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Abstract

Convergent evolution is a process by which different distantly related species can evolve 

the same trait, usually involving adaptation to similar environments, and it is a widespread 

phenomenon thorough all groups of life. One of the groups where convergent evolution 

could be common is the fungal kingdom since they have repeatedly and independently 

adapted to similar environments through their evolutionary history. One way to detect 

convergent evolution is by using association networks, where groups of genes that appear 

together more often than expected can be identified. These groups of genes are usually 

related to a function or process, and by considering the habitat of the species that appear in 

one set of associated genes we can potentially link the set to a particular phenotype. To 

exclude traits that are found in different species due to common ancestry, association 

networks need to be considered in the context of the fungal phylogeny. Fungal 

phylogenetics is still a very active research area, in large part due to the presence of some 

problematic taxa such as the Microsporidia, which are intracellular parasites that have lost 

most of their genome. In this thesis, in order to resolve the phylogenetic positions of 

problematic groups, I have used tree and data heterogeneous phylogenetic models, that are 

able to account for different evolutionary processes in different proteins and in different 

parts of the tree. 

To investigate and demonstrate the utility of networks for uncovering evolutionary 

processes, we used bipartite networks to identify evolutionary signals in plasmids. 

Traditional phylogenetic methodology cannot be used to portray the overall evolutionary 

history of plasmids, due to the lack of common genes. Therefore, networks allow us to 

connect plasmids through overlapping gene sets even if there are no genes that are 

common to all plasmids. Through the investigation of community structure, which emerges

throughout evolutionary time as a consequence of the interactions of plasmids with one 

another, I have been able to associate part of the networks with certain plasmid features, 

like host taxonomy or function. Finally, I investigated plasmid evolution further by 

studying how the physical properties of the nucleotide sequences that forms each plasmid 

can affect plasmid interactions by using Exponential Random Graph Models. 
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Introduction

Convergent evolution

Convergent evolution is the process by which unrelated genes in different species evolve 

independently, in similar ways to give raise to similar phenotypes. This process is thought 

to be either completely independent, where similar independent phenotypes arise by 

random chance, or caused by adaptation to similar environments, where similar 

evolutionary pressure makes independent genes evolve in similar ways (1). Convergent 

evolution is a widespread occurrence across all organisms and since it has been detected in 

all Domains of life, both at genotypical and phenotypical levels (2–7). Because of 

independent similar adaptation to the same environments, genes tend to show the same 

kinds of mutations and nucleotide sequence modifications, which can lead to high levels of

sequence similarity between genes involved in convergent evolution (8). Convergent 

evolution has been used as one of the possible explanations of the phenomenon of 

homoplasy (along with parallelism and reversal), where genes with high sequence 

similarity appear independently in species that do not share a very distant common 

ancestor (9). 

There are many examples in nature where similar complex traits and structures have 

evolved in lineages that do not have a close phylogenetic relationship. One example is the 

evolution of the eye, which has evolved independently in different lineages of animals 

resulting in similar eye structures, like spherical shape and lenses (10). Another example of

convergent evolution is seen in echolocation in bats and marine mammals. Both animal 

groups have undergone similar sequence changes that make them more sensitive to high 

frequency waves required for echolocation in the Prestin gene, along with other changes in

genes related to hearing and vision (6, 11). Finally, the rise of high intelligence in animals 

is also thought to be a case of convergent evolution, since it is linked to the formation of 

multimodal centres in the brain structure of insects, molluscs, mammals and birds (12). By 

using the combined information of similarities between phenotypic features and sequences 

that appears in cases of convergent evolution, several methods have been developed in 

order to detect, measure and quantify convergent evolution (13).
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Fungi

One of the groups of organisms where convergent evolution is likely to be common is the 

fungal kingdom. Fungi diverged from the animal kingdom about one billion years ago (14).

They are characterized by being highly variable, eukaryotic, with simple morphologies 

(typically filamentous but it can also be unicellular). Fungi have relatively small eukaryotic

genomes and all of them are heterotrophic (14). They produce haploid and diploid forms in

their life cycle and do not have movement except for some flagellated spores. They can 

live as saprobes, symbionts and parasites of plants, animals or other fungi, but they are not 

able to photosynthesise.  Owing to the high fungal variability, these ways of life (WoL) are 

not tied to a particular monophyletic branch but have appeared repeatedly through all the 

fungal phylogeny (14). One example of adaptation to different WoL in evolutionarily close 

organisms is observed in the order Hymenochaetales, where we can find saprophytic 

species, mycorrhizal species, and both opportunistic plant parasites and obligate plant 

parasites amongst its ranks (15). 

Many fungi have an impact to humans, either indirectly by infecting species of economic 

importance or directly as pathogens of humans. For the species that have an economic 

impact the most important fungi are plant parasites responsible for crop diseases. Species 

like Magnaporthe oryzae, responsible for the rice blast disease, can lead to the loss of 

between 10% and 30% of the harvest or even more if it is epidemic (16). Rice blast disease

is not only an economical problem but it also has an impact in human populations where 

rice is one of the main food sources, as it is one of the most consumed cereals in the world.

Another example is Botrytis cinerea, which can infect a wide variety of plants and fruits, 

thereby causing a huge economic impact due to the need to use fungicides for their control 

(estimated at €540 millions in 2001) apart from the damage they can cause to the crops. 

Fungal plant pathogens are classified in three groups: fungi that maintain the host cell alive

for a long period of time (biotroph), fungi that rapidly kills the host cell (necromorph) and 

fungi that maintain the host cell alive during the first stages of infection but kill the host in 

later stages (hemibiotroph) (17). Fungi play also a big role in food spoilage as saprotrophs, 

resulting in many methods of preservation being developed throughout human history (18–

20). As for fungi that can cause human disease, most of the fungal infections are 

superficial, most often affecting specially skin and nails, with a very low mortality (21). 

However, there are also invasive fungal infections, particularly fungi like Candida or 

Aspergillus species, that have high mortality rates and are especially dangerous for 
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immunosuppressed people. In animals, most fungi are obligate pathogens (mainly affecting

the lungs) or part of the normal microbiota that can become infectious under certain 

conditions (opportunistic pathogens). In addition, there has been an emergence of new high

virulent fungal diseases that are threatening biological diversity in many places of the 

world (22). 

In addition to the negative aspects, fungi can also have a positive impact on human activity.

Due to the relatively small fungal genome size, the high resilience that some fungi have to 

genetic manipulations and that some fungi form tissues that allow transcriptomics 

experiments, fungi have been regarded as good model organism for eukaryotes. Fungi have

been extensively used in research, in particular, species like Saccharomyces cerevisiae. S. 

cerevisiae has been used as a model system for research into eukaryotic processes such as 

the cell cycle (23) or for drug discovery in cancer (24). Many other fungal species have 

been investigated, given the huge variability and potential for drug discovery of fungal 

secondary metabolites (25). Fungi have long been used by humans for as fermenting agents

in both the food and the beverages industries. More recently, fungi have found use in 

industrial applications, such as the biodegradation of pollutants (26). Mycorrhizal fungi, 

which form mutualistic communities with the roots of certain plants, enhance biodiversity 

and variability in some ecosystems (27) and can also increase crop growth and yield (28, 

29).

Given the impact fungi can have in humans, both negative and positive, the efforts to 

sequence the genomes of fungi have intensified in recent years, with a particular focus on 

the lesser known species. One of these efforts is the 1000 Fungal Genomes Project (FGP) 

(30) which is a project that intends to sequence 1000 fungal genomes and make them 

accessible to the public. Currently, at the time of writing, there are 690 genomes completed

and available online. These genomes are available to download and in most cases the gene 

and protein sequences of the fungal species, which have been functionally annotated. The 

complete list of the genomes used for this project, complete with FGP identifiers and links 

to the FGP database, can be checked in Table 2 in the supplementary information section.

The fungal phylogeny has been controversial and there are still ongoing efforts to fully 

consolidate many of the smaller groups in the fungal taxonomy. Our knowledge of fungal 

phylogenetic relationships have been enhanced by the Assembling the Fungal Tree of Life 

project (AFToL) (31) due to the lack of tools to reach a consensus classification in former 

times (32). The main clades in fungi, from the earliest splitting branch (14), as showed in

Figure 1, are:
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• Chytridiomycota: They have a unicellular body surrounded by a cell wall that 

produces flagellated zoospores. Some of them are able to form filaments. Many of 

them are saprobes, but they can also be parasites or mutualists. Some important 

species in this group are Batrachochytrium, a parasite related to the amphibian 

decline, Neocallimastix, which is a mutualist found in the stomachs of ruminants 

and Synchytrium, responsible for the potato black wart.

• Blastocladiomycota (33): They are very similar to Chytridiomycota, but they have a

more hyphal (filament) growth phase and an unusual alternation between the 

haploid and diploid forms. They can be saprotrophs or parasites of plants and 

animals. One important species is Coelomomyces, a parasite of mosquito larvae.

• Mucoromycotina: Saprobes. They usually grow as filaments, and form zoospores 

without flagella or cell walls. 

• Entomophthoromycotina, Zoopagomycotina and Kickxellomycotina: With similar 

characteristics as the mucoromycotina. Entomophthoromycotina are insect 

parasites, Zoopagomycotina are fungi and animal parasites and Kickxellomycotina 

are also fungi and animal parasites with the addition of also being saprobes. 

• Glomeromycota (34): They are one of the most ecologically important mutualists 

since they form the arbuscular mycorrhizae with the roots of most of the plant 

species.

11
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• Dikarya: The most studied fungal phylogenetic group, its members are 

characterized by the lack of flagella and the formation of filaments with cells that 

have 2 nuclei, which constitutes a good part of their life cycle, but they can also be 

unicellular. This fungal subkingdom is further divided into two phyla: Ascomycota 

and Basidiomycota. Ascomycota are characterized by the formation of ascospores 

inside a sac like structure and have adapted to every lifestyle present in the fungal 

kingdom, from parasites to mutualists.  Basidiomycota are characterized by their 

sexual reproduction via specialized cells called basidia and have also adapted to a 

variety of lifestyles except for mutualism. There are many important species in this 

clade, like Penicillium or Saccharomyces, which are of great value to humans, or 

Fusarium, Coccidioides or Malassezia, which are parasites and have a negative 

impact for humans.

As we can see in the above list, the different kinds of heterotrophic nutrition are distributed

through all the phylogeny, except for a few clades. A more detailed tree of the fungi where 

the orders belonging to each clade are showed can be seen in Figure  2.

Owing to extensive amount of fungal variability, repeated adaptation to similar 

environments and WoL, and the relatively small genome size, there are good reasons to 

believe that fungi would be ideal candidates in which to study convergent evolutionary 

events. 
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Figure 2: Current fungal classification based on the phylogeny from AFToL (left) and 
James et al (144) (right).(32)



Networks

Networks can provide a relatively simple representation of complex processes, so that we 

can better understand the interactions of the individual nodes in the network (35). Each 

member of the group of objects being studied is called a node of the network, and all the 

relations that connect a node to other nodes are called edges as it is shown in Figure 3. 

Edges can represent many types of interactions between nodes, from relations between 

people to gene homologies (36, 37).  The particular networks of interest for this project, 

biological networks, often have two properties that separate them from other types of 

networks: they have few nodes with many edges and many nodes with few edges following

a power law distribution (scale-free networks) and have the small world property (the 

average node distance is small compared to a random network of the same size). They also 

tend to form communities or modules, which are regions of a network of highly 

interconnected nodes and the nodes within these communities are likely to share some 

kinds of trait or characteristic  (i.e.  function) (38, 39).

The main tools that are typically used to analyse networks are the topological measures of 

the network (38, 40, 41). These measures can be used for instance, to check how well a 
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Figure 3: Example of a network. The circles represent nodes (i.e. genes, proteins) and the 
connections between the nodes are the edges. Darker nodes have higher degree. This 
network was generated using Gephi (145). 



node is integrated in the network (Degree, betweenness centrality), or to identify and 

measure the shortest path between nodes (distance) or how well interconnected the nodes 

are (clustering coefficient). For example, nodes that are highly connected in the network 

can be of particular interest since they may be essential pieces in a given process.  The 

identification of communities of genes can indicate that the genes in the community might 

be related by function or they might possess similar genetic elements that govern their 

regulation. Additionally, many communities can be linked to particular pathways, functions

or processes. It is also possible to identify patterns in the network (called motifs) such as 

loops. Thus, analysing the topological features of a the network can uncover properties of 

complex biological systems and help to detect key genes that play a central role in 

pathways, functions or diseases.

Network theory then provides us with tools that, when applied to networks, can decipher 

the underlying information contained in them allowing us to interpret results. The main 

measures we will be using are:

• Degree: the connections that a given node has with other nodes, the higher the 

number of connections the higher the degree.

• Betweenness centrality (BC): Measures the number of shortest paths that go 

through a node for all the possible shortest paths connecting every node in a 

network. The higher the BC the more centric a node is in the network structure. 

It follows the Equation (1) of a node v where σst is the total number of shortest 

paths and σst (v) is the number of shortest paths between s and t that go through 

v.

• Modularity: Serves to obtain communities from the network, defined as regions 

of highly interconnected nodes that connect more to nodes within the 

community than to nodes in the rest of the network. Modularity also measures 

how well connected are the nodes within the communities. 

• Connected components: Measure to check for the number of sub-networks in a 

network that are independent, so they do not share connections between them.

15
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By using these measures we can obtain a good amount of relevant biological information. 

Modules or communities in network theory are known to be related to some characteristic 

or trait, like taxonomy or function (42). The degree and BC can be used to search for the 

most connected and central genes in the network or communities. By combining these 

measurements, we can associate communities in the network with that are related to 

relevant traits and then we can find central genes within the community structure, as is 

done in other fields in biology (43–45). These genes often have a relevant function for the 

trait that the community is related with.

For this project I was interested in using two types of networks. First, bipartite networks, 

which are a type of network in which two independent groups of nodes connect to each 

other, but do not allow for nodes within the same group to form edges (46). An example of 

a bipartite network can be seen in Figure 4, which can be a representation of, as an 

example, a network that connects proteins to pathways, but not proteins to other proteins or

pathways to other pathways.  Due to this property, bipartite graphs cannot form clusters as 

they are defined in unipartite networks (networks with only one group of nodes, e.g. a 

protein similarity network). Clusters in unipartite networks are defined as regions of highly

interconnected nodes measured as the coefficient of the number of triangles (three 

interconnected nodes) found in a region respecting all possible triangles in the region, since

the minimum number of interconnected nodes in a bipartite network is four (47, 48). To get

around this issue, some other definitions for clustering have been made for bipartite 

graphs, for example the ratio between squares (four interconnected nodes) and three paths 

in the network (48, 49). Bipartite graphs do tend to form communities (47). Bipartite 

networks can also be collapsed in what is called unipartite projections, where one group of 

nodes is removed and edges are drawn between nodes of the other group if they were 

linked to the same node in the removed group. In our project, a bipartite network can be 

constructed by linking groups of proteins with high sequence similarity to the plasmids 

where they are found. In this way, we relate traits of particular plasmids such as 

pathogenesis to proteins or, potentially, to other types of nodes like gene families or 

proteins regions. In other words, if a protein is found to be related to several plasmids with 

a particular trait, we can link the protein to the trait.
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The second type of network we used was association and disassociation networks, which 

can be particularly helpful to detect convergent evolution events. Unlike bipartite 

networks, Association networks have only one type of nodes. Instead, Association 

networks link genes to other genes by their tendency to appear together more often than it 

is expected by random chance. To avoid making gene associations with genes that only 

appear together because they are specific to the same phylogenetic clade, the phylogenetic 

relationships of species in the dataset are taken in account. Therefore, association networks

can be used in a similar way to Genome-wide Association Studies (GWAS) where certain 

genes or proteins are tied to particular traits or phenotypes. In our case, it is assumed that 

proteins appear together in species because there is some benefit in having both of them 

that is reflected in the fitness of a species. It could be that both proteins are required for a 

pathway to function, or that one gene enhances the function of the other. In contrast, 

disassociation networks try to find nodes that avoid being in the same genome more than it 

is expected by random change. In this case, proteins would have negative effects on the 

fitness of a species if they are found together. It may be that both proteins have opposite 

effects in a same trait, or they may cause toxicity when found together. It is also possible 
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Figure 4: Example of a bipartite network. In this example there are
two groups of nodes, letters (left) and numbers (right). Edges can 
be formed between nodes of different groups, but not within nodes 
of the same group.



that redundant proteins are eliminated by natural selection, since they can be costly for the 

individual. In prokaryotes, co-incidence networks have been successfully used to detect 

functional associations between proteins (50–52) and to associate the presence of certain 

functions with habitats (53, 54). However, in order to detect events of convergent 

evolution, considering only protein co-occurrence in the phylogeny is not enough. In 

convergent evolution, genes and proteins evolve in a similar way in species that have a 

relatively distant common ancestor, where the similarity between the genes and proteins 

cannot be attributed to the common ancestor.  In events where groups of proteins co-occur 

or co-avoid but also share a recent common ancestor, the presence or absence of a group 

proteins can be explained simply because of common ancestry and not because of 

independent similar adaptation. Therefore, we sought to find groups of co-occurrence or 

co-avoiding proteins that do not share a recent common ancestor, thus increasing our 

chances of finding convergent evolution events that could be linked to convergent 

evolution. The program we chose to find convergent evolution events is CoinFinder (55), a

software program that can detect phylogenetically independent association and 

disassociation events in groups of genes or proteins from a given similarity network and a 

phylogeny. The main advantages that CoinFinder has over other similar programs is that it 

is scalable, which allows its use with large datasets. Other similar programs like Copap 

(56) were also considered for the project, but Copap can only detect co-occurrence, is not 

as scalable and much more computationally intensive than CoinFinder, which makes 

Copap unsuitable for our dataset. There have been previous attempts to use co-occurrence 

and co-avoidance networks to find genes linked to fungal pathogenicity (57), but this study

did not take into account the phylogenetic independence of divergent and convergent genes

and therefore it is hard to discern if some results are linked to common ancestry or are 

actual events of convergent evolution.

Phylogenetics

As stated in the previous section, CoinFinder needs a phylogeny to be able to detect 

phylogenetically independent associated and disassociated genes in a given network. Since 

the fungal phylogeny is still under discussion (58), we decided that the best course of 

action would be to make a phylogeny of the species present in our dataset. 
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Phylogenetics is a field of systematic biology that aims to produce phylogenetic trees, 

which represent relationships between different biological entities according to their shared

evolutionary history (59, 60). Phylogenetic trees have been used mainly in taxonomy but in

recent years there have been appearing new applications like in epidemiology (61) or 

linguistics (62). In the case of this project the phylogenetic analysis was be used to infer 

the phylogenetic relationships of the fungi.

The phylogenetic trees are represented in phylograms or cladograms in which each 

biological entity is represented by a node. All the nodes in the tree are joined by branches, 

which split representing speciation events, forming a hierarchy of the taxa in the tree 

related by their shared evolutionary history. Nodes in the very tip of the branches are also 

named leaves or taxa, and usually represent species.

In the early stages of the phylogenetic field, phylogenetic trees were obtained using the 

only available data: morphological characteristics from the organisms. With the first 

sequenced DNA fragments, it was proposed to use changes in the DNA sequences as an 

objective comparison of phylogenetic relationships between species, giving birth to the 

field of molecular phylogenetics (63). The development of sequencing and the invention of

PCR made it possible to obtain the genetic sequence of whole organisms, which were 

incorporated to molecular phylogenetic trees. In recent years, the appearance of next 

generation sequencing (NGS) techniques has produced a remarkable abundance of 

sequenced genomes of many organisms, which has further transformed the field of 

phylogenetics in to phylogenomics (64). 

Before the appearance of NGS only a few chosen genes or proteins could be used for 

phylogenetic inference, which carried with it the disadvantage that sometimes the datasets 

did not have enough informative sites to obtain a robust phylogenetic tree. Additionally, 

the scarcity of data had the potential to introduce sampling bias. Due to the current 

availability of fully sequenced genomes, the number of genes and proteins that can be used

for phylogenetic inference has increased accordingly. This abundance ameliorates the 

previously mentioned problems of phylogenetics, by providing large numbers of 

informative sites to infer robust phylogenies whilst also reducing the potential for sampling

bias. Additionally, phylogenomics can be used for comparative genomic analysis to 

elucidate the function of genes and proteins. 

With particular regard to the fungi, they have played a central role in the development of 

eukaryotic genetics and phylogenetics due to the use of S. cerevisiae as an eukaryotic 

model organism (65). Both the first sequenced nucleic acid sequence and the first 
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sequenced eukaryotic genome were achieved using S. Cerevisiae in 1965 and 1996 

respectively (66, 67). Later, many of the early sequencing efforts were centred around 

fungi, due to their relative simplicity when compared with other eukaryotes (68–71). These

early efforts provided enough data to perform molecular phylogenetic analysis of the fungi,

as well as the use of comparative genetics to predict the function of many of the sequenced

loci. Nowadays fungi are still one of the most sequenced groups of organisms with projects

like the 1000 FGP, which is used in this study.

In order to obtain a phylogenetic tree for a set of taxa, the tree has to be inferred by 

identifying and quantifying changes in the DNA or amino-acid sequence of the taxa. To 

check for changes in sequences of several proteins or genes, the sequences first must be 

aligned to identify homologous nucleotide or amino-acid positions in different sequences. 

This process is called alignment, and by aligning sequences we are trying to compensate 

for the effects of sequence modifications (insertions, deletions, etc.) that can have 

happened to the same protein or gene in different species. Once an alignment is complete, 

we can systematically examine every possible tree topology for a set of taxa if the number 

of taxa is small. However, as the number of taxa increases the number of possible trees 

grows exponentially. An exploration of all the possible trees is not feasible with bigger 

datasets so searches of treespace for these datasets are carried out using heuristics. By 

using heuristics, we are not searching for the best tree amongst all possible trees, but 

instead we are scouting for the best tree or set of trees using an approach that reduces the 

size of the search space. For this purpose, several methods have been developed since the 

first uses of phylogenetics. All these methods use nucleotide or amino-acid substitution 

models of varying complexity that simulate the evolutionary process to generate and score 

phylogenetic trees based on how well the tree fits the given dataset, but the scoring and the 

process vary between methods. 

Phylogenies can be inferred through several methods. The two most popular methods for 

phylogenetic inference are alignment based methods: super-matrices and super-trees. In 

super-matrices, several protein or gene sequences are aligned and concatenated together in 

what is called the super-matrix, and a phylogenetic search is carried on this matrix (65). 

The most widely used methods used in heuristic tree searches in molecular phylogenetics 

applied to super-matrices nowadays are maximum likelihood and Bayesian inference. In a 

maximum likelihood search the different phylogenetic tree parameters are modified 

randomly, and the tree is then assessed for its likelihood to fit our data in search of the 

most likely tree. Bayesian inference uses instead a Markov Chain Monte Carlo (MCMC) 
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process to randomly change tree parameters in search of a set of likely trees given our 

super-matrix alignment (posterior probability of the phylogeny), which can then be used to 

obtain a consensus phylogeny for our dataset. Super-matrices use direct evidence from the 

sites in the alignment and are especially useful the resolution of deep phylogenies. 

However, the need of these methods to use of sequences present in every organism in the 

dataset limits the number of genes and proteins that can be considered for the analysis and 

may induce some compositional bias. 

Another approach to calculate phylogenies is super-trees (72). This method combines 

previously generated single gene or protein phylogenetic trees (gene trees) whose 

phylogeny is individually inferred using methods like the previously described maximum-

likelihood or Bayesian inference. The gene trees are posteriorly combined into a super-tree,

which takes the branch splits for every gene tree and combines them by using different 

methods, like parsimony or Bayesian inference. Since super-trees use individual Gene 

trees, which do not have to include all the taxa in the dataset, they are more flexible by 

allowing the usage of a higher number of candidate sequences for the analysis. However, 

super-trees are generally less likely to resolve deep phylogenies than super-matrices and 

they do not retain direct evidence from the alignment to support the tree topology. 

Other less popular approaches to phylogenetic inference that do not rely on alignments to 

infer a phylogeny are Gene Content and Composition Vectors. The Gene Content approach

assumes that taxonomically close species should have a similar composition of genes, thus 

having more shared genes than more distantly related species. Based on this assumption 

some approaches like a presence-absence gene matrix or a distance matrix based on the 

shared genes amongst all species in the dataset can be used to derive a phylogeny.  Gene 

Content based method can use additional information present in the genomes that other 

sequence-based methods overlook, but they also ignore more detailed phylogenetic 

information present in the sequence. Furthermore, Gene Content assumes a simple process 

of evolution so some evolutionary events like the loss and posterior reacquisition of a gene 

in a species could induce errors. 

Finally, Composition Vectors, which instead of using alignments, its focused on the 

particular characteristics that each species has in its sequence, and that phylogenetically 

close species would have similar characteristics. These characteristics are usually measured

as the frequency of certain short DNA or peptide sequences, or the use of particular protein

folds. These characteristics of each genome are measured in a composition vector, which 

can be then compared with other genomes by calculating the differences using a distance 
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matrix. The main advantage of this method is that by searching in the whole genome, 

removes any bias that could have been introduced by the selection of genes for the 

analysis, like it happens in super-matrix approaches, in addition of being fast even in large 

datasets. However, Composition Vectors are still susceptible to composition bias and need 

to be validated with previously inferred phylogenies, so its accuracy is low.

Alignment based phylogenetic methods are constantly being improved upon by using 

newer and more complex nucleotide and amino-acid substitution models that can simulate 

the evolution process more accurately. However, in some cases a single model is not 

enough to accurately form a phylogenetic hypothesis for an alignment. Phylogenetic 

hypotheses that only use one substitution model, called homogeneous models, are making 

the assumption that all the proteins or genes in the alignment evolve at similar rates and 

that these rates are the same across the phylogeny. In recent years, with the increasing 

availability of computer power, new methods that consider more than one substitution 

model are being used. Models that can account for more than one substitution model are 

called heterogeneous models. There are two types of heterogeneous models: data-

heterogeneous and tree-heterogeneous. Data-heterogeneous models consider that different 

biological entities in an alignment (like genes, proteins or different regions of a gene or a 

protein) can evolve at different rates. Therefore, these models can assign a different 

substitution model to each biological entity in the alignment. Tree-heterogeneous models 

consider that the rate of evolution of the same biological entity can vary in different parts 

of the taxonomy of a biological group, and can assign several substitution models to the 

same biological entity to allow for rates to change across a phylogenetic tree. Currently, 

there are methods that combine both data and tree heterogeneous models like P4 (73). In 

the case of our fungal dataset, Microsporidia and Cryptomycota are notoriously hard to 

place in the fungal phylogenetic tree due to their nature as intracellular parasites, which has

led to genome reductions, loss of their mitochondria and high nucleotide substitution rates 

when compared to the rest of the fungi (74–77). As high substitution rates can be 

problematic when doing phylogenetic reconstruction (78, 79), heterogeneous models were 

useful to place these groups in the fungal phylogeny with high confidence.

By using a data-heterogeneous and tree-heterogeneous model for the phylogenetic analysis

of the fungi we aim to provide a robust phylogeny of the fungi that helps to resolve some 

of the most contested branches over the last years. Once we obtain a robust fungal 

phylogeny it will be used in conjunction to a fungal sequence similarity network to find 

sets of co-occurring and co-avoiding genes that are phylogenetically independent with the 
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intention of finding sets that are related to a particular ecotype.  These coinciding and co-

avoiding genes are potentially related by function to one another, which will potentially 

allow us to discover similar functional independent adaptations to a particular 

environment.

Plasmids

On account of the computational and time consuming nature of many of the steps in the 

analysis of the fungal dataset, mainly owing to its big size, we decided to test some of the 

methods that would be used in the project on a smaller dataset. For this purpose, we chose 

to analyse a plasmid dataset using networks. Plasmids are small DNA molecules that do 

not belong to the chromosome of any organism and can be found freely in the 

environment. Plasmids can be found in cells of all domains of life (80) and can be 

transferred to other cells, so they play a role in horizontal gene transfer (HGT) (81). 

Because they can be transferred to and from cells within the same generation (lateral gene 

transfer), plasmids are also important in the exchange of genetic information and can affect

the chromosomal DNA evolution (82). Plasmids usually carry genes that provide a 

beneficial impact to their host organism fitness (83), and are frequently replicated by the 

host. Because plasmids can carry genes that are beneficial to their host organisms, events 

of co-evolution between the plasmid and the host can occur, where both the plasmid and 

the organism adapt to the functions provided by a plasmid (84). Plasmids are not able to 

replicate by themselves and need a host organism in order to replicate, which makes 

plasmid evolution different to cellular life evolution (85). Because plasmids can’t replicate 

by themselves, they do not encode the molecular mechanisms necessary to do so. As a 

consequence, there are no gene families that are common across all plasmids, unlike 

cellular evolution where certain conserved gene families can be found in all known 

organisms (86, 87). Despite plasmids needing a host to replicate, they carry their own 

origins of replication (88).

Both plasmids and their hosts can form communities where there exists preferential sharing

of genetic material (89). This communities are not linked to the physical proximity of a 

replicon but rather to characteristics of both plasmids and hosts, such as genome size, 

similarity of GC content, type of nutrition (heterotrophic or autotrophic) and oxygen 

tolerance (90). These communities can be rapidly changing since many plasmids possess 
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promoter regions that enable rapid evolution (91, 92). Additionally, the relationship 

between a plasmid and it hosts can change over time, due to adaptation and recombination 

between the hosts and the plasmids (93), where hosts can incorporate plasmid functions 

into their genomes and plasmids can acquire DNA segments from the host’s chromosome 

(94–96).

Because conserved genes do not exist amongst the plasmids, it is impossible to use 

phylogenetic methods to discern the evolutionary relationships between plasmids. 

However, by using sequence similarity networks where we can relate plasmids without 

needing a common pool of genes present in all plasmids, we can discern the evolutionary 

dynamics that happen in the genetic material exchange between plasmids and their hosts, 

and what factors influence these dynamics. By using bipartite networks, we can link the 

functional information from the proteins with the taxonomy and ecological niche of each 

species to try to find what characteristics define communities of genetic material exchange.

ERGMs

As a way to further investigate which factors are affecting the interaction between plasmids

and their hosts, we decided to use Exponential Random Graph Models (ERGMs) to 

simulate how the physical properties of amino-acid and nucleotide sequences affect the 

plasmid network (97, 98). ERGMs can indicate if an attribute of the nodes in a network has

a significant effect on the formation of connections and quantify this effect. 

First, ERGMs calculate the base probability of a node forming a link with any other node 

in the network. Then the models check how different attributes of the nodes modify the 

base probability of a link. Attributes of nodes in a network are represented in the models as

“terms”, which can interpret either continuous (numeric values) or discrete (e.g. functional 

categories) attributes. Furthermore, an attribute can be represented in the model by two 

different kinds of terms: one that measures variance of degree and another that measures 

homophily. For the first type of test, the covariance of degree between nodes is measured, 

this term being more positive the more likely nodes with high value in an attribute are to 

form a link in the network. The homophily terms measure how likely two nodes are to 

form a link with regard to how similar or dissimilar their attributes are. When an 

homophily term is negative, it indicates that nodes with similar values are more likely to 

form links and the opposite for positive values, nodes with dissimilar values are more 
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likely to form links. The model is calculated using a combination of terms for different 

attributes, and then a score is assigned to the model to check how well it represents the 

degree distribution of the original dataset. For this purpose, two different scoring methods 

are used, the Akaike information criterion (AIC) and the Bayesian information criterion 

(BIC). These scores both indicate a better model fit to the data the lower in value they are.

In summary, we aim to assess the of use networks to draw evolutionary relationships where

traditional methods cannot be used, helping us identify the inherent evolutionary structure 

of the plasmids. Furthermore, by using ERGMs we can also identify the properties of the 

sequence of the plasmids, and not only their function, play a role in the benefit that 

plasmids provide to their hosts.

The plasmid section of the project was conducted as a collaboration between the author of 

the thesis and another member of the McInerney lab, Martin Rusilowicz, who appears as a 

co-author of the paper that resulted from this chapter in the results section. The sections 

that Martin carried out, the plasmid co-occurrence network and functional annotation of 

the plasmid communities, are only discussed in the corresponding paper in the results 

section. The parts that the author of the thesis performed will be the parts analysed in the 

discussion section of this thesis. Meanwhile, the fungal sections of the thesis, namely the 

fungal phylogenetic tree and the fungal co-occurrence networks, were carried out by the 

author of the thesis in their totality.
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Results

Resulting from the analyses performed in this thesis several articles were written. As these

articles were being written as the analyses were being finished, and because the follow the

progression of the work performed in this project (method testing, phylogenetic analysis,

co-occurrence networks) as discussed in the introduction, I decided that the alternative

format was better suited for the presentation of this work. The resulting articles written in

the duration of this project are presented in the following section.
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Abstract

Plasmids, unlike cellular genomes, have no set of core genes common to all. Nonetheless, 

many genes are shared among plasmids in a complex network reflecting the co-evolution 

of plasmids and their hosts. In this study we sought to create a map of the gene sharing 

relationships between plasmid genes across a broad range of plasmids in order to 

characterise the gene sharing patterns in plasmids. We combined BLAST data with gene-

ontological and taxonomic information to generate plasmid-gene networks and used multi 

and univariate analyses to investigate the underlying structure of these networks. 

Structured plasmid gene networks of a non-stochastic nature were identified, formed 

through taxonomic and functional relations of the underlying genes. These networks 

uncover some of the mechanisms underpinning plasmid construction and offer new 

insights into the dependencies of their underlying genes and functions.
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Introduction

Plasmids are found in all three domains of life (1). They possess their own origins of 

replication, and usually multiply with the assistance of host mechanisms (2). In addition, 

they can be transferred to other cells, a form of horizontal gene transfer (HGT) (3). The 

mobile nature of plasmids makes them important agents of genomic evolution (4). 

Plasmids can carry genes with a selective advantage to the host (5); encoding, for example,

mechanisms of resistance to toxins or antibiotics. These new genes can induce co-evolution

between the plasmid and the host to adapt to the new functions, like reducing the cost of 

antibiotic resistance  (6). The absence of an ability to replicate independently of a cellular 

host makes plasmid evolution different in many respects when compared with the 

evolution of cellular life (7). One significant difference between plasmids and host 

chromosomes is the absence of a core mechanism to drive replication, transcription and 

translation. A consequence of the absence of genes for core organismal functions like 

replication, transcription and translation is that there are no gene families that are 

universally distributed across all plasmids (8). This contrasts with cellular organisms, 

where several genes are universally distributed (9).

Genetic exchange communities exist for both plasmids and bacteria. Preferential sharing of

genetic material is correlated with numerous factors, including genome size, similarity in 

GC content between the ‘host’ and ‘donor’ molecules, carbon utilization 

(heterotroph/autotroph), and oxygen tolerance, rather than physical proximity within a 

replicon (10). However, the plasmid landscape is dynamic and plasmids are known to 

contain certain promoter regions that facilitate rapid evolution (11, 12) and evolutionary 

pressures on both plasmid and host permit relationships to develop within observable time-

frames between previously unfavourable pairings. Perhaps most importantly, plasmids 

carry a variety of factors that facilitate recombination with the host genome itself (13). 

With respect to antibiotic resistance, plasmids offering some benefit to the host can be lost 

due to incorporation into the chromosome (14). Conversely plasmids themselves present as

a mosaic of DNA acquired from their different host lineages (15, 16). 

Recently there have been calls for a more rigorous nomenclature for plasmids, on account 

of the lack of standardised annotations and naming conventions and also the absence of 

analogy to the taxonomic hierarchy applied to genomes (1, 17). Our objective here is not to

create a new plasmid classification, but the complexity of the co-evolutionary relationships

we are addressing underlies the historic challenges of plasmid classification. Firstly, the 
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classification of plasmids is not straight-forward and there are two principal reasons. 

Firstly, we cannot simply infer phylogenetic relationships from a set of universally 

distributed genes and use these phylogenies as a proxy for the evolutionary history of the 

plasmids themselves, because such genes do not exist.  Secondly, we know that plasmids 

frequently exchange DNA with host chromosomes, and with other plasmids and viruses 

(18), so a single phylogenetic tree cannot capture the complexity of plasmid evolutionary 

history. Nonetheless, several classification approaches are used for plasmids (8, 19–21).  

One of the most important systems depends on the idea of incompatibility (Inc) groups, 

which partition the plasmids based on their origin of replication (22). Additionally, gene 

sets common to specific subgroups of incompatibility types have been found. For instance, 

shared functionality and synteny has been demonstrated between plasmids of the IncW 

group (17).  

Here we take a novel approach to plasmid evolution by considering the totality of genes in 

every plasmid. We allow for HGT by not forcing a tree structure onto the data, where 

clearly a treelike structure does not exist. Instead, we use two different network structures 

in order to understand the distribution of genes among plasmids. We use a sequence 

similarity network (SSN), which have been used previously to detect relationships between

proteins (23, 24), and we use a multipartite network structure that represents co-occurrence

relationships (25). Although we do not have a universal set of genes common to all 

plasmids, we find that plasmids can form large networks, with identifiable communities, 

which do not fully map onto any existing classification system. Using aggregate statistics 

from the real networks, we model the factors that constrain and shaped the evolution of 

these networks. To this end, we investigate both the unipartite network of sequence 

similarity, the bipartite network of genes and plasmids and the multimodal network of 

sequence association, taxonomic dependency and ontological categorisation, depicted in 

Figure 5.
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Figure 5: Metagraph showing the multimodal network of the plasmid genes. Boxes 
designate nodes and lines relationships. The dashed lines indicate some of the projected 
relationships, which can be entirely inferred from the other relationships in the graph. 
For example, a Family can be considered to be enriched for a particular GO category 
when a defined significant proportion of Genes which are members of that Family are 
also members of the GO category. 

Network models

Plasmids consist of sets of genes and in that respect, they have some similarity with 

scientific papers that contain sets of authors (26), food recipes that contain sets of 

ingredients (27–29) and disease states that are influenced by distinct sets of genes (30–32). 

In each of these cases, we can use bipartite networks to explore the relationships between 

the groups. Bipartite networks are a network in which the edges explicitly connect 

elements between two groups X and Y, but not within the set X or the set Y (33). In the 

current study, we have used a bipartite network of gene families connected to their 

plasmids. 

Analysing bipartite networks presents particular challenges. One approach is to decompose

them into two different unipartite networks or unimodal projections. A unimodal projection

of a bipartite network connects two nodes within a group if they were both linked to the 

same node in the other group in the bipartite network. Using the example from the last 

paragraph, we could obtain two different unipartite projections: one that will connect 

proteins that share a common pathway, and one that will connect pathways that share a 
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protein in common. In such unimodal projections community structure can be assessed by 

finding whether there are sets of highly-connected nodes within the overall network 

structure. Thus, clustering coefficients can be calculated as the ratio of the number of 

triangles (three connected nodes) in the network compared with all possible triangles in the

network. Bipartite networks do not form these kinds of clusters since the minimum number

of nodes in a bipartite network capable of forming an interconnected group of nodes is four

for which a traditional clustering measurement cannot be used (34, 35). Although bipartite 

networks cannot form triangle-based clusters, they can form communities (34). To get 

around the issue of defining communities in bipartite networks, some other definitions of 

clustering have been made for bipartite networks, for example the ratio between squares 

(four connected nodes) and three paths in the network (35, 36). By constructing bipartite 

networks and their unimodal projections of plasmids and their genes, we will explore the 

connectivity between genes and plasmids in a number of ways.

Once a network has been constructed, we wish to understand the most important factors 

that have contributed to the structure we observe in our network. Of particular interest is 

the link between the attributes we observe in the plasmid dataset (say, the base composition

of the genes in the plasmids) and the likelihood that these features were important in 

structuring the network, or whether the features are purely incidental. We have employed a 

type of logistic regression called an Exponential Random Graph Model (ERGM) (37, 38). 

ERGMs can quantify the significance of an attribute and its effect on the formation of 

edges in the network. ERGMs involve the calculation of the base probability of a node 

forming an edge with any other random node in the network. The presence of a feature, 

such as high GC content, might increase the probability of two particular nodes being 

connected while its absence would reduce this probability. ERGMs were used in 

conjunction with the metadata associated with each plasmid and its genes, in order to 

investigate the factors that affect plasmid evolution. The ERGM approach uses “terms” to 

fit the attributes into the model. The terms vary depending on whether the attribute is 

continuous or discrete. For each attribute, an ERGM can compute how it affects either 

degree (number of edges per node), or homophily (e.g. if big plasmids preferentially attach

to, or do not attach to other big plasmids). The attributes used for the ERGMs in this study 

are plasmid size, protein length, protein isoelectric point (in order to check for acidic or 

basic environments), protein hydrophobicity (Kyte-Doolittle scale, in order to check for 

membrane proteins and environments) and the theoretical protein cost (i.e. expected energy

required for synthesis of the constituent amino acids, to check whether very expensive 
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proteins are avoided in favour of cheaper ones, or whether expensive proteins avoid 

sharing the same plasmid).

The last approach we have used to explore the plasmid network was an analysis of gene 

co-occurrence. This refers to the case when homologs for two or more genes exist in the 

same genome at a frequency that is higher than we would expect by chance. Genes are 

found together on the same genome either because they are independently important to 

their host, or because they interact, and this interaction provides some measure of benefit. 

Recombination and HGT can, and indeed do, bring genes together in new combinations 

and we expect that in some cases natural selection will act to keep these genes together, if 

the effect on the host is beneficial. Computationally generated gene co-occurrence 

networks can be constructed directly from presence/absence data (39), by inferring co-

incident (higher than chance) relationships (40) or by using correlation analysis to filter out

indirect relationships (41).

Networks of gene co-occurrences provide a means to explore the patterns and groupings of

gene interdependencies. Network level patterns relate to functional and taxonomic 

groupings, ecology and evolution, while individual gene-gene relationships can reveal 

specific mechanisms such as bacterial resistance or toxin-antitoxin systems (42, 43).
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Methods

Data acquisition 

The dataset used in this study was taken from NCBI and encompasses all plasmids for 

which the complete genome sequence is available (n = 4393, December 2014). The dataset 

comprises the amino acid sequences of all 338,930 proteins predicted to be encoded by 

these plasmids. Functional annotation metadata was obtained from Uniprot (44). Isoelectric

point (pI), hydrophobicity (Kyte-Doolittle scale) and theoretical protein cost (calculated 

using the cost of amino acids in Escherichia coli) were estimated using the packages 

Seqinr and PeptideS (45, 46). The database of taxonomic classifications was acquired from

NCBI and the GO hierarchy was downloaded from The Gene Ontology Consortium (47, 

48).

Data processing

Sequence similarity was established using BLASTP v2.4.0 (49) using an e-value cut-off of 

1×10-5. The BLAST output was formatted to leave only edge information and e-values for 

each entry. The resulting file was clustered using Markov Clustering Algorithm (MCL) 

version 14-137 (50) with an Inflation value (I) set to six. The clusters reflect substantial 

amounts of homology, though recombination means that proteins with homology (usually 

partial homology (51)) to proteins within one cluster can sometimes also belong to a 

different cluster. Recombination has made unambiguous protein cluster delineation 

impossible. For our purposes, these MCL clusters were used as a proxy for groups of 

evolutionary homologous proteins. We use the term “protein family” or simply “family” 

throughout the text to indicate these MCL clusters.

Bipartite Networks

Following the delineation of families using MCL, a bipartite network was built using 

plasmids and families as the two sets of nodes for both plasmid datasets. The edges were 

obtained using GenBank files in order to identify the families contained in each plasmid. In

other words, an edge in the bipartite network corresponds to a protein family where a 

constituent protein is found on the plasmid to which it is linked. In addition, unipartite 

projections for both plasmids and families were derived from the networks. These 
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unipartite projections were only used to make ERGM models. Community structure within

the bipartite network was ascertained using NetworkX  (52) and a modularity measure that 

is based on the Louvain algorithm (53), which also detects communities within the 

network. Degree centrality and betweenness centrality were also calculated for every node 

on the network with NetworkX.

A custom script was made to check for taxonomic recall and precision measures of the 

communities. The script assigns the particular taxonomic rank (species, family, order…) 

for all plasmid hosts that are present in a module and compares them with the rest of the 

modules in the network. The program then reports sensitivity as the ratio between the 

frequency of a host species in the focal module compared with the presence of that species 

in the whole network and precision as the ratio between the focal host species and the total 

number of species present within a module. 

ERGMs

ERGMs were built using the R package Statnet (38) version 2016.9 using the protein and 

plasmid metadata, and the modules and edges from the bipartite network. We built several 

models with different combinations of attributes in order to find the model that best fits the

original network.

An attribute can have both a term for degree and another term for homophily. For degree 

terms a higher positive score indicates a higher chance of high degree nodes being 

connected by an edge while a negative value indicates a lower chance of high degree nodes

being connected to each other by an edge. For homophily a higher positive Homophily 

score indicates that nodes with different values are more likely to form a link and a 

negative score means the same but for nodes with similar attributes. After the model is 

computed, the package uses the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) to measure how well the model fits the original data. The lower

the values of these criteria, the better the model fits the data.

The final model was built using nine different terms, including terms such as degree effect 

of the molecular size, pI (Acid and Alkaline), theoretical protein cost (according to the cost

of amino acids in E. coli), hydrophobicity and number of proteins in a family for the 

protein families, and plasmid size and GC content (High or low) for the plasmids. Because 

the bipartite network model failed to converge when homophily terms or functional 

categories were included the unipartite projections were used instead to explore homophily
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in the network. The unipartite projection models were calculated using the terms described 

before for both the degree and the homophily terms. A bipartite model was used for further 

analysis in which homophily terms were excluded.

Coincidence network

Due to ERGMs not being able to model the functional properties of the families we 

explored the “coincidence” of different gene families on the same plasmids to check how 

the functional properties of the families shape plasmid interactions. We define coincidence 

as the observation that the presence of one gene family in a plasmid results in a 

significantly higher probability that another gene will be seen on the same plasmid. Once 

significance of this association is determined, we then construct a coincidence network 

where significantly cooccurring genes are represented as nodes linked by an edge. By 

creating a coincidence network, we were able to investigate the co-selection of the genes 

with one another.

The gene connected families themselves may be computationally inferred using the 

BLAST similarity network, which in our case were the isolated connected components in 

the network that had a size greater than one. Ideally any particular family will solely 

comprise homologues of a single gene, however the presence partial homologs means this 

is unlikely to be the case and complicates the qualitative definition of a gene or protein 

family. While these effects can be mitigated by raising the threshold over which genes are 

considered similar, this in turn results in more connected families each of which contains 

fewer genes, which reduces statistical power and impedes the actual detection of 

coincident pairs of interesting genes. For the coincidence network we therefore define a 

gene family simply as a connected component in the gene similarity network, where two 

genes are connected in this network when they share a pre-specified degree of sequence 

similarity according to the results of BLAST.

In the construction of the coincidence network, we seek particular pairs or groups of genes 

that occur together in plasmids at a rate higher than chance alone. We begin with a multi-

partite network, with nodes representing the inferred families (F) connected to nodes 

representing the genes of which they are comprised (G):

F contains
→

G
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Additional nodes are added to this network by including the NCBI taxonomic (T) and gene

ontology (GO) classifications (O):

T contains
→

G

O contains
→

G

Given the taxonomic information now present in the network, each pair of gene families 

can thus be assigned a score based on their rate of coincidence within different taxa; read 

as the number of taxa in which genes of the two families are present in unison, against the 

number of taxa in which they are not. This score can be translated into a more accessible 

“p-value” via a binomial test, which will be outlined later.

Edges representing significant coincidences can be inferred from these scores, by drawing 

connections between families having a p-value of coincidence breaching a specified 

threshold, α. In our case α was set to a conservative limit of 0.01, modified further 

before being altered via the Bonferroni-correction to account for multiple testing.

F coincides wit h
→

F

Dropping the non-family nodes thus yields the unipartite coincidence network. This 

coincidence network was clustered into modules using the Louvain Method implemented 

in GEPHI (53)(54). The resolution of the method was set to 0.5 in order to provide a fine-

grained modularity breakdown whilst still presenting classes large enough for meaningful 

statistical analysis. These modularities (M) can be included in the network itself:

M contains
→

F

Such modularities can be evaluated in terms of the annotations of the genes they contain 

via the network path:

M contains
→

F contains
→

G contained by
→

O∨T

The same method as used earlier for gene family coincidence (i.e. Bonferroni correction 

and P< 0.01 threshold) can be used to identify ontologies and taxonomies that are linked to

modularities at rates that are higher than chance. This gives the following edges 

representing significance:

M is
→

T M is
→

O

The exact details of the determination of what constitutes significance are presented below.
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Coincidence analysis

A binomial exact test determines if the number of times an observation to a Boolean 

question differs from what is to be expected. In the present case of cooccurrence we ask 

that, given gene families a and b, that first, how often would we expect both families to 

occur together in the same plasmid if co-occurrence was based on chance alone (the “rate”,

R). Second, we ask how many observations did we actually make (the “observations”, O), 

and out of how many of those observations did we find both families together in the same 

plasmid (the “successes”, S). Finally, given the null hypothesis that our successes are 

indeed based on chance alone, we are able to calculate a standard p-value of “rejecting” the

null hypothesis.

More specifically, S is defined as the number of times gene families a and b were observed

together in the same plasmid, O is defined as the total number of plasmids in the study and 

R is defined as the expected chance of overlap based on stochasticity alone, i.e.,

R=
Fa Fb

O

where Ci is the count of plasmids in which family i is observed.

Dissociation was also calculated, using a similar procedure, with the binomial test 

parameter, S being set as the number of times either a or b were observed in isolation, O as 

the total number of plasmids in which either were observed, and R as the expected rate of 

avoidance, i.e.

Fa (O- Fb )+Fb (O-Fa )

O

Tests against ontological terms and taxonomy were carried out using the same procedure as

for the association analysis.

Randomization analysis

In order to examine the behaviours of the ERGMs and the coincidence approaches, the 

analyses were re-run using random permutations of the input data. For this process, only 

the input data was randomised - the rest of the analyses remains the same. 

100 random permutations of the plasmid network were generated by applying the 

Mersenne Twister randomisation method (55), which is implemented in python’s random 

module, to the edges of the original network. This yields 100 random bipartite networks of 
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genes and plasmids. Note that only the edges of the input network were shuffled. This 

means the gene and plasmid identities themselves stay the same, the number of genes in 

each plasmid stays the same, and the random networks maintain the bipartite nature of the 

original.

For every random network derived from the families in addition to randomising the edge 

lists of the network the attributes of both the plasmids and the proteins families were 

randomised too. To accomplish this, each of the sequence of attributes was calculated for 

every protein (hydrophily, isoelectric point, molarity and cost) and its corresponding gene 

(GC content). Since the DNA sequences of plasmids are only available for the full plasmid 

length, we used the protein-coding DNA sequences of each gene present in the plasmid’s 

GenBank files and then calculated the GC content for each protein coding sequence. Once 

these properties were generated, we proceeded to calculate the average of each attribute for

each of the randomised plasmids and protein families. Finally, an ERGM was generated 

using the randomised edge list and its corresponding attributes, emulating in an automatic 

way the process that was described to obtain the metadata. Then the ERGMs were then 

calculated in the same way as the original ERGM.

With respect to the coincidence network, all 100 random networks were subjected to the 

same coincidence analysis as the original, detecting when genes from two different 

families tended to occur in the same plasmids at a rate higher than chance alone. The 

output of this process is 100 networks, with each network containing the family nodes with

edges drawn between those families that tend to co-occur in the random plasmid networks.

Standard network analysis metrics (average degree, diameter, modularity) were drawn 

from these coincidence networks and compared with the same values calculated from the 

coincidence network of the true data.

Computation

The BLAST and MCL computations were performed using the Computational Shared 

Facility of the University of Manchester. The ERGMs and sequence analysis were done 

using the Statnet, SeqinR and PeptideS packages in R version 3.3. The ERGM automation 

scripts were written in PYTHON version 3.6. Coincidence analysis and network creation 

was performed using PYTHON, C++ and NEO4J. All code is open source and is available 
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on Bitbucket (bitbucket.org/mjr129/coinfinder). Network analysis was carried out in 

GEPHI v0.9.1 (56) and PYTHON. The networks were visualized using GEPHI.

Results

A total of 338,930 sequences were included in the analysis, spanning 4,393 plasmids 

associated with 1,646 taxa. BLAST analysis resulted in a sequence similarity network 

comprising 71,946,457 edges. After using MCL on the similarity network 78,012 protein 

families were obtained and a bipartite network was constructed connecting protein families

to plasmids that share at least one sequence in common. In total, the network was 

composed of 82,405 nodes and 297,500 edges from which a total of 83 communities were 

derived represented as different colours in Figure 6. These modules indicate sets of 

plasmids that share more similar repertoires of protein-coding genes. We obtained a 

modularity score of 0.69. This score can range between -1 and 1, negative values indicate 

less modular networks and positive more modular networks (53, 57, 58), which implies 

that our network is well divided into communities.
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Figure 6: Visualization of the Plasmid Bipartite network. In this figure a node 
can be either a plasmid or a protein. The colors represent different communities.
The most relevant taxonomic communities are highlighted.



ERGMs
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Figure 7: Random ERGM Bipartite comparison plots. Each graph represents a different term, 
where the 100 random ERGM term values distribution is represented as a blue histogram and the 
original data value for that term is represented by a red dotted line. FC is the fold change between 
the original data and the average of the randomised values.
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Figure 8: Random ERGM Unipartite Plasmid comparison plots. Each graph represents a different 
term, where 100 random ERGM term values distribution is represented as a blue histogram and the
original data value for that term is represented by a red dotted line. FC is the fold change between 
the original data and the average of the randomised values. When a term failed to reject the null 
hypothesis that it affects the network in some of the runs it is marked by n = x in the title of the plot,
where x is the number of runs in which the null hypothesis was not rejected. 



ERGM models were calculated for this dataset for the bipartite network and for both 

unipartite projections (protein families and plasmids) due to the bipartite network model 

failing to converge when including nominal homophily measurements. The ERGM results 

for the bipartite network can be seen in Figure 7. and the results for the plasmid unipartite 

projection are in Figure 8. All attributes used in the models are significant – meaning that 

inclusion of these terms helps to explain the topology of the original network in the model. 

In general, the models returned several expected results (such as bigger plasmids being 

associated with higher connectivity) and other interesting features such as high GC content

plasmids linking significantly more often to each other that would be predicted.

The ERGM model (which included the GC content, protein number, protein molecular 

size, protein cost, pI (Acid and Alkaline), hydrophobicity and plasmid size attributes for 

degree) of the bipartite network showed a substantial decrease in the AIC and BIC 

measures when compared to the base network (Base: AIC: 4,789,027; BIC: 4,789,045; 

Best model: AIC: 4,367,825; BIC: 4,368,001). However, the model that most improved 

when compared with the base network was the plasmid unipartite projection that included 

attributes GC content, protein number, protein molecular size, isoelectric point, 

hydrophobicity, plasmid size for both degree and homophily (Base: AIC: 8,771,081; BIC: 

8,771,095; Best model: AIC: 6,635,845; BIC: 6,635,999). On the other hand, the model of 

the protein unipartite projection is less useful for our project due to the high number of 

edges present in the network maing the model very computationally intensive to converge 

and the final AIC and BIC scores being too large (the scores were essentially infinite) to 

allow us to assess the quality of the model. For these reasons we focused only in the 

bipartite network and the plasmid unipartite projection models. 

The model fits to the original data degree distribution for the bipartite network and the 

unipartite network can be seen in Figure 9. For the bipartite network the model differs from

the original data in that the original data has fewer low degree nodes and more medium 

degree range nodes which the model does not account for. As for the plasmid unipartite 

projection the model also fits the original data degree distribution well, however in this 

case the medium degree values are overestimated, and the low degree underestimated. In 

this case the model is assuming a lesser number of isolated plasmids. This may be a 

reflection of the lack of medium degree nodes in the bipartite model since plasmids with 

low connections would fall in this degree range (most plasmids in the original network are 

in the 3-100 degree range), having several protein families in the same plasmid, so outside 

of the low degree range, but poorly connected to other plasmids. This means that there are 
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other properties apart from the ones considered in the model that influence the distribution 

of medium range degree in the network. This could be related to other physical properties 

we didn’t take in account or to protein function since the model doesn’t consider it.
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Figure 9: Degree distribution of the Original data (orange) and the ERGM (purple). 
The x axis represents the degree of the node and the y axis the number of nodes with 
that degree. Top figure represents the bipartite network model fit and the bottom figure 
represents the unipartite plasmid network model fit



Association Analysis

In order to carry out an analysis of the significance of association between  different kinds 

of genes appearing on the same plasmid, we found that the protein clusters provided by 

MCL were not large enough to identify associations. Therefore, when determining the 

significance of association between different kinds of genes, we define the gene families as

connected components.  Our input data consisted of 59,948 families. The largest family 

comprised 147,425 sequences, which is 43% of the total number of sequences. A total of 

41,356 sequences (12% of the total) remained isolated and not connected to any 

homologous sequence. These isolated sequences were removed from further analyses. This

left 18,592 connected families distributed across 4,375 plasmids in 1,636 host organisms.  

297,574 sequences (88% of the total) are contained within a family, with 4,375 (99.6%) 

plasmids and 1,636 (99.4%) taxa possessed at least one sequence in a family.  

Using the same similarity network that was used for the ERGM analysis, a new bipartite 

network was constructed. Families were connected to plasmids that share at least one 

sequence in common. Coincidence analysis of this network, as outlined in the methods 

section, provided a unipartite "association" network, identifying families that coexist in 

similar groups of taxa – i.e. those families present in unison at a rate greater than expected 

by chance. A second unipartite “disassociation” network was also constructed, identifying 

families that tended to avoid each other at a rate greater than expected by chance.

The association network identified 8,910 families having significant associations with 

another family, representing 48% of the total number of families, whilst the disassociation 

network identified 2,990 families presenting significant avoidance to another family, 

representing 16% of the total number of families.

The Louvain algorithm decomposed the coincidence network into 229 modules,  where

each module typically represents a set of gene families highly dependent upon one another.

These modules are explored in detail in the discussion.

Modules were annotated using the GO and taxonomic annotations of the constituent genes,

where a module was assigned a specific annotation if that annotation occurred within the 

module at a rate significantly greater than expected by chance. The resulting network and a

sample of the annotations placed upon the modules is depicted in Figure 10.
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Figure 10: Unipartite association network. Nodes represent gene families and edges 
represent significant associations between those families. Nodes and edges are colored 
by module, where each module is assigned a unique color. The labels show a sample of 
the significant GO-class and taxonomic annotations placed upon the 
modules.Percentages indicate the proportion of genes with the specified annotation.
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Figure 11: Unipartite disassociation network. Nodes represent gene families and edges 
represent significant avoidances between those families. Nodes and edges are coloured 
by module, where each module is assigned a unique colour. The size of each node is 
proportional to the number of genes within the family.



Randomization analysis

The effect size of the randomised ERGM terms and a comparison with the original 

ERGMs can be seen in Figure 7 for the bipartite network and in Figure 8 for the unipartite 

plasmid network. We expected some of the random terms to remain significant and similar 

to their original counterparts, especially those related to the size of the plasmids since size 

related properties were not affected by the randomization of the network. However, all the 

terms in the randomised ERGMs were significant in most of the randomisations, with 

similar values compared to the original ERGMs, which means that we cannot trust that the 

original ERGMs terms are really affecting the network. Despite this there are been changes

in the signs (positive to negative or vice versa) and effect sizes of some terms which could 

mean that those terms are affecting the original network because it is not random.

In the bipartite random network, the term that has changed sign is the high GC content, 

which is positive in the original ERGM and negative in the randomised ERGM. This 

means that in the original network high GC content nodes tend to link more while in the 

randomised network the nodes with average GC are the ones that have a higher chance to 

link since both high and low GC have a negative impact in the chances of forming a link. 

In addition, some terms have the same sign between the original ERGM and the 

randomised ERGM, but the effect value varies between the two reflected by the Fold 

Change (FC) that can be seen in Figure 7. In this case all the terms that change 

meaningfully (FC < 0.5 or FC > 2) have < 1 FC, meaning that their effect size is smaller in 

the original ERGM when compared to the randomised ERGM. These terms are the 

isoelectric points (Acid FC: 0.17; Alkaline FC: 0.14), hydrophobicity (FC: 0.26) and low 

GC (FC: 0.34). All these terms have negative effect sizes, which means that the higher the 

attribute’s value is, the lower the chances to form a link. Because all of them are less 

negative in the original network compared to the random one, it means that in the original 

network nodes with high values of these attributes have more chance to form a link than 

nodes with similar values in the random network, even if the effect size in the original 

network is still negative. Because of this it seems that nodes with extreme values in their 

attributes are much less prone to link by random chance, favouring nodes with average 

attributes in the random network, while in the original network this effect is less severe so 

nodes with extreme values have and increased chance to form links compared to 

randomness. In other words, in our original network genes with extreme values in these 

attributes, which are related to extremophily, are much less punished to form edges when 
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compared to randomness, or even have an increased chance to be shared in the case of high

GC. 

As for the unipartite plasmid network the terms are closer to the randomised network than 

in the bipartite. The random distributions for the terms GC content and isoelectric point 

degree are centred around 0, with GC content being more on the negative side. Because of 

this both terms have a mostly neutral effect in the random ERGM (more so that in both of 

these terms some of the models weren’t affected by these terms), leaning towards a 

negative effect in the random ERGM GC content. In contrast, in our original network 

plasmids with high values in these terms are more likely to share genes than by random 

chance. Since GC content and Isoelectric point could be linked to extremophily or at least 

adaptation to certain harsh environments it would make sense that genes that have these 

properties that help organisms adapt to their environment are more easily shared. Another 

thing to note is that the base probability in the original network is much more negative than

in the random distribution (FC: 2.25), and since ERGM base probability is a reflection of 

network density (the more positive, the denser) it means that our original network is much 

sparser than it would be randomly. This would mean that in our original network plasmids 

are much more selective with what other plasmids they share DNA, although this can be 

explained by plasmids that are not able to share DNA simply because they do not appear in

the same environments. The rest of the terms in the unipartite networks are closer to the 

random distribution, but there are some properties we would like to point out. The 

molecular size homophily (FC: 1.9) and isoelectric point homophily (FC: 1.25) are more 

negative in the original network than the random distribution, meaning that in there is a 

stronger preference for nodes with similar isoelectric point and molecular size to share 

between themselves than we would expect randomly. As stated before, Isoelectric point 

could be linked to adaptation to some environments like acidophily so it would make sense

that plasmids that appear in these environments share more between themselves. The 

molecular size would mean that there is a preference to share plasmids that make proteins 

of similar sizes, and by looking at the molecular size degree we know that there is a slight 

preference to share bigger proteins than in a random network. Finally, the effects of the 

protein number degree (FC: 0.31) and homophily (FC: 0.33) are high in the random 

network compared with the original one, meaning that one of the main drives to having a 

higher degree in the random network is simply to have more proteins. However, this effect 

is much smaller in the original one, so even if having more genes is beneficial to share 

more with other plasmids, it is not as important as we would expect, meaning that the other

terms would play bigger role in shaping the connections than in a random network. 
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The results of the random data being significant mean that we cannot discard that some of

the results from our original ERGM are significant just because of the size of our dataset.

However,  the  differences  between the  normal  and random ERGMs,  particularly  in  the

terms that have changed signs, lead us to believe that the original network does have an

underlying structure that is explained by some of its properties. 

As for the statistics calculated for the coincidence analysis of random plasmid networks, 

along with the results of the analysis of the true data, are presented in Figure 12.

Our coincidence analysis method detects families that co-occur at a rate higher than chance

alone. For our random networks we would however expect some gene families to 

randomly co-occur. As presented in Figure 12, in all analyses of the 100 random networks 

far fewer coincident gene families were detected. On average, the analyses of random 

networks yielded 4.0% of the number of coincident families (edges) than the analysis of 

the true network.
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Figure 12: Histograms showing statistics calculated for the coincidence analysis of 100 
random plasmid networks, versus the same value for the analysis of the true data. The 
blue histograms represent the analysis of the random data, with the mean value indicated
by a triangle. The dotted line indicates the value for the same statistic for the analysis of 
the original data



Discussion

Networks

As a result of our analyses we constructed three networks. First a sequence similarity 

network to be used for testing how physical properties affect the plasmid network. 

Secondly an association network, which no longer looks at the statistics of plasmid 

network structure, rather it is an analysis of the identities of the genes themselves and 

whether particular kinds of genes tend to appear together. Lastly, we constructed an 

avoidance network, which analyses whether genes tend to avoid one another. Since both 

the ERGM network and the association network are based on similarity measures amongst 

the plasmids we have found them to be virtually the same, so we will discuss them 

together.
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Figure 13: Log degree distribution of the plasmid bipartite network compared to a power 
law distribution (scale-free). The x axis represents the log degree and the y axis represents 
the log number of nodes. The degree distribution approximates a scale-free distribution, 
where there are many nodes with low degree (left of the plot) and fewer nodes with high 
degree (right side of the plot).



The similarity networks, shown in Figure 6 and Figure 10, display a typical scale-free

biological network, with a giant connected component (GCC) surrounded by a number of 

small islands. We further confirmed that our networks are scale-free by comparing them to 

a power law distribution as can be seen in Figure 13, with a γ parameter of 2.255 (scale -

free networks usually have a γ parameter within 2 < γ < 3). Moreover, some of the highest 

degree nodes belong to the genus Rhizobium simply because this taxon has very large 

plasmids. The underlying organisation of the network is visible as an arrangement of 

modules with both taxonomic and functional mapping. For instance, of two of the largest 

modules by family count (M13, #1, 840 families, and M46, #4, 520 families), module M13

exists mostly within plasmids associated with Proteobacteria (94% of the total), while 

module M46 comprises the genus Terrabacteria group (90% of the total). Whilst both 

modules show enrichment of membrane part proteins (integral component of membrane: 

53% and 80% respectively), module M67 (#2, 663 families) shows a significant number of 

genes with ion transport annotations (48%). This network can be considered as a map of 

the plasmid-borne genes showing communities of interdependent genes, where dependency

can be characterised (given our data) by either functional or taxonomic dependency.

Within the map, known information about the plasmid world is accurately reflected, for 

instance module M58 depicts a set of gene families found almost exclusively (98%) in 

Borreliaceae, with 99% of Borreliaceae genes occurring in this module. This finding is in 

line with our current understanding of the atypical nature of Borrelia plasmids in 

comparison with other genera (59, 60).

Given genomic annotations are a human concept, as is the choice of sequenced genes, it is 

not unreasonable to assume that certain network structure may reflect human research 

interests. Module M86 is composed in large part (68%) of members of the genus 

Deinococcus and in terms of function, 27% of the genes are related to metal binding. The 

overt presence of this group may be natural, or may reflect human research into 

Deinococci for the purposes of industrial metal degradation or the basis of radiation 

resistance (61–63). Module M193 is principally Halobacteria (67%) yet the strongest GO 

annotation is lactate transmembrane transporter activity (11%). 

When we calculated the betweenness centrality measure for every node in the 

network, we observed ten family nodes whose most common function annotation is related

to DNA (especially DNA binding, two involved with DNA integration and one specifically 

involved in plasmid replication) are among those with the highest values. It is not 

surprising that proteins involved with plasmid replication occupy such an important 
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position in this network, since this is such a central function of plasmids. In cellular 

lifeforms, we see that the kinds of genes that are most consistently present in genomes 

relate to replication, conjugation and other genes related to plasmid survivability(64–66).  

It is perhaps not surprising that this theme is continued among plasmids, where functions 

that maintain and replicate plasmids have a wider distribution than other kinds of genes. 

Betweenness centrality is high for nodes that connect communities that might not 

otherwise have many connecting nodes: a high betweenness centrality score will be found 

for proteins that are important in many different contexts. This means that even if these 

proteins are not intrinsic to any community, they play a role in many different communities

with differing functions and properties. We can say that high betweenness centrality 

protein functions therefore have more general beneficial effect under many circumstances 

that is well distributed in the network. In this case our results are indicating that even 

specialised communities need the function of DNA binding and replication in order to 

properly carry on with their function. Another interesting function with high betweenness 

centrality is related to detection of visible light so it seems this function well distributed in 

the network.

Network structure

Density

Where 100% represents a fully connected network, with every node connected to every 

other node, the density of our association network is low, at only 1.1%. Whilst there are a 

number of strongly connected nodes (families), even in the GCC there is no node that 

shares a link with all others. The average node degree (97.17) however, is substantial. 

There are 170 isolated connected components, and the modularity analysis further divided 

the network into 228 modules, 59 of which are in the GCC. The network has a relatively 

high total modularity of 0.67, indicating a modular network nature. Rather than a single 

“core-plasmid” gene-set it is therefore more reasonable to state that there are many gene-

sets, all very loosely connected, but nonetheless showing strong intra-group dependencies. 

This is also reflected by the network diameter (14), which can be observed in the several 

long “tails”, such as M125, seen coming off the GCC in Figure 10. This figure is typical of 

biological "small world” networks. The archetypical small word network, the internet, by 

contrast has a diameter of around 19 (67).
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Robustness

The removal of the small and large families did not substantially affect the organisation of 

the network, suggesting that the size of the family does not play a major role in network 

structure. While removing high-degree nodes does break the network up into smaller 

modules, repeating the modularity analysis shows that the new modules do overlap with 

the original set of modules, suggesting that, despite the low density, a few common nodes 

do not solely hold the network together. What we observe therefore, can be considered to 

be communities of interdependent gene families, rather than sets of families bound by few 

central nodes. Like many biological processes therefore, this is suggestive of high 

redundancy, with many gene families being replaceable when considering paths through 

the coincidence network.

The Borrelia peninsula

The earlier noted module M57 is primarily comprised of families and genes sourced from 

the Borreliaceae genome. A few other taxa (<2%) are contained within this module, 

namely 0.4% Helicobacteraceae, but their low incidence makes extrapolation of meaning 

difficult. However Borreliaceae and Helicobacteraceae can share habitats in some 

occasions (68), which may lead to sharing of genetic information or convergent evolution. 

The functionality of the module is enriched for “chromosome organisation” (9%), in 

comparison with the rest of the network, but no one functional class dominates the module.

It is likely that the genes therefore represent a private Borrelia set of wide-ranging 

functionalities, rather than a specific Borrelian use-case.

Island isolates

Outside the GCC (C0) the next largest connected component is C81/M117. This 

encompasses just 31 families with 148 genes. The module itself primarily Sulfolobus 

(98%), and notable annotations include DNA integration (11%) and cytokinesis (6.8%). 

There seem to be a number of similar modules related to extremophily or thermophily like 

M200, which is related to Thermococcus and Methanocaldococcus. Extremophily may 

then be an important factor in structuring part of the global plasmid network, probably due 

to this communities’ hosts inhabiting habitats isolated from the rest of the plasmid’s hosts.
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Dissociation analysis

The dissociation network, shown in Figure 11, is characterised by a single GCC comprised 

of 2 modules. Like the association network, the modules show some significant 

enrichments, however, they tend to be of mixed character. The network itself is more 

complete than the association network, with a high density (0.68), high average degree 

(1,933), short diameter (2) and very low modularity (0.06). If indeed a gene shows 

dissociation with another gene, it is probable that that gene shows further dissociation with 

others. These observations likely reflect the non-symmetrical nature of the network: if A 

associates with B, and B associates with C, then it stands to reason that A and C may also 

present an association. The same is not true in our dissociation case. It may therefore be of 

more use to scrutinise individual dissociative relationships, rather than infer relationships 

in network form.

Within these networks, the network statistics do not suggest that patterns have been 

identified where there are none: the clustering coefficients reveal the networks sourced 

from random data are generally disorganized, with no clear modules as for the analysis of 

actual data. The random data networks are in contrast, much more tightly packed, having 

higher density but lower average degree and path length, suggesting that what we do see is 

due to few, randomly well-connected nodes rather than an overreaching network of 

connections as is present within the actual data.

ERGMs

Once we finished investigating how plasmid connectivity and gene function impact the 

structure of the network, we proceeded to analyse what features of our dataset contributed 

most to the structure of the network by using ERGMs. In order to evaluate whether 

ERGMs had the ability identify important features in our dataset, we set plasmid size as a 

positive control. It is axiomatic that if a plasmid has more proteins, then it will form more 

connections in our networks, therefore including or excluding plasmid size in our ERGMs 

should have a substantial effect on the model. The resulting ERGM model showed that 

plasmid size has indeed a substantial effect on the network structure (for example the effect

size for small plasmids in the bipartite model is -2.738, which indicates that the log odds of

a small plasmids having an edge are almost 3 times lower than the baseline log odds of 

forming an edge. Converted to probability, this means that the baseline chance of forming 
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an edge is 1.30e-03 and the chance of forming an edge for a small plasmid is 8.87e-05. 

This is the biggest effect of an attribute in the model).  The model, quite tautologically, 

shows that if a plasmid is large, then this substantially affects the chances of a node 

forming more edges. 

Having established that ERGMs can identify features of importance in our network, we 

evaluated another eight features to see how likely they were to have influenced the network

structure. A feature with high impact in our simulations is GC content. In Figure 7 we can 

see that plasmids with high GC content (>60% GC) have a higher chance of forming a link

of any kind (0.753) and plasmids with low GC values (<40% GC) have a lower likelihood 

of forming a link of any kind (-0.563). Since the correlation between base composition and

likelihood of forming a link is the highest amongst all the attributes, it seems to indicate 

that high GC plasmids interact significantly more with one another, than with other 

plasmids. The unipartite projection of the plasmids provides more information as seen in 

Figure 8. This ERGM shows that plasmids with similar GC values tend to link together 

considerably more than plasmids with differing CG content (-3.5). The ERGM also 

confirms the trend of a higher chance of forming an edge for high GC plasmids (0.975). An

explanation for this phenomenon might be that having high GC content is a strategy for 

extremophiles (69). High GC content in DNA can result from selective pressure favoring 

the presence of certain amino acids, which provide more stability to proteins (70). These 

amino acids tend to be encoded by G or C in the 3rd position of a codon, a mechanism that 

some thermophilic organisms also use (71–73). High GC content can also be seen in the 

plasmids of some thermophiles such as the T. thermophilus plasmid pTT27 (74). Therefore,

the plasmids of extremophiles that live in the same environments have more chance of 

sharing genes, and a decreased chance of sharing with low GC plasmids from non-

thermophilic species. We note that not all thermophiles follow this pattern of having high 

GC content, and instead, have low GC content (75, 76). Other non-extremophile plasmids, 

whose host organisms have a selective pressure towards these stable amino acids can also 

show high GC content, like Amycolatopsis or some Gordonia species in our dataset.

The isoelectric point of a plasmid has a smaller effect on the network structure, compared 

with GC content or plasmid size, though this effect is still significant. In general, we 

observed in the bipartite ERGM that proteins with a neutral isoelectric point form more 

edges on average than alkaline or acidic proteins (since both acid and alkaline proteins 

have decreased chance to form edges (Acid: -2.566e-1, Alkaline: -1.698e-1)). In the 

unipartite projection we find that plasmids with similar average isoelectric point proteins 
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have a higher chance of forming links between themselves than plasmids with differing 

average isoelectric point (-5.253e-1). The tendency to share more with other organisms that

have proteins with similar isoelectric point could also be due to extremophile bacteria, 

particularly acidophiles and alkaliphiles. Since the pH of the environment has a big effect 

on plasmid activity and stability (77) it is likely that plasmids living in extreme pH 

conditions would share proteins that are adapted to function in these conditions. Unlike 

thermophiles, acidophiles and alkaliphiles do not appear as distinctly in the network 

(Figure 6). However, like most extremophiles they appear towards the edge of the network.

We also found that plasmids encoding proteins with an alkaline character tend to form 

more edges than plasmids encoding proteins with an acidic character, though the effect is 

small (1.126e-1).

The rest of the attributes have a smaller, though also significant, effect on the network. The

number of proteins in a plasmid (protein number) and the molecular size of the proteins are

similar in terms of their effect sizes. Plasmids with large numbers of proteins or those 

where the average protein size is large, result in more inter-plasmid links than we see 

between plasmids with few proteins or small proteins. The bipartite ERGM also confirms 

this trend since plasmid size is the biggest estimated attribute that has an effect in the 

network showing that small plasmids have a lowered probability of forming edges than big

plasmids. However, the molecular size in the bipartite ERGM indicates that big proteins 

link more often with small proteins than with other big proteins. Since the unipartite 

projection of the plasmids works with the average molarity of all the proteins in a plasmid 

it seems to be more an indication of the size of the plasmid than the size of the proteins that

the plasmid encodes. Considering the bipartite ERGM molarity value it seems that 

plasmids tend to encode differing protein size. In other words, they tend to avoid encoding 

exclusively big proteins or exclusively small proteins. Our analysis indicates that 

hydrophobic proteins have a slightly reduced chance of forming an edge compared with 

hydrophilic proteins. Finally, for the cost, we find that plasmids with costly proteins are 

more prone to link between themselves and these proteins have a higher chance of forming

edges, but these effects are very small (3.456e-4). 

Finally, for the fit of the model to the original data, although the model fits the original

data well, the differing regions that can be seen in Figure  9 indicate that there are some

properties of the network for which the model does not account. This could be that we are

missing some important attributes or that they could be related to taxonomy or function,

which are not modelled by the ERGMs. 
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Conclusions

We have constructed plasmidome gene networks from two different perspectives: sequence

similarity and gene association. Our investigation indicates that the global plasmid network

shows strong organisation by the properties of their gene sequences, the functions of the 

proteins encoded and the taxonomy of their bacterial hosts..

Coincidence analysis of plasmid borne genes reveals modules of both taxonomic and 

functional organisation. In particular our results are in agreement with previous studies (59,

78, 79) indicating the relative isolation of the Borrelia plasmids and their constituent genes 

within. In line with the plasmids themselves, there are modules of functionality shared 

between diverse host ranges, as well as modules specific to particular taxa. Whilst many of 

the associations form a large interconnected network, there are a number of free-floating 

island communities, presenting specific functions such as toxin-antitoxin systems and 

phage assembly.

In addition to the functional groupings highlighted by the network, the dependencies 

between the groups are also identified. This has the potential to be of use in cases where 

such dependencies themselves have not been studied. This contrasts with gene expression 

networks, which look at in-vivo “runtime” relationships, or non-systems analysis 

approaches, which require the purpose of all genes to be known up-front.

Network analysis has already been used to map plasmid-space. The "Plasmid Atlas" 

presents an extra-plasmid map, showing plasmid relatedness and allowing inferences about

whole-structure evolution to be made (80). In contrast, our gene coincidence analysis 

details an intra-plasmid map, showing the constructs behind specific gene inclusion 

patterns.

The coincidence analysis employed in this study investigates association and dissociation 

of the relatedness of the underlying plasmids. We acknowledge that it is difficult to fully 

separate taxonomic, functional and environmental relationships between the genes and 

further research is required in order to fully determine the factors driving the formation of 

the individual modularities. The use of linear mixed models (LMMs) such as those 

implemented by BUGWAS (81) and GEMMA (82) in the analysis of phenotypic relations 

may be useful to pull apart interdependent factors, however these computationally 

intensive methods are typically used in analysing few traits within carefully preselected 
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species (83) and further research is required to determine their applicability to domain 

level, repeated analyses.
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Abstract

The fungal kingdom is a group of organisms that have a large impact both to ecosystems, 

mainly playing a role in organic matter decomposition, and to humans, both as disease 

agents with a negative impact in humans and economy and as useful organisms for 

research and industry. Still, the fungal phylogeny remains partly unresolved with the 

presence on many incertae sedis clades, without a robust placement on the phylogenetic 

tree. Some of the more problematic groups whose placement remains unclear is the 

intracellular parasites Microsporidia and Cryptomycota, who have accelerated rates of 

nucleotide substitution and reduced genomes, which makes the resolution of these groups 

hard. In this project we used tree and data heterogeneous models, which can account for 

different substitution rates between the proteins used to reconstruct the phylogeny and for 

rate changes of the same protein in different parts of the phylogeny. By using 

heterogeneous models we could obtain a general structure of the fungal phylogeny as well 

as a robust placement for both Microsporidia and Cryptomycota, the former being rooted 

deeply within the fungi and the later being a sister branch to the fungi.
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Introduction

The Fungal kingdom is one of the most variable that exists on the planet. It makes a huge 

impact on planetary ecosystems, playing a major role in wood decay for instance (1). Fungi

also have a major impact on human activity, by performing fermentations needed in the 

food and beverages industries, acting as pathogens in crop and human diseases, and in 

research, serving as model organisms, and in assisting drug discovery.  Fungi and animals 

have a common ancestor dating to approximately one billion years ago (2). Fungi are 

characterized by being highly variable, eukaryotic, with simple morphologies (typically 

filamentous but they can also be unicellular). Fungi have relatively small genomes and are 

heterotrophic (3). They can have haploid and diploid stages in their life cycle and do not 

have movement except for some flagellated spores. They can be saprobes, symbionts and 

parasites of plants, animals or other fungi, but they are not able to photosynthesise.  Owing

to their variability they have adapted repeatedly to the same kind of environments at 

different points in their phylogeny and phenotypes such as parasitism and mutualism are 

not exclusively found in a single clade (3). As an example of how quickly fungi can adapt, 

we can look at the Hymenochaetales order, which has saprobes, mycorrhiza and strong and

weak plant parasites amongst its members (4). A fungal phylogenetic tree has been recently

corroborated by the Assembling the Fungal Tree of Life project (AFToL) (5) due to the 

lack of tools to reach a consensus classification in former times (6). However, many 

branches of the phylogeny are not well resolved, and these are classified as Incertae sedis 

as they appear in the NCBI database taxonomy (7). In particular some of the earlier 

branches, for example Microsporidia and Cryptomycota (Rozella), are still being analysed 

in order to address whether or not they belong to the fungal kingdom or are sister groups to

the fungi (8–14).

Fungi have long been considered to be good model organisms for eukaryotes, owing to 

their small genome size, the fact that they are easy and inexpensive to maintain, they are 

relatively amenable to genetic manipulation, and that some form tissues that allow 

transcriptomic experiments. In recent years efforts to sequence complete fungal genomes 

have intensified, particularly with the 1,000 Fungal Genome Project (FGP) (15) which is a 

project that intends to sequence 1,000 fungal genomes and make them accessible to the 

public. With the FGP hundreds of fungal genomes have already been sequenced but remain

to be analysed. Here we report the use of these data in order to construct an updated 

phylogeny of the fungi, paying special attention to unresolved groups. 
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There is ongoing discussion about the inclusion of Microsporidia and Cryptomycota in the 

fungal kingdom (16). The difficulty associated with placing these groups on the eukaryote 

phylogeny is due to their specialised obligate intracellular parasitic lifestyle. This lifestyle 

has led to  considerable genome reduction, and unusually high nucleotide and amino acid 

substitution rates, as well as the loss of their mitochondria (17–19). High substitution rates 

are known to be problematic for accurate phylogeny reconstruction (20, 21), and a number 

of solutions have been proposed to mitigate these effects (22–24). In this paper we tested 

whether using a model that specified a homogenous evolutionary process would accurately

capture the signals in the data. We found that such a model was a poor fit to the data and in 

order to properly account for the signals in the data we used both tree-heterogeneous and 

sequence-heterogeneous phylogenetic reconstruction approaches (25, 26). A 

compositionally heterogeneous model specifies more than one evolutionary process for the

different genes or proteins used for a super-matrix reconstruction as well as being able to 

use several models of evolution for different branches of a phylogeny. By allowing the 

phylogenetic reconstruction to account for different rates of evolution for different genes 

and branches we should be able to account for the genome reductions observed in 

Microsporidia and Cryptomycota.
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Methods

Dataset

A total of 690 genomes were available in the FGP (15) were downloaded using the Globus 

data sharing tool (27). For this project the DNA sequence, the protein sequence, the 

annotation and the functional annotations were transferred, using the filtered models for 

each genome. These files are included for every genome in the FGP database, and also 

include GO (28), KEGG pathways (29), InterPro (30), KOG (31),and SignalP (32) 

annotations.

In order to evaluate the quality of the genomes we used the Fungal Genome Mapping 

Project (FGMP) (33) a framework designed to check if several fungi conserved and 

ultraconserved genes are present in the genome. These genes should be present in every 

fungal genome and are a good indicator of the ratio of completeness of the genome. Poor 

quality genomes were identified as having fewer than 75% of the conserved genes present 

and were discarded leaving a total of 671 genomes for further analysis. Owing to their 

known reduce genome size, parasitic fungi were not discarded in this step despite showing 

quality values lower than 30% of present conserved genes.

To deal with the size of our dataset and its associated metadata a SQL database was built 

using PostgreSQL versions 11 to 12.2. In this database we built a protein table where the 

protein identification, protein sequence and protein family of each protein was stored. 

Other tables where built to store the functional annotations and were connected to the 

proteins by the identification numbers provided by FGP. Finally, a table with all the fungal 

species and their categories (WoL, habitat, infectious, extremophile and notes) was 

connected to the protein families in the protein table by the edge information obtained in 

the previous step with MCL. The structure of the database can be seen in Figure 14. The 

python package psycopg2 was used to interact and retrieve information from the database.
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Data Processing

Protein sequences were then used in order to perform an all-versus-all BLAST (34, 35) 

search (blastp v2.4.0, e value = 1*e-6). The BLAST output was processed using the 

Markov Cluster Algorithm (MCL) (36) version 14-137 in order to detect clusters. To select 

an appropriate inflation value for our dataset we looked for the highest inflation value 

where most conserved proteins (e.g. ribosomal proteins) where properly recovered under 

the same cluster. The final inflation value was set to 1.4. This resulted in the recovery of 

965,828 clusters from the dataset.

We chose to construct phylogenetic hypotheses using a concatenation of several 

alignments. Therefore, we sought to identify clusters that include almost all 671 taxa, 

where the clusters contained little, to no, duplicated genes. We identified an initial set of 

507 clusters that had 671 ± 20 taxa, allowing for some gene duplications, and that included

at least 95% of all the taxa to avoid clusters with high amount of duplications.

73

Figure 14: Diagram of the database tables and relationships. Rectangles represents tables 
that store information and diamonds represent relational tables that store the connections 
between tables. Each link indicates the identifier used to connect the tables.



Phylogenetic Analyses

Multiple sequence alignment was carried out using MAFFT v6.611b (37) (auto1 option) as 

an alignment tool. We then used Trimal v1.2 (38) (automated1 option) in order to remove 

poorly aligned positions in the alignments. Prottest 3 (39) was used to assess the best 

substitution model for each of the alignments. After assigning the best model to each 

alignment, phylogenetic hypotheses were constructed using RAxML v8 (40). Since gene 

duplications have been shown to be a source of discrepancies between a gene tree and a 

species tree, often because duplicated genes evolve at different rates (41), we tested further

the resulting 507 trees to check whether gene duplications were few and evolutionarily 

close in each tree. If the duplications are evolutionarily close, it would mean that there 

were few nucleotide substitutions between duplicated genes and that the different rate of 

evolution would have less impact on the gene tree. This was checked using ETE3 (42) 

node distance comparison function in python v2.7. To do this a custom script was made 

that checks the distance between all the duplicated gene pairs in one tree and reports the 

gene tree as valid to construct a species tree if: a) the duplicates are in very close proximity

(same branch) and b) if no more than one pair of duplicates is further away than this set 

distance. Using this relaxed criterion, a total of 58 gene trees were selected. In addition, 

out-groups were added to each gene unaligned file, using blastp as described before to 

search for similar proteins in 4 different organisms: a mammal (Homo sapiens), a cnidarian

(Nematostella Vectensis), a choanoflagellate (Monosiga Brevicollis) and a plant  

(Arabidopsis thaliana) making a total of 675 taxa in the dataset. The gene sequences were 

aligned again with the outgroups included as previously described and then the aligned 

gene sequences were concatenated in order to construct the species tree. If one gene tree 

was missing a taxon from the complete species tree, the gap was filled with missing 

characters of the same length as the gene. 

The resulting concatenated alignment was of 11,559 amino acids in length. The programs 

Prottest 3 and RAxML were used as described previously in order to construct several 

phylogenetic hypotheses using a single model for all parts of the alignment. Bootstrap 

resampling (43) using 100 replicates was used to assess support for internal branches.

The same alignment file was used with a heterogeneous model tree using the P4 software 

program (25). P4 implements both data-heterogeneous and tree-heterogeneous models 

using a modified version of MCMC. Since heterogeneous models are much more 

computationally expensive than homogeneous models, the original alignment file could not
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be used to construct a heterogeneous tree in a reasonable amount of time. Therefore, we 

had to make a reduced dataset using a selection of taxa from the original alignment. We 

chose a single taxon to represent each uncontroversial group in the maximum-likelihood 

tree apart from the out-group. However, the Microsporidia branch and Rozella were left 

intact as they were the most problematic branches in the original tree. The number of taxa 

in the reduced alignment was 59.  

First in order to account for the data heterogeneity, the alignment file was used as input for 

the PartitionFinder 2.11 program (44). PartitionFinder searches for differing rates of 

substitution across regions described by the user in an alignment with the purpose of 

dividing them in partitions of proteins or genes with similar evolutionary rates and 

assigning a phylogenetic model to each partition. In our case we split the alignment in to 

each one of the partitions indicated by PartitionFinder (Partitions = 27). Afterwards the 

partition data and the alignment were analysed using P4, assigning a model to each 

partition in accordance with PartitionFinder results. Furthermore, each partition was also 

assigned the second-best model found by PartitionFinder in order to account for the 

heterogeneity across the tree. Finally, MCMC was run for 300,000 generations, assessing 

whether the MCMC chains had converged at the end of the process. Additionally, the tail 

area probability of the MCMC run was calculated using a function included in P4 to asses 

whether the phylogeny recovered by MCMC could plausibly explain our original data.

The final step in the analysis was to combine the results obtained from the heterogeneous 

model tree to the full dataset. To do this we used PartitionFinder again with the full dataset 

since RAxML allows for data-heterogeneous models, obtaining a total of 51 partitions. 

Each partition was assigned the substitution model indicated by PartitionFinder for 

RAxML. To avoid problems with long branch attraction in this tree hypothesis we forced 

RAxML to root the tree on the out-group, as it was supported by the reduced dataset 

phylogenetic tree. After the phylogenetic analysis was finished, bootstrap resampling with 

100 replicates was used to asses support for internal branches.

Phylogeny validation

In order to validate our phylogenetic tree, we compared the complete dataset phylogenetic 

tree with other phylogenies using the program TOPD/FMTS (45). The phylogenies were 

obtained and downloaded from the TreeBASE database (46, 47), selecting phylogenies that
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included taxa from our dataset. This software allows to calculate the nodal distance and the

split distance, also known as the Robinson–Foulds metric (48), between any given pair of 

phylogenetic trees.

As a further way to test the validity of our methodology, we decided to apply the same 

analysis done to our phylogeny to a well supported fungal phylogeny proposed by 

McCarthy and Fitzpatrick (49), that uses a similar but smaller dataset from the FGP. This 

validation dataset does not contain the more problematic groups in the fungi, like 

Microsporidia, which would remove any artefact introduced by these groups in the 

phylogeny. 

We first checked whether the species present in McCarthy and Fitzpatrick dataset were 

present in our dataset, having passed our genome quality evaluation step. For species in the

paper dataset that were not present in our dataset but had other close species in the same 

family, we used this species instead. Specifically, Zymoseptoria tritici was changed for 

Zymoseptoria ardabiliae, Candida albicans for Candida tanzawaensis, Microbotryum 

lychnidis-dioicae for Microbotryum violaceum and Rhizopus oryzae for Rhizopus 

microsporus. Species that did not appear in our dataset and did not have a close relative 

where excluded from the analysis, specifically Endocarpon pusillum, Orpinomyces sp. 

C1A, and Batrachochytrium dendrobatidis. Instead of using an external source genome for 

Allomyces macrogynus that was used in the paper dataset, we used a sequence genome 

from the FGP instead. This made a total of 81 species that were used in this validation 

phylogenetic analysis. This dataset will be referred as validation dataset from this point 

onwards.

We then extracted a subset from our blast output that included only edges between the 

species present in the validation dataset and proceeded to apply the same steps done in our 

phylogenetic analysis. We used MCL with the same inflation value,  1.4, to obtain a total of

155,969 protein clusters. Afterwards, we filtered the clusters to select candidate genes for 

the phylogenetic analysis with a more strict filter due to the high amount of genes returned 

if we applied the same criteria as with our dataset. We filtered only for clusters that had 

every species in the dataset present and at most two duplications, which left a total of 35 

candidate clusters. Using the same procedure as with our dataset, we selected a total of 21 

clusters that had either no duplications or duplications in close proximity to each other. For

clusters that had duplications, one of them was removed randomly to leave only one 

protein per species. As done with our analysis, the selected clusters were aligned, trimmed 

and concatenated with the same settings as with the original dataset to form a concatenated
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alignment with a final length of 7,611 amino acids. We used PartitionFinder again to 

determine the heterogeneity of substitution rates in the data (Validation Partitions = 13). 

Finally, we used two different P4 analyses, one considering only data-heterogeneity, which 

included the model indicated by PartitionFinder for each partition, and one considering 

data and tree-heterogeneity, which used two models indicated by PartitionFinder for each 

partition. Both analyses MCMC processes were executed until convergence was achieved, 

using 100,000 generations for the data-heterogeneous analysis and 240,000 generations for

the data and tree-heterogeneous analysis. The tail-area probability of each analysis was 

also calculated using P4.

Super-tree

As a complementary analysis to the heterogeneous models super-matrix we decided to use 

an alternative approach and make a phylogeny using super-trees. We decided to use Clann 

(50), which implements several methods to construct super-trees but focuses on matrix the 

representation with parsimony (MRP) method. MRP uses many individual gene trees to 

collect evidence for branch split support, i.e. checks how many gene trees support species 

A being in the same branch with species B or the opposite for every branch split in the 

super-tree. This split support is stored in the form of a matrix and then a maximum 

parsimony search is used in the matrix to construct the final super-tree. 

Thus, we used the clusters obtained by applying MCL to the complete dataset, as each 

cluster is equivalent to a gene family, to construct the individual gene trees. We filtered the 

clusters to only include clusters with no duplications, since gene duplications introduce 

problems that are hard to deal with by current super-tree methods (51), and that have four 

taxa or more, leaving a total of 49,261 gene families. Each gene family was then aligned 

and trimmed as the super-matrix dataset (MAFFT auto1 option and Trimal automated1 

option). Afterwards, Prottest 3 was used to assign the appropriate substitution model to 

each gene alignment and then gene trees were constructed using RAxML with the 

indicated substitution model for each tree. Finally, we used Clann to construct the super-

tree by using the MRP method with default parameters for heuristic tree search (Parsimony

analysis and tree bisection and reconnection as the type of heuristic search) with no 

repetitions. 
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Results 

Phylogenetic Analysis

As an initial step in our phylogenetic analysis we estimated several phylogenetic 

hypotheses under the LG+I+G model in RAxML with bootstrap resampling support for the

total amount of taxa in the dataset. These trees had 675 leaves (671 fungi and 4 out-group 

taxa). The hypotheses recovered the phylum and class groups in the fungi with high 

confidence, particularly in the Dikarya. However, there was no identifiable split between 

the in-groups and the out-groups. Moreover, in some hypotheses Microsporidia appear 

nesting within the out-group, an example of which can be seen in Figure 15. Deep 

branches in hypotheses where the out-group appears split showed low support values. So 

while the maximum-likelihood tree has provided good results for resolving short fungal 

branches, it failed to resolve the deep branches of the tree, due to how high the substitution

rates are in the Microsporidia branch compared to the rest of the tree. This difference in 

branch length suggest a very different rate of evolution, as it has been proved that 

Microsporidia have many fast evolving genes (52), when compared to the rest of the fungi 

for which the model did not account in this tree, so this branch couldn’t be resolved using 

this approach. 
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Figure 15: Example of a problematic phylogeny where the out-groups appear as a non-
monophyletic clade, with Microsporidia appearing within the out-groups



In order to overcome problems associated with the low support of the long branches on our

tree, we used heterogeneous models, which can account for variation in rates of evolution 

across the different proteins and in across the tree. Because heterogeneous models are 

much more computationally intensive than the homogeneous models, we used a reduced 

dataset that consisted of a representative taxon for each clade in the fungal in-group, 

though we retained all the out-group sequences and Microsporidia. 
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Figure 16: Reduced dataset data and tree heterogeneous Phylogenetic tree. Each branch is marked 
with the Posterior Probability Distribution (PPD) percentage of support. The out-groups are in 
black, early fungi are coloured red, Microsporidia are coloured green and Dikarya are coloured 
blue.



The resulting reduced tree was reconstructed in P4 using two models per partition to 

account for tree-heterogeneity of substitution rates using the substitution models indicated 

by PartitionFinder, resulting in two LG+I+G substitution model per partition for twenty 

four partitions and two LG+G substitution models per partition for the remaining three 

partitions (LogLikelihood = -557,634.03). From the 300,000 generations of the MCMC 

run, the first 200,000 were discarded as the MCMC had not converged, and a consensus 

tree of the remaining 100,000 generations was calculated. The branch split support values 

were obtained from the posterior probability distribution after MCMC had converged as 

indicated in the P4 1.2 documentation (The documentation is available online in the 

following link: P4 documentation). This phylogenetic hypothesis has reliably placed 

Microsporidia as a sister group to Dikarya and placing Rozella outside of the Fungi as can 

be seen in Figure 16. There is a complete split between the in-groups and the out-groups of

the tree unlike the previous tree, which also indicates that when accounting for different 

rates of evolution with the heterogeneous models helps resolve deep branches.

To further test this phylogenetic hypothesis we set other two MCMC processes to check 

that they recovered phylogenies with similar topology, which proved to be true (Split 

support standard deviation between MCMC processes = 0.0719). We also checked the tail 

area probability of the phylogenetic hypothesis (0.1984) which means that our dataset 

could have plausibly be generated by the model. Finally we wanted to check how the 

likelihood of the phylogenetic hypothesis was improved by using a data and tree 

heterogeneous model, so we ran another two MCMC processes, one with an only data-

heterogeneous model and another with a homogeneous model, in order to compare. For the

data heterogeneous model we used only one substitution model per partition with the 

substitution models indicated before and run for 300,000 generations (LogLikelihood =  -

559,060.90, tail area probability = 0.1236). The data heterogeneous model topology is 

more similar to other topologies in the literature, placing Microsporidia as a sister group to 

the Fungi together with Rozella. For the homogeneous model we used a single LG+I+G 

model and run the MCMC for 300,000 generations (LogLikelihood = -562,923.74, tail area

probability = 0.409). The homogeneous tree topology is similar to the data heterogeneous 

topology, with Microsporidia outside of the Fungi together with Rozella. However, even if 

the homogeneous model hypothesis can plausibly explain the data, some Microsporidian 

taxa appear spread across the tree within the fungi with low Posterior Probability support, 

and the likelihood of the model is much worse when compared with the more complex 

models. 
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Next we compared the different heterogeneous likelihood models by carrying out a 

likelihood ratio test. According to the test of the significance of the difference in log-

likelihood scores between the trees, the data and tree heterogeneous model is a 

significantly better fit to the data than the data heterogeneous model (P value < 0.001). In 

summary both the tree data heterogeneous hypothesis and the data heterogeneous 

hypothesis with their respective topologies are plausible hypothesis for a fungal phylogeny 

and well supported by the data, but the data tree heterogeneous model is a significantly 

better hypothesis according to the likelihood of the model.

Finally, we defined partitions again with the complete alignment using PartitionFinder to 

account for varying rates of amino-acid substitution between proteins in the maximum-

likelihood hypothesis with the complete dataset. Then we used the root that we obtained 

with the reduced dataset heterogeneous model we built a final ML tree defining the out-

groups as indicated by the heterogeneous models hypothesis. This last phylogenetic 

hypothesis was constructed using RAxML under the LG4X+I+G substitution model with 

the data split into thirty partitions, the LG4M+I+G substitution model for sixteen 

partitions, LGF+I+G substitution model for two partitions and LG+I+G for the remaining 

two partitions as indicated by PartitionFinder. Then we assessed support for the tree 

internal branches of this tree by using bootstrapping resampling (100 pseudoreplicates) as 

shown in Figure 17. The branches of this tree were collapsed in clades matching the 

NCBI’s fungal taxonomy database to allow for a better visualization. 

The resulting trees obtained from the concatenated analysis are very similar to the current 

taxonomy of the fungi according to NCBI. Since the leaves in the tree in Figure 17 were 

collapsed according to NCBI’s taxonomy it is clear that many of the groups found by our 

analysis are in agreement with the current consensus. This tree will be referred as Final tree

and will be the main basis of our discussion. 
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Figure 17: Fungal phylogenetic tree with bootstrap values. In Green are the groups
outside of Dikarya, Red is Basidiomycota, Blue is Ascomycota and Black is the outgroup. 
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Phylogeny validation

Finally, we have compared our complete phylogeny with a number of previously recovered

phylogenies from other studies as a means to validate the structure in our tree. The results 

obtained after analysing each pair of trees with TOPD/FMTS, i.e. our complete phylogeny 

compared to each of the literature phylogenies by using TOPD/FMTS nodal distance and 

split distance modes, can be observed in Table 1.

Table 1: TOPD/FMTS results of the comparison between the recovered phylogeny of the 
total taxa with the phylogeny proposed by each one of the following studies. 

Study
Taxa in

Common

Nodal Distance
(Pruned /

Unpruned)

Split Distance
(Differences / Possible)

     Disagreeing Taxa
(taxa disagree / all

taxa)

Zhao et al. A six-gene
phylogenetic overview of
Basidiomycota and allied

phyla with estimated
divergence times of higher
taxa and a phyloproteomics

perspective. (53)

4.10% 1.45 / 2.85 0.25 ( 22 / 88 ) 10 / 47

Davis et al. Genome-scale
phylogenetics reveals a

monophyletic Zoopagales
(Zoopagomycota, Fungi).

(54)

3.10% 0.41 / 0.81 0.05 ( 2 / 38 )  3 / 22 

Chen et al. Phylogenetic
placement of

Paratrichaptum and
reconsideration of

Gloeophyllales. (55)

2.10% 1.27 / 2.52 0.31 ( 8 / 26 )  3 / 16 

De Crop et al. A multi-gene
phylogeny of Lactifluus

(Basidiomycota,
Russulales) translated into a

new infrageneric
classification of the genus.

(56)

4.30% 0.9 / 1.77 0.15 ( 8/54 ) 5 / 30

As for the methods validation, we constructed two phylogenies, one tree and data 
heterogeneous phylogeny (using two LG+I+G substitution models for every partition as 
indicated by PartitionFinder, LogLikelihood = -571,114, tail area probability = 0.764), 
which can be seen in Figure 18, and one data heterogeneous phylogeny (using one 
LG+I+G substitution model for every partition as indicated by PartitionFinder, 
LogLikelihood = -572,933, tail area probability = 0.326). Both trees are identical in 
structure and can plausibly have explained the validation dataset, but the tree and data 
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heterogeneous phylogeny has a significantly higher log-likelihood (P value < 0.001) so this
model is a better fit for the validation dataset in a similar way as previously happened with 
our original dataset. Branch split support from the posterior probability distribution was 
also lower for the data heterogeneous phylogeny, but both phylogenies had high support 
for every branch split.

Super-tree

As for the alternative super-tree method the phylogeny that can be seen in Figure 19 was 

obtained by using the MRP method with a total of 49,261 single gene trees. Bootstrap 

analysis of the data could not be performed due to the long time it would take to complete 

for 100 iterations, as each iteration took several weeks to complete.

84

Figure 18: Validation dataset data and tree heterogeneous Phylogenetic tree. Each branch is 
marked with the PPD percentage of support. In Green are the early fungi, Red is Basidiomycota, 
Blue is Ascomycota and Black is the outgroup.
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Figure 19: Super-tree reconstruction using the MRP method. Branches are collapsed when they 
are monophiletic according to NCBI’s taxonomy. In Green are the groups of early fungi outside of 
Dikarya, Red represents Basidiomycota, Blue represents Ascomycota and Black is the out-group 
(Rozella Allomycis).
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Discussion

Super-tree

We will begin our discussion with the alternative super-tree method, since it has obvious 

discrepancies with our super-matrix approach. First of all, the super-tree approach has been

incapable of properly separating the two big clades present in Dikarya, Ascomycota and 

Basidiomycota. While in our super-matrix approach and in the literature these groups are 

clearly distinguished and separated, in the super-matrix approach Ascomycota and 

Basidiomycota appear mixed in some branches, for example in Figure 19 

Taphrinomycotina (Ascomycota) appears as a sister branch of the Tremellomycetes 

(Basidiomycota) or Saccharomycotina (Ascomycota) as a sister branch of 

Wallemiomycetes (Basidiomycota). There are also issues with the early fungi outside of 

Dikarya, where clades like Zoopagomycota are not monophyletic and are instead separated

and mixed with other groups like Mucoromycota, or even appear in branches within the 

Dikarya phylum like it is the case with Ramicandelaber brevisporus, which is present 

within Pucciniomycotina. Other problematic groups like Microsporidia appear mostly 

within Dikarya, but are also not a monophyletic group and are spread across several 

branches. On the contrary, the super-tree approach is able to recover clades with a more 

recent common ancestry, as many of the smaller groups present in the external branches of 

the phylogeny are in accordance with NCBI’s taxonomy and could therefore be collapsed 

in Figure 19. 

One possible explanation of why the super-tree phylogeny is struggling to reconstruct the 

deeper branches of the phylogeny can be the distribution of the gene tree size of our 

dataset. Almost 90% of the single gene trees used for the super-tree analysis have 7 taxa or 

less, which is 1% of the total species in our dataset, which may provide enough resolution 

to resolve smaller clades but not enough to resolve the deep branch splits in the phylogeny. 

The size of our dataset might be the cause of this issue as it might make the presence of 

single gene trees without duplication sparse. We faced the same issue previously when we 

were selecting the protein families to use with our super-matrix approach. For our large 

super-matrix approach, we needed to set lax filters and allow for some duplication events 

in order to find enough candidate genes. On the other hand, with the smaller validation 

super-matrix the filters to select candidate proteins needed to be more strict due to the large
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number of candidate protein families retrieved by the previous filters. Therefore, the large 

size of our dataset can explain the lack of suitable protein families needed for super-tree 

reconstruction. The issues with problematic groups in the super-tree, namely that some of 

them are not monophyletic, might be explained by the presence of intracellular parasites 

like in Microsporidia, which have greatly reduced genomes and have even lost or 

repurposed ribosomal proteins (57, 58), which implies that single gene trees where these 

species are present are much more sparse. Other possible cause for the low accuracy of the 

super-tree is that single gene trees may have a similar problem as the super-matrix 

approach, where homogeneous substitution models are enough to model the evolutionary 

process in groups with recent common ancestry, but the more complex heterogeneous 

models are needed to model the evolutionary process of deep branches and problematic 

groups. These issues indicate that super-tree phylogeny reconstruction may not be a good 

fit for our particular dataset.

On the contrary, the super-matrix approach was capable of recovering the branch splits 

between the large clades in fungi, robustly splitting Dikarya from early fungi and 

Ascomycota from Basidiomycota, even when using only homogeneous models. 

Additionally, due to the size of our dataset, the super-tree methodology involved several 

weeks of computation time to construct a single super-tree, which also impeded us of 

obtaining branch split support from bootstrap analysis. Given the low success of our 

attempts to construct super-tree phylogenies, the long computational time involved and the 

impossibility of obtaining bootstrap support for branch splits, we decided to focus our 

efforts in using tree and data heterogeneous models with the super-matrix approach. 

Taxonomy

After we got our final super-matrix, we proceeded to compare it with other recent fungal 

taxonomy research in order to check whether its similar to other recent fungi topologies.

Initially, we sought to compare our phylogeny with other phylogenies that intended to 

provide a general structure of the fungal taxonomy. However, access to the phylogenies in 

an appropriate format for comparison was not possible. Still, we can compare the general 

structure of our phylogenetic tree with such phylogenies.  

First, we compared our tree with the topology that Ebersberger et al (59) did with the 

objective of providing with a general taxonomy for the fungi to be used as a backbone for 

87



future works to expand on. Even though our tree has many more taxa than this one the both

share a similar structure when it comes to the big clade splits and Ascomycota, showing the

same groupings of the branches. There are some minor differences in Basidiomycota like 

Gloeophyllum appearing in a deeper branch than Heterobasidion in our tree and that 

Schizophyllum and Pleurotus are in different clades in our tree. However, these differences 

seem to be due to varying number of taxa in these positions of the tree between the two 

phylogenies. In the first case the branch of interest in our tree is very populated in contrast 

to Ebersberger’s phylogeny. On the contrary, in the second case there are considerably 

more taxa in Ebersberger’s phylogeny branch than in our phylogeny’s branch. Hence, the 

difference between number of taxa in these branches between phylogenies may explain the 

distinct structure. Despite these small differences both trees are similar on a general level 

and agree in most of the major groups. 

Another study that focuses in the distribution of thermophilic fungi through the tree has 

also helped us to assert the general accuracy of our tree (60). This paper also supports our 

tree topology in the species they both share, being a perfect match in most groups except 

for some small discrepancies in Basidiomycota. Particularly Heterobasidion annosum is 

placed differently in both trees, next to Agaricales in this paper and in a sister branch in 

our tree. This could be also due to the big difference in number of taxa in this part of the 

tree, since they just use 12 taxa for the Agaricomycetes while our tree has approximately 

100 taxa which leads to the two separate clades within the group. Apart from this part of 

the tree the rest of the topology is similar in both trees, from Ascomycota to the early 

branches and the rest of the Basidiomycota.

After using this taxonomy to perform a rough comparison of our tree general structure, we 

proceeded to compare our tree with several other studies by using nodal distance and split 

distance measurements provided by TOPD/FMTS, which can be seen in Table 1. 

The first study we used for comparison with our phylogeny and the largest one, focusing 

on the phylogeny of the Basidiomycota, is a six-gene phylogeny by Zhao et al (61). A 

tanglegram representing the comparison of both phylogenies can be seen in Figure 20, with

taxa that are shared between both phylogenies indicated by lines. Both phylogenies are in 

agreement for most part of the tree, specially in the Agaricomycotina subphylum, found in 

the top part of the phylogenies in Figure 20, which is in complete agreement between both 

trees. Nevertheless, disagreements between the structure of the tree can be found in the 

bottom part of the phylogenies, which represents the subphylums of Basidiomycota, 
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Pucciniomycotina and Ustilaginomycotina, deeper divergent clades in the Basidiomycota. 

The disagreement between both trees comes from the placement of these subphylums, 

where in our phylogeny Ustilaginomycotina is found as a sister clade to Agaricomycotina, 

in Zhao et al phylogeny Pucciniomycotina is found as the sister clade to Agaricomycotina. 

The branch split between the Ustilaginomycotina and Agaricomycotina clades in our 

phylogeny is not robustly supported (58%) and the groupings proposed by Zhao et al 

phylogenetic hyphotesis is has additional support from recent literature (62). Moreover, the

reduced tree and data heterogeneous phylogeny recovered in our study is also in agreement

with Zhao et al hypothesis, as can be observed in Figure 16. Therefore, we can assume that

the branch split between Pucciniomycotina and Ustilaginomycotina proposed by the 

complete phylogeny hypothesis is incorrect. Other than this discrepancy, both phylogenies 

are in agreement with the remaining structure of the tree.

The rest of the phylogenetic comparisons are focused around smaller phylogenies that are 

focused in recovering the placement of specific orders, so they encompass smaller sections 

of the fungal taxonomy. The next study used for the assessment of our phylogeny is a 

phylogeny proposed by Davis et al (54), focused on the resolution of the Zoopagales order 

while using a similar maximum-likelihood approach to the analysis conducted in this 
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Figure 20: Tanglegram of the complete dataset phylogenetic tree (left) compared with Zhao
et al  six-gene phylogeny of the Basidiomycota (right).  The project tree is  focused on the
Basidiomycota region. Bootstrap values in the project tree are indicated at branch splits.



project but with a different dataset. The tanglegram comparing both phylogenies can be 

observed in Figure 21. There are disagreements in 3 out of the 22 taxa that are commonly 

shared bewteen both phylogenies, and all disagreeing taxa belong to the order Mucorales. 

Of the 3 disagreeing taxa, 2 taxa show low branch split support in our phylogenetic 

hypothesis, Phycomyces blakesleeanus and Hesseltinella vesiculosa (57% and 55% 

bootstrap support respectively), so it is likely that the branch split in our phylogeny for 

these species are incorrect. On the contrary, the remaining taxon,  Lichtheimia 

corymbifera, is robustly supported in our phylogenetic hypothesis. This last taxon is part of

a clade that is more populated in our phylogeny than in Davis et al phylogeny. Therefore, 

this increased taxa density in our phylogeny’s branch could mean that our model is able to 

recover a well supported clade.

Afterwards, we proceeded to compare our tree with a phylogeny focused in the 

Gloeophyllales order in the Agaricomycetes class proposed by Chen et al (55). The 

tanglegram representing this comparison can be seen in Figure 22. In this case, 16 taxa are 

shared between both phylogenies, three of which are in disagreement. The first source of 

disagreement is found in the placement of two taxa, Punctularia and Trametes, within the 

Agaricomycetes class. This disagreement could be explained by the difference in 

representation in the Gloeophyllales order, which has barely any representation in our 

dataset and is evidently well represented in Chen et al phylogeny. As for the last 

disagreeing taxa, Heterobasidion (a member of the incertae sedis groups within the 

Agaricomycetes class), can be explained by the opposite phenomenon, where the 
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Figure 21: Tanglegram of the complete dataset phylogenetic tree (left) compared with Davis
et al phylogeny (right). Bootstrap values in the project tree are indicated at branch splits.



surrounding clades are better represented in our phylogeny, particularly other incertae 

sedis groups. Therefore, our phylogenetic hypothesis can provide a more robust placement 

for Heterobasidion. Lastly, the general structure of both phylogenies is similar despite the 

disagreeing taxa.

The last comparison used to validate our tree was carried out with the phylogeny proposed 

by De Crop et al (56), focused around the resolution of the Russulales order and the 

tanglegram comparing both phylogenies can be seen in Figure 23. The disagreements 

between both phylogenies are of similar nature with Chen et al comparison, where there is 

a difference between the population of the clades where the disagreeing taxa are located. 

Specifically for this comparison, all the disagreeing taxa are part of the Mucorales order. 

As an example, one of the disagreeing taxa is the Mucor family, which is represented by 

three members in our tree and only one member in De Crop et al phylogeny. The rest of the

disagreeing taxa have similar issues, being part of well represented clades in our phylogeny

and comparatively less dense clades in De Crop et al phylogeny. Still, both trees nodal and 

split distances are low, so the general structure of the trees is mostly in agreement.
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Figure 22: Tanglegram comparing this project phylogenetic tree (left) with Chen et al phylogeny 
(right). The project tree is focused on the Basidiomycota division. Bootstrap values in the project 
tree are indicated at branch splits.



To conclude, our proposed phylogenetic hypothesis general structure is mostly in 

agreement with previously proposed phylogenies in the literature, but there are a number of

branch splits with low support that are probably incorrect in our phylogeny. Many of the 

disagreements between phylogenies could be explained due to the different density of the 

clades where the disagreeing taxa are located, but for the most part our phylogeny is able 

to procure an insight in how the smaller groups of fungi are evolutionary related. Still, 

further research is needed to help with the resolution of poorly supported branch splits or 

clades with low population. 

Models

In the initial steps of our phylogenetic analysis, the maximum-likelihood models where 

agreeing in the same topology when making the tree in different runs before the out-groups

were included in the alignment. However, when we included the out-groups in the analysis 

we noticed the shortcomings of the maximum-likelihood models when dealing with the 

early groups of the fungi, especially Microsporidia whose rate of evolution is different 

when compared with the rest of the tree. The maximum-likelihood models would often 

split the out-groups, not agreeing in any particular topology and usually poorly supported. 

Even the more complex maximum-likelihood models that account in some way for 
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Figure 23: Tanglegram comparing this project phylogenetic tree (left) with De Crop et al phylogeny
(right). Bootstrap values in the project tree are indicated at branch splits.



different rates of evolution in different parts of the tree were not able to provide us with a 

well supported phylogeny. 

In order to properly account for the phylogenetic signals present in our dataset we had to 

resort to heterogeneous models. Heterogeneous models can account for different rates of 

gene or protein evolution, which allows the model to differentiate between more conserved

proteins and rapidly evolving proteins, and different rates of evolution across the tree, 

which allows the model to account for differing substitution rates in homologous genes or 

proteins in different species. When we used them with the reduced dataset we were able to 

obtain a topology which placed the root reliably in repeated reconstructions of the fungal 

phylogeny. We used two different models for this purpose, a data heterogeneous model, 

which was in agreement with the general topology of maximum-likelihood models, and a 

tree and data heterogeneous model.

The tree and data heterogeneous model has shown topological discrepancies compared to 

less parameter-rich models, specifically the placement of Microsporidia as a sister branch 

of the Dikarya subkingdom, and Zoopagomycota and Mucoromycota being a 

monophyletic group. We have thoroughly tested all the models and even if the data show 

that all the phylogenetic hypotheses can plausibly explain the data we observe, the tree and

data heterogeneous model is significantly better than the data heterogeneous model, and 

both of these models have much better likelihood when compared to homogeneous models,

so heterogeneous models are able to explain the data observed in our dataset better. One 

thing to notice is that in every model but the data and tree heterogeneous model all long 

branches of the tree appear clustered together (in our tree this is the out-groups, Rozella, 

and Microsporidia). Therefore, we propose that homogeneous and data heterogeneous 

models could not solve the long branch attraction problem that adding a branch with high 

substitution rates like Microsporidia brings, and that only when we used the data and tree 

heterogeneous model we could solve this problem. This open the possibility that 

Microsporidia are not early fungi and they instead share a common ancestor with Dikarya 

that specialised in intracellular parasitism. Convergent evolution towards intracellular 

parasitism and genome reduction could also explain why they are so often placed together 

with Rozella and other Cryptomycota, since they are also obligate intracellular parasites. 

Furthermore, we have validated our methodology by construction a heterogeneous 

maximum-likelihood tree based on the phylogeny by McCarthy and Fitzpatrick, which can

be seen in Figure 24. Our validation phylogeny, seen in Figure 18, shares a similar general 

structure with McCarthy and Fitzpatrick. Both phylogenies are in agreement with the 
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placement of the major groups of the fungi, with groups like Basidiomycota being identical

in both phylogenies. There are some minor discrepancies in some smaller groups, i.e. 

Magnaporthe grisea is a sister group of Phaeoacremonium aleophilum in their phylogeny, 

while in our phylogeny Magnaporthe grisea is a sister group of Ophiostoma piceae and 

Phaeoacremonium aleophilum shares a common ancestor with them. The most blatant 

difference between our phylogenies is the placement of Rhizophagus irregularis and 

Gonapodya prolifera.  Rhizophagus irregularis is next to Dikarya in their phylogeny, while

in our phylogeny it appears within Mucoromycota.  Gonapodya prolifera appears as a 

sister branch to Neocallimastigomycota, while in our tree it appears within 

Chytridomycota. However, the placement of these species is recovered as with our 

validation phylogeny by some of the other phylogenetic approaches used by McCarthy and

Fitzpatrick in their study. Overall, both trees are structurally similar with few minor 

differences. The similarity between our validation phylogeny and McCarthy and 

Fitzpatrick phylogeny indicates that our phylogenetic methodology can be successfully 

applied to smaller and less complex datasets of fungi and still recover a similar phylogeny 

compared with what was already published in the literature. 
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Figure 24: Maximum-likelihood phylogeny of 84 fungi with 
bootstrap support reconstructed by McCarthy and Fitzpatrick 
(49).



Conclusion

By using a combination of data heterogeneous maximum-likelihood models and data 

heterogeneous and tree and data heterogeneous Bayesian models we were able to construct

a fungal phylogeny which has reliably placed the major groups of the fungi in the 

phylogeny. Many other small groups were also placed in the phylogeny in accordance with 

recent literature. Tree and data heterogeneous models have helped us resolve deep 

phylogenetic trees with very differing substitution rates and opened the possibility that 

Microsporidia are not early fungi but instead form a monophyletic group together with 

Dikarya, and that Zoopagomycota and Mucoromycota are also a monophyletic group.
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Abstract

Convergent evolution is the process by which a similar trait emerges in two different 

species that do not share a recent ancestor. Convergent evolution is ubiquitous of life, 

appearing throughout all life domains. One group of organisms where convergent 

evolution events are likely to occurs is fungi, since they have adapted to the same habitats 

independently repeated times in their phylogeny.

In this project we have used co-occurrence networks to detect convergent evolution events 

within the fungal kingdom. Co-occurence networks detect groups of genes or proteins that 

appear together more than it is expected by random chance, and that can usually be linked 

to particular functions or processes. To avoid detecting co-occurring events where a trait is 

shared between two species due to recent common ancestry, the fungal phylogeny has to be

considered. Additionally, by investigating the species habitat and lifestyle distribution 

within a co-occurring set of proteins we can draw connections between the protein set and 

adaptation to a particular environment. 

By using co-occurrence network to detect phylogenetically independent convergence 

events we were able to identify two co-occurring sets of proteins that can be linked to 

particular lifestyles, parasitism and formation of mycorrhiza. Moreover, we detected a 

large co-occurring set of proteins that can be linked to the fungal core genome, proteins 

shared by most species within the fungal kingdom that are needed to carry out basic life 

functions.
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Introduction

Convergent evolution can be defined as the process by which several lineages develop the 

same adaptation, from different ancestral starting points. Convergences in genome 

evolution can happen for entirely independent reasons or there might be a common process

based on adaptation to similar environments or similar ways of life, for these different 

lineages (1). Convergent evolution is a widespread phenomenon through the history of life 

and we can find evidence in all domains on life, from molecular to phenotypic level (2–7). 

This process has been used as a possible explanation for homoplasy, where species that do 

not share a recent common ancestor evolving, nonetheless, to where they have similar 

traits. Certain traits have evolved consistently and independently in very differing 

organisms, some of the well-know include the eyes (8) and complex brains with high 

intelligence (9), both of which have evolved independently several times throughout the 

animal kingdom. Eyes develop similar structures independently of the lineage in which 

they appear, like lenses, and the same happens with high intelligence, which is linked to 

multimodal centres in the brain structure (9). The process of convergence in evolution can 

be the result of genes undergoing similar changes in distantly-related species but where 

these species experience similar evolutionary pressure. Therefore, we can detect 

convergent evolution at the molecular level in gene and protein sequences since the 

sequences will experience similar changes to adapt to the same evolutionary pressure (10). 

Sequence similarity has been measured and used in several methods to detect and quantify 

convergent evolution along with phenotypic methods (11).

One of the groups where convergent evolution is likely to manifest itself is the fungal 

kingdom. Fungi are characterized by being very variable, morphologically simple 

heterotrophic organisms (typically filamentous or unicellular) with relatively small 

genomes and they commonly have a diploid phase and haploid phase in their life cycle 

(12). Fungi are considered variable organisms because they have very different ways of 

life; they can live as saprotrophs, mutualists like in mycorrhizal communities, parasites of 

plants, animals and other fungi. Many of them are opportunist parasites so they can go 

from living in soil to infecting other organisms given the chance. These different ways of 

life are not particular to any specific clade of fungi, but they have appeared repeatedly 

throughout the fungal phylogeny (12). For example, amongst the species of the order 

Hymenochaetales we can find saprotrophs, strong and weak parasites, and mycorrhizal 

species. Furthermore, fungi make good model organisms and are relatively easy to grow 
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and study, for which there is extensive research done in many fungal proteins and 

pathways. In addition, many fungal species have a huge impact on humans and human 

activities, both positive and negative. Fungi can be human pathogens and also infect many 

crop plants, while also providing significant benefits in certain industries like in 

fermentation or research (13–16). Recently there has also been an effort to sequence a 

wider variety of fungal species like the 1000 Fungal Genomes Project (17), providing with 

easily accessible genomes along with an extensive amount of functional annotations for 

each species genes, proteins and pathways. On account of repeated fungal adaptations to 

the same environments throughout their phylogeny, we can hypothesise that there is a high 

chance for convergent evolution events within the fungi. The recent amount and quality of 

fungal genomes that have become available means that fungi make ideal candidate 

organisms to test convergent evolution hypotheses.

One of the ways we could use to detect convergence is by using association networks, 

which detect gene co-occurrence or co-avoidance through various genomes (18, 19). These

networks are similar to genome-wide association studies in their purpose, where the 

objective is to link particular phenotypes with particular genotypic variants. In association 

networks it is assumed that genes that are found together more often than expected by 

random chance alone, might have a synergistic effect on the phenotype. We would 

therefore explore whether these significant co-occurrences are linked to similar functions. 

In a similar way, genes that avoid each other more than expected by chance could have 

negative effects on each other if they were cloned into the same genome. Genes that tend to

avoid being in the same genome would include genes whose combined protein products 

would induce toxicity, or indeed might encode almost identical functions and therefore 

would produce redundant effects that may be costly for the organism. Co-incidence 

networks have been successfully used previously to detect functionally associated proteins 

(18, 20, 21) and to link the presence of certain functions with environments (22, 23) in 

prokaryotes. However, considering co-occurrence or co-avoidance of genes alone is not 

enough to detect homoplasy events in the fungal phylogeny. To detect homoplasy we have 

to consider the phylogenetic relationships of every fungus in the dataset, in order to 

identify instances where co-occurrence or co-avoidance occurs because the species share a 

recent common ancestor. In this case, the association of genes could be explained by the 

acquisition or loss of the genes in a common ancestor and the subsequent transmission of 

this trait to descendants from this ancestor. So, to detect homoplasy in the fungal 

phylogeny we have to find genes that co-occur or co-avoid each other more than we would 

expect by random change in species that do not share a recent common ancestor. One of 
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the recent packages of software that can accomplish this task is CoinFinder (24). 

CoinFinder is able to detect homoplasy events in a gene or protein network (usually the 

result of a sequence similarity analysis using a program such as BLAST (25)) and a 

phylogeny of the species present in the network.  CoinFinder is scalable so it can be used 

on large datasets and allows to detect both co-occurrence and co-avoidance in a given 

network. The output of the program is several phylogenetically independent co-occurrence 

or co-avoidance components of the network, which can be later linked to particular 

functions or environments by investigating the genes present in every component. 

Although CoinFinder was originally designed to identify association networks in 

prokaryote pan-genomes, it can also be used for eukaryote genomes. Other alternatives that

can also detect phylogenetically independent gene associations like Copap (26) have been 

considered, however Copap has some software limitations and is computationally more 

expensive, which makes it unsuitable for large datasets. Copap is also unable to detect co-

avoidance events. There have also been some previous attempts to use convergence and 

divergence to study the evolution of fungal pathogenicity (27). However, this study could 

not take in account if the divergence and convergence was due to shared common ancestry,

an issue that should be solved with the methods that will be used in this project.
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Methods

We first obtained our data by downloading all the publicly available genome protein 

sequences and their associated metadata from the 1000 Fungal Genomes Project (FGP) 

database (17) by using the Globus tool  (28) (Genomes = 690, Accessed 10/2016). To asses

the quality of the genomes we used the Fungal Genome Mapping Project (FGMP) (29), 

which is a program that checks whether a list of previously determined conserved and ultra

conserved fungal proteins are present in the genome. The tool then reports a percentage of 

proteins that are present in each genome, which correlates with the quality of the 

sequencing because most of these proteins should be present in every genome. Genomes 

that had less than 75% of the conserved gene set were considered of poor quality and were 

not used further in the analysis. However, the genomes of some fungal species that have 

undergone a genome reduction process, and thus are much less likely to have the conserved

proteins present, were exempt from this quality assessment step. The quality assessment 

step left us with a total of 671 genomes and 8,410,690 unique proteins. But firstly, we 

decided to test CoinFinder by using a smaller, more manageable and well supported fungal 

phylogeny, which does not include the problematic groups present in our complete fungal 

phylogeny, as a primer dataset. This primer dataset was based on the phylogeny proposed 

by McCarthy and Fitzpatrick (30), and is formed of 84 genomes obtained from the FGP 

similarly to our fungal dataset. However, some of these genomes used in this study did not 

pass the quality control step, so when possible they were substituted by another species in 

the same family. Specifically, Zymoseptoria tritici was changed for Zymoseptoria 

ardabiliae, Candida albicans for Candida tanzawaensis, Microbotryum lychnidis-dioicae 

for Microbotryum violaceum and Rhizopus oryzae for Rhizopus microsporus. Otherwise, 

Species that did not have a close relative where discarded from the analysis, specifically 

Endocarpon pusillum, Orpinomyces sp. C1A, and Batrachochytrium dendrobatidis. Instead

of using an external source genome for Allomyces macrogynus that was used in the paper 

dataset, we used a sequence genome from the FGP instead. In the end, the total number of 

genomes used in the validation dataset was 81.

Next we proceeded to use the BLAST tool BLASTp v2.4.0 (25, 31) (e value = 1*e-6) by 

using the combined protein sequences of all 671 genomes to obtain a similarity measure 

between all proteins in our dataset. For the primer dataset, we extracted only the edges that 

include species in the 81 primer genomes from the BLAST output. The following steps 

were applied identically to both datasets. We used the clustering algorithm MCL 14-137 
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(32) in order to split the BLAST outputs into clusters of proteins that form communities of 

sequence similarity – a proxy for protein family identification. These clusters allow us to 

group proteins originating from different genomes into groups where the level of 

connectivity within the group is higher than connectivity from a member of the group to a 

non-member. MCL requires an inflation parameter, which determines how large or small 

the cluster will be after it partitions the original graph into connected components. The 

higher the value, the smaller the clusters. To optimise the inflation value for our dataset we 

used the MCL algorithm several times with different inflation values. Afterwards, we 

checked which inflation value was able to return complete clusters of ultra-conserved 

proteins (Ribosomal proteins were the type of proteins checked for cluster completion). We

finally settled on an inflation value of 1.4, which was the highest inflation value where 

MCL returned clusters of ultra-conserved proteins consistently, giving a final number of 

155,969 protein clusters for the primer dataset and 965,827 protein clusters for the 

complete dataset. For each dataset these protein clusters where named protein families, and

each family is given a number in a descending order according to the number of proteins it 

includes in a descending order. E.g. the protein family that has the highest number of 

proteins is Family 1, the second largest is Family 2 and so on. We then constructed an edge

list for each dataset by connecting genomes to protein families by using the proteins, e.g. if

protein p from genome g was present in cluster c, we say that there is a connection between

genome g and cluster c. Since clusters are groups of proteins with relatively high sequence 

similarity to one another, we can have a rough idea of the distribution of protein functions 

in the genomes.

Finally, we used CoinFinder (accessed 05/2020) in order to construct coincidence 

networks. CoinFinder takes an edge list and a phylogenetic tree as input and returns either 

a coincidence network or an avoidance network along with several figures and statistics 

about the network. For the primer dataset, CoinFinder was used with the previously created

edge list for the primer dataset and the validation phylogenetic tree obtained in the 

previous chapter. As for the complete dataset, Coinfinder was used with the complete 

dataset edge list and the complete phylogeny of the 671 genomes obtained in the previous 

chapter. The following parameters were used to create the association networks: detect 

association, Bonferroni correction and Greater than alternative hypothesis. Also several 

filtering options that allow filtering of high and low abundance data as a percentage of the 

dataset were tested (from not filtering to different values for the high and low abundance 

filters). Finally, the cut-off value was set to 0.9 and 0.05 respectively, which filters the top 

10% families with more members and the bottom 5% families with the lowest number of 
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members. These settings gave an output with the highest number of components. For the 

complete association network, we further analysed the resulting big component by splitting

it into partitions of highly interconnected families by using the Louvain community 

detection algorithm implemented in NetworkX in python 3.7 (33). Since communities in 

networks tend to be related to specific functions or processes (34–36), we may be able to 

find some parts of the big component where a particular function is specifically present and

find related functions or species where that function is more relevant. 

Additionally, a literature search was carried out for every species in the filtered genomes to

classify species according to five categories: their way of life (Biofilm, Lichen, 

Mycorrhizal, Saprotrophs, Pathogens or Unknown), their main habitat (Animal, Animal 

organic matter, Fungi,  Gut, Plant, Plant organic matter, Soil, Substrate (mostly species 

used in fermentation), Water and Unknown), whether they can infect other organisms, and 

whether they are considered or not to be extremophiles. For each species a small note was 

made with information that did not fit with this categorization but could be important to 

determine the ecotype (e.g. if saprotroph fungi that decompose wood produce white or 

brown rot).  This metadata is not intended to be fully accurate, since many species have 

multiple ways of life and some species have yet to be studied. However, it should still 

provide us with an initial classification of our results that will allow us to discern the 

components that are potentially more consequential for our research.
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Results

CoinFinder failed to retrieve any significant associations for either protein co-occurrence 

or protein co-avoidance for the primer dataset, so no components were found. 

As for the CoinFinder output for the complete dataset we obtained a total of 19 co-

occurring components. There is one big component that makes up most of the data (that 

encompasses 9897 families) and 18 small components (that encompass between 13 and 2 

families each). The small components can be seen in Figure 25. As for the co-avoidance 

network, CoinFinder only detected one big co-avoiding component. 
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Figure 25: Heat-map of the family presence of the smaller 18 components from CoinFinder output. 
The phylogenetic tree is displayed on y axis and the families on the x axis. Each colour represents a
component and every coloured square indicates the presence of a protein from a family in the 
corresponding species from the phylogenetic tree.
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Each of the families present in the components was assigned with the metadata previously 

obtained from the FGP, in order to check the functions and pathways that are present in 

each component. In this way we can try to link the components to specific processes or 

ideally to particular habitats of the fungi.

Finally, the components obtained from CoinFinder were also combined with with the 

information obtained in the species literature review, so we could check the main ways of 

life, habitat and infectivity of species included in each component. This information is 

summarised in Figure 26.

Additionally, we calculated the Fold Change (FC) of each component respectively to each 

category average for all the components. This step was done to detect components with a 

higher or lower presence of species in particular categories when compared to the other 

components. Most of the differing groups are ways of life or habitats that have small 

presence in the components and are usually absent in some of the components (like 

Biofilm or Gut, which make up less than 1% of the species present in the components on 

average). However, component 6 and component 7 stand out because they have a very 

differing proportions in categories that encompass a big number of species. Component 6 

Mycorrhizal has an FC of 0.2 and a Pathogen FC of 2.01; and component 7 Mycorrhizal 

has an FC of 2.06 and a Pathogen FC of 0.4. In other words, component 6 is enriched for 

pathogens and lacks mycorrhizal species when compared to the average, and component 7 

is the opposite.
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Figure 26: Summary of each component percentage of species for a particular Way of Life (WoL, 
left bars) and main habitat (right bars) of the total species present in each component.



Discussion

In this paper we have tried to detect convergent evolution events in the fungal phylogeny 

by identifying groups of two or more genes that appear together in species not related by a 

recent common ancestor more than we would expect them to appear together randomly. In 

this way we should be able to identify genes that are required for particular phenotypes or 

for phenotypes that benefit each other, paying special attention to phenotypes that are 

specific to a habitat or a particular way of life. By using fungi, which have repeatedly 

adapted to similar environments and changed their ways of life several times in their 

phylogeny, we should increase the chances of identifying these events. We have used a 

smaller primer dataset as a test for the association analysis and established the need to use 

a big dataset to be able to discern significant protein-protein association interactions. It is 

likely that the number of genomes used in the validation dataset is too low to obtain any 

significance, as it has been tested that CoinFinder works better with bigger datasets, failing

to detect any associations when the number of genomes is close to 50 (24). The number of 

genomes used in the primer dataset, 81, is close to this minimum, so this dataset might lack

the necessary evidence to detect any significant associations. This lack of results indicated 

us that there more genomes are needed to discover the co-occurrence and co-avoidance 

patters of phylogenetically independent proteins in the fungi, so we proceeded to continue 

our analysis with the complete dataset. As a result of our analysis with the bigger dataset, 

we have obtained a total of 19 components of proteins that co-occur, separated in one big 

component that includes most co-occurring proteins, and 18 smaller components. 

Components related to ways of life

Of the resulting components, the most interesting ones are component 6 and 7: the only 

components that have a discrepancy in the species distribution and could be more easily 

liked to a phenotype beneficial for a particular way of life. Component 6 is a component 

that is enriched for pathogenic species and has a low abundance of mycorrhizal species, 

having more than twice pathogenic species than the average of the components and five 

time less mycorrhizal species than other components. The distribution of species in this 

component could indicate that it is including mostly species that are pathogens or 

opportunistic pathogens, since there are many fungal species that are able to act as 

pathogen that spend most of their life cycles as saprotrophs. We can find two families in 
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this component:  Family 13408 and family 16774. Family 13408 is a family of 60 proteins 

that are poorly characterized. There is only one protein that is characterized and has an 

entry in GO and EC databases, and it is DNA-directed RNA polymerase. Some other 

proteins have related orthologs in the KOG database, of which there are three translation 

initiation factors 4F, one large RNA-binding protein, one nucleolar GTPase/ATPase p130 

and one collagen. The rest are either poorly characterized conserved proteins of unknown 

function or do not have known orthologs in the KOG database. Family 16774 is a small 

protein family with 37 members that only have uncharacterised hypothetical proteins in its 

members. Most of the proteins in Family 13408 are related to translation, since DNA-

directed RNA polymerases, the RNA binding proteins, and the translation initiation factors 

4F are directly involved in the translation process. The nucleolar GTPase/ATPase p130 is a

protein that is related to mitosis and cell proliferation in humans (37, 38). This protein 

could therefore be related to an increased growth in fungi, which has been shown to be a 

strategy that fungi adopt during infection in several studies (39, 40). Finally collagen in 

fungi can be related to the formation of extracellular structures like fimbriae (41), which 

are structures involved in reproduction and pathogenicity composed by collagen. This 

family could then be related to cell proliferation and formation of extracellular structures 

and may be related to pathogenicity. However, due to the high number of uncharacterised 

proteins, especially in its co-occurring family 16774, it is impossible to have a more secure

prediction of function or its relation to a particular way of life until the functions of these 

groups of proteins are better known.

Meanwhile Component 7 is similar to component 6 but in the opposite way: component 7 

has a high abundance of mycorrhizal species while pathogens are under-represented when 

compared to the average of the species distribution of the components. In a similar way in 

which the distribution of species in component 6 could indicate that most of its species are 

pathogen or opportunistic pathogens, in component 7 the distribution of species can 

indicate that many species included in it are mycorrhizal or are able to form mycorrhizal 

associations. Many of the fungal species that form part of the mycorrhizal communities can

also live freely in the soil as saprotrophs or have a short saprotrophic phase (42, 43). This 

component is composed of two protein families: family 5912 and family 13765. Family 

5912 is a family of poorly characterized proteins. Out of the 405 proteins that are included 

in this family, only three have entries in the KOG database and only eight members have 

entries in the GO database. Of the proteins that are characterized in this family there seems

to be four main functions: translation as part of the structure of ribosomes, transport 

(including ATP binding), biosynthesis of secondary metabolites as phosphopantetheine 
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binding related proteins and nucleic acid binding. Family 13765 is a smaller protein family

but better characterized than family 5912. Of this family’s 52 members, 20% have an entry

in the KOG database and about half have associated terms in the GO database. The 

proteins in this family have functions in transcription, translation and post translation 

modifications, defence mechanisms (C-type lectins), as chitinases, metabolism of complex 

carbohydrates (starch and sucrose) and some transport and signal transduction. Some of 

these functions in family 13765 could be related to mycorrhizal activity. Lectins are 

proteins used in carbohydrate recognitions that many organisms use to detect pathogens 

but it can also be used to recognize mutualist organisms and has been proved to be used by 

plants in mycorrhizal communities (44, 45). The same mechanisms could be used by 

fungal species in this family in recognition of their plant hosts. Chitinases are highly 

expressed by plants during the beginning of mycorrhizal interaction and can be found in 

their roots, some of them specific to mycorrhizal fungi (46, 47). Since there seems to be a 

modification of the fungal wall in the first phases of mycorrhizal interaction it may be 

possible that fungi also produce these proteins in order to facilitate interaction. Another 

possibility is that fungi start using chitin as a nitrogen source when the mutualist 

interaction occurs (48). Finally, the proteins involved in the metabolism of complex 

carbohydrates, since there is an exchange of nutrients during the mycorrhizal interaction 

and both it has been shown that mycorrhizal fungi can use starch and sucrose as a nutrient 

or even induce starch accumulation in roots (49–51). In summary, family  13765 might be 

associated with host recognition and signalling during the initial steps of mycorrhizal 

interaction, while it is hard to tell the describe the function of family 5912 since it has few 

characterized proteins, it may be part of the transduction and translation necessary to 

support the previous functions activated by the signalling of family 13765. It might also be 

related to the production of secondary metabolites that are part of the signalling system in 

the plant-fungal association (52).

Other components

Other interesting components that do not have an uncommon ways of life or habitat 

distribution but that could help us predict related functions are components 1, 3, and 4. 

These components are the sparse components that appear in Figure 25 along with 

components 6 and 7. Component 1 is the second largest component with 14 protein 

families. Out of these 14 protein families, 8 of them have only uncharacterised proteins 

amongst its members, and the rest are poorly characterized, having only one or few 
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characterized proteins. These families are: Family 7137, which has a few proteins 

characterized as oxidoreductases and one with DNA binding function; Family 9411, that 

has one protein characterized as a transporter in the membrane; Family 8067, which has 

one protein that is predicted to be a ligase involved in peptide and co-factors synthesis; 

Family 8336, which has several proteins predicted to be FOG proteins; Family 8158, 

which has one protein involved in nucleic acid and zinc ion binding; and Family 5923, 

which has one protein characterized as an alpha-glucosidase and some others predicted as 

FOG proteins. Due to the high number of uncharacterised proteins in this component is 

hard to relate it to any function or pathway, however of the 6 characterized families, 3 are 

related to zinc. Two families have FOG proteins in their members, which have many zinc 

fingers in their structure, and one family is related to zinc ion binding. It may then be that 

this component is related to zinc metabolism or pathways that involve zinc.

Component 3 includes two families: Family 11254 and Family 12064. Family 11254 is a 

small family with 101 proteins that are uncharacterised. Family 12064 is another small 

family of 80 members with mostly characterized proteins. Most of the proteins present in 

this family are protein kinases that are involved in signal transduction mechanisms, 

although we also find proteins related to translation, transcription and cell cycle. Lastly, 

component 4 is composed of two small families: Family 12244, with 77 proteins, and 

Family 15194, with 45 proteins. Family 12244 is mostly composed of proteins involved in 

DNA depended regulation of transcription, one of which is predicted to be a transcription 

factor of the Forkhead/HNF3 family. However, Family 15194 is composed only of 

uncharacterised proteins. Unfortunately, because each component has one family with 

uncharacterised proteins is not possible to assign any common function or pathway to these

components until these proteins are further investigated. 

The rest of the components are problematic since they may be false positives detected by 

CoinFinder. These components, which can be found on the left side of Figure 25, share a 

similar dense structure. They include protein families with ties with most species in our 

dataset and lack coverage in one or some of the branches of the phylogenetic tree. With 

this distribution of the co-occurring families it would be hard to rule out the possibility of a

shared common ancestor. Furthermore, this co-occurring families are likely the result of a 

deleterious event in the branches where the families are not present. Still, these families are

co-occurring since species either have all the component’s families or none, and should can

still be linked to a particular function or pathway. For example, component 8 which 
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includes most species except for the subphylum Saccharomycotina. There are two protein 

families in component 8: family 1391 and family 4912. Family 1391 is a well 

characterized family with 922 members, where most of them have an entry in both GO and

KOG databases. The vast majority of the proteins in this family are transferases and 

binding proteins related to biosynthesis. Meanwhile, family 4912 is a protein family with 

582 members that are exclusively transaminases. Both of these families’ proteins take part 

in biotin metabolism. This pathway is believed to have disappeared in one ancestor of S. 

cerevisiae and being rebuilt posteriorly (53), which would be in agreement with the species

distribution seen in component 8. Component 8’s protein families might have been part of 

S. cerevisiae ancestral biotin pathway.

Fungal core genome

Finally, the last component is component 0, which includes 9,897 out of the 9,946 protein 

families present in the co-occurrence network. Each family included in this component is 

spread across most species in our dataset, but not all of them since CoinFinder filters out 

families that are present in more than 90% of species. Since the families are found in in all 

the phylogeny it would be hard to consider them phylogenetically independent events. 

However, we can consider the protein families found in this component as the core genome

of the fungi, in other words, protein families that are needed for the very basic function of 

a fungal organism and that most fungi have in their genomes. The core genome concept is 

relatively recent, being applied initially to prokaryote pan-genomes, though it is 

increasingly being used to describe eukaryotes including fungi and animals (30, 54). 

According to this concept, groups of organisms have two kinds of “genomes”: the core 

genome, which included the basic functions needed for every organism in the group to live,

and the accessory genome, which are variable genes that not all organisms in the 

population express, necessary for more specific phenotypes. In this study’s case, the core 

genome would inclde functions that every member of the fungi, independently of their way

of life or habitat, needs to express to be able to live. Proteins and genes found in other 

components like component 6 or 7, that are only expressed in some fungal species, would 

be part of the accessory genome of the fungi and are linked to more specific functions. If 

this is the case, we should be able to find an abundance of conserved and ultra-conserved 

proteins amongst the protein families included in component 0. 
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To further facilitate this component analysis, we split the component into communities or 

partitions, resulting in 8 partitions. Of these partitions, some seem to be related to certain 

functions: Partition 8 is related to translation, transduction and other nuclear processes. 

Partition 7 is composed by two hydrolases, one for peptide metabolism and one for 

nucleotides. Partition 6 is related to electron transport. Partition 5 is composed of 

conserved proteins, many of which are related to DNA transport, metabolism, regulation. 

The rest of the partitions are more mixed in their composition of protein family functions. 

Among them we can find structural components of the ribosome (110 families), proteins 

involved in translation (565 families) and transcription (124 families), DNA and RNA 

polymerases (around 330 families) and uncharacterised conserved proteins (382 families). 

From the presence of many of the proteins groups that are conserved not only in fungi, but 

in many other domains of life, we can assume that the protein families that belong into 

component 0 may indeed be part of the core genome of the fungi. Some other missing 

protein families might also be part of the core genome but are not included in the co-

occurrence network due to filtering. 

Conclusions

By using co-occurrence networks of phylogenetically independent protein families we 

have tried to find homoplastic events in the fungal phylogeny, and specifically events that 

might lead us to identify cases of convergent evolution, especially those related to 

particular ecotypes. We have found three different kinds of components in these networks. 

First, components were homoplasy most likely happened, where groups of protein families 

are gained as a group in independent species across the phylogeny. In these components we

were able to detect two where the species distribution of the encoded proteins is very 

different to the overall distribution of the dataset. One of these components is related to 

being pathogenic and the other to forming mycorrhizae. Although we found some 

functions in these families that may be related to these ways of life, the large number of 

poorly studied proteins makes it hard to link these protein families to phenotypes that may 

be preferentially expressed by either parasites or mutualists, or to link them to a particular 

function or process. 

Second, components that are most likely the result from a deletion event in one of the 

branches of the phylogeny, but that we cannot assume that they are not the result of gene 

116



loss in a common ancestor. However, these components are still able to predict a functional

relation between the protein families they encompass.

Finally, a big component that includes the vast majority of the fungal protein families. This

component is enriched with conserved and ultra-conserved functions, so it might be part of

a fungal core genome.

All in all, association and disassociation networks are a powerful tool to detect functional 

relationships between groups of proteins similar in sequence. By limiting these networks to

proteins that are unrelated taxonomically, we can find events of homoplasy that can be 

linked to ecotypes and particular functions. Even if many of these proteins are currently 

not characterized, the findings of these project can provide new targets to further research 

pathogenicity and mutualism in fungi.
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Discussion

Convergent evolution has long been studied in evolutionary biology as one of the best 

examples of the selective pressure and the process of adaptation and it is still extensively 

studied nowadays (99). Convergent evolution can produce similar phenotypes in different 

lineages of organisms but there can be several independent strategies or mechanisms used 

by the different organisms in order to achieve in these adaptations, even at the molecular 

level (100, 101). One of the ways in which we could check for convergent evolution is by 

discovering sets of associated genes that appear independently in species not related by 

recent common ancestry that have adapted to similar ecosystems. Across the tree of life 

there are sets of genes that tend to appear together, like the well-studied effect of genetic 

linkage in eukaryotes, where genes that participate in similar functions or pathways are 

close in the chromosome and tend to be inherited together (102). In prokaryotes, there have

been extensive studies on how certain groups of genes, like antibiotic resistance related 

genes, tend to appear together (54, 103, 104). However, genetic linkage can be related to 

common ancestry, and in prokaryotes gene co-occurrence is studied in the context of 

horizontal gene transfer events in microbial communities. We wanted to explore whether 

these gain and loss events of groups of genes can independently appear in eukaryotes, 

where HGT events are not as common as in prokaryotes (105–107). Species not related by 

recent common ancestry in the context of convergent evolution can be particularly 

interesting since any evidence of convergent evolution might indicate the presence of 

strong selective pressure. If there are strategies that are the most optimal for adapting to a 

particular ecosystem, we hypothesized that we should be able to find groups of genes in 

different organisms that use similar strategies of adaptation and therefore can have a degree

of sequence similarity.

We have sought to discover these genes that are critical for adaptation to a particular 

ecosystem by using a network based approach in conjunction with a phylogeny to detect 

cases of convergent evolution in the fungi. We hypothesized that fungi that adapt 

independently to similar habitats will share some sequence similarity in genes that encode 

essential functions to thrive in that particular habitat due to similar adaptation processes. 

To test this hypothesis, we have considered that genes that have evolved in similar ways to 

perform similar functions in species that are not related by recent common ancestry could 
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be considered as important for that specific function. By then exploring the species 

distribution within these gene groups to find which ones are enriched for the presence of 

species that live in a particular environment, we can ultimately link a group of genes with 

their importance to survival in a habitat. Not being able to find these groups of genes 

would instead indicate that fungi use different strategies to adapt to similar environments 

and therefore no significant sequence similarity can be found.

In the first instance, we have sought to gain some insight into how networks can be used as

a tool to understand phylogenetic relationships between biological entities when other 

more traditional methods can not be applied. We have used plasmids in conjunction with 

bipartite networks to investigate evolutionary relationships and found that plasmids are 

grouped by at least two characteristics, function and taxonomy of their hosts. We further 

explored of the characteristics that drive the evolution of plasmids, in particular physical 

properties, nucleotide sequences of plasmids, and amino-acid sequences of their protein 

products, by using ERGMs. Still, host organism taxonomy and plasmid protein functions 

remain the main driving forces in shaping the network. 

There have been some recent studies where plasmid evolutionary relationships have been 

studied with similar methods reaching similar conclusions (108, 109), which reinforces the 

findings we obtained in this part of the project. Thus, we found evidence that networks can 

indeed be used to find relevant phylogenetic information from a set of biological entities, 

and they could therefore be applied to the fungal dataset. 

Furthermore, a similar network analysis could be applied to other datasets where 

phylogenetic analyses are not possible, particularly to viruses. Viruses are similar to 

plasmids in the sense that they are not considered living organisms, do not have common 

sequences shared between all viruses, and they also play an important role in HGT (110, 

111). In recent years there has been an increase in the sequencing of viruses in the field of 

metagenomics, in order to gain insight into the virus that inhabit different regions. Viral 

metagenomics has shed light in many unknown viral communities, leading to a new 

understanding of viral ecology, taxonomy and interactions (112, 113). Viral communities 

have been studied in a variety of environments, like the ocean (114, 115), plants (116), and 

animals (117, 118). A similar approach to the one we took in this thesis could be then 

applied to these datasets where the relationships between the different viruses are explored.

Even if in some cases the information about the virus hosts is missing, which is likely in 

the field of metagenomics, there is still the possibility to learn about the functional 
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relationships between viruses and whether the physical properties of their sequence play a 

role in these interactions.

We then proceeded to use networks in order to find relevant groups of associated or 

disassociated proteins relevant to particular phenotypes. We chose to use a big dataset, 

since Coinfinder has been proven to detect more associations with bigger datasets, usually 

requiring at least 50 genomes or more to detect significant associations (55), even if 

analysing a big dataset will make the analysis harder to perform. But first, to detect 

convergent evolution events, we needed to make a fungal phylogeny. Given that our initial 

attempts at making maximum-likelihood phylogenies to assess the selected genes for our 

dataset returned phylogenetic hypotheses with low support and in disagreement in the early

groups, and that alternative methods like super-trees failed to retrieve a well supported 

phylogeny, we turned our attention to more complex phylogenetic methods. We then used 

data-heterogeneous and tree-heterogeneous models, which allowed us to consider different 

substitution processes for the more problematic groups like Microspordia, with a 

representative reduced dataset to get a backbone of the fungal phylogeny. The smaller 

dataset was used due to the excessive computational time needed for such complex 

analyses. The heterogeneous models returned a robust fungal phylogeny with a novel 

placement of Microspordia, which may be explained by heterogeneous models being able 

to split apart the long Microspordia branch from other long branches present in the fungal 

phylogeny. To asses the validity of our methodology in the reconstruction of the 

heterogeneous fungal phylogeny, we used a similar approach to reconstruct a previously 

published well supported fungal phylogeny that used a similar but smaller dataset from the 

FGP using various phylogenetic methodologies by McCarthy and Fitzpatrick  (65). Our 

reconstruction of this validation phylogeny was similar to the one published by McCarthy 

and Fitzpatrick, with high support values as can be seen in Figure 19. As with our dataset, 

a tree and site heterogeneous phylogeny proved to be more robust and have a higher 

likelihood than a phylogenetic tree that was produced using a model that only allowed data

heterogeneity in order to reconstruct the phylogeny. The difference in log likelihood 

between the only data heterogeneous phylogeny and the tree and site heterogeneous 

phylogeny is similar in both the smaller validation dataset and our original fungal dataset. 

By proving that our methodology is well suited to resolve both trees with and without 

Microsporidia, we have obtained more support for the potential novel placement of 

Microsporidia. 
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An alternative approach could have been taken to link relevant sets of genes to specific 

functions or phenotypes, like multivariate analysis (119). Using this approach would have 

allowed us to leave the complexity of the fungal phylogeny out of the analysis. However, 

since these methods do not consider the phylogenetic relationships between species, it 

would be nearly impossible to discard sets of genes related by common ancestry from 

independent sets of genes. Therefore, a phylogenetic reconstruction was needed for the 

purpose of this project. Despite the problems that data and tree heterogeneous models 

have, namely their complexity of use and lower scalability when compared to 

homogeneous models, they have proved to be a powerful tool (120). Using these models 

has allowed us to confidently place in the fungal phylogeny both deep branches and very 

divergent branches. There still remain many clades across the tree of life with a difficult 

placement in similar cases to Microsporidia like sponges and Spiralians in Animals (121, 

122), palms and Amborella in plants (123, 124) and ciliates in protozoans (125, 126). 

Using heterogeneous models with small but representative datasets of various groups of 

organisms, could be useful to resolve these deep or problematic branches that are still 

under discussion.

Finally, with the support from the heterogeneous tree for early branches in the fungal 

phylogenies, we then proceeded to obtain a phylogeny for the complete set of species in 

our dataset. We used the phylogeny of all the fungal species present in our dataset in 

conjunction with association and disassociation networks to explore significant patterns of 

presence and absence of genes in genomes. We found 19 components of coinciding 

proteins that were then further analysed by exploring the genes present in each one of them

in order to link them to a function. Out of these components, we found two components 

that are enriched for species that have a particular way of life, specifically parasitic and 

mycorrhizal fungi. Furthermore, the functions linked to these components are relevant to 

their respective way of life. The pathogen component is linked to growth rate and infective 

structures and the mycorrhizal component is linked to host recognition, cell wall 

modifications and plant related metabolism. Additionally, we have found that the largest 

component found in the association analysis seems to be related to the core genome of the 

fungi, or at least part of it. It is composed mainly of conserved functions that are needed 

for fungal species to perform their basic life functions. Other components are related to the 

accessory genome, that have more specialized functions that are not found in every fungal 

species and that represent more specialized functions in the adaptation to environments. 
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Pan-genomes have been mostly explored in prokaryotes (92), but there have been a few 

studies of pan-genomes in eukaryotes (127–129), including fungi (130, 131). Even if it was

not in our initial objectives, we have thus found further evidence of the structure of the 

fungal pan-genome. 

By obtaining these results we have accomplished the objectives we set out to do in the 

beginning of the project, obtaining evidence of selection of similar molecular strategies in 

convergent evolution that give rise to sequence similarity between independent sets of 

genes. However, this thesis results involve only computational work that only provides 

candidate genes with potential involvement in pathogenicity or mutualism, and further 

research would need to be done in order to test whether the candidate genes are valid, 

particularly with experimental support. One possible way we could test our findings in 

convergent evolution is with knockout experiments. Knockout experiments can be used to 

test the effect that the loss of a gene or a set of genes affect an organism. Knockout 

experiments have been extensively used in mice to test the influence of genes in diseases, 

immunity and even behaviour (132–134). Fungi are also a common target for knockout 

experiments, many of which are focused on genes that affect fungal pathogenicity (135–

137). Hence, we could use a similar approach with knockout experiments to test how the 

loss of one of the genes present in a particular component affects one of the fungal species 

that have these genes present. For example, we could test in pathogens whether loosing the

genes in the component affects their ability to infect their host or if they are less successful 

doing so. For mycorrhizal species, we could check whether removing these genes affects 

their capability to form mutualistic associations. It could also be interesting to test whether 

loss of function (i.e. loosing the ability to infect or form mycorrhizal associations) also 

happen if we just remove one of the genes present in the component or it just happens 

when both are removed. If it is the case that there is only a reduced effectiveness of the 

organism without all the genes in a component, we could also test whether loosing only 

one of the genes reduces effectiveness to a lesser degree. Similar experiments have been 

thoroughly performed to test gene-gene interactions in yeast metabolism, where the effects 

on the phenotype of a single knockout strain are compared with the effects on the 

phenotype of double knockout strains (138) or multiple knockout strains (139). There has 

also been research in the effect of knockouts of different combination of pathogenicity 

related genes in fungal pathogens of wheat (140), which are similar experiments to what 

could be applied to the results of this thesis. These experiments are also prevalent using 

mouse as a model, where some experiments have found that single knockout mice do not 

have negative effects on the phenotype but double knockout mice have a negative 
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phenotype (141). Furthermore, some experiments have found that single gene knockouts to

have a positive effect on the phenotype while double knockouts have a negative effect 

(142), which can be interesting to explore in the case of disassociation networks. 

Additionally, co-occurrence networks could be applied to other groups of organisms to 

check for convergent evolution events to identify interesting sets of genes or proteins. It 

would be particularly helpful to test this methodology with clades with an already well 

supported phylogeny in the literature, as this would remove some of the problems we 

encountered in this project.

Lastly, we validated our project by repeating our analysis with a smaller and more 

manageable dataset with a well-supported phylogeny, that did not include the problematic 

clades that made our analysis more difficult. However, when we applied the same 

methodology to this validation fungal phylogeny, we were unable to find any significant 

associations or disassociations. This lack of findings when we analysed a bigger dataset 

has served to validate our initial stance that a large dataset was needed to extract the 

information we required. By increasing the dataset size from 81 species to 671 (“only” 

eight times bigger) we are able to find evidence of convergent evolution in the fungi. As it 

has been happening to the field of big data in biology, there has been numerous efforts to 

further increase the availability of data. Projects like the FGP, many of the human 

sequencing projects or the previously mentioned metagenomic projects have increased the 

quantity of sequenced genomes, from only a few genomes a decade ago to several tens of 

thousands nowadays, an example of which can be checked in JGI GOLD statists website 

(143). This ever-increasing availability of bigger and bigger datasets is allowing us to use 

more demanding methods that require large quantities of data to obtain informative 

conclusions. If by increasing by less than tenfold our dataset size has allowed us to detect 

evidence of convergent evolution in fungi, by feeding more data to newer and more 

demanding methods we may be able to discover many features that as of today have eluded

us.
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Conclusion

In this project we have tried to use network methods to extract information about the 

evolutionary relationships between members of the fungi, with particular attention to 

convergent evolution and its ties to shared protein functionality. 

First, we tested network methods by using a more manageable plasmid dataset, where we 

used bipartite graphs and ERGMs to identify properties of the evolutionary relationships 

between plasmids and their hosts, where a traditional phylogenetic approach can not be 

used. We found that plasmid tend to organize around two types of communities: related to 

protein function and related to taxonomy. Communities related to taxonomy seem to have 

emerged mostly as a result of isolation of the hosts, either by extreme habitats or other 

features like atypical plasmid structure. With ERGMs we proved that physical properties of

the plasmids sequences and the sequence of the proteins they encode can impact the 

evolutionary relationships with their hosts. In particular, proteins and plasmids adapted to 

extreme conditions are more shared in a plasmid network that it is expected if plasmids 

where shared randomly. Therefore, there seems to be an increased sharing of stable 

proteins in extremophile environments, which could be the result of a positive fitness effect

in hosts carrying these plasmids in extreme habitats. 

Then, we proceeded to analyse our fungal dataset. As a first step we needed to produce a 

phylogenetic hypothesis of the fungal taxonomy to account for common ancestry when 

investigating protein association networks. However, long branch attraction was proving to

be an issue to resolve deep branches in the fungal phylogeny, especially considering the 

presence of intracellular parasites that have very rapid amino-acid substitution rates. To get

around this issue, we used a reduced dataset with data and tree heterogeneous models, 

which provided with a robust general structure of the fungal clades as well as a novel 

placement of Micropsoridia in the fungal phylogeny, seemingly resulting from solving the 

long branch attraction issues.  As a last step we used a complete data-heterogeneous model 

with all taxa in our fungal dataset to be used as a phylogeny for association networks. 

The last step was detecting convergent evolution in the fungal kingdom by using protein 

co-occurrence networks along with the fungal phylogeny obtained in the previous step. We 

detected a total of 19 co-occurring components, two of which can be tied to parasitical 

fungi and mycorrhizal fungi respectively. Other components are hard to associate with 
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particular phenotypes but usually a common function or pathway can be found in each 

component. Nonetheless, the low characterization of proteins that are found in the 

components presents and issue when trying to link components to functions, so further 

investigation is required in these groups of proteins before they can be confidently linked 

to a particular function. Lastly, we tied the component that included the vast majority of the

co-occurring protein families to the fungal core genome, functions that are found in most 

fungal species and are necessary for to maintain basic life, as many protein families are 

found in this large component. 
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Supplementary information

Table 2: Identifier, species name and database accession link of each of the 671 fungal 
genomes from the FGP used in this project.

FGP ID Species Name FGP Accession

Aaoar1 Aaosphaeria arxii
https://mycocosm.jgi.doe.gov/Aaoar1/
Aaoar1.home.html

Absrep1 Absidia repens
https://mycocosm.jgi.doe.gov/
Absrep1/Absrep1.home.html

Acain1 Acaromyces ingoldii
https://mycocosm.jgi.doe.gov/Acain1/
Acain1.home.html

Acema1 Acephala macrosclerotiorum
https://mycocosm.jgi.doe.gov/Acema1/
Acema1.home.html

Aciaci1 Acidothrix acidophila
https://mycocosm.jgi.doe.gov/Aciaci1/
Aciaci1.home.html

Aciri1_iso Acidomyces richmondensis iso
https://mycocosm.jgi.doe.gov/
Aciri1_iso/Aciri1_iso.home.html

Aciri1_meta Acidomyces richmondensis meta
https://mycocosm.jgi.doe.gov/
Aciri1_meta/Aciri1_meta.home.html

Acral2 Acremonium alcalophilum
https://mycocosm.jgi.doe.gov/Acral2/
Acral2.home.html

Acrst1 Acremonium strictum
https://mycocosm.jgi.doe.gov/Acrst1/
Acrst1.home.html

Agabi_varbisH97_2 Agaricus bisporus var bisporus

https://mycocosm.jgi.doe.gov/
Agabi_varbisH97_2/
Agabi_varbisH97_2.home.html

Agahy1 Agaricostilbum hyphaenes 
https://mycocosm.jgi.doe.gov/Agahy1/
Agahy1.home.html

Agrped1 Agrocybe pediades
https://mycocosm.jgi.doe.gov/
Agrped1/Agrped1.home.html

Allma1 Allomyces macrogynus
https://mycocosm.jgi.doe.gov/Allma1/
Allma1.home.html

Altal1 Alternaria alternata
https://mycocosm.jgi.doe.gov/Altal1/
Altal1.home.html

Amamu1 Amanita muscaria
https://mycocosm.jgi.doe.gov/
Amamu1/Amamu1.home.html

Amath1 Amanita thiersii
https://mycocosm.jgi.doe.gov/Amath1/
Amath1.home.html

Amnli1 Amniculicola lignicola
https://mycocosm.jgi.doe.gov/Amnli1/
Amnli1.home.html

Amore1 Amorphotheca resinae
https://mycocosm.jgi.doe.gov/Amore1/
Amore1.home.html

Ampqui1 Ampelomyces quisqualis
https://mycocosm.jgi.doe.gov/
Ampqui1/Ampqui1.home.html

Anasp1 Anaeromyces robustus
https://mycocosm.jgi.doe.gov/Anasp1/
Anasp1.home.html
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Anobom1 Anomoporia bombycina
https://mycocosm.jgi.doe.gov/
Anobom1/Anobom1.home.html

Antav1 Anthostoma avocetta
https://mycocosm.jgi.doe.gov/Antav1/
Antav1.home.html

Antlo1 Antonospora locustae
https://mycocosm.jgi.doe.gov/Antlo1/
Antlo1.home.html

Antsi1 Antrodia sinuosa
https://mycocosm.jgi.doe.gov/Antsi1/
Antsi1.home.html

Apimo1 Apiospora montagnei
https://mycocosm.jgi.doe.gov/Apimo1/
Apimo1.home.html

Aplpr1 Aplosporella prunicola
https://mycocosm.jgi.doe.gov/Aplpr1/
Aplpr1.home.html

Armga1 Armillaria gallica
https://mycocosm.jgi.doe.gov/Armga1/
Armga1.home.html

Armme1_1 Armillaria mellea
https://mycocosm.jgi.doe.gov/
Armme1_1/Armme1_1.home.html

Armost1 Armillaria ostoyae
https://mycocosm.jgi.doe.gov/
Armost1/Armost1.home.html

Artbe1 Arthroderma benhamiae
https://mycocosm.jgi.doe.gov/Artbe1/
Artbe1.home.html

Artel1 Artolenzites elegans 1663
https://mycocosm.jgi.doe.gov/Artel1/
Artel1.home.html

Artele1122_1 Artolenzites elegans 1122
https://mycocosm.jgi.doe.gov/
Artele1122_1/Artele1122_1.home.html

Artfe1_2 Arthroascus fermentans
https://mycocosm.jgi.doe.gov/
Artfe1_2/Artfe1_2.home.html

Artol1 Arthrobotrys oligospora
https://mycocosm.jgi.doe.gov/Artol1/
Artol1.home.html

Arxad1 Blastobotrys Arxula
https://mycocosm.jgi.doe.gov/Arxad1/
Arxad1.home.html

Ascim1 Ascobolus immersus
https://mycocosm.jgi.doe.gov/Ascim1/
Ascim1.home.html

Ascni1 Ascodesmis nigricans
https://mycocosm.jgi.doe.gov/Ascni1/
Ascni1.home.html

Ascru1 Ascoidea rubescens
https://mycocosm.jgi.doe.gov/Ascru1/
Ascru1.home.html

Ascsa1 Ascocoryne sarcoides
https://mycocosm.jgi.doe.gov/Ascsa1/
Ascsa1.home.html

Ashgo1_1 Eremothecium gossypii
https://mycocosm.jgi.doe.gov/
Ashgo1_1/Ashgo1_1.home.html

Aspbr1 Aspergillus brasiliensis
https://mycocosm.jgi.doe.gov/Aspbr1/
Aspbr1.home.html

Aspcam1 Aspergillus campestris
https://mycocosm.jgi.doe.gov/
Aspcam1/Aspcam1.home.html

Aspcl1 Aspergillus clavatus
https://mycocosm.jgi.doe.gov/Aspcl1/
Aspcl1.home.html

Aspfl1 Aspergillus flavus
https://mycocosm.jgi.doe.gov/Aspfl1/
Aspfl1.home.html

Aspfo1 Aspergillus luchuensis
https://mycocosm.jgi.doe.gov/Aspfo1/
Aspfo1.home.html
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Aspfu_A1163_1 Aspergillus fumigatus A1163

https://mycocosm.jgi.doe.gov/
Aspfu_A1163_1/
Aspfu_A1163_1.home.html

Aspfu1 Aspergillus fumigatus Af293
https://mycocosm.jgi.doe.gov/Aspfu1/
Aspfu1.home.html

Aspgl1 Aspergillus glaucus
https://mycocosm.jgi.doe.gov/Aspgl1/
Aspgl1.home.html

Aspka1_1 Aspergillus kawachii
https://mycocosm.jgi.doe.gov/
Aspka1_1/Aspka1_1.home.html

Aspni_bvT_1 Aspergillus niger van Tieghem
https://mycocosm.jgi.doe.gov/
Aspni_bvT_1/Aspni_bvT_1.home.html

Aspni_DSM_1 Aspergillus niger CBS

https://mycocosm.jgi.doe.gov/
Aspni_DSM_1/
Aspni_DSM_1.home.html

Aspni_NRRL3_1 Aspergillus niger NRRL3

https://mycocosm.jgi.doe.gov/
Aspni_NRRL3_1/
Aspni_NRRL3_1.home.html

Aspni7 Aspergillus niger ATCC
https://mycocosm.jgi.doe.gov/Aspni7/
Aspni7.home.html

Aspnid1 Aspergillus nidulans
https://mycocosm.jgi.doe.gov/
Aspnid1/Aspnid1.home.html

Aspnov1 Aspergillus novofumigatus
https://mycocosm.jgi.doe.gov/
Aspnov1/Aspnov1.home.html

Aspoch1 Aspergillus ochraceoroseus
https://mycocosm.jgi.doe.gov/
Aspoch1/Aspoch1.home.html

Aspor1 Aspergillus oryzae
https://mycocosm.jgi.doe.gov/Aspor1/
Aspor1.home.html

Aspph1 Aspergillus phoenicis
https://mycocosm.jgi.doe.gov/Aspph1/
Aspph1.home.html

Aspste1 Aspergillus steynii
https://mycocosm.jgi.doe.gov/Aspste1/
Aspste1.home.html

Aspsy1 Aspergillus sydowii
https://mycocosm.jgi.doe.gov/Aspsy1/
Aspsy1.home.html

Aspte1 Aspergillus terreus
https://mycocosm.jgi.doe.gov/Aspte1/
Aspte1.home.html

Asptu1 Aspergillus tubingensis
https://mycocosm.jgi.doe.gov/Asptu1/
Asptu1.home.html

Aspve1 Aspergillus versicolor
https://mycocosm.jgi.doe.gov/Aspve1/
Aspve1.home.html

Aspwe1 Aspergillus wentii
https://mycocosm.jgi.doe.gov/Aspwe1/
Aspwe1.home.html

Aspzo1 Aspergillus zonatus
https://mycocosm.jgi.doe.gov/Aspzo1/
Aspzo1.home.html

Atrsp2 Atractiellales sp.
https://mycocosm.jgi.doe.gov/Atrsp2/
Atrsp2.home.html

Aulhe2 Aulographum hederae
https://mycocosm.jgi.doe.gov/Aulhe2/
Aulhe2.home.html

Auramp1 Auriculariopsis ampla
https://mycocosm.jgi.doe.gov/
Auramp1/Auramp1.home.html
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Aurde3_1 Auricularia subglabra
https://mycocosm.jgi.doe.gov/
Aurde3_1/Aurde3_1.home.html

Aurpu_var_mel1
Aureobasidium pullulans var. 
Melanogenum

https://mycocosm.jgi.doe.gov/
Aurpu_var_mel1/
Aurpu_var_mel1.home.html

Aurpu_var_nam1 Aureobasidium pullulans var. Namibiae

https://mycocosm.jgi.doe.gov/
Aurpu_var_nam1/
Aurpu_var_nam1.home.html

Aurpu_var_pul1 Aureobasidium pullulans var. Pullulans

https://mycocosm.jgi.doe.gov/
Aurpu_var_pul1/
Aurpu_var_pul1.home.html

Aurpu_var_sub1 Aureobasidium pullulans var. Subglaciale

https://mycocosm.jgi.doe.gov/
Aurpu_var_sub1/
Aurpu_var_sub1.home.html

Aurvu1 Auriscalpium vulgare
https://mycocosm.jgi.doe.gov/Aurvu1/
Aurvu1.home.html

Babin1 Babjeviella inositovora
https://mycocosm.jgi.doe.gov/Babin1/
Babin1.home.html

Bacci1 Backusella circina
https://mycocosm.jgi.doe.gov/Bacci1/
Bacci1.home.html

Basme2finSC Basidiobolus meristosporus
https://mycocosm.jgi.doe.gov/
Basme2finSC/Basme2finSC.home.html

Basun1 Basidioascus undulatus
https://mycocosm.jgi.doe.gov/Basun1/
Basun1.home.html

Bauco1 Baudoinia compniacensis
https://mycocosm.jgi.doe.gov/Bauco1/
Bauco1.home.html

Beaba1 Beauveria bassiana
https://mycocosm.jgi.doe.gov/Beaba1/
Beaba1.home.html

Bimnz1 Bimuria novae-zelandiae
https://mycocosm.jgi.doe.gov/Bimnz1/
Bimnz1.home.html

Bjead1_1 Bjerkandera adusta
https://mycocosm.jgi.doe.gov/
Bjead1_1/Bjead1_1.home.html

Blade1 Blastomyces dermatitidis
https://mycocosm.jgi.doe.gov/Blade1/
Blade1.home.html

Blatri1 Blakeslea trispora
https://mycocosm.jgi.doe.gov/Blatri1/
Blatri1.home.html

Blugr1 Blumeria graminis
https://mycocosm.jgi.doe.gov/Blugr1/
Blugr1.home.html

Boled1 Boletus edulis
https://mycocosm.jgi.doe.gov/Boled1/
Boled1.home.html

Bolvit1 Bolbitius vitellinus
https://mycocosm.jgi.doe.gov/Bolvit1/
Bolvit1.home.html

Botbo1 Botryobasidium botryosum
https://mycocosm.jgi.doe.gov/Botbo1/
Botbo1.home.html

Botci1 Botrytis cinerea
https://mycocosm.jgi.doe.gov/Botci1/
Botci1.home.html

Botdo1_1 Botryosphaeria dothidea
https://mycocosm.jgi.doe.gov/
Botdo1_1/Botdo1_1.home.html

Bulin1 Bulgaria inquinans
https://mycocosm.jgi.doe.gov/Bulin1/
Bulin1.home.html
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Bysci1 Byssothecium circinans
https://mycocosm.jgi.doe.gov/Bysci1/
Bysci1.home.html

Cadsp1 Cadophora sp.
https://mycocosm.jgi.doe.gov/Cadsp1/
Cadsp1.home.html

Calco1 Calocera cornea
https://mycocosm.jgi.doe.gov/Calco1/
Calco1.home.html

Calful1 Caloscypha fulgens
https://mycocosm.jgi.doe.gov/Calful1/
Calful1.home.html

Calor1 Caliciopsis orientalis
https://mycocosm.jgi.doe.gov/Calor1/
Calor1.home.html

Calpu1 Calosphaeria pulchella
https://mycocosm.jgi.doe.gov/Calpu1/
Calpu1.home.html

Calvi1 Calocera viscosa
https://mycocosm.jgi.doe.gov/Calvi1/
Calvi1.home.html

Cananz1 Cantharellus anzutake
https://mycocosm.jgi.doe.gov/
Cananz1/Cananz1.home.html

Canar1 Candida arabinofermentans
https://mycocosm.jgi.doe.gov/Canar1/
Canar1.home.html

Canca1 Tortispora caseinolytica
https://mycocosm.jgi.doe.gov/Canca1/
Canca1.home.html

Canta1 Candida tanzawaensis
https://mycocosm.jgi.doe.gov/Canta1/
Canta1.home.html

Capcor1 Capronia coronata
https://mycocosm.jgi.doe.gov/Capcor1/
Capcor1.home.html

Capep1 Capronia epimyces
https://mycocosm.jgi.doe.gov/Capep1/
Capep1.home.html

Capse1 Capronia semiimmersa
https://mycocosm.jgi.doe.gov/Capse1/
Capse1.home.html

Catan2 Catenaria anguillulae
https://mycocosm.jgi.doe.gov/Catan2/
Catan2.home.html

Cenge3 Cenococcum geophilum
https://mycocosm.jgi.doe.gov/Cenge3/
Cenge3.home.html

Cepal1_1 Cephaloascus albidus
https://mycocosm.jgi.doe.gov/
Cepal1_1/Cepal1_1.home.html

Cepfr1_1 Cephaloascus fragrans
https://mycocosm.jgi.doe.gov/
Cepfr1_1/Cepfr1_1.home.html

CerAGI Ceratobasidium sp.
https://mycocosm.jgi.doe.gov/CerAGI/
CerAGI.home.html

Cercer1 Cerinomyces ceraceus
https://mycocosm.jgi.doe.gov/Cercer1/
Cercer1.home.html

Cersp1 Ceraceosorus sp.
https://mycocosm.jgi.doe.gov/Cersp1/
Cersp1.home.html

Cersu1 Ceriporiopsis  Gelatoporia
https://mycocosm.jgi.doe.gov/Cersu1/
Cersu1.home.html

Cerun2 Cerrena unicolor
https://mycocosm.jgi.doe.gov/Cerun2/
Cerun2.home.html

Cerzm1 Cercospora zeae-maydis
https://mycocosm.jgi.doe.gov/Cerzm1/
Cerzm1.home.html

Chagl_1 Chaetomium globosum
https://mycocosm.jgi.doe.gov/Chagl_1/
Chagl_1.home.html
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Chalo1 Chalara longipes
https://mycocosm.jgi.doe.gov/Chalo1/
Chalo1.home.html

Chiap1 Chionosphaera apobasidialis
https://mycocosm.jgi.doe.gov/Chiap1/
Chiap1.home.html

Chicu1 Chionosphaera cuniculicola
https://mycocosm.jgi.doe.gov/Chicu1/
Chicu1.home.html

Chlpad1 Absidia padenii
https://mycocosm.jgi.doe.gov/Chlpad1/
Chlpad1.home.html

Chove1 Choiromyces venosus
https://mycocosm.jgi.doe.gov/Chove1/
Chove1.home.html

Claba1 Cladophialophora bantiana
https://mycocosm.jgi.doe.gov/Claba1/
Claba1.home.html

Claca1 Cladophialophora carrionii
https://mycocosm.jgi.doe.gov/Claca1/
Claca1.home.html

Clael1 Clathrospora elynae
https://mycocosm.jgi.doe.gov/Clael1/
Clael1.home.html

Clafu1 Cladosporium fulvum
https://mycocosm.jgi.doe.gov/Clafu1/
Clafu1.home.html

Clagr3 Cladonia grayi
https://mycocosm.jgi.doe.gov/Clagr3/
Clagr3.home.html

Claim1 Cladophialophora immunda
https://mycocosm.jgi.doe.gov/Claim1/
Claim1.home.html

Clalu1_2 Clavispora lusitaniae
https://mycocosm.jgi.doe.gov/
Clalu1_2/Clalu1_2.home.html

ClaPMI390 Clavulina sp.
https://mycocosm.jgi.doe.gov/
ClaPMI390/ClaPMI390.home.html

Claps1 Cladophialophora psammophila
https://mycocosm.jgi.doe.gov/Claps1/
Claps1.home.html

Clapy1 Clavicorona pyxidata
https://mycocosm.jgi.doe.gov/Clapy1/
Clapy1.home.html

Claye1 Cladophialophora yegresii
https://mycocosm.jgi.doe.gov/Claye1/
Claye1.home.html

Cloaq1 Clohesyomyces aquaticus
https://mycocosm.jgi.doe.gov/Cloaq1/
Cloaq1.home.html

Cloro1 Clonostachys rosea
https://mycocosm.jgi.doe.gov/Cloro1/
Cloro1.home.html

Cocca1 Cochliobolus carbonum
https://mycocosm.jgi.doe.gov/Cocca1/
Cocca1.home.html

CocheC4_1 Cochliobolus heterostrophus C4
https://mycocosm.jgi.doe.gov/
CocheC4_1/CocheC4_1.home.html

CocheC5_3 Cochliobolus heterostrophus C5
https://mycocosm.jgi.doe.gov/
CocheC5_3/CocheC5_3.home.html

Cocim1 Coccidioides immitis
https://mycocosm.jgi.doe.gov/Cocim1/
Cocim1.home.html

Coclu2 Cochliobolus lunatus
https://mycocosm.jgi.doe.gov/Coclu2/
Coclu2.home.html

Cocmi1 Cochliobolus miyabeanus
https://mycocosm.jgi.doe.gov/Cocmi1/
Cocmi1.home.html

Cocsa1 Cochliobolus sativus
https://mycocosm.jgi.doe.gov/Cocsa1/
Cocsa1.home.html
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Cocst1 Coccomyces strobi
https://mycocosm.jgi.doe.gov/Cocst1/
Cocst1.home.html

Cocvi1 Cochliobolus victoriae
https://mycocosm.jgi.doe.gov/Cocvi1/
Cocvi1.home.html

Coere1 Coemansia reversa
https://mycocosm.jgi.doe.gov/Coere1/
Coere1.home.html

Colca1 Colletotrichum caudatum
https://mycocosm.jgi.doe.gov/Colca1/
Colca1.home.html

Coler1 Colletotrichum eremochloae
https://mycocosm.jgi.doe.gov/Coler1/
Coler1.home.html

Colfa1 Colletotrichum falcatum
https://mycocosm.jgi.doe.gov/Colfa1/
Colfa1.home.html

Colfi1 Colletotrichum fioriniae
https://mycocosm.jgi.doe.gov/Colfi1/
Colfi1.home.html

Colgo1 Colletotrichum godetiae
https://mycocosm.jgi.doe.gov/Colgo1/
Colgo1.home.html

Colgr1 Colletotrichum graminicola
https://mycocosm.jgi.doe.gov/Colgr1/
Colgr1.home.html

Colhi1 Colletotrichum higginsianum
https://mycocosm.jgi.doe.gov/Colhi1/
Colhi1.home.html

Colhig1 Colletotrichum higginsianum g
https://mycocosm.jgi.doe.gov/Colhig1/
Colhig1.home.html

Collu1 Colletotrichum lupini
https://mycocosm.jgi.doe.gov/Collu1/
Collu1.home.html

Colny1 Colletotrichum nymphaeae
https://mycocosm.jgi.doe.gov/Colny1/
Colny1.home.html

Colph1 Colletotrichum phormii
https://mycocosm.jgi.doe.gov/Colph1/
Colph1.home.html

Colsa1 Colletotrichum salicis
https://mycocosm.jgi.doe.gov/Colsa1/
Colsa1.home.html

Colsi1 Colletotrichum simmondsii
https://mycocosm.jgi.doe.gov/Colsi1/
Colsi1.home.html

Colso1 Colletotrichum somersetensis
https://mycocosm.jgi.doe.gov/Colso1/
Colso1.home.html

Colsu1 Colletotrichum sublineola
https://mycocosm.jgi.doe.gov/Colsu1/
Colsu1.home.html

Colzo1 Colletotrichum zoysiae
https://mycocosm.jgi.doe.gov/Colzo1/
Colzo1.home.html

Conap1 Coniosporium apollinis
https://mycocosm.jgi.doe.gov/Conap1/
Conap1.home.html

Conco1 Conidiobolus coronatus
https://mycocosm.jgi.doe.gov/Conco1/
Conco1.home.html

Conli1 Coniochaeta ligniaria CBS
https://mycocosm.jgi.doe.gov/Conli1/
Conli1.home.html

Conlig1 Coniochaeta ligniaria NRRL
https://mycocosm.jgi.doe.gov/Conlig1/
Conlig1.home.html

Conol1 Coniophora olivacea
https://mycocosm.jgi.doe.gov/Conol1/
Conol1.home.html

ConPMI546 Coniochaeta sp.
https://mycocosm.jgi.doe.gov/
ConPMI546/ConPMI546.home.html
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Conpu1 Coniophora puteana
https://mycocosm.jgi.doe.gov/Conpu1/
Conpu1.home.html

Conth1 Conidiobolus thromboides
https://mycocosm.jgi.doe.gov/Conth1/
Conth1.home.html

Copci_AmutBmut1 Coprinopsis cinerea AmutBmut

https://mycocosm.jgi.doe.gov/
Copci_AmutBmut1/
Copci_AmutBmut1.home.html

Copci1 Coprinopsis cinerea
https://mycocosm.jgi.doe.gov/Copci1/
Copci1.home.html

Copmar1 Coprinopsis marcescibilis
https://mycocosm.jgi.doe.gov/
Copmar1/Copmar1.home.html

Copmic2 Coprinellus micaceus
https://mycocosm.jgi.doe.gov/
Copmic2/Copmic2.home.html

Coppel1 Coprinellus pellucidus
https://mycocosm.jgi.doe.gov/Coppel1/
Coppel1.home.html

Copscl1 Coprinopsis sclerotiger
https://mycocosm.jgi.doe.gov/Copscl1/
Copscl1.home.html

Corca1 Corynespora cassiicola
https://mycocosm.jgi.doe.gov/Corca1/
Corca1.home.html

Corgl3 Cortinarius glaucopus
https://mycocosm.jgi.doe.gov/Corgl3/
Corgl3.home.html

Corma2 Corollospora maritima
https://mycocosm.jgi.doe.gov/Corma2/
Corma2.home.html

Cormi1 Cordyceps militaris
https://mycocosm.jgi.doe.gov/Cormi1/
Cormi1.home.html

Crevar1 Crepidotus variabilis
https://mycocosm.jgi.doe.gov/Crevar1/
Crevar1.home.html

Croqu1 Cronartium quercuum
https://mycocosm.jgi.doe.gov/Croqu1/
Croqu1.home.html

Crula1 Crucibulum laeve
https://mycocosm.jgi.doe.gov/Crula1/
Crula1.home.html

Crycu1 Cryptococcus curvatus
https://mycocosm.jgi.doe.gov/Crycu1/
Crycu1.home.html

Cryne_JEC21_1 Cryptococcus neoformans var neoformans

https://mycocosm.jgi.doe.gov/
Cryne_JEC21_1/
Cryne_JEC21_1.home.html

Crypa2 Cryphonectria parasitica
https://mycocosm.jgi.doe.gov/Crypa2/
Crypa2.home.html

Cryte1 Cryptococcus terricola
https://mycocosm.jgi.doe.gov/Cryte1/
Cryte1.home.html

Cryvi1 Cryptococcus vishniacii
https://mycocosm.jgi.doe.gov/Cryvi1/
Cryvi1.home.html

Crywi1 Cryptococcus wieringae
https://mycocosm.jgi.doe.gov/Crywi1/
Crywi1.home.html

Cucbe1 Cucurbitaria berberidis
https://mycocosm.jgi.doe.gov/Cucbe1/
Cucbe1.home.html

Cyastr2 Cyathus striatus
https://mycocosm.jgi.doe.gov/Cyastr2/
Cyastr2.home.html

Cybja1 Cyberlindnera jadinii
https://mycocosm.jgi.doe.gov/Cybja1/
Cybja1.home.html
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Cylto1 Cylindrobasidium torrendii
https://mycocosm.jgi.doe.gov/Cylto1/
Cylto1.home.html

Cypeu1 Cyphellophora europaea
https://mycocosm.jgi.doe.gov/Cypeu1/
Cypeu1.home.html

Dacsp1 Dacryopinax primogenitus
https://mycocosm.jgi.doe.gov/Dacsp1/
Dacsp1.home.html

Daequ1 Daedalea quercina
https://mycocosm.jgi.doe.gov/Daequ1/
Daequ1.home.html

DalEC12_1 Daldinia eschscholzii
https://mycocosm.jgi.doe.gov/
DalEC12_1/DalEC12_1.home.html

Debha1 Debaryomyces hansenii
https://mycocosm.jgi.doe.gov/Debha1/
Debha1.home.html

Decga1 Decorospora gaudefroyi
https://mycocosm.jgi.doe.gov/Decga1/
Decga1.home.html

Dekbr2 Dekkera bruxellensis
https://mycocosm.jgi.doe.gov/Dekbr2/
Dekbr2.home.html

Delco1 Delitschia confertaspora
https://mycocosm.jgi.doe.gov/Delco1/
Delco1.home.html

Denbi1 Dendrothele bispora
https://mycocosm.jgi.doe.gov/Denbi1/
Denbi1.home.html

Densp1 Dentipellis sp.
https://mycocosm.jgi.doe.gov/Densp1/
Densp1.home.html

Diaam1 Diaporthe ampelina
https://mycocosm.jgi.doe.gov/Diaam1/
Diaam1.home.html

Dicsq1 Dichomitus squalens LYAD-421
https://mycocosm.jgi.doe.gov/Dicsq1/
Dicsq1.home.html

Dicsqu18370_1 Dichomitus squalens OM18370.1

https://mycocosm.jgi.doe.gov/
Dicsqu18370_1/
Dicsqu18370_1.home.html

Dicsqu463_1 Dichomitus squalens CBS463
https://mycocosm.jgi.doe.gov/
Dicsqu463_1/Dicsqu463_1.home.html

Dicsqu464_1 Dichomitus squalens CBS464
https://mycocosm.jgi.doe.gov/
Dicsqu464_1/Dicsqu464_1.home.html

Didex1 Didymella exigua
https://mycocosm.jgi.doe.gov/Didex1/
Didex1.home.html

Didma1 Didymella zeae-maydis
https://mycocosm.jgi.doe.gov/Didma1/
Didma1.home.html

Diocr1 Dioszegia cryoxerica
https://mycocosm.jgi.doe.gov/Diocr1/
Diocr1.home.html

Dipse1 Diplodia seriata
https://mycocosm.jgi.doe.gov/Dipse1/
Dipse1.home.html

Disac1 Dissoconium aciculare
https://mycocosm.jgi.doe.gov/Disac1/
Disac1.home.html

Dotse1 Dothistroma septosporum
https://mycocosm.jgi.doe.gov/Dotse1/
Dotse1.home.html

Dotsy1 Dothidotthia symphoricarpi
https://mycocosm.jgi.doe.gov/Dotsy1/
Dotsy1.home.html

Elmca1 Aporpium caryae
https://mycocosm.jgi.doe.gov/Elmca1/
Elmca1.home.html
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Elsamp1 Elsinoe ampelina
https://mycocosm.jgi.doe.gov/
Elsamp1/Elsamp1.home.html

Enccu1 Encephalitozoon cuniculi
https://mycocosm.jgi.doe.gov/Enccu1/
Enccu1.home.html

Enche1 Encephalitozoon hellem
https://mycocosm.jgi.doe.gov/Enche1/
Enche1.home.html

Encin1 Encephalitozoon intestinalis
https://mycocosm.jgi.doe.gov/Encin1/
Encin1.home.html

Encro1 Encephalitozoon romaleae
https://mycocosm.jgi.doe.gov/Encro1/
Encro1.home.html

Entbi1 Enterocytozoon bieneusi
https://mycocosm.jgi.doe.gov/Entbi1/
Entbi1.home.html

Erebi1 Eremomyces bilateralis
https://mycocosm.jgi.doe.gov/Erebi1/
Erebi1.home.html

Eryha1 Erythrobasidium hasegawianum
https://mycocosm.jgi.doe.gov/Eryha1/
Eryha1.home.html

Eurhe1 Eurotium rubrum
https://mycocosm.jgi.doe.gov/Eurhe1/
Eurhe1.home.html

Eutla1 Eutypa lata
https://mycocosm.jgi.doe.gov/Eutla1/
Eutla1.home.html

Exigl1 Exidia glandulosa
https://mycocosm.jgi.doe.gov/Exigl1/
Exigl1.home.html

Exoaq1 Exophiala aquamarina
https://mycocosm.jgi.doe.gov/Exoaq1/
Exoaq1.home.html

Exode1 Exophiala dermatitidis
https://mycocosm.jgi.doe.gov/Exode1/
Exode1.home.html

Exome1 Exophiala mesophila
https://mycocosm.jgi.doe.gov/Exome1/
Exome1.home.html

Exool1 Exophiala oligosperma
https://mycocosm.jgi.doe.gov/Exool1/
Exool1.home.html

Exosi1 Exophiala sideris
https://mycocosm.jgi.doe.gov/Exosi1/
Exosi1.home.html

Exosp1 Exophiala spinifera
https://mycocosm.jgi.doe.gov/Exosp1/
Exosp1.home.html

Exova1 Exobasidium vaccinii
https://mycocosm.jgi.doe.gov/Exova1/
Exova1.home.html

Exoxe1 Exophiala xenobiotica
https://mycocosm.jgi.doe.gov/Exoxe1/
Exoxe1.home.html

Felpe1 Fellomyces penicillatus
https://mycocosm.jgi.doe.gov/Felpe1/
Felpe1.home.html

Fibin1 Fibulobasidium inconspicuum
https://mycocosm.jgi.doe.gov/Fibin1/
Fibin1.home.html

Fibra1 Fibroporia radiculosa
https://mycocosm.jgi.doe.gov/Fibra1/
Fibra1.home.html

Fibsp1 Fibulorhizoctonia sp.
https://mycocosm.jgi.doe.gov/Fibsp1/
Fibsp1.home.html

Fishe1 Fistulina hepatica
https://mycocosm.jgi.doe.gov/Fishe1/
Fishe1.home.html

Fomme1 Fomitiporia mediterranea
https://mycocosm.jgi.doe.gov/
Fomme1/Fomme1.home.html
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Fompi3 Fomitopsis pinicola
https://mycocosm.jgi.doe.gov/Fompi3/
Fompi3.home.html

Fonmu1 Fonsecaea multimorphosa
https://mycocosm.jgi.doe.gov/Fonmu1/
Fonmu1.home.html

Fonpe1 Fonsecaea pedrosoi
https://mycocosm.jgi.doe.gov/Fonpe1/
Fonpe1.home.html

Fusfu1 Fusarium fujikuroi
https://mycocosm.jgi.doe.gov/Fusfu1/
Fusfu1.home.html

Fusgr1 Fusarium graminearum
https://mycocosm.jgi.doe.gov/Fusgr1/
Fusgr1.home.html

Fusox2 Fusarium oxysporum
https://mycocosm.jgi.doe.gov/Fusox2/
Fusox2.home.html

Fusve2 Fusarium verticillioides
https://mycocosm.jgi.doe.gov/Fusve2/
Fusve2.home.html

Gaegr1 Gaeumannomyces graminis var tritici
https://mycocosm.jgi.doe.gov/Gaegr1/
Gaegr1.home.html

Galma1 Galerina marginata
https://mycocosm.jgi.doe.gov/Galma1/
Galma1.home.html

Ganpr1 Gonapodya prolifera
https://mycocosm.jgi.doe.gov/Ganpr1/
Ganpr1.home.html

Gansp1 Ganoderma sp.
https://mycocosm.jgi.doe.gov/Gansp1/
Gansp1.home.html

Gaumor1_1 Gautieria morchelliformis
https://mycocosm.jgi.doe.gov/
Gaumor1_1/Gaumor1_1.home.html

Glalo1 Glarea lozoyensis
https://mycocosm.jgi.doe.gov/Glalo1/
Glalo1.home.html

Gloac1 Glomerella acutata
https://mycocosm.jgi.doe.gov/Gloac1/
Gloac1.home.html

Gloci1 Glomerella cingulata
https://mycocosm.jgi.doe.gov/Gloci1/
Gloci1.home.html

Gloin1 Rhizophagus irregularis
https://mycocosm.jgi.doe.gov/Gloin1/
Gloin1.home.html

Glopol1 Globomyces pollinis-pini
https://mycocosm.jgi.doe.gov/Glopol1/
Glopol1.home.html

Glost2 Glonium stellatum
https://mycocosm.jgi.doe.gov/Glost2/
Glost2.home.html

Glotr1_1 Gloeophyllum trabeum
https://mycocosm.jgi.doe.gov/
Glotr1_1/Glotr1_1.home.html

Gonbut1 Gongronella butleri
https://mycocosm.jgi.doe.gov/
Gonbut1/Gonbut1.home.html

Grocl1 Grosmannia clavigera
https://mycocosm.jgi.doe.gov/Grocl1/
Grocl1.home.html

Guyne1 Guyanagaster necrorhiza
https://mycocosm.jgi.doe.gov/Guyne1/
Guyne1.home.html

Gyman1 Gymnopus androsaceus
https://mycocosm.jgi.doe.gov/
Gyman1/Gyman1.home.html

Gymau1 Gymnascella aurantiaca
https://mycocosm.jgi.doe.gov/
Gymau1/Gymau1.home.html

Gymch1 Gymnopilus chrysopellus
https://mycocosm.jgi.doe.gov/
Gymch1/Gymch1.home.html
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Gymci1_1 Gymnascella citrina
https://mycocosm.jgi.doe.gov/
Gymci1_1/Gymci1_1.home.html

Gymjun1 Gymnopilus junonius
https://mycocosm.jgi.doe.gov/
Gymjun1/Gymjun1.home.html

Gymlu1 Gymnopus luxurians
https://mycocosm.jgi.doe.gov/Gymlu1/
Gymlu1.home.html

Gyresc1 Gyromitra esculenta
https://mycocosm.jgi.doe.gov/Gyresc1/
Gyresc1.home.html

Gyrli1 Gyrodon lividus
https://mycocosm.jgi.doe.gov/Gyrli1/
Gyrli1.home.html

Hanpo2 Ogataea polymorpha
https://mycocosm.jgi.doe.gov/Hanpo2/
Hanpo2.home.html

Hebcy2 Hebeloma cylindrosporum
https://mycocosm.jgi.doe.gov/Hebcy2/
Hebcy2.home.html

Helsul1 Heliocybe sulcata
https://mycocosm.jgi.doe.gov/Helsul1/
Helsul1.home.html

Hesve2finisherSC Hesseltinella vesiculosa

https://mycocosm.jgi.doe.gov/
Hesve2finisherSC/
Hesve2finisherSC.home.html

Hetan2 Heterobasidion annosum
https://mycocosm.jgi.doe.gov/Hetan2/
Hetan2.home.html

Hetpy1 Heterogastridium pycnidioideum
https://mycocosm.jgi.doe.gov/Hetpy1/
Hetpy1.home.html

Hisca1 Histoplasma capsulatum
https://mycocosm.jgi.doe.gov/Hisca1/
Hisca1.home.html

Horac1 Hortaea acidophila
https://mycocosm.jgi.doe.gov/Horac1/
Horac1.home.html

Hyabl1 Hyalopycnis blepharistoma
https://mycocosm.jgi.doe.gov/Hyabl1/
Hyabl1.home.html

Hydfim1 Hydnopolyporus fimbriatus
https://mycocosm.jgi.doe.gov/
Hydfim1/Hydfim1.home.html

Hydpi2 Hydnomerulius pinastri
https://mycocosm.jgi.doe.gov/Hydpi2/
Hydpi2.home.html

Hydru2 Hydnum rufescens
https://mycocosm.jgi.doe.gov/Hydru2/
Hydru2.home.html

Hymrad1 Hymenopellis radicata
https://mycocosm.jgi.doe.gov/
Hymrad1/Hymrad1.home.html

Hypbu1 Hyphopichia burtonii
https://mycocosm.jgi.doe.gov/Hypbu1/
Hypbu1.home.html

HypCI4A_1 Hypoxylon sp. CI-4A
https://mycocosm.jgi.doe.gov/
HypCI4A_1/HypCI4A_1.home.html

HypCO275_1 Hypoxylon sp. CO27
https://mycocosm.jgi.doe.gov/
HypCO275_1/HypCO275_1.home.html

HypEC38_3 Hypoxylon sp. EC38
https://mycocosm.jgi.doe.gov/
HypEC38_3/HypEC38_3.home.html

Hypsu1 Hypholoma sublateritium
https://mycocosm.jgi.doe.gov/Hypsu1/
Hypsu1.home.html

Hyspu1_1 Hysterium pulicare
https://mycocosm.jgi.doe.gov/
Hyspu1_1/Hyspu1_1.home.html
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Ilysp1 Ilyonectria sp.
https://mycocosm.jgi.doe.gov/Ilysp1/
Ilysp1.home.html

Jaaar1 Jaapia argillacea
https://mycocosm.jgi.doe.gov/Jaaar1/
Jaaar1.home.html

Jamsp1 Jaminaea sp.
https://mycocosm.jgi.doe.gov/Jamsp1/
Jamsp1.home.html

Kalpfe1 Kalaharituber pfeilii
https://mycocosm.jgi.doe.gov/Kalpfe1/
Kalpfe1.home.html

Karrh1 Karstenula rhodostoma
https://mycocosm.jgi.doe.gov/Karrh1/
Karrh1.home.html

Khuory1 Khuskia oryzae
https://mycocosm.jgi.doe.gov/
Khuory1/Khuory1.home.html

Kircor1 Mucor cordense
https://mycocosm.jgi.doe.gov/Kircor1/
Kircor1.home.html

Klula1 Kluyveromyces lactis
https://mycocosm.jgi.doe.gov/Klula1/
Klula1.home.html

Kocim1 Kockovaella imperatae
https://mycocosm.jgi.doe.gov/Kocim1/
Kocim1.home.html

Kurca1 Kuraishia capsulata
https://mycocosm.jgi.doe.gov/Kurca1/
Kurca1.home.html

Lacam2 Laccaria amethystina
https://mycocosm.jgi.doe.gov/Lacam2/
Lacam2.home.html

Lacbi2 Laccaria bicolor
https://mycocosm.jgi.doe.gov/Lacbi2/
Lacbi2.home.html

Lacqui1 Lactarius quietus
https://mycocosm.jgi.doe.gov/Lacqui1/
Lacqui1.home.html

Laesu1 Laetiporus sulphureus var sulphureus
https://mycocosm.jgi.doe.gov/Laesu1/
Laesu1.home.html

Leisp1 Leiotrametes sp.
https://mycocosm.jgi.doe.gov/Leisp1/
Leisp1.home.html

Lenfl1 Lentithecium fluviatile
https://mycocosm.jgi.doe.gov/Lenfl1/
Lenfl1.home.html

Lenti6_1 Lentinus tigrinus 6
https://mycocosm.jgi.doe.gov/
Lenti6_1/Lenti6_1.home.html

Lenti7_1 Lentinus tigrinus 7
https://mycocosm.jgi.doe.gov/
Lenti7_1/Lenti7_1.home.html

Lenvul1 Lentinellus vulpinus
https://mycocosm.jgi.doe.gov/Lenvul1/
Lenvul1.home.html

Lepmu1 Leptosphaeria maculans
https://mycocosm.jgi.doe.gov/Lepmu1/
Lepmu1.home.html

Lepnud1 Lepista nuda
https://mycocosm.jgi.doe.gov/
Lepnud1/Lepnud1.home.html

Leppa1 Lepidopterella palustris
https://mycocosm.jgi.doe.gov/Leppa1/
Leppa1.home.html

Leptod1 Leptodontium sp.
https://mycocosm.jgi.doe.gov/Leptod1/
Leptod1.home.html

Leucr1 Leucosporidiella creatinivora
https://mycocosm.jgi.doe.gov/Leucr1/
Leucr1.home.html

Leugo1_1 Leucoagaricus gongylophorus
https://mycocosm.jgi.doe.gov/
Leugo1_1/Leugo1_1.home.html
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Leumo1 Leucogyrophana mollusca
https://mycocosm.jgi.doe.gov/Leumo1/
Leumo1.home.html

Liccor1 Lichtheimia corymbifera
https://mycocosm.jgi.doe.gov/Liccor1/
Liccor1.home.html

Lichy1 Lichtheimia hyalospora
https://mycocosm.jgi.doe.gov/Lichy1/
Lichy1.home.html

Linin1 Lindgomyces ingoldianus
https://mycocosm.jgi.doe.gov/Linin1/
Linin1.home.html

Linpe1 Linderina pennispora
https://mycocosm.jgi.doe.gov/Linpe1/
Linpe1.home.html

Linrh1 Lineolata rhizophorae
https://mycocosm.jgi.doe.gov/Linrh1/
Linrh1.home.html

Linth1 Lindra thalassiae
https://mycocosm.jgi.doe.gov/Linth1/
Linth1.home.html

Lipst1_1 Lipomyces starkeyi
https://mycocosm.jgi.doe.gov/
Lipst1_1/Lipst1_1.home.html

Lizem1 Lizonia empirigonia
https://mycocosm.jgi.doe.gov/Lizem1/
Lizem1.home.html

Lobtra1 Lobosporangium transversale
https://mycocosm.jgi.doe.gov/Lobtra1/
Lobtra1.home.html

Lolmi1 Lollipopaia minuta
https://mycocosm.jgi.doe.gov/Lolmi1/
Lolmi1.home.html

Lopma1 Lophiostoma macrostomum
https://mycocosm.jgi.doe.gov/Lopma1/
Lopma1.home.html

Lopmy1 Lophium mytilinum
https://mycocosm.jgi.doe.gov/Lopmy1/
Lopmy1.home.html

Lopni1 Peniophora sp. CONTA
https://mycocosm.jgi.doe.gov/Lopni1/
Lopni1.home.html

Lopnu1 Lophiotrema nucula
https://mycocosm.jgi.doe.gov/Lopnu1/
Lopnu1.home.html

Lorju1 Loramyces juncicola
https://mycocosm.jgi.doe.gov/Lorju1/
Lorju1.home.html

Lorma1 Loramyces macrosporus
https://mycocosm.jgi.doe.gov/Lorma1/
Lorma1.home.html

Macan1 Macroventuria anomochaeta
https://mycocosm.jgi.doe.gov/
Macan1/Macan1.home.html

Macfu1 Macrolepiota fuliginosa
https://mycocosm.jgi.doe.gov/Macfu1/
Macfu1.home.html

Macph1 Macrophomina phaseolina
https://mycocosm.jgi.doe.gov/
Macph1/Macph1.home.html

Maggr1 Magnaporthe grisea
https://mycocosm.jgi.doe.gov/Maggr1/
Maggr1.home.html

Magpo1 Magnaporthiopsis poae
https://mycocosm.jgi.doe.gov/
Magpo1/Magpo1.home.html

Malgl1 Malassezia globosa
https://mycocosm.jgi.doe.gov/Malgl1/
Malgl1.home.html

Malsy1_1 Malassezia sympodialis
https://mycocosm.jgi.doe.gov/
Malsy1_1/Malsy1_1.home.html

Marbr1 Marssonina brunnea
https://mycocosm.jgi.doe.gov/Marbr1/
Marbr1.home.html
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Marfi1 Marasmius fiardii
https://mycocosm.jgi.doe.gov/Marfi1/
Marfi1.home.html

Marpt1 Martensiomyces pterosporus
https://mycocosm.jgi.doe.gov/Marpt1/
Marpt1.home.html

Maseb1 Massarina eburnea
https://mycocosm.jgi.doe.gov/Maseb1/
Maseb1.home.html

Meimi1 Meira miltonrushii
https://mycocosm.jgi.doe.gov/Meimi1/
Meimi1.home.html

Melap1finSC_191 Melampsora allii-populina

https://mycocosm.jgi.doe.gov/
Melap1finSC_191/
Melap1finSC_191.home.html

Melbi2 Meliniomyces bicolor
https://mycocosm.jgi.doe.gov/Melbi2/
Melbi2.home.html

Melen1 Melanotaenium endogenum
https://mycocosm.jgi.doe.gov/Melen1/
Melen1.home.html

Melli1 Melampsora lini
https://mycocosm.jgi.doe.gov/Melli1/
Melli1.home.html

Mellp2_3 Melampsora laricis-populina
https://mycocosm.jgi.doe.gov/
Mellp2_3/Mellp2_3.home.html

Melpu1 Melanomma pulvis-pyrius
https://mycocosm.jgi.doe.gov/Melpu1/
Melpu1.home.html

Melsp1 Melanconium sp.
https://mycocosm.jgi.doe.gov/Melsp1/
Melsp1.home.html

Melti1 Melanospora tiffanyae
https://mycocosm.jgi.doe.gov/Melti1/
Melti1.home.html

Melva1 Meliniomyces variabilis
https://mycocosm.jgi.doe.gov/Melva1/
Melva1.home.html

Mereb1 Meredithblackwellia eburnea
https://mycocosm.jgi.doe.gov/Mereb1/
Mereb1.home.html

Metac1 Metarhizium acridum
https://mycocosm.jgi.doe.gov/Metac1/
Metac1.home.html

Metan1 Metarhizium robertsii
https://mycocosm.jgi.doe.gov/Metan1/
Metan1.home.html

Metbi1 Metschnikowia bicuspidata
https://mycocosm.jgi.doe.gov/Metbi1/
Metbi1.home.html

Meygui1 Meyerozyma guilliermondii
https://mycocosm.jgi.doe.gov/
Meygui1/Meygui1.home.html

Micbo1 Microdochium bolleyi
https://mycocosm.jgi.doe.gov/Micbo1/
Micbo1.home.html

Micca1 Microsporum canis
https://mycocosm.jgi.doe.gov/Micca1/
Micca1.home.html

Micmi1 Microthyrium microscopicum
https://mycocosm.jgi.doe.gov/Micmi1/
Micmi1.home.html

Mictr1 Microascus trigonosporus
https://mycocosm.jgi.doe.gov/Mictr1/
Mictr1.home.html

Micvi1 Microbotryum violaceum
https://mycocosm.jgi.doe.gov/Micvi1/
Micvi1.home.html

Mixos1 Mixia osmundae
https://mycocosm.jgi.doe.gov/Mixos1/
Mixos1.home.html
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Monha1 Monacrosporium haptotylum
https://mycocosm.jgi.doe.gov/
Monha1/Monha1.home.html

Monpe1_1 Moniliophthora perniciosa
https://mycocosm.jgi.doe.gov/
Monpe1_1/Monpe1_1.home.html

Monpu1 Monascus purpureus
https://mycocosm.jgi.doe.gov/
Monpu1/Monpu1.home.html

Monru1 Monascus ruber
https://mycocosm.jgi.doe.gov/
Monru1/Monru1.home.html

Morco1 Morchella conica
https://mycocosm.jgi.doe.gov/Morco1/
Morco1.home.html

Morel2 Mortierella elongata
https://mycocosm.jgi.doe.gov/Morel2/
Morel2.home.html

Morimp1 Morchella importuna
https://mycocosm.jgi.doe.gov/
Morimp1/Morimp1.home.html

Mormul1 Mortierella multidivaricata
https://mycocosm.jgi.doe.gov/
Mormul1/Mormul1.home.html

Morve1 Mortierella verticillata
https://mycocosm.jgi.doe.gov/Morve1/
Morve1.home.html

Mrafri1 Mrakia frigida
https://mycocosm.jgi.doe.gov/Mrafri1/
Mrafri1.home.html

Mucci2 Mucor circinelloides
https://mycocosm.jgi.doe.gov/Mucci2/
Mucci2.home.html

Mutel1 Mutinus elegans
https://mycocosm.jgi.doe.gov/Mutel1/
Mutel1.home.html

Mycafr1 Mycotypha africana
https://mycocosm.jgi.doe.gov/
Mycafr1/Mycafr1.home.html

Mycfi2
Pseudocercospora  Mycosphaerella 
fijiensis

https://mycocosm.jgi.doe.gov/Mycfi2/
Mycfi2.home.html

Mycgal1 Mycena galopus
https://mycocosm.jgi.doe.gov/
Mycgal1/Mycgal1.home.html

Myche1 Myceliophthora heterothallica
https://mycocosm.jgi.doe.gov/
Myche1/Myche1.home.html

Myrdu1 Myriangium duriaei
https://mycocosm.jgi.doe.gov/
Myrdu1/Myrdu1.home.html

Myrin1 Myrothecium inundatum
https://mycocosm.jgi.doe.gov/Myrin1/
Myrin1.home.html

Mytre1 Mytilinidion resinicola
https://mycocosm.jgi.doe.gov/Mytre1/
Mytre1.home.html

Nadfu1 Nadsonia fulvescens var elongata
https://mycocosm.jgi.doe.gov/Nadfu1/
Nadfu1.home.html

Naifl1 Naiadella fluitans
https://mycocosm.jgi.doe.gov/Naifl1/
Naifl1.home.html

Naose1 Naohidea sebacea
https://mycocosm.jgi.doe.gov/Naose1/
Naose1.home.html

Necha2 Nectria haematococca
https://mycocosm.jgi.doe.gov/Necha2/
Necha2.home.html

Nempa1 Nematocida parisii
https://mycocosm.jgi.doe.gov/
Nempa1/Nempa1.home.html

Neofi1 Neosartorya fischeri
https://mycocosm.jgi.doe.gov/Neofi1/
Neofi1.home.html
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Neole1 Neolentinus lepideus
https://mycocosm.jgi.doe.gov/Neole1/
Neole1.home.html

Neopa1 Neofusicoccum parvum
https://mycocosm.jgi.doe.gov/Neopa1/
Neopa1.home.html

Neosp1 Neocallimastix californiae
https://mycocosm.jgi.doe.gov/Neosp1/
Neosp1.home.html

Neucr_trp3_1 Neurospora crassa FGSC
https://mycocosm.jgi.doe.gov/
Neucr_trp3_1/Neucr_trp3_1.home.html

Neucr2 Neurospora crassa OR74A
https://mycocosm.jgi.doe.gov/Neucr2/
Neucr2.home.html

Neudi1 Neurospora discreta
https://mycocosm.jgi.doe.gov/Neudi1/
Neudi1.home.html

Neute_mat_a1 Neurospora tetrasperma 2509

https://mycocosm.jgi.doe.gov/
Neute_mat_a1/
Neute_mat_a1.home.html

Nieex1 Niesslia exilis
https://mycocosm.jgi.doe.gov/Nieex1/
Nieex1.home.html

Nosce1 Nosema ceranae
https://mycocosm.jgi.doe.gov/Nosce1/
Nosce1.home.html

Obbri1 Obba rivulosa
https://mycocosm.jgi.doe.gov/Obbri1/
Obbri1.home.html

Oidma1 Oidiodendron maius
https://mycocosm.jgi.doe.gov/Oidma1/
Oidma1.home.html

Ompol1 Omphalotus olearius
https://mycocosm.jgi.doe.gov/Ompol1/
Ompol1.home.html

Onnsc1 Onnia scaura
https://mycocosm.jgi.doe.gov/Onnsc1/
Onnsc1.home.html

Ophdi1 Ophiobolus disseminans
https://mycocosm.jgi.doe.gov/Ophdi1/
Ophdi1.home.html

Ophpi1 Ophiostoma piliferum
https://mycocosm.jgi.doe.gov/Ophpi1/
Ophpi1.home.html

Ophpic1 Ophiostoma piceae
https://mycocosm.jgi.doe.gov/
Ophpic1/Ophpic1.home.html

Oudmuc1 Oudemansiella mucida
https://mycocosm.jgi.doe.gov/
Oudmuc1/Oudmuc1.home.html

Pacta1_2 Pachysolen tannophilus
https://mycocosm.jgi.doe.gov/
Pacta1_2/Pacta1_2.home.html

Panru1 Panus rudis
https://mycocosm.jgi.doe.gov/Panru1/
Panru1.home.html

Panst_KUC8834_1_
1 Panellus stipticus

https://mycocosm.jgi.doe.gov/
Panst_KUC8834_1_1/
Panst_KUC8834_1_1.home.html

Panst_LUM_1_1 Panellus stipticus LUM

https://mycocosm.jgi.doe.gov/
Panst_LUM_1_1/
Panst_LUM_1_1.home.html

Parbr1 Paracoccidioides brasiliensis Pb03
https://mycocosm.jgi.doe.gov/Parbr1/
Parbr1.home.html

Parbra1 Paracoccidioides brasiliensis Pb18
https://mycocosm.jgi.doe.gov/Parbra1/
Parbra1.home.html
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Parpar1 Parasitella parasitica
https://mycocosm.jgi.doe.gov/Parpar1/
Parpar1.home.html

Parsp1 Paraconiothyrium sporulosum
https://mycocosm.jgi.doe.gov/Parsp1/
Parsp1.home.html

Patat1 Patellaria atrata
https://mycocosm.jgi.doe.gov/Patat1/
Patat1.home.html

Paxam1 Paxillus ammoniavirescens
https://mycocosm.jgi.doe.gov/Paxam1/
Paxam1.home.html

Paxin1 Paxillus involutus
https://mycocosm.jgi.doe.gov/Paxin1/
Paxin1.home.html

Paxru2 Paxillus adelphus
https://mycocosm.jgi.doe.gov/Paxru2/
Paxru2.home.html

Penac1 Talaromyces aculeatus
https://mycocosm.jgi.doe.gov/Penac1/
Penac1.home.html

Penbi1 Penicillium bilaiae
https://mycocosm.jgi.doe.gov/Penbi1/
Penbi1.home.html

Penbr2 Penicillium brevicompactum
https://mycocosm.jgi.doe.gov/Penbr2/
Penbr2.home.html

PenbrAgRF18_1 Penicillium brevicompactum AgRF18

https://mycocosm.jgi.doe.gov/
PenbrAgRF18_1/
PenbrAgRF18_1.home.html

Penca1 Penicillium canescens
https://mycocosm.jgi.doe.gov/Penca1/
Penca1.home.html

Pench1 Penicillium chrysogenum
https://mycocosm.jgi.doe.gov/Pench1/
Pench1.home.html

PenchWisc1_1 Penicillium chrysogenum Wisconsin

https://mycocosm.jgi.doe.gov/
PenchWisc1_1/
PenchWisc1_1.home.html

Pendi1 Penicillium digitatum
https://mycocosm.jgi.doe.gov/Pendi1/
Pendi1.home.html

Penex1 Penicillium expansum
https://mycocosm.jgi.doe.gov/Penex1/
Penex1.home.html

Penfe1 Penicillium fellutanum
https://mycocosm.jgi.doe.gov/Penfe1/
Penfe1.home.html

Pengl1 Penicillium glabrum
https://mycocosm.jgi.doe.gov/Pengl1/
Pengl1.home.html

Penja1 Penicillium janthinellum
https://mycocosm.jgi.doe.gov/Penja1/
Penja1.home.html

Penla1 Penicillium lanosocoeruleum
https://mycocosm.jgi.doe.gov/Penla1/
Penla1.home.html

Penox1 Penicillium oxalicum
https://mycocosm.jgi.doe.gov/Penox1/
Penox1.home.html

Penra1 Penicillium raistrickii
https://mycocosm.jgi.doe.gov/Penra1/
Penra1.home.html

Penth1 Penicillium thymicola
https://mycocosm.jgi.doe.gov/Penth1/
Penth1.home.html

Perma1 Periconia macrospinosa
https://mycocosm.jgi.doe.gov/Perma1/
Perma1.home.html

Phaal1 Phaeoacremonium aleophilum
https://mycocosm.jgi.doe.gov/Phaal1/
Phaal1.home.html
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Phaart1 Phascolomyces articulosus
https://mycocosm.jgi.doe.gov/Phaart1/
Phaart1.home.html

Phaca1 Phanerochaete carnosa
https://mycocosm.jgi.doe.gov/Phaca1/
Phaca1.home.html

Phach1 Phaeomoniella chlamydospora
https://mycocosm.jgi.doe.gov/Phach1/
Phach1.home.html

PhaPMI808 Phaeosphaeriaceae sp.
https://mycocosm.jgi.doe.gov/
PhaPMI808/PhaPMI808.home.html

Phchr2 Phanerochaete chrysosporium
https://mycocosm.jgi.doe.gov/Phchr2/
Phchr2.home.html

Phisc1 Phialocephala scopiformis
https://mycocosm.jgi.doe.gov/Phisc1/
Phisc1.home.html

Phlbr1 Phlebia brevispora
https://mycocosm.jgi.doe.gov/Phlbr1/
Phlbr1.home.html

Phlgi1 Phlebiopsis gigantea
https://mycocosm.jgi.doe.gov/Phlgi1/
Phlgi1.home.html

Phoaln1 Pholiota alnicola
https://mycocosm.jgi.doe.gov/Phoaln1/
Phoaln1.home.html

Phocon1 Pholiota conissans
https://mycocosm.jgi.doe.gov/Phocon1/
Phocon1.home.html

Photr1 Phoma tracheiphila
https://mycocosm.jgi.doe.gov/Photr1/
Photr1.home.html

Phybl2 Phycomyces blakesleeanus
https://mycocosm.jgi.doe.gov/Phybl2/
Phybl2.home.html

Phycit1 Phyllosticta citriasiana
https://mycocosm.jgi.doe.gov/Phycit1/
Phycit1.home.html

Picme2 Pichia membranifaciens
https://mycocosm.jgi.doe.gov/Picme2/
Picme2.home.html

Picpa1 Pichia pastoris
https://mycocosm.jgi.doe.gov/Picpa1/
Picpa1.home.html

Pieho1_1 Piedraia hortae
https://mycocosm.jgi.doe.gov/
Pieho1_1/Pieho1_1.home.html

Pilcr1 Piloderma croceum
https://mycocosm.jgi.doe.gov/Pilcr1/
Pilcr1.home.html

PirE2_1 Piromyces sp.
https://mycocosm.jgi.doe.gov/PirE2_1/
PirE2_1.home.html

Pirfi3 Piromyces finnis
https://mycocosm.jgi.doe.gov/Pirfi3/
Pirfi3.home.html

Pirin1 Piriformospora indica
https://mycocosm.jgi.doe.gov/Pirin1/
Pirin1.home.html

Pismi1 Pisolithus microcarpus
https://mycocosm.jgi.doe.gov/Pismi1/
Pismi1.home.html

Pisti1 Pisolithus tinctorius
https://mycocosm.jgi.doe.gov/Pisti1/
Pisti1.home.html

Plecu1 Plectosphaerella cucumerina
https://mycocosm.jgi.doe.gov/Plecu1/
Plecu1.home.html

Pleery1 Pleurotus eryngii
https://mycocosm.jgi.doe.gov/Pleery1/
Pleery1.home.html

Plemel1 Plectania melastoma
https://mycocosm.jgi.doe.gov/Plemel1/
Plemel1.home.html

157



PleosPC15_2 Pleurotus ostreatus PC15
https://mycocosm.jgi.doe.gov/
PleosPC15_2/PleosPC15_2.home.html

Plesi1 Pleomassaria siparia
https://mycocosm.jgi.doe.gov/Plesi1/
Plesi1.home.html

Plicr1 Plicaturopsis crispa
https://mycocosm.jgi.doe.gov/Plicr1/
Plicr1.home.html

Plucer1 Pluteus cervinus
https://mycocosm.jgi.doe.gov/Plucer1/
Plucer1.home.html

Pneji1 Pneumocystis jirovecii
https://mycocosm.jgi.doe.gov/Pneji1/
Pneji1.home.html

Podan2 Podospora anserina
https://mycocosm.jgi.doe.gov/Podan2/
Podan2.home.html

Podcur1 Podospora curvicolla
https://mycocosm.jgi.doe.gov/Podcur1/
Podcur1.home.html

Polar1 Polyporus arcularius
https://mycocosm.jgi.doe.gov/Polar1/
Polar1.home.html

Polbr1 Polyporus brumalis
https://mycocosm.jgi.doe.gov/Polbr1/
Polbr1.home.html

Polci1 Polychaeton citri
https://mycocosm.jgi.doe.gov/Polci1/
Polci1.home.html

Polfu1 Polyplosphaeria fusca
https://mycocosm.jgi.doe.gov/Polfu1/
Polfu1.home.html

Porchr1 Porodaedalea chrysoloma
https://mycocosm.jgi.doe.gov/Porchr1/
Porchr1.home.html

Pornie1_2 Porodaedalea niemelaei
https://mycocosm.jgi.doe.gov/
Pornie1_2/Pornie1_2.home.html

Pospl1 Postia placenta
https://mycocosm.jgi.doe.gov/Pospl1/
Pospl1.home.html

PosplRSB12_1 Postia placenta SB12

https://mycocosm.jgi.doe.gov/
PosplRSB12_1/
PosplRSB12_1.home.html

Proin1 Protomyces inouyei
https://mycocosm.jgi.doe.gov/Proin1/
Proin1.home.html

Prola1 Protomyces lactucaedebilis
https://mycocosm.jgi.doe.gov/Prola1/
Prola1.home.html

Psean1_1 Pseudozyma antarctica
https://mycocosm.jgi.doe.gov/
Psean1_1/Psean1_1.home.html

Pseel1 Pseudographis elatina
https://mycocosm.jgi.doe.gov/Pseel1/
Pseel1.home.html

Psehu1 Pseudozyma hubeiensis
https://mycocosm.jgi.doe.gov/Psehu1/
Psehu1.home.html

Psehy1 Pseudovirgaria hyperparasitica
https://mycocosm.jgi.doe.gov/Psehy1/
Psehy1.home.html

Pseve2 Pseudomassariella vexata
https://mycocosm.jgi.doe.gov/Pseve2/
Pseve2.home.html

Ptegra1 Pterula gracilis
https://mycocosm.jgi.doe.gov/Ptegra1/
Ptegra1.home.html

Pucgr2 Puccinia graminis
https://mycocosm.jgi.doe.gov/Pucgr2/
Pucgr2.home.html

Pucst_PST78_1 Puccinia striiformis 78 https://mycocosm.jgi.doe.gov/
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Pucst_PST78_1/
Pucst_PST78_1.home.html

Pucst1 Puccinia striiformis 130
https://mycocosm.jgi.doe.gov/Pucst1/
Pucst1.home.html

Puctr1 Puccinia triticina
https://mycocosm.jgi.doe.gov/Puctr1/
Puctr1.home.html

Punst1 Punctularia strigosozonata
https://mycocosm.jgi.doe.gov/Punst1/
Punst1.home.html

Pursp1 Purpureocillium sp.
https://mycocosm.jgi.doe.gov/Pursp1/
Pursp1.home.html

Pycci1 Pycnoporus cinnabarinus
https://mycocosm.jgi.doe.gov/Pycci1/
Pycci1.home.html

Pycco1 Pycnoporus coccineus BRFM
https://mycocosm.jgi.doe.gov/Pycco1/
Pycco1.home.html

Pycco1662_1 Pycnoporus coccineus CIRM1662
https://mycocosm.jgi.doe.gov/
Pycco1662_1/Pycco1662_1.home.html

Pycpun1 Pycnoporus puniceus
https://mycocosm.jgi.doe.gov/Pycpun1/
Pycpun1.home.html

Pycsa1 Pycnoporus sanguineus
https://mycocosm.jgi.doe.gov/Pycsa1/
Pycsa1.home.html

Pyrco1 Pyronema confluens
https://mycocosm.jgi.doe.gov/Pyrco1/
Pyrco1.home.html

Pyrsp1 Pyrenochaeta sp.
https://mycocosm.jgi.doe.gov/Pyrsp1/
Pyrsp1.home.html

Pyrtt1 Pyrenophora teres
https://mycocosm.jgi.doe.gov/Pyrtt1/
Pyrtt1.home.html

Ramac1 Ramaria rubella
https://mycocosm.jgi.doe.gov/Ramac1/
Ramac1.home.html

Rambr1 Ramicandelaber brevisporus
https://mycocosm.jgi.doe.gov/Rambr1/
Rambr1.home.html

Rhich1 Rhizopus microsporus var chinensis
https://mycocosm.jgi.doe.gov/Rhich1/
Rhich1.home.html

Rhier1 Rhizoscyphus ericae
https://mycocosm.jgi.doe.gov/Rhier1/
Rhier1.home.html

Rhihy1 Rhizoclosmatium globosum
https://mycocosm.jgi.doe.gov/Rhihy1/
Rhihy1.home.html

Rhili1 Rhizodiscina lignyota
https://mycocosm.jgi.doe.gov/Rhili1/
Rhili1.home.html

Rhimi_ATCC11559
_1 Rhizopus microsporus

https://mycocosm.jgi.doe.gov/
Rhimi_ATCC11559_1/
Rhimi_ATCC11559_1.home.html

Rhimi_ATCC52814
_1 Rhizopus microsporus var microsporus 4

https://mycocosm.jgi.doe.gov/
Rhimi_ATCC52814_1/
Rhimi_ATCC52814_1.home.html

Rhimi1_1 Rhizopus microsporus var microsporus 3
https://mycocosm.jgi.doe.gov/
Rhimi1_1/Rhimi1_1.home.html

Rhisa1 Rhizopogon salebrosus
https://mycocosm.jgi.doe.gov/Rhisa1/
Rhisa1.home.html

Rhiso1 Rhizoctonia solani
https://mycocosm.jgi.doe.gov/Rhiso1/
Rhiso1.home.html
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Rhivi1 Rhizopogon vinicolor
https://mycocosm.jgi.doe.gov/Rhivi1/
Rhivi1.home.html

Rhoba1_1 Rhodotorula graminis
https://mycocosm.jgi.doe.gov/
Rhoba1_1/Rhoba1_1.home.html

Rhobut1_1 Rhodocollybia butyracea
https://mycocosm.jgi.doe.gov/
Rhobut1_1/Rhobut1_1.home.html

Rhodsp1 Microstromatales sp.
https://mycocosm.jgi.doe.gov/
Rhodsp1/Rhodsp1.home.html

Rhomi1 Rhodotorula minuta
https://mycocosm.jgi.doe.gov/Rhomi1/
Rhomi1.home.html

Rhosp1 Rhodotorula sp.
https://mycocosm.jgi.doe.gov/Rhosp1/
Rhosp1.home.html

Rhoto_IFO0559_1 Rhodosporidium toruloides IFO0559

https://mycocosm.jgi.doe.gov/
Rhoto_IFO0559_1/
Rhoto_IFO0559_1.home.html

Rhoto_IFO0880_2 Rhodosporidium toruloides IFO0880

https://mycocosm.jgi.doe.gov/
Rhoto_IFO0880_2/
Rhoto_IFO0880_2.home.html

Rhoto_IFO1236_1 Rhodosporidium toruloides IFO1236

https://mycocosm.jgi.doe.gov/
Rhoto_IFO1236_1/
Rhoto_IFO1236_1.home.html

Rhoto1 Rhodosporidium toruloides NP11
https://mycocosm.jgi.doe.gov/Rhoto1/
Rhoto1.home.html

Rhyru1_1 Rhytidhysteron rufulum
https://mycocosm.jgi.doe.gov/
Rhyru1_1/Rhyru1_1.home.html

Ricfib1 Rickenella fibula
https://mycocosm.jgi.doe.gov/Ricfib1/
Ricfib1.home.html

Ricme1 Peniophora sp.
https://mycocosm.jgi.doe.gov/Ricme1/
Ricme1.home.html

Ricmel1 Rickenella mellea
https://mycocosm.jgi.doe.gov/Ricmel1/
Ricmel1.home.html

Rozal1_1 Rozella allomycis
https://mycocosm.jgi.doe.gov/
Rozal1_1/Rozal1_1.home.html

Rutfi1 Rutstroemia firma
https://mycocosm.jgi.doe.gov/Rutfi1/
Rutfi1.home.html

Sacce1 Saccharomyces cerevisiae S288C
https://mycocosm.jgi.doe.gov/Sacce1/
Sacce1.home.html

SacceM3707_1 Saccharomyces cerevisiae M3707

https://mycocosm.jgi.doe.gov/
SacceM3707_1/
SacceM3707_1.home.html

SacceM3836_1 Saccharomyces cerevisiae M3836

https://mycocosm.jgi.doe.gov/
SacceM3836_1/
SacceM3836_1.home.html

SacceM3837_1 Saccharomyces cerevisiae M3837

https://mycocosm.jgi.doe.gov/
SacceM3837_1/
SacceM3837_1.home.html

SacceM3838_1 Saccharomyces cerevisiae M3838

https://mycocosm.jgi.doe.gov/
SacceM3838_1/
SacceM3838_1.home.html

SacceM3839_1 Saccharomyces cerevisiae M3839 https://mycocosm.jgi.doe.gov/
SacceM3839_1/
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SacceM3839_1.home.html

SacceYB210_1 Saccharomyces cerevisiae YB210

https://mycocosm.jgi.doe.gov/
SacceYB210_1/
SacceYB210_1.home.html

Sacpr1 Saccharata proteae
https://mycocosm.jgi.doe.gov/Sacpr1/
Sacpr1.home.html

Saico1 Saitoella complicata
https://mycocosm.jgi.doe.gov/Saico1/
Saico1.home.html

Sarco1 Sarcoscypha coccinea
https://mycocosm.jgi.doe.gov/Sarco1/
Sarco1.home.html

Schco_LoeD_1 Schizophyllum commune Loenen

https://mycocosm.jgi.doe.gov/
Schco_LoeD_1/
Schco_LoeD_1.home.html

Schco_TatD_1 Schizophyllum commune Tattone

https://mycocosm.jgi.doe.gov/
Schco_TatD_1/
Schco_TatD_1.home.html

Schco3 Schizophyllum commune
https://mycocosm.jgi.doe.gov/Schco3/
Schco3.home.html

Schcy1 Schizosaccharomyces cryophilus
https://mycocosm.jgi.doe.gov/Schcy1/
Schcy1.home.html

Schja1 Schizosaccharomyces japonicus
https://mycocosm.jgi.doe.gov/Schja1/
Schja1.home.html

Schoc1 Schizosaccharomyces octosporus
https://mycocosm.jgi.doe.gov/Schoc1/
Schoc1.home.html

Schpa1 Schizopora paradoxa
https://mycocosm.jgi.doe.gov/Schpa1/
Schpa1.home.html

Schpo1 Schizosaccharomyces pombe
https://mycocosm.jgi.doe.gov/Schpo1/
Schpo1.home.html

Sclci1 Scleroderma citrinum
https://mycocosm.jgi.doe.gov/Sclci1/
Sclci1.home.html

Sclhys1_1 Sclerogaster hysterangioides
https://mycocosm.jgi.doe.gov/
Sclhys1_1/Sclhys1_1.home.html

Sclsc1 Sclerotinia sclerotiorum
https://mycocosm.jgi.doe.gov/Sclsc1/
Sclsc1.home.html

Scysp1_1 Scytinostroma sp.
https://mycocosm.jgi.doe.gov/
Scysp1_1/Scysp1_1.home.html

Sebve1 Sebacina vermifera
https://mycocosm.jgi.doe.gov/Sebve1/
Sebve1.home.html

Sebvebe1 Sebacina vermifera ssp bescii
https://mycocosm.jgi.doe.gov/
Sebvebe1/Sebvebe1.home.html

Sepmu1 Septoria musiva
https://mycocosm.jgi.doe.gov/Sepmu1/
Sepmu1.home.html

Seppo1 Septoria populicola
https://mycocosm.jgi.doe.gov/Seppo1/
Seppo1.home.html

Sepsp1 Septobasidium sp.
https://mycocosm.jgi.doe.gov/Sepsp1/
Sepsp1.home.html

Serla_varsha1 Serpula lacrymans var shastensis
https://mycocosm.jgi.doe.gov/
Serla_varsha1/Serla_varsha1.home.html

SerlaS7_9_2 Serpula lacrymans
https://mycocosm.jgi.doe.gov/
SerlaS7_9_2/SerlaS7_9_2.home.html
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Setho1 Setomelanomma holmii
https://mycocosm.jgi.doe.gov/Setho1/
Setho1.home.html

Settu1 Setosphaeria turcica Et28A
https://mycocosm.jgi.doe.gov/Settu1/
Settu1.home.html

Settur1 Setosphaeria turcica NY001
https://mycocosm.jgi.doe.gov/Settur1/
Settur1.home.html

Sirint1 Sirobasidium intermedium
https://mycocosm.jgi.doe.gov/Sirint1/
Sirint1.home.html

Sisbr1 Lentinus tigrinus
https://mycocosm.jgi.doe.gov/Sisbr1/
Sisbr1.home.html

Sisni1 Sistotremastrum niveocremeum
https://mycocosm.jgi.doe.gov/Sisni1/
Sisni1.home.html

Sissu1 Sistotremastrum suecicum
https://mycocosm.jgi.doe.gov/Sissu1/
Sissu1.home.html

Sodal1 Sodiomyces alkalinus
https://mycocosm.jgi.doe.gov/Sodal1/
Sodal1.home.html

Spafl1 Spathularia flavida
https://mycocosm.jgi.doe.gov/Spafl1/
Spafl1.home.html

Sphst1 Sphaerobolus stellatus
https://mycocosm.jgi.doe.gov/Sphst1/
Sphst1.home.html

Spipu1 Spizellomyces punctatus
https://mycocosm.jgi.doe.gov/Spipu1/
Spipu1.home.html

Spofi1 Sporormia fimetaria
https://mycocosm.jgi.doe.gov/Spofi1/
Spofi1.home.html

Spola1 Sporopachydermia lactativora
https://mycocosm.jgi.doe.gov/Spola1/
Spola1.home.html

Spoli1 Sporobolomyces linderae
https://mycocosm.jgi.doe.gov/Spoli1/
Spoli1.home.html

Spopa1 Sporidiobolus pararoseus Phaff
https://mycocosm.jgi.doe.gov/Spopa1/
Spopa1.home.html

Spore1 Sporisorium reilianum
https://mycocosm.jgi.doe.gov/Spore1/
Spore1.home.html

Spoth2 Myceliophthora thermophila
https://mycocosm.jgi.doe.gov/Spoth2/
Spoth2.home.html

Stagr1 Stanjemonium grisellum
https://mycocosm.jgi.doe.gov/Stagr1/
Stagr1.home.html

Stano2 Stagonospora nodorum
https://mycocosm.jgi.doe.gov/Stano2/
Stano2.home.html

Stasp1 Stagonospora sp.
https://mycocosm.jgi.doe.gov/Stasp1/
Stasp1.home.html

Stehi1 Stereum hirsutum
https://mycocosm.jgi.doe.gov/Stehi1/
Stehi1.home.html

Sugame1 Sugiyamaella americana
https://mycocosm.jgi.doe.gov/
Sugame1/Sugame1.home.html

Suiame1 Suillus americanus
https://mycocosm.jgi.doe.gov/Suiame1/
Suiame1.home.html

Suibr2 Suillus brevipes
https://mycocosm.jgi.doe.gov/Suibr2/
Suibr2.home.html

Suidec1 Suillus decipiens
https://mycocosm.jgi.doe.gov/Suidec1/
Suidec1.home.html
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Suigr1 Suillus granulatus
https://mycocosm.jgi.doe.gov/Suigr1/
Suigr1.home.html

Suihi1 Suillus hirtellus
https://mycocosm.jgi.doe.gov/Suihi1/
Suihi1.home.html

Suilu3 Suillus luteus
https://mycocosm.jgi.doe.gov/Suilu3/
Suilu3.home.html

Suipic1 Suillus pictus
https://mycocosm.jgi.doe.gov/Suipic1/
Suipic1.home.html

Symat1 Sympodiomyces attinorum
https://mycocosm.jgi.doe.gov/Symat1/
Symat1.home.html

Symko1 Symbiotaphrina kochii
https://mycocosm.jgi.doe.gov/Symko1/
Symko1.home.html

Synrac1 Syncephalastrum racemosum
https://mycocosm.jgi.doe.gov/Synrac1/
Synrac1.home.html

Talma1_2 Talaromyces marneffei
https://mycocosm.jgi.doe.gov/
Talma1_2/Talma1_2.home.html

Talst1_2 Talaromyces stipitatus
https://mycocosm.jgi.doe.gov/Talst1_2/
Talst1_2.home.html

Tapde1_1 Taphrina deformans
https://mycocosm.jgi.doe.gov/
Tapde1_1/Tapde1_1.home.html

Terbo2 Terfezia boudieri
https://mycocosm.jgi.doe.gov/Terbo2/
Terbo2.home.html

Ternu1 Teratosphaeria nubilosa
https://mycocosm.jgi.doe.gov/Ternu1/
Ternu1.home.html

Tescy1 Testicularia cyperi
https://mycocosm.jgi.doe.gov/Tescy1/
Tescy1.home.html

Thaele1 Thamnidium elegans
https://mycocosm.jgi.doe.gov/Thaele1/
Thaele1.home.html

Theau1 Thermoascus aurantiacus
https://mycocosm.jgi.doe.gov/Theau1/
Theau1.home.html

Thega1 Thelephora ganbajun
https://mycocosm.jgi.doe.gov/Thega1/
Thega1.home.html

Themi1 Thelebolus microsporus
https://mycocosm.jgi.doe.gov/Themi1/
Themi1.home.html

Thest1 Thelebolus stercoreus
https://mycocosm.jgi.doe.gov/Thest1/
Thest1.home.html

Thian1 Thielavia antarctica
https://mycocosm.jgi.doe.gov/Thian1/
Thian1.home.html

Thiap1 Thielavia appendiculata
https://mycocosm.jgi.doe.gov/Thiap1/
Thiap1.home.html

Thiar1 Thielavia arenaria
https://mycocosm.jgi.doe.gov/Thiar1/
Thiar1.home.html

Thihy1 Thielavia hyrcaniae
https://mycocosm.jgi.doe.gov/Thihy1/
Thihy1.home.html

Thite2 Thielavia terrestris
https://mycocosm.jgi.doe.gov/Thite2/
Thite2.home.html

ThoPMI491_1 Thozetella sp.

https://mycocosm.jgi.doe.gov/
ThoPMI491_1/
ThoPMI491_1.home.html
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Tilalb1 Tilletiopsis albescens
https://mycocosm.jgi.doe.gov/Tilalb1/
Tilalb1.home.html

Tilan2 Tilletiaria anomala
https://mycocosm.jgi.doe.gov/Tilan2/
Tilan2.home.html

Tilwa1 Tilletiopsis washingtonensis
https://mycocosm.jgi.doe.gov/Tilwa1/
Tilwa1.home.html

Torde1 Torulaspora delbrueckii
https://mycocosm.jgi.doe.gov/Torde1/
Torde1.home.html

Torra1 Torpedospora radiata
https://mycocosm.jgi.doe.gov/Torra1/
Torra1.home.html

Totfu1 Tothia fuscella
https://mycocosm.jgi.doe.gov/Totfu1/
Totfu1.home.html

Trace1 Trametopsis cervina
https://mycocosm.jgi.doe.gov/Trace1/
Trace1.home.html

Traci1 Trametes cingulata
https://mycocosm.jgi.doe.gov/Traci1/
Traci1.home.html

Tralj1 Trametes ljubarskyi
https://mycocosm.jgi.doe.gov/Tralj1/
Tralj1.home.html

Trave1 Trametes versicolor
https://mycocosm.jgi.doe.gov/Trave1/
Trave1.home.html

Treen1 Tremella encephala
https://mycocosm.jgi.doe.gov/Treen1/
Treen1.home.html

Trepe1 Trematosphaeria pertusa
https://mycocosm.jgi.doe.gov/Trepe1/
Trepe1.home.html

Triab1_1 Trichaptum abietinum
https://mycocosm.jgi.doe.gov/
Triab1_1/Triab1_1.home.html

Trias1 Trichoderma asperellum
https://mycocosm.jgi.doe.gov/Trias1/
Trias1.home.html

Triasp1 Trichoderma asperellum TR356
https://mycocosm.jgi.doe.gov/Triasp1/
Triasp1.home.html

Triat2 Trichoderma atroviride
https://mycocosm.jgi.doe.gov/Triat2/
Triat2.home.html

Tribi1 Trichodelitschia bisporula
https://mycocosm.jgi.doe.gov/Tribi1/
Tribi1.home.html

Trich1 Trichosporon chiarellii
https://mycocosm.jgi.doe.gov/Trich1/
Trich1.home.html

Trici4 Trichoderma citrinoviride
https://mycocosm.jgi.doe.gov/Trici4/
Trici4.home.html

Trigu1 Trinosporium guianense
https://mycocosm.jgi.doe.gov/Trigu1/
Trigu1.home.html

Trigue1 Trichosporon guehoae
https://mycocosm.jgi.doe.gov/Trigue1/
Trigue1.home.html

Triha1 Trichoderma harzianum
https://mycocosm.jgi.doe.gov/Triha1/
Triha1.home.html

Trilo3 Trichoderma longibrachiatum
https://mycocosm.jgi.doe.gov/Trilo3/
Trilo3.home.html

Trima3 Tricholoma matsutake
https://mycocosm.jgi.doe.gov/Trima3/
Trima3.home.html

Triol1 Trichosporon oleaginosus
https://mycocosm.jgi.doe.gov/Triol1/
Triol1.home.html
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Tripe1 Trichomonascus petasosporus
https://mycocosm.jgi.doe.gov/Tripe1/
Tripe1.home.html

TrireRUTC30_1 Trichoderma reesei RUT

https://mycocosm.jgi.doe.gov/
TrireRUTC30_1/
TrireRUTC30_1.home.html

Triru1 Trichophyton rubrum
https://mycocosm.jgi.doe.gov/Triru1/
Triru1.home.html

Trisp1 Tritirachium sp.
https://mycocosm.jgi.doe.gov/Trisp1/
Trisp1.home.html

Triver1 Trichophyton verrucosum
https://mycocosm.jgi.doe.gov/Triver1/
Triver1.home.html

TriviGv29_8_2 Trichoderma virens

https://mycocosm.jgi.doe.gov/
TriviGv29_8_2/
TriviGv29_8_2.home.html

Tryvi1 Trypethelium eluteriae
https://mycocosm.jgi.doe.gov/Tryvi1/
Tryvi1.home.html

Tubbor1 Tuber borchii
https://mycocosm.jgi.doe.gov/Tubbor1/
Tubbor1.home.html

Tubme1 Tuber melanosporum
https://mycocosm.jgi.doe.gov/Tubme1/
Tubme1.home.html

Tulca1 Tulasnella calospora
https://mycocosm.jgi.doe.gov/Tulca1/
Tulca1.home.html

Umbra1 Umbelopsis ramanniana
https://mycocosm.jgi.doe.gov/Umbra1/
Umbra1.home.html

Uncre1 Uncinocarpus reesii
https://mycocosm.jgi.doe.gov/Uncre1/
Uncre1.home.html

Usnflo1 Usnea florida
https://mycocosm.jgi.doe.gov/Usnflo1/
Usnflo1.home.html

Ustma1 Ustilago maydis
https://mycocosm.jgi.doe.gov/Ustma1/
Ustma1.home.html

Ustsp1 Ustilaginomycotina sp.
https://mycocosm.jgi.doe.gov/Ustsp1/
Ustsp1.home.html

Valla1 Valetoniellopsis laxa
https://mycocosm.jgi.doe.gov/Valla1/
Valla1.home.html

Varmin1 Vararia minispora
https://mycocosm.jgi.doe.gov/Varmin1/
Varmin1.home.html

Venin1 Venturia inaequalis
https://mycocosm.jgi.doe.gov/Venin1/
Venin1.home.html

Venpi1 Venturia pirina
https://mycocosm.jgi.doe.gov/Venpi1/
Venpi1.home.html

Veral1 Verticillium alfalfae
https://mycocosm.jgi.doe.gov/Veral1/
Veral1.home.html

Verda1 Verticillium dahliae
https://mycocosm.jgi.doe.gov/Verda1/
Verda1.home.html

Veren1 Verruculina enalia
https://mycocosm.jgi.doe.gov/Veren1/
Veren1.home.html

Verga1 Verruconis gallopava
https://mycocosm.jgi.doe.gov/Verga1/
Verga1.home.html

Volvo1 Volvariella volvacea
https://mycocosm.jgi.doe.gov/Volvo1/
Volvo1.home.html
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Walic1 Wallemia ichthyophaga
https://mycocosm.jgi.doe.gov/Walic1/
Walic1.home.html

Walse1 Wallemia sebi
https://mycocosm.jgi.doe.gov/Walse1/
Walse1.home.html

Wesor1 Westerdykella ornata
https://mycocosm.jgi.doe.gov/Wesor1/
Wesor1.home.html

Wican1 Wickerhamomyces anomalus
https://mycocosm.jgi.doe.gov/Wican1/
Wican1.home.html

Wicdo1 Wickerhamiella domercqiae
https://mycocosm.jgi.doe.gov/Wicdo1/
Wicdo1.home.html

Wilmi1 Wilcoxina mikolae
https://mycocosm.jgi.doe.gov/Wilmi1/
Wilmi1.home.html

Wolco1 Wolfiporia cocos
https://mycocosm.jgi.doe.gov/Wolco1/
Wolco1.home.html

Xanpa2 Xanthoria parietina
https://mycocosm.jgi.doe.gov/Xanpa2/
Xanpa2.home.html

Xenvag1 Xenasmatella vaga
https://mycocosm.jgi.doe.gov/
Xenvag1/Xenvag1.home.html

Xerba1 Xerocomus badius
https://mycocosm.jgi.doe.gov/Xerba1/
Xerba1.home.html

Xylhe1 Xylona heveae
https://mycocosm.jgi.doe.gov/Xylhe1/
Xylhe1.home.html

Xylhyp1 Xylaria hypoxylon
https://mycocosm.jgi.doe.gov/
Xylhyp1/Xylhyp1.home.html

Yarli1 Yarrowia lipolytica
https://mycocosm.jgi.doe.gov/Yarli1/
Yarli1.home.html

Zasce1 Zasmidium cellare
https://mycocosm.jgi.doe.gov/Zasce1/
Zasce1.home.html

Zoprh1 Zopfia rhizophila
https://mycocosm.jgi.doe.gov/Zoprh1/
Zoprh1.home.html

Zycmex1 Zychaea mexicana
https://mycocosm.jgi.doe.gov/
Zycmex1/Zycmex1.home.html

Zyghe1_2 Zygoascus hellenicus
https://mycocosm.jgi.doe.gov/
Zyghe1_2/Zyghe1_2.home.html

Zyghet1 Mucor heterogamus
https://mycocosm.jgi.doe.gov/Zyghet1/
Zyghet1.home.html

Zygro1 Zygosaccharomyces rouxii
https://mycocosm.jgi.doe.gov/Zygro1/
Zygro1.home.html

Zymar1 Zymoseptoria ardabiliae
https://mycocosm.jgi.doe.gov/Zymar1/
Zymar1.home.html

Zymps1 Zymoseptoria pseudotritici
https://mycocosm.jgi.doe.gov/Zymps1/
Zymps1.home.html

166


	Abstract
	Declaration
	Copyright Statement
	Introduction
	Convergent evolution
	Fungi
	Networks
	Phylogenetics
	Plasmids
	ERGMs

	Results
	The sequence sharing network underpinning plasmid diversity
	Abstract
	Introduction
	Network models

	Methods
	Data acquisition
	Data processing
	Bipartite Networks
	ERGMs
	Coincidence network
	Coincidence analysis
	Randomization analysis
	Computation

	Results
	ERGMs
	Association Analysis
	Randomization analysis

	Discussion
	Networks
	Network structure
	Dissociation analysis
	ERGMs

	Conclusions
	Bibliography

	Fungal phylogeny reconstructed using heterogeneous models reveals new placement of Microsporidia
	Abstract
	Introduction
	Methods
	Dataset
	Data Processing
	Phylogenetic Analyses
	Phylogeny validation
	Super-tree

	Results
	Phylogenetic Analysis
	Phylogeny validation
	Super-tree

	Discussion
	Super-tree
	Taxonomy
	Models

	Conclusion
	Bibliography

	Exploring fungal ecotype associations using convergent evolution and co-occurrence networks
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Components related to ways of life
	Other components
	Fungal core genome

	Conclusions
	Bibliography


	Discussion
	Conclusion
	Bibliography
	Supplementary information

