavy” or “light” a process is and
the scheduler relies on this information to decide which is the appropriate core type for
the given process (for more information see chapter 4). Because these metrics are poli-
cies and different schedulers can use different policies, in this thesis the term intensity

is used to express how “heavy” or “light” a process is. In state-of-the-art schedulers,
the intensity of the task is based on the time a workload has been runnable since its
creation (metrics such as the load or demand). The intensity is related with the nature
of the workload and tries to express how demanding the workload is. In addition, the
intensity is the criterion based on which the scheduler will decide the most suitable
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core type for a given process. Context Preemptive Scheduling proposed by this the-
sis does not rely on the periodic timer interrupts to make decisions about migrating a
process on the right core type. Instead, it leverages the Performance Monitor Unit to
trigger the scheduling process. The rest of this section describes an example of an hy-
pothetical scheduling case to explain the inefficacies of Time Preemptive Scheduling
when applied on single-ISA heterogeneous architectures and how Context Preemptive
Scheduling overcomes these problems.

1.4.3 Scheduling Challenges on Single-ISA Heterogeneous Archi-
tectures

Assume a big.LITTLE architecture with two cores, one big and one LITTLE. The big
core is a high-performance, power hungry core, and the LITTLE a moderate perfor-
mance power efficient core. In addition assume that there is only one process on the
system, called P. Since P is the only process on the system it will constantly occupy
one of the two cores without needing to be scheduled out of the core for another pro-
cess to run. Figure 1.3 shows the intensity of process P. For the time being, it is not
important how intensity is expressed; it is enough to know that this will be the guide
to decide whether a workload should run on the big or on the LITTLE core. Assume
that the phases A-B and C-D (blue coloured areas) are phases of low intensity and the
process should be scheduled on the LITTLE core. Phases B-C and D-E (red coloured
areas) are considered of high intensity and therefore these phases should be executed
on the big core.

Now, consider how the current Time Preemptive Scheduler would treat such a
workload. As stated earlier, there are two factors to take into account when schedul-
ing on heterogeneous architectures; when to migrate and how to make the decision.
Essentially the intensity will give the answer to the second question. To take the sec-
ond question out of the equation, since it is not the topic of this thesis, assume that
the scheduler has an ‘ideal’ way to quantify intensity, so at any given point in time it
knows which is the appropriate core type. This assumption is made to isolate the first
question; when it is the right time to check for migration.

The default scheduler is based on time-preemption, which means that it is periodi-
cally invoked and checks for migration. Let X be the scheduler tick period. This means
that the scheduler gets invoked every X time. Suppose that phases A-B, B-C, C-D and
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D-E have the same duration and equal to 2X. At point A, the workload starts its execu-
tion on the LITTLE core and also the scheduler has just finished its previous tick. The
scheduler will tick again at X, the point in between A and B, it will see that the suitable
core type is the LITTLE, process P runs on the LITTLE, so it will not migrate it. Next
time, it will tick at 2X. Recall that the scheduler can perfectly identify the appropriate
core type, so this time it will migrate the workload to the big core. The next tick will
happen at 3X so the execution will remain at big core, at 4X back to the LITTLE and
so forth. In this case, the default time preemptive scheduler works without problems.

Now, assume that the phases AB = BC = CD = DE = 3X/4 (Figure 1.3b). The
scheduling tick is again X. In this case the scheduler will tick at X, it will realise P is
in the red area so it will migrate it on the big core, at 2X the scheduler will migrate
it back to little and at 3X the program will have finished its execution. Although, the
scheduler made the correct decision (this part is ideal), it lost 1/3 of the B-C phase and
all the DE phase to schedule the workload on the big core, and 2/3 of the CD phase to
migrate to the LITTLE.

In figure 1.3c the phase durations of process P change again to AB = BC = CD =
DE = X/2. Scheduling tick period remains X. The scheduler will tick for the first time
at X which coincides with C. As in the previous cases, the workload has started its
execution on the LITTLE core. At point C the right core to run is again the LITTLE so
no migration will happen. At the second tick of the scheduler, the workload will finish
its execution. Although this workload has four different phases, the scheduler has
failed to identify them. It completely lost the cases where the program could have run
on the big core. Such a behaviour negates the advantages of single-ISA heterogeneous
architectures.

The root of this suboptimal behaviour is the fact that the scheduler by design is
programmed to tick at predefined time intervals. This mechanism may work well for
time slicing and load balancing but, as it is shown in this thesis, it may not work
as well when checking for migration to another core type. No matter how short the
scheduling tick period will be, there may always be cases that this mechanism will
fail to recognise some phases. In addition, keep in mind that the scheduling tick period
cannot be decreased infinitely because as described in section 3.2.2 overheads will start
occurring.

The above example has shown that Time Preemptive Scheduling when targeting
migration does not work optimally. In addition, it is assumed that the way the scheduler
determines the right core type is ideal, which is not the case in reality, and therefore the
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scheduling outcome can be even worse. The timer interrupts that trigger the scheduler
are out of context (not related to the process executing) and not necessarily at the right
point in time. Actually, it is up to chance whether the workload will run long enough
for the scheduler to be invoked and check if migration is needed.

Ideally, the scheduler should perform as it would in case described in figure 1.3a.
Whenever, there is a change at the program phase, or as soon as possible after the
change, the scheduler should be invoked to check if the current operation conditions
are satisfactory or if something needs to change. The key point here is to keep track
of workload behaviour and workload phase changes. The best place to keep track of
this is the application itself. It would be desirable the application to notify the system
that something has change and maybe a different core type is more suitable. In other
words, it would be desirable for the scheduler to run in context and not out of context

as it happens in case of time preemptive scheduling.

This thesis introduces Context Preemptive Scheduling mechanism. This mecha-
nism does not rely on the timer generated interrupts to invoke the scheduler and check
for migration. Instead, it leverages the Hardware Performance Counters and the fact
that they trigger an interrupt whenever they overflow to invoke the checking for migra-
tion part of the scheduler. The other two tasks of the scheduler, time sharing among
the processes and load balancing are performed normally at scheduler tick granularity.
Hardware performance counters can provide better insight about application intrin-
sic characteristics and about phase changes. Hardware Performance Counters can be
set at the appropriate values so as to overflow when the workload changes behaviour.
This can be the indicator that maybe the workload has changed phase and that maybe
another core type is more suitable for its execution. This way the scheduler can be
invoked on time and when necessary to decide the appropriate core type for a given
workload.

1.5 Contributions

This thesis makes the following contributions:

• It introduces Context Preemptive Scheduling-CPS mechanism for single-ISA
heterogeneous architectures. CPS is a novel mechanism that can track down
the phase changes of a workload in time and trigger the migration procedure in
case it is needed.
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• CPS can trigger scheduling based on more than one events. Current approach
is based on the timer interrupt to initiate scheduling procedure. CPS instead,
relies on the Performance Monitor Unit and Hardware Performance Counters to
trigger the migration of a process.

• This thesis studies the current Linux scheduler for both homogeneous and single-
ISA heterogeneous architectures. It shows that design choices made for the
scheduler on homogeneous systems when inherited by the scheduler on single-
ISA heterogeneous architectures do not fully exploit the advantages that single-
ISA heterogeneous architectures can offer. This study shows that the migration
part of the scheduling does not need to be performed periodically but whenever
a new phase is encounter. Based on this insight, CPS decouples the migration
procedure from the periodic scheduler tick.

• CPS manages to associate the initiation of the migration procedure with the ap-
plication running without instrumenting the application neither at source code
level nor the binary. It achieves this by leveraging the information from the
Hardware Performance Counters that can reveal intrinsic characteristics of the
executing application at runtime.

• In this thesis, CPS idea is implemented on real hardware and compared against
other approaches. CPS framework, a framework that spans across user and ker-
nel spaces is developed to enable the implementation and evaluation of CPS.
CPS is evaluated against the default Linux scheduler for single-ISA heteroge-
neous architectures and the results show that CPS can track phase changes and
is promising in improving the performance of the scheduler depending on the
optimisation target.

• Lastly, this thesis proposes a Profiling Framework that can facilitate the bench-
marking of applications by synchronising power and performance measurements.

1.6 Thesis Structure

The rest of this thesis is organised as follows:

Chapter 2 sets the necessary background about the Linux kernel and the Perfor-
mance Monitor Unit-PMU. This thesis focuses on the Linux scheduler implemented
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for Arm big.LITTLE and the PMU, therefore it presents basic concepts of the Linux
kernel and describes the Performance Monitor Unit.

Chapter 3 describes the current Linux scheduler used for homogeneous architec-
tures. This chapter describes the two subtasks of the scheduler: time sharing and load

balancing. It also describes the Time Preemptive Scheduling mechanism that invokes
the scheduler.

Chapter 4 describes the state-of-art approaches on scheduling on single-ISA het-
erogeneous architectures. Firstly, it describes the industrial scheduling solutions for
big.LITTLE systems and then it moves to research works and describes the scheduling
approaches proposed by the research community.

Chapter 5 firstly describes the inefficiencies of the current scheduling approaches
for single-ISA heterogeneous systems and motivates CPS. Then it presents the idea
behind CPS mechanism and explains how it differs compared to Time Preemptive
Scheduling mechanism. Finally, it presents the design overview of the implemented
CPS framework.

Chapter 6 presents the implementation of CPS framework. It describes in detail the
layers of the CPS framework along with their interactions with the rest of the system,
explaining the design and implementation choices.

Chapter 7 describes the experimental set-up and the Profiling Framework devel-
oped in this thesis to facilitate the benchmarks execution and to capture their power
and performance profiles. It also describes the difficulties faced while trying to capture
power measurements which motivated the development of the Profiling Framework.

Chapter 8, evaluates the proposed CPS mechanism. It investigates potential over-
heads of CPS and compares CPS against other scheduling configurations in terms of
performance, power efficiency and the ability to identify and react to workload phase
changes.

Finally, chapter 9 concludes this thesis. It summarizes the outcomes of this work,
discuss the limitations and possible future extensions.



Chapter 2

Linux Kernel Background

This chapter provides background information on the Linux kernel and the Arm Per-

formance Monitor Unit-PMU driver. Section 2.2 discusses fundamental concepts of
Linux kernel such as the difference between kernel-space and user-space, the system

call mechanism and the separation of mechanism and policy. It describes the role of
the process in Linux systems and the process states. Finally, it briefly discusses the
concept of preemption. Section 2.3 describes concisely the functionality of the Per-

formance Monitor Unit as well as the Arm PMU driver used on Arm architectures to
control it.

2.1 Introduction

The proposed Context Preemptive Scheduling mechanism has been implemented and
evaluated on a real system and in particular on the DragonBoard 810 Development Kit
[28] (see section 7.1 for more details). The largest part of the implementation involves
the Linux kernel and the Arm PMU driver. This chapter provides the necessary back-
ground information to facilitate comprehend the idea and implementation of Context
Preemptive Scheduling.

2.2 Linux Kernel

Linux is an open source operating system kernel based on the design principles of Unix
operating system [29]. Linux kernel was initially developed by Linus Torvalds for the
i386 Intel processor to serve as a kernel for desktop systems. However, throughout the
years it has been ported to different architectures (Arm, MIPS, Alpha, PowerPC etc.)

32
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and has evolved to be a kernel capable of supporting a wide range of operating systems
running from embedded devices to supercomputers and room-sized servers.

Linux kernel, as most Unix-like kernels, is monolithic [30]; all the functionali-
ties provided by an operating system, such as memory management, process man-
agement, inter-process communication etc., are implemented as a single program in
kernel-space. In an operating system that uses the Linux kernel, there are two distinct
levels of execution with different address spaces and privileges; the user-space and
the kernel-space. The user-space or userland refers to the address space that the user
programs live and execute. Examples of such programs are user applications, libraries,
compilers etc. Kernel-space is where the kernel of the operating system resides. In
a non-virtualised environment, kernel-space is the most privileged level of execution
since it controls and configures the hardware and is responsible for resource manage-
ment.

User-space programs have restricted access to the system resources. Whenever
a user-space program needs to access system resources that is not privileged to, for
example to access a file on the hard drive, it issues a system call. System-calls is the
mechanism provided by the Linux kernel to serve requests to unprivileged software.
When a process, for example, needs to write to a file, it prepares and issues a write

system call to the operating system kernel. At this point the CPU traps and the control
is transferred to the kernel which after checking permission rights, starts serving the
request on behalf of the process [31]. When this is finished the control returns to the
user-space process.

When control is in kernel-space, code can be executed in the following contexts:

• in process context or,

• in interrupt context

In process context, the kernel executes code on behalf of a process. The kernel is
in process context when, for example, serves a system call on behalf of a user-space
process. The kernel can also be in process context when a kernel thread is executed1.
Generally, the kernel is considered to be in a process context when there is a process
associated with the currently executing code. The kernel is in interrupt context when
it executes code as a response to a hardware event. For example, the kernel code that
is executed to serve a mouse click is in interrupt context. The main difference between

1A kernel thread is a process that lives solely in kernel space.
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the interrupt and process context is that in interrupt context, there is no process related
to the executing code.

The Linux kernel enforces the separation of mechanism and policy. The separa-
tion of mechanism and policy is a design principle [32] followed in many operating
systems. The policy can be viewed as what to be done and the mechanism as how

to be done. The mechanism is the infrastructure upon which a set of policies can be
implemented. For example, in case of process scheduling, the context switching is the
mechanism and the algorithm to choose the next process is the policy.

2.2.1 Processes - states

A fundamental concept in Linux, as in any Operating System, is the process. A process
is defined as ‘an instance of a program execution’ [31]. It is not only the object code
executing (text segment), but also a process includes all the resources required by the
program for its execution, such as open files, pending signals, a memory address space,
processor state etc. In essence, a process is the living instance of an executing program.
The process is the kernel perspective for an application. Each application consists of
at least one process. In case of multi-threaded applications, the application may have
more processes, called threads. In Linux kernel, processes and threads are represented
in the same way. They are both represented by the task struct data structure.

The kernel internally represents a process with a structure named task struct,
also called task descriptor. This structure is one of the largest, if not the largest, and
important data structures in kernel since it keeps all the information related to a pro-
cess, such as its address space, any memory mapping, open files etc. Each process is
uniquely identified on the system by a number, usually an integer, called PID - Pro-

cess Identifier. All the processes on the system - actually the structures task struct

of each process - are stored in a doubled linked list maintained by the kernel, called
task list.

A process has a life cycle and several states associated with it. Most commonly,
a process can be found either ON the CPU running or OFF the CPU not-running.
However, in the latter case there are a few different reasons why a process is not-
running. Concisely, the life cycle of a process is the following [33] :

• The process is being created - fork

• Running state (either in kernel or user space)
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• Ready to run - Runnable state - on the runqueue

• Blocked, waiting or sleeping - off the runqueue

• Terminated or killed

To begin with, the life cycle of the process starts with its creation; the parent pro-
cess duplicates itself by issuing the fork system call. At this point the newly created
process, the child, is almost identical to its parent and is about to start its own execu-
tion. Usually, newly created processes issue the exec system call to execute their own
code, otherwise they execute the same code as the parent process.

Once the fork is complete, the process is ready to run and let us assume that it starts
execution immediately. This is the running state of the process, where it occupies
the CPU. In case the process is ready to run, but it does not run, is in the runnable

state; this state means that the process has all the required resources to continue its
execution apart from the CPU, thus it is not running. This usually happens when
another process is scheduled for execution. The kernel keeps a per-CPU data structure,
called runqueue. It is a list with all the processes on the CPU that are in runnable state;
they have all the resources they need to run, but they do not run because some other
process occupies the CPU.

The fourth state of a process life cycle (blocked, waiting, sleeping) is referred to as
sleeping state. A process goes into the sleeping state, either voluntarily or the kernel
puts it there, while waiting for some resource to become available, waiting for an event
etc. When entering this state the process is removed from the runqueue of the CPU
to be placed into the appropriate wait-queue. Once the resource becomes available, a
signal is sent to the CPU and the next time the scheduler is invoked, the process will
transit either to the running or the runnable state. Finally, the process dies. A process
can die either when it has finished its execution and calls the exit system call or in
case it receives a signal that kills it.

2.2.2 Preemption

In Linux all processes get preempted at some point in their lifetime for another process
to run. Preemption can happen in the following cases :

• when a higher priority process becomes runnable,

• when a process blocks on a system call (for example waiting for I/O or sleeping),
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• when an interrupt occurs.

Kernel preemption can improve system responsiveness. Linux kernel historically
was not preemptible. A non-preemtible kernel means that a process while in kernel
mode can not be preempted unless an interrupt occurs or it voluntarily releases the
CPU. Since 2.6 version, preemption support has been added to the kernel mode, which
means that the process can be interrupted at any point.

2.3 Hardware Layer - Performance Monitor Unit

This section provides background information about the Performance Monitor Unit -

PMU found in modern chips as well as the software that controls it. The Performance
Monitor Unit is a hardware extension of the processor which enables the monitoring of
architectural and micro-architectural events. Such events are CPU cycles, instructions
executed, cache misses, cache accesses, branch mispredictions etc. The PMU consists
of two logical sets of registers. The first set is the Hardware Performance Counters

and the second is the Control Registers2.

The Hardware Performance Counters are hardware registers/counters that count the
occurrences of hardware events. Since HPCs count architectural and micro-architectural
events, the type as well as the number of the events available, depends on the archi-
tecture and the CPU implementation. Usually HPCs are programmable; they can be
enabled or disabled, configured to trigger an interrupt when they overflow and set to
monitor different types of events. The HPCs are controlled and configured by the
control registers.

In literature the terms HPCs and PMU (along with others : Performance Moni-
tor Counters-PMCs, hardware counters etc.) are used interchangeably to describe the
hardware capability of monitoring hardware events. However, in this thesis, these
terms are used differently. Figure 2.1 clarifies the used terminology. The boxes
with green colour represent the registers/counters that count the occurrences of cer-
tain events (cycles, instructions etc.), which are referred to as Hardware Performance
Counters - HPCs. The boxes with blue colour represent the registers that control the
counters, which are referred to as Control Registers. Finally, the whole functional unit,

2 To the best of author’s knowledge, there is no formal definition of the Performance Monitor Unit.
Therefore the terms Hardware Performance Counters and Control Registers are not found in literature
or in product documentation. They are naming conventions adopted by the author to help the functional
description of the PMU.
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Figure 2.1: PMU description

the HPCs along with the Control registers and the logic that connects them, is referred
to as Performance Monitor Unit - PMU.

Programmers leverage HPCs to monitor the performance, identify bottlenecks and
optimize their applications, track down workload phase changes and develop models
for their workloads [34, 35]. HPCs are also used for system wide monitoring, power
management and process scheduling. The PMU is important and worth analysing in
the context of this work as this work focuses on process scheduling and leverages the
fact that HPCs can be configured to create an interrupt when they overflow. Based on
these interrupts, a novel scheduling mechanism is implemented which is capable of
identifying on time the workload phase changes.

The functionality of the PMU is exposed to the users by software layers. These
layers abstract the implementation details of each architecture and provide the users
(programmers/applications) with well defined APIs and tools. Figure 2.2 illustrates
the layers of the software stack that can be found in an ordinary Linux distribution. At
the lower layer the hardware registers reside, both the control registers and the HPCs.
Since these are special registers only privileged software can handle them. On top of
the hardware, the PMU driver resides which is responsible for the low level setting-up
and controlling of the PMU. Since the PMU hardware is architecture and implemen-
tation defined, each implementation requires a different driver. Any tool that uses the
HPCs has to make calls to this architecture and implementation specific PMU driver.
To overcome this, the Linux kernel introduces another layer called the perf event in-
frastructure. The kernel internally defines an abstraction of the PMU - a generic perfor-
mance monitor unit - to decouple perf event from the low level implementation details
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Figure 2.2: Software stack that supports PMU

of each platform. It achieves this by defining a structure called struct pmu, that con-
tains generic functions to enable and disable the PMU, start, stop and read the counters
etc. In addition, the perf event subsystem defines the perf event data structure which
is used to represent both hardware and software events. Hence every function related
to hardware events acts upon this data structure. At the top of the hierarchy reside the
user-space tools such as the perf tool [36] or PAPI [37], that users use to monitor their
applications. These user-space tools make calls to the perf event subsystem which in
turn calls the PMU driver and, finally, the driver performs the necessary actions to
serve the user request.

2.3.1 Arm Performance Monitor Unit Driver

As mentioned earlier, HPCs are used for a variety of purposes (application monitoring,
power management etc.). The PMU is software managed and its functionality is ex-
posed to the programmer through the PMU driver and the perf event infrastructure in
the Linux kernel. The PMU driver is responsible for setting up the PMU (enable coun-
ters and interrupts, configure events etc.) so that perf event infrastructure can utilize
it. Perf event defines an API which can be used by user-space tools (perf, PAPI etc.)
to monitor applications.

This subsection describes the Arm PMU driver. The proposed Context Preemptive
Scheduling mechanism relies heavily on the PMU functionality. In this thesis, the
PMU is not used for profiling but for scheduling; to accomplish this the PMU driver
is modified. A detailed description of the modifications performed can be found in
section 6.2.3. This subsection presents the design of the Arm PMU driver when used
for profiling and sets the necessary background information to understand how it is
modified to drive scheduling.

In particular, this subsection describes the Arm PMU driver as found in the 3.10.49
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version of the Linux kernel. The implementation of the Arm PMU driver in the 3.10.49
Linux kernel is monolithic and, as most PMU drivers, tightly coupled to the perf event
subsystem. The PMU driver, although monolithic, can be viewed to consist of three
layers as shown in Figure 2.3. At the very bottom level, which sits just above the PMU
hardware, the low-level driver resides. This part consists of a group of functions that
set-up and control the control registers, which in turn control the HPCs. This group
of functions is implementation specific. This part is responsible for setting-up the
Performance Monitor Control Register, setting-up the event count registers, as well as
providing the functions to read, write and reset the counter registers and setting them
to interrupt when they overflow.

At the top level, the high-level driver layer implements the API to the perf event
subsystem. In essence, this part is the bridge between the perf event subsystem and
the Arm PMU driver. The middle part of the driver, the core driver, bridges the high-
level and low-level driver parts. It is the largest part of the driver and implements
the main driver functionality. It receives requests from the upper layer in the form
“start counting this event” and makes all the necessary calls to the low level driver to
accomplish the request. For example, to start counting an event five steps (five calls to
the low-level driver) are needed:

• Stop the PMU, if in operation,

• select an available counter,

• configure the counter to monitor this event,

• reset the counter,
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• start the PMU.

The core driver is responsible for dispatching these calls to the low-level driver and
returning the result to the high-level driver. However, the PMU driver is designed
in such a way that the core driver is tightly coupled with the perf event subsystem.
The signatures of the functions that comprise the core driver include the perf event

structure, one of the main data structures of perf event subsystem. This is the main
reason why the Arm PMU driver is modified; to be decoupled from the perf event
infrastructure and communicate with the scheduler.

2.4 Summary

To sum up, the fist part of this chapter (section 2.2) discusses basic Linux kernel con-
cepts, such as processes and process states, the separation of policy and mechanism in
operating systems, the preemption, the difference between user-space and kernel-space
and the two different contexts that kernel code can be executed in; the process-context
and the interrupt-context. The most important information to remember from this sec-
tion is:

• the process states and

• the difference between the process and interrupt context.

As far as process states are concerned, keep in mind that a process is in running state
when it runs on the CPU, and in runnable state when it is on the runqueue waiting
for its turn for CPU time. Concerning the context in which kernel code executes, the
two contexts are usually mutually exclusive. However, as later chapters discuss, the
interrupts generated in context preemptive scheduling and the interrupt handler that
serves them, although in interrupt context, are in reality associated with a process
context.

The second part of this chapter (section 2.3) focuses on the description of the Per-
formance Monitor Unit and its driver on Arm architectures. The key point of this sec-
tion, is understanding the structure of the PMU driver since it is modified to support
context preemptive scheduling.



Chapter 3

Scheduling on Homogeneous Systems

This chapter introduces the basic principles of scheduling on homogeneous systems.
Although scheduling is a very wide topic, here are covered only the necessary aspects
that are useful to comprehend scheduling on homogeneous systems, so as to extend
later, in chapter 4, to scheduling on single-ISA heterogeneous systems. The reference
point is the version 3.10.49 of the Linux kernel that is used in the experimental set-up
(see section 7.1). This chapter discusses the scheduling mechanism implemented in the
Linux kernel for homogeneous systems and its policies. More specifically it focuses on
the Complete Fair Scheduling Class and clarifies the various metrics used concerning
time sharing, selecting the next process to schedule and load balancing.

Scheduling on homogeneous systems is discussed in this chapter to smoothly tran-
sit to heterogeneous systems scheduling, since the latter inherits the majority of prin-
ciples and metrics introduced by schedulers on homogeneous systems. The default
scheduling mechanism used in single-ISA heterogeneous systems, referred to as Time

Preemptive Scheduling in this thesis, inherits these principles. Although, this has re-
sulted in commodity systems that work robustly, it does not exploit the full potential
of single-ISA heterogeneous systems.

Ideally, the scheduler on single-ISA heterogeneous systems should detect the phase
changes of the currently running process, and depending on the optimisation goal,
should make the appropriate scheduling decisions, such as migrating the current pro-
cess to another core type. Time Preemptive Scheduling mechanism that is currently
used, is triggered on system timer expiration. This is a periodic event which is not
related to the running process phase changes. Context Preemptive Scheduling (CPS)
mechanism proposed in this thesis tackles this limitation. Essentially, CPS takes into

41
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account the Performance Monitor Unit (PMU) events which are related to the run-
ning process, rather than the unrelated to the running workload periodic system timer
expiration.

3.1 Introduction

All modern operating systems support multitasking, the illusion of executing more
than one applications concurrently. The kernel, assisted by the underlying hardware,
achieves multitasking by rapidly switching applications running on the system; the
switching rate should be fast enough for application users to perceive progress in all
their applications and at the same time not too fast to avoid the switching overheads
impeding the overall performance of the system.

This gives rise to several issues some of which are: how to share the processor time
among the processes, which is the best candidate to run next, which is the appropriate
processor to run on - in case of multi-core systems - and when all this should happen.
These decisions are made by the OS kernel subsystem called scheduler. The scheduler
can impact the overall system performance. It has to address many challenges often
conflicting with each other, such as fairness among processes, fast response times for
interactive jobs, high throughput for background processes, while minimizing power
and energy consumption. Defining a scheduling algorithm that can optimally assign
process on the core is a daunting problem that cannot be solved in linear time, since it
is NP-hard [38].

Operating systems that support multitasking come in two types: cooperative mul-

titasking and preemptive multitasking. In a cooperative multitasking system, a pro-
cess can run on the processor for as long as it needs before voluntarily releasing the
processor for another process. The apparent problem with this approach is that the
scheduler cannot preempt the process and any process can monopolize the processor
time for long intervals leading other processes to starvation. This approach has been
abandoned by most operating systems [39] for preemptive multitasking. In preemptive
multitasking, the scheduler decides when a process starts and stops execution. The in-
voluntary suspension of a process is called preemption. The scheduler allocates a time

slice to each process; the process is allowed to run for this time quantum, before being
preempted to give its place to another process.
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3.2 Linux Scheduler

In the majority of systems the scheduler is mainly in charge of a) virtualising the pro-

cessor time and b) load balancing. The rest of this section describes how the Linux
scheduler addresses these two tasks on homogeneous systems. Although, the scope of
this thesis is not time sharing and load balancing on homogeneous systems, explain-
ing how the current scheduler works, sets the necessary background before covering
heterogeneous systems. In addition, as later sections will discuss, some of the pitfalls
in the scheduler for heterogeneous systems have their roots in concepts inherited from
schedulers for homogeneous systems.

The Linux scheduler was designed and implemented following the principle of
separating policy and mechanism. Thus, two layers can be identified. The first layer,
the Core Scheduler defines the mechanism. It offers functionality such as the entry
point of the scheduler, context switching, load balancing and provides abstraction for
functions such as enqueue and dequeue a process. The second layer consists of the
scheduling classes, the policies, which actually implement different algorithms/heuris-
tics to achieve different goals. This design approach decouples the core scheduler from
the implementation details of each scheduling class and facilitates the addition of new
scheduling classes.

3.2.1 Scheduling Classes

Currently, there are three scheduling classes implemented in the Linux scheduler; the
Complete Fair Scheduling - CFS class, the Real Time class and the Deadline Schedul-

ing class. CFS was designed to be suitable for the majority of applications found on
desktop systems. Since CFS cannot meet the requirements of certain types of appli-
cations, the real-time and deadline scheduling classes were introduced. The real-time
class takes care of soft real-time processes (hard real-time processes are not supported
by Linux), such as the sound system on personal computers. Real-time processes are
assigned static priorities and are always favoured by the scheduler over CFS processes.
Deadline class [40] is a special case of real-time introduced into the kernel in the 3.14
version. Their special characteristic is that processes belonging to this class have pre-
determined runtime that has to be met; thus the name, the deadline that has to be met.
Tasks belonging to deadline scheduling class have the highest priority over all other
processes.

The majority of the processes on a system belong to the CFS class. This thesis
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focuses on applications that fall into the CFS class as well. For the rest of this thesis,
the Real-Time and Deadline classes are left aside and the focus turns to the internals
of the CFS class.

3.2.2 Time sharing

This section describes how the Complete Fair Scheduling class deals with time sharing
and how it chooses which process should run next. Each process has to be allocated
a fraction of time on the processor for the system to be responsive and to create the
illusion to users that their processes run simultaneously. The main optimisation target
of CFS, as its name implies, is fairness, in the sense that it tries to guarantee that all
processes make progress proportional to their needs.

The premise under which CFS implements its time allocation to processes, is based
on an ideal, multi-tasking processor that executes the processes equally at its peak
capacity. If the system has two running processes, a fair scheduler would allocate each
process 50% of processor time. However, this is an unrealistic scenario. The CFS
algorithm introduces the concept of scheduling period, which is a time interval during
which all runnable processes of a processor should take their turn and run at least once
[41]. This means that no process starves for longer than the scheduling period time.
CFS has to partition the scheduling period among all runnable processes as fairly as
possible. To achieve this, CFS needs two pieces of information. The first being the
weight of the process and the second the total weight of the runqueue.

Before explaining what the weight of a process is, the terms nice value and priority

should be introduced, as well as, the way they are used by the Linux scheduler. The
nice value affects the priority of a process. It ranges from -20 (highest priority) to
19 (lowest priority) and expresses how “nice” a process is towards the others [31].
This is why the higher the value the lower the priority; a process with nice value 19
is very “nice” to the others because it has a low priority. When allocating time slices
to processes, CFS takes into account the priority of the process, its nice and how long
the process has spent away from the runqueue. How long a process has been sleeping
(being away from the runqueue) is the way for CFS to identify interactive processes
and boost their priority [41].

Once the priority has been calculated, the scheduler derives the weight of the pro-
cess by a static mapping which is given by the prio to weight array in the kernel.
The total weight of the runqueue is the sum of the weights of all the runnable processes
on the runqueue. Based on this information, CFS allocates a time slice to a process
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according to equation [42] :

time slice = (sched period ∗ task weight)/runqueue weight, (3.1)

where sched period is the scheduling period, task weight is the weight of the process
and runqueue weight is the total weight of the runqueue.

Regarding the selection of the next process to run, CFS again tries to achieve fair-
ness. It introduces the vruntime metric, which denotes the amount of time the process
has spent running on the processor over the total time it was runnable. The more time
the process is runnable but not actually running, the lower vruntime it will have. CFS
will pick the process with the lowest vruntime to run next. This also serves responsive-
ness in case of interactive systems. An interactive workload usually have long idling
periods with burst of computation, e.g. a word processor [31]. Prioritizing interactive
processes over a batch workload will increase the responsiveness of the system.

Although, these techniques seems to tackle starvation and promote fairness, they
do not work well under multi-user scenarios. Consider two users A and B. A has
spawned 8 processes and B 2, each process will be allocated 10% of the scheduling
period - assumed that all processes have the same priority - however, processes of
user A receive 80% of the scheduling period and processes of user B 20%. This is
against fairness because if user A keeps spawning processes, processes of user B will
eventually starve.

To address this issue, group scheduling [41] was introduced. Instead of allocating
time slices at process granularity, CFS assigns time slices to a group of processes, and
inside the group the time slice is split accordingly to processes. In the above example,
processes of A will be one group and processes of B another; each group receiving
50% of the scheduling period. The kernel calls a group of processes a scheduling

entity and represents it internally with the sched entity data structure. Although the
scheduler granularity is a process, meaning that each time the scheduler picks a process
to schedule next in a processor, when it comes to time sharing, CFS granularity is the
scheduling entity. At this point is worth mentioning that a new group (scheduling
entity) is created either in case users use the control group (cgroups) [43] mechanism
for resource allocation among their processes or in case a new session is created by
the set sid() system call [42]. Apart from these two cases, a process comprise a
scheduling entity by itself. For the scope of this thesis, it is safe to assume the later
case: each process is a separate scheduling entity, since none of the aforementioned
mechanisms are enforced.
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3.2.3 Load Balancing

With the ubiquitous presence of multi-cores, the scheduler is also in charge of sharing
the workload among the available cores. Load balancer is the part of the scheduler
that is concerned with this task. A brute force approach to load balancing would be
to ensure that the runqueue of each active core has approximately the same number of
runnable processes. In practice, however, this approach is over simplified, since it does
not take into account neither the priorities/weights of the processes nor their nature.

At this point, it should be mentioned that load balancing is an active field of re-
search [38, 44, 45, 44, 46, 47, 27, 48] with many works trying to optimise for different
targets. An approach to load balancing can be to utilise as many cores as possible
whenever there are runnable processes waiting to maximize performance [48]. On the
other hand, when taking power efficiency into account, the scheduler may choose to
pack as many processes as possible onto one core while still meeting some perfor-
mance requirements, before waking up extra cores [27]. This section describes briefly
the load balancing implemented in the 3.10.49 version of Linux kernel, to the extend
required to follow the rest of this thesis.

For load balancing the Linux scheduler compares the load (it is described in the
next subsection) of the runqueues to detect any unbalance. To avoid exhaustive com-
paring among the runqueues, which does not scale well with the number of cores, the
scheduler organises the cores into a hierarchical structure. This hierarchy is comprised
of scheduling domains [31]. A scheduling domain is a set of cores that should remain
balanced. At the top-most level, the scheduling domain contains children scheduling
domains, each of which contains a subset of the cores. At the bottom level there are
single cores. Every scheduling domain is partitioned into processor groups. Load bal-
ancing is done at group level and then it climbs up the hierarchy trying to keep the
whole system balanced.

3.2.4 Per Entity Load Tracking - PELT

As mentioned in the previous section, the scheduler needs to know the load of each
runqueue to perform load balancing. The load of each runqueue is derived by adding
the load of each individual process. Essentially, load balancing requires an effective
way to keep track of how much each single process ‘burdens’ the system. Quantifying
the load of a process has been a tedious task and many different algorithms have been
proposed [49].
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At the moment of writing, the state-of-the-art approach in the Linux kernel for load
tracking is the Per Entity Load Tracking- PELT. Per Entity Load Tracking patch set was
introduced in the 3.8 kernel as a way for the scheduler to track each scheduling entity
load contribution on the system [42]. Recall that the CFS is concerned with scheduling
entities and that in this thesis a scheduling entity is comprised by a single process.
Before PELT, the scheduler was only keeping track of the time a scheduling entity
spent running, but had no means to translate this information and quantify it in terms
of ‘burdening’ the system. PELT is working towards this direction, and additionally
to load balancing, it can be used for small-task packing [27] and for power saving
management. Last but not least, PELT is used on single-ISA Heterogeneous Systems
to identify and characterise a process as “heavy” or “light” [50].

The rest of this section explains how PELT works. This is going to set the necessary
insight to understand why PELT has deficiencies when dealing with scheduling on
single-ISA heterogeneous architectures.

It is helpful to clarify the difference between the weight of the process and its
load. In the literature these two terms are often used interchangeably and in fact are
similar in what they express. However, at code level they are different; they are treated
separately by the scheduler and for different purposes. The weight of a process is
derived by its priority (see section 3.2.2). Although, this metric is enough for the
scheduler to allocate time slices, it is not sufficient for load balancing since it does not
take into account how bursty, or steady the process is, or whether it has long sleeping
periods and so on. In fact, before PELT, the load of a processor would be the sum of
the weights of its runnable processes.

The load of a process is a metric to express numerically how much a process bur-
dens/stresses a processor. In PELT every processor on the system is associated with a
capacity C. The capacity is defined as the ability of the processor to execute processes.
The load is measured in units of C, and expresses how many processors of capacity
C are required for the process to have satisfactory progression [42]. The load could
also be a fraction of C, in case of a powerful processor that can meet and exceed the
requirements of a process. This metric relies on the weight of the process but also con-
siders the sleeping time of the process. It is based on the amount of time the process
was runnable over the total time of the process since its creation.

The scheduling entity data structure (struct sched entity) is enhanced with
another data structure called scheduling average (struct sched avg), which keeps
information concerning the time the process was runnable, the total time it is alive and
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its load. Based on these, the process load is derived as:

task load = (runnable sum∗ task weight)/runnable period, (3.2)

where task weight is the weight of the process, runnable sum is the amount of time
the process was either in runnable or running state (does not include the time spent on
the wait queue) and runnable period is the period during which the process could have
been runnable, essentially is the time since the creation of the process.

To take into account not only the current load of the process, but also its previous
behaviour, the runnable sum is defined in the following way. The wall clock time is
divided in approximately 1 ms (1024 µs) time intervals and the historical contribution
to the load is expressed as coefficients of a geometric series. The lifetime of the process
is represented as a sequence of those interval since its creation. The runnable sum is
calculated based on Equation 3.3 :

runnable sum = u0 +u1 ∗ y+u2 ∗ y2 + · · ·+un ∗ yn. (3.3)

If the current time interval is denoted as P0, P1 1 ms ago, P2 2 ms ago and Pn n
ms ago (assuming that the process was created n ms ago), then ui is the time that the
process was runnable during the ith interval [49, 44]. y is a predefined constant and
in the 3.10.49 customised version of the Linux kernel used in this thesis, is set at a
value such that y32 = 0.5. This means that the contribution to the load 32 time intervals
(32 ms) ago, accounts half as much compared to the contribution of the current time
interval.

3.3 Scheduler Entry Point

So far this chapter has described some aspects of how the scheduler works. This
section describes how these different tasks are connected to compose the scheduler
and when all these happen. It is divided into two subsections. The first subsection
discusses how context switching takes place. The second subsection focuses on the
scheduler tick() function and the system timer. The system timer periodically ex-
pires creating an interrupt which eventually calls the scheduler tick() function.
This is the procedure that periodically invokes the scheduler. This is also the point
that Context Preemptive Scheduling differs from Time Preemptive Scheduling mecha-
nism. The latter relies on this procedure, on the system timer, to trigger the scheduler
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and make any scheduling decisions concerning migrating a process to a different core
type. Context Preemptive Scheduling does not rely on the system timer to check if
another core type is more suitable for the currently running process.

3.3.1 Context Switching

Two important functions of the scheduler are the scheduler tick() and the schedule()
functions. Load balancing, picking the next process, scheduling out the current pro-
cess and context switching to the next, all the scheduler jobs are initiated from the
scheduler tick() function. The schedule() function is responsible for performing
the context switching; scheduling the currently running process out of the processor,
and scheduling in the next process. This function can be invoked in two ways: a) if a
process explicitly blocks or b) in case the flag TIF NEED RESCHED is set.

The first case happens when, for example, a process waits for a lock to be released
or for an I/O request. In both cases, the kernel realises that the resource is not available
yet, and therefore the process will be scheduled out of the core and put on the appro-
priate wait queue until the resource becomes available. Since, it is removed from the
processor the kernel will explicitly call the schedule() function.

In the second case, the invocation of the scheduler is indirect. Whenever, there is
a return from the kernel-space to user-space - that is either on the way back from an
interrupt or from a system call - the TIF NEED RESCHED flag is checked. The flag means
“whether there is need to reschedule” and in case it is set, the schedule() function is
called. An example of this case is the wake-up of a high priority process. The wakeup
does not really trigger the scheduler; instead it will set the TIF NEED RESCHED flag
and the scheduler() function will be invoked in the nearest possible opportunity, to
perform the context switch. The most common example, though, of this case is the
scheduler tick() function.

3.3.2 Scheduler Tick - System Timer

Firstly, it should be explained what is the scheduler tick(), how and when it is
invoked. All computer systems are equipped with a piece of hardware - usually some
registers used as counters to do time keeping. There is a programmable counter, called
system timer, that creates an interrupt at a fixed frequency, called tick rate [41]. This
interrupt is served by the interrupt handler called timer interrupt. While serving this
interrupt many important procedures take place such as updating the system uptime,
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the time of day, resource usage statistics etc. The scheduler tick() function is called
by this interrupt handler as well. The scheduler tick() is responsible for updating
the statistics of the currently running process and triggering load balancing. It also
checks whether the time slice of the currently running process has expired or if there is
any runnable process capable of preempting the current one. If this is the case, it sets
the TIF NEED RESCHED flag.

The tick rate, or the scheduler tick in this thesis, is important and can impact the
whole system performance. A very slow tick rate can result in inaccurate timing, while
a very fast tick rate may introduce significant overheads [41]. Typical values are 100
HZ, 250 HZ and 1000HZ corresponding to 10 ms, 4 ms and 1ms time intervals. The
tick rate value depends on the architecture and the kernel version.

The scheduler tick() function is called with tick rate frequency. All tasks per-
formed during the scheduler tick need to be done periodically. Therefore, invoking
the scheduler tick() function at every tick is a reasonable design choice that works
well on homogeneous systems.

Figure 3.1 shows the procedures tacking place at every scheduler tick. It is as-
sumed, that the control is in user-space (some application running) and the system
timer expires creating an interrupt. The interrupt causes the transition of the control
from user-space to kernel-space, for the kernel to handle the interrupt. Firstly, the
interrupt generated by the timer expiration is handled by the timer interrupt handler
(step 1). The timer interrupt handler calls the scheduler tick() function (step 2).
During step 3, the next task is selected; depending on the scheduling class the current
process belongs to, the appropriate function is called. In the scope of this thesis, the
scheduling class is always CFS and the function invoked for selecting the next candi-
date checks whether the time slice allocated for the current process has expired. If so,
it chooses the next process to run following the policy described in 3.2.2 and sets the
TIF NEED RESCHED flag (step 4). After this, the scheduler tick() function triggers
load balancing (step 5). If the scheduling domains are unbalanced, load balancing takes
place (step 6). After this, the scheduler tick() has finished and the control should
return to user-space. On the return path to user-space if TIF NEED RESCHED flag is
set, schedule() function is invoked to perform the context switch (step 7). Once this
step has finished the control is finally returned to user-space (step 8) and control flow
continues at the point it stopped before the timer interrupt.
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3.4 Summary

This chapter described the basic principles upon which the Linux scheduler works on
homogeneous systems. To sum up, the scheduler and specifically the CFS class opts
for fairness among the processes. To achieve this, it introduces metrics such as the
weight, that essentially reflects the priority - how important the process is. The time
slice which is the amount of time a process can run before giving its place to another, is
calculated based on the weight of each process. To select the next process to schedule,
CFS uses the vruntime metric, a metric that takes into account the idle time of the
process. The process with the minimum vruntime will be the next to execute on the
processor. For load balancing, the scheduler introduces a third metric, the load, which
tries to incorporate both the weight (priority) of the process and the time the process
has spent running or sleeping. It is clear, that the information taken into account by the
scheduler for time allocation decision making, next entity to schedule as well as load
balancing is solely based on the process priority and the amount of time the process
was in running or runnable state during its lifetime. Finally, all the above actions are
performed at the scheduler tick granularity. These metrics and policies were designed
with homogeneous systems in mind, and indeed work quite well on such systems.
However, as chapter 5.4 discusses, when applying them on heterogeneous systems
they do not perform as well.



Chapter 4

Scheduling on Heterogeneous
Architectures

Chapter 3 described the Linux kernel scheduler on homogeneous architectures. This
chapter extends to schedulers on single-ISA heterogeneous architectures. In section
4.2 it describes the scheduling approaches followed by the Linux kernel for Arm
big.LITTLE architectures. Then, it moves to research approaches and discusses in
section 4.3 , the state-of-the-art research work done on scheduling for single-ISA het-
erogeneous architectures.

4.1 Introduction

The previous chapter described the Linux kernel scheduling on homogeneous archi-
tectures. When scheduling on homogeneous architectures the scheduler is mainly re-
sponsible for two tasks: a) sharing the processor time among the processes and b)
load balancing the runqueues of the processors present on the system. With the ar-
rival of single ISA-heterogeneous architectures, the scheduler is also responsible for
placing each process to the appropriate core type according to some optimisation tar-
gets. These targets may vary depending on the use case. In case of demand for high
performance the scheduler should schedule the workload on the powerful core type
to meet the performance requirements. In case where power and energy optimization
is the main target, the scheduler should schedule the workload on the power efficient
core type to save power. Concisely the responsibilities of the scheduler on single-ISA
heterogeneous systems are:

• time sharing,
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• load balancing,

• migrate the running process to the right core

– when and how often should be checked if another core type is needed?

– which metric should be used to classify processes as “heavy” or “light” ?

As far as the third responsibility is concerned, applications exhibit different be-
haviour during their execution. Therefore, the scheduler should be capable of recog-
nising the phase changes in time and deciding the appropriate core type. Migrating the
application to the appropriate core type every time a new phase is encountered consists
of two subtasks, both crucial for scheduler efficiency. Firstly, the scheduler has to iden-
tify the phase change and then based on some criteria (policy) decide the most suitable
core type. This thesis is concerned with the first subtask, and proposes a mechanism
that enables accurate track of phase changes. As this chapter describes, the majority
of the related work focuses on the second subtask and propose policies to determine
the right core type for each phase. Although, this is crucial for the performance of the
scheduler, all of the works rely on the default time preemptive scheduling mechanism,
that as the next chapter describes, can be slow to identify phase changes and lead to
suboptimal scheduling decisions.

4.2 big.LITTLE scheduling in Linux

This section describes scheduling on heterogeneous single-ISA architectures and more
specifically, describes the Linux kernel scheduling approach for Arm big.LITTLE ar-
chitecture. On a big.LITTLE platform with a cluster of big, powerful and power-
hungry cores and a cluster of LITTLE, power efficient, moderate performance cores,
the scheduler, apart from virtualising processor time and load balancing, is also in
charge of placing the appropriate workload to the appropriate core type.

This responsibility is composed of two separate subtasks. Firstly, the scheduler
has to employ a mechanism - using an existing one or defining a new - concerning
when and how often it should check whether migration is needed to another core type.
Secondly, the scheduler has to define some criteria, a policy, to classify each running
process as “heavy” or “light”. In this thesis the criteria used to classify a process
are referred to as the intensity of a process. The second subtask is concerned with
defining a policy to quantify intensity. As described later in this chapter, there have
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been proposed different policies to address the problem of placing the right process on
the right core type. This thesis focuses on the first subtask.

Both subtasks are addressed in the Linux kernel. At this point, it should be men-
tioned that the work done for big.LITTLE scheduling cannot be found in the main-
line kernel. big.LITTLE architectures are relatively new and the proposed schedul-
ing solutions are not accepted by the Linux kernel maintainers. However, there are
patches available that add big.LITTLE functionality to some versions of the Linux
kernel. These patches are usually developed by the companies that ship products
with big.LITTLE, such as Qualcomm, and usually are targeting the specific product.
Currently, there are two different approaches for scheduling on big.LITTLE. The first
comes from Arm and Linaro and the second from Qualcomm. They both have similar-
ities and differences described below.

As far as the first subtask is concerned, the mechanism to check whether migration
needed, both approaches are similar. Figure 4.1 shows how the scheduler for homoge-
neous systems is modified to become heterogeneity aware, according to Qualcomm’s
approach. The modified path is shown in red colour. As steps 7 and 8 show in figure
4.1, they leverage the scheduler tick() function and place their logic there. During
the scheduler tick, the statistics of the process concerning its intensity are updated.
Then, the kernel checks if migration is needed (step 7), and if so, it chooses the appro-
priate processor to migrate the process to (step 8). Arm-Linaro approach differs in that
the check for migration does not happen directly in the scheduler tick() function,
but during load balancing. Load balancing though, is called from scheduler tick().
It is not a major difference whether the check happens in the scheduler tick() func-
tion or in the load balance() function. What is important here is, that both ap-
proaches check for migration at scheduler tick granularity, which is a predefined time
interval and does not relate with whether is time to migrate or not.

The two approaches differ on how they quantify intensity; they differ at policy
level. The Arm-Linaro approach follows the Per-Entity Load Tracking - PELT pol-
icy and Qualcomm follows the Window-Assisted Load Tracking - WALT policy. Both
policies are briefly described in the following two subsections. WALT is described in
more detail because the kernel version used in this thesis is using this policy. As far
as load balancing is concerned both approaches are similar [51]. Both approaches rely
on PELT to derive the load of each process. Load balancing is happening at cluster
level individually and there is no inter-cluster load balancing [44]. Essentially, load
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balancing remains the same at cluster level, although in this case, since there are pro-
cessors with different capacities (see section 3.2.4) the load of each process is scaled
according to the capacity of the processor it is assigned to. This means the processes
classified as “light” and assigned to LITTLE cores1 are balanced within the LITTLE
cluster, and similarly the processes that are “heavy” are balanced within the big cluster.
Concerning the time slice that each process receives, and which process is selected to
run next, the procedure is the same as in the case of homogeneous systems described
in section 3.2.2, without modifications.

4.2.1 PELT

When the first big.LITTLE SoCs where manufactured the Linux scheduler and CFS in
particular had no means to quantify the intensity of a process to drive scheduling deci-
sions. Per-Entity Load Tracking (PELT) as described in section 3.2.4, up to this point
was mainly used in load balancing. With the arrival of big.LITTLE it was enhanced to
support scheduling [42, 44]. As mentioned in section 3.2.4 the load of a process takes
into account the ratio of the time the process is runnable or running over the total time
the process is alive.

To drive migration decisions, PELT approach introduces two thresholds and com-
pares the load of the process with them. The first threshold is the up-threshold; if the
load of the process is higher than this threshold it is migrated to the big cluster. The
second threshold is called down-threshold, and as the name implies, if the load of the
process is less than the down-threshold it is migrated to the LITTLE cluster [44].

This policy favours compute-intensive tasks and places them on the big cores, since
compute-intensive tasks usually do not have long idle periods, while keeping I/O in-
tensive processes on the LITTLE cores to save power [44]. I/O intensive processes
block on I/O request and therefore they are transitioned from the runnable to sleeping
state. Recall from section 2.2.1 that a process is in a runnable state when it is on the
runqueue in ready state waiting for its turn to run on the processor.

4.2.2 WALT

Window-Assisted Load Tracking - WALT offers an alternative approach to load track-
ing [51]. According to [51], WALT can better track the load of a process and CPU

1Cores can be online or offline depending on the overall load of the system and how load balancer
balances the load.
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utilisation when compared with PELT and it is used for migration decisions and oper-
ating frequency selection. WALT tries to overcome some inefficiencies of PELT. More
specifically, authors in [51] support that classifying a process as “heavy” or “light” as
fast as possible is crucial to meet the power and performance requirements in a range
of applications which exhibit sporadically heavy load, as for example a web browser.

In WALT wall clock time is divided into windows. For each process WALT keeps
an array of N windows of width W; W is the duration of the window. WALT ignores
completely the windows during which the process was idling (not in a runnable or run-
ning state), and therefore for each window the process contributes to the demand the
delta of time during which it was executing or it was ready on the runqueue. The de-
mand of the process is the maximum between the most recent window and the average
demand over the past N windows.

Figure 4.2 illustrates how WALT derives the demand of a process with a simple
example. In the version 3.10.49 of the Linux kernel used in this thesis, the number
of windows N is 5 and the width W of each window is 10 ms, so in this example the
number of the blue boxes denoting the last N windows are 5. The rightmost blue box
denotes the most recent window and the leftmost the oldest one. The values inside the
blue boxes show the amount of time the process was runnable or running during the
window. In case of process A, during the oldest window the process was runnable for
2 ms, for the next three windows was runnable for 10 ms and during the last window
the process was runnable for 3 ms. The yellow box colour shows the average demand
of the 5 windows, the green box shows the contribution of the most recent window
and the box with the red colour shows the final demand of the task that is the maxi-
mum between the most recent window and the average demand of the past 5 windows.
Therefore, for process A, the average demand is (2 + 10 + 10 + 10 + 3) / 5 = 7 and the
contribution of the most recent window is 3. Finally, the demand of process A after
the most recent window has been completed is max(7,3)=7. For process B, the average
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demand is (5 + 5 + 5 + 5 + 10) / 5 = 6 and the contribution of the most recent window
is 10. So, the demand of process B is max(6,10)=10.

Once the demand of the process is calculated, WALT decides whether migration
is needed based on the nice value of the process, its demand and some predefined
thresholds. WALT introduces the following thresholds:

• sched small task: A process with demand less than this threshold is classified as
a “light” process.

• sched upmigrate min nice: A process with nice value greater than this threshold
is never considered as a “heavy” process

• sched upmigrate: A process with demand greater than this threshold is classified
as “heavy”

• sched downmigrate: A “heavy” process with demand less than this threshold is
migrated to the LITTLE cores.

At every scheduler tick these thresholds are checked and the decision to migrate or
not is made. If the demand of a process is less than sched small task or its nice is
greater than sched upmigrate min nice (recall that greater nice values means lower
priority), the process is scheduled on the LITTLE cores. If the demand of a process
running on the LITTLE cores is greater than sched upmigrate, it is migrated to the
big cluster. Similarly, for a task running on the big cores, if its demand is less that
sched downmigrate it is migrated to the LITTLE cluster.

It shall be noted here that two to three WALT windows are required for this policy
to reach the thresholds for migration. This is a known behaviour [52] and is also
confirmed by the experimental results shown in this work (see chapter 8).

4.2.3 WALT vs PELT

WALT and PELT differ in the way they are incorporated into the Linux scheduler, the
thresholds they define, and the policy they follow to define the intensity of a process.
The main difference is the last one [51]. WALT uses the demand metric to define inten-
sity and PELT uses the load metric. WALT was introduced as an alternative to PELT
to improve the reaction time of the scheduler when encountering different program
phases [51]. It tries to identify the bursts of execution while a process runs to migrate
it to the big cluster and deliver higher performance. It tries to accomplish the above
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by completely ignoring the windows the process is idle. PELT takes into account this
time that impacts the load metric. Long idle periods lead to lower load which tends
to classify a process as “light”. Therefore, it requires more time for PELT to identify
a burst of execution. However, WALT does not completely ignores the idle time of a
process; it ignores it in case the process is idle for a whole window width that in the
case of 3.10.49 kernel version is 10ms. In case the process is idling within a window,
the idle time is still accounted, as shown in the example in figure 4.2. Both policies
rely on the same concept; they quantify the intensity of a process by the time it spends
in runnable and running states. This concept is inherited from the load-tracking policy
used for load balancing on homogeneous systems and as shown in chapter 8 can lead
to suboptimal migrations.

4.3 Related Work

The previous section described the industrial approach of scheduling on single-ISA
heterogeneous architectures. This section presents the approaches followed by the
research community. This section is structured as follows; the first subsection describes
research works that leverage HPCs to drive scheduling decisions which is the main
approach on scheduling on single-ISA heterogeneous architectures. These works are
closer to the work presented in this thesis and are described in more detail. The second
subsection describes works that do not leverage HPCs; instead they leverage runtime
information to identify bottlenecks in multi-threaded applications and by scheduling
them on the big core type they achieve better performance. Although these approaches
are not closely related with the work of the thesis, they are briefly presented for the sake
of completeness. Finally, the third subsection summarizes this section and describes
the similarities and the differences of the currently published research works and the
work presented in this thesis.

4.3.1 Leveraging HPCs to build prediction models

The works that leverage HPCs can be broadly classified into three categories; the ones
that use offline profiling, the sampling based approaches and those which employ on-
line profiling. In offline profiling the applications/benchmarks under investigation are
profiled offline. Initially, the benchmarks are run and the HPCs are collected to cre-
ate their profile. Once this step is done, the scheduler is fed with this information
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and then makes scheduling decisions on where to place each benchmark. This ap-
proach has the limitation that the applications/benchmarks need to be known before
hand to perform the profiling and usually this approach makes static assignments (e.g.
schedules a benchmark on the selected core type its whole execution). Sampling based
approaches, profile the applications on the available core types online (not offline, at
an earlier stage) and then choose where to schedule the application. This approach has
the shortcoming that it cannot scale with many core types because of the associated
overhead of migrating the process to different core types to select the most appropriate
one. Online profiling usually has two stages; the first stage consists of offline bench-
marking of applications where HPCs are gathered to build prediction models of how
a process would perform on another core type based on the profile of the current core
type. Then during the second stage, where the actual scheduling takes place, when the
application runs the HPCs are read, they are fed into the models built during the pre-
vious stage, and the scheduler makes a prediction on where the application should be
scheduled and migrates the process there. The rest of this section describes the works
that use those approaches in more detail.

Offline Profiling

Shelepov et al. [53] propose HASS (Heterogeneity-Aware Signature -Supported) sched-
uler which statically maps threads to cores after gathering their profile offline. At the
offline profiling stage the HPCs are being sampled to built their architectural profile,
called signature of the application, which is based on the last level cache misses and
the available ILP (Instruction Level Parallelism) of the application. Once the profiles
are known the applications are scheduled statically to the most suitable core type. This
work was later enhanced by Saez et al. [54], which proposes CAMP (Comprehensive
Asymmetric Multicore Processors) scheduler. CAMP scheduler takes into account
TLP (thread level parallelism) to support parallel applications as well. The limitation
of those approaches is offline profiling and scheduling; the application is profiled as a
whole and the scheduling is static. This means that the applications are assigned to a
core type from the beginning until the end of the execution, thus not taking advantage
of time-varying execution characteristics of each application.

Sampling based scheduling

To overcome the limitations of static thread to core assignments, sampling based schedul-
ing algorithms were introduced. In this case, the applications are periodically executed
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on the different core types to determine the most appropriate [4, 55]. Both approaches
leverage HPCs and use IPC as a metric to quantify performance and guide scheduling
decisions. In both cases, the authors rely on the speedup factor; the speedup that an
application experiences when executed on a higher performance core. Sampling based
scheduling can exploit time-varying program phases, that static mapping cannot, how-
ever the sampling procedure on every core type introduces overheads and cannot scale
with many core types which makes this approach impractical. The shortcomings of
offline profiling and sampling based scheduling are addressed by online profiling de-
scribed in the next section.

Online Profiling

Koufaty et al. [45] is the first work to propose online performance estimation for the
other core type based on the information of the current. Instead, of applying static
scheduling based on offline profiling or online sampling, they correlate the perfor-
mance of the application on different core types with micro-architectural and architec-
tural events (memory stalls and instruction issue stalls). They extensively use HPCs
for the correlation, while HPCs readings collected at runtime are used as a guide for
scheduling. Koufaty et al. [45] neither use a simulator nor apply frequency scaling
to simulate heterogeneity. Instead, they use proprietary tools to enable a debug mode
to some cores of an Intel Xeon X5560 processor, which reduces the instruction retire-
ment from four to one micro-op per cycle. This approach, although it still simulates
a single-ISA heterogeneous architecture (single-ISA heterogeneous hardware was not
available yet) is more accurate than the previous approaches because real hardware is
used for the evaluation of the proposed scheduler. In addition it is the first work to
suggest online profiling.

Craeynest et al. [56] propose Performance Impact Estimation (PIE) mechanism
to predict which core-to-thread mapping will likely provide better performance. Au-
thors show that previous proposals in which memory intensive workloads were sched-
uled on the small cores and compute intensive workloads on the big cores can lead to
suboptimal performance. Alternatively, they illustrate that small cores can deliver ac-
ceptable performance when the workload inherently has high level of ILP (Instruction
Level Parallelism). On the other hand, big cores are more effective when workload
exhibits high level of MLP (Memory Level Parallelism) or the ILP has to be extracted
dynamically by the big out-of-order core. MLP is defined as the average number of
outstanding memory requests if at least one is outstanding. The main idea behind PIE
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is to predict the performance on the other core type given the execution profile on the
current core type. In order to achieve this, the authors use analytical modelling to build
CPI stacks based on the MLP and ILP that are derived by sampling the hardware per-
formance counters. This work approaches scheduling from a different perspective; it
is the first work not to take into account how memory intensive the workload is but in-
stead leverage ILP and MLP to drive scheduling. However, to extract MLP information
special hardware support is required that is not currently available in real hardware.

Pricopi et al. [57] try to address the shortcomings of PIE and propose a software-
based modelling technique that can estimate performance and power consumption of
workloads for different core types. Their approach for building models is very simi-
lar to this of PIE. They also leverage hardware performance counters to construct CPI
stack models. However, in order to overcome the need of extra hardware, necessary to
build the base CPI component, they estimate the needed information via static program
analysis during compilation time. To model performance on the other core type they
employ a mechanistic-empirical approach proposed in [58]. In this work, authors also
modelled the power consumption for both big and LITTLE cores. For the LITTLE
cores, they observed that the variance of power consumption is very small and inde-
pendent of the workload, so they set it to a static value. For the big core, they used
simple linear regression to model power. This is the first work to propose both power
and performance models for single-ISA heterogeneous architectures and validate their
models on real hardware. However, it is limited to proposing prediction models for the
other core type based on the execution on the current core, and they do not propose
any scheduling algorithm.

Moore et al. [46] again instead of proposing a scheduling scheme focuses on the
importance of modelling performance for different core types on single-ISA heteroge-
neous architectures. It differs from PIE [56] and the work from Pricopi et al. [57] in
that it extends the work to cover multi-threaded workloads. They propose MONARCH,
an empirical strategy to build estimation models that can predict how a multi-threaded
program scales with thread count and core type. Then the models can be used to guide
thread to core assignments on single-ISA heterogeneous architectures. The models
predict performance scalability curves parametrized by a mapping of thread count and
core type. They also propose project functions which can transform the scalability
curve of one core type to another avoiding full training. To create the models, the au-
thors, take into account the ILP and MLP of a thread, using profiling data from HPCs.

Annamalai et al. [59] propose a technique to identify changes in program phases
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and determine which core type and at which frequency level will offer higher through-
put per Watt. They choose as their metric throughput/Watt so as to combine in one
metric both performance and power. Again, the central idea of this proposal is the on-
line prediction of the expected throughput/Watt base on performance counters. In this
work authors recognise distinct program phases during execution and they predict the
most suitable thread-to-core mapping for all the core-types in the asymmetric multi-
core (2 core types) and for different voltage/frequency levels (2 frequency levels per
core). For detecting program phase changes they use a detection mechanism based on
Instruction Type Vectors (ITV) proposed in [60]. ITV is a vector that counts the num-
ber of committed instructions of certain types using hardware performance counters.
Over a fixed number of n instructions the ITV is formulated and subtracted from the
previous one. If the difference is grater than a specified threshold D, a new phase has
been encountered. In order to detect stable phases, they require for the last m intervals
the difference of ITVs to be smaller than D. In order to predict the throughput/Watt for
the various operations point (which core type and which frequency level) they sample
the performance counter during offline profiling and they employ multi-dimensional
curve fitting and regression analysis to build models. The novelty of this work is that
they recognise distinct program phases during execution and drive scheduling deci-
sions taking into account DVFS which no other work has done before.

Donyanavard et al. [61], propose a runtime allocator scheme for single-ISA het-
erogeneous architectures targeting energy efficiency. Their proposed scheme, called
SPARTA, collects on-chip sensor data during task execution to characterize it and
utilises this information to schedule tasks trying to maintain performance targets and
minimize power consumption whenever possible. The sensor data are the HPCs and
power sensors. SPARTA runtime has three phases: sensing, classification/prediction
and allocation. During sensing phase, SPARTA collects the instructions, cycles, L1
and L2 cache misses, branch mispredictions and reads the power sensors. The sens-
ing phase is executed at the Linux scheduler tick granularity. During classify/predict
phase the collected data are used to predict the performance and the power consump-
tion of each task by following a binning approach similar to the work described in
[62]. During allocation phase they implement a heuristic to schedule each task to the
appropriate core type so as to minimize power while maintaining performance targets.
To perform their scheduling algorithm they do not rely solely on the HPCs; instead
they encapsulate the information from HPCs into the load metric used by PELT (see
section 4.2). The classify/predict and allocation phases are performed every 200ms
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and the scheduling of a task is achieved by setting each affinity mask. This work is
one of the most complete works addressing scheduling on single-ISA heterogeneous
architectures in the sense that it takes into account both power and performance to
drive scheduling decisions and also it is implemented and evaluated on real hardware.
However, a shortcoming of this work is that it makes its scheduling decisions at 200ms
granularity which render it inapplicable for workloads with shorter execution times.

Fan et al. [38] leverage the insight that competition for shared resources among
applications can degrade the performance and propose a contention-aware scheduling
algorithm for Arm big.LITTLE. The authors do not limit their work to scheduling of
a single application as previous works did, but they extend their work to tackle co-
scheduling of applications on single-ISA heterogeneous architectures. Their schedul-
ing algorithm consists of one offline, and one online stage. During the offline stage, a
training set of applications is used to calculate the speedup factor and build a model
to predict the performance interference for an application when co-run with others. To
build the model and calculate the speedup factor the HPCs are used. During the online
stage, the proposed scheduling algorithm aims to optimise the overall performance of
the co-running applications taking into account the speedup factor of each application
and using the prediction model of the offline stage.

Nishatal et al. [63] again leverage HPCs but instead of using simple statistical tech-
niques they use more advanced machine learning techniques targeting QoS (Quality of
Service). They employ heuristic and reinforcement learning techniques to improve re-
source efficiency without violating QoS. They use reinforcement learning to develop
models for a big.LITTLE architecture and during runtime they employ heuristics in
combination with information form HPCs to schedule a mix of batch and latency sen-
sitive applications on the appropriate core type, so as to achieve high throughput for
the batch workload and respect the QoS for the latency critical applications.

Research works [64] and [65] take a further step and leverage compile time infor-
mation in addition to runtime information obtained from the HPCs to construct their
scheduling policies. Sondang et al. [64] tackle scheduling on single-ISA heteroge-
neous architectures by identifying program phases with the assistance of the compiler.
Each phase is mapped to a cluster so that all code segments mapped to the same cluster
is likely to expose similar behaviour. They use offline static analysis to instrument the
application binary at likely phase transition-points, and enhance it with information
that will be used later during runtime. Gupta et al. [65] propose a methodology to find
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Pareto-optimal configurations at runtime. They perform extensive offline characteri-
zation to find classifiers that map HPCs to optimal configurations. They use compiler
techniques to instrument the binaries with PAPI calls and during runtime they em-
ploy multinomial logistic regression classification to find the right configuration for
the workload.

For shake of completeness two more research works are listed in this section even
though they do not leverage HPCs the same way as previous ones; they employ HPCs
to gather information about the running workloads but the target is not to build predic-
tion models. Craeynest et al. [66] propose fairness-aware scheduling for single-ISA
heterogeneous multi-cores. They observe that when running multi-threaded workloads
on asymmetric multi-cores threads, running on the small cores becomes a bottleneck.
Authors show that guaranteeing equal-progress for all threads by running them for
some period of time on the big core can mitigate this problem. Heirman et al. [67]
also take into consideration multi-threaded workloads. Authors study the effects of
cache capacity conflicts and competition for shared off-chip bandwidth, and show
that undersubscription often yields significant increases in both performance and en-
ergy efficiency. They propose ClusteR-aware Undersubscribed Scheduling of Threads
(CRUST) which dynamically matches an application’s working set size and off-chip
bandwidth demands with the available on-chip capacity and off-chip bandwidth.

Last but not least, Saez et al. [68] propose PMCTrack, a flexible, simple and power-
full tool for the Linux kernel that decouples the HPCs (and PMU) from the underlying
architecture and offers an architecture indepedent mechanism that exposes HPC data
to the scheduler. Although Saez et al. [68] do not suggest any scheduling policy or
mechanism their work is listed here because it has been of great help and inspiration
for the implementation of Context Preemptive Scheduler presented in this thesis.

All the works mentioned above rely on HPCs. The majority of them follow the
same approach to tackle scheduling on single-ISA heterogeneous architectures. In
general, they first characterize their workloads offline to build models using analytical,
empirical or machine learning techniques. Then during runtime they rely again on
HPCs readings that are used as input to their models to perform scheduling. They
differ at the methods they use to create their models and at the optimization target.

4.3.2 Research works not leveraging HPCs

Previous section discussed research works that employ HPCs to build models and
drive scheduling decisions on single-ISA heterogeneous architectures. This section
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discusses works that do not follow this approach. Research works [69, 70, 71] try
to leverage runtime information and in particular they identify bottlenecks in mutlti-
threaded applications and schedule them on the big cores to improve the total through-
put. Chronaki et al. [69] propose a scheduling algorithm on single-ISA heterogeneous
architectures in the context of Nanos++ runtime system, the runtime system for OmpSS
programming model. OmpSS is a task-based programming model, similar to OpenMP
that supports dependency tracking and dynamic scheduling. When a multi-threaded
application is executed, OmpSS creates a task dependency graph, which denotes the
dependencies between the tasks (which tasks have to finish their execution for another
task to start executing). Authors in [69] propose a scheduling algorithm that finds
the longest path of the task dependency graph and schedules these tasks on the high
performance cores to boost application performance.

Jibaja et al. [70], target scheduling for single-ISA heterogeneous architectures
for managed languages runtime systems in concurrent applications. They take into
account thread priorities, locks and application parallelism to guide scheduling to ac-
celerate the applications, by prioritizing threads that hold locks and scheduling them
on the high performance core type.

Joao et al. [71] propose a UBA, a utility-based acceleration mechanism for multi-
threaded workloads on single-ISA heterogeneous architectures. UBA is a software/hard-
ware mechanism that can identify code segments that slowdown multi-threaded appli-
cations and accelerates them. UBA tackles two slowdown sources: lagging threads and
bottlenecks. Lagging threads are defined, according to Joao et al. [71], as the threads
that take longer to execute due to load imbalance or micro-architectural mishaps such
as cache misses. Bottlenecks are defined as the code segments, such as critical sections,
that make other threads wait. UBA can improve the performance of multi-threaded ap-
plications by identifying the aforementioned code segments and scheduling them on
the big cores.

Kim et al. [44] address scheduling on single-ISA heterogeneous architectures from
fairness perspective. They propose a fair-share scheduler by scaling the CPU time to
reflect performance asymmetry between different core types. By scaling CPU time, the
vruntime metric (see section 3.2.2) used by CFS in Linux kernel to allocate time slices
to the process is affected. The revised vruntime metric, called scaled virtual runtime,
is used in combination with a modified load balancing algorithm to maximize fairness
among the processes.
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4.3.3 Summarising Related Works

The research works presented in this section is only a subset of the published research
works. They are mentioned because they are considered to be a representative subset
of the published research works. For a more extensive description of research works
on scheduling on single-ISA heterogeneous architectures, Mittal [72] provides an ex-
tensive list of research works on the topic.

The work presented in this thesis is closer to the research works described in sub-
section 4.3.1 because they leverage HPCs in their attempt to drive scheduling decisions.
As mentioned earlier, the responsibility of the scheduler to place the right application
on the right core type, is composed of two subtasks. The first is the mechanism; how
and when to invoke the scheduler to check whether migration is needed. The second is
the policy, how to quantify the intensity of a given workload to classify it as “heavy”
or “light”. The difference between the research works described in this section and the
work done in this thesis, is that all the above research proposals work towards optimis-
ing the policy applied to the scheduler, the main contribution of this thesis is suggesting
an alternative mechanism. To the best of author’s knowledge there is no other research
or industrial work that focuses on the mechanism of the scheduler.

The majority of related works try to estimate the performance/energy (or whatever
their optimisation goal is) of the running application for one core type, relying on the
execution profile of the other core type, and then based on this estimation they decide
whether the application should be migrated or not. What this practically means is that
in almost all related works, they benchmark the applications of interest on both big and
LITTLE cores, they read the performance counters and they build prediction models to
predict the power/performance on the other core type. They differ on how they build
the prediction models (varies from mechanical and empirical modelling to sophisti-
cated machine learning techniques) and how they make their decisions according to
the optimisation goal (policy). Essentially, what they are trying to do is to predict the
IPC of an application, as accurately as possible, on core type based on the IPC of the
application on the other.

Since there are plenty of works focusing on how to build predictions models, this
work does not focus on it. It follows the approach of offline profiling to gather IPC
information instead of predicting it. The IPC of each application/benchmark or each
phase of them, is known in advance for both core types. This information is used to
derive different policies (see chapter 8) in order to evaluate the impact of different
scheduler mechanisms on power and performance, as well as to show that both the
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policy and mechanism are important to make the most out of single-ISA heterogeneous
architectures. Lastly, it is worth mentioning that this work decouples the mechanism
and the policy. This means that the policies proposed by research works, especially
those relying on the HPCs, can be applied on top-of the proposed Context Preemptive
Mechanism.

4.4 Summary

This chapter described the state-of-the-art approaches on scheduling for single-ISA
heterogeneous architectures. It began by describing the approaches followed in the
Linux kernel for commodity single-ISA heterogeneous architectures and in particular
for Arm big.LITTLE. These are the industrial approaches. These approaches tackle
the problem by reusing the existing time preemptive mechanism inherited by homo-
geneous systems. Policy wise there are two approaches PELT and WALT. Although
they are different, they both rely on the same concept to quantify the intensity of a
workload; the time the workload has spent in runnable or in running state since its
creation. In research, on the other hand, works tend to leverage HPCs in combina-
tion with modelling techniques to perform scheduling. There is a plethora of research
works proposing different policies to tackle scheduling on single-ISA heterogeneous
architectures. However, to the best of the author’s knowledge, no industrial or research
work addresses the scheduling problem from the same perspective as this thesis to
propose a different scheduling mechanism.



Chapter 5

Context Preemptive Scheduling - CPS

This thesis focuses on single-ISA heterogeneous architectures. The idea behind single-
ISA heterogeneous architectures is that by incorporating different core types, higher
performance and energy efficiency can be delivered compared to their homogeneous
counterparts. This chapter introduces Context Preemptive Scheduling-CPS as an alter-
native scheduling mechanism for single-ISA heterogeneous architectures. Unlike the
traditional Time Preemptive Scheduling-TPS mechanism, CPS relies on interrupts gen-
erated by HPCs (Hardware Performance Counters) to recognise in time phase changes
of the currently running process. This chapter begins with discussing the shortcomings
of the current approach and the motivation for CPS. It explains why CPS can tackle the
inefficacies of the current scheduling mechanism, upon which all the state-of-the-art
research works rely.

5.1 Introduction

Chapter 3 described the Linux scheduler on homogeneous architectures and chapter
4 discussed how scheduler is modified to serve single-ISA heterogeneous architec-
tures, and in particular the Arm big.LITTLE architecture. This section describes the
inefficacies of the default scheduling mechanism found in Linux kernel versions for
single-ISA heterogeneous architectures. This chapter discuses two inefficacies of the
Linux scheduler as implemented for real hardware. The first is the mechanism that
invokes the scheduler to check whether a process needs to be migrated. The second is
the policy that the scheduler follows to decide whether migration is needed. This the-
sis focuses on the first inefficacy. Regarding the second inefficacy, this thesis describes
the drawbacks of the policies currently used in commodity big.LITTLE architectures.

70
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This thesis proposes a novel scheduling mechanism to trigger process migration to the
appropriate core type. The main idea of CPS is that migration is driven by the process
context instead of the periodic scheduler tick. There is a plethora of research work, as
described in chapter 4, that focuses on the policy that decides the appropriate core type
for a given workload. The policies proposed in literature, especially those that leverage
the PMU, can be applied on top of the proposed scheduling mechanism.

5.2 Problems of Default Scheduler

Single-ISA heterogeneous architectures in general, and Arm big.LITTLE architecture
in particular, have been proposed to enable power efficiency to be achieved across a
wide range of performance requirements. The idea is to schedule the right application
on the right core type. On big.LITTLE architecture, for example, which offers two core
types, an application that does not have high performance requirements could run on
the LITTLE cores to save energy, whereas a time critical application could benefit from
running on the big cores. However, there are applications that have phases of varying
intensity. During the application execution the appropriate core type may change de-
pending on the intensity of the program phase. The scheduler, which is responsible
for migrating the application to the most suitable core type, should be able to iden-
tify those phases as fast as possible. As described in section 4.2 the scheduler checks
if migration is needed for the currently running process at scheduler tick granularity.
The idea of the scheduler kicking in at periodic time intervals was introduced to serve
time sharing among the processes and load balancing (see chapter 3). Triggering time
sharing and load balancing at every scheduler tick works well for both homogeneous
and heterogeneous systems, because these two tasks need to be performed periodically.
However, checking whether a process needs to be migrated to another core type, does
not need to be performed periodically; it needs to be performed whenever the process
changes phase.

Figure 5.1 shows how the scheduling is triggered in the default scheduler. It is
assumed that there are two cores on the system one big and one LITTLE. Process A
is the only process running on the system, so it is constantly occupies the core. It is
also assumed that process starts its execution on the LITTLE core. The coloured stripe
denotes the different phases of the process. Phases coloured in red (A,C,E) are consid-
ered to have high intensity and thus, the process should run on the big core. The blue
coloured phases are considered to be of low intensity and the process should run on the
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Figure 5.1: Triggering migration in TPS

LITTLE core. Figure 5.1 shows, in addition, the actor that triggers the scheduler and
therefore the check for migration procedure. The scheduler is called by the interrupt
routine that handles the created interrupt whenever the system timer expires. The grey
boxes denote the hardware system timer and the purple arrows represent the created
interrupt. As it is shown in Figure 5.1 the phase changes are not aligned with the timer
interrupts (they are not supposed to be). As a result, even if the scheduler employs an
optimal policy that can infer the right core type for the process from the first tick, the
interrupt may happen in the middle of the phase, as in case of phase A. The scheduler
ticks after the first 10ms, and since an optimal policy is assumed, the check for migra-
tion procedure will identify the phase as of high intensity and will migrate the process
to the big core. At the 20ms the process will migrate back to the LITTLE core. Phase
C, however will be completely missed; the scheduler will be called again during phase
D which has low intensity and the process will remain to the LITTLE core. This hap-
pens because the timer interrupt that triggers the scheduler is not related somehow with
the process running on the core; it is just a periodic event. This interrupt preempts the
current running process for the scheduler to run, and for this reason, this mechanism is
called in this thesis time preemptive scheduling mechanism.

So far, the first inefficacy of the default scheduler has been described. The second
inefficacy is the policy the default scheduler uses to decide on which core type a pro-
cess should run. In the default scheduler, the intensity of a process is expressed either
by the load metric in case of PELT policy, or by the demand metric in WALT policy,
as described in section 4.2. Both policies however, are similar and are based on the
amount of time the process is in runnable state compared to the amount of time the
process is not in runnable state. This approach is inherited from the way the time slice
of a process is calculated (see section 3.2.2) and by Per-Entity Load Tracking method,
used to estimate the load of a runqueue (see section 3.2.4). Per-Entity Load Tracking
calculates the load of a runqueue by adding the load of each individual process on the
runqueue. The load of the process is calculated by taking into account the time the



5.3. CONTEXT PREEMPTIVE SCHEDULING 73

process is runnable compared to the time it is not. In this case, calculating the load this
way is meaningful, because the process “burdens” the runqueue only for the amount
of time it is runnable; when it is not runnable it not on the runqueue. However, em-
ploying this policy to decide the appropriate core type for a process can result into the
following case. Suppose a process that has long idle periods and short computation
bursts. Assume that the computation bursts should be processed as fast as possible to
meet the performance requirements or not to violate the quality of service, thus the
appropriate core type for the computation burst is the big core. In this case, the sched-
uler may never recognise the process as “heavy” and schedule the burst on the big
core, because of the long idle periods. This behaviour however, negates the purpose
of single-ISA heterogeneous architectures. As chapter 8 shows, a process that runs for
10ms and sleeps for 100ms, trying to simulate the case of long idle periods with short
computation bursts, will never be migrated to the big cores by the default scheduler.

5.3 Context Preemptive Scheduling

This section presents Context Preemptive Scheduling-CPS. CPS is a novel scheduling
mechanism that can recognise the phase change of a process faster than the default
time preemptive scheduling. Instead of having a periodic event (system timer inter-
rupt) triggering the scheduler to check whether migration is needed, CPS depends on
the process itself to notify the system about any changes in its behaviour and thus, a
different core type may be more suitable. One way to achieve this is to profile the
application, identify the low and high intensity phases at source code level, and in-
strument the application to migrate to the right core type whenever it enters a different
intensity phase. This approach lacks flexibility, since this procedure should be done for
every application and for every architecture. Furthermore, the execution requirements
of the applications may also vary due to different input data.

CPS uses the Performance Monitor Unit to gather profile information about the
currently running application. In particular, it leverages the fact that the HPCs can
generate an interrupt whenever they overflow. Therefore, by setting the HPCs at the
appropriate values, one of them or a combination of them, the generated interrupts can
notify a phase change. The appropriate values to which the HPCs should be set, depend
on the optimization target, whether for example opting for maximum performance or
maximum energy efficiency. These values change according to the policy enforced and
can be determined by offline profiling (see section 8.1.2). Figure 5.2 shows how CPS
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Figure 5.2: Triggering migration in CPS

works versus time preemptive scheduling. The same assumptions hold as those in fig-
ure 5.1. The grey boxes denote the hardware register that creates an interrupt whenever
it overflows and the purple arrows denote the interrupt. The upper half of the figure
presents the default time preemptive scheduler, which is invoked by the system timer
interrupt at periodic intervals. The lower half of the figure presents how context pre-
emptive scheduling is triggered. In case of the default scheduler the actor that starts the
scheduler is a single periodic event. In case of the context preemptive scheduling, there
may be more than one actors. In figure 5.2 there are 3 actors; three hardware perfor-
mance counters that monitor three hardware events: the cycles, the retired instructions
and the last level cache misses. Although, in the figure three HPCs are illustrated, the
only limitations are the number of HPCs supported by the architecture. In addition the
hardware events (cycles, instructions, last level cache misses) used in this example are
used for illustrative purposes; any hardware event supported by the architecture can be
used as well. In this example, HPC1 which monitors the instructions executed, is used
to trigger the migration to the big core, and HPC2 (last level cache misses counter)
to trigger the migration to the LITTLE core. Again, the selection of which hardware
events will trigger which migration is up to the policy. There may be the same event
or a combination of events triggering a migration.
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In figure 5.2 the following policy is assumed. The migration from the LITTLE to
the big core will be indicated by the instruction counter. The rational behind this is
that a workload that has high IPC can benefit even more by the big cores and boost its
performance. When HPC1 overflows, the IPC is checked and if it is above a threshold,
the process migrates to the big cores. To migrate to the LITTLE cores the last level
cache miss event is used. This policy is driven by the educated guess that a workload
that exhibits high miss rates will perform poorly both on big and LITTLE cores; there
will be some performance degradation on the LITTLE cores, but not severe. Therefore,
it may be worthy to move the process to the LITTLE to save power. Whenever HPC3
overflows the ratio of the last level misses over the instructions executed is calculated
and if it is over a threshold the process migrates to the LITTLE cores. In this example,
the interrupts from the cycle counter are ignored. Its value is read to calculate the IPC,
but there is no action taken whenever it creates an interrupt. If it was a real example,
the interrupts would not have been enabled for this counter at all, since they are not
used, however, here they are shown to explain that is not necessary to act upon every
interrupt.

In summary there are three differences between CPS and the default time preemp-
tive scheduler used by Linux kernel in commodity hardware and in research works.

• In CPS, the scheduler is no longer triggered by a periodic event, but by the PMU
which is related to the process context.

• There can be more than one actors/events triggering the scheduling process. In
the default mechanism the scheduler is invoked by a single event; the system
timer interrupt. In CPS, it is again an interrupt that triggers the scheduler, how-
ever this interrupt can be generated by different hardware events.

• In TPS whenever the system timer expires the invocation of the scheduler in-
volves three subtasks; time sharing among the process on the system, load bal-
ancing if needed, and check for migration. In CPS scheduling mechanism at
every interrupt of the HPCs only the subtask of checking for migration is per-
formed. The other two (time sharing and load balancing) are performed normally
by the scheduler at every system timer tick.
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5.4 Design Overview

To implement the proposed Context Preemptive Scheduling mechanism, a framework
was developed. This section describes the design overview of the CPS framework. The
framework consists of several components both in user-space and kernel-space. Figure
5.3 shows the overall architecture of the CPS framework.

CPS framework is split into 3 layers: the hardware layer, the kernel-space layer and
the user-space layer. As shown in Figure 5.3, the lowest (hardware) layer consists of
the Performance Monitor Unit - PMU. The PMU provides the Hardware Performance
Counters and the hardware events that are the actors which trigger the scheduling. On
top of the hardware level, resides the kernel-space level, which is split into three levels.
Just above the hardware, the PMU driver is responsible for setting up the PMU, start-
ing and stopping the HPCs, reading them and handling the interrupts generated when
they overflow. The PMU driver communicates with the CPS module which hides the
implementation details of the PMU driver and also implements the kernel interface.
To implement CPS, some minor modifications were made to the Linux kernel. These
modifications compose the kernel interface. Essentially, through the kernel interface
the CPS module is notified when for example, a process is scheduled in and out of a
core. In user-space layer, a library exists which wraps the calls to the CPS module and
expose the functionality to the applications. Finally, a harness program is implemented
which launches the application of interest and it is responsible for setting up the en-
vironment for the application to run, such as making the calls to the library to enable
CPS.

The main idea of CPS is to let the process itself notify the system that something
has changed in its execution and if need be, trigger the scheduler. The PMU provides
the information about the behaviour of the process during its execution. To achieve this
the process should be monitored and more specifically some state transitions should be
traced. The points that need tracing is the creation of a process, its exiting point and
whenever it is scheduled in and out of a core; whenever it transits from the running
state to runnable or sleeping state. In practice the process is profiled during its execu-
tion by monitoring hardware events, such as instructions retired. Whenever the HPC
that monitors the instructions overflows the interrupt handler which is responsible for
serving the interrupts invokes the scheduler if needed. The invocation of the scheduler
is optional and depends on the applied policy. The rest of this section describes the
design of the part of the framework that helps to monitor a process in order to support
CPS.
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Figure 5.3: Architecture of CPS framework

The design involves three main data structures : per thread info data structure,
which as its name implies, holds the necessary information at process granularity. The
process descriptor is modified to embed a pointer to this data structure, as well as a
flag the cps flag which indicates whether cps is enabled. cps perf event is the
CPS internal software representation of a hardware event. cps hw events is a per-
CPU data structure and essentially it corresponds to the HPCs of the PMU of each
core.

Recall from section 2.3 the difference between an HPC and a hardware event.
A hardware event is an event that occurs during program execution; last level cache
access, memory access, instructions executed and cycles are examples of hardware
events. The HPC is the actual hardware, a register, that counts a hardware event. An
HPC is configured to monitor a hardware event, for example last level cache misses.
Whenever the execution of the program creates a last level cache miss the HPC that
monitors it increases by one.

Figure 5.4 shows how a process is monitored under CPS. Process A process de-
scriptor is modified to include a pointer to a per thread info data structure. At
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Figure 5.4: The procedure of tracking the process state in CPS
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the initial state of the process, assuming CPS is enabled (see chapter 6 for more de-
tails) the cps flag is set to 1, and the cps info pointer to the per thread info

data structure is initialized to NULL. During fork, a per thread info data structure
is allocated (pink box) and the cps info pointer points to this data structure. The
per thread info data structure contains the cps perf event data structures (white
boxes inside the pink box). In this example only two hardware events are monitored
and therefore only two cps perf event data structures are allocated.

The cps hw evnets data structures, which are represented as small squares in fig-
ure 5.4 are per-CPU data structures and are tied to the core they belong to. The green
cps hw events are tied to the LITTLE core and the blue to the big. These are the soft-
ware representation of the HPCs, and this is why they are tied to each core. Assume
that process A begins its execution on the LITTLE core (schedule in part of the dia-
gram). The cps hw events data structures are associated with the cps perf event

data structures of the per thread info structure of process A. Whenever, the HPCs
are read, the read value is stored to the corresponding cps perf event data struc-
ture through the cps hw events structure. Essentially, the cps hw events data struc-
ture acts as a bridge that associates the HPCs that monitor a hardware event with
their software representation (cps perf event structure) of the process. During mi-
gration from the LITTLE to the big core, the cps hw events data structures of the
LITTLE core will stop being associated with the cps perf event structures and the
csp hw events of the big core will be associated instead. Now, every time the HPCs
are read, the cps perf event structures will be updated with the values read from the
HPCs of the big core.

So far process A is always scheduled on a core. When a process is scheduled out
of a core, which means that it no longer runs, the csp perf event structures are not
associated with any cps hw events structure. A process may be scheduled out of a
core for many reasons. It may be scheduled out from one core to be scheduled in to an-
other due to load balancing or big.LITTLE migration. It may also be scheduled out for
another process to run or to wait on wait-queue for a request to be completed. The key
point here is that, since it stopped its execution (even temporarily) its cps perf event

data structures should stop being associated with any HPCs1. Finally, during the exit-
ing stage the cps perf event and per thread info data structures are released.

This is the part of the framework that offers the profiling infrastructure on which

1HPCs are reset during the context switch, when a task is scheduled out for another one to be sched-
uled in.
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CPS relies. Since hardware events are monitored per process, what is left is to initialise
the HPCs with the appropriate values so as to create an interrupt whenever they over-
flow and trigger scheduling. How this is achieved is described in more detail in chapter
6. At this point it should be mentioned that, although interrupts are not associated with
any process context (see section 2.2), since they are hardware events that can occur
irrespectively of the current process running, in this case, the interrupt created by the
PMU actually relates to a process context. The interrupt may be generated by the PMU
hardware, but it requires a process to execute and cause the interrupt. Essentially, it is
the process behaviour that will create the interrupt which will trigger the scheduler to
check if migration is needed.

5.5 Summary

This chapter discussed the inefficacies of the current Time Preemptive Scheduler on
single-ISA heterogeneous systems. The first inefficiency concerns the mechanism used
to check for migration which is a periodic timer interrupt. The second concerns the
policy used to express and quantify the intensity of a process that does not reveal
the intrinsic characteristics of the process executed. This chapter presented Context
Preemptive Scheduling as an alternative method to perform the migration task of the
scheduler. CPS is associated with the process running and can quickly identify phase
changes, and it relies on the interrupts generated by the HPCs. CPS can be triggered
from more than one actors, whereas TPS is triggered from only one. Finally, this
chapter presented the design overview of CPS framework that is implemented to realise
and evaluate CPS.



Chapter 6

CPS - Implementation

Chapter 5 described the inefficiency of the current Linux scheduler to respond quickly
to workload changes and presented Context Preemptive Scheduling, a novel scheduling
mechanism. It finally described the design overview of CPS framework. This chapter
provides an insight to the implementation of the CPS framework.

CPS is implemented and tested on the DragonBoard 810 development kit (see Sec-
tion 7.1), which features ARM big.LITTLE architecture, an industrial realisation of
single-ISA heterogeneous architectures. Because the implementation is done on a real
system, there is interference in very sensitive parts of the kernel such as the path of
the process creation and scheduling, where the smallest misstep can compromise the
stability and the robustness of the whole system. The design of the CPS framework
aims to be straightforward and as clear as possible to minimize the implementation and
keep the interference at bay.

The rest of this chapter describes each layer of CPS framework in detail, explains
the interaction between the layers as well as the interactions with the rest of the system,
justifying each time the design and implementation choices.

6.1 Hardware Level

This section describes the low level hardware features of ARM architecture that are
leveraged to implement Context Preemptive Scheduling. The implementation is based
on the ARM Performance Monitor Unit. The ARM Performance Monitor Unit is an
optional non-invasive debug component. The specification provides a 64-bit cycle
counter and a number of 32-bit event counters. The event counters can be programmed
to monitor various events, such as instructions retired, cache misses, branch and TLB
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Figure 6.1: How HPCs trigger interrupts

mispredictions etc. These events can be broadly classified into architectural, micro-
architectural and implementation defined. Although the ARM PMU specification pro-
vides space for 31 event counters, implementations usually offer two to six hardware
performance counters plus the cycle counter [73]. The specification also provides spe-
cial control registers, that are responsible for enabling and resetting the counters, flag-
ging overflows and enabling interrupts on overflow.

This thesis is mainly concerned with the interrupt that is generated when the hard-
ware performance counters overflow. According to the ARMv8 Architecture Refer-
ence Manual [73], all events are counted in wrapping counters, that overflow when
they wrap. In an octa-core chip, as the Snapdragon 810 used in this work, each core
has a Performance Monitor Unite associated with it. In case the interrupts are enabled
for the PMU, which is programmable, an interrupt request is generated to the associ-
ated core. The hardware performance counters can be written by software to control
how often the interrupt will be generated [73]. Figure 6.1 shows, how the interrupts
are generated when writing to the HPCs over the time. Due to space limitations, only
two HPCs are shown in Figure 6.1, although in Snapdragon 810 six HPCs are available
plus the cycle counter. Assume that the first HPC, HPC1, counts the instructions retired
and the second, HPC2, the last level cache misses. Also assume that only the HPC2
counter is used to generate an interrupt and that the HPC1 is just used to count the
retired instructions. Suppose that the desirable action is the HPC2 counter to overflow
after 210=0x400 last level cache misses (this is a random number used for illustrative
purposes). The HPCs, apart from the cycle counter, are 32-bit registers. The HPC2
counter in Figure 6.1 will overflow once it reaches the value (0xFFFFFFFF + 0x1).
To make it overflow after 0x400 last level cache misses, it needs to be initialised with
value (0xFFFFFFF - (0x400 - 0x1)) = (0xFFFFFFFF - 0x3FF) = 0xFFFFFC00. At T0,
the beginning of time for this case, both HPCs are initialized; HPC1 is initialised at
zero and HPC2 is initialised so as to overflow after 0x400 last level cache misses. At



6.2. KERNEL-SPACE 83

T1, the counters keep counting events (retired instructions and LLC misses); HPC2 has
not overflowed yet. At T2, HPC2 has reached 0xFFFFFFFF, this means that (ox400 -
0x1) LLC misses have occurred. At the next LLC miss the counter will overflow. At
T3 the next miss occurs, the counter overflows and the interrupt is generated. Figure
6.1 shows that at this point the HPCs are set again to their initial values. This, however,
depends on the use case. They may be set to some other values. The interrupt handler
of the PMU driver is responsible for handling the interrupt (more details in the next
section) and for setting again the values of the HPCs. The values the HPCs will be set
at, depend on the policy the interrupt handler enforces.

This exact feature is leveraged to implement context preemptive scheduling. The
HPCs can be initialised to such values to create interrupts when the workload enters
a different program phase. These values can be derived by offline profiling and mod-
elling following the approaches proposed in research works [59, 57, 56]. This thesis
does not focus on how to define these values. This thesis designs the mechanism to
leverage the HPCs overflows and uses them for scheduling purposes. The next sections
describe, the CPS framework that has been developed and how in this framework the
PMU and the generated interrupts are associated with a process context to trigger the
scheduler.

6.2 Kernel-Space

6.2.1 Interface to the Kernel

To implement context preemptive scheduling the kernel needs to be modified. Since
this mechanism is based on the process context, in other words it depends on the be-
haviour of the process, the implementation evolves around the life-cycle of the process
and the transitions of its state. There are 4 key points where CPS interferes in the
kernel.

• When the process is created - fork.

• When the process is about to start running on a core - schedule in.

• When the process is about to be removed from a core - schedule out.

• When the process finishes its execution - exit.
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Instead of modifying several parts in the kernel, all the functionality of CPS is
gathered into a single module, the CPS-module. The module communicates with the
kernel through an API, called CPS API. Essentially, hooks are created at the points of
interest, and through these hooks the actual module functions are called. Listing 6.1
shows the CPS API. These functions are placed in the appropriate place in the Linux
kernel. The functions cps on fork and cps on exit are placed in the fork and exit
code path respectively. The next two functions (lines 3-4) are called during the context
switch. In particular, cps on sched out is placed just before the context switch for
the process that is about to be removed from the processor. The cps on sched in

function is placed just after the context switch for the process that is about to run the
processor. The last two functions (lines 5-6) are not necessary to implement CPS, they
are used however for gathering statistics. The csp on migrate function is called when
a migration to big to LITTLE or from LITTLE to big takes place, and cps on tick is
called whenever the scheduler ticks.

1 i n t c p s o n f o r k ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;
2 i n t c p s o n e x i t ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;
3 i n t c p s o n s c h e d i n ( s t r u c t t a s k s t r u c t ∗ t a s k , s t r u c t t a s k s t r u c t ∗

p rev ) ;
4 i n t c s p o n s c h e d o u t ( s t r u c t t a s k s t r u c t ∗ t a s k , s t r u c t t a s k s t r u c t ∗

n e x t ) ;
5 i n t c p s o n m i g r a t e ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;
6 i n t c p s o n t i c k ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;

Listing 6.1: CPS API

1 s t r u c t t a s k s t r u c t {
2 . . .
3 i n t c p s f l a g ;
4 s t r u c t p e r t h r e a d i n f o ∗ c p s i n f o ;
5 . . .
6 }

Listing 6.2: Modifications to task decriptor

The task descriptor of the process has also to be modified to hold the necessary
information per process, as shown in listing 6.2. For development, testing and evalua-
tion purposes it is not desirable for all the processes to be subject to CPS. The desirable
functionality is to be able to dynamically enable and disable CPS for certain processes.
The field cps flag is used to indicate whether CPS is enabled for this process. To keep
the implementation neat, all the information needed for CPS are stored in a separate
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data structure, called per thread info. The task descriptor is modified to include a
pointer, cps info, to per thread info structure. The reason why the cps flag re-
sides directly in the task descriptor instead of being part of the per thread info is
because, the cps info allocation during the fork of a process depends on the cps flag

value.

6.2.2 CPS Module

CPS Module has two responsibilities. Firstly, it has to setup the proc file system entries
to dynamically enable and disable CPS for a process. Secondly, it has to implement
the CPS API.

procfs

The proc file system (procfs) is a special file system in the Linux operating system. It
holds information about the system, especially information that is related with the ker-
nel, in a hierarchical tree structure. It also provides a communication gate between the
user-space and kernel-space. A user-space program can read a procfs file to retrieve,
for example information concerning the kernel configuration, and also can write to this
file to change this configuration. CPS module creates a procfs entry to enable and dis-
able CPS for a certain process. In practice, it creates a special file; when a user-space
application writes “ON” to this file the cps flag for this process is set to 1. When
the application writes to this file, the write() system call is eventually handled by the
CPS module. In the CPS module, a function is implemented to be called whenever a
write happens to this special file. It parses the input and if it is equal to “ON” it sets
the cps flag for the process that made the call. In similar way, CPS can be disabled
for a process, if “OFF” is written to this file. CPS module can also enable, disable or
enquire whether CPS is enabled, not only for the process writing to the special file, but
for any other process as long as its process identifier is provided. This is the kernel
perspective of how CPS is enabled for a process; the user-space half is described in
section 6.3.2.

CPS API

The second responsibility of the CPS module is to implement the CPS API. Listing 6.3
shows the functions that CPS module implements. The module connects the process
with the PMU driver.
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1 i n t d o o n f o r k ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;
2 i n t d o o n e x i t ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;
3 i n t d o o n s c h e d i n ( s t r u c t t a s k s t r u c t ∗ t a s k , s t r u c t t a s k s t r u c t ∗

p rev ) ;
4 i n t d o o n s c h e d o u t ( s t r u c t t a s k s t r u c t ∗ t a s k , s t r u c t t a s k s t r u c t ∗

n e x t ) ;
5 i n t d o o n m i g r a t e ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;
6 i n t d o o n t i c k ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;
7 i n t d o o n i n t e r r u p t ( s t r u c t t a s k s t r u c t ∗ t a s k ) ;

Listing 6.3: Interface implemented by CPS module

During the execution of the fork() system call, if the cps flag is set, the per

thread info data structure will be allocated for the process which is forked. In addi-
tion an array of cps perf event structures is allocated according to how many hard-
ware events should be monitored. One cps perf event is allocated and initialised for
each hardware event to be monitored. CPS supports as many cps perf events as the
available HPCs of the architecture; in this case (DragonBoard 810) the maximum num-
ber of events is seven, because the architecture offers six HPCs plus the cycle counter.
At this point, the trigger for each event is also initialised. Essentially, during fork, the
CPS module allocates and initialises the necessary data structures. During exit, the
data structures that had been allocated during fork are freed and the cps flag is set to
0. When a process is scheduled in a core the module calls the start pmu() function
of the core driver, to start monitoring the hardware events defined for this process, and
when a process is scheduled out from a core, the module calls the stop pmu() function
to stop the monitoring. The functions start pmu() and stop pmu() are described in
more detail in section 6.2.3.

The functions do on tick() and do on migrate() are called at every scheduler
tick and at every process migration to another core type. Although, they do not add
any functionality to the CPS mechanism they are used for accounting statistics. The
do on interrupt() function is called from the core driver whenever an interrupt is
triggered. This function is called when an HPC has overflowed, which indicates that
something has changed in the behaviour of the process running and maybe migration to
another core type is needed. This function applies the scheduling policy. In this thesis,
various scheduling policies are considered to evaluate CPS mechanism. Chapter 8
describes in detail the evaluation of CPS along with the various scheduling policies.
Recall that the main contribution of this thesis, is not the implementation of another
scheduling policy, but the composition of a novel scheduling mechanism upon which
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Figure 6.2: PMU Driver - Default vs modified stack : Different colours show the parts
being modified

different policies can be implemented depending on the use case and the optimization
target.

6.2.3 Driver Level

Section 2.3.1 described the default ARM PMU driver, as it is found in the 3.10.49
version of the Linux kernel. This section describes how the default ARM PMU driver
is modified to serve CPS scheduling. Figure 6.2 shows the default and the modified
drivers side by side. The leftmost part of the figure depicts the default driver and
the rightmost the modified version. Differences in colouring imply modifications in
the PMU driver stack. The hardware remains the same, there have been made slight
modifications at the low-level driver and major modifications at the core driver level.
The low-level part of the driver is kept almost as it is, with minor modifications. The
core driver is completely replaced with the modified version to decouple the driver
from the perf event subsystem. Finally, the high-level part of the driver is discarded
and not replaced. In the modified version of the stack, on top of the driver resides
the CPS Module instead of the perf event subsystem. The main reason why the
driver should be decoupled from perf event is that, perf event is an infrastructure to
assist profiling. It is a complicated subsystem and trying to modify it to accommodate
scheduling as well, would require greater engineering effort compared to decoupling
it and implementing a module. The second reason is that perf event infrastructure,
since it runs on most, if not all, architectures that Linux has been ported, includes
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abstraction layers to be portable. These layers however, introduce overheads. For
these reasons, the design choice is made to decouple the PMU driver from perf event
and implement a minimal thin layer, a module, to talk with the driver and serve as a
communication bridge between the driver and the rest of the kernel. In the rest of this
section, the implementation details of the modified PMU driver are described, and how
it is built to support context preemptive scheduling.

Low-level driver

1 u32 armv8pmu pmcr read ( vo id ) ;
2 vo id armv8pmu pmcr wr i te ( vo id ) ;
3 i n t a r m v 8 p m u c o u n t e r h a s o v e r f l o w e d ( i n t i d x ) ;
4 i n t a r m v 8 p m u s e l e c t c o u n t e r ( i n t i d x ) ;
5 u32 a r m v 8 p m u r e a d c o u n t e r ( i n t i d x ) ;
6 vo id a r m v 8 p m u w r i t e c o u n t e r ( i n t idx , u32 v a l u e ) ;
7 vo id a r m v 8 p m u e n a b l e c o u n t e r ( i n t i d x ) ;
8 vo id a r m v 8 p m u d i s a b l e c o u n t e r ( i n t i d x ) ;
9 i n t a r m v 8 p m u e n a b l e i n t e n s ( i n t i d x ) ;

10 i n t a r m v 8 p m u d i s a b l e i n t e n s ( i n t i d x ) ;
11 vo id a r m v 8 p m u s t a r t ( vo id ) ;
12 vo id armv8pmu stop ( vo id ) ;
13 vo id a rmv8pmu rese t ( vo id ) ;

Listing 6.4: Low-level driver functions

The low-level driver part deals with the low-level PMU functionality such as set-
ting up the counters and starting the PMU. It is almost the same with the equiva-
lent part of the default driver with some minor modifications. Listing 6.4 shows the
main functions that comprise this part. The first two functions (line 1-2) read and
write the PMCR register. The Performance Monitors Control Register-PMCR is one
of the control registers (see section 2.3.1), and provides information about the PMU
implementation, configures and controls the HPCs. For example to start (line 11) or
stop (line 12) the PMU the first bit of this register has to be set to 1 or 0 respec-
tively. The armv8pmu counter has overflowed(int idx) function checks whether
the counter with index idx has overflowed. Each counter can be configured to generate
an interrupt when they overflow. Being able to check which counter has overflowed,
enables CPS to include more than one events to trigger scheduling. Functions in lines
9 and 10 enable and disable the interrupt on overflow for the HPC with index idx.
Function in lines 5 and 6 read and write an HPC and the counter on line 4 selects an
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HPC with index idx. The PMU is designed in such a way that in order to perform
any action on an HPC, the counter has first to be “selected”, and this is done through
the PMSEL EL0 control register. These calls are essentially wrappers for the assembly
code used to deal with the control registers and the HPCs.

Core driver

The low-level part abstracts the hardware and exposes its basic functionality. The
core driver part builds upon the low level part to provide higher levels more complex
functionality. The low-level driver is concerned only with the hardware. There is no
process context associated with this part of the driver. The core level is responsible for
bridging the gap between the PMU and the process that essentially uses it. Listing 6.5
shows the basic functions of the core part.

1 i n t s e t h w e v e n t s ( s t r u c t p e r t h r e a d i n f o ∗ i n f o ) ;
2 i n t u n s e t h w e v e n t s ( s t r u c t p e r t h r e a d i n f o ∗ i n f o ) ;
3 vo id s t a r t p m u ( s t r u c t p e r t h r e a d i n f o ∗ i n f o ) ;
4 vo id s top pmu ( s t r u c t p e r t h r e a d i n f o ∗ i n f o ) ;
5 i r q r e t u r n t a r m v 8 p m u h a n d l e i r q ( i n t i rq num , vo id ∗dev ) ;
6 vo id r e a d e v e n t ( i n t idx , s t r u c t c p s h w e v t ) ;

Listing 6.5: Core driver functions

CPS goal, from implementation perspective, is similar to profiling an application
by counting some hardware events such as cycles, instructions retired, last level cache
misses etc. The difference of CPS compared to a profiling tool that monitors hardware
events is that, although CPS has to monitor the event it is not necessary to store them
and provide the results to the user application. In addition, CPS handles the inter-
rupts generated from the HPCs and this functionality is not usually implemented from
profiling tools.

The functions start pmu() and stop pmu() (listing 6.5) are called from the CPS
module whenever a process is scheduled in and scheduled out of a core. When a pro-
cess is scheduled in a core, the cps perf event data structure of the process, which is
encapsulated into the per thread info data structure have to be associated with the
cps hw events that is bound to the core. The start pmu() function performs this as-
sociation, by calling the set hw events, and starts the PMU. As shown in figure 6.3,
the per thread info structure contains an array of pointers (blue coloured boxes) to
cps perf event structures (pink coloured circles). Each structure represents a hard-
ware event, for example the cycles and the instructions retired. The cps hw events

structure, which is a per-cpu data structure associated uniquely with a core, contains an
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struct cps_hw_events {

   struct cps_perf_event** events;

    ....

}

struct per_thread_info {

   struct cps_perf_event** events;

    ....

}

HPC0 HPC1 HPC2 HPC3

cycles instr

Allocated cps_perf_event 

structure

Figure 6.3: Associations between CPS data structures and HPCs

array of pointers to cps perf event structures (green coloured boxes). Each element
of this array is associated with an HPC (grey coloured boxes). Figure 6.3 shows four
HPCs (suppose that the architecture offers only 4 HPCs), however the events to be
monitored are two, the cycles and the instructions. The start pmu() function, firstly,
calls the set hw events function which is responsible for configuring the HPC0 and
HPC1 to monitor the cycles and instructions events respectively. The configuration
includes enabling the interrupts for each HPC, initialising them with the trigger value
if needed and then enabling the HPCs. It also associates the cps hw events data
structure with the per thread info, by making the info pointer of cps hw events

to point to the cps info of the task struct structure. Finally, it associates the
cps perf event structure of cps hw events (green boxes) with the actually allocated
cps perf event structures (pink circles). Once the set hw events has finished, the
start pmu() function enables the PMU by calling the armv8pmu start function of
the low-level driver. From this point on, while the process executes, HPC0 and HPC1
are counting the cycles and the retired instructions.

The read event() function reads the HPCs and saves the counted values to the
allocated cps perf event structure. Note here, that the design of the core driver and
especially the way the per thread info, cps hw events and cps perf events are
associated with each other, requires neither extra space to temporarily hold the read
values nor extra copies. The HPCs are read and their value is directly stored to the
respective cps perf event, which reduces both the space and time overhead of the
implementation. The stop pmu() function is called when the process is scheduled
out of the core. Firstly, it reads the HPCs by calling the read event() function,
described above. Next, it calls the unset hw events() function to undo whatever
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set hw events() function has done and resets the HPCs. It disables the HPCs and
removes any associations (pointer dereferences) made by the set hw events function.

The armv8pmu handle irq() is the key point of the implementation. This func-
tion is the handler of the generated interrupt from the PMU. Firstly, it checks which
HPC has overflowed; in case it is an HPC for which a trigger is not set it returns with-
out further processing. In case one of the HPCs has overflown and a trigger has been
set, the handler reads and resets the HPCs and calls the do on interrupt() function
of the CPS module to apply the scheduling policy. Although, during the testing phase
of the implementation and the evaluation an HPC has never overflowed without a trig-
ger being set, this check should be performed to ensure correctness. In theory, an HPC
can overflow without a trigger just because of wrapping. However, this is dependent
on how fast the event that is monitored happens (for the counter to increase its value)
and the amount of time a process runs on a core continuously without being scheduled
out; each time the process schedules out, as described above, the value of the HPCs is
stored and the HPCs are reset to their initial values. The two fastest counting HPCs
are the cycle and the instruction counters. The first because it increases with the clock
frequency and the second because all the other events apart from the cycles cannot
occur faster than the instructions executed. For example, there cannot be more cache
misses than instructions executed. For the cycle counter which is a 64-bit counter when
running at 2GHz (the highest frequency for the used processor is 1.9GHz), it would
require the process to run without being preempted for 233 seconds which is roughly
272 years. Therefore, the cycle counter is not going to overflow during a process run,
without a trigger. For the instruction counter which is a 32-bit counter, when running
at 2GHz a process with IPC 1, the process should run without interruption for 2 sec-
onds, with IPC 2 for 1, with IPC 4 for 0.5 second and so on. Even in the case of IPC 4,
the instruction counter will not overflow, since the process cannot run for 0.5 second
without preemption. Apart from other process preempting it and any other interrupt
that may occur, the scheduler interrupt occurs at 10 ms granularity, and this will cause
the process to be scheduled out.

To sum up the above, whenever a process is about to start execution on a core,
the cps perf event structures (software representation of the events to be monitored)
which belong to the process are coupled with the HPCs though the cps hw events

data structure which belongs to the core. This association holds as long as the process
executes, until the process is scheduled out of the core. By design, the only entity that
can read or modify any of the three involved structures is the kernel on behalf of the
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process. In addition, the crucial procedures of configuring the HPCs and associating
them with the process happen either when the process schedules in the core or when it
schedules out, which both occur during context switching. During context switching
both interrupts and kernel preemption are disabled. This means that there is no need
for locks in the CPS design, for the procedures that happen very often (schedule in,
schedule out, handle interrupt), thereby making the implementation more efficient.

6.3 User-space

The user-space part of the CPS framework consists of three parts. The first part is a
workload simulator used to evaluate CPS mechanism and to study the default sched-
uler. The second part is a library that makes calls to the CPS module to enable and
disable the CPS mechanism. The third part is a harness program serving two purposes.
Firstly, it uses the library to enable CPS for the application of interest, and secondly, it
controls the workload simulator.

6.3.1 Workload Simulator - PhaseBench

To study the behaviour of the default scheduler and evaluate CPS, the workload that is
needed is one that can closely simulate the behaviour of real applications, such as a web
browser. Ideally, the workload should have distinct phases of varying intensity. For
example, the workload should expose some phases of intense activity (high intensity),
phases of medium intensity and idle phases with no activity. These characteristics
are required, to study how effectively the scheduler can recognise phase changes and
how it responses to those changes. However, traditional benchmark suites such as
SPEC [74], PARSEC [75], MevBench [76] and Tailbench [77] do not expose these
characteristics. On the other hand, using real applications is a tedious task, since it
requires instrumenting the application to verify the phase change and control it.

The requirements for the workload are:

• Expose phases of different intensities.

• The duration of each phase should vary.

• Being able to control both the phase intensity and the duration.

For example, the workload simulator should be able to produce a workload that
runs with high intensity for 5 ms, then run for 10 ms with half the intensity, then sleep
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for 15 ms, run again 15 ms with intensity and so on. Being able to control the duration
of each phase is the important characteristic, because in such way the sensitivity and
the response to phase changes of both TPS and CPS can be evaluated. In addition, the
intensity of each phase is also important since this is the feature of applications that
can be exploited by single-ISA heterogeneous architectures.

Kernel Description
kernel1 Memory accessing kernel, exhibits mediocre IPC
kernel2 Computational intensive kernel, exhibits high IPC
kernel3 Discrete Fourier Transformation
kernel4 Matrix Multiplication

Table 6.1: Description of the kernels

To overcome this a workload simulator, called PhaseBench, is developed. PhaseBench
is able to produce workloads of different successive phases, that expose different in-
tensities and durations. To achieve varying intensities, it keeps, internally, a set of
computation kernels. For PhaseBench the intensity of the workload is its IPC rate.
In this thesis four kernels are used, described in table 6.1. Each kernel simulates a
different intensity phase (see chapter 8). The first kernel, kernel1, is a loop that per-
forms memory accesses to create cache misses and simulate a medium intensity phase.
The second kernel, kernel2, is a computational intensive loop that exhibits high IPC
and simulates a high intensity phase. The third kernel, kernel3, is a kernel that imple-
ments the Discrete Fourier Transformation-DFT algorithm. The last kernel, kernel4,
performs matrix multiplication. PhaseBench can be configured to generate a workload
with some or all of these kernels along with idling periods.

PhaseBench can also be configured to control the duration of each kernel, and
therefore the duration of each phase. PhaseBench can run the kernels in two modes. In
the first mode, the duration of each phase is given as a parameter to PhaseBench, and
PhaseBench runs each kernel, repeatedly if needed, for the defined duration. This mode
is suitable, when predefined phase duration are required to observe the behaviour of
the scheduler, however in this case it is difficult to measure the impact on performance
since the workload runs for a fixed amount of time. In the second mode, PhaseBench
receives as a parameter the number of iterations of each kernel. This is done to achieve
again phase variability from the iterations, but, in this case it is easy to measure per-
formance. The rest of this section describes how PhaseBench is implemented.
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1 vo id PhaseBench ( ) {
2 w h i l e ( ; ; ) {
3 r e c i e v e ( s i g n a l )
4 s w i t c h ( s i g n a l ) :
5 c a s e K1 :
6 run k e r n e l 1 u n t i l n e x t s i g n a l
7 c a s e K2 :
8 run k e r n e l 2 u n t i l n e x t s i g n a l
9 c a s e K3 :

10 run k e r n e l 3 u n t i l n e x t s i g n a l
11 c a s e K4 :
12 run k e r n e l 4 u n t i l n e x t s i g n a l
13 c a s e IDLE :
14 s l e e p u n t i l n e x t s i g n a l
15 }
16 }

Listing 6.6: PhaseBench Pseudo-Code

1 vo id p h a s e b e n c h c o n t r o l ( i n t r , i n t s , i n t t o t a l t i m e ) {
2 i t e r a t i o n s = t o t a l t i m e / ( r +s )
3 w h i l e ( i t e r a t i o n s > 0) {
4 s i g n a l ( K2 )
5 s l e e p ( r )
6 s i g n a l ( IDLE )
7 s l e e p ( s )
8 i t e r a t i o n s − −
9 }

10 }

Listing 6.7: Harness Pseudo-Code

PhaseBench can create workloads that exhibit idling and computational phases
with varying duration that can be controlled. Controlling the duration of the idle phase
of the workload is trivial, since the program can just sleep for this period. Control-
ling the duration of the activity phases, though, regardless of the preferred intensity,
is more complex. There is no means in C language to instruct a process to run for
a certain period within the same process. For this reason, another process (harness
program) is required to do the time keeping and control the duration of the activity
phases. The harness program is responsible for controlling the activity and sleeping
phases. The two programs, the PhaseBench and the harness, communicate with sig-
nals. The harness sends periodically stop and resume signals to the PhaseBench.
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PhaseBench when receives a resume signal it starts executing a kernel until it receives
the stop signals. Upon the arrival of the stop signal PhaseBench goes to sleep until the
next resume signal.

Listing 6.6 shows the pseudo-code for PhaseBench and listing 6.7 shows the pseudo
code part of the harness program. Listing 6.7 describes the simple case of running a
high intensity phase for r milliseconds and an idle (sleeping) phase for s milliseconds.
PhaseBench will run in total for total time. Initially, in line 2, the harness program
calculates the number of iterations of the loop run-sleep based on the run time r, the
sleep time t and the total time total time. Then, in lines 4-7, iteratively, it sends the
resume signal, sleeps for r milliseconds, then sends the stop signal and sleeps for s
milliseconds. When PhaseBench receives a signal (listing 6.6), it will start executing
either the appropriate kernel or the sleeping phase until it receives the next signal. In
the case shown in these listings the produced workload will have two phases. One high
intensity phase which lasts for r milliseconds and an idle/sleeping phase that lasts for
s milliseconds. The key point of PhaseBench is that it can be parameterised to have
phases of varying intensity. In addition, its modular design enables the addition of
computation kernels of different intensities to simulate more phases.

6.3.2 Library

1 i n t c p s e n a b l e ( i n t p i d ) ;
2 i n t c p s d i s a b l e ( i n t p i d ) ;
3 i n t i s c p s e n a b l e d ( i n t p i d ) ;
4 i n t c p s a l l o c a t e i n f o ( i n t p i d ) ;
5 i n t c p s s e t t r i g g e r ( i n t p id , i n t idx , i n t v a l u e ) ;

Listing 6.8: CPS library functions

The library provides wrapper calls to the module to enable CPS for a process. It
achieves this by opening the procfs files and writing or reading to them. Whenever
there is a read or write request to the procfs files associated with CPS, the module is
responsible for serving the request. The library provides the functions listed in Listing
6.8. The first function sets cps flag to 1 for the process with process descriptor pid,
the second sets the cps flag to 0, and the third returns whether the flag is set or not,
for the process with process descriptor pid. However, if these functions are called
with the pid parameter as -1, the equivalent action affects the process that makes the
call. So, if process A calls cps enable(-1), the cps flag of the process descriptor
of process A will be set to 1. Recall from section 6.2.1, that setting the cps flag is not
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enough to for the CPS to be enabled; cps info data structure should also be allocated
for the process. The function in line 4 of Listing 6.8 provides this functionality. Finally,
the last function cps set trigger sets the CPS trigger to be the event idx with value
value.

6.3.3 Harness

Although PhaseBench is used for the majority of the experiments conducted in this
thesis, the harnesss program can execute any binary, as long as it is provided with the
location of the binary and its arguments. The harness program is mainly responsible
for enabling CPS for the application (binary) of interest and executing it. It executes
it by forking a child process and then uses the execv() system call to make the child
process execute the application of interest. As section 6.2.1 describes, to enable CPS
for a process two steps are required; the cps flag should be set to 1 and the cps info

should be allocated. The harness program makes the call cps enable(-1) (see section
6.3.2) to set the cps flag for itself. However, CPS is not enabled for the harness
because the cps info structure is not allocated. This is the intended behaviour, since
there is no need for the harness to be susceptible to CPS. When forking itself however,
the newly created process, the child, inherits the process descriptor from the parent
process, the harness in this case, as it is. Therefore, since the cps flag is set for the
parent, it is also set for the child. If this flag is set on fork, the cps info is allocated
automatically, without requiring any extra call.

This design was chosen on purpose, to have CPS enabled for the application of
interest (the child) from the begging of its execution. The other options are either
to instrument all the applications by adding library calls to set up CPS, or to use the
cps allocate info call from the harness program to allocate the cps info structure
for the child. The first option is not desirable as this would limit the number of appli-
cations that could be used to evaluate CPS, whereas with this design any binary can
be used. The second option, although there is no need to instrument the application of
interest, it is also not desirable because it cannot guarantee when CPS will be enabled
for the child process. Once the child is created, both the parent and the child are subject
to scheduling separately and there is no means to know which one will be scheduled
first. Consider the scenario, where the parent forks the child and before issuing the call
to allocate cps info, its time slice expires and it is scheduled out for another process
to run. In the meantime, the child process can continue its execution on another or
the same core as the parent. The child runs without CPS enabled; it will be enabled
the next time the harness is scheduled in on a core. Now consider a second scenario,
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where the harness manages to set up the CPS for the child immediately, so the child
runs with CPS enabled from the beginning. There is no easy way of controlling which
of the two scenarios will happen at every run, and this would compromise the integrity
of the evaluation procedure. For evaluating CPS it is crucial to know when exactly
CPS is enabled for the application of interest, or at least guarantee that it is enabled
from the beginning of its execution. This design guarantees that CPS is enabled for the
child process from the beginning of each execution, because all the CPS set-up is done
during the fork() system call.

So far it has been described how the harness program executes and enables CPS
for the application of interest. The harness is also responsible for controlling the
PhaseBench workload simulator (see section 6.3.1). Finally, it is responsible for com-
municating with the Profiling Framework (see section 7.3) to assist with the synchro-
nization of power measurements. In particular, it uses the socket interface to signal
the beginning and the end of the execution of the application of interest. Recall that
both the harness and the application of interest run on the target machine, whereas the
profiling framework which is responsible for power measurements runs on the host
machine. Just before executing the application of interest, the harness sends a message
to the profiling framework that the application starts, to start capturing the power con-
sumption. Once the application has finished its execution, the harness sends another
message to instruct the profiling framework to stop measuring power. In this way, fine
grained synchronisation is achieved between the execution of the application and the
measurement of power consumption. The round trip latency to send a message to the
profiling framework is measured to be typically in the range of 1-2ms. Therefore, the
synchronisation occurs at millisecond granularity. Without this functionality provided
by the harness, there would be an overhead of at least 500-600 ms.

6.4 Implementation Effort

This section describes the engineering effort required for implementing CPS as a refer-
ence for those who might be interested in investigating it in the future. As described in
the previous sections of this chapter, the CPS implementation can be broken down to
the kernel and the userspace part. The implementation of the kernel part demanded
greater engineering effort. The kernel part is around 2000 lines of code and the
userspace part 1000 lines of code.

The kernel implementation demanded greater effort because both the hardware
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PMU and the PMU driver where poorly documented, if documented at all. For the
Arm PMU driver there is only a two page documentation in the architecture reference
manual [73] where the target audience is hardware engineers who implement the PMU
units. The PMU driver was not documented at all. Therefore, it required a consider-
able amount of time (a few months) just to understand how the driver works in order
to modify it (the partition of the driver into the low-level driver, the core driver and the
high-level driver was not provided by documentation, this is the author’s perception of
how the driver is implemented).

Secondly, the implementation itself was technically demanding. The implementa-
tion required to interfere at very low level in the software stack; the low-level PMU
driver needed to be modified and in particular, the part which sets and reads the per-
formance counters. Although the modifications were minimal there was still the need
to confirm that the modifications did not introduce any functional regressions and that
the values read from the counters are indeed correct. That was easy to overcome;
the PARSEC benchmarks were used to confirm that the modified version of the PMU
driver works the same way as the non modified version. Initially, the cycles, instruc-
tions, and cache misses (both L1 and L2) events were measured using the unmodified
PMU driver with the help of perf tool and then the same events were measured using
CPS to confirm that in both cases the numbers are the same and therefore to ensure
that the modified version of the driver works correctly. In addition, for CPS to work
there was the need to interfere to very sensitive parts of the kernel such as the fork
of the process and during context switching. This often led to bugs that would crash
the kernel or bugs that would render the development platform unable to boot. That
means that a considerable amount of time was spent for kernel debugging. Kernel de-
bugging is more time consuming; a crash in userspace in most cases requires to restart
a process, a kernel crash requires a reboot. In addition, in userspace there are available
debugging tools, in kernel space the debugging tools are limited, not easy to use and in
some cases not possible to use. The latter was the case for this work. The development
target was a Dragonboard development kit where the available kernel debugging tools
do not work. All of the reasons above resulted in the kernel implementation to take
one full year.

The userspace part of the implementation is less demanding. The library is a wrap-
per around calls to the kernel to enable and disable CPS. The development of the har-
ness is a bit more demanding especially the part that needs to communicate with the
profiling framework to synchronise the power measurements (see section 7.3). Lastly,
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the development of PhaseBench required moderate engineering effort. The code itself
is quite straightforward and easy to implement, however it required more than a year’s
work on benchmarking the default Linux scheduler with applications ranging from
popular benchmarks such as PARSEC and SPEC to complicated Android applications
to realise the need of a tool such as PhaseBench.

6.5 Summary

This chapter described the implementation of the CPS framework. Section 6.1 de-
scribed the hardware level of the framework which is the PMU hardware. Section
6.2 described the three kernel space components of CPS framework; the CPS API,
the CPS module and the modified PMU driver. The CPS interface which is used for
CPS to interfere with the kernel. The CPS module which is responsible for enabling
and disabling CPS for a process and implements the CPS API. The third component
is the driver which manages the PMU and links it the rest of the framework. Section
6.3, described the user-space components; the library, the harness program and the
PhaseBench workload simulator. Finally, section 6.4 describes the engineering effort
required to implement CPS.



Chapter 7

Experimental Set-up & Profiling
Framework

This chapter presents the experimental set-up and a framework, called Profiling Frame-

work developed to facilitate the benchmarks execution and to capture their power and
performance profiles. The main reason for developing the Profiling Framework lies
in the difficulties faced in creating a robust methodology to acquire power and per-
formance measurements. This chapter describes the framework along with the exper-
imental set-up because power measurement is highly dependable on the machine the
experiments run on, and thus the Profiling Framework is considered to be part of the
experimental set-up.

7.1 Experimental Setup

7.1.1 Hardware Overview

The experimental set-up consists of two machines, the host and the target, and an Arm
Energy Probe [78]. The target machine is used for the experimental implementations
and evaluation. The Arm Energy Probe is used to measure the power consumed on
the target while running the experiments. The host is used to orchestrate the runs of
each experiment and to log the power measurements. The experimental set-up and how
each component interacts with each other is described in more detail in the following
sections.

The host machine is a HP Compaq Elite 8300 Small Form Factor PC with a Intel R©

CoreTM i5-3470 processor with maximum clock speed of 3.20GHz, 8GB of RAM and

100



7.1. EXPERIMENTAL SETUP 101

Figure 7.1: Dragonboard 810 Development Kit

runs Ubuntu 14.04.1 LTS Trusty Tahr. The target machine is a Dragonboard Devel-
opment Kit shown in Figure 7.11, which is based on the Qualcomm Snapdragon 810
processor [16]. The Snapdragon 810 processor features the Arm big.LITTLE technol-
ogy with four Arm Cortex-A53 in-order cores composing the LITTLE cluster and four
Arm Cortex-A57 out-of-order cores composing the big cluster. Each core has private
L1 instruction and data caches and a shared L2 cache per cluster. The memory hierar-
chy details for the Snapdragon 810 processor are not publicly available, so the lmbench

[79] benchmark was used to determine the size of the caches, apart from the L1 instruc-
tion and data caches of the A57 processor that are fixed sized and are reported in the
Arm Cortex-A57 MPCore Processor Technical Reference Manual [23]. The LITTLE
cluster, has a 512 KB L2 cache shared among the four A53 cores and 32 KB L1 data
cache per core. lmbench is not able to detect the size of L1 instruction cache and since
this information is not publicly available, it is not reported. The A57 cores come with
fixed size 48 KB L1 instruction cache and 32 KB data cache [23]. The big cluster has
a 1 MB L2 cache shared among the four A57 cores. The Snapdragon 810 processor
has a 4GB Dual Channel LPDDR4 RAM running at 1.6GHz shared between the two
clusters (Figure 7.2).

1Image source: http://linuxgizmos.com/android-5-0-dev-kits-simplify-octacore-snapdragon-designs
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Figure 7.2: Arm big.LITTLE

Both LITTLE and big clusters are DVFS capable, but within a cluster the frequency
of the cores cannot be set individually. Therefore all four cores in the LITTLE cluster
have the same frequency at any given point in time. The same holds for the big cluster
as well. The LITTLE cores run in a frequency range from 384MHz to 1.555GHz and
the big cores run between 384MHz to 1.958GHz. The available operating points for
the big and LITTLE clusters are shown in Appendix A. For the experiments conducted
in this work the frequency on both big and LITTLE cores is set to 1.33GHz.

7.1.2 Software Overview

Chroot On Android

The target machine comes with pre-installed Android 5.0.2 Lollipop with a customized
version of 3.10.49 Linux kernel. To conduct this work, however, a traditional Lin-
ux/GNU distribution (Ubuntu, Debian etc.) is needed. Debian 8 Jessie is used along-
side Android using chroot [80]. A chroot in UNIX based systems is an operation that
changes the perceived root file system of a process. The process running in a chrooted
environment and its children cannot access any resources outside the designated direc-
tory; this is why such an environment is often called a chroot jail. Chroot is usually
used to isolate application or packages that are under development or testing. In this
work, chroot is used as a way to run a Debian distribution on the Android operating
system. Chroot is set-up following the instructions described in [80] and a Debian
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Jessie installation is created on a microSD card, the microSD card is mounted under
the Android file system and Debian chroot is ready to be used.

The reason why running Debian through chroot is preferred over making a clean
installation, is related to the characteristics of the development board and the Android
ecosystem. These characteristics are the internal eMMC storage where the system
boots from, and the fact that the specific version of Linux kernel that runs on Drag-
onboard is patched to run Android and implement Qualcomm specific features. In
case a different kernel than the one that comes with Dragonboard was used, a kernel
that comes with Debian for example, then the HMP scheduling functionality would be
missing, which is the main focus of this work. As a consequence, Android is running
while the experiments run. In order to minimize any interference caused by Android,
all the Android related background services and applications that are not required to
run the experiments are carefully killed.

7.1.3 Configuration Scripts

As discussed in section 1.2 power management techniques include DVFS, idle states,
core hot-plugging and the selection of core type in case of heterogeneous architectures.
Although the scope of this work is limited to scheduling techniques on single-ISA het-
erogeneous architectures and their impact on power efficiency, all the other aspects
that affect power consumption need to be controlled in order to obtain robust results.
For this reason, a set of scripts has been created, from now on referred to as Configu-

ration Scritps, that set up the environment for each experiment. These scripts run on
the target machine and control the scaling governor and the frequency of each cluster,
the number of online cores the enablement of idle states, the brightness of the touch
screen etc.

7.2 Power Measuring

This section describes the methodology for power measurement. Measuring power
consumption can be a tedious task for a variety of reasons depending on the platform
and the tools available. Some platforms [81, 82, 83] provide built in sensors for dif-
ferent parts of the system, such as the CPU, the memory or the GPU. On such devices
the sensors are exposed to the user-level applications, through special files and usually
what is required to get the power measurements is to read these special files. Some
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other platforms [84, 85] expose the power rails of each component, or the whole sys-
tem through pins, where a power measurement tool can be attached (e.g. Arm Energy
Probe, oscilloscopes etc.) and measure power.

Having on chip power sensors for different parts of the chip and reading them
through the file system without requiring extra hardware is the least cumbersome ap-
proach. However, there are two drawbacks related with it. Firstly, the process of
embedding power sensors into the chips is not cost effective for the manufacturers and
as a result few products come with power sensors. Secondly, even if they come with
power sensors their update rate is quite slow (200ms - 30 seconds), which, for the
needs of this work, is a limitation that cannot be overcome.

The target platform (Dragonboard 810), used in this work, comes with sensors
attached to the power supply rails of the board and can be read by using the Snapdragon
Profiler [86]. However these sensors are updated once every thirty seconds. In this
work, the duration of the experiments vary between tens of milliseconds to a couple of
seconds and therefore these sensors are of no use.

7.2.1 Power Measurement Methodology

The proposed methodology for power measurement is generic and does not have any
target specific requirements. By default, the whole system power consumption can be
measured, however if there are power rails exposed for different parts of the system
(CPU, GPU, memory etc.) the same methodology can be applied without any mod-
ification. Hardware-wise, it requires a shunt resistor, in case it is not already on the
board2, and an instrument for power readings acquisition. A shunt resistor is a low
resistance, precision resistor which is used to measure electrical currents by measuring
the voltage drop across the resistor. The instrument can be any hardware equipment
capable of measuring either the voltage drop across the shunt [87] or directly the power
consumed [78]. Examples of such hardware equipment are the Arm Energy Probe, the
Monsoon power monitor [88], or any other digital multimeter. The power reading in-
strument should also provide a communication interface to a computer for logging the
readings.

Figure 7.3 shows the electrical representation of the shunt and the target platform.
Rshunt denotes the resistance of the shunt resistor, Ztarget is the impedance of the target,
I the current, Vdd the main supply voltage and Vdr the voltage drop across the shunt.

2In some cases, as in Dragonboard 410 [85], when the power rails are exposed through pins, the
shunt resistor is integrated onto the board as well.
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Figure 7.3: Electrical representation of the Dragonboard (Ztarget) and the shunt resistor
(Rshunt)

The instant power consumed by the circuit in Figure 7.3 is given by the formula

P =Vdd ∗ I. (7.1)

The value of Vdd is known; it is the voltage at which the target operates. To derive the
power the value of I needs to be calculated and this is why the shunt resistor is used.
The target and the shunt are connected in series and therefore the same current I passes
through them. By measuring the voltage drop Vdr across the shunt, the current I can
be calculated by Ohm’s law

I =
Vdr

Rshunt
. (7.2)

The shunt should have a small resistance so as to have a negligible effect on the value of
current I. From Equations 7.1 and 7.2, we can calculate the instant power consumption
as

P =Vdd ∗
Vdr

Rshunt
. (7.3)

The energy probe is attached at the end points of the shunt resistor, reads the voltage
drop and internally calculates the power consumed. To capture the measured values
from the energy probe the caiman [89] software is used. Caiman is an open source
tool developed by Arm to control and read the Energy Probe. The sampling rate of the
energy probe is 10KHz.

Since the target does not provide any end points for measuring the power consump-
tion of the different parts of the processor (e.g. big cluster and LITTLE cluster) the
whole system power is measured. The target platform comes with many components,
such as a touch screen, which consume a significant amount of power. To isolate the
power consumed by the applications of interest, we define the base power as the power
consumed by the system when no workload is running on the target. Then, the base
power is subtracted form the power measured during the experiments.
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Frequency 768MHz 864MHz 960MHz 1.24GHz 1.33GHz Max
Power(Watt) 1.87 1.87 1.91 1.89 1.9 1.91

Table 7.1: Base Power for different Operation Frequencies

Configuration Configuration 1 Configuration 2 Overhead
LITTLE 0.81W 0.23W 27%

big 2.83W 1.09W 58%

Table 7.2: Power overhead when measuring power on the target machine

To define the value of base power, the power consumed while system is idling is
measured for different frequencies and the results are reported in Table 7.1. The first
five columns show the average instant power consumed when both big and LITTLE
clusters run at the corresponding frequency. The last column shows the power when
the big and LITTLE clusters have their maximum frequency (1.55GHz for the LITTLE
1.98GHz for the big). All cores are online. The base power is in the range of 1.87Watt
to 1.91Watt. The power consumed seems to be constant because the system is idling;
there is no workload running on the system apart from the OS and its services, thus
the cores go into idle states. The small difference between the first two operating
frequencies and the rest can be explained if the lightweight background OS services
are taken into account. They trigger the cores to wake up for a while and then they sleep
again. This short activity accounts for the higher base power at higher frequencies. For
the experiments the operating frequency is set at 1.33GHz, unless stated otherwise, so
the value of base power is 1.9 Watts.

As mentioned previously, the experiments run on the target while the power mea-
surement logging happens on the host. This choice is made to prevent the software
logging the power (caiman) from interfering with the execution of the application of
interest. If the power logging software was running on the target, the power consumed
would be greater and the results would not be reliable.

Table 7.2 shows the impact of the power logging on power consumption. A micro-
benchmark, which executes a for-loop lasting a few milliseconds, is run to trigger
computation. The experiment is repeated 20 times and the average is reported. Both
clusters run at 1.33GHz and all cores are online. The base power is subtracted from
the measured power to derive the values shown in Table 7.2. The first column reports
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the consumed average power when both the power logging software and the micro-
benchmark run on the target (Configuration 1). The second column reports the power
when the micro-benchmark runs on the target and the power logging software runs on
the host machine (Configuration 2). The third reports the power overhead of the first
configuration compared to the second. The power logging causes a 27% increase in
power consumption on the LITTLE cluster and 58% increase on the big cluster.

It is clear that the power overhead of the logging process is significant. This is
why, the second configuration is followed for the experiments. However, isolating
the execution of the application of interest on the target and the power logging on the
host creates synchronization problems; more specifically the start and stop times of
the application are not known to the power profiling software (since it is running on
a different machine). Next section describes the Profiling Framework, which among
others deals with the synchronisation between the application execution and the power
logging software.

7.3 Profiling Framework

This section describes the framework developed for power and performance profiling.
The main features of this framework are: a) it integrates and synchronises power and
performance measurements b) its modular design makes it easily extensible to support
various hardware equipment for power measurement c) it provides a programming in-
terface that enables interaction and control of other software profilers d) it provides
a harness to profile both Linux and Android applications e) its design enables profil-
ing of applications that can run either on the same machine as the framework or to a
remote target machine. As mentioned previously, the experiments run on the target
machine and the profiling framework on the host. However, the profiling framework
can run on the same machine as the experiments (target) without affecting the design
and the functionality of the profiling framework. The reason why the framework runs
on a different machine is to avoid the power overhead and the interference with the
experiments execution.
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7.3.1 Design Overview

This section presents the design overview of the Profiling Framework. The framework
consists of four modules : the Runner module, the Profiler 3 , the Configuration Con-

troller and the Benchmark module. The Runner module, which is the starting point of
the profiling procedure, is responsible for controlling the execution of each application,
by making calls to the other modules. The Benchmark module stores the applications
to be profiled along with the necessary information related to them such as the input
arguments of each application, where the profiling results should be stored etc.

The Profiler module along with the Configuration Controller is the heart of the
framework, since these two modules provide the flexibility featured by it. The Profiler
assembles the various profilers (both power and performance) used during our exper-
iments. The key feature of this module is that it provides a common programming
interface to start and stop the profiling procedure which is independent of the profil-
ing tool. The profiler communicates with the Runner module through events which
trigger the beginning and the termination of the profiling procedure, thus synchronis-
ing the application execution and the profiling framework. This design facilitates the
integration of different profiling tools without extra programming effort.

The Configuration Controller serves two purposes. Firstly, this module serves as
a communication bridge between the host and the evaluation platform. Secondly, it
provides an interface for setting up the configuration of the evaluation platform. The
Runner module utilises this interface to instruct the environment set up for each ex-
periment and initiates the benchmark execution. Since the configuration of the eval-
uation platform is platform specific, for example configuring the operating frequency,
the number of online cores etc., providing such an interface decouples our framework
from the underlying hardware. Essentially, the configuration controller provides wrap-
per calls to the configuration scripts discussed in section 7.1.3. This feature makes the
framework platform independent, since the only part that needs porting when migrat-
ing to a different platform is the configuration scripts.

Figure 7.4 shows the interactions among the four modules. The Benchmark mod-
ule provides the Runner module with the applications to profile along with their inputs
and any other required information (1). The Runner requests from the configuration
controller to set up the configuration (frequency, governor, number of online cores
etc.) (2), and the configuration controller propagates the requested configuration to the

3In this document we refer to the module of the Profiling Framework with the term Profiler and with
terms profilers, profiling tool etc. to the actual program that monitors/profiles the application of interest.
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Figure 7.4: Profiling Framework Architecture

evaluation platform (3). The Runner also instructs the Profiler module to set up the
profilers (power profilers, performance profilers etc.) and provides it with the synchro-
nisation events (4). Once everything is set up, the Runner instructs the configuration
controller to start the execution of the application (5a). The profilers start executing
as well, because of the synchronization events provided by the Runner in step 4 (5b).
Once the application execution has finished the control returns to the Runner which
uses the synchronization events to inform the Profiler module to stop the profilers and
the whole procedure ends.

7.3.2 Implementation

This section describes the implementation details of the profiling framework and how
it is used along with the experimental setup (section 7.1). The profiling framework is
developed in Python programming language. The Benchmark module is implemented
as a class that stores the applications or the benchmarks to be run for each experiment.

The configuration controller is a library of functions. As mentioned earlier all the
communication between the host and the evaluation platform happens through this
library. This design choice has been made for the framework to be platform indepen-
dent. The configuration controller provides a wrapper function which dispatches the
program to be executed to the evaluation platform whether it is the same machine as
the one the framework runs on or different one. From now on, this function is referred
to as the Dispatcher function. Every time the framework wants to communicate with
the evaluation platform either to run an application or to change the configuration the
dispatcher function is used. As mentioned in section 7.1, for the experiments the target
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machine is the Dragonboard Development Kit. The configuration controller also pro-
vides wrapper functions for the set of configuration scripts (see section 7.1.3). In this
way, to change the evaluation platform the only part that needs porting is the set of the
configuration scripts which are platform dependent.

The Profiler module is implemented as an abstract class. Each profiling tool that
is used for the experiments is integrated into the profiling framework by implementing
this abstract class. Although this design can integrate various profilers, the main focus
is on power profiling. Each profiler supported by this module runs on a separate thread.
The class provides two basic functions for the profiler tools; the init and run. The
init function which does the necessary set up for each tool to run and the run function.
The run function starts the profiler and assists with the synchronisation between the
application under profiling and the profiler tool.

The Runner module is a Python script that makes calls to the Profiler and Con-
figuration Controller. This module provides the synchronization means between the
application and the profiler in the form of events. It creates a start and stop event
which passes to the Profiler module. Initially the events are unset, the start event
being set means that the application started its execution and the stop event being set
means that the application has finished. The Runner integrates a small server that waits
for the start and stop signals from the application of interest. To avoid the instrumenta-
tion of each application used for the experiments, a wrapper program was developed,
called application harness which is described in detail in section 6.3.3. One of the
responsibilities of the application harness is to send notifications to the Runner con-
cerning the beginning and the end of execution of the application of interest. Upon
arrival of these notifications, the Runner is responsible for setting the events. The Pro-
filer module polls on these events; once the start event is set it starts the profiling and
once the stop event is set it stops the profiling.

7.4 Summary

This chapter described the experimental set-up. It reasoned about the choices made
concerning both the hardware and software tools. The experimental set-up includes
two machines the target and the host. The target is the machine on which the ex-
periments run and the host is the machine that hosts the software orchestrating the
benchmarking, the Profiling Framework. The main reason for this, is the power over-
head caused by the power logging software. The Profiling Framework is developed
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to facilitate the profiling and to synchronize the application execution with the power
logging tools.



Chapter 8

Evaluation

This chapter evaluates the proposed Context Preemptive Scheduling-CPS mechanism
and compares it against Time Preemptive Scheduling-TPS. CPS and TPS mechanisms
are combined with policies using either HPCs or demand creating different scheduler
configurations. Section 8.1 introduces this chapter, describes the scheduling configu-
rations and the PhaseBech kernels used for the evaluation. Section 8.2 investigates the
potential overheads of CPS and shows that CPS imposes minimal overhead on both
power and performance. Section 8.3 evaluates the scheduling configurations when
encountering high intensity and idle phases and section 8.4 investigates their ability
to track down different intensity phases leveraging more than one events to trigger
scheduling. Section 8.5 investigates the impact of the scheduling configurations on
power efficiency and performance using PhaseBench and finally section 8.6 evaluates
the different scheduler configurations against MiBench [90] benchmark.

8.1 Introduction

This chapter investigates the overhead and evaluates the proposed Context Preemp-
tive Scheduling-CPS mechanism in its ability to recognise phase changes as they are
encountered and its impact on power and performance, depending on the policy ap-
plied. For the evaluation the PhaseBench workload simulator is used as well as the
benchmark MiBench. PhaseBench is presented in section 6.3.1. MiBench [90] is a set
of benchmarks targeting mobile and embedded systems. MiBench includes programs
from various categories such as network, automotive industrial categories, consumer,
office, security and telecommunications. For the experiments the benchmarks used
are basicmath, bitcount, dijkstra, fft, gsm, jpeg, patricia, quicksort and susan. Only
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a subset of the MiBench benchmark is used because only those could be built on the
platform used for the experiments. The benchmarks that could not be built had depen-
dencies that could not be resolved automatically by Debian’s package manager (apt
[91]) and manually resolving them ended up breaking the system, therefore it was de-
cided not to include them. For the overhead investigation benchmarks from PARSEC
[75] and MiBench [90] are used. Eight applications from PARSEC suite (blackscholes,

canneal, dedup, facesim, ferret, fluidanimate, streamcluster, swaptions) are used. The
reason why only eight PARSEC benchmarks are used is that at the time when the exper-
iments were conducted only these benchmarks would compile under the experimental
setup.

8.1.1 Scheduler Configurations

Context Preemptive Scheduling (CPS) mechanism is proposed as an alternative to
Time Preemptive Scheduling (TPS) mechanism and therefore it should be compared
with it. As section 4.1 discussed, the effectiveness of the scheduler is dependent
on both the mechanism (how and when the scheduler is called to recognise a phase
change), and the policy applied on top of the mechanism to classify how intense a
phase is. TPS, as found in the Linux kernel versions that support big.LITTLE, uses
either the WALT or the PELT policy. In the scope of this work, CPS is intended to
be used with Hardware Performance Counters-HPCs. However, as this chapter shows,
a policy based on HPCs can achieve better results than a policy based on WALT or
PELT. It would be unfair to compare CPS using HPCs against TPS using WALT or
PELT, because it would not be possible to distinguish whether the differences of the
two approaches are due to the mechanism proposed or the policy applied. For this
reason, in the experiments both CPS and TPS are investigated. A third scheduling
mechanism is also studied; tps 1ms, which is the same as TPS but in this case the
scheduler tick ticks every 1 millisecond instead of 10 milliseconds. It is chosen to in-
clude this scheduler configuration to investigate how TPS performs when configured
with shorter scheduler tick and whether the performance achieved by CPS can also be
achieved by simply making the scheduler tick faster. For this reason, the three schedul-
ing mechanisms, cps and tps and tps 1ms, are combined with two different policies to
create six scheduling configurations shown in table 8.1.

The first policy is the WALT policy (see section 4.2.2), as found in the 3.10.49
version of the Linux kernel, shipped with Dragonboard 810 development kit, and from
this point on will be referred to as the demand policy. The second policy employs
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Policy

Mechanism HPCs based Demand based

CPS cps hpc cps demand
TPS tps hpc tps demand
TPS 1ms tps hpc 1ms tps demand 1ms

Table 8.1: Scheduler Configurations

the HPCs and is based on the IPC. As mentioned in section 4.3, there are plenty of
research works [53, 54, 4, 55, 45, 56, 57, 59, 61, 38, 63, 66, 46] that they implement
scheduling decisions relying on the IPC, this is the approach taken for the HPC policy
in this thesis. These related works focus on accurately estimating the performance of
one core type based on the HPCs readings of the other core type and based on the
prediction outcome the decision for migration is taken. Any of these techniques can be
used on top of CPS to estimate the IPC. However, this is beyond the scope of this thesis
and, for this reason, for every workload used to evaluate the scheduling configurations
the IPC on both LITTLE and big cores is known beforehand. Based on known IPC
thresholds, migration to the LITTLE or big core is decided.

1 vo id s c h e d u l e r t i c k ( ) :
2 . . .
3 u p d a t e t a s k r a v g ( ) ;
4 c h e c k f o r m i g r a t i o n ( ) ;
5 . . .

Listing 8.1: tps demand and tps demand 1ms

The first scheduler configuration is tps demand, where the TPS mechaninsm is
combined with the demand policy. This configuration is the default scheduler of the
3.10.49 version of the Linux kernel, which uses the WALT policy. Listing 8.1 shows
the details of migration process for tps demand. At every scheduler tick scheduler tick()

function is invoked. Among others, in this function the statistics of running task
are gathered according to the demand policy. The function responsible for this is
the update task ravg(). Next the check for migration() function is invoked to
check whether the currently running task is on the right core type according to the
demand policy and in case it is not, it migrates the task to the appropriate core type
derived by the demand policy. The second configuration is tps demand 1ms. This
configuration is the same with tps demand with the difference that for the 1ms config-
uration the scheduler tick is configured to tick every 1 millisecond instead of ticking
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every 10 milliseconds which is the default value. To change the scheduler tick gran-
ularity the kernel configuration was modified (CONFIG HZ 1000=Y). It shall be noted
that for these two configuration there is no source code modifications. The functions of
interest (update task ravg() and check for migration()) are used in their default
form.

1 vo id p m u i r q h a n d l e r ( ) :
2 . . .
3 u p d a t e t a s k r a v g ( ) ;
4 c h e c k f o r m i g r a t i o n ( ) ;
5 . . .

Listing 8.2: cps demand

The third scheduler configuration is cps demand, where CPS is combined with the
demand policy. To implement this configuration, the trigger for the scheduler to decide
on migration is provided by CPS mechanism but the policy used is the demand policy
(WALT as found in 3.10.49 kernel). The implementation details are shown in Listing
8.2. Whenever the HPCs overflow and create and interrupt the pmu irq handler()

is invoked. Instead of reading the HPCs and deciding whether to migrate or not, the
interrupt handler calls the functions update task ravg and check for migration()

of the default scheduler that implement the demand policy.

1 vo id s c h e d u l e r t i c k ( ) :
2 . . .
3 c h e c k f o r m i g r a t i o n ( ) ;
4 . . .
5

6 vo id c h e c k f o r m i g r a t i o n ( ) :
7 . . .
8 r e a d c o u n t e r s ( ) ;
9 c a l c u l a t e i p c ( ) ;

10 n e w c o r e t y p e = i m p l e m e n t h p c p o l i c y ( ) ;
11 i f ( c u r r e n t c o r e t y p e != n e w c o r e t y p e ) :
12 m i g r a t e t o c o r e t y p e ( n e w c o r e t y p e ) ;
13 . . .

Listing 8.3: tps hpc and tps hpc 1ms

The next configuration is the tps hpc, where the TPS mechanism is combined with
the HPC policy. To implement this configuration, the Linux scheduler is modified
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at the code path of deciding big.LITTLE migration (check for migration() func-
tion). The trigger for the scheduler to run is provided by TPS at scheduler tick gran-
ularity, but the decision on whether to migrate is taken based on the HPCs; the de-
fault functions (those implementing the demand policy) are bypassed and the HPC
policy is implemented instead. Listing 8.3 shows the pseudocode. At every sched-
uler tick instead of invoking the update task ravg() function a modified version of
check for migration() is called. The modified version of this function reads the
HPCs and calculates the IPC. Then the HPC policy is applied; depending on the IPC
thresholds defined and the core type the task is currently running, the appropriate core
type is derived and if it is different from the current one the migration happens. Again,
tps hpc 1ms configuration is the same as tps hpc but instead of the scheduler tick tick-
ing every 10 milliseconds it ticks every 1 millisecond.

1 vo id p m u i r q h a n d l e r ( ) :
2 . . .
3 r e a d c o u n t e r s ( ) ;
4 c a l c u l a t e i p c ( ) ;
5 n e w c o r e t y p e = i m p l e m e n t h p c p o l i c y ( ) ;
6 i f ( c u r r e n t c o r e t y p e != n e w c o r e t y p e ) :
7 m i g r a t e t o c o r e t y p e ( n e w c o r e t y p e ) ;
8 . . .

Listing 8.4: cps hpc

The last scheduler configuration is cps hpc, where the CPS mechanism is combined
with the HPC policy. This is the proposed way of using CPS and its implementation
is described in Listing 8.4. Every time an HPC counter overflows pmu irq handler

is invoked to read the HPC counters and calculate the IPC. Then the HPC policy is
applied and if another core type is more appropriate the workload is migrated there.
For this scheduler configuration the decision for migrating the workload is completely
decoupled from the scheduler tick and the demand policy.

It should be noted here that the CPS and TPS mechanisms discussed in this work
concern only the migration to another core type, load balancing and time sharing
among the processes happen normally at scheduler tick granularity.

8.1.2 Selecting triggers for CPS

CPS in order to work needs one or more HPCs to act as the trigger event ( e.g. cycles,
instructions, cache misses etc.) and a trigger value. Previous research works [53, 54,
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4, 55, 45, 56, 57, 59, 61, 38, 63] leverage HPCs to build prediction models in order
to derive the IPC (or CPI) of one core type based on the profile of the other core type
and ultimately drive scheduling decisions. They follow this approach because IPC is
a way to quantify performance when using HPCs. This work follows the approach of
relying on IPC to get an indication of how well a workload performs on a given core
type. However, this work does not focus on predicting the IPC; there are several of
works that suggest solutions to this. Instead, the IPC of each workload is known in
advanced. All workloads used in the evaluation of CPS, are profiled on both LITTLE
and big cores. Each workload is run on one core type with the other disabled and using
the CPS framework the instructions retired and cycle HPCs are monitored to calculate
the IPC. Once this process is completed (offline profiling), the IPC of each workload
is known for both core types. Based on this information a threshold value for the IPC
is chosen and fed into the hpc policy. This threshold value in practice defines the IPC
that a workload should have to be migrated either to the LITTLE or the big cores and
it is part of the policy applied.

In this work the trigger events are the instructions retired and the L1 cache misses
for the experiment in section 8.4. Although, in this work only instructions retired and
L1 cache misses have been used as trigger events, any hardware event can serve as a
trigger as long as the counter that monitors it creates an interrupt when it overflows.
If for example, a researcher would come up with a policy based on another event
(e.g. branch misses) that event could also be used given that it creates an interrupt on
overflow.

When choosing the trigger value it is important to take into account how often the
counter will overflow; a small trigger value will create interrupts more often compared
to a larger one and can track the phases of the workload closer providing higher preci-
sion. However, interrupts can impose significant overhead if they occur too often and
diminish the benefits of tracking down each phase of the workload precisely and mi-
grating the workload to the appropriate core type. As far as the value of the trigger is
concerned it is derived empirically. Several experiments (not presented in this thesis)
were performed with different trigger values. The trigger values used in the experi-
ments presented are the ones that did not impose significant overhead. For example
for the retired instructions counter trigger values as small as 10K were tested but high
overhead was observed and therefore rejected.
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Kernel Description IPC on LITTLE IPC on big
kernel1 Memory accessing kernel 0.5 0.6
kernel2 Computational intensive kernel 0.9 2.0
kernel3 Discrete Fourier Transformation 0.5 0.3
kernel4 Matrix Multiplication 0.6 0.9

Table 8.2: Kernel’s IPC on big and LITTLE clusters

8.1.3 PhaseBench kernels

To evaluate and compare the different scheduling configurations the PhaseBench work-
load simulator is used combined with the four computational kernels described in sec-
tion 6.3.1. Each kernel represents a different intensity phase; in each experiment the
intensity of the phase along with the optimization target define the most suitable core
type for each kernel. In the case of demand policy the intensity is the demand of the
kernel as defined by WALT (see section 4.2.2). In case of HPC policy the intensity of
each kernel is the IPC. For each experiment, PhaseBench is configured to run a subset
of the kernels either for a predefined time interval or until completion for a number of
repetitions. This aims to control the duration of each kernel and therefore the duration
of each phase, in order to study the relation between the phase duration and the reflexes
of each scheduling configuration.

Kernel Description Time on LITTLE Time on big
kernel1 Memory accessing kernel 10.4ms 9.9ms
kernel2 Computational intensive kernel 15.01ms 6.2ms
kernel3 Discrete Fourier Transformation 11.25ms 18.27ms
kernel4 Matrix Multiplication 26.26ms 10.07ms

Table 8.3: Kernel’s execution time on big and LITTLE clusters

Kernel Description Power on LITTLE Power on big
kernel1 Memory accessing kernel 223mW 901mW
kernel2 Computational intensive kernel 685mW 976mW
kernel3 Discrete Fourier Transformation 107mW 842mW
kernel4 Matrix Multiplication 327mW 853mW

Table 8.4: Kernel’s power consumption on big and LITTLE clusters
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Table 8.2 summarizes the four kernels and their IPC on the LITTLE and big cores.
Kernel3 exhibits higher IPC on the LITTLE cores compared to the big cores which is
not expected. Kernel3 implements the DFT algorithm which makes calls to the math

library and uses the cos and sin functions. Same behaviour is observed when using
the blackscholes benchmark from PARSEC [75] which uses the same functions. When
cos and sin functions are removed from kernel3, the kernel performs better on the
big cores. Therefore, it is these functions causing this behaviour. The exact reasons
why this happens needs further investigation (preliminary investigation has revealed
that this unexpected behaviour is due to higher penalty on the big core for branch mis-
predictions). Tables 8.3 and 8.4 show the execution time and the power consumption
of each kernel on the big and LITTLE clusters. For these measurements each kernel is
repeated once under the default scheduler (tps demand), frequency scaling is disabled,
migration between big and LITTLE is also disabled and both clusters run at 1.33GHz.

8.2 Overhead Investigation

This section investigates the overhead of the implemented framework. CPS is designed
and implemented trying to be as non-intrusive as possible to keep overheads at bay.
As described in section 5.4, CPS interferes at the creation of the process, at the exit,
whenever the process schedules in and schedules out of the core and most importantly
whenever an interrupt is generated form the PMU. Any other potential overhead is due
to CPS reading the HPCs. The interference of CPS at the creation and exit path of
a process is negligible since it occurs only once. The interference is, however, more
intense at the schedule in and schedule out paths and more importantly whenever the
HPCs trigger interrupts.

Experimental investigation has shown that interrupts happen much faster than sched-
ule in and schedule out operations and therefore they are the main source of overhead.
The rate at which the interrupts occur, and therefore the introduced overhead, varies
depending on the triggering value and the behaviour of the process. Assume, for ex-
ample, two process A and B. Both processes expose only one stable phase, have the
same execution time and the IPC of A is 1 and of B is 2. If the triggering event is
the instructions executed, process B will experience twice as many interrupts as A and
therefore it will experience greater overhead. Now assume that for process A the trig-
ger event is set to 1 million instructions in one case, and 10 million instructions on a
second case. In the first case greater overhead is expected because the interrupt occurs
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at higher rate.

The following experiment investigates the potential overhead introduced by CPS.
Applications from two benchmark suites, PARSEC [75] and MiBench [90], are chosen
for this experiment. The benchmarks from PARSEC suite were chosen over Phasebench
because their execution time and behaviour varies. PhaseBench consists of short-
running, computationally intensive kernels. PARSEC benchmarks exhibit more mem-
ory and I/O intensive characteristics compared to PhaseBench and this is why they are
considered more appropriate to measure the CPS overhead. The serial version of the
benchmarks (1 thread) is run with the small inputs. The benchmarks used from PAR-
SEC suite are blackscholes, canneal, dedup, facesim, ferret, fluidanimate, streamclus-

ter, swaptions. As far as MiBench is concerned, the benchmarks used are basicmath,

bitcnts, dijkstra, fft, gsm, jpeg, patricia, qsort and susan. For the above benchmarks
both small and large inputs are used. Mibench is chosen to investigate the overhead
imposed by CPS in addition to PARSEC because it is used later on for CPS evaluation.

Since this experiment aims to measure the performance and power overhead of
CPS, migration between the LITTLE and big clusters is disabled, by turning off one
cluster at a time. The benchmarks are run first on the LITTLE cluster, with big clus-
ter being offline and then on the big cluster with the LITTLE cluster offline. Had
migration been enabled, the overhead would not be possible to be measured, since mi-
grations between the clusters affects both the performance and power consumption of
the benchmarks. The operating frequency of both big and LITTLE cores is 1.33GHz.

All benchmarks are run under 7 configurations. The first configuration is the base-

line, without CPS enabled. The rest configurations have CPS enabled; the event trigger
is the CYCLES hardware event, which counts the core cycles. Table 8.5 shows the trig-
ger value the CYCLES hardware event is set for each CPS enabled configuration. The
first row shows the value at which the CYCLES event is set to overflow and the second
raw shows how often an interrupt will be triggered when the operating frequency is set
at 1.33GHz. For example, when CYCLES is set to overflow every 100K and the fre-
quency is 1.33GHz an interrupt will be created every 75 microseconds, when CYCLES
is set to 1M the interrupt will occur every 750 microseconds and so on. Note that for
the last configuration where the CYCLES is set to 15M the interrupt will be triggered
almost as often as the timer interrupt responsible for calling the scheduler, which in
this case is 10ms (see section 3.3). For this experiment, there are also two configu-
rations with regards to the number of HPCs read at each interrupt. In the first case 2
HPCs are read at each interrupt and in the second case all 6 HPCs are read. Reading
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all 6 HPCs is the worst case scenario because the more HPCs are read more overhead
is added. In practice, it is up to the policy applied how many HPCs are needed and in
this work there are no more than 3 HPCs used for the rest of the experiments.

CYCLES 100K 1M 2M 5M 10M 15M
Time 75 us 750 us 1.5 ms 3.75 ms 7.5ms 11.25 ms

Table 8.5: Trigger value of CYCLES hardware event

Figures 8.1 and 8.2 show the average performance overhead of CPS for the different
configurations for PARSEC and MiBench respectively. Each benchmark is run 20
times for each configuration to derive the average run time. The overhead is calculated
as the percentage over the baseline configuration.

As shown in figure 8.1a, for PARSEC benchmark on the LITTLE cluster, when
CPS is configured to read 6 events at every interrupt a maximum overhead of 6% is
observed when the CYCLES counter is configured to overflow every 100K cycles and
gradually decreases, as the trigger value of the CYCLES HPC increases, to a minimum
overhead of 0.7%. When CPS is configured to read 2 events at each interrupt, the
maximum overhead is 5.3% for 100K cycles and the minimum overhead is 0.15% for
15M cycles. These results are expected; the more often the CYCLES HPC overflows
(the smaller the trigger value is), more often the normal execution of the application
will be paused for the interrupt handler to be executed and therefore greater overhead
is imposed. Concerning the big cluster (figure 8.1b), the CPS overhead exposes similar
trends. For the 6 event configuration, the maximum overhead of 7.1% is observed at
the 100K configuration and the minimum overhead of 1.05% is observed at the 15M
configuration. For the 2 event configuration, the maximum and minimum overhead
is 6.2% and 0.4% respectively.

Figure 8.2 shows the CPS performance overhead for MiBench benchmark. On the
LITTLE cluster (figure 8.2a), when CPS reads 6 events the maximum overhead is
5.1% and the minimum 0.15%. For the 2 events configuration the overhead observed
is 4.4% (maximum) and 0.09% (minimum). On the big cluster (figure 8.2b), for
the 6 events configuration the maximum and minimum overhead is 5.3% and 0.35%
respectively, and for the 2 event configuration 4.4% and 0.16%.

As far as power consumption is concerned the CPS overhead is quite small for all
configurations (both big and LITTLE clusters, for 2 and 6 events and for both PARSEC
and Mibench benchmarks). On the LITTLE cluster for both event configurations and
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(a) CPS Performance Overhead on LITTLE cluster

(b) CPS Performance Overhead on big cluster

Figure 8.1: Performance Overhead of CPS for PARSEC Benchmark

both benchmarks, the average power is below 1% ; 0.9% (maximum) for the 100K
configuration to 0.01% (minimum) for the 15M configuration. On the big cluster the
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(a) CPS Performance Overhead on LITTLE cluster
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Figure 8.2: Performance Overhead of CPS for MiBench Benchmark

overhead is slightly higher. For the 100K configuration the maximum power overhead
is 1.3% and the minimum overhead for the 15M configuration is 0.1% on average.
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In summary, the overhead of CPS is minimal on both power and performance. In
reality, the highest performance overhead of 6% on LITTLE and 7.1% on big clusters
is observed for the 100K configuration which is the worst case scenario. Configuring
the CYCLES HPC to overflow every 100K cycles means that an interrupt is created ev-
ery 75 micro-second which is quite fine grain for the scope of this work. As it is shown
in the rest of this chapter, the granularity at which the interrupts occur is coarser, be-
cause there is no need to be that fine grain. In addition, it is not the cycle counter
that triggers the interrupt when making migration decisions, since it only expresses the
time passed and not any change in the behaviour of the workload, as for example do
the cache misses. Having other hardware events triggering migration, such as instruc-
tions executed or cache misses, create interrupts at a lower rate because these counters
increment slower than the cycle counter.

8.3 Scheduler reaction to high intensity phases

The purpose of the experiment described in this section is to investigate how the dif-
ferent scheduler configurations respond when encountering a high intensity phase. In
addition, this experiment shows the impact of the idle time, a process may have, on
the demand policy. PhaseBench is used to produce high intensity and idle phases of
varying duration.

Configuration #1 #2 #3 #4 #5 #6 #7 #8 #9
run(ms) 5 10 10 20 25 50 70 90 100

sleep(ms) 1 10 100 50 100 10 50 15 100

Table 8.6: Configuration of run and sleep phases for experiment 8.3

The PhaseBench workload simulator is used to produce a workload with two phases.
The first phase is of high intensity exposing high IPC and the second is an idle phase.
To simulate the high intensity phase kernel2 is used. To simulate the idle phase the
PhaseBench uses the sleep() system call. The duration of each phase is controlled
by the harness program (see section 6.3.3). The duration of the run and idle phases are
shown in table 8.6. For the first configuration the high intensity phase lasts 5ms and the
idle phase 1ms, for the second configuration the high intensity phase lasts 10ms and
the idle 10ms etc. For each configuration PhaseBench is executed for a total duration
of 200ms. For example, for the first configuration where the intense phase is 5ms and
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Phases Kernel2, Idle
Hardware events read Cycles, Instructions
Trigger to CPS Instructions = 1000000
HPC policy IPC >0.7
Scheduler configurations tps demand, tps demand 1ms, cps demand,

tps hpc, tps hpc 1ms, cps hpc

Table 8.7: Parameters for experiment 8.3

the idle phase is 1ms, PhaseBech will execute the high intensity phase for 5ms and
then the idle for 1ms and repeat this pattern until it reaches 200ms of total execution
time.

The parameters for this experiment are summarized in Table 8.7. There are six
scheduling configurations under test (see section 8.1.1), tps demand, tps demand 1ms,
cps demand, tps hpc, tps hpc 1ms and cps hps. The high intensity phase has IPC 0.9
on LITTLE cluster and 2 on big cluster. The execution always starts on the LITTLE
cluster (at the moment of process creation the scheduler has no information about the
new process and therefore it schedules it on the LITTLE cores). As far as the HPC
policy is concerned, the INSTRUCTIONS event is chosen and the trigger value is set
to 1 million instructions. Whenever the IPC of the generated workload is greater than
a predefined threshold, in particular when the IPC is greater than 0.7 the workload
migrates to the big cluster. The frequency of both LITTLE and big clusters is set to
1.33 GHz.

The high intensity phase is implemented, intentionally, to have high IPC on the big
cores. Ideally, when the high intensity phase starts the process should migrate to the
big cores as soon as possible. The experiment investigates the sensitivity of the six
scheduler versions when encountering high intensity phases and indicates the impact
of idle phases to the scheduler decisions on migration when the default demand policy
of the Linux kernel is used.

Each configuration of run/sleep phases is run 50 times for each scheduler configu-
ration. Results are presented in figures 8.3 and 8.4 using violin plots [92]. The violin
plots show the distribution of the measurements, in this case the time the migraiton
happens. The part of the violin plot that is wider imply that the majority of the migra-
tions (out of the 50 executions) happen at that time. The red dot on violin plot is the
median and the yelow vertical line shows the interquartile range. More information
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Figure 8.3: Migration times per run/sleep configuration
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Figure 8.4: Migration times per scheduler configuration

on violin plots can be found in [92]. Figure 8.3 shows for each run/sleep configu-
ration the migration times of the workload for the different scheduler configurations
and figure 8.4 shows for each scheduler configuration the migration times for different
run/sleep phases (the two sets of diagrams are given for better visibility of the results).
It should be noted here that for some configurations migration never happens; those are
depicted in the figures with time of migration at 200ms (e.g. figure 8.3a configurations
tps demand and tps demand 1ms).

Figure 8.3a shows the migration times for each scheduler configuration when the
run phase is 5ms and sleep phase is 1ms. For this run/sleep configuration, tps demand,
tps demand 1ms and cps demand do not migrate at all. This happens, because the idle
phase is too frequent and the demand policy cannot reach the required threshold to
migrate the process to the big cores. The rest of the scheduler configurations manage
to react but at different times each. The cps hpc is the fastest one to react and migrate
the process to the big core at around 800us after the start of execution, followed by
tps hpc 1ms which migrates the process at 2.5ms and finally tps hpc at 30ms. Figure
8.3b shows the migration times for each scheduler configuration when the run phase
is 10ms and the sleep phase is 10ms. The migration pattern for each scheduler con-
figuration is the same as before; tps demand, tps demand 1ms and cps demand do not
migrate the process at all and the rest migrate it at the same time since the beginning
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of execution as before.

Figure 8.3c shows the migration times for each scheduler configuration when the
run phase is 10ms and the idle phase is 100ms. Again tps demand, tps demand 1ms
and cps demand do not migrate at all. In this case however tps hpc does not migrate
too. Cps hpc and tps hpc 1ms illustrate the same behaviour as before and cps demand
migrates after the 100ms. For the rest of run/sleep configurations (figures 8.3d, 8.3e,
8.3f, 8.3g, 8.3h and 8.3i) all schedulers migrate the process to the big cores. This
happens because the run phase becomes long enough for the demand policy to have
enough time to reach the needed threshold and perform the migration. When and why
each scheduler configuration migrates the process is explained in more detailed in the
rest of this section when looking at the results per scheduler.

Figure 8.4a shows the migration times of tps demand scheduler for the various
run/sleep configurations. For the first three run/sleep configurations tps demand does
not migrate the process at all because the sleep time is too long for the demand policy to
characterize the workload as heavy and migrate it to the big core. Recall from section
4.2.2 that the demand policy partitions the time into windows and relies on the amount
of time the process is running (or runnable state) to decide on migration. For the first
three configurations the idling time is too long and that results in the process not mi-
grated. For the rest configurations tps demand migrates the process at 20ms. For
run/sleep configurations 20/50 and 25/100, in some cases the migration may happen
later or not happen at all. Experimental investigation has revealed that the demand pol-
icy requires at least two full running windows (20 ms) to reach the required threshold
and migrate the process to the big core. In these cases, because the run time is 20ms
and 25ms the start of the window does not always align with the scheduler tick and
this is why the migration may happen later or not happen at all. Figure 8.4b shows the
migration times of tps demand 1ms scheduler. This configuration illustrates the same
pattern as tps demand. It is expected since it is the same scheduler with the difference
that in this case the scheduler ticks every 1ms rather than 10ms. When comparing
tps demand and tps demand 1ms figures it can be observed that tps demand 1ms is
more unstable regarding the time of migration. This is due to the scheduler tick ticking
every 1ms which interferes with the process execution and makes the migration time
of the process less predictable.

Figure 8.4c shows the behaviour of cps demand for the different run/sleep con-
figurations. Comparing the behaviour of cps demand with tps demand 1ms it can be
observed that they are quite similar. This is expected. Recall that the instructions
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counter is set to overflow every 1M instructions and kernel2 has IPC 0.9 on the LIT-
TLE cores. Given that the frequency is 1.33GHz the generated interrupts occur almost
every 1ms. Since the counter overflows at almost every 1ms and the demand policy
is applied the results of cps demand are similar to those of tps demand 1ms. For the
first 3 run/sleep configuration cps demand does not migrate the workload at all and for
the four last the run phase is long enough for the demand policy to reach the required
threshold and migrate process at 30ms.

Figure 8.4d shows the behaviour of tps hpc for the different run/sleep configura-
tions. For all the configurations, apart from 10/100, tps hpc migrates the process to
the big cores between 20ms and 25ms. For the 10/100 configuration, in most runs
tps hpc does not migrate the process. Looking at the raw numbers, there are 3 cases
(out of 50) where the process is migrated at 112-120ms when the run phase executes
for the second time. This scheduling configuration reads and updates the HPCs at
scheduler tick granularity. For the 3 cases that this scheduler migrates the process the
IPC reached the required threshold the second time the high intensity phase is run,
for the rest 47 it did not and no migration happened. Figures 8.4e and 8.4f show the
behaviour of tps hpc 1ms and cps hpc for the different run/sleep configurations re-
spectively. Tps hpc 1ms migrates the process to the big core at 2.5ms and cps hpc at
80us for all run/sleep configurations.

To sum up, it is observered that the scheduler configurations that employ the hpc
policy are more deterministic on when they migrate the process to the big core regard-
less of the run/sleep configuration. This happens because the hpc policy is solely based
on performance counter readings and does not take into account the idling time (sleep
phase) which is the case for demand policy. It can be concluded that the HPC policy
outperforms the demand policy at detecting high intensity phases. When comparing
the mechanisms (CPS versus TPS), it is shown that the CPS manages to perform the
migrations faster than the equivalent TPS configurations. However, it is the combina-
tion of the cps mechanism and hpc policy that performs the best and is the fastest to
recognise the high intensity phase and migrate the process to the big core.

8.4 Triggering Scheduling with 2 events

The previous experiment (section 8.3) investigated how quickly each scheduler con-
figuration reacts when encountering a high intensity phase (it was only focused on the
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Phases Kernel1, Kernel2
Hardware events read Cycles, Instructions, L1 Cache Misses
1st Trigger to CPS Instructions = 1000000
2nd Trigger to CPS L1 Cache Misses = 5000
1st cps hpc policy if on LITTLE and IPC >0.6 go to big
2nd cps hpc policy if on big and L1 Cache Miss counter overflows twice go to LITTLE
tps hpc policy if on LITTLE and IPC >0.6 go to big else go to LITTLE
Scheduler configurations cps hpc, tps hpc 1ms, tps hpc

Table 8.8: Parameters for experiment 8.4

migration from a LITTLE core to a big one). The purpose of this experiment to inves-
tigate how the scheduler configurations react when encountering different successive
phases which require migrations from the LITTLE to big cores and also from the big
to the LITTLE. In addition, this experiment illustrates the ability to leverage HPCs and
trigger the scheduler with 2 events.

In this experiment PhaseBench workload generator is used to produce a program
of two phases using kernel1 and kernel2. The produced program runs consecutively
the two kernels. It begins with kernel2 and then runs kernel1; this pattern is repeated
two times. Therefore, there are four different phases and four process migrations are
expected. The execution starts always on the LITTLE cores. PhaseBench controls the
duration of each phase. This workload is tested under 3 phase durations : 5ms, 10ms
and 50ms. In this experiment, there are two hardware events used to trigger the sched-
uler. The scheduler configurations under test are cps hpc, tps hpc 1ms and tps hpc.
For this experiment, it is chosen to investigate only the scheduler configurations that
are based on HPCs because the configurations based on demand policy cannot do the
migration from the big to LITTLE cluster, since demand policy only takes into account
how long the task is running versus how long it is idling.

Kernel2 exposes double the IPC on big cores, so the appropriate core type for this
kernel is the big. Kernel1 has IPC 0.5 on the LITTLE and 0.6 on the big (see table
8.2). Since there is no big difference in IPC for big and LITTLE, the desired core type
for this kernel is the LITTLE. For the cps hpc scheduling configuration the migration
from the big to LITTLE is triggered by the instructions executed event, and the trigger
value is set to 1 million. In case the process IPC is higher than 0.6 for 3 consecutive
interrupts, the process is migrated to the big cluster, if not already there. Three consec-
utive interrupts are required to avoid spurious migration based on temporary changes
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of IPC. The number 3 is based on [59] and it is empirically confirmed that this number
of interrupts is enough to recognise a stable phase, at least for the policy enforced. To
migrate form big to LITTLE cores the L1 cache miss hardware event is used. The L1
cache miss counter is set to overflow after 5K misses (value defined empirically). If
this counter overflows between 2 successive instruction interrupts for at least two times
the process is migrated to the LITTLE core. The same scheduling behaviour could be
achieved using only the instructions event, since the two kernels do not have overlap-
ping IPC on both core types. A policy that would schedule a process with IPC greater
than 0.6 on big and less than 0.6 to LITTLE would work the same way, and this is the
policy implemented for the tps hpc 1ms and tps hpc configurations. The reason for
this choice is that in the tps cases there are no interrupts generated from the counters
so it is not possible to apply the same policy as in the cps case. This illustrates the
ability of CPS mechanism to be triggered on more than one event, or a combination of
them. The LITTLE to big migration targets kernel2 that exposes high IPC, and migra-
tion from big to LITTLE targets kernel1, which causes cache misses. The parameters
for this experiment are summarized in Table 8.8.

Phase duration (ms) cps hpc
kernel2 kernel1 kernel2 kernel1

5 3.2ms 2.6ms 3.6 2.5ms
10 3.1ms 2.5ms 3.2 2.7ms
50 3.2ms 2.7ms 3.5 2.6ms

Table 8.9: Cps hpc migration times

Phase duration (ms) tps hpc 1ms
kernel2 kernel1 kernel2 kernel1

5 5.9ms 4.6ms 4.5 4.8ms
10 5.5ms 5.8ms 4.7 4.4ms
50 5.4ms 4.7ms 4.6ms 4.8ms

Table 8.10: Tps hpc 1ms migration times

For each scheduler configuration and for each phase duration the experiment is
repeated 20 times. Tables 8.9, 8.10 and 8.11 show the migration time of the median
value of the 20 runs. All the other repetitions have similar migration times varying [-1,
+1] milliseconds for the cps hpc and tps hpc 1ms configurations and [-10, +10] mil-
liseconds for the tps hps. For each kernel the number reported is when the migration
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Phase duration (ms) tps hpc
kernel2 kernel1 kernel2 kernel1

5 - - - -
10 - - - -
50 49.3ms 39.1ms 48.9ms 38.5ms

Table 8.11: Tps hpc migration times

happens and the beginning of time measurement is the start of the phase (when the
kernel started running). For example in figure 8.9 for the 5ms phase duration, cps hpc
migrated the process from the LITTLE core to the big 3.2ms after kernel2 started, then
it migrates it back to LITTLE at 2.6ms after kernel1 started, then again from LITTLE
to big at 3.6ms after kernel2 starts again and finally it migrates from big to LITTLE at
2.5ms after kernel1 runs again.

As far as kernel2 is concerned (the migration from LITTLE to big core) the ex-
periment is similar with the experiment of section 8.3 and therefore similar migration
times would be expected. However, in this experiment the migration times are slightly
higher; this happens because there is the requirement for the instruction counter to
overflow 3 times for the migration to take place which was not a requirement in the
previous experiment. As expected the tps hpc scheduler configuration manages to re-
act only for the 50ms phase duration because of the scheduler tick ticking every 10
ms. The tps hpc 1ms scheduling configuration manages to react in time for all phase
durations apart from the 5ms phase duration. Although tps hpc 1ms and cps hpc have
close migration times, cps hpc recognises the phases faster, especially those of kernel1
where the migration from big to LITTLE happens because cps hpc can leverage the L1
cache misses counter to trigger scheduling decisions. The key conclusions of this ex-
periment is that cps hpc configuration can drive scheduling using more than one events
and that it can perform (slightly faster) the migrations when compared to tps hpc 1ms.

8.5 Evaluation of Schedulers on Performance and Power
Efficiency

The purpose of this experiment is to evaluate the different scheduler configurations in
terms of performance and power efficiency. It also shows how each scheduler con-
figuration performs under different phase durations. This experiment uses the second
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Phases Kernel2, Kernel3, Kernel4
Hardware events read Cycles, Instructions
Trigger to CPS Instructions = 1000000
1st cps hpc policy if on LITTLE and IPC >0.6 (x3) go to big
2nd cps hpc policy if on big and IPC ≤ 0.6 (x3) go to LITTLE
Scheduler configurations tps demand, tps demand 1ms, cps demand,

tps hpc, tps hpc 1ms, cps hpc

Table 8.12: Parameters for experiment 8.5

mode of PhaseBench; instead of controlling the duration of each kernel, the kernels are
left to run to completion. The second mode of PhaseBench is used because this exper-
iment targets performance and because performance differences are better illustrated
when comparing execution times.

To evaluate the impact of phase duration of each kernel in combination with the
different schedulers, essentially to create variable duration phases, the kernels are run
repeatedly. In particular this experiment uses the kernels: kernel2, kernel3 and ker-
nel4. The generated workload runs each kernel one after another. The sequence of the
kernels is derived by their permutation so there are 6 different workloads (figure 8.13).
For each workload the kernels are repeated for 1,2,3 and 4 times to create different
phase durations. For example when configuration perm1 is repeated for 3 times, it
means that kernel1 runs 3 times, then kernel2 runs 3 times and lastly kernel4 runs 3
times. The HPC policy applied for this experiment is the following : if the process is
running on the LITTLE core and the IPC is greater than 0.6 for 3 consecutive times it
migrates to the big cores, if the process is running on big core and the IPC is less or
equal to 0.6 for 3 consecutive times it migrates to LITTLE. This policy uses these num-
bers for IPC because the IPC of each kernel is known. CPS leverages the instructions
counter to drive scheduling and the trigger value is set to 1 million instructions. Recall
from section 8.1.3 that kenrel2 is a computational intensive kernel that exposes double
IPC on the big cores and therefore the appropriate core to run is the big, kernel3 is the
discrete Fourier transformation that has the peculiarity to have better performance on
the LITTLE and kernel4 is a matrix multiplication loop for which the appropriate core
type is the big. The parameters for this experiment are shown in Table 8.12.

Each configuration is run 20 times and the average time and power consumption is
calculated. Figures 8.5 and 8.6 show how the six scheduler configurations perform in
terms of performance and power efficiency respectively.
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perm1 Kernel2, Kernel3, Kernel4
perm2 Kernel2, Kernel4, Kernel3
perm3 Kernel3, Kernel2, Kernel4
perm4 Kernel3, Kernel4, Kernel2
perm5 Kernel4, Kernel2, Kernel3
perm6 Kernel4, Kernel3, Kernel2

Table 8.13: Phasebench kernel permutations for experiment 8.5
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Figures 8.5a, 8.5b, 8.5c and 8.5d show the performance of each scheduler con-
figuration when the kernels of each workload are repeated one, two, three and four
times respectively. In appendix B tables B.1, B.2, B.3 and B.4 show the speed-up of
each scheduler configuration over tps demand. For this experiment, all the kernels
should be scheduled on the big cores apart from kernel3 making it the main source of
performance difference; kernel3 is the DFT kernel which runs faster on the LITTLE
core. Therefore, the scheduler configurations that are able to recognise this can per-
form better. Scheduler configurations that utilise the demand metric cannot recognise
this. Tps demand 1ms performs slightly worse compared to tps demand for the ma-
jority of configurations because the scheduler ticking every 1 millisecond imposes a
small overhead. Cps demand performs almost the same as tps demand. This is ex-
pected because both use the demand policy. Tps hpc also performs almost the same
as tps demand even though it uses the HPC policy. In theory, tps hpc should perform
better since it should be able to recognise that kernel3 should be executed on the LIT-
TLE cores. However, it is not reflected in the results because tps hpc updates the HPCs
every 10 milliseconds which is not fine grain enough to migrate the workload at every
phase change. This in combination with the overhead of reading the HPCs results in
tps hpc performing similar to tps demand. Tps hpc 1ms although it calculates the IPC
every 1 millisecond (which should be fine grain enough) for this type of workload, it
has some overhead which makes it perform worse than tps demand. The tps hpc 1ms
configuration at every scheduler tick apart from reading the HPCs it also performs the
tasks of load balancing and time sharing among the processes. This happens every one
millisecond and is the source of the observed overhead.

Cps hpc configuration outperforms all the others because it is able to identify the
appropriate core type for each phase (kernel) and does not impose any significant over-
head. In particular cps hpc achieves speed-up ranging from 1.15 to 1.58 over the de-
fault tps demand configuration for the kernel repeating one time (figure 8.5a). For
figure 8.5b where the kernels execute two times the speed-up achieved by cps hpc
over tps demand ranges between 1.02 and 1.33, for kernels executing three times the
speed-up ranges from 1.1 to 1.3 (figure 8.5c) and finally when the kernels execute four
times (figure 8.5d) the speed-up ranges from 1.12 to 1.3. Cps hpc achieves higher
speed-up in the case of the kernels repeating one time because the duration of each
kernel is shorter. As shown in the previous experiments, when the duration of a phase
is short the scheduler configurations that are based on TPS do not have enough time to
react due to the scheduler ticking every 10ms which is in some cases too coarse grain.
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Figure 8.6: EDP for kernel permutations

In cps hpc case, although the HPC are read at higher rate, the observed overhead is
not as high because the only task that happens frequently is the reading of the HPCs,
the other tasks (load balancing and time sharing) happen at the default scheduler tick
which is every 10 milliseconds.

Figure 8.6 shows how the six scheduling configurations perform in terms of power
efficiency. To express power efficiency the Energy Delay Product-EDP metric is used.
EDP is calculated by equations 8.1 and 8.2 :

EDP = ExecutionTime∗Energy, (8.1)

Energy = ExecutionTime∗Power. (8.2)

Figure 8.6a shows the EDP for the configuration where the kernels repeat once, figure
8.6b shows the EDP for kernels repeating twice and figures 8.6c and 8.6d for kernels
repeating three and four times respectively. For the majority of the cases the schedulers
using the demand policy are less energy efficient than those using HPC policy. In many
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cases the cps hpc is not the most power efficient configuration. This happens because
the policy for this experiment targets performance, and ideally kernels kernel2 and
kernel4 should be scheduled on the big cluster and kernel3 on the LITTLE. Cps hpc
configuration manages to follow this pattern and since kernel2 and kernel3 are sched-
uled on the big cores more of the execution time is spent there. In Dragonboard 810 the
big cluster is composed of the Arm Cortex-A57 cores which are very power-hungry.
As a result, the performance gains from executing on the big cluster cannot balance
in this case the excess power consumption, that makes the cps hpc configuration not
the most power efficient option. This is more obvious for the cases where the kernels
execute one and two times (figures 8.6a and 8.6b). In those cases the execution time
is shorter and the impact of running on big cores is more prominent. As the execution
time of the kernels becomes longer the gains in performance outweigh the penalty of
running on the big core and cps hpc becomes more energy efficient.

The key conlusions of this experiment is that all scheduler configurations apart
from cps hpc deliver almost the same performance. Tps demand 1ms and tps hpc 1ms
impose a small overhead but their performance is close to the default tps hpc. Cps hpc
delivers better performance because it can identify phase changes in time and perform
the right migrations without adding significant overhead. In addition, it is worth noting
that performance gains are more prominent when the execution time of the workload
is short.

8.6 Evaluation of scheduler configurations against MiBench

The purpose of this experiment is to study the behaviour of the different scheduler con-
figurations under benchmarks that resemble real world applications. In this experiment
all the scheduler configurations (tps demand, tps demand 1ms, cps demand, tps hpc,
tps hpc 1ms and cps hpc) are evaluated against MiBench benchmark. MiBench is a
benchmark suite targeted for embedded systems. The benchmarks used are basicmath,

bitcnts, dijkstra, fft, jpeg, gsm, patricia, qsort, susan with small and large inputs.

The parameters for this experiment are summarized in table 8.14. As far as the
HPC policy is concerned, if the process is running on the LITTLE core and the IPC is
greater than 0.6 for more than 3 interrupts the task migrates to the big core. If the task
is running on the big core and the IPC is less or equal to 0.6 for more than 3 interrupts
the task migrates to a LITTLE core. The trigger for CPS is 1 million instructions.
Each benchmark is run 20 times and the average run time is reported. Figures 8.7 and
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Hardware events read Cycles, Instructions
Trigger to CPS Instructions = 1000000
1st HPC policy if on LITTLE and IPC >0.6 go to big
2ndt HPC policy if on big and IPC <= 0.6 go to LITTLE
Scheduler configurations tps demand, tps demand 1ms, cps demand,

tps hpc, tps hpc 1ms, cps hpc

Table 8.14: Parameters for experiment 8.6

8.8 show how different scheduler configurations perform in terms of performance and
power efficiency respectively. The speed-up (or slowdown) for each benchmark is also
shown in appendix B in tables B.5 and B.6.

Figure 8.7a shows the execution times for the small input of each benchmark.
Tps demand 1ms, cps demand, tps hpc and tps hpc 1ms deliver almost the same per-
formance as tps demand with small overhead for some benchmarks. Cps hpc outper-
forms the default tps demand for all benchmarks apart from the fft benchmark. The fft
benchmark does computations using the cos() and sin() functions and exposes the
same behaviour as the DFT (kernel3 section 8.1.3); it has better performance on the
LITTLE core. Therefore, the appropriate core type for this benchmark is the LITTLE.
The execution starts always on the LITTLE core. For the small input the execution
time is short and tps demand does not have enough time to perform any migration; it
keeps the process on the LITTLE core which is the right choice. Cps hpc recognises
that the LITTLE core is the appropriate one and does not migrate the process to the big
cores, however because cps hpc imposes a small overhead, as discussed in section 8.2,
it performs slightly worse than tps demand. For the rest benchmarks cps hpc shows
better performance compared to tps demand with speed-up ranging from 1.02 to 1.36.

As far as tps hpc 1ms is concerned, although in theory it should perform as good
as cps hpc it performs worse and in half of the cases it performs even worse than
tps demand. Even though, tps hpc 1ms is capable of identifying quickly the right core
type for a given process and acting upon it, the fact that the scheduler ticks every 1
millisecond (which does not only check for migration as happens with cps hpc, but
also does load balancing and other housekeeping scheduling tasks), the overhead im-
posed diminishes the benefits of moving the process to the right core type quickly.
Tps hpc 1ms shows performance gains compared to tps demand for the dijkstra and
jpeg benchmarks. The same can be inferred when comparing tps demannd and tps demand 1ms.
These two schedulers are the same and they differ only in that tps demand ticks every
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Figure 8.7: Scheduler configurations performance for MiBench
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10 milliseconds and tps demand 1ms ticks every 1 millisecond. As shown in figure
8.7a tps demand 1ms performs slightly worse which is due to the overhead of ticking
every 1 millisecond.

Figure 8.7b shows the performance for each scheduler configuration for the same
benchmarks but with large input. Again tps demand 1ms, cps demand, tps hpc and
tps hpc 1ms perform almost the same as tps demand. For the large inputs, for the
majority of the benchmarks cps hpc performs slightly better than tps demand but the
overhead is not as high as the small inputs. Cps hpc delivers better performance than
the rest of the scheduler configurations for all benchmarks apart from susan bench-
mark for which the best performance is delivered by tps hpc 1ms. All benchmarks,
apart from the fft, benefit from the big core. The best performance is achieved by the
scheduler that is the fastest to migrate the process to the big cores. For the small in-
puts cps hpc achieves higher speed-up because the execution time of the benchmarks
is short and tps demand does not have enough time to react. For the large inputs, the
execution time is longer and tps demand has enough time to react. The fft benchmarks
is an exception. For the fft benchmarks cps hpc achieves 1.25 and 1.26 speed-up over
tps demand. This happens because the demand policy fails to recognise that the ap-
propriate core type is the LITTLE and migrates the process to the big core resulting in
poor performance. On the other hand cps hpc recognises that this workload should be
scheduled on the LITTLE and achieves better performance.

Figures 8.8a and 8.8b shows the energy delay product (EDP) for the small and large
inputs of the benchmarks respectively. Looking at these figures there is no clear winner
for all benchmarks . For the small input (figure 8.8a) cps demand and tps hpc perform
the best in terms of power efficiency. This happens because in this case, the input is
small which results into short execution times and these two scheduler configurations
are the last to migrate the process to the big core, if they do at all. Running on the
small core consumes considerably less power compared to running on the big core.
This along with the fact that the execution time is short minimize the EDP for the two
scheduler configurations making them the most energy efficient options. As far as the
large input is concerned (figure 8.8b) no single scheduler outperforms the other for all
benchmarks. For the majority of the benchmarks, all scheduler configurations perform
almost the same. This happens because the large input makes the execution time is
long enough and for all the scheduler configuration the biggest part of execution time
is spent on the big core.
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8.7 Summary

This chapter evaluated Context Preemptive Scheduling and Time Preemptive Schedul-
ing using an in-house benchmark called PhaseBench and the MiBench benchmark.
Firstly, the potential overhead of CPS was investigated and showed that CPS imposes
low overhead. Three scheduling mechanisms were combined with two polices; one
using the Hardware Performance Counters called hpc and the default policy of the
3.10.49 Linux kernel version called demand. The cps hpc scheduling configuration
can successfully recognise phase changes compared to others (sections 8.3 and 8.4).
In addition, this chapter showed that CPS can be triggered by more than one events
(section 8.4). Furthermore, it was shown that cps hpc can improve both performance
and power efficiency compared to the other scheduling configurations (section 8.5).
Finally, the MiBench benchmark was used to evaluate the different scheduler config-
urations under a real benchmark suite that targets embedded systems. In most cases
cps hpc can deliver better performance than the other scheduler configurations. For the
small benchmark inputs cps hpc can deliver higher spped-up than tps demand com-
pared to the large input because tps demand benefits from longer execution times.
Regarding energy efficiency there is no clear winner.



Chapter 9

Conclusion and Future Work

This thesis studied scheduling on single-ISA heterogeneous architectures. Firstly, it
described the Linux scheduler on homogeneous architectures and explained the main
characteristics that are inherited to the scheduler on single-ISA heterogeneous archi-
tectures. It discussed the default Linux scheduler for Arm big.LITTLE architecture
and pointed out some of its limitations. The first limitation regards the mechanism and
in particular the fact that the scheduler relies on the periodic tick to make its decisions
with regards to selecting the appropriate core type. The second limitation regards the
policy used to characterize a workload as heavy or light and schedule it accordingly.
The policy used by the default scheduler, called in this thesis demand policy, relies on
the time the workload has been in running state and the time the workload has been
sleeping.

The main contribution of this thesis is the proposal of Context Preemptive Schedul-
ing (CPS) which is introduced as an alternative to the default Time Preemptive Schedul-
ing (TPS). CPS decouples the migration decision from the periodic scheduler tick. In-
stead it uses the HPCs which can create an interrupt when they overflow and initiate the
migration procedure. CPS tries, leveraging the HPCs, to track down the phase changes
of a workload and once it recognises the phase change it initiates the procedure to de-
cide whether another core type is appropriate. CPS leverages HPCs and can trigger the
check for migration procedure when one or more hardware events.

For CPS evaluation MiBench becnchmark is used in addition to PhaseBench. PhaseBench
is a workload simulator developed for the needs of this work. The purpose of PhaseBench
is to produce phases with different intensities and durations. The contribution of
PhaseBench is that it facilitates the study of the sensitivity of the scheduler to work-
loads with different phases both in terms of duration and intensity.

143
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This thesis has evaluated six scheduler configurations which combine the differ-
ent mechanisms and policies; tps demand, tps demand 1ms, cps demand, tps hpc,
tps hpc 1ms and cps hpc. Evaluation showed that under MiBench and PhaseBench
cps hpc can deliver better performance than the other scheduler configurations. This
can be attributed both to the fact that CPS reacts when encountering a phase change in-
stead of reacting at scheduler tick granularity and the fact that it uses the HPCs instead
of the demand policy, especially for the workloads that have short running time.

9.1 Summary

This section summarises each chapter presented in this thesis.

Chapter 1 described the demand for power efficiency which led to single-ISA het-
erogeneous architectures and two power management techniques that also target power
efficiency. It also presented the motivation behind Context Preemptive Scheduling, the
main contribution of this thesis.

Chapter 2 provided background information about the Linux kernel and the Perfor-
mance Monitor Unit. It described fundamental concepts of Linux such as the process
and the separation of mechanism and policy. It also described the ARM PMU driver
that was modified to implement CPS.

Chapter 3 described how Linux scheduler works on homogeneous systems. It fo-
cused on CFS class and described the metrics it uses for time sharing and load balanc-
ing. It also, described the current Time Preemptive Scheduling mechanism that relies
on the system timer interrupt to periodically perform the two tasks of the scheduler:
the time sharing among the processes and load balancing.

Chapter 4 described the state-of-the art approaches on scheduling for single-ISA
heterogeneous architectures. It pointed out that current approaches for scheduling both
in industry and in research propose different policies for identifying the most appro-
priate core type for a given workload. None of them studies the mechanism upon
which all these policies are applied, which is also important in order to exploit the full
potential of single-ISA heterogeneous architectures.

Chapter 5 discussed the inefficiencies of the current Time Preemptive Schedul-
ing mechanism when used on single-ISA heterogeneous architectures. It presented
Context Preemptive Scheduling mechanism, an alternative and novel mechanism that
leverages the interrupts created by the Hardware Performance Counters to identify
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phase changes and trigger the migration procedure. CPS can closely track of the pro-
cess phase changes because, in essence, it is the process itself, through the hardware
performance counters, that notifies the scheduler about the changes in its behaviour.

Chapter 6 describes the implementation of the CPS framework. It describes the
three levels (hardware, kernel-space, user-space) across which CPS spans and the in-
teractions with the rest of the system.

Chapter 7 describes the experimental set-up and the Profiling Framework devel-
oped in this thesis. The Profiling framework aims to facilitate benchmarking and espe-
cially power profiling.

Chapter 8 evaluates CPS. It investigates potential overheads and compares CPS
and TPS using two policies; one is based on HPCs and the second is the default policy
used in the Linux kernel. CPS is evaluated using PhaseBench, a workload simulator
developed for this work, as well as the MiBench benchmark. Experimental results
show that CPS can keep track of process phase changes and migrate the process to
the appropriate core type. Evaluation has also shown that the HPC policy provides
the promise of delivering better results than the default demand policy because of the
use of the HPCs, though a wider evaluation against the demand policy with a smaller
window would be useful future work.

9.2 Limitations & Future Work

This sections discusses the limitations of the proposed scheduling mechanism as well
as possible future extensions of this work. Some limitations of this work regard the
evaluation. Although six different scheduling configurations (one of them being re-
ducing the scheduler tick) are evaluated, to ensure fairness between the policy and
mechanism, i.e. to distinguish whether the gains or the losses are due to the policy
(demand vs HPCs) or the mechanism (CPS vs TPS), the window of the demand policy
is left unchanged at 10 milliseconds. It would be worth investigating the performance
of the scheduler when reducing the window size of the demand policy. Another limi-
tation regards the trigger values for the HPCs. In this work the value of the triggers are
derived empirically; in future works statistical or machine learning techniques could be
applied to derive the trigger values. In addition, future work could be to consider using
the predictions models suggested by related works to predict the IPC of each workload
(in this work IPC is known in advance) and also evaluate multi-threaded applications.
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A limitation of Context Preemptive Scheduling, which in reality is not a limita-
tion of the idea of CPS but rather it is a limitation of the implementation, is the way
the PMU is managed at software level. As chapter 2.3.1 described the PMU hard-
ware is abstracted by the PMU driver and exposed to the rest of the system through
perf event infrastructure. To implement CPS the PMU driver was essentially re-
placed. The perf event subsystem can no longer utilise the PMU, since the driver
upon which it relies to communicate with the PMU no longer exists. This means that
all the profiling tools which are based on the perf event cannot be used to monitor
the HPCs. To overcome this limitation CPS framework can be extended to support
profiling as well.

The root of this limitation is that traditionally the PMU is used to profile appli-
cations whereas in CPS is used to drive scheduling. This could also be overcome by
virtualising the PMU. The PMU virtualisation can be achieved either at software level
or it can be hardware assisted. Concerning the software virtualisation, the PMU driver
could be modified to expose two interfaces: one to the perf event subsystem and a
second to CPS, and multiplex the access to HPCs.

Possible future extension of this work could be integration with load balancing and
frequency scaling. For the time being, CPS framework does not deal with load bal-
ancing and relies on the default scheduler to balance the runqueues. CPS framework
could be extended to accommodate load balancing as well. As far as frequency scaling
is concerned, research works have shown that the advantages of single-ISA hetero-
geneous architectures and frequency scaling are orthogonal and can be combined to
offer even better power efficiency. CPS can be extended to integrate frequency scaling.
In fact, frequency scaling is also performed in a periodic fashion and uses the same
metrics with the scheduler to quantify the intensity of a process in order to drive fre-
quency selection. Therefore, it exhibits the same drawbacks as the scheduler and can
be improved by CPS as much as the scheduler.
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Appendix A

Operating Points for Snapdragon 810

Table A.1 shows the available frequency levels at which the LITTLE and big clusters
of the Snapdragon 810 processor can operate. The LIITLE cores have 11 discrete
operating frequency points and the big ones 14.

LITTLE Cluster - A53 big Cluster - A57
1 384MHz 384MHz
2 460.8MHz 480MHz
3 600MHz 633.6MHz
4 672MHz 768MHz
5 768MHz 864MHz
6 864MHz 960MHz
7 960GHz 1.248GHz
8 1.248GHz 1.344GHz
9 1.344GHz 1.44GHz

10 1.47GHz 1.536GHz
11 1.555GHz 1.632GHz
12 - 1.728GHz
13 - 1.824GHz
14 - 1.958GHz

Table A.1: Operating Points for LITTLE and big clusters
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Appendix B

Speed-Up over tps demand

The following tables show the speed-up for the scheduler configurations over tps demand
configuration for experiments 8.5 and 8.6. The demand policy is denoted as “dem” for
the tables to fit in the page.

Perm# tps dem tps dem 1ms cps dem tps hpc tps hpc 1ms cps hpc
perm1 1 1.03 0.99 1.01 1.05 1.15
perm2 1 0.96 0.99 1.00 0.92 1.46
perm3 1 0.89 0.92 0.96 0.92 1.22
perm4 1 0.87 0.96 0.98 0.93 1.25
perm5 1 0.91 1.01 1.00 0.95 1.58
perm6 1 0.98 1.04 1.02 0.97 1.36

Table B.1: Speed-up over tps demand for kernels executing one time
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Perm# tps dem tps dem 1ms cps dem tps hpc tps hpc 1ms cps hpc
perm1 1 0.96 1.02 1.00 0.96 1.28
perm2 1 0.98 0.99 0.98 0.97 1.34
perm3 1 0.96 0.95 0.99 0.96 1.03
perm4 1 1.00 0.97 1.01 0.98 1.02
perm5 1 0.93 1.00 1.00 0.95 1.33
perm6 1 0.95 0.99 0.99 0.95 1.29

Table B.2: Speed-up over tps demand for kernels executing two times

Perm# tps dem tps dem 1ms cps dem tps hpc tps hpc 1ms cps hpc
perm1 1 0.95 0.99 1.00 0.97 1.27
perm2 1 0.96 0.95 1.00 0.96 1.30
perm3 1 1.00 1.00 1.00 1.01 1.09
perm4 1 0.99 1.01 1.00 0.99 1.09
perm5 1 0.97 0.99 1.00 0.96 1.31
perm6 1 0.95 0.97 1.01 0.96 1.29

Table B.3: Speed-up over tps demand for kernels executing three times

Perm# tps dem tps dem 1ms cps dem tps hpc tps hpc 1ms cps hpc
perm1 1 0.95 0.99 1.00 0.97 1.27
perm2 1 0.97 1.00 1.01 0.96 1.30
perm3 1 1.00 1.01 1.00 1.02 1.14
perm4 1 1.00 1.00 1.00 1.00 1.13
perm5 1 0.96 0.98 0.99 0.95 1.29
perm6 1 0.98 0.99 1.01 0.96 1.28

Table B.4: Speed-up over tps demand for kernels executing four times
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Benchmark tps dem tps dem 1ms cps dem tps hpc tps hpc 1ms cps hpc
basicmath 1 0.97 1.00 0.97 1.01 1.02

bitcnts 1 0.97 0.99 0.99 0.95 1.14
dijkstra 1 0.98 0.99 1.00 1.23 1.26

fft1 1 0.97 1.01 0.98 0.93 0.98
fft2 1 0.95 0.99 1.01 0.94 0.98
gsm 1 0.96 0.99 0.99 1.01 1.13
jpeg 1 0.84 0.85 0.92 0.98 1.29

patricia 1 0.99 0.93 0.91 1.24 1.28
qsort 1 0.97 0.93 0.89 0.87 1.36
susan 1 0.86 0.96 1.02 1.09 1.28

Table B.5: Speed-up over tps demand for MiBench small input

Benchmark tps dem tps dem 1ms cps dem tps hpc tps hpc 1ms cps hpc
basicmath 1 0.98 1.00 1.00 0.98 1.00

bitcnts 1 0.98 0.99 0.97 0.98 1.01
dijkstra 1 0.95 1.00 0.95 1.07 1.11

fft1 1 0.94 1.04 1.21 1.24 1.26
fft2 1 0.95 1.03 1.19 1.21 1.25
gsm 1 0.97 1.00 1.00 1.00 1.02
jpeg 1 0.96 0.96 0.96 0.95 1.04

patricia 1 1.00 1.02 1.00 1.03 1.07
qsort 1 0.97 0.99 1.00 0.97 1.05
susan 1 0.98 1.00 0.97 1.01 1.02

Table B.6: Speed-up over tps demand for MiBench large input


