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Abstract

The University of Manchester
Shuwen Yang
Doctor of Philosophy (PhD)
Three Essays on Empirical Cross-Sectional
Asset Pricing
March 2020

This thesis broadly covers three different topics in empirical cross-sectional asset

pricing and consists of three papers. The first paper prices the cross-sectional delta-

hedged option and straddle returns in a consumption-based asset pricing model. Delta-

hedged options are particularly sensitive to the underlying asset’s volatility, which is

in turn determined by the fundamental consumption volatility. The strong connection

between delta-hedged options and consumption volatility provides us with powerful test

assets to identify the consumption volatility premium and hence the preference of the

representative agent. As indicated by our results, exposures to consumption growth,

expected consumption growth, and consumption volatility are all significantly priced in

the cross-section of delta-hedged option and straddle returns. Consumption growth and

expected consumption growth command positive risk premiums, whereas consumption

volatility commands a negative risk premium, suggesting that investors prefer early

resolution of uncertainty. Our results further suggest that consumption risk exposures

provide rational foundations for well-known relations between option moneyness or

idiosyncratic underlying-stock volatility and the cross-section of delta-hedged option or

straddle returns.

The second paper relies on a hazard-model prediction of failure as proxy for firm-level

distress risk. The paper discovers a significantly negative relation between firm-level

distress risk and the cross-section of corporate bond returns, which is analogous to

the often negative relation between distress risk and stock returns found in prior

studies (“distress anomaly”). Our finding casts doubts on theories arguing that the

distress anomaly arises due to shareholders shifting financial risk onto debtholders in

distress. In accordance, proxy variables suggested by such theories do not condition

the distress risk-bond return relation. Theories suggesting that distressed firms own

valuable disinvestment options and thus have a low levered asset risk are more promising

to explain the anomaly, with some of the proxy variables suggested by these theories

conditioning the former relation.

The third paper evaluates the prediction performance of machine learning methods

in predicting the cross-sectional bond returns out-of-sample. Recent studies show that

machine learning methods, especially neural networks, perform well in predicting the cross-

sectional stock returns when the number of predictors is large. Prior research indicate that

bond returns can be predicted by not only macroeconomic factors, bond market factors,

and bond-level characteristics, but also stock market factors and stock-level characteristics.

Therefore, the number of predictors in the bond market is even larger than that in the stock

market, and the advantage of machine learning will be more pronounced in forecasting

bond returns. In this work, I show that machine learning methods perform much better

than the simple linear model in predicting bond returns out-of-sample.
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Chapter 1

Introduction

The core of empirical cross-sectional asset pricing is to investigate whether

assets with different risk exposures and characteristics are priced differently and

thus earn different rates of return. The most famous research in this field are

Fama and French (1992) and Fama and French (1993), which claim that stocks

with larger exposure to the market risk, higher ratio of book-to-market equity, and

smaller equity size will have higher returns. This thesis covers three different topics

in the field of empirical cross-sectional asset pricing. The first paper (Chapter 2)

identifies three consumption risks which can price cross-sectional delta-hedged

option and straddle returns. Empirical results in Chapter 2 provide strong evidence

to support that the representative agent prefers early resolution of uncertainty,

which is a long-lasting debate in the consumption-based asset pricing literature.

Moreover, different loadings on consumption risks of delta-hedged options can

explain the well-known anomalies in the option market, which are the negative

relation between idiosyncratic underlying-stock volatilities and delta-hedged option

returns and the positive relation between option moneyness and delta-hedged

option returns. The second paper (Chapter 3) investigates how firm-level distress

risk is priced in the cross-sectional corporate bond returns. We discover a novel

negative relation between distress risk and the cross-section of corporate bond

returns which can not be explained by the shareholder advantage theory. The

shareholder advantage theory is well-accepted in the literature to explain the hump-

shaped or negative relation between distress risk and stock returns. Moreover, we
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find that valuable disinvestment options of firms in distress are able to explain

the negative relations between distress risk and both stock and bond returns. The

third paper (Chapter 4) uses a collection of machine learning models to predict

the cross-sectional corporate bond returns out-of-sample. I show that when the

number of predictors is large, machine learning models perform much better than

the simple linear model. The following sections will discuss each chapter of this

thesis with more details.

1.1 Consumption-Based Asset Pricing Models

and Delta-Hedged Options

In the consumption-based asset pricing framework, only consumption risks

can affect asset prices. In the standard consumption-based asset pricing model

(CCAPM) pioneered by Breeden (1979), asset betas are measured with respect

to changes in the aggregate real consumption rate. In the following long-run

risk models with recursive utilities and richer specifications of the consumption

growth process, expected consumption growth and consumption volatility can

also influence asset prices. Moreover, whether investors prefer early resolution of

uncertainty decides the signs of risk premiums on expected consumption growth

and consumption volatility betas. The long-run risk literature usually assumes a

high value for the elasticity of intertemporal substitution and a preference for early

resolution of uncertainty, which results in a positive risk premium for expected

consumption growth beta and a negative risk premium for consumption volatility

beta. (See Bansal and Yaron (2004), Lettau, Ludvigson and Wachter (2008), and

Bansal, Kiku, Shaliastovich and Yaron (2014).)

The majority of previous research in the consumption-based asset pricing

literature mainly focus on how consumption risks affect stock returns. However, in

its essence, the consumption-based asset pricing framework can be applied to all

traded assets. We consider delta-hedged options and straddles as alternative test

assets because we discover in our simulation work that delta-hedged options returns
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are more sensitive to consumption volatility than stocks returns. Therefore, using

delta-hedged options and straddles may be able to better identify the consumption

volatility risk premium.

In Chapter 2, we price the cross-section of delta-hedged option and straddle

returns in a consumption-based asset pricing model, where the representative agent

prefers early resolution of uncertainty and the consumption growth process follows

a four-state Markov-switching process. By linearizing the pricing kernel, we identify

three consumption risks, consumption growth risk, expected consumption growth

risk, and consumption volatility risk, to price the cross-sectional delta-hedged

option and straddle returns. We find that the consumption growth beta and the

expected consumption growth beta command significantly positive risk premiums,

while the consumption volatility beta commands a significantly negative risk

premium.

Since we adopt the model established by Lettau et al. (2008), we do not

contribute to the theoretical models, and our contributions mainly focus on the

empirical analysis. We contribute to the literature in three aspects. First, our

finding of a large, positive and significant risk premiun for the consumption growth

beta provides strong support for the CCAPM. Second, our empirical results of a

positive risk premium for the expected consumption growth beta and a negative

risk premium for the consumption volatility beta further support the long-run

risk models. Third and most important, we provide macroeconomic explanations

for the well-known anomalies in the option market, namely, the negative relation

between idiosyncratic underlying-stock volatilities and delta-hedged option returns

pointed out by Cao and Han (2013), and the positive relation between option

moneyness and delta-hedged option returns discovered by Bakshi and Kapadia

(2003).

1.2 Distress Risk and Corporate Bond Returns

Previous studies find a flat, hump-shaped, or negative relation between the

probablity that a firm fails to fulfill its obligations (“distress risk”) and the cross-
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section of stock returns (see e.g. Griffin and Lemmon (2002), Campbell, Hilscher

and Szilagyi (2008), Garlappi, Shu and Yan (2008), and George and Hwang (2010)),

which is the so-called “distress anomaly”. The most convincing explanation for the

non-positive relation between distress risk and stock returns is Garlappi et al.’s

(2008) and Garlappi and Yan’s (2011) shareholder advantage theory, which claims

that shareholders can extract economic rents from bondholders when a firm is in

distress, and thus lower the risks and returns of distressed stocks. Their theory is

further supported by evidence from Favara, Schroth and Valta (2012), Hackbarth,

Haselmann and Schoenherr (2015), and Aretz, Florackis and Kostakis (2018).

Favara et al. (2012) show that in countries whose institutions favor stockholders

over debtholders, the stock betas and volatilities are lower, and Aretz et al. (2018)

discover that the distress risk-stock return relation is more negative in the same

countries. Moreover, Hackbarth et al. (2015) find that an exogenous increase

in shareholder advantage in the United States in 1978 lowered stock betas and

returns for all but most strongly distressed firms. Those previous research mainly

investigate the distress anomaly from the perspective of stockholders. However,

we try to re-examine that anomaly from the perspective of bondholders.

In the second paper (Chapter 3), we use Campbell et al.’s (2008) hazard model

to capture the probability of failure of firms and discover a significantly negative

relation between distress risk and the cross-section of corporate bond returns.

We extend the simulation results of Garlappi et al. (2008) to bonds, and find

a positive relation between distress risk and bond returns in the shareholder

advantage framework. Moreover, we find that shareholder advantage proxies are

not able to condition the distress risk-bond return relation empirically. Those

findings confirm that shareholder advantage cannot explain our bond pricing

evidence. Considering the limited success of shareholder advantage theory, we turn

to find other explanations for the distress anomaly in both stocks and bonds. We

study a modified version of the standard real options model of Aretz and Pope

(2018), which allows for the gradual disinvestment of productive capacity, and

our simulation results show that the real options model can produce negative
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relations between distress risk and both expected stock and debt returns. Besides,

our empirical results show that the disinvestment options proxies can condition

the relations between distress risk and both stock and debt returns with correct

signs.

Here are our main contributions of Chapter 3. First, we document a negative

relation between distress risk and the cross-section of corporate bond returns,

which is analogous to the non-positive and often negative relation between distress

risk and stock returns. Second, we show that the shareholder advantage theory

fails both empirically and theoretically to explain the negative distress risk-bond

return relation. Finally, we find that valuable real options of distressed firms can

empirically and theoretically explain the distress anomaly from the perspectives

of both stockholders and bondholders.

1.3 Machine Learning Models and Corporate Bond

Returns

With the development of machine learning techniques, applying machine learn-

ing models in finance research becomes a new trend, especially using machine

learning models to predict asset returns. Gu, Kelly and Xiu (2020) show that

machine learning models offer an improved description of expected stock returns

compared with traditional forecasting methods when the number of predictors

is huge, and the best performing method, neural networks, improves its pre-

dictive power through allowing for nonlinear predictor interactions. Similarly,

Bianchi, Büchner and Tamoni (2019) find that neural networks are useful to de-

tect predictable variations in Treasury bond excess returns, and macroeconomics

information has substantial out-of-sample forecasting power for Treasury bond

excess returns across maturities.

Meanwhile, there is a growing number of papers which try to discover predictors

of corporate bond returns. Extant literature show that the cross-section of corporate

bond returns can be predicted by not only bond market factors and bond-level
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characteristics (see e.g. Gebhardt, Hvidkjaer and Swaminathan (2005), Bao, Pan

and Wang (2011), Lin, Wang and Wu (2011), Jostova, Nikolova, Philipov and

Stahel (2013), and Bai, Bali and Wen (2019)), but also stock market factors

and stock-level characteristics (see e.g. Acharya, Amihud and Bharath (2013) ,

Bongaerts, de Jong and Driessen (2017), Chordia, Goyal, Nozawa, Subrahmanyam

and Tong (2017), and Choi and Kim (2018)) and macroeconomic factors (see e.g.

Bali, Subrahmanyam and Wen (2019)). Therefore, the number of predictors of

corporate bond returns is even larger than that of stock returns, and the advantage

of machine learning models will be more pronounced in forecasting bond returns.

In the third paper (Chapter 4), I try to answer three research questions:

(1) whether machine learning methods also possess strong predictive power in

predicting corporate bond returns out-of-sample; (2) which predictors play the

main roles in predicting bond returns; (3) which predictors can explain the cross-

section of both stock and bond returns at the same time. The current version

of Chapter 4 is still preliminary, which only uses a small set of bond and stock

market predictors to predict the cross-sectional corporate bond returns from July

2006 to June 2017. The machine learning models I use include, the OLS with

Huber loss (OLS+H), the partial least squares (PLS), the principal component

regression (PCR), the Lasso, the Ridge, the elastic net (Enet), the Group Lasso,

the gradient boosted regression trees and the random forests. There are 4 bond

market factors, 11 bond-level characteristics, and 6 stock-level characteristics.

Considering the interaction terms between bond market factors and bond-level

and stock-level characteristics, the number of predictors is 85 in total. Among

all those machine learning models, the random forests perform the best with the

highest out-of-sample predictive R2, and all the machine learning models perform

better than the simple linear model. Therefore, I can answer the research question

(1) and conclude that machine learning methods do possess stronger predictive

power in predicting corporate bond returns out-of-sample than the simple linear

model.

The contribution of Chapter 4 based on current results is that machine learning
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models can better predict corporate bond returns out-of-sample than the traditional

simple linear model.

1.4 Thesis Structure

This thesis has three self-contained journal-format essays, Chapter 2, Chapter

3, and Chapter 4. Each chapter has its own introduction, model and methodology,

data and empirical analysis, conclusion, references, and appendix parts. The

equations, tables, figures, and footnotes are listed in sequential orders throughout

the thesis.

The thesis is organized as follows. Chapter 2 prices the cross-sectional delta-

hedged option and straddle returns in a consumption-based asset pricing model

where the representative agent has recursive utilities and the consumption growth

follows a four-state Markov-switching process. Chapter 3 investigates the relation

between distress risk and the cross-section of corporate bond returns, and provide

possible explanations for that relation. Chapter 4 applies machine learning models

in predicting the cross-sectional corporate bond returns out-of-sample. Chapter 5

concludes major findings of the thesis.

Chapter 2 is co-authored with Prof. Hening Liu and Prof. Kevin Aretz at

the Alliance Manchester Business School and Dr. Yuzhao Zhang at the Rutgers

Business School, and Chapter 3 is co-authored with Prof. Kevin Aretz at the

Alliance Manchester Business School. Chapter 4 is finished completely by myself.
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Chapter 2

Early Resolution of Uncertainty:

Evidence from Equity Options

We offer evidence that exposures to consumption growth, expected consumption

growth, and consumption volatility are significantly priced in the cross-section

of delta-hedged option and straddle returns. Consumption growth and expected

consumption growth command a positive risk premium, whereas consumption

volatility commands a negative risk premium. In the context of a representative-

agent economy with Epstein-Zin (1989) recursive preferences, our results suggest

that investors prefer early resolution of uncertainty. Our results further suggest

that consumption risk exposures provide rational foundations for well-known

relations between option moneyness or idiosyncratic underlying-stock volatility

and the cross-section of delta-hedged option or straddle returns.

Keywords: Consumption growth, option returns, recursive utility, volatility

risk.
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2.1 Introduction

It is of central importance to understand how consumption risks influence asset

prices. In the standard consumption-based asset pricing model (CCAPM) pioneered

by Breeden (1979), the risk premium on an asset is a multiple of its exposure

to consumption risk, the covariance of the asset return with contemporaneous

aggregate consumption growth. In long-run risk models with recursive preferences

and richer dynamics of consumption growth (e.g., Bansal and Yaron (2004)), the

expected consumption growth and consumption volatility are also priced. Moreover,

the signs of the risk premiums on the mean and volatility of consumption growth

crucially depend on whether investors prefer early resolution of uncertainty. The

long-run risk literature commonly postulates that the elasticity of intertemporal

substitution (EIS) for a representative agent is sufficiently high such that the agent

prefers early resolution of uncertainty. The resulting premiums on the expected

consumption growth and consumption volatility are then, respectively, positive and

negative (see Bansal and Yaron (2004), Lettau, Ludvigson, and Wachter (2008),

and Bansal, Kiku, Shaliastovich, and Yaron (2014)).

Most of the early studies in the consumption-based asset pricing literature focus

on the impact of the first moment of consumption growth on stocks (e.g., Lettau

and Ludvigson (2001), Parker and Julliard (2005), and Yogo (2006)). More recent

studies also stress the importance of consumption volatility for stocks (e.g., Bansal,

Kiku, and Yaron (2012), Boguth and Kuehn (2013), and Bansal et al. (2014)). Yet,

while the prior literature has so far only studied the ability of consumption risks to

price stocks, the consumption-based framework is, in theory, applicable to all traded

assets, not only stocks. In our paper, we thus evaluate the ability of consumption

risks to price alternative assets, namely delta-hedged call and put options as well

as straddles. As shown in our impulse response analysis described in Section

2.3, delta-hedged options and straddles returns positively respond to changes in

consumption volatility and negatively to shocks in expected consumption growth

while stock returns do in contrast ways, making them interesting alternative assets

to consider. Furthermore, when there are only shocks to consumption volatility,
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delta-hedged options returns are more sensitive to consumption volatility than

stocks returns. Therefore, using delta-hedged options and straddles may be able

to better identify the consumption volatility risk premium.

Using our alternative test assets, we identify highly significant consumption

growth, expected consumption growth, and consumption volatility risk premiums

that support the standard CCAPM with constant relative risk aversion and the

model with Epstein and Zin’s (1989) recursive utility featuring a preference for

early resolution of uncertainty. More importantly, we show that consumption risks

offer rational explanations for well-known anomalies in delta-hedged options, as, for

example, the moneyness and idiosyncratic underlying-stock volatility anomalies.

To better understand how consumption risks affect options, we study a delta-

hedged call option in the representative-agent model of Lettau, Ludvigson, and

Wachter (2008). In that model, consumption growth follows a Markov-switching

process in which the mean growth rate and the volatility of innovation shocks

are characterized by two independent Markov chains, each with two unobservable

states. The representative agent has Epstein and Zin’s (1989) recursive preferences,

allowing his risk attitude and preferences over intertemporal substitution to be

disentangled. The log-linearized pricing kernel is an affine function of consumption

growth and the change in the wealth-consumption ratio. In turn, the change in the

wealth-consumption ratio is approximately affine in the changes in the conditional

mean and volatility of consumption growth. Thus, the agent’s estimates of the

conditional mean and volatility of consumption growth are priced, with the signs

of their risk premiums depending on the parameters in the agent’s utility function.

When the coefficient of relative risk aversion (RRA) exceeds the reciprocal of

the EIS, the agent prefers early resolution of the intertemporal risk arising from

unobservable states and thus demands a positive (negative) risk premium for shocks

to the conditional mean (volatility).1 Because of Bayesian learning, a negative shock

to consumption growth leads the agent to lower his estimate of mean consumption

growth, but to raise his estimate of consumption volatility. Using an impulse response

1If the agent prefers late resolution of uncertainty, the risk premiums for the conditional mean
and volatility of consumption growth switch signs.
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analysis, we show that this shock decreases the stock price, increases stock volatility,

and lowers the price of a call option written on the stock despite raising the option’s

implied volatility. The call option price, however, decreases less than the gain from

shorting delta stocks because the call option price is convex in the underlying

stock’s price and the implied volatility increases. Thus, the value of the delta-hedged

option (which is long the call option and short delta stocks) increases, implying that

the delta-hedged option is negatively exposed to consumption growth and mean

consumption growth but that it is positively exposed to consumption volatility.

Motivated by our theoretical analysis, we estimate the Markov-switching model

and obtain estimates of the conditional mean and volatility of consumption growth.

We then test whether consumption risks are priced in option returns. To match

quarterly consumption data with options data, we choose a cross-section of at-the-

money (ATM) options with times-to-maturity between about three to six months

at the end of each quarter. Our time-to-maturity choice guarantees that the options

expire after the end of the coming quarter and confines the times-to-maturity to be

within a reasonable range. We then follow Cao and Han (2013) and compute the

quarterly return of a portfolio that buys one call (or put) option and delta-hedges

it with the underlying stock. Delta-hedging the option neutralizes the effect of

movements in the underlying stock’s price on option returns, ensuring that our

results are not simply reflecting stock returns. We finally form ten equally-weighted

delta-hedged call option portfolios ranked on the underlying stock’s idiosyncratic

volatility (IVOL). Using idiosyncratic stock volatility as sorting variable is motivated

by Cao and Han’s (2013) result that this variable is significantly negatively related

to delta-hedged option returns.

In line with existing studies, our evidence suggests that the mean returns of all

delta-hedged option portfolios are negative. Why? We offer a macroeconomic-based

explanation by looking at the portfolios’ consumption exposures as well as their

exposures with respect to the estimated mean and volatility of consumption growth.

Most of the portfolios have negative exposures toward both consumption growth and

its expectation, enabling investors to use the portfolios to hedge against unfavorable
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macroeconomic conditions. According to the standard CCAPM, investors accept a

lower or even negative return on assets offering protection against consumption risk

by paying out more in adverse macroeconomic conditions, explaining the negative

mean portfolio returns. Moreover, options are particularly sensitive to the underlying

stock’s volatility. Coval and Shumway (2001) show that volatility risk is priced

in options, whereas Cao and Han (2013) and Hu and Jacobs (2020) find that the

cross-section of option returns is strongly affected by that volatility. Since stock

volatility depends on consumption volatility in many theoretical models (e.g., Bansal

and Yaron (2004)), it seems likely that consumption volatility risk also matters

for options. Indeed, we find that all delta-hedged option portfolios have positive

consumption volatility exposures, further suggesting that options are countercyclical

assets accommodating investors’ hedging needs.

The mean spread return between the highest and lowest IVOL delta-hedged

call option portfolio is –2.97% per quarter (t=–6.91). While, as already said, most

portfolios have negative consumption growth exposures, the exposures become more

negative with underlying idiosyncratic volatility, implying that options written

on higher idiosyncratic volatility stocks offer better protection against adverse

conditions. Similarly, the usually positive consumption volatility exposures become

more positive with idiosyncratic volatility, suggesting that options written on higher

idiosyncratic volatility stocks also protect against high consumption-volatility states.

We next show that the three consumption exposures are all priced in Fama-MacBeth

(Fama and MacBeth (1973), henceforth FM) regressions. The consumption growth

risk premium is positive and significant, and the product of average consumption

growth exposure over the portfolios (–0.019) and that premium (0.57) is –0.62% per

quarter. The significant consumption risk premium is consistent with Jagannathan

and Wang (2007). The risk premium of expected consumption growth, which is

considered to be the long-run risk component in Bansal and Yaron (2004), is also

positive and significant, and the product of average exposure and premium is –

0.10% per quarter in its case. Finally, consistent with Boguth and Kuehn (2013),

the consumption volatility risk premium is negative and significant, and the product
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of average exposure and premium is –0.68% per quarter in its case. The three

sources of consumption risk all contribute to the negative mean delta-hedged option

returns and explain an average of over 50% of the cross-sectional variations in these

returns. Also, the intercepts from the FM regressions are all only insignificantly

different from zero, supporting the consumption-based model.

In our model, the stochastic discount factor (SDF) is approximately affine in

consumption growth, the change in its expectation, and the change in its volatility.

We use Hansen’s (1982) generalized method of moments (GMM) to test this

Euler-equation implication. Using the delta-hedged call option portfolios as test

assets, we find that consumption growth and its volatility are significantly priced,

with risk premiums that are quantitatively similar to those obtained from the

FM regressions. The overidentifying restrictions test fails to reject the model, and

the cross-sectional R2 is above 85%. In accordance, the mean absolute pricing

error and root mean squared error are a modest 0.27% and 0.32% per quarter,

respectively. Most crucially, the risk premiums of consumption growth and its

expectation continue to be positive, while the consumption volatility premium

continues to be negative, again suggesting the EIS exceeds the inverse of the RRA.

Given the EIS-RRA relation is crucial for a large literature on long-run risks, our

evidence critically informs that literature.

Bakshi and Kapadia (2003) show that delta-hedged option returns measure

the variance risk premium, defined as the difference between a stock’s realized

variance (RV) and the implied variance paid for an option written on that stock at

the start of the realized variance period (IV). While options written on high IVOL

stocks are indeed more expensive in terms of implied variance than those on low

IVOL stocks, realized variance increases, on average, less steeply with idiosyncratic

volatility, implying a more negative variance risk premium for options on higher

IVOL stocks. In turn, the options on higher IVOL stocks earn lower delta-hedged

returns. Interestingly, the variance risk premium is time-varying and covaries with

the state of the economy. In particular, the premium is negatively correlated

with consumption growth, with the correlation being most negative for high
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IVOL stocks. Thus, options written on the highest IVOL stocks perform best in

adverse economic conditions, explaining why they offer the best hedge against

such conditions.

While we use call options in our main tests, we find similar results when

switching to put options or straddles. We also find similar results when studying

the monthly delta-hedged returns of shorter maturity options, showing that our

results are robust to the choice of option maturity and return interval. Motivated

by Bakshi and Kapadia’s (2003) conclusions, we further corroborate our evidence

by showing that the risk premiums estimated from delta-hedged option portfolios

based on moneyness are close to those estimated from the IVOL portfolios.

Our work adds to the literature relating consumption to asset prices. Jagan-

nathan and Wang (2007) point out that the CCAPM explains stock returns when

consumption exposures are computed using December-to-December consumption

growth. Bansal et al. (2012) evaluate the ability of the long-run risks model to

explain asset returns, highlighting the importance of low-frequency movements

and time-varying uncertainty in economic growth for understanding risk-return

tradeoffs. Bansal, Khatchatrian, and Yaron (2005) find that consumption volatility

predicts and is predicted by valuation ratios at long horizons. Lettau et al. (2008)

study a consumption-based model with Markov-switching consumption growth,

showing that learning about volatility regimes can explain the decrease in the equity

risk premium during the 1990s. Eraker and Shaliastovich (2008) examine equilib-

rium models with Epstein-Zin preferences in a framework in which exogenous state

variables follow affine jump diffusion processes. Calvet and Fisher (2007) introduce

a parsimonious equilibrium model with regime shifts of heterogeneous durations in

fundamentals. Romeo (2015) shows that changes in consumption volatility are the

key driver for explaining major asset pricing anomalies across risk horizons. Boguth

and Kuehn (2013) show that consumption volatility is negatively priced in stock

portfolios. We contribute to this literature by more precisely estimating the risk

premiums of consumption growth and its first two moments using delta-hedged

options and straddles.
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Some recent papers extend the long-run risk framework to investigate the

pricing implications of time-varying uncertainty for the variance risk premium.

Drechsler and Yaron (2011) report that time-varying economic uncertainty and a

preference for early resolution of uncertainty are required to generate a positive time-

varying variance risk premium predicting excess stock market returns. Bansal and

Shaliastovich (2011) model investors’ optimal decisions to identify the unobserved

state. Their model predicts that income volatility (but not income growth) predicts

future jump periods. Bollerslev, Tauchen, and Zhou (2009) study the volatility of

volatility and the variance risk premium.

There is also a large literature on the cross-section of option returns. Cao

and Han (2013) show that delta-hedged option returns decrease with the under-

lying stock’s idiosyncratic volatility. They argue that options written on high-

idiosyncratic-volatility stocks are more difficult to hedge, inducing dealers to charge

a higher premium in the presence of limits to arbitrage. The question remains why

investors are willing to pay that higher premium. We complement their explanation

by showing that the options written on high-idiosyncratic-volatility stocks provide

a better hedge against adverse macroeconomic conditions, making investors willing

to accept low or negative returns. Hu and Jacobs (2020) show that returns on call

(put) stock-option portfolios decrease (increase) with underlying stock volatility.2

We contribute to the literature by studying the cross-section of option returns

under the long-run risk framework, identifying links between option returns and

covariance risk with respect to consumption growth, mean consumption growth,

and consumption volatility.

Our paper is organized as follows. Section 2.2 introduces the theoretical frame-

work motivating our empirical work. In Section 2.3, we conduct a numerical analysis

of that framework to understand how consumption risks affect delta-hedged option

returns within it. In Section 2.4, we test whether loadings on consumption growth

and changes in its conditional moments forecast the cross-section of delta-hedged

option and straddle returns. Section 2.5 summarizes and concludes. The Appendix

2Aretz, Lin, and Poon (2019) use an SDF model to illustrate that expected European option
returns are not unambiguously related to their underlying asset’s volatility, with the sign of the
relation depending on the option’s moneyness.
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contains additional derivations and empirical results.

2.2 The Model

In this section, we introduce the consumption-based asset pricing model of

Lettau et al. (2008). In that model, the growth rate of consumption follows a Markov-

switching process, and the representative agent has the recursive preferences of

Epstein and Zin (1989). We next follow Boguth and Kuehn (2013) in linearizing

the pricing kernel to derive an equation for expected returns. We do not make any

changes to the model, and just use the model to guide our empirical analysis.

2.2.1 Consumption Dynamics

Following McConnell and Perez-Quiros (2000) and Lettau et al. (2008), we

assume that the log consumption growth rate follows a Markov-switching process

in which the conditional mean and volatility states follow two independent Markov

chains. More specifically, we assume that the log consumption growth rate, ∆ct+1,

follows:

∆ct+1 ≡ ln

(
Ct+1

Ct

)
= µt + σtεt+1, εt+1 ∼ N(0, 1), (2.1)

where Ct is consumption at time t, and µt the conditional mean and σt the

conditional volatility of the log consumption growth rate. We assume two states

for the mean growth rate, µt ∈ {µl, µh}, and two states for the volatility of the

growth rate, σt ∈ {σl, σh}. The transition matrices for the mean and volatility

states are P µ and P σ, respectively. The two matrices are given by:

P µ =

 pµll 1− pµhh

1− pµll pµhh

 , P σ =

 pσll 1− pσhh

1− pσll pσhh

 . (2.2)

Since the mean and volatility states switch independently, the joint transition

matrix is the product of the marginal transition probabilities and can be fully

characterized by pµll, p
µ
hh, p

σ
ll, and pσhh.

We assume that the agent does not observe the state of the economy and must
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infer it from available consumption growth data. The posterior belief that the

economy is in specific states at date t+ 1 conditional on observations available

until date t is denoted by the vector ξt+1|t. Bayesian inference implies that the

belief vector evolves according to:

ξt+1|t = P

(
ξt|t−1 � ηt

)
1′
(
ξt|t−1 � ηt

) , (2.3)

where ηt is a vector of conditional Gaussian densities, � represents element-by-

element multiplication, P = P µ ⊗ P σ is the joint transition matrix, and ⊗ is the

Kronecker product. Despite the mean and volatility states switching independently,

Lettau et al. (2008) and Boguth and Kuehn (2013) stress that Bayesian learning

implies that the agent’s beliefs about those states are dependent.

2.2.2 The Pricing Kernel

The agent’s preferences obey Epstein-Zin’s (1989) recursive utility function,

given by:

Ut =

[
(1− β)C

1− 1
ψ

t + β
[
Et
(
U1−γ
t+1

)] 1− 1
ψ

1−γ

] 1

1− 1
ψ

, (2.4)

where β is the time discount factor, γ the relative risk aversion parameter, ψ

the elasticity of intertemporal substitution, and Ut+1 the continuation value at

time t + 1. The γ and ψ parameters are required to satisfy γ > 0, ψ > 0, and

ψ 6= 1. For γ = 1
ψ

, the representative agent has standard constant relative risk

aversion (CRRA) preferences. As demonstrated in the long-run risk literature (e.g.,

Bansal and Yaron (2004)), γ > 1
ψ

signals that the agent prefers early resolution

of uncertainty, whereas γ < 1
ψ

signals that the agent prefers late resolution of

uncertainty.

The general asset pricing equation pricing any asset is given by:

Et [Mt+1Ri,t+1] = 1, (2.5)

where Ri,t+1 is the gross return on asset i. The equation for an excess return Re
i,t+1
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is:

Et
[
Mt+1R

e
i,t+1

]
= 0. (2.6)

The SDF under recursive utility, Mt+1, is:

Mt+1 = β

(
Ct+1

Ct

)− 1
ψ

 Ut+1(
Et
[
U1−γ
t+1

]) 1
1−γ

 1
ψ
−γ

. (2.7)

Epstein and Zin (1989) show that the wealth-consumption ratio, Zt ≡ Wt/Ct,

satisfies:

Wt

Ct
=

1

1− β

(
Ut
Ct

)1− 1
ψ

, (2.8)

so that the SDF, Mt+1, can alternatively be expressed as:

Mt+1 = β
1−γ
1− 1

ψ

(
Ct+1

Ct

)−γ (
Zt+1

Zt − 1

) 1
ψ
−γ

1− 1
ψ
. (2.9)

A log-linear approximation of the SDF in Equation (2.9), mt+1, is:

mt+1 ≈

(
1− γ
1− 1

ψ

)
ln β − γ∆ct+1 +

(
1
ψ
− γ

1− 1
ψ

)
∆zt+1, (2.10)

where ∆zt+1 is the change in log wealth-consumption ratio from time t to t+ 1.

The Euler equation defined for wealth implies the following functional equation

for zt = log(Zt):

Et

[
exp

(
θ

(
log β +

(
1− 1

ψ

)
∆ct+1 + zt+1 − log (ezt − 1)

))]
= 1, (2.11)

where θ = 1−γ
1− 1

ψ

. In an endowment economy in which consumption growth is driven

by independent and identically distributed (i.i.d.) shocks, the wealth-consumption

ratio is thus constant. When the mean and volatility of consumption growth are

time varying, however, the agent’s posterior beliefs about the state of the economy

become state variables of the model. Consequently, the wealth-consumption ratio

becomes a function of the agent’s beliefs, Zt = Z
(
ξt+1|t

)
.
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2.2.3 Approximating the Change in the Wealth-Consumption

Ratio

We define the posterior belief that the mean or volatility of consumption growth

is in the high state at time t+ 1 conditional on the current information set Ft by:

bµ,t = Pr (µt+1 = µh|Ft) bσ,t = Pr (σt+1 = σh|Ft) , (2.12)

allowing us to write the perceived mean and volatility as belief-weighted averages:

µ̂t = bµ,tµh + (1− bµ,t)µl σ̂t = bσ,tσh + (1− bσ,t)σl. (2.13)

We define the changes in the perceived moments by:

∆µ̂t = µ̂t − µ̂t−1 ∆σ̂t = σ̂t − σ̂t−1. (2.14)

In our empirical analysis, we assume that changes in the log wealth-consumption

ratio are approximately linear in changes in the perceived moments:

∆zt ≈ κ+ A∆µ̂t +B∆σ̂t. (2.15)

In Table A1, we show that the approximation is highly accurate for various

combinations of parameter values, confirming the numerical results of Boguth and

Kuehn (2013).3 When ψ > 1, the slope coefficients of ∆µ̂ and ∆σ̂ are positive and

negative, respectively (and vice versa).

2.2.4 Asset Pricing Implications

We next illustrate that, in our model, the first two conditional moments of

consumption growth price assets. To do so, we plug approximation (2.15) into

Equation (2.10), then plug Equation (2.10) into Equation (2.6), and finally use the

3We approximate the wealth-consumption ratio with Chebyshev polynomials and rely on
function iterations to find the fixed-point of the wealth-consumption ratio implied by the Euler
equation. Using linear interpolation produces very similar results.
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definition of covariance. It is then obvious that asset i’s expected excess return,

Et
[
Re
i,t+1

]
, is (approximately) linear in the asset’s consumption growth exposure,

βi∆c,t, mean consumption growth exposure, βi∆µ,t, and consumption volatility expo-

sure, βi∆σ,t:

Et
[
Re
i,t+1

]
≈ βi∆c,tλ∆c,t + βi∆µ,tλ∆µ,t + βi∆σ,tλ∆σ,t, (2.16)

where λ∆c,t, λ∆µ,t, and λ∆σ,t are risk premiums of the three consumption exposures.4

Due to risk aversion, the model always predicts a positive risk premium for

consumption growth exposure. When the EIS exceeds the inverse of the RRA, the

agent prefers early resolution of uncertainty and thus the risk premiums on the

conditional mean and volatility of consumption growth are positive and negative,

respectively.5

2.3 Impulse Response Analysis

In this section, we use an impulse response analysis to find out how consumption

risks affect delta-hedged option returns in the representative-agent model in

Section 2.2.6 We first explain how we conduct the impulse response analysis. We

next discuss the results from that analysis.

2.3.1 Computing Model-Implied Option Returns

To compute the delta-hedged return, we begin by considering a stock paying

dividends that are positively correlated with aggregate consumption. Specifically,

we follow Abel (1999) and Bansal and Yaron (2004) and assume that the dividend

growth process, ∆dt, is given by:

∆dt ≡ ln

(
Dt

Dt−1

)
= Φ∆ct + gd + σdεd,t (2.17)

4See Appendix Section 2.6.1 for the derivation and expressions of the risk premiums.
5See Table A1 in Appendix Section 2.6.1 for related results.
6Developing a full-fledged general equilibrium model with heterogeneous firms is beyond

the scope of this paper. We neither aim to match the magnitude of the delta-hedged returns
observed in the data.
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where Dt is the dividend at time t, Φ is the leverage parameter, ∆ct is the log

consumption growth rate, gd determines mean dividend growth conditional on a

zero consumption growth, σd is the dividend growth volatility, and εd,t is a standard

normal i.i.d. shock independent of other shocks in the model. In equilibrium, the

price-dividend ratio St
Dt
≡ ϕ

(
ξt+1|t

)
satisfies the Euler equation:

St
Dt

= Et

[
Mt+1

(
St+1

Dt+1

+ 1

)
Dt+1

Dt

]

or equivalently,

ϕ
(
ξt+1|t

)
= Et

[
Mt+1

(
ϕ
(
ξt+2|t+1

)
+ 1
)

exp (∆dt+1)
]
. (2.18)

We solve the fixed point of the price-dividend ratio as determined by Equation

(2.18) using the linear interpolation method.7 The model-implied risk-free rate is

rft ≡ ln
(
Rf
t

)
, with Rf

t = 1/Et [Mt+1].

We assume that the option price is equal to the option value implied by the

equilibrium model. For instance, the current value of a call option expiring in n

periods, C
(n)
t , is given by the expectation of the option’s future cash flow multiplied

by the multi-period pricing kernel:

C
(n)
t = Et [Mt,t+n max (0, St+n −K)] , (2.19)

where St+n is the price of the underlying asset at time t+n,K is the option’s strike price,

and Mt,t+n is the multi-period pricing kernel, Mt,t+n = Mt,t+1Mt+1,t+2 · · ·Mt+n−1,t+n

in which Mt,t+1 is the one-period pricing kernel.

We set the leverage parameter Φ = 3, in line with previous studies such as

Bansal and Yaron (2004), Lettau et al. (2008) and Boguth and Kuehn (2013).

The parameters gd and σd are set to match the unconditional mean and standard

deviation of dividend growth in the post-war data, which yields quarterly values

gd = −0.009 and σd = 0.028. Our calibration analysis suggests that the model

7We choose 50 grid points on each dimension of the state variables and use function iterations
to find the fixed points for both wealth-consumption and price-dividend ratios.
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with (γ = 60, ψ = 1.5) and our empirical estimates of the Markov-switching model

parameters in Table 2.1 can generate a sizable equity premium of about 4% per

year when the model is calibrated at the quarterly frequency. Thus, we choose

(γ = 60, ψ = 1.5) as our benchmark case. Since (γ = 60, ψ = 1.5) implies that

investors prefer early resolution of uncertainty, we also run simulations with (γ = 60,

ψ = 0.01) to study the case in which investors prefer late resolution of uncertainty.

We use Monte Carlo simulations to compute the values of an ATM European

call options with three months (twelve weeks) to maturity according to Equation

(2.19).8 The computation involves simulating 40,000 sample paths of stock prices and

the multi-period SDF using the parameters that match the aggregate consumption

process, as shown in Table 2.1. Along a sample path, we track the contract and

compute the option prices given time-t state belief ξt+1|t, the current dividend Dt,

and the pre-specified strike price K. We compute the Black-Scholes model implied

volatility and delta for each option that is still alive at time t. Because the asset

underlying the option is a dividend-paying stock, we make appropriate adjustments

to the equilibrium price St and use the ex-dividend price in computing the implied

volatility and delta of the options.

We calculate the model-implied delta-hedged gain of a call option over its

lifetime as:

Π (t, t− 11) = C
(1)
t − C

(12)
t−11 −

10∑
n=0

∆c,t−11+n (St−10+n − St−11+n)

−
10∑
n=0

rft−11+n

(
C

(12−n)
t−11+n −∆c,t−11+nSt−11+n

)
,

where C
(12)
t−11 is the value of the option when issued, C

(1)
t the option value one

period (week) before expiration, and ∆c,t−11+n, C
(12−n)
t−11+n, St−11+n, and rft−11+n (n =

0, 1, ..., 10) are, respectively, the option delta, option value, stock price, and the

8Before running Monte Carlo simulations to compute delta-hedged returns, we solve the model
(the SDF and price-dividend ratio) numerically at the weekly frequency by appropriately scaling
relevant parameters in the model. An alternative approach is to develop a continuous-time asset
pricing model with recursive utility and a hidden Markov model. However, (semi)closed-form
solutions are not available for such a model. Moreover, because volatility is instantaneously
observable in the continuous-time setting, it would be infeasible to analyze the impact of learning
about the volatility state on equilibrium prices.
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risk-free rate within the horizon of the delta-hedged gain. The value of the delta-

hedged option at the start of the horizon is ∆c,t−11St−11−C(12)
t−11. The delta-hedged

gain divided by the absolute value of the delta-hedged option portfolio yields the

delta-hedged return.

The model-implied delta-hedged return resembles its empirical counterpart.

First, the delta-hedged return is an excess return derived from a self-financing

strategy. Second, the computation of the delta-hedged gain requires multiple inter-

mediate delta-hedging opportunities within the horizon. Third, the model-implied

delta-hedged return crucially depends on stock and option prices determined in

equilibrium. As such, we can investigate the mechanism of the model by examining

the impact of consumption risks on the pricing kernel and equilibrium asset prices.

2.3.2 Simulation Results

We next discuss the results from our simulations. We perform impulse response

analysis to study the impacts of changing beliefs about the consumption growth

regimes on the SDF, the stock return, the call option return, and the delta-hedged

call option return. First, we assume that consumption growth stays at its long-run

mean implied by the estimated Markov-switching model. Due to Bayesian learning,

beliefs of consumption growth regimes converge to the stationary level. We then

suppose that a negative shock to the expectation of consumption growth occurs in

the fifth period. The agent updates beliefs according to Bayes’ rule, leading to a

decline in the posterior probability of the high mean growth regime and an increase

in the posterior probability of the high volatility regime. The agent’s expectation of

mean consumption growth falls, whereas his expectation of consumption volatility

rises. The top two panels of Figure 2.1 display these results.

Assuming (γ = 60, ψ = 1.5), the other panels in Figure 2.1 present the impulse

responses of the SDF, the stock return, the conditional variance of the stock return,

the implied volatility, the call option return, and the delta-hedged call option

return in response to the negative shock. In case of recursive preferences, the

continuation value falls as a result of the lower conditional mean and the
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Figure 2.1: Impulse Responses: Conditional Mean and Volatility, γ =
60, ψ = 1.5
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This figure plots the impulse response functions when the growth rate of consumption shifts
from its long-run mean to the low mean growth rate. The agent’s belief vector ξt+1|t is updated
according to Bayes’ rule. The risk aversion parameter is set at γ = 60, and the EIS parameter
at ψ = 1.5.

higher conditional volatility of consumption growth. Because the values of

γ and ψ imply a preference for early resolution of uncertainty, the SDF rises

significantly in response to the shock. Moreover, the stock return drops as the

equity value depreciates, while the conditional variance of the stock return rises

due to an enhanced pessimism about the state of the economy. The co-movement

of the SDF and the conditional stock variance suggests that stock return variance

carries a risk premium. This is also evident from the observation that the implied

volatility of the call option increases substantially. The lowest panel in the figure

shows that the call option return falls because the effect of lower equity value

dominates that of higher implied volatility. On the contrary, the delta-hedged call

option gain (return) rises due to the elimination of the impact of the underlying
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stock price movement on the call option price.

The co-movement of the SDF and the delta-hedged call option return in Figure

2.1 implies that the delta-hedged option enables investors to hedge against systematic

risk. Because consumption growth and its conditional mean are negatively related

to the SDF, both factors have positive risk premiums. In contrast, since conditional

consumption volatility is positively related to the SDF, it has a negative risk

premium. These results are consistent with our empirical findings in Section 2.4.3

below. Meanwhile, we can observe that delta-hedged options returns positively

respond to shocks to the conditional mean of consumption growth and negatively

to shocks to the conditional volatility of consumption growth while stocks returns

do in contrast ways.

Figure 2.2: Impulse Responses: Conditional volatility, γ = 60, ψ = 1.5
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This figure plots the impulse response functions when the conditional volatility of consumption
growth rises. The risk aversion parameter is set at γ = 60, and the EIS parameter at ψ = 1.5.

Boguth and Kuehn (2013) find that consumption volatility is important to

37



price stocks. To focus on volatility risk on its own, we run a second impulse

response analysis by assuming that consumption growth and its expectation remain

unchanged as consumption volatility rises. Figure 2.2 shows that the responses of

our analysis variables are largely similar to those in the previous case. The rise in

conditional volatility alone leads to an increase in the SDF. Also similar to before,

both the conditional stock variance and the implied volatility rise in response to

the shock. The option return falls, whereas the delta-hedged return rises. Thus,

the delta-hedged option represents a hedging opportunity against consumption

volatility, and consumption volatility carries a negative risk premium. Moreover, as

displayed in Figure 2.2, delta-hedged options returns are more sensitive to shocks

to consumption volatility than stocks returns.

Figure 2.3: Impulse Responses: Conditional Mean and Volatility, γ =
60, ψ = 0.01
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This figure plots the impulse response functions when the growth rate of consumption shifts
from its long-run mean to the low mean growth rate. The agent’s belief vector ξt+1|t is updated
according to Bayes’ rule. The risk aversion parameter is set at γ = 60, and the EIS parameter
at ψ = 0.01.
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Figure 2.4: Impulse Responses: Conditional Volatility, γ = 60, ψ = 0.01
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This figure plots the impulse response functions when the conditional volatility of consumption
growth rises. The risk aversion parameter is set at γ = 60, and the EIS parameter at ψ = 0.01.

Figures 2.3 and 2.4 plot simulation results for the (γ = 60, ψ = 0.01) case,

in which the agent prefers late resolution of uncertainty. Figure 2.3 shows that

the delta-hedged return and SDF move in the opposite directions in response to a

negative mean consumption growth shock despite both conditional stock variance

and implied volatility rising on impact. Contrary to the (γ = 60, ψ = 1.5) case

and our empirical evidence, the delta-hedged call option has a positive exposure to

systematic risk in that the return on the delta-hedged option performs poorly when

the SDF is high. On the other hand, the stock return increases and co-moves with

the SDF. Thus, the implied risk premiums on the conditional mean and volatility of

consumption, respectively, have opposite signs compared to the (γ = 60, ψ = 1.5)

case. As shown in Figure 2.4, when the conditional volatility of consumption growth

rises on its own, implied volatility falls, resulting in a decline in the delta-hedged

option return. Because of the agent’s preference for late resolution of uncertainty
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and the absence of shocks to the level of consumption, the SDF drops in response to

the volatility shock. Although the delta-hedged option return and the SDF co-move

in the same direction, the implied risk premium on consumption volatility is positive,

opposite to that in the (γ = 60, ψ = 1.5) case and in our empirical evidence. In

Section 2.4.3, our GMM estimation identifies a negative relation between the SDF

and the conditional mean of consumption growth while a positive relation between

the SDF and consumption volatility.

2.4 Empirical Tests

In this section, we use options data to estimate the risk premiums of consump-

tion growth, mean consumption growth, and consumption growth volatility risk.

We first fit a Markov-switching model to obtain estimates of the conditional mean

and volatility of consumption growth. We next sort single-name options into portfo-

lios. We finally use the option portfolios in conjunction with the Markov-switching

model estimates to study the pricing of consumption exposures.

2.4.1 Estimating Consumption Dynamics

Defining total consumption as the sum of non-durable goods consumption

expenditures and service consumption expenditures, we obtain quarterly per capita

real expenditures data on the two total consumption components from the Bureau

of Economic Analysis (BEA). Following Yogo (2006), Lettau et al. (2008), and

Boguth and Kuehn (2013), we start our consumption data sample in the first

quarter of 1952. Conversely, we end the sample in the first quarter of 2018.

We estimate a four-state Markov-switching model on our consumption data.

While maintaining the assumption that the agent has preferences over total con-

sumption, we follow Boguth and Kuehn (2013) in separately using non-durable and

service consumption expenditures in our estimation to improve state identification

and to reduce standard errors. In particular, we assume that both log non-durable

goods consumption growth and the log change in the share of non-durable to total

consumption follow Markov chains. Doing so, the difference between the two con-
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sumption components, log total consumption growth, also follows a Markov chain.

More precisely, we express total consumption Ct as non-durable goods consump-

tion Nt divided by the non-durable consumption share Vt. That is, Ct = Nt/Vt.

Thus, log total consumption growth is log non-durable consumption growth, ∆nt,

minus the log change in the non-durable consumption share, ∆vt:

∆ct+1 = ∆nt+1 −∆vt+1. (2.20)

Given Equation (2.20), we assume that both ∆nt+1 and ∆vt+1 follow Markov

chains:

∆nt+1 = µnt + σnt ε
n
t+1 ∆vt+1 = µvt + σvt ε

v
t+1, (2.21)

where µkt and σkt , with k ∈ {n, v}, are, respectively, the conditional expectation and

standard deviation of log non-durable consumption growth (k = n) or the log change

in the non-durable consumption share (k = v). Next, εkt+1 is a standard normal

residual, with Covt
(
εnt+1, ε

v
t+1

)
= ρnv. The dynamics specified in Equations (2.20)

and (2.21) together with the fact that the information set Ft contains ∆nt and ∆vt

plus their histories also imply a Markov process for total consumption growth, with

dynamics specified in Equation (2.1) and µt = µnt − µvt and σ2
t = (σnt )2 + (σvt )

2 −

2ρnvσ
n
t σ

v
t . Thus, the estimates of µnt , µvt , σ

n
t , σvt , and ρnv allow us to recover the

dynamics of log total consumption growth, which we use to solve the consumption-

based model in Section 2.2.

Table 2.1 presents the estimates of the Markov chains for log non-durable

consumption growth and the log change in the non-durable consumption share. Panel

A shows that expected non-durable consumption growth is positive in the high state

(µnh = 0.58%) and negative in the low state (µnl = −0.03%). State-conditional non-

durable consumption volatilities are σnl = 0.40% and σnh = 0.83%. The estimated

parameters for the non-durable consumption share (shown in Panel B) are µvl =

−0.16% and µvh = 0.00% for the expected drift and σvl = 0.34% and σvh = 0.58%

for the conditional volatilities. The correlation between log changes in the two
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Table 2.1: Markov Model of Consumption Growth

This table reports parameter estimates for the Markov models fitting log non-durable goods
consumption growth, ∆nt+1, and changes in the log non-durable consumption share, ∆vt,

∆nt+1 = µnt + σnt ε
n
t+1 ∆vt+1 = µvt + σvt ε

v
t+1,

where for i ∈ {n, v}, µit denotes the conditional expectation, σit denotes the conditional standard
deviation, and εit+1 is standard normal with Covt

(
εnt+1, ε

v
t+1

)
= ρnv. The conditional first and

second moments of both processes switch jointly with transition matrices P µ and P σ, respectively,
given by

P µ =

[
pllµ 1− phhµ

1− pllµ phhµ

]
P σ =

[
pllσ 1− phhσ

1− pllσ phhσ

]
.

The estimation procedure follows Hamilton (1994). We use quarterly per capita real consumption
expenditures for non-durable goods and services for the years 1952.Q1 to 2018.Q1. t-statistics are
reported in parentheses.

Panel A: Non-durable Consumption (%)

µnl µnh σnl σnh

-0.0269 0.5835 0.4002 0.8255

(-0.57) (21.51) (17.67) (45.73)

Panel B: Non-durable Consumption Share (%)

µvl µvh σvl σvh

-0.1576 0.0000 0.3422 0.5835

(-4.46) (0.00) (17.63) (22.01)

Panel C: Marginal Transition Probabilities

pllµ phhµ pllσ phhσ

0.87 0.95 0.91 0.91

(18.96) (47.59) (28.87) (24.46)

Panel D: Correlation

ρnv

0.8256

(45.73)

variables is ρnv = 0.83. Turning to total consumption growth, its expected
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growth is µl = 0.13% in the low state and µh = 0.58% in the high state, while its

volatility is σl = 0.23% in the low state and σh = 0.50% in the high state.

The two transition probabilities for the mean growth regimes, pllµ and phhµ , are

0.87 and 0.95 respectively. Consistent with Lettau et al. (2008), the high mean state

is thus markedly more persistent than the low mean state. Both consumption growth

volatility states are persistent, with transition probabilities being about 0.91 for both

volatility regimes. Interestingly, these estimates differ a bit from those in Lettau et al.

(2008), who find the volatility states to be even more persistent. Given differences in

the sample and the consumption measure across the two papers, uncertainty after

the financial crisis greatly reduces the persistence of volatility regimes in our analysis.

Figure 2.5 presents the filtered beliefs for the regimes. The upper panel depicts

the belief dynamics for the high mean consumption growth regime, b∆µ,t, and

the lower panel for the high standard deviation regime, b∆σ,t. The grey bars in

the graph indicate economic recession periods defined by the National Bureau

of Economic Research. The figure further suggests that the low volatility regime

becomes more prevalent from 1990 on, as also observed by Kim and Nelson (1999)

and Boguth and Kuehn (2013). Despite that, consumption volatility appears to

have returned to the high regime during both the 2000-2001 dot-com crash and

the 2008-2009 global financial crisis in the post-1990 period. When the economy

is in a recession, the probability of being in the high mean state is low, while

the probability of being in the high volatility state tends to be high in certain

periods. However, their correlation is far from being perfect due to the assumption

of independent switching between mean regimes and volatility regimes. Overall,

the Markov-switching model captures most recessions during our sample period,

with the exceptions of the mild 1969-1970 recession and the 1981-1982 recession

caused by contractionary monetary policy.
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Figure 2.5: Bayesian Beliefs about the Mean and Volatility State
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This figure displays the estimated Bayesian belief processes for being in the high expected growth
rate state (top figure) and high volatility state (bottom figure). The estimation procedure follows
Hamilton (1994). We use quarterly per capita real consumption expenditure for non-durable
goods and services for the years from 1952.Q1 to 2018.Q1. The Markov model is estimated using
both components of consumption. The gray bars indicate economic recession periods provided
by the National Bureau of Economic Research.

2.4.2 Calculation of Delta-Hedged Returns

We obtain call and put options data over the period from January 1996 to

December 2017 from Optionmetrics. The data include the daily closing bid and

ask quotes, the trading volume, the strike price, and the maturity date of each

option. The data further include each option’s delta, calculated by Optionmetrics

using standard market conventions, the closing price of and the dividends paid

out by the stocks underlying the options, and the risk-free rate of return.

We apply standard filters to the options data (see Goyal and Saretto (2009)

and Cao and Han (2013)). First, we exclude an option if the stock underlying the
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option pays out dividends over the option’s remaining time-to-maturity. Second,

we exclude option observations violating well-known arbitrage bounds. More

specifically, we exclude an option observation if the option’s price does not fulfill

S ≥ C ≥ max(0, S −Ke−rT ) (or K ≥ P ≥ max(0, K − S)) where C (or P ) is the

call (or put) option’s price, S the underlying stock’s price, K the strike price, T

the option’s time-to-maturity, and r the risk-free rate of return. Third, we only

retain option observations with positive trading volume, a positive bid quote, a

bid price strictly smaller than the ask price, and a bid-ask midpoint of at least

1/8. Finally, we only keep option observations whose last trade date matches the

record date and whose option price date matches the underlying stock’s price

date.

We use quarterly delta-hedged option returns in our main tests, and monthly

delta-hedged option returns in robustness tests. In either case, we calculate the

return from the start of a calendar quarter or month to its end. In line with Bakshi

and Kapadia (2003) and Cao and Han (2013), we define the delta-hedged option

return as the delta-hedged option gain over the period scaled by the absolute value

of the delta-hedged option at the start of the period, where the delta-hedged option

is a self-financing portfolio consisting of a long (call or put) option, a hedging

position in the underlying stock, and a money market investment. The value of

a perfectly delta-hedged option would be insensitive to changes in the value of

the underlying stock. Assuming that the delta-hedge is re-balanced at the end of

every trading day, we calculate the delta-hedged call option gain over the quarter

or month starting at time t− 1 and ending at time t, Π (t− 1, t), as:

Π (t− 1, t) = Ct − Ct−1 −
N−1∑
n=0

∆c,tn [S (tn+1)− S (tn)]

−
N−1∑
n=0

anrtn
365

[C (tn)−∆c,tnS (tn)] , (2.22)

where Ct is the call option price at time t, ∆c,tn the option delta, rtn the annualized

risk-free rate of return, S(tn) the underlying stock price at the end of trading day

tn, where tn ∈ {t0, t1, . . . , tN−1} are the N trading days within the period from
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time t− 1 to t, and an is the number of calendar days between tn and tn+1. We

use an analogous equation for the delta-hedged put option gain, with, however,

put option price and delta replacing call option price and delta, respectively. We

finally calculate the value of the delta-hedged call option at time t − 1 as the

absolute value of Ct−1 −∆c,t−1St−1 and the value of a delta-hedged put option as

the absolute value of Pt−1 −∆p,t−1St−1, where Pt−1 is the value of the put option

and ∆p,t−1 the put option delta.

2.4.3 The Pricing of Consumption Risks

In this section, we study how consumption growth, expected consumption

growth, and consumption volatility exposures price the cross-section of option

returns using various test assets. We start our investigation by looking at the

cross-section of quarterly returns on idiosyncratic volatility sorted portfolios of

delta-hedged call or put options or straddles. We also consider the realized and

implied variance of these portfolios over the same return horizon. As robustness

tests, we next analyze the monthly returns of the idiosyncratic volatility sorted

portfolios as well as the quarterly returns of moneyness sorted portfolios of delta-

hedged call or put options or straddles. 9

A. The Quarterly Returns of Idiosyncratic-Volatility-Sorted Option

Portfolios

We first test whether consumption exposures explain the negative relation between

delta-hedged stock-option returns and idiosyncratic stock volatility discovered in

Cao and Han (2013). Idiosyncratic volatility is the standard deviation of the residual

with respect to the Fama-French three-factor model estimated using daily stock

returns over the previous quarter. To mitigate the influence of time-to-maturity, we

keep options with a time-to-maturity between 106 to 176 days so that the option

expires after the end of the following quarter and the time-to-maturity range is

not too wide. We next only keep options with a moneyness (defined as stock price

9The empirical results hardly change before or after the financial crisis. To maintain the
brevity of this paper, we do not report the results before or after the financial crisis periods.
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divided by strike price) from 0.8 to 1.2 and choose the call (or put) option that is

closest to ATM. If two or more options have the same moneyness, we choose the

option with the shortest time-to-maturity. The selection results in 24,126 quarterly

observations for call options and 12,355 quarterly observations for put options. Table

2.2 shows summary statistics for the quarterly option sample. Panel A suggests that

the average delta-hedged call option return is –1.82% per quarter, with a variation

of 9.80%. The average call option has a time-to-maturity of 137 days and a daily

idiosyncratic volatility of 2.79%. Panel B suggests that the average delta-hedged

put option return is –1.38% per quarter, with a variation of 5.22%. The average

put option has a time-to-maturity of 133 days and a daily idiosyncratic volatility of

2.59%.

In addition to delta-hedged call and put option returns, we also calculate straddle

returns. To do so, we match call and put options written on the same underlying

stock and with the same strike price and time-to-maturity, applying the same

selection criteria as for call or put options. We then compute the straddle return as

the arithmetic average of the delta-hedged call and put option return. The straddle

sample includes 6,613 quarterly observations and is thus smaller than both the call

and put option sample simply because we require a matching call-and-put pair to

form a straddle. Panel C of Table 2.2 presents summary statistics for the straddle

sample, which align with the summary statistics for the call and put option samples

reported in Panels A and B, respectively.
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Table 2.2: Summary Statistics for the Options Sample

This table reports descriptive statistics on the delta-hedged option returns, days-to-maturity, and idiosyncratic underlying-stock volatility of option contracts sampled at
a quarterly frequency. We exclude the following option observations: the stock underlying the option pays out cash over the options’ remaining time-to-maturity; option
price violates arbitrage bounds; reported trading volume is 0; option bid quote is 0 or midpoint of bid and ask quotes is less than 1/8. For each optionable stock, we keep
that call or put closest to being at-the-money and having the shortest time-to-maturity among others. Then we only keep calls and puts with moneyness within the range
from 0.8 to 1.2 and days-to-maturity within the range from 106 to 176 days. Delta-hedged returns are calculated through option delta-hedged gains (given by equation
(2.22)) scaled by ∆S − C for calls and P −∆S for puts, where ∆ is the Black-Scholes option delta, S is the underlying stock price, and C (P ) is the price of call (put)
option at the beginning of a quarter. Straddle returns are computed as the average returns of calls and puts which are written on the same stock and have the same strike
price and time-to-maturity. We select straddles with moneyness closest to 1 and within the range from 0.8 to 1.2. Then we only keep straddles with days-to-maturity
between 106 and 176 days. Days-to-maturity is the number of calendar days until option expiration. Idiosyncratic volatility is the standard deviation of the residuals of
Fama-French 3-factors model estimated using the daily stock returns over the previous quarter. Calls, puts, and straddles are reported in Panels A, B, and C, respectively.
The option sample period is from January 1996 to December 2017.

N Mean Median SD 5th 10th 25th 75th 90th 95th

Panel A: Call Options

Delta-hedged returns (%) 24,126 -1.82 -2.00 9.80 -15.66 -11.36 -6.09 2.06 7.64 12.33

Days-to-maturity 24,126 137 140 26 108 108 112 169 172 173

Idiosyncratic volatility (%) 24,126 2.79 2.41 1.83 1.01 1.24 1.70 3.43 4.73 5.76

Panel B: Put Options

Delta-hedged returns (%) 12,355 -1.38 -1.79 5.22 -9.41 -7.47 -4.56 1.19 5.36 8.39

Days-to-maturity 12,355 133 114 26 107 108 110 168 172 173
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Table 2.2 continued

Idiosyncratic volatility (%) 12,355 2.59 2.27 1.47 0.98 1.18 1.61 3.18 4.33 5.26

Panel C: Straddles

Delta-hedged returns (%) 6,613 -1.73 -2.10 6.80 -10.85 -8.15 -4.90 1.05 5.22 18.08

Days-to-maturity 6,613 131 113 25 107 108 110 144 171 173

Idiosyncratic volatility (%) 6,613 2.63 2.28 1.55 0.99 1.19 1.62 3.22 4.45 5.36
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Table 2.3: Idiosyncratic Risk Sorted Option Portfolios

This table reports characteristics of equally-weighted option portfolios sorted on idiosyncratic underlying-stock volatility (IVOL). Portfolios are rebalanced every quarter.
The average return, standard deviation (SD), skewness, and kurtosis of each portfolio are reported. Column “High–Low” shows the average return of the long-short
strategy which buys the highest IVOL portfolio and sells the lowest IVOL portfolio. Full sample loadings on consumption growth (∆ct), the change in the perceived
conditional mean of consumption growth (∆µ̂t), and the change in the perceived consumption growth volatility (∆σ̂t) are reported for each call and put option portfolio.
Panels A, B, and C present portfolios formed from call options, put options, and straddles, respectively. Newey-West (Newey and West (1987)) adjusted t-statistics are
reported in parentheses. The sample period is from January 1996 to December 2017.

Portfolios 1 (Low) 2 3 4 5 6 7 8 9 10 (High) High–Low

Panel A: Call Options

Mean Return (%) -0.80 -0.75 -0.96 -0.78 -1.46 -1.82 -1.20 -1.97 -2.05 -3.77 -2.97

(-2.10) (-1.95) (-2.38) (-1.59) (-3.31) (-4.21) (-2.70) (-3.32) (-3.58) (-6.21) (-6.91)

SD (%) 4.61 5.50 6.18 6.80 7.41 7.62 9.41 9.22 9.98 13.75

Skewness 0.46 0.45 0.41 0.51 0.33 0.27 0.43 0.03 0.12 0.10

Kurtosis 6.08 5.21 5.11 5.45 5.54 4.86 5.63 4.89 4.44 5.63

β∆c 0.000 -0.006 -0.003 0.004 -0.011 -0.010 -0.017 -0.016 -0.021 -0.029

β∆µ̂ -0.032 -0.008 -0.041 -0.052 0.023 -0.059 0.004 -0.049 -0.014 -0.009

β∆σ̂ 0.164 0.138 0.126 0.100 0.139 0.205 0.100 0.187 0.200 0.244

Panel B: Put Options
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Table 2.3 continued

Mean Return (%) -0.44 -0.61 -1.05 -0.90 -0.86 -1.06 -1.29 -1.21 -1.70 -2.38 -1.95

(-1.19) (-1.92) (-3.47) (-2.86) (-2.61) (-2.77) (-3.87) (-3.06) (-4.37) (-6.39) (-7.32)

SD (%) 3.26 3.44 3.74 3.90 4.12 4.43 4.58 4.83 5.06 5.82

Skewness 0.15 0.14 0.21 0.07 0.13 0.15 0.20 0.14 0.25 0.29

Kurtosis 3.44 3.19 3.25 2.88 3.01 2.80 2.91 2.68 2.81 2.68

β∆c 0.000 -0.003 -0.011 -0.008 -0.007 0.000 -0.014 -0.005 -0.020 -0.010

β∆µ̂ -0.004 0.018 0.031 0.011 0.033 -0.049 0.008 -0.027 -0.039 -0.036

β∆σ̂ 0.110 0.023 0.047 0.017 0.043 0.057 -0.034 0.089 0.057 0.119

Panel C: Straddles

Mean Return (%) -0.51 -0.70 -1.49 -0.67 -0.78 -1.89 -1.77 -1.30 -2.01 -3.17 -2.66

(-1.41) (-1.81) (-5.23) (-1.63) (-1.61) (-5.50) (-4.25) (-1.93) (-3.58) (-4.81) (-5.74)

SD (%) 2.80 3.45 3.00 4.32 4.47 4.63 4.62 5.64 5.95 9.52

Skewness 0.17 0.22 0.16 0.28 0.21 0.03 0.05 0.01 0.04 0.02

Kurtosis 2.28 2.63 2.34 2.53 2.40 2.57 2.59 2.52 2.49 2.70

51



At the end of each quarter t− 1 in our sample period, we sort the delta-hedged

call options (alternatively: delta-hedged put options or straddles) into ten decile

portfolios according to the idiosyncratic volatility of the underlying stock measured

until the end of that quarter. Portfolio 1 contains options or straddles written on the

lowest idiosyncratic volatility stocks, while portfolio 10 contains those written on

the highest. We construct equally-weighted portfolios and hold them over quarter

t. We also create a spread portfolio long on portfolio 10 and short on portfolio 1

(“H–L”). Table 2.3 reports the average option and straddle returns for each portfolio.

Supporting Cao and Han (2013), the delta-hedged option returns are all negative

and become monotonically more negative with an increase in idiosyncratic volatility.

In accordance, the mean return of the H–L IVOL portfolio is –2.97% per quarter for

call options (t=–6.91), –1.95% per quarter for put options (t=–7.32), and –2.66% for

straddles (t=–5.74). Interestingly, the standard deviation of portfolio returns also

increases in idiosyncratic volatility. The skewness of all portfolio returns is slightly

above zero, while their kurtosis is close to three. Thus, the portfolio returns are

close to normally distributed, alleviating the concern that non-normality in them

could distort our statistical inferences.10

Motivated by the long-run risks model in Section 2.2 (see Equation (2.16)),

we next run time-series regressions of option portfolio returns on consumption

growth, ∆ct, the change in the conditional mean of consumption growth, ∆µ̂t,

and the change in consumption volatility, ∆σ̂t:

Ri
t = αit + βi∆c,t∆ct + βi∆µ,t∆µ̂t + βi∆σ,t∆σ̂t + εit, (2.23)

where Ri
t is the delta-hedged quarterly return of option portfolio i over period t,

αit is a constant, βi∆c,t, β
i
∆µ,t, and βi∆σ,t are consumption exposures, and εit is the

residual. We obtain the conditional mean and volatility of consumption growth

(µ̂t and σ̂t, respectively) from the estimates of the Markov switching model in

10Consistent with the mild skewness and excess kurtosis of the portfolio returns, we have found
that bootstrap inference levels used in either our portfolio sorts or FM regressions are similar to
asymptotic inference levels. For the sake of brevity, we do not report the bootstrap inference levels
in the paper.
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Section 2.4.1. We estimate regression model (2.23) over rolling windows spanning

ten years of quarterly data, expanding the rolling windows on a quarterly basis.

The first rolling window stretches from the second quarter of 1996 to the first

quarter of 2006.

Figure 2.6: Betas of Idiosyncratic Risk Sorted Option Portfolios
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This graph displays consumption beta loadings estimated using the full sample for each option
portfolio sorted on the IVOL of the underlying stock. Call option betas are plotted with the red
line and put option betas are plotted with the blue dashed line. The upper left graph shows
consumption growth beta, β̂ic, for each portfolio. Consumption mean beta (β̂iµ) and volatility

beta (β̂iσ) for each portfolio are shown in the upper right and lower left graphs, respectively. The
sample period is from January 1996 to December 2017.

Figure 2.6 and Table 2.3 present the full-sample exposures of the call and put

option portfolios. Both types of portfolios produce negative consumption growth

exposures, with the exposures becoming more negative over the IVOL portfolios.

Conversely, the same portfolios produce positive consumption volatility exposures,

with those exposures becoming more positive over the IVOL portfolios. There is

no clear trend in the mean consumption exposures over the portfolios. That the
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high IVOL portfolios are more negatively exposed to consumption growth and more

positively to consumption volatility suggests that they are better suited to hedge

consumption risks than the low IVOL portfolios.

To test whether the three consumption exposures are priced, we next run

FM regressions of the quarterly returns of the option portfolios on subsets of the

exposures. In our most comprehensive specification, we regress the quarterly return

of option portfolio i over quarter t+ 1, Ri
t+1, on the consumption growth exposure,

β̂i∆c,t, the mean consumption growth exposure, β̂i∆µ,t, and the consumption volatility

exposure, β̂i∆σ,t, of the portfolio:

Ri
t+1 = ϕ0,t+1 + λ∆c,t+1β̂

i
∆c,t + λ∆µ,t+1β̂

i
∆µ,t + λ∆σ,t+1β̂

i
∆σ,t + ηit+1, (2.24)

where ϕ0,t+1 is a constant and λ∆c,t+1, λ∆µ,t+1, and λ∆σ,t+1 are the risk premiums.

The exposure estimates, β̂i∆c,t, β̂
i
∆µ,t, and β̂i∆σ,t, are obtained from the rolling-window

time-series regressions.

Table 2.4 presents the results from the FM regressions, with Panels A, B, and

C focusing on the results from call options, put options, and straddles, respectively.

Only explicitly discussing the call option results in Panel A, model specification I

tests the standard CCAPM. The risk premium estimate, λ∆c, is significant at 0.57

(t=4.46) and the average cross-sectional R2 is around 30%. Prior studies (see, e.g.,

Mankiw and Shapiro (1986), Lettau and Ludvigson (2001) and Boguth and Kuehn

(2013)) show that quarterly contemporaneous consumption growth exposures do

not explain stock returns. Different from prior studies using stock returns, we

find that consumption growth exposures significantly explain delta-hedged option

returns. Specification II adds the mean consumption growth exposure to the

consumption growth exposure. Doing so, the λ∆c estimate is hardly affected, the

mean consumption growth estimate, λ∆µ, is 0.04 and significant (t=2.51), and

the average R2 increases to around 36%. Conversely, Specification III adds the

consumption volatility exposure to the consumption growth exposure. Doing so,

the λ∆c estimate is again hardly affected, the λ∆σ estimate is –0.08 and significant

(t=–3.34), and the average R2 increases to around 44%. The negative λ∆σ estimate,
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which is similar to the estimate in Boguth and Kuehn (2013), identifies a channel

for macroeconomic volatility to be priced in options.11

Table 2.4: Fama-MacBeth Regressions with Idiosyncratic Risk Sorted
Option Portfolios

This table reports quarterly risk premium estimates for the consumption betas. The consumption
betas are estimated from ten-year rolling window time-series regressions (see equation (2.23)).
In the cross-section, we regress quarterly future option returns over quarter t+ 1 on estimated
beta loadings (see equation (2.24)). We report quarterly Fama-MacBeth regression results in
Panel A, B, and C for call options, put options, and straddles, respectively. Newey-West (Newey
and West (1987)) adjusted t-statistics using four lags are shown in parentheses. The sample
period is from January 1996 to December 2017.

Intercept βi∆c,t βi∆µ,t βi∆σ,t Avg.R2

Panel A: Call Options

I -0.0018 0.5699 0.3011

(-0.34) (4.46)

II -0.0012 0.5936 0.0400 0.3633

(-0.21) (4.47) (2.51)

III 0.0037 0.5480 -0.0829 0.4427

(0.80) (4.37) (-3.34)

IV 0.0035 0.5658 0.0406 -0.0427 0.5085

(0.70) (4.38) (2.19) (-3.09)

Panel B: Put Options

I -0.0079 0.3164 0.1933

(-2.39) (3.89)

II -0.0095 0.2625 0.0166 0.2742

(-2.45) (3.07) (1.05)

III -0.0101 0.2881 -0.0853 0.3608

(-2.41) (2.80) (-4.96)

IV -0.0112 0.2423 -0.0025 -0.0806 0.4354

(-2.77) (2.63) (-0.13) (-4.63)

11In a production-based asset pricing model, Liu and Zhang (2018) also highlight the connection
between macroeconomic risk and the variance risk premium.

55



Table 2.4 continued.

Panel C: Straddles

I 0.0011 0.6573 0.2270

(0.24) (4.67)

II -0.0004 0.6632 0.0792 0.3533

(-0.11) (4.36) (2.54)

III 0.0009 0.6429 -0.0418 0.3385

(0.19) (4.22) (-3.10)

IV -0.0030 0.6068 0.0847 -0.0395 0.4629

(-0.68) (3.75) (2.63) (-2.74)

Specification IV presents the full three-factor model. The jointly estimated

risk premiums λ∆c, λ∆µ, and λ∆σ are, respectively, 0.57 (t=4.38), 0.04 (t=2.19),

and –0.04 (t=–3.09), indicating that all consumption exposures have independent

significant explanatory power. The signs of the risk premiums are consistent with

the agent preferring early resolution of uncertainty. Table 2.3 reveals substantial

cross-sectional variation in the exposures, generating quarterly risk premium spreads

of 1.86%, 0.33%, and 0.62% for consumption growth, mean consumption growth,

and consumption volatility, respectively. The three spreads add up to 2.81%, close to

the H–L spread return of 2.97% shown in Table 2.3. The average exposures over the

portfolios imply average risk premiums of –0.62%, –0.10%, and –0.68% per quarter,

respectively. Adding these up, the combined risk premium is –1.40% per quarter,

almost identical to the pooled mean portfolio return of –1.56% per quarter.

Since delta-hedged option portfolios are zero-cost portfolios, we further test

whether the intercepts are zero. Interestingly, we cannot reject that hypothesis, nei-

ther for the comprehensive model in specification IV nor for the less comprehensive

models in specifications I, II, and III.

Panels B and C suggest that the results obtained from put options and straddles

are similar to those obtained from call options, with the following two exceptions.

First, the put option portfolios do not produce a significant risk premium for
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expected consumption growth, regardless of the presence of consumption volatility

(see Panel B). Second, the same portfolios also fail to produce insignificant intercepts,

with their t-statistics ranging from –2.77 to –2.39 (again see Panel B).

Equations (2.10) and (2.15) in Section 2.2 suggest that the log-linearized SDF

is approximately affine in consumption growth and the changes in its first two

moments in our long-run risks model. As an alternative to running FM regressions,

we thus now use two-stage GMM12 to explicitly test the Euler equation of our

model. The second stage uses the optimal weighting matrix. The full-model

moment condition can be written as:

E[(1− b∆c∆ct+1 − b∆µ∆µ̂t+1 − b∆σ∆σ̂t+1)Ri
t+1] = 0, (2.25)

where b∆c, b∆µ, and b∆σ are the SDF loadings. The GMM estimation of the Euler

equation can generate useful results for elucidating the relation between the SDF

and the consumption risk factors.

Table 2.5 presents the model estimates (both SDF loadings and implied risk

premiums λ) and test statistics, with Panels A, B, and C focusing on those from the

call options, put options, and straddles, respectively. Standard errors are Newey-West

(1987) adjusted with four lags. Again only explicitly discussing the call option results in

Panel A, we find that, consistent with the FM regression results, the risk premiums for

consumption growth and consumption volatility are significantly positive and negative,

respectively. More specifically, the full model produces risk premium estimates for

consumption growth, mean consumption growth, and consumption volatility of 0.64,

0.03, and –0.05, respectively, which are all close to the FM regression estimates in

Panel A of Table 2.4. It further produces a mean absolute error (MAE) of 0.27% per

quarter and an R2 of over 86%, and the J-test of the over-identifying restrictions

never rejects it (p=0.50). Turning to the put option and straddle results in Panels

B and C, respectively, we find them to align with those from the call options, with

the important exception that in their cases the risk premium of mean consumption

growth tends to be significantly positive.

12Iterative GMM yields results virtually identical to those reported.
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Table 2.5: Asset Pricing Tests with Idiosyncratic Risk Sorted Option
Portfolios

This table reports GMM estimates of the moment conditions in equation (2.25), showing both
the b estimates as well as the implied risk premia (λ). MAE and RMSE refer to the mean
absolute pricing error and the root mean squared error, respectively. Panel A presents the results
using ten quarterly call option portfolios, Panel B using ten quarterly put option portfolios, and
Panel C using ten quarterly straddle portfolios. Newey-West (Newey and West (1987)) adjusted
t-statistics using four lags are reported in parentheses and p-values for J-statistics are shown
in parentheses below the associated J-statistics. The sample period is from January 1996 to
December 2017.

∆c ∆µ ∆σ MAE RMSE J R2

Panel A: Call Options

b 8.3689 0.0040 0.0045 4.5204 0.7338

(2.97) (0.87)

λ 1.0801

(2.97)

b 6.7396 16.9193 0.0034 0.0041 4.9864 0.7811

(1.93) (0.98) (0.76)

λ 1.0252 0.1372

(2.49) (1.96)

b 4.9862 -27.3480 0.0027 0.0032 6.3970 0.8632

(2.22) (-2.51) (0.60)

λ 0.6599 -0.0484

(2.26) (-2.62)

b 5.0306 -2.5268 -28.9577 0.0027 0.0032 6.3069 0.8638

(2.14) (-0.38) (-2.58) (0.50)

λ 0.6434 0.0346 -0.0511

(2.05) (0.91) (-2.69)
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Table 2.5 continued.

Panel B: Put Options

b 8.6057 0.0041 0.0049 7.1406 0.1396

(2.76) (0.62)

λ 1.1107

(2.76)

b 7.7899 8.3335 0.0042 0.0048 7.6869 0.1650

(2.16) (0.58) (0.46)

λ 1.0819 0.1086

(2.62) (2.00)

b 6.4881 -39.9611 0.0029 0.0034 8.0227 0.6012

(3.63) (-2.49) (0.43)

λ 0.8613 -0.0702

(3.62) (-2.56)

b 6.5837 -1.2344 -40.4442 0.0029 0.0033 7.9825 0.6017

(3.32) (-0.18) (-2.50) (0.33)

λ 0.8626 0.0544 -0.0711

(3.53) (1.95) (-2.57)
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Table 2.5 continued.

Panel C: Straddles

b 7.5161 0.0066 0.0084 5.7981 -0.1539

(2.80) (0.76)

λ 0.9701

(2.80)

b 4.1908 32.3586 0.0033 0.0045 2.9889 0.6676

(2.11) (1.86) (0.94)

λ 0.8381 0.1825

(2.90) (2.34)

b 4.9834 -45.9753 0.0045 0.0055 11.8537 0.4941

(3.98) (-2.30) (0.16)

λ 0.6707 -0.0793

(3.93) (-2.35)

b 3.7641 23.6245 -24.0243 0.0032 0.0036 3.6863 0.7847

(3.23) (1.70) (-1.42) (0.82)

λ 0.7172 0.1394 -0.0418

(3.81) (2.27) (-1.47)

Overall, our evidence in this section suggests that consumption risks can explain

the negative relation between idiosyncratic stock volatility and the cross-section of

delta-hedged option returns discovered by Cao and Han (2013). While these authors

attribute the relation to market makers charging a premium for options that are

difficult to delta hedge, showing that the relation is weakened after controlling for

such difficulties, the question remains why investors are content to pay the high

premiums. We show that investors are content to do so because options written on

high IVOL stocks pay out more in adverse economic conditions, as evidenced by large

negative consumption growth exposures and large positive consumption volatility

exposures. Thus, these options are better hedging tools.
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B. The Variance Risk Premiums of Idiosyncratic Volatility Sorted

Portfolios

Section A. suggests that the mean returns of delta-hedged call option, put option,

and straddle portfolios decrease with idiosyncratic stock volatility partially because

options written on high IVOL stocks have higher (i.e., more positive) consumption

volatility exposures than options written on low IVOL stocks. In accordance, Bakshi

and Kapadia (2003) show that mean delta-hedged returns directly measure the

underlying stock’s variance risk premium. An alternative to estimate the variance

risk premium is to calculate the difference between a stock’s realized variance over

quarter t (RV) and its implied variance paid for the options at the end of the previous

quarter t− 1 (IV). To see whether that alternative variance risk premium estimate

also supports our conclusions, Table 2.6 presents the time-series average of the simple

cross-sectional average of the difference between RV and IV for the idiosyncratic

volatility sorted portfolios formed from call options (Panel A) and put options (Panel

B).

Focusing on the call option results in Panel A, the table suggests that the implied

variances of options are indeed increasing in the IVOL of the underlying stocks, from

0.10 for portfolio 1 to 0.74 for portfolio 10. The spread across the portfolios, 0.64, is

statistically significant. The literature usually consider an option’s implied variance

as a standardized measure for the option’s price, and it is natural that options on

higher-volatility underlying stocks are more expensive. Higher IVOL stocks, however,

do not only have a higher IV, but they also continue to be more volatile over the

next quarter, as shown by their mean RV. To be precise, the difference in mean RV

between portfolio 10 and portfolio 1 is a significant 0.60. Panel B shows that the

results for put options are similar.
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Table 2.6: Relation between Variance and Consumption

This table presents the average realized volatility (RV), average implied volatility (IV), and correlations between the difference in RV and IV (RVIV) with consumption
growth (CG), the change in mean consumption growth (CM), and the change in consumption volatility (CV). Panel A presents call option results and Panel B put option
results. P -values associated with the correlations are shown in parentheses. The sample period is from January 1996 to December 2017.

Portfolios 1 (Low) 2 3 4 5 6 7 8 9 10 (High) High–Low

Panel A: Call Options

IV 0.1005 0.1464 0.1870 0.2267 0.2778 0.3239 0.3814 0.4417 0.5296 0.7392 0.6387

(0.00)

RV 0.1068 0.1576 0.1950 0.2466 0.2876 0.3183 0.3947 0.4522 0.5378 0.7051 0.5983

(0.00)

ρRV IV,CG -0.14 -0.14 -0.09 -0.03 -0.14 -0.20 -0.24 -0.17 -0.23 -0.28 -0.29

(0.18) (0.19) (0.43) (0.77) (0.19) (0.06) (0.02) (0.12) (0.03) (0.01) (0.01)

ρRV IV,CM 0.01 -0.01 -0.06 -0.05 -0.03 -0.12 -0.12 -0.10 -0.09 -0.06 -0.07

(0.89) (0.96) (0.60) (0.63) (0.75) (0.27) (0.25) (0.36) (0.42) (0.59) (0.51)

ρRV IV,CV 0.09 0.09 0.10 0.01 0.09 0.12 0.04 0.07 0.07 0.08 0.07

(0.38) (0.38) (0.36) (0.92) (0.43) (0.28) (0.69) (0.50) (0.51) (0.46) (0.53)
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Table 2.6 continued

Panel B: Put Options

IV 0.1076 0.1489 0.1918 0.2340 0.2693 0.3148 0.3642 0.4356 0.5089 0.7345 0.6269

(0.00)

RV 0.1056 0.1513 0.1829 0.2320 0.2738 0.3184 0.3537 0.4356 0.4839 0.6734 0.5678

(0.00)

ρRV IV,CG -0.15 -0.10 -0.22 -0.13 -0.14 -0.12 -0.19 -0.19 -0.28 -0.20 -0.19

(0.17) (0.34) (0.04) (0.24) (0.18) (0.29) (0.09) (0.08) (0.01) (0.07) (0.08)

ρRV IV,CM -0.03 -0.03 -0.06 -0.08 -0.05 -0.10 -0.09 -0.11 -0.13 -0.16 -0.18

(0.78) (0.76) (0.58) (0.44) (0.64) (0.38) (0.42) (0.30) (0.23) (0.15) (0.09)

ρRV IV,CV 0.13 0.05 0.07 0.01 0.06 0.07 -0.10 0.06 -0.04 0.08 0.06

(0.23) (0.64) (0.51) (0.93) (0.57) (0.50) (0.34) (0.60) (0.73) (0.45) (0.59)
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We next calculate the time-series correlation between the difference in RV and

IV and contemporaneous consumption growth at the portfolio level. We find those

correlations to be consistently negative. Interpreting the difference in RV and IV

as the payoff from a volatility hedging strategy, we can thus conclude that, as

consumption growth decreases, volatility hedging strategies based on all portfolios

observe positive payoffs. Interestingly, however, we find a more negative correlation

for higher IVOL stocks, with the H–L spread portfolio having a correlation of –0.29

(p=0.01). Even after accounting for the higher IV paid for higher IVOL options,

hedging strategies based on high IVOL stocks thus pay off more than those based

on low IVOL stocks in low consumption growth states, explaining why options

on high IVOL stocks offer a better hedge against such states than those on low

IVOL stocks. As before, Panel B reports similar results for put options.

C. Robustness Test: Monthly Returns of Idiosyncratic-Volatility Sorted

Option Portfolios

We next establish that our main conclusions are not sensitive to our choice of

option maturity and return frequency. We do so as follows. At the end of every

month t − 1 in our sample period, we restrict our attention to options with a

time-to-maturity between 43 to 55 days and choose the option that is closest to

ATM. We then delta-hedge the options. We sort the delta-hedged call options,

put options, and straddles into ten decile portfolios according to the idiosyncratic

volatility of the underlying stock. We equally-weight the ten portfolios and hold

them over month t.13

Table 2.7 shows the results from using the monthly option portfolios in the FM

regressions. The estimation identifies the risk premiums of consumption growth,

mean consumption growth, and consumption volatility (see Equation (2.24)). Panels

A, B, and C focus on the results obtained from call options, put options, and

straddles, respectively. We follow Boguth and Kuehn (2013) and obtain the results

from estimating time-series regression (2.23) on quarterly data over the prior ten

13We present summary statistics for the monthly-rebalanced portfolios in Tables A2 and A3 in
the Appendix.
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years, using the exposures from the quarterly regression run over the window coming

closest to but not exceeding the FM regression month. Focusing on the call option

results in Panel A, the estimated monthly risk premiums λ∆c, λ∆µ, and λ∆σ are,

respectively, 0.25 (t=4.63), 0.01 (t=2.37), and –0.02 (t=–5.81), indicating that all

consumption exposures have independent significant explanatory power. The three

monthly risk premiums translate into quarterly risk premiums of 0.75, 0.03, and

–0.06, in line with our quarterly estimates shown earlier. Overall, Table 2.7 suggests

that the estimates, statistical significance, and the model fit of the monthly portfolios

are all similar to their quarterly counterparts in Table 2.4. In particular, with only

one exception, the risk premiums for consumption growth and mean consumption

growth are again positive and significant, while those for consumption volatility are

again negative and significant.

Table 2.7: Fama-MacBeth Regressions with Monthly Idiosyncratic Risk
Sorted Option Portfolios

This table reports monthly risk premium estimates for the consumption betas. The consumption
betas are estimated from ten-year rolling window time-series regressions (see equation (2.23)).
In the cross-section, we regress monthly future option returns over month t+ 1 on estimated
beta loadings (see equation (2.24)). We report monthly Fama-MacBeth regression results in
Panel A, B, and C for call options, put options, and straddles, respectively. Newey-West (Newey
and West (1987)) adjusted t-statistics using twelve lags are shown in parentheses. The sample
period is from January 1996 to December 2017.

Intercept βi∆c,t βi∆µ,t βi∆σ,t Avg.R2

Panel A: Call Options

I 0.0008 0.3068 0.3458

(-0.76) (6.27)

II 0.0007 0.2885 0.0130 0.4090

(0.38) (6.58) (2.83)

III 0.0036 0.2694 -0.0200 0.4832

(2.39) (4.59) (-4.92)

IV 0.0033 0.2543 0.0110 -0.0216 0.5479

(2.24) (4.63) (2.37) (-5.81)
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Table 2.7 continued.

Panel B: Put Options

I -0.0031 0.2634 0.2048

(-1.37) (3.39)

II -0.0045 0.1948 0.0144 0.3092

(-1.52) (2.14) (1.39)

III -0.0043 0.2721 -0.0758 0.4481

(-2.02) (6.33) (-6.30)

IV -0.0053 0.2116 -0.0016 -0.0728 0.5446

(-2.51) (4.16) (-0.14) (-5.98)

Panel C: Straddles

I 0.0029 0.3991 0.2572

(1.36) (5.34)

II 0.0026 0.4075 0.0497 0.3827

(1.29) (5.27) (5.98)

III 0.0046 0.4169 -0.0201 0.3464

(2.18) (5.35) (-6.86)

IV 0.0039 0.4159 0.0525 -0.0195 0.4685

(1.93) (5.06) (6.28) (-7.52)
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Table 2.8: Asset Pricing Tests with Monthly Idiosyncratic Risk Sorted
Option Portfolios

This table reports GMM estimates of the moment conditions in equation (2.25), showing both
the b estimates as well as the implied risk premia (λ). MAE and RMSE refer to the mean
absolute pricing error and the root mean squared error, respectively. Panel A presents the results
using ten monthly call option portfolios, Panel B using ten monthly put option portfolios, and
Panel C using ten monthly straddle portfolios. Newey-West (Newey and West (1987)) adjusted
t-statistics using twelve lags are reported in parentheses and p-values for J-statistics are shown
in parentheses below the associated J-statistics. The sample period is from January 1996 to
December 2017.

∆c ∆µ ∆σ MAE RMSE J R2

Panel A: Call Options

b 8.9548 0.0068 0.0079 6.9811 0.7211

(3.45) (0.64)

λ 1.1557

(3.45)

b 9.6201 -7.8005 0.0067 0.0079 5.9017 0.7238

(2.20) (-0.64) (0.66)

λ 1.1700 0.0537

(2.44) (1.64)

b 6.7593 -28.0413 0.0048 0.0062 7.3419 0.8265

(2.52) (-1.74) (0.50)

λ 0.8892 -0.0506

(2.53) (-1.84)

b 5.2038 15.1031 -31.4505 0.0047 0.0061 9.4077 0.8348

(2.00) (1.26) (-1.79) (0.22)

λ 0.8292 0.1146 -0.0551

(2.70) (2.41) (-1.86)
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Table 2.8 continued.

Panel B: Put Options

b 11.6732 0.0088 0.0108 11.0693 0.3186

(3.34) (0.27)

λ 1.5066

(3.34)

b 13.6556 -15.2714 0.0091 0.0106 11.3080 0.3354

(3.29) (-0.78) (0.18)

λ 1.6222 0.0575

(3.27) (0.71)

b 7.8617 -44.9914 0.0076 0.0092 8.3814 0.4995

(3.06) (-1.72) (0.40)

λ 1.0416 -0.0794

(3.05) (-1.79)

b 8.3582 -3.3472 -44.2580 0.0076 0.0092 8.2683 0.5002

(2.96) (-0.25) (-1.63) (0.31)

λ 1.0745 0.0613 -0.0785

(3.02) (1.08) (-1.70)
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Table 2.8 continued.

Panel C: Straddles

b 9.4370 0.0104 0.0143 10.6698 -0.0335

(2.84) (0.30)

λ 1.2180

(2.84)

b 10.6360 -31.4740 0.0099 0.0138 8.6748 0.0320

(2.48) (-1.41) (0.37)

λ 1.0836 -0.0424

(2.44) (-0.54)

b 4.2948 -100.2685 0.0058 0.0071 6.5055 0.7433

(2.36) (-2.79) (0.59)

λ 0.6143 -0.1690

(2.47) (-2.81)

b 3.2201 18.3734 -107.5526 0.0051 0.0069 8.1810 0.7615

(1.63) (1.64) (-2.61) (0.32)

λ 0.6487 0.1098 -0.1802

(2.63) (2.43) (-2.62)

In Table 2.8, we present the results from using the monthly option portfolios

in GMM tests (see Equation (2.25)). To match the monthly option and the

quarterly consumption data, we compound monthly returns to quarterly returns.

As before, Panels A, B, and C focus on the results obtained from call options, put

options, and straddles, respectively. Focusing on the call option results in Panel

A, the estimated quarterly risk premiums λ∆c, λ∆µ, and λ∆σ are, respectively,

0.83 (t=2.80), 0.11 (t=2.41), and –0.06 (t=–1.86). The J-test fails to reject the

overidentifying restriction with the p-value equal to 0.22. The estimated risk

premiums are qualitatively similar with those estimated using quarterly options

in Table 2.5. Table 2.8 suggests that the most comprehensive model explains the
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monthly option portfolio returns well, with it always passing the J-test of the

overidentifying restrictions and it producing high R2s and small pricing errors. As

in the FM regressions, consumption growth and mean consumption growth are

(with one exception) significantly positively priced, while consumption volatility

is significantly negatively priced.

D. Alternative Test Assets: Moneyness Sorted Option Portfolio Re-

turns

We finally switch to an alternative set of test assets to study the pricing of

consumption risks in delta-hedged options: moneyness-sorted portfolios. Bakshi

and Kapadia (2003) show that delta-hedged call option returns are negative and

monotonically decrease with option moneyness, defined as the ratio of the underlying

stock’s price to the option’s strike price.14 Boyer and Vorkink (2014) offer evidence that

a call option’s ex-ante skewness is negatively related to its return and monotonically

decreases with option moneyness. Taken together, these two findings imply that lower-

moneyness (OTM) call options have higher ex-ante skewness and earn more negative

returns than higher-moneyness (ITM) call options do. Our aim in this section is to

find out whether consumption risks can help us understand why delta-hedged call

option returns are more negative for OTM than ITM options.

We conduct the moneyness-portfolio based tests in this section on the quarterly

returns of delta-hedged options with a time-to-maturity between 106 to 176 days.15

The option selection criteria used in these tests are identical to those used before,

except for the following three differences. First, we only consider American call

options written on non-dividend stocks in these tests since American put options

contain an early exercise risk premium correlating with moneyness. Second, we

allow for more than one call option on each stock since we require a spectrum of

14Note that Bakshi and Kapadia (2003) also present evidence that the dollar gains (losses)
are smaller for OTM than ITM options. This is to be expected because the dollar gains are not
normalized by price and OTM options are much cheaper than ITM options. Once the gains are
normalized, OTM options have more negative returns than ITM options.

15We also study the monthly returns of delta-hedged call options with a time-to-maturity of
44 to 86 days. As shown in the Appendix Tables A4, A5, and A6, the results obtained from the
monthly returns are similar to those obtained using quarterly options.
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options with different moneyness levels.16 Third, we only choose actively traded

options, defining an option as actively traded if its number of zero-trading-volume

days within a quarter is less than ten. Panel A of Table 2.9 reports summary

statistics for the resulting delta-hedged call option sample. The sample consists

of 34,437 quarterly observations. The mean and median delta-hedged returns are

both negative. The average time-to-maturity is 124 days, comparable to that of the

IVOL sorted option portfolios. While mean moneyness is about 99% and thus close

to ATM, the standard deviation is an impressive 18%.

We form the delta-hedged call option portfolios sorted on moneyness as follows.

At the end of each quarter t− 1 in our sample period, we sort the options into

ten decile portfolios according to their moneyness. Portfolio 1 contains options

with the lowest moneyness (most OTM), while portfolio 10 contains options with

the highest moneyness (most ITM). We equally-weight the portfolios and hold

them over quarter t. We also create a spread portfolio long on portfolio 10 and

short on portfolio 1 (“H–L”). Panel B of Table 2.9 presents the mean returns

of the portfolios. In line with Bakshi and Kapadia (2003), all portfolios produce

negative mean returns, with the mean returns becoming more negative the lower

the moneyness of the options in a portfolio (i.e., the more the options are OTM). In

particular, the mean delta-hedged return ranges from –4.28% per quarter (t=–5.25)

for the lowest moneyness portfolio to –0.85% for the highest portfolio (t=–2.42),

with the spread being a significant 3.42% (t=5.70).

16We also construct the sample using only one option per stock-quarter. As shown in Appendix
Tables A7 and A8, the results obtained from that strategy are qualitatively similar to those
reported here.
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Table 2.9: Moneyness Sorted Call Option Portfolios

This table reports summary statistics and characteristics of moneyness-sorted call-option portfolios. Panel A reports descriptive statistics on delta-hedged option returns,
days-to-maturity, and moneyness of the options. We exclude the following option observations: the stock underlying the option pays out cash over the options’ remaining
time-to-maturity; option price violates arbitrage bounds; reported trading volume is 0; option bid quote is 0 or midpoint of bid and ask quotes is less than 1/8; options
have more than ten recorded zero-trading-volume days within a quarter. We keep options with days-to-maturity between 106 to 176 days. Delta-hedged returns are
calculated through option delta-hedged gains (given by equation (2.22)) scaled by ∆S −C, where ∆ is the Black-Scholes option delta, S is the underlying stock price, and
C is the price of call option. Days-to-maturity is the number of calendar days until option expiration. Moneyness is the ratio of stock price over option strike price.
Panel B reports characteristics of equally-weighted call option portfolios sorted by options moneyness. Portfolios are rebalanced every quarter. Average return, standard
deviation (SD), skewness, and kurtosis of each portfolio are reported. The column “High–Low” shows the average return of the long-short strategy which buys the highest
moneyness portfolio and sells the lowest moneyness portfolio. Newey-West (Newey and West (1987)) adjusted t-statistics are reported in parentheses. The option sample
period is from January 1996 to December 2017.

Panel A: Summary Statistics

N Mean Median SD 5th 10th 25th 75th 90th 95th

Delta-hedged returns (%) 34,437 -2.50 -2.11 7.25 -14.53 -10.64 -5.84 0.99 5.18 8.54

Days-to-maturity 34,437 124 113 18 107 108 110 141 144 168

Moneyness=S/K (%) 34,437 98.70 96.79 17.76 74.58 80.00 88.25 106.33 119.49 129.76
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Table 2.9 continued

Panel B: Moneyness Sorted Portfolios

Portfolios 1 (Low) 2 3 4 5 6 7 8 9 10 (High) High–Low

Mean Return (%) -4.28 -3.46 -2.79 -2.51 -1.93 -1.57 -1.56 -1.3 -1.14 -0.85 3.42

(-5.25) (-5.08) (-5.16) (-5.94) (-4.39) (-4.02) (-4.80) (-3.54) (-3.53) (-2.42) (5.70)

SD (%) 8.66 7.31 6.28 5.84 5.04 4.76 4.63 4.30 4.18 4.23

Skewness 0.29 0.17 0.17 0.15 0.09 0.01 -0.05 -0.15 -0.18 -0.27

Kurtosis 2.38 2.72 3.04 3.38 3.62 3.86 4.64 4.21 4.50 4.69
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Panel B of Table 2.9 also presents the standard deviation, skewness, and kurtosis

of the portfolio returns. While the low moneyness options are more volatile than

the high moneyness options, skewness monotonically declines with moneyness,

with OTM options being positively skewed and ITM options negatively skewed.

Thus, sorting options into portfolios according to moneyness is akin to sorting

them into portfolios according to Boyer and Vorkink’s (2014) ex-ante skewness

proxy derived from the Black-Scholes model, even though we do not explicitly

use skewness in our sorts. We also differ with Boyer and Vorkink (2014) in that

they focus on raw option returns while we examine delta-hedged returns. The

return spread between portfolios with high and low skewness further suggests that

investors pay more for the tail probability (lottery feature) in OTM options even

after controlling for the directional movement of the underlying asset. Finally,

the kurtosis of the portfolios’ returns is close to three, which is the kurtosis of a

normal random variable.

We next estimate time-series regression (2.23) on the delta-hedged call option

portfolios sorted on moneyness, plotting the full-sample estimates of β̂i∆c,t, β̂
i
∆µ,t,

and β̂i∆σ,t in Figure 2.7. The figure reveals that the consumption growth exposure,

β̂i∆c,t, is negative for all portfolios, suggesting that delta-hedged call options are

counter-cyclical assets. More crucially, the low-moneyness (OTM) portfolios have

larger negative consumption growth exposures, indicating that they are better suited

to hedge against adverse conditions than the high-moneyness (ITM) portfolios.

Further adding to their hedging ability, the same portfolios also have more positive

consumption volatility exposures. The only concerning aspect of the low-moneyness

portfolios is that they can have a higher mean consumption growth exposure than

the other portfolios, which lowers their ability to hedge against adverse conditions.

74



Betas of Moneyness Sorted Call Option Portfolios
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This graph displays consumption beta loadings estimated using the full sample for each option
portfolio sorted by call option moneyness. The sample constitutes only actively traded call options.
The upper left graph shows consumption growth beta, β̂ic, for each portfolio. Consumption mean

beta (β̂iµ) and volatility beta (β̂iσ) for each portfolio are shown in the upper right and lower left
graphs, respectively. The sample period is from January 1996 to December 2017.

Table 2.10 reports the results from running FM regressions of the quarterly

returns of the moneyness-sorted portfolios on the rolling-window consumption

exposures. Model specification I tests the standard CCAPM results. The risk

premium estimate, λ∆c, is a significant 0.65 (t=3.73) and the average cross-sectional

R2 is around 51%. The magnitude of the risk premium is close to that estimated

using the IVOL sorted option portfolios. Specification II adds the expected mean

consumption growth exposure to the standard CCAPM. Doing so, the estimate

of λ∆c remains highly significant, while the estimate for expected consumption

growth, λ∆µ, is 0.05 but statistically insignificant. The average R2 increases to

around 62%. Specification III adds the consumption volatility exposure to the

standard CCAPM. Doing so, the estimate for λ∆c is again similar to before, while
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the estimate for λ∆σ is a negative and significant –0.10 (t=–5.18). The average R2

further increases to around 67%.

Table 2.10: Fama-MacBeth Regressions with Moneyness Sorted Call
Option Portfolios

This table reports quarterly risk premium estimates for the consumption betas. The sample
features only actively traded call options. The consumption betas are estimated from ten-year
rolling window time-series regressions using equation (2.23). In the cross-section, we regress
quarterly future call option returns over quarter t+ 1 on estimated beta loadings (see equation
(2.24)). Newey-West (Newey and West (1987)) adjusted t-statistics with a lag of four are displayed
in parentheses. The sample period is from January 1996 to December 2017.

Intercept βi∆c,t βi∆µ,t βi∆σ,t Avg.R2

I -0.0046 0.6524 0.5118

(-1.15) (3.73)

II -0.0036 0.7860 0.0488 0.6230

(-1.07) (4.29) (1.30)

III -0.0011 0.6006 -0.1048 0.6726

(-0.29) (3.45) (-5.18)

IV -0.0019 0.7601 0.0631 -0.1071 0.7310

(-0.50) (4.05) (1.99) (-5.41)

Specification IV presents the results from the full three-factor model. The risk

premium estimates λ∆c, λ∆µ, and λ∆σ are 0.76 (t=4.05), 0.06 (t=1.99), and –0.11

(t=–5.41), respectively. Thus, all three consumption exposures have significant

explanatory power for option returns. The average R2 reaches 73%. The estimated

risk premiums are consistent with those estimated using the IVOL portfolios,

and their signs again suggest that agents prefer early resolution of uncertainty,

lending support to the long-run risks model of Bansal and Yaron (2004). Because

delta-hedged returns measure the returns of zero-cost portfolios, we also again

test whether the intercepts are equal to zero. As before, we fail to reject that

hypothesis in all four specifications.
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Table 2.11: Asset Pricing Tests with Moneyness Sorted Call Option
Portfolios

This table reports GMM estimates of the moment conditions in equation (2.25), showing both
the b estimates as well as the implied risk premia (λ). The sample features only actively traded
call options. MAE and RMSE refer to the mean absolute pricing error and the root mean squared
error, respectively. The table presents the results using ten quarterly call option portfolios. Newey-
West (Newey and West (1987)) adjusted t-statistics using four lags are reported in parentheses
and p-values for J-statistics are shown in parentheses below the associated J-statistics. The
sample period is from January 1996 to December 2017.

∆c ∆µ ∆σ MAE RMSE J R2

b 13.8248 0.0046 0.0061 4.7015 0.6544

(2.27) (0.86)

λ 1.7843

(2.27)

b 14.2182 -6.7146 0.0047 0.0061 4.6723 0.6604

(2.00) (-0.36) (0.79)

λ 1.7734 0.1007

(2.04) (1.17)

b 6.1819 -41.8062 0.0036 0.0045 6.9142 0.8183

(2.62) (-3.71) (0.55)

λ 0.8229 -0.0731

(2.66) (-3.71)

b 5.5416 -24.1990 -53.0705 0.0028 0.0036 6.3358 0.8836

(2.48) (-2.55) (-2.62) (0.50)

λ 0.5247 -0.0575 -0.0917

(1.76) (-1.29) (-2.67)

Table 2.11 presents the estimates and model statistics from using GMM to test

our model’s Euler equation on the moneyness-sorted portfolios. In line with the FM

regression results, the risk premium for consumption growth is consistently positive

and significant, while the risk premium for consumption volatility is consistently

negative and significant. In the full three-factor model, the risk premium estimates
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for consumption growth and consumption volatility are 0.52 and –0.09, respectively,

similar to those obtained in the FM regressions. Conversely, the risk premium

for expected consumption growth is insignificant. The full model prices the ten

portfolios with small pricing errors. The J-test fails to reject the over-identifying

restrictions (p=0.50) and the full model’s R2 is over 88%.

Overall, our evidence in this section suggests that consumption risks can explain

the negative relation between delta-hedged call options and moneyness. Boyer and

Vorkink (2014) argue that the negative relation arises because OTM options have

more right-skewed payoffs than other options, which can be attractive to investors

with non-standard preferences. Our evidence supports their finding that option

moneyness is negatively related to option skewness. More importantly, we show that

the low returns of low-moneyness and/or high-skewness options can be explained by

these options being better instruments to hedge against adverse economic conditions.

Here, adverse economic conditions not only include shocks to consumption growth

but also variations in expected consumption growth and consumption volatility that

can lead to a rise in the SDF under recursive utility.

2.5 Conclusion

We study the impact of consumption risks on the cross-section of delta-hedged

option and straddle returns using portfolios sorted on idiosyncratic underlying-

stock volatility and moneyness. Our consumption-based pricing factors consist of

consumption growth, an estimate of its conditional expectation, and an estimate

of its conditional volatility. The three factors explain the cross-section of delta-

hedged option returns well and support a risk-based explanation for option returns.

Consumption growth and expected consumption growth command a positive risk

premium, whereas consumption volatility commands a negative risk premium. Our

evidence suggests that, in a representative-agent economy with Epstein-Zin’s (1989)

recursive preferences, the agent prefers early resolution of uncertainty. They further

suggest that options written on high IVOL stocks and options with a low moneyness

earn more negative returns than other options because they provide a better hedge
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against bad macroeconomic conditions. Overall, our empirical findings are robust to

the choice of test assets, option maturities, and the testing horizon. Taken together,

our evidence provides a strong foundation for consumption risks explaining the

cross-section of delta-hedged option and straddle returns.
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2.6 Appendix

2.6.1 Derivation of Expected Asset Return

The derivation below closely follows Boguth and Kuehn (2013). To test the

model in the cross-section of returns, with the approximation of changes in the

log wealth-consumption ratio, it is convenient to restate the Euler equation in

terms of betas,

Et

[
Re
i,t+1

]
≈ −Covt (Ri,t+1,mt+1)

= γCovt (Ri,t+1,∆ct+1)−

(
1
ψ
− γ

1− 1
ψ

)
Covt (Ri,t+1,∆zt+1)

= γCovt (Ri,t+1,∆ct+1)−

(
1
ψ
− γ

1− 1
ψ

)[
ACovt (Ri,t+1,∆µ̂t+1)

+BCovt (Ri,t+1,∆σ̂t+1)
]

= βi∆c,tλ∆c,t + βi∆µ,tλ∆µ,t + βi∆σ,tλ∆σ,t (A1)

with

βi∆c,t =
Covt (Ri,t+1,∆ct+1)

Vart (∆ct+1)
βi∆µ,t =

Covt (Ri,t+1,∆µ̂t+1)

Vart (∆µ̂t+1)

βi∆σ,t =
Covt (Ri,t+1,∆σ̂t+1)

Vart (∆σ̂t+1)
,

and

λ∆c,t = γVart (∆ct+1) λ∆µ,t = A

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆µ̂t+1)

λ∆σ,t = B

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆σ̂t+1) ,

βi∆c,t, β
i
∆µ,t, β

i
∆σ,t denote risk loadings of asset i at date t with respect to consump-

tion growth and changes in the perceived first and second moments of consumption

growth, and λ∆c,t, λ∆µ,t, λ∆σ,t are market prices of those betas.
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Table A1: Change of Wealth-Consumption Ratio

We simulate 500 economies for 150 years at the quarterly frequency. Panel A and Panel B display
regression results when γ > 1

ψ and ψ > 1 and ψ < 1 respectively. Panel C and Panel D display

results when γ < 1
ψ and ψ > 1 and ψ < 1 respectively. In all the panels, the representative agent

has a rate of time preference of 0.995. We report the average regression coefficients and average
R2s.

Const. ∆µ̂ ∆σ̂ R2

Panel A: γ > 1
ψ

, ψ > 1 (ψ = 1.5)

γ = 10 -3.8e-9 2.0196 -0.1684 0.9981

γ = 20 -9.8e-9 2.1444 -0.3410 0.9915

γ = 30 -1.8e-8 2.2057 -0.5249 0.9800

γ = 35 -2.3e-8 2.2100 -0.6158 0.9729

Panel B: γ > 1
ψ

, ψ < 1 (ψ = 0.5)

γ = 10 1.1e-8 -5.8516 0.4784 0.9982

γ = 20 2.8e-8 -6.2206 0.9738 0.9919

γ = 30 5.1e-8 -6.4232 1.5056 0.9809

γ = 35 6.4e-8 -6.4522 1.7710 0.9739

Panel C: γ < 1
ψ

, ψ > 1 (ψ = 1.5)

γ = 0.3 -8.2e-11 1.8637 -0.0206 0.9999

γ = 0.4 -1.1e-10 1.8654 -0.0220 0.9999

γ = 0.5 -1.4e-10 1.8671 -0.0234 0.9999

γ = 0.6 -1.7e-10 1.8688 -0.0248 0.9999

Panel D: γ < 1
ψ

, ψ < 1 (ψ = 0.5)

γ = 1.6 1.4e-9 -5.4679 0.1081 0.9999

γ = 1.7 1.5e-9 -5.4727 0.1122 0.9999

γ = 1.8 1.6e-9 -5.4774 0.1164 0.9999

γ = 1.9 1.7e-9 -5.4822 0.1205 0.9999
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2.6.2 Robustness Test Results

In this section, we present additional empirical results for robustness.
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Table A2: Summary Statistics of Options – Monthly

This table reports the descriptive statistics of the days-to-maturity, delta-hedged option returns, and idiosyncratic volatility of the underlying stock of selected contracts
in monthly frequency. We exclude the following option observations: the stock underlying the option pays out cash over the options’ remaining time-to-maturity; option
price violates arbitrage bounds; reported trading volume is 0; option bid quote is 0 or midpoint of bid and ask quotes is less than 1/8. For each optionable stock, we keep
one call and one put which are closest to being at-the-money and have the shortest time-to-maturity among others. Then we only keep calls and puts with moneyness
within the range from 0.8 to 1.2 and days-to-maturity within the range from 31 to 53 days. Delta-hedged returns are calculated through option delta-hedged gains (given
by equation (2.22)) scaled by ∆S −C for calls and P −∆S for puts, where ∆ is the Black-Scholes option delta, S is the underlying stock price, and C (P ) is the price of
call (put) option at the beginning of a month. Straddle returns are computed as the average returns of calls and puts which are written on the same stock and have
the same strike price and time-to-maturity. We select straddles with moneyness closest to 1 and within the range from 0.8 to 1.2. Then we only keep straddles with
days-to-maturity between 31 and 53 days. Days-to-maturity is the number of calendar days until option expiration. Idiosyncratic volatility is the standard deviation of
the residuals of Fama-French 3-factors model estimated using the daily stock returns over the previous month. Calls, puts and straddles are reported in Panel A, Panel B
and Panel C respectively. The option sample period is from January 1996 to December 2017.

N Mean Median SD 5th 10th 25th 75th 90th 95th

Panel A: Call Options

Delta-hedged returns (%) 150,390 -0.97 -1.04 6.27 -9.20 -6.49 -3.24 0.87 4.06 7.34

Days to maturity 150,390 49 50 4 44 46 49 51 52 53

Idiosyncratic volatility (%) 150,390 2.24 1.80 1.77 0.58 0.75 1.14 2.83 4.23 5.34

Panel B: Put Options

Delta-hedged returns(%) 101,496 -0.76 -0.99 4.94 -6.93 -5.09 -2.73 0.55 3.23 6.15

Days to maturity 101,496 49 50 4 39 46 47 51 52 53
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Table A2 continued

Idiosyncratic volatility (%) 101,496 2.10 1.68 1.78 0.55 0.71 1.07 2.63 3.92 4.95

Panel C: Straddles

Delta-hedged returns (%) 65,538 -0.79 -0.91 3.99 -6.07 -4.44 -2.45 0.58 2.82 4.99

Days to maturity 65,538 49 50 3 45 46 49 51 52 53

Idiosyncratic volatility(%) 65,538 2.13 1.71 1.78 0.55 0.71 1.09 2.67 3.99 5.04
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Table A3: Idiosyncratic Risk Sorted Option Portfolios – Monthly

This table reports characteristics of equally-weighted option portfolios sorted by idiosyncratic volatility (IVOL) of the underlying stocks. Portfolios are rebalanced every
month. Average return, standard deviation (SD), skewness and kurtosis of each portfolio are reported. Column “High–Low” shows the average return of the long-short
strategy which buys in the highest IVOL portfolio and sells the lowest IVOL portfolio. Panel A presents portfolios formed with call option returns. Panel B presents put
option portfolios and Panel C presents straddle portfolios. Newey-West (Newey and West (1987)) adjusted t-statistics are reported in parentheses. The sample period is
from January 1996 to December 2017.

Portfolios 1 (Low) 2 3 4 5 6 7 8 9 10 (High) High–Low

Panel A: Call Options

Mean Return (%) -0.37 -0.46 -0.58 -0.65 -0.70 -0.90 -0.96 -1.12 -1.41 -2.19 -1.83

(-3.37) (-4.29) (-4.93) (-5.67) (-5.23) (-6.98) (-5.78) (-6.20) (-7.44) (-11.49) (-9.69)

SD (%) 2.90 3.55 3.97 4.36 4.84 5.17 5.85 6.32 6.92 8.41

Skewness 0.81 0.97 0.92 0.98 0.98 0.71 0.78 0.55 0.56 0.52

Kurtosis 9.47 10.83 9.90 9.79 9.05 9.02 9.36 9.11 8.35 8.29

Panel B: Put Options

Mean Return (%) -0.45 -0.38 -0.38 -0.36 -0.43 -0.47 -0.49 -0.70 -0.93 -1.90 -1.45

(-4.11) (-2.78) (-2.37) (-2.39) (-2.37) (-2.41) (-2.49) (-3.51) (-4.27) (-9.29) (-8.69)

SD (%) 2.46 2.87 3.33 3.59 3.70 4.08 4.30 4.73 5.04 5.75
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Table A3 continued

Skewness 0.24 0.59 0.66 0.79 0.63 0.61 0.77 0.59 0.45 0.37

Kurtosis 7.15 7.75 7.38 7.37 6.51 6.79 6.99 6.93 6.06 6.03

Panel C: Straddles

Mean Return (%) -0.38 -0.35 -0.39 -0.47 -0.45 -0.55 -0.54 -0.85 -1.13 -1.97 -1.60

(-4.15) (-3.68) (-3.50) (-3.81) (-3.08) (-3.29) (-2.84) (-4.48) (-5.82) (-11.24) (-11.19)

SD (%) 1.53 1.97 2.30 2.58 2.79 3.18 3.44 3.89 4.69 5.58

Skewness 0.35 0.46 0.53 0.55 0.44 0.32 0.35 0.23 0.25 0.11

Kurtosis 4.74 4.75 4.77 5.24 4.69 4.85 4.48 4.85 5.23 4.79
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Table A4: Actively Traded Call Options – Monthly

This table reports summary statistics and characteristics of moneyness sorted portfolios of actively traded call options in monthly frequency. Panel A reports the
descriptive statistics of days-to-maturity, delta-hedged option returns, and moneyness of actively traded call options. We exclude the following option observations: the
stock underlying the option pays out cash over the options’ remaining time-to-maturity; option price violates arbitrage bounds; reported trading volume is 0; option
bid quote is 0 or midpoint of bid and ask quotes is less than 1/8; options have more than 5 recorded zero-trading-volume days within a month. We keep options with
days-to-maturity between 44 to 86 days. Delta-hedged returns are calculated through option delta-hedged gains (given by equation (2.22)) scaled by ∆S − C, where ∆ is
the Black-Scholes option delta, S is the underlying stock price, and C is the price of call option. Days-to-maturity is the number of calendar days until option expiration.
Moneyness is the ratio of stock price over option strike price. Panel B reports characteristics of equally-weighted call option portfolios sorted by options moneyness.
Portfolios are rebalanced every month. Average return, standard deviation (SD), skewness and kurtosis of each portfolio are reported. Column “High–Low” shows the
average return of the long-short strategy which buys in the highest moneyness portfolio and sells the lowest moneyness portfolio. Newey-West (Newey and West (1987))
adjusted t-statistics with a lag of 12 are reported in parentheses. The option sample period is from January 1996 to December 2017.

Panel A: Summary Statistics

N Mean Median SD 5th 10th 25th 75th 90th 95th

Delta-hedged returns (%) 273,450 -0.82 -0.72 3.98 -6.97 -5.01 -2.51 0.75 3.21 5.37

Days-to-maturity 273,450 63 52 15 46 47 50 79 82 84

Moneyness=S/K (%) 273,450 99.34 98.21 14.36 79.40 84.50 91.60 105.36 114.95 123.04
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Table A4 continued

Panel B: Moneyness Sorted Portfolios

Portfolios 1 (Low) 2 3 4 5 6 7 8 9 10 (High) High–Low

Mean Return (%) -1.73 -1.37 -1.12 -0.85 -0.68 -0.56 -0.48 -0.34 -0.23 -0.14 1.60

(-8.87) (-7.99) (-7.85) (-6.74) (-5.67) (-5.10) (-4.56) (-2.83) (-1.91) (-1.06) (10.99)

SD (%) 4.84 4.18 3.70 3.29 2.99 2.73 2.57 2.44 2.37 2.41

Skewness 0.32 0.27 0.25 0.25 0.22 0.16 0.08 0.05 0.04 0.01

Kurtosis 2.46 2.85 3.27 3.77 4.31 4.75 5.18 5.25 5.97 5.84
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Table A5: Fama-MacBeth Regressions with Moneyness Sorted Call Op-
tion Portfolios – Monthly

This table reports estimated monthly risk premia on consumption betas. The sample constitutes
only actively traded call options. Beta loadings are estimated from 10-year rolling window time-
series regressions using equation (2.23). In the cross-section, we regress monthly future call
option returns (in time t + 1) on estimated beta loadings (see equation (2.24)). Newey-West
(Newey and West (1987)) adjusted t-statistics with a lag of 12 are in parentheses. The sample
period is from January 1996 to December 2017.

Intercept βi∆c,t βi∆µ,t βi∆σ,t Avg.R2

I -0.0013 0.1888 0.5412

(-0.76) (2.92)

II -0.0007 0.2300 0.0000 0.6664

(-0.56) (3.54) (0.00)

III 0.0008 0.1895 -0.0440 0.6955

(0.88) (3.48) (-5.12)

IV 0.0002 0.1970 0.0038 -0.0387 0.7635

(0.18) (3.56) (0.46) (-4.50)

91



Table A6: Asset Pricing Tests with Moneyness Sorted Call Option Port-
folios – Monthly

This table reports GMM estimates of the moment conditions in equation (2.25), the b estimates
as well as the implied risk premia (λ). The sample constitutes only actively traded call options.
MAE and RMSE refer to the mean absolute pricing error and the root mean squared error,
respectively. The table presents the results using 10 monthly call option portfolios. Newey-West
(Newey and West (1987)) adjusted t-statistics by using 12 lags are reported in the parentheses
and p-values for J-statistics are shown in parentheses below the associated J-statistics. The
sample period is from January 1996 to December 2017.

∆c ∆µ ∆σ MAE RMSE J R2

b 8.0742 0.0032 0.0037 7.6629 0.9330

(3.26) (0.57)

λ 1.0421

(3.26)

b 8.5434 -6.7659 0.0032 0.0036 7.8067 0.9360

(3.22) (-0.46) (0.45)

λ 1.0405 0.0484

(2.81) (0.68)

b 5.2176 -21.6667 0.0028 0.0034 8.9654 0.9441

(3.75) (-2.67) (0.35)

λ 0.6864 -0.0391

(3.80) (-2.85)

b 4.1548 -20.1964 -40.3464 0.0026 0.0028 9.1786 0.9627

(3.10) (-2.83) (-2.72) (0.24)

λ 0.3749 -0.0523 -0.0697

(2.10) (-1.63) (-2.79)
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Table A7: Fama-MacBeth Regressions with Moneyness Sorted Call Op-
tion Portfolios (A Smaller Sample)

This table reports estimated quarterly and monthly risk premia on consumption betas. The
sample constitutes only one call option for each stock quarter (month). We select options with
the shortest time-to-maturity for each stock per period. Beta loadings are estimated from 10-year
rolling window time-series regressions using equation (2.23). In the cross-section, we regress
quarterly (monthly) future call option returns (in time t+ 1) on estimated beta loadings (see
equation (2.24)). We report quarterly Fama-MacBeth regression results in Panel A and monthly
results in Panel B. Newey-West (Newey and West (1987)) adjusted t-statistics by using 4 lags
for quarterly frequency and using 12 lags for monthly frequency are in parentheses. The sample
period is from January 1996 to December 2017.

Intercept βi∆c,t βi∆µ,t βi∆σ,t Avg.R2

Panel A: Quarterly Risk Premium

I -0.0080 0.4117 0.3694

(-0.84) (1.60)

II -0.0004 0.5037 -0.0799 0.5719

(-0.07) (3.86) (-2.69)

III 0.0005 0.4905 -0.0613 0.6294

(0.10) (2.74) (-3.39)

IV -0.0005 0.5404 0.0122 -0.0537 0.6861

(-0.11) (3.37) (0.36) (-2.98)

Panel B: Monthly Risk Premium

I -0.0013 0.2277 0.3524

(-0.41) (2.45)

II -0.0001 0.1962 -0.0402 0.5466

(-0.06) (3.47) (-4.74)

III 0.0002 0.2318 -0.0333 0.6249

(0.09) (3.08) (-4.24)

IV -0.0004 0.2503 0.0136 -0.0315 0.6807

(-0.20) (3.27) (1.13) (-3.42)
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Table A8: Asset Pricing Tests with Moneyness Sorted Call Option Port-
folios (A Smaller Sample)

This table reports GMM estimates of the moment conditions in equation (2.25), the b estimates
as well as the implied risk premia (λ). The sample constitutes only one call option for each
stock quarter (month). MAE and RMSE refer to the mean absolute pricing error and the root
mean squared error, respectively. Panel A presents the results using 10 quarterly call option
portfolios. Panel B presents the results using 10 monthly call option portfolios. Newey-West
(Newey and West (1987)) adjusted t-statistics by using four lags for quarterly frequency and
by using twelve lags for monthly frequency are reported in the parentheses and p-values for
J-statistics are shown in parentheses below the associated J-statistics. The sample period is
from January 1996 to December 2017.

∆c ∆µ ∆σ MAE RMSE J R2

Panel A: Quarterly Option Results

b 12.4141 0.0106 0.0158 10.8390 -0.1825

(3.84) (0.29)

λ 1.6022

(3.84)

b 17.6847 -69.8072 0.0078 0.0090 9.0396 0.6134

(3.49) (-2.68) (0.34)

λ 1.6412 -0.1482

(3.26) (-1.71)

b 1.8282 -55.5122 0.0052 0.0056 7.5185 0.8503

(2.02) (-3.66) (0.48)

λ 0.2692 -0.0932

(2.25) (-3.67)

b 6.3846 -26.7550 -42.2080 0.0037 0.0044 9.6581 0.9078

(4.58) (-1.74) (-1.81) (0.21)

λ 0.6035 -0.0610 -0.0743

(2.40) (-0.86) (-1.91)
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Table A8 continued

Panel B: Monthly Option Results

b 10.0192 0.0050 0.0057 6.6398 0.8905

(3.00) (0.67)

λ 1.2931

(3.00)

b 10.6921 -10.0854 0.0048 0.0056 6.1379 0.8941

(2.69) (-0.77) (0.63)

λ 1.2873 0.0533

(2.76) (1.03)

b 4.7514 -49.5998 0.0028 0.0036 5.8072 0.9559

(3.27) (-3.82) (0.67)

λ 0.6429 -0.0852

(3.40) (-3.92)

b 5.5355 -14.3181 -51.2130 0.0029 0.0033 6.3147 0.9632

(3.14) (-1.29) (-3.01) (0.50)

λ 0.6135 -0.0136 -0.0885

(2.71) (-0.29) (-3.11)
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Chapter 3

Switching Perspective: How Does

Firm-Level Distress Risk Price

the Cross-Section of Corporate

Bond Returns?

We document a significantly negative relation between firm-level distress risk

and the cross-section of corporate bond returns, analogous to the often negative

relation between distress risk and stock returns in the prior literature (“distress

anomaly”). Our evidence casts doubts on theories attributing the distress anomaly

to shareholders exploiting debtholders in distress (“shareholder advantage”). In

accordance, shareholder advantage proxies do not condition the distress risk-bond

return relation. Conversely, we show that real options theories with disinvest-

ment also have the potential to explain the anomaly, with disinvestment proxies

conditioning the relation between distress risk and both stock and bond returns.

Keywords: Distress risk, corporate bonds, shareholder advantage, disinvestment

options.
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3.1 Introduction

Recent empirical work finds a flat, hump-shaped, or negative relation between the

probability that a firm fails to honor its fixed obligations (“distress risk”) and the

cross-section of stock returns.1 The most convincing explanation for that finding

is Garlappi, Shu and Yan’s (2008) and Garlappi and Yan’s (2011) shareholder

advantage theory, which argues that shareholders’ ability to extract economic rents

from debtholders in default lowers stock risk and thus the returns of distressed

stocks. Further evidence supporting that theory comes from Favara, Schroth and

Valta (2012), who show that stock betas and volatilities are lower in countries whose

institutions favor shareholders over debtholders, and Aretz, Florackis and Kostakis

(2018), who show that the distress risk-stock return relation is more negative in the

same countries. Also, Hackbarth, Haselmann and Schoenherr (2015) find that an

exogenous increase in shareholder advantage in the United States in 1978 lowered

stock betas and returns for all but most strongly distressed firms.

In our paper, we document that, analogous to the non-positive and often negative

relation between firm-level distress risk and the cross-section of stock returns in the

prior literature, there is also a negative relation between firm-level distress risk and the

cross-section of corporate bond returns. In particular, using Campbell et al.’s (2008)

hazard model to capture the probability of failure (defined as a default, bankruptcy

filing, or performance-related delisting),2 we find a monthly distress premium in bonds

of –30 to –50 basis points in both portfolio sorts and Fama-MacBeth (FM; 1973)

regressions. Akin to stocks, the premium is, however, only statistically significant

when we control for popular stock and bond pricing factors, such as the bond market

beta and bond-price momentum (see Bai, Bali and Wen (2019), Bali, Subrahmanyam

and Wen (2019a) and Bali, Subrahmanyam and Wen (2019b)). Finally, the negative

premium is attributable to inter-firm variations in distress risk. Keeping firm-level

distress risk constant, intra-firm variations in distress risk due to variations in bond

1See, for example, Dichev (1998), Campbell, Hilscher and Szilagyi (2008), and Da and Gao
(2010).

2A large literature suggests that hazard-model predictions of failure in general — and Campbell
et al.’s (2008) prediction in particular — are vastly superior to, for example, discriminant-analysis or
structural model-based predictions (see Shumway (2001), Chava and Jarrow (2004), Bharath and
Shumway (2008), Campbell et al. (2008), and Aretz et al. (2018)).
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indentures (as, e.g., in seniority, coupons, or collateral) are typically positively priced.

Our evidence that distress risk is negatively priced in corporate bonds comprises a

serious blow to the shareholder advantage theory. The shareholder advantage theory

starts from the premise that debtholders are entitled to a perpetual stream of coupon

payments, but that they have awarded shareholders the option to cease payments

in return for a to-be-negotiated fraction of firm value. Given that the option issued

by debtholders is a perpetual American put option, its systematic risk — if held

short — increases with the option exercise probability, which is equivalent to distress

risk. Thus, the shareholder advantage theory predicts that the expected debt return

increases with distress risk. To put that intuition on a more formal footing, we extend

the simulation evidence of Garlappi et al. (2008), who employ Fan and Sundaresan’s

(2000) shareholder advantage model to create an artificial cross-section of expected

stock returns and distress risk under realistic model inputs. Doing so, they find that

high shareholder advantage can turn the expected stock return-distress risk relation

negative. Picking up where they left off, we, however, show that the expected debt

return-distress risk relation is consistently positive in their simulations, confirming

that shareholder advantage cannot explain our bond pricing evidence.

To further show that shareholder advantage is not behind our bond evidence,

we next condition the bond distress premium on popular shareholder advantage

proxies, such as research and development (R&D) expenses, the Herfindahl sales

index, and asset tangibility (see Garlappi et al. (2008) and Favara et al. (2012)).

Since lower R&D expenses predict fewer cash-flow-related debt covenants, while a

higher Herfindahl index and a lower asset tangibility predict greater fire-sale discounts

in distress, low R&D expenses, a high Herfindahl index, and a low asset tangibility

indicate high shareholder advantage. Double-sorted portfolios and FM regressions

with interaction terms suggest that, while the shareholder advantage proxies usually

continue to condition the distress risk-stock return relation (even within our smaller

data sample), they are completely powerless to condition the distress risk-bond return

relation. To make matters worse, the proxies tend to condition the bond distress

premium with the wrong signs.
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Given the limited success of the shareholder advantage theory to yield a unified

explanation for the pricing of distress in stocks and bonds, we next take a fresh look at

what could lie behind the distress anomaly. As first pointed out by Guthrie (2011), the

relation between the expected return on a claim of a firm and the firm’s condition is

jointly determined by asset and financial risk in neoclassical finance models. Focusing on

asset risk, Hackbarth and Johnson (2015), Aretz and Pope (2018), and Gu, Hackbarth

and Johnson (2018) show that real-asset disinvestment options can lower the expected

asset return of economically distressed firms because the disinvestment options can

be interpreted as American put options with a negative systematic risk. Interestingly

therefore, Table 2 in Campbell et al. (2008) suggests that firms classified by them as

distressed are, on average, not only more financially levered but also less profitable than

other firms.3 It is thus entirely possible that a low asset risk, spurred by highly valuable

negative systematic risk disinvestment options, lies behind the distress anomaly in

both stocks and bonds.

We use numerical methods to value an equity claim and a zero-coupon debt claim

on a firm owning production assets with embedded disinvestment options to study

whether disinvestment risk can explain the distress anomaly. Assuming disinvestment

proceeds go to shareholders unless they fall into a “suspect period” shortly before a

debt default, in which case they go to debtholders, the model can produce a hump-

shaped relation between distress risk and both stock and bond returns, which is more

consistent with the empirical evidence than the shareholder advantage theory. To

offer some more support for asset risk driving the distress anomaly, we then condition

the stock and bond distress premia on Novy-Marx’s (2013) gross profitability and

Aretz and Pope’s (2018) capacity overhang, defined as the difference between a firm’s

installed production capacity and its ex-ante optimal capacity.4 While the first proxy

measures economic profitability, the second measures how close a firm is to exercising

3Given that Campbell et al.’s (2008) profitability variable, NIMTA, contains financial expenses, it
is not a pure proxy for economic profitability. Using operating profitability, defined as the difference
between sales and costs of good sold scaled by total assets, we, however, find that operating profitability
also strongly declines over their distress risk portfolios.

4Aretz and Pope (2018) define the ex-ante optimal capacity as that capacity level equalizing the
marginal benefit of assets-in-place with the marginal cost of exercising growth options. See their paper
for more technical details. An updated version of the capacity overhang proxy can be downloaded
from: <https://www.kevin-aretz.com>.
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its real-asset disinvestment options and thus also the value of these options. Double-

sorted portfolios and FM regressions with interaction terms suggest that, with one

exception, both gross profitability and capacity overhang significantly condition the

relations between distress risk and both stock and bond returns with the correct signs.

Our work adds to studies on the distress premium in stocks. Dichev (1998), Griffin

and Lemmon (2002), and George and Hwang (2010) show that Altman’s (1968) Z -

Score and Ohlson’s (1980) O-Score, two accounting distress risk proxies, are flat in

or decrease with stock returns. Extracting a distress risk proxy from Merton’s (1974)

model, Vassalou and Xing (2004) find a positive premium. Da and Gao (2010), however,

question that premium, arguing it is attributable to illiquid stocks. Using the alternative

structural distress risk proxy of Moody’s KMV Corporation, Garlappi et al. (2008)

and Garlappi and Yan (2011) find a hump-shaped relation between distress risk and

stock returns. Anginer and Yıldızhan (2018) report that corporate credit spreads, which

increase with risk-neutral distress risk, do not price stocks. Avramov, Chordia, Jostova

and Philipov (2009) show that stock returns increase with credit ratings, implying

a negative distress risk-stock return relation. Using an efficient hazard model proxy,

Campbell et al. (2008) report a negative distress premium in stocks. We contribute to

those studies by showing that, analogous to the often negative stock distress premium,

the corporate bond distress premium can also be negative.

We also add to the literature by coming up with a new rationale for why both stock

and bond returns decrease with distress risk. Prior studies often argue that financial

risk lies behind the negative stock distress premium. As we already said, Garlappi

et al.’s (2008) and Garlappi and Yan’s (2011) shareholder advantage theory is the

best-known example in that literature. Other examples include George and Hwang

(2010), who reason that firms with high systematic risk induced through high financial

distress costs endogenously choose low financial leverage ratios, and O’Doherty (2012),

who speculates that high asset-value uncertainty drives down the systematic risk of

distressed stocks. One caveat about these theories is that they often implicitly predict

opposite effects of distress risk on stock and bond returns, inconsistent with our main

empirical evidence. In contrast, we propose a real-asset based explanation for the
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distress anomaly suggesting that both stock and bond returns decline with distress

risk.

We proceed as follows. Section 3.2 describes our analysis variables and data sources.

In Section 3.3, we study the relations between distress risk and the cross-sections of

corporate bond, stock, and asset returns. In Section 3.4, we investigate whether the

shareholder advantage theory explains our empirical findings. Section 3.5 explores

whether real-asset disinvestment risk explains them. Section 3.6 gives the results from

several robustness tests. Section 3.7 summarizes and concludes our paper.

3.2 Methodology and Data

In this section, we describe our methodology and data. We first outline the hazard

model and credit ratings used to measure distress risk at the firm- and the bond-level,

respectively. We next explain how we calculate the returns on bonds and other assets.

We finally discuss our data sources.

3.2.1 Calculating Firm- and Bond-Level Distress Risk

We follow Campbell et al.’s (2008) hazard model methodology to measure twelve-month-

ahead firm-level distress risk. In particular, we estimate a logit model of a dummy

variable equal to one if a firm defaults on its debt obligations, files for bankruptcy, or

delists for performance reasons over the next twelve months and else zero, Failure, on

distress risk predictors measured at the start of the twelve-month period.5 We can

compactly write the logit model as:

Prob(Failurei,t = 1|Xi,t−12) =
1

1 + exp(−α− βXi,t−12)
, (3.1)

where α is a free parameter, β a vector of free parameters, and Xi,t−12 a vector

containing the distress risk predictors. Campbell et al. (2008) estimate logit model

(3.1) recursively, using data from January 1963 to December of calendar year t, with

t ranging from 1980 to 2003 in unit increments. They next combine the logit model

5Shumway (2001) shows that a logit model is a special form of hazard model.
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estimates obtained from the estimation window extending to December of calendar

year t with the distress risk predictor values over calendar year t+ 1. Doing so, they

ensure that the logit model prediction could have been computed by investors in

real-time.

The distress risk predictors in X contain NIMTA, the ratio of net income to the

sum of the market value of equity and the book value of total liabilities (“market-

value-adjusted total assets”); TLMTA, the ratio of the book value of total liabilities

to market-value-adjusted total assets; CASHMTA, the sum of cash and short-term

assets to market-value-adjusted total assets; and MB, the market-to-book ratio.

To mitigate the effects of outliers on MB, Campbell et al. (2008) add 10% of the

difference between the market value and the book value of equity to the book value

of equity, setting book values of equity that continue to be negative to $1. The

vector X further contains EXRET, the monthly log stock return minus the monthly

log S&P 500 return; SIGMA, a stock’s volatility obtained from daily data over the

prior three months;6 SIZE, the log ratio of a stock’s market capitalization to the

S&P 500’s total market capitalization; and PRICE, the log stock price truncated at

$15.

To enhance the distress risk predictors’ timeliness, Campbell et al. (2008) use

quarterly accounting data in their calculations, assuming that the accounting variable

values become publicly available with a two-month reporting gap (i.e., two months

after the end of the fiscal quarter). To guard against outlier effects, they winsorize

the distress risk predictors at the 5th and 95th percentiles.7

We rely on corporate bond ratings issued by Moody’s and S&P’s to measure

intra-firm variations in distress risk induced through the characteristics of a bond

6More specifically, they calculate volatility as the square root of 252 times the average of the
squared daily stock return over the prior three months, assuming that the expected daily stock
return is equal to zero. In case of stocks with fewer than five non-zero returns over the three-month
period, they replace the volatility estimate with the cross-sectional mean of the volatility estimates
of stocks with more than five non-zero returns over the same period.

7Since we do not have access to the failure data used by Campbell et al. (2008), we are unable
to estimate logit model (3.1) ourselves. Fortunately, however, Jens Hilscher sent us the output from
recursively estimating that model as described in the text. We use the logit model output obtained
from the longest estimation window (1980-2008) to calculate our firm-level distress risk proxy for
the post-2010 sample period. Doing so is unlikely to cause problems since the recursive estimates
sent to us show strong signs of converging over the sample period extending to 2008. We thank
Jens Hilscher and his co-authors for sharing the estimation output from their recursive logit model
estimations with us.

102



issue — as opposed to the inter-firm variations captured by the firm-level distress

risk proxy. To that end, we follow Bai et al. (2019) and assign a number to different

ratings. In particular, we assign a value of one to AAA ratings, a value of two to AA+

ratings, and so on, until ultimately assigning a value of 21 to C ratings. As a result,

investment-grade bonds have a value between one (AAA) and ten (BBB–), while

non-investment-grade bonds have a value above ten. We finally compute Rating as

the value associated with the most recent rating if only one agency issues ratings or

the average of the most recent values if both agencies issue ratings.

3.2.2 Calculating the Returns on Corporate Bonds and

Other Assets

In line with Bessembinder, Kahle, Maxwell and Xu (2009), Bao, Pan and Wang

(2011), and Jostova, Nikolova, Philipov and Stahel (2013), we calculate the net

return of corporate bond i over month t, ri,t, using:

ri,t =
Pi,t + AIi,t + Ci,t
Pi,t−1 + AIi,t−1

− 1, (3.2)

where P is the bond price, AI the accrued interest, and C the coupon payment. The

price P is calculated as follows. To minimize confounding effects arising from bid-ask

spreads, we start by calculating a bond’s daily price as the trading-volume-weighted

average of intra-day transaction prices over that day, as also done by Bessembinder

et al. (2009). In line with Bai et al. (2019), we next calculate two types of bond

returns, namely: (i) the return from the start of month t to the end of month t;

and (ii) the return from the start of month t to the start of month t+ 1, where we

define the start (end) of a month as the first (last) five trading days within that

month. If we have more than one non-missing daily bond price within either the

start- or end-of-month window, we choose the daily price closest to the first/last

trading day of a month in our calculations. Finally, if we are able to calculate both

types of returns, we use the start-of-month to start-of-month (type (ii)) return in

our empirics.
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To calculate the accrued interest AI, we first compute the daily coupon rate.

The daily coupon rate is the coupon rate divided by 360 if a bond’s day-count

basis is “30/360” or “ACT/360,” and it is the coupon rate divided by the actual

number of calendar days per year if the day-count basis is “ACT/ACT.” We next

count the calendar days between the current month-end t and the previous coupon

payment date, assuming that a month has 30 calendar days if the day-count basis

is “30/360” and the actual number of days per month when it is “ACT/360” or

“ACT/ACT.” Also, we use the date of the first coupon payment and the coupon

payment frequency to infer on which days the coupons are paid. We finally calculate

the accrued interest AI as the daily coupon rate multiplied by the number of days

between the current month-end t and the previous coupon payment date.

As is standard in the literature, we impose the following filters on our bond

return data. First, we remove bonds not traded or listed in U.S. public markets.

Second, we exclude bonds that are structured notes, are mortgage-, asset-, or agency-

backed, or are equity-linked. Third, we remove convertible bonds. Fourth, we remove

bonds with a price below $5 or above $1,000. Fifth, we keep only fixed and zero

coupon bonds. Sixth, we remove bonds with less than one year to maturity. Seventh,

we eliminate bond transactions that are labeled as when-issued or lock-in or have

special sales conditions. Eighth, we remove transaction records that are canceled,

subsequently corrected, or reversed. Finally, we only keep transactions with a trading

volume that is larger than $10,000.

In addition to bond returns, we also investigate the stock returns of the subsample

of firms with bonds outstanding over our bond sample period (July 2002 to June 2017).

While we directly obtain the stock returns from CRSP, we replace a stock’s return

over its delisting month with its delisting return if the delisting return is non-missing.

If a stock’s return over its delisting month is missing, we replace the return with

–30% for NYSE and AMEX stocks and –55% for NASDAQ stocks, as advocated by

Shumway (1997) and Shumway and Warther (1999). We do not exclude stocks with

low prices from the stock subsample associated with our bond sample since only large

well-capitalized firms issue bonds, rendering that restriction unnecessary. When we
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later, however, shift our focus to a more comprehensive cross-section of stocks, we

exclude stocks with a one-month-lagged price below $1.

We finally also take a look at a firm’s asset return, defined as the return to

both its shareholders and debtholders. Since we are unable to observe the return

on private debt, we approximate the asset return using a value-weighted average

of the returns on a firm’s stock and its outstanding bonds, using either the book

or market leverage ratio to derive the weights. We assume that firms have only

common stock outstanding (i.e., we ignore preferred stock), and we calculate the

return on outstanding bonds as the value-weighted average of the returns on all

of the firm’s outstanding bond issues. In line with Fama and French (1992), we

define the book leverage ratio as the ratio of the book value of assets to the book

value of equity, while we define the market leverage ratio as the ratio of the book

value of assets to the market value of equity, using the sum of common equity plus

balance-sheet deferred taxes as book value of equity. We use the ratios from the

fiscal year ending in calendar year t− 1 to calculate weights from July of calendar

year t to June of calendar year t+ 1.

3.2.3 Calculating Risk Factors and Control Variables

We use portfolio sorts and FM regressions to investigate the pricing of distress risk.

In the portfolio sorts, we adjust for risk by regressing a portfolio’s return on risk

factors and reporting the intercept from that regression (“alpha”). As risk factors,

we choose either the Fama and French (1993) five-factor model factors or the Bai

et al. (2019) nine-factor model factors. The five Fama-French (1993) factors are the

excess stock market return (MKTStock), the returns of stock spread portfolios formed

on size (SMB) and the book-to-market ratio (HML), as well as the returns of bond

spread portfolios formed on the term structure (TERM) and default risk (DEF). The

term structure spread portfolio is long on long-term government bonds and short

on one-month Treasury bills. Conversely, the default risk spread portfolio is long

on long-term corporate bonds and short on long-term government bonds. The nine

Bai et al. (2019) factors add to the former five factors the return on a stock spread
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portfolio on momentum (MOMStock), Pastor and Stambaugh’s (2003) stock liquidity

risk factor (LIQ), the excess bond market return (MKTBond), and the return on a

bond momentum spread portfolio (MOMBond). The excess bond market return is

the return on a value-weighted portfolio of our sample bonds minus the one-month

Treasury-bill rate. The bond momentum spread portfolio is long an equally-weighted

portfolio of bonds with a past return over months t− 6 to t− 1 in the top decile and

short an equally-weighted portfolio of bonds with that past return in the bottom

decile (see Jostova et al. (2013)).8

In the FM regressions, we control for risk by including both stock and bond factor

exposures and characteristics as control variables in our estimations. In particular, the

bond-return regressions include a bond’s exposures to the excess stock (MKTStock)

and bond (MKTBond) market returns and to the SMB, HML, MOMStock, MOMBond,

TERM, DEF, and LIQ spread portfolio returns. They further include a bond’s years-

to-maturity, log bond amount outstanding, most recent credit rating, and lagged

one-month excess return. Conversely, the stock regressions include a stock’s exposures

to the excess stock and bond market returns and to the MOMBond, TERM, DEF, and

LIQ spread portfolio returns, while directly adding the stock’s one-month-lagged log

market value of equity, log book-to-market ratio, and past-eleven-month compounded

return.9 In case of both the stock and bond portfolios, we estimate the exposures

using rolling window regressions over the past 36 months of monthly data, winsorizing

the estimated exposures at the 1st and 99th percentiles per month to mitigate outlier

effects.

8To avoid losing the first seven months of our sample period, we use the bond momentum
spread portfolio return from Gergana Jostova’s website over the July 2002-January 2003 period
in our empirical work.

9Following Fama and French (1992), we calculate the log book-to-market ratio as the log of the
ratio of the book value of equity to the market value of equity, where the book value of equity is
total assets minus total liabilities plus deferred taxes minus preferred stock from the fiscal year-end
in calendar year t− 1 and the market value of equity is the stock price times shares outstanding at
the end of calendar year t− 1. We use the computed value from July of calendar year t to June
of calendar year t+ 1. Following Carhart (1997), we calculate the past-eleven-month momentum
return as the compounded return over months t− 12 to t− 2, leaving a one-month gap between the
compounding period and the current month t to avoid that the momentum return also captures
short-term reversal effects.
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3.2.4 Data Sources

We obtain stock data from CRSP and accounting data from Compustat. We collect

bond data, including intraday transaction prices, trading volumes, and buy and sell

indicators, from the enhanced version of the Trade Reporting and Compliance Engine

(TRACE). In contrast to the Lehman Brothers Fixed Income Database, Datastream,

and Bloomberg, which are quote-based databases, TRACE is a trade-based database,

offering higher market transparency (see Bessembinder, Maxwell and Venkataraman

(2006)) and covering about 99% of all public bond-market transactions since February

2005 (see Bao et al. (2011)). We rely on the Mergent Fixed Income Securities Database

(FISD) to obtain bond characteristics, including offering-amount and -date, maturity

date, coupon-rate, -type, and -payout frequency, bond-type, -rating, and -option

features, and issuer information. We obtain MKTStock, SMB, HML, and MOMStock

from Ken French’s website, while we obtain LIQ from Lubos Pastor’s website. We

retrieve the corporate and government bond portfolio returns underlying the bond

risk factors TERM and DEF from DataStream.

Our main bond sample period, determined by the availability of TRACE data,

is July 2002 to June 2017. In our stock tests, we, however, sometimes rely on the

longer sample period from January 1981 to December 2017, which is determined by

our firm-level distress risk proxy.

3.3 The Pricing of Distress Risk in Corporate

Bonds

In this section, we study the relation between firm-level distress risk and the cross-

section of corporate bond returns. We start with offering summary statistics on our

analysis variables. We next provide the mean excess returns and alphas of bond

portfolios and their associated stock portfolios univariately sorted based on our firm-

level distress risk proxy. We finally report the same statistics for bond portfolios

double-sorted on both the firm-level distress risk proxy and intra-firm distress risk as

captured by bond ratings as well as asset portfolios univariately sorted on firm-level
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distress risk.

3.3.1 Summary Statistics

Table 3.1 reports summary statistics on our analysis variables, with Panels A, B,

and C focusing on bond, stock, and firm characteristics, respectively. The summary

statistics include the number of observations, the mean, standard deviation, and the

1st, 5th, 25th, 50th, 75th, 95th, and 99th percentiles. The table shows that our bond

sample contains 556,965 bond-month observations over the sample period from July

2002 to June 2017. While the number of observations in our sample appears low

compared to the number of observations used in other studies, we note that we lose

many observations in the process of merging with the stock and firm characteristics

data.10 The average bond in our sample has a monthly return of 0.62%, a rating of

7.49 (BBB+), a market size of 0.57 billion dollars, and a time-to-maturity of 9.63

years. Conversely, the average stock has a monthly return of 0.96% and a market

size of 58.6 billion dollars. The average twelve-month-ahead distress risk of the firms

in our sample is only 0.09%, which is much lower than the average reported in

Campbell et al. (2008). The reason is that bonds are almost exclusively issued by

large firms, which tend to have a low distress risk.

10More specifically, our initial bond return sample contains 826,845 bond-month return observa-
tions, so that 269,880 observations are lost in the process of merging.
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Table 3.1: Descriptive Statistics

In this table, we present descriptive statistics for our analysis variables. Panel A reports the number of bond-month observations, the cross-sectional mean, median, standard
deviation, and selected percentiles of the monthly corporate bond return, and bond characteristics including the most recent credit rating, the years-until-maturity, and the
market size (in billions). The credit rating is an integer between one and 21, with one referring to a triple A rating and 21 to a C rating. Panel B reports the number of
stock-month observations, the cross-sectional mean, median, standard deviation and selected percentiles of the monthly stock return, and stock characteristics including market
size (in billions). Panel C reports firm characteristics. Distress risk is the probability that the firm fails over the coming twelve months, calculated using the methodology of
Campbell et al. (2008). Book leverage is the ratio of book assets to book equity, and market leverage is the ratio of book assets to market equity. Asset size is the book value
of the firm’s total assets, measured in billions. The sample period is from July 2002 to June 2017.

Standard Percentiles

Obs Mean Deviation 1 5 25 50 75 95 99

Panel A: Bond Characteristics

Return (%) 556,965 0.62 4.48 –9.51 –3.68 –0.51 0.44 1.69 5.13 11.39

Credit Rating 556,965 7.49 3.49 1.00 1.00 5.00 7.00 9.50 14.50 16.00

Time-to-Maturity (years) 556,965 9.63 8.82 1.17 1.62 3.72 6.55 11.13 27.97 29.93

Market Size (in billions) 556,965 0.57 0.61 0.00 0.01 0.25 0.40 0.75 1.75 3.00

Panel B: Stock Characteristics

Return (%) 556,965 0.96 10.21 –27.05 –13.15 –3.49 0.96 5.31 14.33 28.45

Market Size (in billions) 556,965 58.60 82.70 0.23 1.12 7.34 21.60 70.20 240.00 364.00
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Table 3.1 continued

Panel C: Firm Characteristics

Distress Risk (%) 556,965 0.09 0.32 0.01 0.01 0.03 0.04 0.06 0.21 1.14

Book Leverage 556,965 6.71 26.11 1.41 1.66 2.26 3.19 6.92 16.12 32.24

Market Leverage 556,965 4.23 6.51 0.28 0.49 1.11 1.94 4.00 17.07 32.25

Asset Size (in billions) 556,965 255.22 523.35 0.70 2.41 12.94 39.12 178.35 1787.63 2265.79

110



3.3.2 Portfolios Univariately Sorted on Firm-Level Dis-

tress Risk

We next analyze the relation between firm-level distress risk and the cross-section of

corporate bond returns. To do so, we sort our bond sample into portfolios according

to the decile breakpoints of the firm-level distress risk proxy distribution at the end

of month t− 1. We value- or equally-weight the portfolios, using the notional bond

value outstanding at the end of month t − 1 to calculate the value weights, and

hold the portfolios over month t. We follow an analogous procedure to also sort

the subsample of stocks associated with the bonds into value- or equally-weighted

portfolios, using the market value of equity at the end of month t− 1 to calculate

the value weights. For each set of portfolios (i.e., the value or equally-weighted

stock or bond portfolios), we create a spread portfolio long the highest distress risk

portfolio and short the lowest portfolio. To adjust for systematic risk, we regress

each portfolio’s return on the five Fama and French (1993) factors or the nine Bai

et al. (2019) factors introduced in Section 3.2.3 and report the alphas from these

regressions.
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Table 3.2: Bond and Stock Portfolios Univariately Sorted on Firm-Level Distress Risk

In this table, we present the mean excess returns and alphas of bond and stock portfolios univariately sorted on firm-level distress risk. We form the portfolios by sorting
either bonds or stocks into portfolios according to the decile breakpoints of our firm-level distress risk proxy at the end of month t− 1. The firm-level distress risk proxy is
Campbell et al.’s (2008) hazard-model probability that a firm fails over the coming twelve months. We either value- (Panel A) or equally-weight the portfolios (Panel B) and
hold them over month t. We calculate the bond weights using notional bond values outstanding and the stock weights using market equity values. We also form a spread
portfolio long the highest distress risk decile and short the lowest (“High–Low”). The table reports the time-series average of the cross-sectional averages of distress risk, the
average numbers of bonds/stocks per portfolio, and the average excess bond/stock returns, Fama-French five-factor alphas and Bai et al. (2019) nine-factor alphas for each
bond/stock portfolio. Average distress risk, the average excess returns, and the alphas are in monthly percentage terms. We obtain the alphas from regressing a portfolio’s
return on the relevant factors and reporting the intercept from that regression. The five-factor model factors are the excess stock market return (MKTStock), the size factor
(SMB), the value factor (HML), the term factor (TERM) and the default factor (DEF). The nine-factor model adds to these the stock momentum factor (MOMStock), the
stock liquidity risk factor (LIQ), the bond market factor (MKTBond) and the bond momentum factor (MOMBond). Newey and West (1987)-adjusted t-statistics calculated
using a twelve-month lag-length are given in parentheses.

Bonds Stocks

Mean Mean Mean Mean

Decile Dist. Risk # Bonds Mean Return FF5 Alpha B9 Alpha Dist. Risk # Stocks Mean Return FF5 Alpha B9 Alpha

Panel A: Value-Weighted Distress Risk Portfolios

1 (L) 0.01 377 0.56 0.49 0.21 0.01 71 0.45 –0.10 –0.12

2 0.02 384 0.50 0.46 0.14 0.02 71 0.58 0.06 0.06

3 0.03 382 0.60 0.54 0.20 0.03 71 0.56 –0.03 –0.08

4 0.03 382 0.50 0.42 0.08 0.03 71 0.65 –0.01 –0.08

112



Table 3.2 continued

5 0.04 383 0.46 0.37 0.04 0.04 71 0.81 0.12 0.10

6 0.05 382 0.45 0.31 –0.06 0.05 71 0.92 0.20 0.13

7 0.07 387 0.48 0.35 0.02 0.06 71 0.87 0.08 0.02

8 0.09 382 0.42 0.26 –0.10 0.09 71 0.65 –0.22 –0.24

9 0.14 388 0.45 0.23 –0.15 0.15 71 0.72 –0.15 –0.17

10 (H) 0.51 408 0.47 0.07 –0.34 0.76 72 0.33 –1.07 –1.12

H–L –0.09 –0.41 –0.55 –0.13 –0.97 –1.01

t-stat. [–0.34] [–2.32] [–2.69] [–0.15] [–1.92] [–2.18]

Panel B: Equally-Weighted Distress Risk Portfolios

1 (L) 0.01 377 0.58 0.51 0.26 0.01 71 0.73 0.11 0.05

2 0.02 384 0.53 0.48 0.19 0.02 71 0.75 0.13 0.07

3 0.03 382 0.64 0.58 0.27 0.03 71 0.80 0.12 0.05

4 0.03 382 0.57 0.50 0.17 0.03 71 0.89 0.16 0.05

5 0.04 383 0.48 0.40 0.12 0.04 71 1.10 0.31 0.19
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Table 3.2 continued

6 0.05 382 0.52 0.40 0.01 0.05 71 1.17 0.35 0.26

7 0.07 387 0.52 0.39 0.09 0.06 71 1.00 0.11 –0.02

8 0.09 382 0.49 0.30 –0.12 0.09 71 1.07 0.03 –0.03

9 0.14 388 0.52 0.30 –0.11 0.15 71 1.08 –0.03 –0.20

10 (H) 0.51 408 0.52 0.10 –0.35 0.76 72 1.01 –0.57 –0.72

H–L –0.05 –0.41 –0.62 0.28 –0.68 –0.77

t-stat. [–0.17] [–2.07] [–2.72] [0.30] [–1.09] [–1.81]
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Table 3.2 11 presents the mean excess returns, alphas, and other characteristics of

the stock and bond distress portfolios, with Panel A focusing on the value-weighted

and Panel B on the equally-weighted portfolios. Plain numbers are estimates, whereas

the numbers in square parentheses are t-statistics calculated using Newey and West

(1987) standard errors with a lag length of twelve months. The other characteristics

are the time-series averages of the cross-sectional distress risk average and the number

of assets (bonds or stocks) per portfolio. Consistent with Campbell et al.’s (2008)

evidence on the stock pricing of distress risk, Table 3.2 suggests that the mean excess

returns and alphas of the value- and equally-weighted bond portfolios decrease with

distress risk. 12 Also consistent with Campbell et al. (2008), only the decreases in the

alphas but not those in the mean excess returns are, however, statistically significant.

13 For example, Panel A suggests that, while the bond spread portfolio long the top

and short the bottom value-weighted distress portfolio has an insignificant mean excess

return of –0.09% per month (t-statistic: –0.34), its five-factor alpha is a significant

–0.41% (t-statistic: –2.32) and its nine-factor alpha a significant –0.55% (t-statistic:

–2.69). The left panel of Figure 3.1 graphically shows the relations between the mean

excess bond returns and alphas and the distress portfolios.

11The empirical results are hardly affected by the financial crisis. To maintain the brevity of this
paper, we do not report the empirical results before or after the financial crisis periods.

12We have verified that the bond offering yield increases with distress risk, and the emprical
results are shown in Appendix A..

13We have conducted the monotonic relation test on whether the relations between distress risk
and mean excess returns, FF5 alphas, and B9 alphas of the ten value-weighted bond portfolios are
monotonic through applying the method developed by Patton and Timmermann (2010). Relevant
results and analysis are discussed in Appendix B..
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Figure 3.1: Mean Excess Returns and Alphas of Distress-Sorted Port-
folios
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This figure plots the mean excess returns and Fama-French five-factor and Bai et al. nine-factor
model alphas of the value-weighted distress-sorted bond (left panel) and stock portfolios (right
panel) over our sample period.

More directly corroborating Campbell et al.’s (2008) evidence, Table 3.2 further

shows that the mean excess returns and alphas of the stock portfolios formed using

only stocks associated with the bonds also decrease with distress risk. As before,

however, only the decreases in the alphas but not those in the mean excess returns are

significant. For example, Panel A suggests that, while the stock spread portfolio long

the top and short the bottom value-weighted distress portfolio has an insignificant

mean excess return of –0.13% (t-statistic: –0.15), its five- and nine-factor alphas are

a significant –0.97% (t-statistic: –1.92) and –1.01% (t-statistic: –2.18), respectively.

The right panel of Figure 3.1 graphically shows the relations between the mean excess

stock returns and alphas and the distress portfolios.
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Figure 3.2: Factor Exposures of Distress-Sorted Bond and Stock Port-
folios
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This figure plots the factor exposures of the value-weighted distress-sorted bond (upper panels)
and stock portfolios (lower panels) over our sample period. We use the nine-factor model to
estimate the factor exposures for each portfolio. We show the factor exposures on the factors,
MKTStock, SMB and HML, in the left panel, the factors (MOMStock, MOMBond and LIQ) in
the middle panel and the factors (MKTBond, TERM and DEF) in the right panel.

Figure 3.2 plots the exposures of the stock and bond distress portfolios on Bai

et al.’s (2019) nine risk factors, shedding light on why the mean excess returns of

the portfolios are so different from their alphas. The figure shows striking trends

in the exposures over the portfolios. Starting with the bond portfolios, we see that,

of the stock risk factors, the stock market and liquidity exposures increase almost

monotonically over the distress portfolios, while the SMB, HML, and stock MOM

exposures produce no discernable patterns. Conversely, of the bond market factors,

only the bond market exposure but not the bond MOM, DEF, or TERM exposures

increase over the distress portfolios. Given that both the stock and the bond market

as well as the LIQ factor produce, on average, positive excess returns over our sample

period,14 it is no surprise that the alphas of the bond distress spread portfolios are

14To be more specific, the average monthly returns of the stock market portfolio, the bond market
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significantly lower than their mean excess returns. Turning to the stock portfolios, the

stock market, HML, and bond market exposures increase almost monotonically over

the distress portfolios. Given that the HML factor also produces a positive average

return over our sample period, it is also not surprising that the alphas of the stock

distress spread portfolios are significantly lower than their mean excess returns.

3.3.3 Portfolios Double-Sorted on Firm-Level and Intra-

Firm Distress Risk

A potential explanation for the negative relation between firm-level distress risk and

corporate bond returns obtained in the previous subsection could be that distressed

firms issue higher quality bonds than safer firms. Distressed firms may, for example,

grant a higher priority to their bondholders and may issue more secured bonds. To

refute that explanation, we now measure the quality of a bond issue using its most

recently available credit rating and sort our bond sample into double-sorted portfolios

according to their firm- and bond-level distress risk at the end of month t− 1. As

before, we either value- or equally-weight the portfolios and hold them over month t.

We adjust for risk by regressing a portfolio’s return on Bai et al.’s (2019) nine risk

factors and reporting the intercept.

portfolio, and the liquidity spread portfolio are 0.70%, 0.53%, and 0.24% per month, respectively.

118



Table 3.3: Bond Portfolios Double-Sorted on Firm- and Bond-Distress
Risk

In this table, we present the nine-factor model alphas of bond portfolios double-sorted on firm-
and bond-level distress risk. In Panel A, we form the portfolios by sorting bonds into portfolios
according to their most recent credit rating at the end of month t− 1. Within each credit rating
portfolio, we then sort into portfolios according to the quintile breakpoints of our firm-level distress
risk proxy at the same time. In Panel B, we reverse the exercise, first sorting into quintile firm-level
distress risk portfolios and then into credit-rating portfolios. The firm-level distress risk proxy is
Campbell et al.’s (2008) hazard-model probability that a firm fails over the coming twelve months.
The credit rating is an integer between one and 21, with one referring to a triple A rating and 21
to a C rating. Investment grade bonds have numbers from 1 to 10, speculative bonds from 11 to
13, highly speculative bonds from 14 to 16, and junk bonds from 17 to 21. We either value- (Panels
A.1 and B.1) or equally-weight the portfolios (Panels A.2 and B.2) and hold them over month t.
We calculate the bond weights using notional bond values outstanding and the stock weights using
market equity values. Within each first-sorting-variable portfolio, we form a spread portfolio long
the highest second-sorting-variable portfolio and short the lowest (“High–Low”). The table shows
the average number of bonds per portfolio and the Bai et al. (2019) nine-factor alpha, in monthly
percentage terms. See the caption of Table 3.2 for details on how we calculate the nine-factor model
alpha. Newey and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are
in parentheses.

Panel A: First Sorting Variable: Credit Rating; Second: Distress Risk

Credit Rating

Investment Highly

Grade Speculative Speculative Junk

Dist. Risk Obs Alpha Obs Alpha Obs Alpha Obs Alpha

Panel A.1: Value-Weighted Distress Risk Portfolios

1 (L) 605 0.15 99 0.31 39 0.34 33 0.55

2 600 0.13 97 0.17 38 0.14 33 0.36

3 602 –0.02 97 0.18 38 0.13 32 0.36

4 595 –0.13 97 0.10 38 0.02 33 0.01

5 (H) 565 –0.29 95 –0.16 37 –0.36 31 –0.73

H–L –0.43 –0.47 –0.70 –1.28

t-stat. [–2.58] [–2.74] [–2.73] [–3.05]

Panel A.2: Equally-Weighted Distress Risk Portfolios

1 (L) 605 0.20 99 0.32 39 0.41 33 0.61

2 600 0.21 97 0.22 38 0.28 33 0.38
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Table 3.3 continued

3 602 0.05 97 0.24 38 0.24 32 0.38

4 595 –0.13 97 0.16 38 0.14 33 0.02

5 (H) 565 –0.30 95 –0.15 37 –0.29 31 –0.74

H–L –0.50 –0.47 –0.70 –1.34

t-stat. [–2.47] [–2.81] [–2.72] [–3.10]

Panel B: First Sorting Variable: Distress Risk; Second: Credit Rating

Distress Risk

Q1 Q2 Q3 Q4

Cred. Rat. Obs Alpha Obs Alpha Obs Alpha Obs Alpha

Panel B.1: Value-Weighted Distress Risk Portfolios

Invest. Gra. 756 0.15 747 0.08 744 –0.12 708 –0.27

Spec. 122 0.23 123 0.10 125 0.15 138 –0.12

High. Spec. 44 0.26 44 0.09 45 –0.04 45 –0.22

Junk 42 0.57 42 0.30 42 0.32 36 –0.14

H–L 0.42 0.22 0.44 0.13

t-stat. [4.52] [1.87] [3.39] [0.51]

Panel B.2: Equally-Weighted Distress Risk Portfolios

Invest. Gra. 756 0.20 747 0.17 744 –0.09 708 –0.29

Spec. 122 0.27 123 0.18 125 0.18 138 –0.06

High. Spec. 44 0.33 44 0.18 45 0.09 45 –0.20

Junk 42 0.62 42 0.44 42 0.37 36 –0.08

H–L 0.42 0.26 0.46 0.21

t-stat. [4.69] [2.79] [2.89] [0.88]

Table 3.3 presents the results from the double-sorted portfolio formation exercise.

In Panel A, we start with sorting our bond sample into four credit rating classes:
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investment-grade (Rating: 1-10), speculative (11-13), highly speculative (14-16), and

junk bonds (17-21). Within each class, we sort bonds into quintile portfolios according

to their firm-level distress risk. Looking at value- and equally-weighted portfolios

in Panels A.1 and A.2, respectively, Panel A suggests that the nine-factor alphas

significantly decrease over the distress portfolios within each class. In fact, controlling

for a bond’s credit rating, the negative distress risk-bond alpha relations become more

pronounced, with the alphas of the high-minus-low distress spread portfolios now

never attracting a t-statistic above –2.50. Panel B reverses the exercise, first sorting

into firm-level distress quintiles and then into the four credit rating classes. Looking

at value- and equally-weighted portfolios in Panels B.1 and B.2, respectively, Panel B

suggests that, except for the top distress quintile, the nine-factor alphas significantly

increase over the credit rating classes within each distress quintile. Most pronouncedly,

within the bottom distress quintile, the alphas increase by 0.42% as we move from the

value- or equally-weighted investment-grade portfolio to the corresponding junk-bond

portfolio (t-statistics about 4.60; see Panels B.1 and B.2).

3.3.4 Asset Portfolios Univariately Sorted on Firm-Level

Distress Risk

We finally take a look at the relation between firm-level distress risk and asset

returns. Table 3.4 shows the nine-factor alphas of value- or equally-weighted asset

portfolios sorted on firm-level distress risk, with the portfolios being formed using

the same procedures as before. The table suggests that the nine-factor alphas of

the asset portfolios decrease with distress risk, which is perhaps unsurprising given

that both stock and bond returns do so, too. Interestingly, however, the magnitudes

of the decreases are slightly smaller than for the stock and bond portfolios, with,

for example, the alphas of the high-minus-low distress spread portfolio now only

being between –0.22% and –0.38% per month. In accordance, the t-statistics of the

spread portfolio alphas are now slightly less significant, with them being around

–1.90 except for the book-leverage value-weighted asset return.
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Table 3.4: Asset Portfolios Univariately Sorted on Firm-Level Distress Risk

In this table, we present the nine-factor model alphas of portfolios of firms’ assets univariately sorted on firm-level distress risk. We form the portfolios by sorting assets into
portfolios according to the decile breakpoints of our firm-level distress risk proxy at the end of month t− 1. We calculate a firm’s asset return as a value-weighted average of its
common stock return and its aggregate bond return. We either use the book values of equity and total liabilities (“book leverage asset return”) or the market value of equity
and the book value of total liabilities to compute the weights (“market leverage asset return”). The aggregate bond return is a value-weighted average of the returns on all of
the firm’s outstanding bond issues, using notional amounts to calculate the weights. The firm-level distress risk proxy is Campbell et al.’s (2008) hazard-model probability that
a firm fails over the coming twelve months. We either value- or equally-weight the portfolios and hold them over month t. We also form a spread portfolio long the highest
distress risk decile and short the lowest (“High–Low”). The table reports the time-series average of the cross-sectional averages of distress risk, the average numbers of assets
per portfolio, and the Bai et al. (2019) nine-factor alphas per portfolio. Average distress risk and the alphas are in monthly percentage terms. See the caption of Table 3.2 for
details on how we calculate the nine-factor model alpha. Newey and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses.

Value-Weighted Portfolios Equally-Weighted Portfolios

Book Lev. Market Lev. Book Lev. Market Lev.

Asset Return Asset Return Asset Return Asset Return

Decile Mean Dist. Risk Mean # Firms 9 Factor Alpha 9 Factor Alpha 9 Factor Alpha 9 Factor Alpha

1 (L) 0.01 54 0.31 0.50 0.26 0.28

2 0.02 53 0.30 0.36 0.26 0.31

3 0.02 54 0.25 0.34 0.22 0.29

4 0.03 53 0.23 0.27 0.22 0.25

5 0.04 53 0.28 0.31 0.29 0.35
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Table 3.4 continued

6 0.04 54 0.24 0.29 0.22 0.32

7 0.06 54 0.24 0.32 0.22 0.24

8 0.08 54 0.14 0.09 0.18 0.19

9 0.12 54 0.36 0.35 0.21 0.17

10 (H) 0.54 53 0.09 0.12 0.01 -0.01

High–Low –0.22 –0.38 –0.24 –0.28

t-statistic [–1.24] [–1.90] [–1.98] [–1.88]
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Overall, we conclude from this section that there is a robust negative relation

between firm-level distress risk and the cross-section of corporate bond returns, which

becomes statistically significant once we control for popular risk factors. We are able to

draw the same conclusions for the subsample of stocks associated with our bond sample.

Variations in bond quality across differentially-distressed firms are not responsible for

the negative distress risk-bond return relation, but work against it. Controlling for

such variations, the negative relation becomes more pronounced and significant. Given

the effects of firm-level distress risk on bond and stock returns, we also find a negative

relation between firm-level distress risk and asset returns, which are the value-weighted

average of stock and bond returns.

3.4 Does Financial Risk Explain the Bond Dis-

tress Premium?

In this section, we study whether financial risk can explain why stock and corporate

bond returns decrease with distress risk. Garlappi et al.’s (2008) and Garlappi and

Yan’s (2011) shareholder advantage theory, for example, suggests that shareholders’

ability to extract economic rents from debtholders in distress explains the negative

stock distress premium. To see whether that theory can also explain a negative bond

distress premium, we first repeat Garlappi et al.’s (2008) simulation exercise to identify

the sign of the effect of shareholder advantage on the bond distress premium. We next

rerun our asset pricing tests allowing the bond distress premium to depend on popular

shareholder advantage proxies.

3.4.1 Shareholder Advantage and the Pricing of Distressed

Debt

A. A Shareholder Advantage Model of the Firm

In line with Garlappi et al. (2008), we now study whether the shareholder advantage

model of Fan and Sundaresan (2000) can explain the distress anomaly in stocks and
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corporate bonds. Fan and Sundaresan (2000) look at a debt and equity-financed firm

operating in continuous time indexed by t. The firm is exposed to a flat corporate

tax rate of τ and loses a fraction of firm value α in bankruptcy (“deadweight costs of

bankruptcy”). The value of the firm’s unlevered assets, Vt, obeys:

dVt = (µ− δ)Vtdt+ σVtdBt, (3.3)

where µ is the expected return on the unlevered assets, δ < µ the dividend yield, σ

the volatility of the unlevered assets, and dBt is the increment of a standard Brownian

motion.

Turning to the financing side of the model, Fan and Sundaresan (2000) assume

that the firm’s entire debt takes the form of a single perpetuity with a coupon

payment of c per time unit. Since the coupon payment is tax-deductable, it creates

a tax shield. Shareholders are able to strategically default on the coupon payment.

They use that possibility when the unlevered asset value Vt drops below the

threshold level ṼS endogenously chosen by them. In default, shareholders and

debtholders negotiate about the residual levered firm value, with shareholders

ultimately receiving the fraction θ̃ of residual value and debtholders the fraction

1− θ̃. The fractions are determined by maximizing the joint benefit to shareholders

and debtholders in a Nash bargaining game:

θ̃∗ = argmax
[
θ̃υ(V )− 0

]η [
(1− θ̃)υ(V )− (1− α)V

](1−η)

= η

(
1− (1− α)V

υ(V )

)
, (3.4)

where υ(V ) is the levered asset value, and η shareholders’ bargaining power.

Equation (3.4) shows that the fraction of firm value allocated to shareholders in

default, θ̃, increases with shareholders’ bargaining power, η, and the fraction of

firm value lost in bankruptcy, α.

Using standard real options techniques outlined in, for example, Dixit and

Pindyck (1994), Fan and Sundaresan (2000) derive closed-form solutions for

the levered firm value, υ(V ), the equity value, Ẽ(V ), the debt value, D̃(V ), and
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the default threshold, ṼS. Building up on Fan and Sundaresan’s (2000) results,

Garlappi et al. (2008) derive closed-form solutions for the time-0 expectation of

the equity value at time t, E0(Ẽ(Vt)), and the probability that the unlevered asset

value Vt hits the threshold ṼS over the period from time 0 to T , Prob(0,T ](V0)

(“strategic default probability”). Using the equity value expectation, they calculate

the expected equity return, defined as the ratio of the expected equity value to its

current value. We show the closed-form solutions derived by Fan and Sundaresan

(2000) and Garlappi et al. (2008) in Appendix A. In the same appendix, we

also derive the time-0 expectation of the debt value at time t, E0(D̃(Vt)), which,

since D̃(V ) = υ(V ) − Ẽ(V ), only requires us to derive the time-0 expectation

of the levered asset value, E0(υ(Vt)). Using the expected levered asset value and

the expected debt value, we calculate the expected levered asset return and the

expected debt return over and above the expected equity return.

B. Simulation Results

We use the closed-form solutions derived in Section A. to extend the simulation

exercise of Garlappi et al. (2008). In line with them, we calculate expected returns

over a one-month horizon and default risk over a one-year horizon, and we set

the risk-free rate, r, to 0.04, the payout rate, δ, to 0.04, the tax rate, τ , to 0.35

and the bankruptcy costs, α, to 0.50. Also in line with them, we draw the coupon

rate, c, the expected unlevered asset return, µ, and the initial unlevered asset value,

V0, from uniform distributions with support [0.05, 0.10], [δ + 1
2
σ, 3(δ + 1

2
σ)], and

[VS, VS + 1.25], respectively. Since we do not have access to the asset volatility

estimates from Moody’s KMV Corporation, we also draw these from a uniform

distribution with support [0.10, 0.30]. Relying on a shareholder bargaining power η

of 0.20, 0.50, or 0.80, we simulate 100,000 firms and calculate their expected levered

asset returns, expected equity returns, expected debt returns, and default risk using

the formulas in Appendix 3.8.2. We next sort the firms into ten decile portfolios

according to their distress risk. We finally compute the equally-weighted expected

levered asset-, equity-, and debt-returns of the portfolios.
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Figure 3.3: Shareholder Advantage and Expected Asset, Stock, and
Debt Returns
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PanelB: Expected Stock Return
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PanelC: Expected Debt Return
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The figure shows the monthly expected levered asset returns (Panel A), stock returns (Panel
B), and debt returns (Panel C) of decile portfolios sorted according to strategic default risk in
the shareholder advantage model of Fan and Sundaresan (2000) with a shareholder bargaining
power (eta) of either 0.20, 0.50, or 0.80. We describe the simulations and analytical formulas
used to create the figure in Section 3.4.1 and Appendix 3.8.2, respectively.

Figure 3.3 plots the results from the simulations, with Panels A, B, and C

focusing on the expected levered asset, equity, and debt return, respectively. Panel

B corroborates Garlappi et al.’s (2008) result that a higher shareholder bargaining

power, η, can turn the default risk-expected equity return relation from being

almost monotonically positive to hump-shaped, with high default risk firms having a

(marginally) lower expected equity return than low default risk firms. Conversely,

consistent with the intuition that debtholders hold a zero-risk long perpetuity and a

high-risk short put option entitling shareholders to default on their debt payments,

and that the short option’s risk increases with default risk, Panel C shows that the

default risk-expected debt return relation is consistently positive in all our simulations.

Perhaps surprisingly, the panel, however, also suggests that the relation does not

become more but less positive with a higher shareholder bargaining power. Panel

A hints at the reason, with it suggesting that the negative effect of shareholder

bargaining power on the default risk-expected debt return relation stems from a

similarly negative effect of shareholder bargaining power on the default risk-expected

levered asset return relation. Notwithstanding, the most important takeaway is that,

under realistic model input parameters, the Fan and Sundaresan (2000) shareholder

advantage model produces a consistently positive default risk-expected debt return

relation.
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3.4.2 Conditioning the Bond Distress Premium on Share-

holder Advantage Proxies

Section 3.4.1 presents theoretical evidence that shareholder advantage theories are

unable to explain a negative distress premium in corporate debt including bonds.

To further substantiate that evidence, we next condition the bond distress premium

estimate obtained in Section 3.3 on popular shareholder advantage proxies, including

a firm’s R&D intensity, its industry concentration, and its asset tangibility. Opler

and Titman (1994) show that highly levered firms with a high R&D intensity

often encounter cash flow problems in recessions, triggering their cash-flow-related

covenants and preventing them from renegotiating their debt. Conversely, Shleifer and

Vishny (1992) and Acharya, Sundaram and John (2011) show that firms operating

in concentrated industries and mostly owning intangible assets are often forced to

sell their assets at fire-sale discounts in distress, making debtholders more willing to

compromise to avoid a liquidation. Thus, the literature usually interprets a lower

R&D intensity, a higher industry concentration, and a lower asset tangibility as

signalling greater shareholder advantage.

We calculate a firm’s R&D intensity as the ratio of its R&D expenses to

its total assets. In accordance with Garlappi et al. (2008), we employ the sales-

based Herfindahl index to measure an industry’s concentration. We calculate that

Herfindahl index for industry j as:

Herfindahlj =

Ij∑
i=1

s2
i,j,

where si,j is the fraction of firm i’s sales over the total sales of FF49 industry j, and

Ij is the number of firms belonging to that industry. We calculate a firm’s asset

tangibility as the ratio of its gross property, plant and equipment (PPE) to its

total assets. We take all accounting variables required to calculate the shareholder

advantage proxies from the fiscal-year end in calendar year t − 1. We use the

proxies from July of calendar year t to June of calendar year t+ 1.

We start with using portfolio sorts to gauge the effect of the shareholder advantage
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proxies on the distress premium in corporate bonds. To do so, we sort our bond

sample (alternatively, the associated stock sample) into portfolios according to the

tercile breakpoints of each shareholder advantage proxy at the end of month t− 1.

Within each shareholder advantage portfolio, we next sort the same assets into

portfolios according to the quintile breakpoints of firm-level distress risk at the end of

month t− 1, giving us portfolios double-sorted on each shareholder advantage proxy

and distress risk.15 We either value- or equally-weight the double-sorted portfolios

and hold them over month t, adjusting for risk by regressing each portfolio’s return

on the nine Bai et al. (2019) risk factors.

Table 3.5 presents the nine-factor alphas of the bond and stock portfolios

double-sorted on shareholder advantage and distress risk. In Panels A to C, we use

R&D intensity, the Herfindahl index, and asset tangibility to proxy for shareholder

advantage, respectively. In each panel, the column titled “Strong (Weak) Shareholder

Power” shows the alphas of those portfolios containing the 33% of firms with

the highest (lowest) shareholder advantage according to the proxy used in the

panel. Remarkably, the table suggests that, despite them being almost always

significant, the declines in the bond alphas over the distress portfolios are virtually

unrelated to shareholder advantage. Using asset tangibility to measure shareholder

advantage, Panel C, for example, suggests that the decline in the value-weighted

bond alpha is 0.31% (t-statistic: –2.48) for strong shareholder advantage firms and

0.48% (t-statistic: –2.38) for weak shareholder advantage firms. Looking at either

value- or equally-weighted portfolios, the two other proxies, R&D intensity and the

Herfindahl index, yield similarly narrow differences in the bond alpha declines over

the set of distress portfolios (see Panels A and B).

15We only sort into two median portfolios in case of R&D intensity. We do so since, when
following other studies and setting missing R&D expenditures equal to zero, more than half of all
firms have zero R&D expenditures, making it impossible to sort into more granular (e.g., decile or
quintile) portfolios.
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Table 3.5: Bond and Stock Portfolios Double-Sorted on Firm-Level Distress Risk and Shareholder Advantage

In this table, we present the nine-factor model alphas of bond and stock portfolios double-sorted on firm-level distress risk and shareholder advantage. We form the portfolios
by first sorting bonds or stocks into portfolios according to the tercile breakpoints of one of the shareholder advantage proxies at the end of month t − 1. Within each
shareholder advantage portfolio, we then sort them into portfolios according to the quartile breakpoints of our firm-level distress risk proxy at the same time. The firm-level
distress risk proxy is Campbell et al.’s (2008) hazard-model probability that a firm fails over the coming twelve months. The shareholder advantage proxy is R&D intensity
(Panel A), the sales-based Herfindahl index (Panel B), and asset tangibility (Panel C), with a low R&D intensity, a high Herfindahl index, and a low asset tangibility indicating
strong shareholder advantage. R&D intensity is R&D expenses scaled by total assets. The Herfindahl index is the sum over firms’ squared sales proportions within an industry.
Asset tangibility is gross PP&E scaled by total assets. In case of R&D intensity, we are only able to sort into two (median-based) shareholder advantage portfolios since most
firms have a zero R&D intensity. We either value- or equally-weight the portfolios and hold them over month t. We calculate the bond weights using notional bond values
outstanding and the stock weights using market equity values. Within each shareholder advantage portfolio, we form a spread portfolio long the highest distress risk portfolio
and short the lowest (“High–Low”). The table shows the Bai et al. (2019) nine-factor alphas for those double-sorted portfolios within the highest or lowest shareholder
advantage portfolio. The alphas are in monthly percentage terms. See the caption of Table 3.2 for details on how we calculate the nine-factor model alpha. Newey and West
(1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses.

Value-Weighted Portfolios Equally-Weighted Portfolios

Bonds Stocks Bonds Stocks

Shareholder Power Shareholder Power Shareholder Power Shareholder Power

Portfolio Strong Weak Strong Weak Strong Weak Strong Weak

Panel A: Shareholder Power Proxy = R&D Expenses

1 (L) 0.20 0.13 –0.09 0.02 0.26 0.19 –0.04 0.10

2 0.03 0.15 –0.10 0.04 0.15 0.22 0.07 0.18
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Table 3.5 continued

3 –0.04 0.05 –0.18 0.21 –0.02 0.12 0.06 0.20

4 (H) –0.18 –0.39 –0.45 –0.18 –0.24 –0.38 –0.36 0.09

High–Low –0.38 –0.52 –0.35 –0.20 –0.50 –0.57 –0.33 –0.01

t-statistic [–2.76] [–2.53] [–1.08] [–0.63] [–3.06] [–2.45] [–1.18] [–0.03]

Panel B: Shareholder Power Proxy = Herfindahl Index

1 (L) 0.17 0.18 0.01 –0.31 0.24 0.20 0.03 –0.12

2 0.18 0.09 0.06 –0.10 0.25 0.20 0.06 0.03

3 –0.09 –0.05 0.02 –0.04 0.01 –0.11 0.04 0.15

4 (H) –0.25 –0.16 –0.62 –0.39 –0.22 –0.22 –0.31 –0.10

High–Low –0.42 –0.34 –0.62 –0.08 –0.46 –0.43 –0.34 0.02

t-statistic [–2.34] [–2.44] [–2.05] [–0.26] [–2.44] [–2.43] [–1.34] [0.08]
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Table 3.5 continued

Panel C: Shareholder Power Proxy = Asset Tangibility

1 (L) 0.17 0.18 –0.01 0.03 0.23 0.28 0.07 0.08

2 0.10 0.05 0.06 –0.06 0.15 0.18 0.14 0.03

3 0.06 –0.03 0.15 –0.08 0.14 –0.04 0.16 0.05

4 (H) –0.14 –0.30 –0.48 –0.30 –0.10 –0.27 –0.13 –0.34

High–Low –0.31 –0.48 –0.47 –0.34 –0.33 –0.55 –0.20 –0.42

t-statistic [–2.48] [–2.38] [–1.10] [–0.95] [–2.26] [–2.76] [–0.85] [–1.01]
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Turning to the stock portfolios, the situation changes dramatically. Supporting

Garlappi et al. (2008), we find that the stock alpha declines over the distress portfolios

are far more pronounced for strong than weak shareholder advantage firms. Using the

Herfindahl index to measure shareholder advantage, Panel B, for example, suggests

that the decline in the value-weighted stock alpha is 0.62% (t-statistic: –2.05) for

strong and 0.08% (t-statistic: –0.26) for weak shareholder advantage firms. Using the

other two shareholder advantage proxies, we find similarly large differences between

the two types of firms (see Panels A and C). Notwithstanding, presumably due to

the fact that we study a relatively narrow cross-section of stocks, the stock alpha

declines are often insignificant.

We next also run FM regressions of bond (alternatively, stock) returns over

month t on combinations of firm-level distress risk, the shareholder advantage proxies,

interactions between firm-level distress risk and the shareholder advantage proxies,

and controls measured at the end of month t− 1. To mitigate that the firm-level

distress risk proxy is heavily right-skewed, we take its natural log before entering it

into the regressions. Also, instead of directly including the shareholder advantage

proxies in the regressions, we rely on dummy variables signalling that shareholder

advantage is high according to either shareholder advantage proxy. LowR&D is a

dummy variable equal to one if a firm’s R&D intensity is below the third quartile

in a month, else zero; HighHSI is a dummy variable equal to one if a firm operates

in an industry with a Herfindahl index value above the median, else zero; and

LowTangibibility is a dummy variable equal to one if a firm’s asset tangibility is

below the median in a month, else zero. Table 3.6 16 reports the results from the

regressions, with Panel A focusing on the bond return regressions and Panel B on

the stock return regressions. Plain numbers are monthly risk premium estimates (in

percent), while the numbers in square parentheses are t-statistics calculated from

Newey and West (1987) standard errors with a lag length of twelve months.

16In the 10th comment, we are required to control for bond liquidity, rating, and time and
industry fixed effects in Table 3.6. However, in our current table, we have already included bond
liquidity beta and credit rating as control variables. Besides, it is impossible to add time fixed
effects in FM regressions since FM regressions automatically include such a time fixed effect by
allowing the intercept estimate to vary across the cross-sectional regressions. We try to add industry
fixed effects in the FM regressions through applying the 49 Fama-French industry classification,
but the results are similar to the current ones. Therefore, we decide to keep our current results.
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Table 3.6: Regressions on Distress Risk and Shareholder Advantage

This table shows the results from Fama and MacBeth (1973) cross-sectional regressions of one-month-ahead excess bond returns (Panel A) and excess stock returns (Panel B) on
our firm-level distress risk proxy, the shareholder advantage proxies, interactions between the distress risk and the shareholder advantage proxies, and control variables. The
firm-level distress risk proxy is the natural log of Campbell et al.’s (2008) hazard-model probability that a firm fails over the coming twelve months. The shareholder advantage
proxies are based on R&D intensity, the sales-based Herfindahl index, and asset tangibility. LowR&D is a dummy variable equal to one if R&D expenses scaled by total assets is
below the third quartile per month, else zero. HighHSI is a dummy variable equal to one if the Herfindahl index, the sum over firms’ squared sales proportions within an
industry, is above its median per month, elso zero. LowTangibility is a dummy variable if gross PP&E scaled by total assets is below its median per month, else zero. In case

of the bond return regressions, the control variables are βMKTStock

, βSMB, βHML, βTERM , βDEF , βMOMStock

, βLIQ, βMKTBond

and βMOMBond

, years-to-maturity, the
natural log of bond amount outstanding, the most recent credit rating, and the lagged excess bond return. In case of the stock return regressions, the control variables are

βMKTStock

, βTERM , βDEF , βLIQ, βMKTBond

, βMOMBond

, the natural log of market equity, the natural log of book-to-market ratio, and the past eleven-month return. Betas
are estimated using two-year rolling windows and are winsorized at the first and 99th percentiles. To keep the table concise, we do not report the estimates on the control
variables. Plain numbers are estimates, in monthly percentage terms. Newey and West (1987)-adjusted t-statistics calculated using a twelve-month lag-length are in parentheses.
The final row of each panel further shows the average adjusted R2 obtained from each Fama and MacBeth (1973) regression.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Bond Return Regressions

Distress –0.26 –0.23 –0.23 –0.27 –0.20 –0.23 –0.28 –0.24

[–3.23] [–2.91] [–2.05] [–3.15] [–2.41] [–2.92] [–2.89] [–1.54]

LowR&D 0.10 0.07 –0.02

[1.94] [0.09] [–0.03]

Distress × LowR&D 0.01 0.00

[0.07] [–0.01]
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Table 3.6 continued

HighHSI –0.06 –0.80 –0.22

[–1.77] [–1.21] [–0.38]

Distress × HighHSI –0.10 –0.02

[–1.19] [–0.29]

LowTangibility –0.03 0.80 0.45

[–0.81] [1.15] [0.74]

Distress × LowTangibility 0.11 0.06

[1.25] [0.89]

Constant –1.40 –1.26 –1.26 –1.43 –0.87 –1.14 –1.46 –1.13

[–1.60] [–1.32] [–1.06] [–1.61] [–0.88] [–1.21] [–1.41] [–0.78]

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Avg. Adj. R2 0.35 0.36 0.37 0.36 0.36 0.37 0.37 0.38
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Table 3.6 continued

Panel B: Stock Return Regressions

Distress –0.06 –0.05 0.19 –0.06 0.08 –0.06 –0.05 0.37

[–0.48] [–0.39] [1.48] [–0.47] [0.54] [–0.46] [–0.39] [2.51]

LowR&D –0.22 –2.65 –2.69

[–1.45] [–2.38] [–2.36]

Distress × LowR&D –0.30 –0.31

[–2.36] [–2.30]

HighHSI –0.18 –2.18 –2.22

[–1.20] [–2.10] [–2.24]

Distress × HighHSI –0.25 –0.26

[–2.11] [–2.25]

LowTangibility 0.05 –0.01 –0.36

[0.40] [–0.01] [–0.38]

Distress × LowTangibility 0.00 –0.04

[–0.02] [–0.38]
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Table 3.6 continued

Constant 2.18 2.43 4.35 2.26 3.36 2.14 2.23 5.92

[1.15] [1.23] [2.29] [1.20] [1.62] [1.16] [1.23] [3.09]

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Avg. Adj. R2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11
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Starting with the bond regressions in Panel A, model (1) suggests that, using only

distress risk and the controls as exogenous variables, distress risk earns a significantly

negative premium of –26 basis points per month (t-statistic: –3.23). Allowing the

shareholder advantage proxies to independently or jointly condition the negative

distress premium, models (2) to (9) suggest that neither does so, with no interaction

term attracting an absolute t-statistic larger than 1.25. Turning to the stock regressions

in Panel B, model (1) suggests that using only distress risk and the controls as

exogenous variables produces a negative albeit insignificant relation between distress

risk and stock returns (t-statistic: –0.48). More importantly, models (2) to (9) show

that two shareholder advantage proxies suggest that high shareholder advantage

produces a significantly more negative distress risk-stock return relation, consistent

with Garlappi et al. (2008). In particular, model (3) shows that a low R&D intensity

leads the stock distress premium to decline by 30 basis points (t-statistic: –2.36),

while model (5) shows that operating in a high Herfindahl index industry lowers it

by 25 basis points (t-statistic: –2.11). In contrast, model (7) shows that a low asset

tangibility does not affect the stock distress premium.

Overall, this section offers evidence that popular shareholder advantage proxies

do not condition the bond distress premium obtained in Section 3.3, despite them

continuing to condition the same premium in stocks even in our narrow cross-section

and short sample period. Thus, shareholder advantage does not offer a consistent

explanation for the distress premia in stocks and corporate bonds.

3.5 Does Asset Risk Explain the Bond Distress

Premium?

In this section, we ask whether real options models of the firm are more successful in

explaining why stock and corporate bond returns decrease with distress risk. Assuming

investments are only partially reversible, the models suggest that economically unprof-

itable firms are close to exercising their disinvestment options, lowering their expected

asset returns. Yet, if economic and financial distress change in tandem, disinvestment
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options may also lead expected stock and debt returns to decline with financial distress.

We first study that possibility within a real options model in which the firm can

gradually disinvest capacity. The model is standard except for allowing the firm to be

equity- and debt-financed. We next rerun our asset pricing tests allowing the stock and

bond distress premiums to depend on disinvestment proxies.

3.5.1 The Pricing of Distressed Debt Under Disinvest-

ment

A. A Real Options Model of the Firm Allowing for Disinvestment

We study a modified version of the standard real options model of Aretz and Pope

(2018), who extend Pindyck’s (1988) model to allow for the gradual disinvestment of

productive capacity. In the model, a monopolistic firm operating in continuous time

indexed by t optimally makes capacity and production decisions to maximize profits

from producing and instantaneously selling some quantity of a homogenous output

good. The firm has an initial productive capacity of K̄. Each capacity unit allows

the firm to produce and sell one unit of output per time unit, so that quantity, Q, is

within {0; K̄}. Each output unit is sold at a stochastic price, θ, evolving according

to the differential equation:

dθ = (µ− δ)θdt+ σθdW, (3.5)

where µ is the total expected return, δ the dividend yield, and σ the volatility of

the return of a traded asset replicating the variations in price, and W is a Brownian

motion. The variable costs of producing Q units of output, C(Q), are: c1Q+ 1
2
c2Q

2,

while the fixed costs, F (K̄) are: fK̄, where c1 ≥ 0, c2 ≥ 0, and f ≥ 0 are parameters.

The firm’s total profits per time unit, π(Q), are then:

π(Q) = θQ− c1Q−
1

2
c2Q

2 − fK̄, (3.6)
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implying that the firm maximizes profits by choosing Q = min( θ−c1
c2

; K̄) in each

instant. Finally, the firm is able to sell off productive capacity for a unit price equal

to s ≥ 0. In comparison to Aretz and Pope (2018), the only differences between

our model and theirs is that (i) we do not allow the firm to expand its productive

capacity, and (ii) we include fixed production costs F (K̄). In Appendix 3.8.3, we

show how to derive the firm’s optimal disinvestment policy and how to value the

firm.

Turning to the financing side of the model, we assume that the firm’s entire debt

takes the form of one single zero-coupon bond with a contractual payment of C

and a maturity time of T . If the value available to debtholders exceeds C at time

T , shareholders pay off debtholders, and the firm continues to exist. If it does not,

the firm defaults and is liquidated. To satisfy their claims, debtholders have full

recourse to the firm’s productive assets at time T , but not past profits, which the

firm instantaneously distributes to shareholders as dividends. In addition, although

the firm also instantaneously distributes disinvestment proceeds to shareholders,

debtholders are able to reclaim these proceeds in default if they fall within a “suspect

period” (a legally-defined period preceding the default time; see Wood (2007, Chapter

17)). Using risk-neutral pricing, the value of debt, D(θ, C), is then:

D(θ, C) = EQ [e−r(T−t) min(C, V (θ(T ), K̄(T )) + S)
]
, (3.7)

where EQ is the risk-neutral expectation, r the risk-free rate, V (θ(T ), K̄(T )) the

value of the remaining productive capacity at time T , and S the compounded-up

value of the disinvestment proceeds that fell within the suspect period. Conversely,

Cox and Rubinstein (1985) show that the instantaneous expected debt return is

∂D(θ,C)
∂θ

× θ
D(θ,C)

multiplied by the expected excess return of the asset replicating

variations in the price θ. Given that there is no closed-form solution for the expectation

in Equation (3.7), we use Monte Carlo simulations to find the value and expected

return of the debt claim.

We also calculate the equity value using a discounted risk-neutral expectation.

Having done so, we again use Cox and Rubinstein’s (1985) formula to derive the
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expected equity return.

B. Monte Carlo Simulation Results

We use Monte Carlo simulations to find out whether the real options model can

produce negative relations between distress risk and both expected stock and debt

returns, using 100,000 iterations for each set of parameters. We assume that the firm

starts with an initial capacity, K̄, of 1.00. Also, we set the total expected return, µ, the

dividend yield, δ, and the volatility, σ, of the price replication asset equal to 16%, 4%,

and 30%, respectively, while we set the production cost parameters, c1, c2, and f , equal

to 0.00, 0.30, and 0.20, respectively. The zero-coupon bond has a contractual payment,

C, of 10 and a maturity time, T , of 2.00. To vary the attractiveness of disinvestment,

we set the disinvestment price, s, to 0.00, 4.00, or 8.00. We assume that shareholders

capture disinvestment proceeds over the first year, but debtholders over the second.

To vary the firm’s economic (and also financial) health, we choose an initial price, θ,

between 0.45 and 2.50, where 0.45 is slightly above the level below which the firm

would instantaneously start disinvesting when the disinvestment price is at its highest

value (s = 8.00).

Figure 3.4 plots the results from the simulation exercise, with Panels A, B, and C

displaying the expected asset, equity, and debt return, respectively. Panel A suggests

that the expected asset return increases (decreases) with the firm’s economic health

when the disinvestment price is low (high), in line with Aretz and Pope’s (2018) main

conclusions. The intuition is that when firms have disinvestment options and are

close to exercising them, disinvestment options reduce asset risks and produce lower

expected asset returns. Panels B and C reveal that disinvestment options also reduce

the expected stock and debt returns of economically distressed firms since the benefits

from disinvestment can accrue to both shareholders and debtholders. Taken together,

the real options model thus confirms that disinvestment options can explain why

both stock and bond returns decrease with distress risk.
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Figure 3.4: Disinvestment Option and Expected Asset, Stock, and Debt
Returns
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PanelA: Expected Asset Returns
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PanelB: Expected Stock Returns
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The figure shows the expected asset returns (Panel A), stock returns (Panel B), and debt returns
(Panel C) over differenct economic health conditions of firms in a modified version of the standard
real options model of Aretz and Pope (2018) with a disinvestment attractiveness (s) of either
0.00, 4.00, or 8.00. We describe the simulations and analytical formulas used to create the figure
in Section 3.5.1 and Appendix 3.8.3, respectively.

3.5.2 Conditioning the Bond Distress Premium on Disin-

vestment Options

Section 3.5.1 offers theoretical evidence that disinvestment options may be behind the

negative relations between distress risk and both stock and corporate bond returns.

To empirically test that possibility, we condition the stock and bond distress premia

obtained in Section 3.3 on two disinvestment option value proxies, gross profitability

and the extent to which a firm’s installed capacity exceeds its optimal capacity

(“capacity overhang”). A low gross profitability and high capacity overhang signal

that a firm is economically unprofitable, suggesting that its disinvestment options

are deep in-the-money. In line with Novy-Marx (2013), we calculate a firm’s gross

profitability as the ratio of the difference between its sales and costs of good sold

(“gross profits”) to its total assets. We take the values of the accounting variables

from the fiscal year ending in calendar year t− 1 and use the calculated ratio from

July of calendar year t to June of calendar year t+ 1. In line with Aretz and Pope

(2018), we use a recursively estimated stochastic frontier model to measure capacity

overhang. The stochastic frontier model decomposes a firm’s installed capacity into

the sum of an optimal capacity estimate and a positively-signed capacity overhang

residual. Installed capacity is proxied for using the log of the sum of PPE and
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long-term intangibles. Conversely, optimal capacity is a linear function of optimal

capacity determinants (as, e.g., log sales, log costs of goods sold, and stock volatility)

and a normally-distributed mean-zero error term. Finally, the capacity overhang

residual is a normally-distributed error term truncated from below at zero. Crucially,

the expectation of that residual is a linear function of capacity overhang determinants

(as, e.g., the percent decline in sales over some past period if positive, else zero). We

provide more details about the capacity overhang variable in Appendix 3.8.4.

We again start with portfolio sorts to estimate the conditioning effect of disin-

vestment option value on the bond and stock distress premia. To do so, we sort our

bond sample (alternatively, the associated stock sample) into portfolios according

to the tercile breakpoints of each disinvestment value proxy at the end of month

t− 1. Within each disinvestment value portfolio, we next sort the same assets into

portfolios according to the quintile breakpoints of firm-level distress risk at the

end of month t− 1, giving us portfolios double-sorted on disinvestment value and

distress risk. As before, we either value- or equally-weight the portfolios and hold

them over month t. We form a high-minus-low distress spread portfolio within each

disinvestment value portfolio, once again adjusting the spread portfolio for risk by

regressing its return on the nine Bai et al. (2019) factors.

Table 3.7 presents the nine-factor alphas of the bond and stock portfolios double-

sorted on disinvestment value and distress risk, with Panel A using gross profitability

and Panel B capacity overhang to measure disinvestment value. In each panel, the

column titled “High (Low) Disinvestment Value” shows the alphas of those portfolios

containing the 33% of firms with the highest (lowest) disinvestment values according

to the proxy used in the panel. Starting with the bond portfolios, we see that a

higher disinvestment value predicts a more negative distress risk-bond return relation.

For example, Panel A suggests that, while the value-weighted bond distress spread

portfolio has a mean monthly return of –0.24% (t-statistic: –2.65) for high gross-

profitability (i.e., low disinvestment value) stocks, the same portfolio attracts a more

than double mean return of –0.57% (t-statistic: –2.55) for low gross-profitability (i.e.,

high disinvestment value) stocks. In the same vein, Panel B suggests that the mean
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return of that spread portfolio is –0.25% (t-statistic: –3.04) for low capacity overhang

(i.e., low disinvestment value) stocks, but a much higher –0.42% (t-statistic: –2.38)

for high capacity overhang (i.e., high disinvestment value) stocks.

Table 3.7: Stock and Bond Portfolios Double-Sorted on Firm-Level
Distress Risk and Disinvestment Option Value

In this table, we present the nine-factor model alphas of bond and stock portfolios double-
sorted on firm-level distress risk and disinvestment option value. We form the portfolios by
first sorting bonds or stocks into portfolios according to the tercile breakpoints of one of the
disinvestment option value proxies at the end of month t− 1. Within each disinvestment option
value portfolio, we then sort them into portfolios according to the quartile breakpoints of our
firm-level distress risk proxy at the same time. The firm-level distress risk proxy is Campbell
et al.’s (2008) hazard-model probability that a firm fails over the coming twelve months. The
disinvestment option value proxies are operating profitability (Panel A) and capacity overhang
(Panel B), with a lower operating profitability and a higher capacity overhang signalling more
valuable disinvestment options. Operating profitability is gross profits scaled by total assets,
while capacity overhang is an estimate of the difference between a firm’s installed productive
capacity and its optimal capacity derived using a stochastic frontier model. We either value- or
equally-weight the portfolios and hold them over month t. We calculate the bond weights using
notional bond values outstanding and the stock weights using market equity values. Within each
disinvestment option value portfolio, we form a spread portfolio long the highest distress risk
portfolio and short the lowest (“High–Low”). The table shows the Bai et al. (2019) nine-factor
alphas for those double-sorted portfolios within the highest or lowest disinvestment option value
portfolio. The alphas are in monthly percentage terms. See the caption of Table 3.2 for details
on how we calculate the nine-factor model alpha. Newey and West (1987)-adjusted t-statistics
calculated using a twelve-month lag-length are in parentheses.

Value-Weighted Portfolios Equally-Weighted Portfolios

Bonds Stocks Bonds Stocks

Divest. Option Divest. Option Divest. Option Divest. Option

Port. Low High Low High Low High Low High

Panel A: Divestment Option Proxy = Firm Profitability

1 (L) 0.17 0.22 0.07 –0.40 0.23 0.30 0.15 –0.10

2 0.13 –0.03 0.08 0.02 0.20 0.04 0.21 0.19

3 0.08 –0.12 0.15 –0.23 0.16 –0.09 0.24 –0.04

4 (H) –0.06 –0.35 –0.06 –0.63 –0.03 –0.38 0.32 –0.20

H–L –0.24 –0.57 –0.13 –0.23 –0.26 –0.67 0.17 –0.10

t-stat. [–2.65] [–2.55] [–0.49] [–0.72] [–2.54] [–2.53] [0.78] [–0.33]

144



Table 3.7 continued

Panel B: Divestment Option Proxy = Capacity Overhang

1 (L) 0.18 0.18 0.08 –0.04 0.22 0.27 0.16 0.14

2 0.10 0.18 0.03 0.12 0.18 0.24 0.27 0.21

3 0.02 –0.02 0.12 0.25 0.12 0.06 0.28 0.28

4 (H) –0.06 –0.24 –0.30 –0.38 0.00 –0.28 0.08 –0.15

H–L –0.25 –0.42 –0.38 –0.34 –0.22 –0.54 –0.07 –0.28

t-stat. [–3.04] [–2.38] [–1.10] [–1.05] [–2.96] [–2.78] [–0.31] [–0.81]

Importantly, the table shows that the conditioning effect of disinvestment value

on the distress risk-stock return relation is also negative in three out of four cases.

For example, Panel A suggests that, while the equally-weighted stock distress spread

portfolio has a mean monthly return of 0.17% (t-statistic: 0.78) for high gross-

profitability (i.e., low disinvestment value) stocks, the same portfolio attracts a

much lower mean return of –0.10% (t-statistic: –0.33) for low gross-profitability (i.e.,

high disinvestment value) stocks. However, presumably again due to us studying a

narrow cross-section of stocks over a short sample period, the stock spread portfolios

never attract a significant alpha for either the high or low disinvestment value stocks

(most negative t-statistic: –1.10).

Table 3.8 presents the results from FM regressions of bond (Panel A) or stock

(Panel B) returns over month t on combinations of distress risk, the disinvestment

value proxies, interactions between these variables, and control variables at the end of

month t− 1. Running the FM regressions, we are able to test for the significance of

the conditioning effect of disinvestment value on the bond or stock distress premium.

To alleviate skewness and kurtosis effects, we take the log of distress risk and the

disinvestment value proxies before entering them into the regressions. As before,

instead of directly including the disinvestment value proxies in the regressions,

we again rely on dummy variables signalling that a firm is close to exercising

its disinvestment options according to either proxy. LowGrossProfits is a dummy

variable equal to one if a firm’s gross profitability is below the median, else zero;
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and HighOverhang is a dummy variable equal to one if a firm’s capacity overhang is

above the median, else zero. The control variables are exactly the same as those also

used in Table 3.6.

Starting with the bond regressions, Panel A suggests that a higher disinvestment

value significantly decreases the distress risk-bond return relation. Using either

disinvestment value proxy, columns (3) and (5), for example, show that a lower gross

profitability (signalling a higher disinvestment value) decreases the bond distress

premium by 0.27% per month (t-statistic: –2.08), while a higher capacity overhang

(also signalling a higher value) decreases that premium by 0.17% (t-statistic: –1.98).

Jointly using the disinvestment value proxies, column (6) suggests that only gross

profitability, but not capacity overhang, significantly conditions the distress premium

in bonds.

Turning to the stock regressions, Panel B suggests that gross profitability, but

not capacity overhang, also significantly conditions the distress risk-stock return

relation with the anticipated sign in the model featuring both disinvestment value

proxies (see column (6)). However, likely as a result of the limited sample size in

these tests, the other conditioning effects fail to attract significance.

Overall, our empirical findings in this section suggest that low gross profitability

or high capacity overhang, both signalling valuable disinvestment options, can go

some way toward explaining the negative distress risk-bond return relation, as

suggested by real options models of the firm. Alas, the same variables lack power to

explain the distress risk-stock return relation in the subsample of stocks associated

with our bond sample. In the next section, we thus study the variables’ ability to

explain that relation in a more comprehensive cross-section of stocks over a longer

sample period.
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Table 3.8: Regressions On Distress Risk and Disinvestment Option
Value

This table shows the results from Fama and MacBeth (1973) cross-sectional regressions of
one-month-ahead excess bond returns (Panel A) and excess stock returns (Panel B) on our
firm-level distress risk proxy, disinvestment option value proxies, interactions between the distress
risk and the disinvestment option value proxies, and control variables. The firm-level distress
risk proxy is the natural log of Campbell et al.’s (2008) hazard-model probability that a firm
fails over the coming twelve months. The disinvestment option value proxies are based on
operating profitability and capacity overhang, with a lower operating profitability and a higher
capacity overhang signalling more valuable disinvestment options. LowGrossProfits is a dummy
variable equal to one if gross profits scaled by total assets is below its median per month, else zero.
HighOverhang is a dummy variable equal to one if capacity overhang, an estimate of the difference
between a firm’s installed productive capacity and its optimal capacity derived using a stochastic
frontier model, is above its median per month, else zero. In case of the bond return regressions, the

control variables are βMKTStock

, βSMB, βHML, βTERM , βDEF , βMOMStock

, βLIQ, βMKTBond

and βMOMBond

, years-to-maturity, the natural log of bond amount outstanding, the most recent
credit rating, and the lagged excess bond return. In case of the stock return regressions, the

control variables are βMKTStock

, βTERM , βDEF , βLIQ, βMKTBond

, βMOMBond

, the natural log
of market equity, the natural log of book-to-market ratio, and the past eleven-month return.
Betas are estimated using two-year rolling windows and are winsorized at the first and 99th
percentiles. To keep the table concise, we do not report the estimates on the control variables.
Plain numbers are estimates, in monthly percentage terms. Newey and West (1987)-adjusted
t-statistics calculated using a twelve-month lag-length are in parentheses. The final row of each
panel further shows the average adjusted R2 obtained from each Fama and MacBeth (1973)
regression.

(1) (2) (3) (4) (5) (6)

Panel A: Bond Return Regressions

Dist. –0.28 –0.28 –0.21 –0.28 –0.17 –0.10

[–3.47] [–3.36] [–3.16] [–3.52] [–3.66] [–2.22]

LowGrossProfits 0.05 –1.94 –1.82

[0.77] [–1.92] [–1.82]

Dist. × LowGrossProfits –0.27 –0.25

[–2.08] [–1.96]

HighOverhang –0.01 –1.92 –1.17

[–0.18] [–1.95] [–2.01]

Dist. × HighOverhang –0.17 –0.15

[–1.98] [–2.04]

Constant –1.57 –1.53 –1.09 –1.57 –0.79 –0.08

[–1.85] [–1.82] [–1.44] [–1.88] [–1.19] [–0.12]
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Table 3.8 continued

Controls Yes Yes Yes Yes Yes Yes

Avg. Adj. R2 0.41 0.41 0.43 0.41 0.42 0.43

Panel B: Stock Return Regressions

Dist. –0.04 –0.03 0.10 –0.03 0.01 0.08

[–0.28] [–0.17] [0.80] [–0.22] [0.05] [0.80]

LowGrossProfits –0.22 –2.35 –2.33

[–1.68] [–2.11] [–2.22]

Dist. × LowGrossProfits –0.27 –0.27

[–1.90] [–2.01]

HighOverhang –0.07 –0.56 0.09

[–0.81] [–0.54] [0.10]

Dist. × HighOverhang –0.06 0.02

[–0.46] [0.19]

Constant 2.47 2.63 3.52 2.57 2.89 3.43

[1.21] [1.29] [1.99] [1.27] [1.62] [2.06]

Controls Yes Yes Yes Yes Yes Yes

Avg. Adj. R2 0.10 0.11 0.11 0.11 0.11 0.11

3.6 Robustness Test

Since our idea to explain the negative relations between distress risk and the cross-

sections of stock and corporate bond returns using disinvestment options is new to the

literature, it is somewhat unnatural to immediately test that idea on the subsample

of stocks of firms that also have bonds outstanding. To remedy that problem, we next

estimate the conditioning effect of disinvestment options on the distress risk-stock

return relation using a more comprehensive cross-section of stocks over a longer sample

period. In particular, we now consider the entire cross-section of CRSP common stocks
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traded on the NYSE, AMEX, and Nasdaq over the 1981 to 2017 sample period.17 In

line with other studies, we exclude financial (SIC code: 6000-6999) and utility stocks

(4900-4949). To alleviate market microstructure biases, we further exclude stocks

with a one-month-lagged market capitalization in the bottom quartile from both the

equally-weighted portfolios and the FM regressions (see Hou, Xue and Zhang (2016)).

Table 3.9 presents the mean returns, alphas, and characteristics of value-weighted

(Panel A) and equally-weighted distress risk portfolios (Panel B) formed using the

same conventions as in Table 3.2, but featuring the more comprehensive cross-section

of stocks over the longer sample period. Corroborating the evidence of Campbell

et al. (2008), the main message of the table is that the more comprehensive data also

produces a distress anomaly, which typically becomes significant when we control for

the Fama and French (1993) three factors or the five factors which add to the former

the stock momentum factor and the stock liquidity risk factor. More importantly,

Table 3.10 shows the results from repeating the FM regressions conditioning the

distress risk-stock return relation on the disinvestment proxies (gross profitability

and capacity overhang) in Table 3.8 using the more comprehensive data. The table

shows that a lower gross profitability (signalling a higher disinvestment value) yields

a significantly more negative stock distress premium (see columns (3) and (6)), while

it does not suggest that capacity overhang significantly conditions that premium.

In sum, the stock pricing tests conducted on the more comprehensive sample

over the longer sample period thus offer some more evidence that operating

profitability significantly conditions the distress risk-stock return relation, but,

unfortunately, not that capacity overhang does the same.

17The starting point of the longer sample period is dictated by the availability of the distress risk
proxy.
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Table 3.9: Stock Portfolios Univariate Sorted on Firm-Level Distress
Risk (1981–2017)

In this table, we present the mean excess returns and alphas of stock portfolios univariately sorted
on firm-level distress risk over the extended sample period from 1981 to 2017. We form the portfolios
by sorting stocks into portfolios according to the decile breakpoints of our firm-level distress risk
proxy at the end of month t − 1. The firm-level distress risk proxy is Campbell et al.’s (2008)
hazard-model probability that a firm fails over the coming twelve months. We either value- (Panel A)
or equally-weight the portfolios (Panel B) and hold them over month t. In case of the equally-weighted
portfolios, we exclude stocks with a market size below the first quartile at the end of month t− 1.
We calculate the stock weights using market equity values. We also form a spread portfolio long the
highest distress risk decile and short the lowest (“High–Low”). The table reports the time-series
average of the cross-sectional averages of distress risk, the average numbers of stocks per portfolio,
and the average excess stock returns, Fama-French three-factor alphas, and five-factor model alphas
for each portfolio. Average distress risk, the average excess returns, and the alphas are in monthly
percentage terms. We obtain the alphas from regressing a portfolio’s return on the relevant factors
and reporting the intercept from that regression. The three factors are the excess stock market return
(MKTStock), the size factor (SMB), and the value factor (HML). The five factors add to the former
the stock momentum factor (MOMStock) and the stock liquidity risk factor (LIQ). Newey and West
(1987)-adjusted t-statistics calculated using a twelve-month lag-length are given in parentheses.

Mean Mean Mean FF3 5-Factor

Decile Distress Risk Number Stocks Excess Return Alpha Alpha

Panel A: Value-Weighted Distress Risk Portfolios

1 (L) 0.006 406 0.55 0.03 0.01

2 0.012 406 0.66 0.12 0.02

3 0.018 406 0.49 –0.01 –0.06

4 0.024 406 0.66 0.09 0.05

5 0.033 406 0.74 0.13 0.10

6 0.045 406 0.79 0.15 0.16

7 0.065 406 0.82 0.05 0.09

8 0.104 406 0.83 –0.01 0.12

9 0.199 406 0.34 –0.61 –0.42

10 (H) 0.999 407 0.10 –1.05 –0.62

H–L –0.45 –1.07 –0.64

t-stat. [–1.33] [–3.72] [–2.62]
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Table 3.9 continued

Panel B: Equally-Weighted Distress Risk Portfolios

1 (L) 0.006 304 0.60 –0.05 –0.02

2 0.011 305 0.64 –0.03 –0.04

3 0.016 304 0.71 0.04 0.05

4 0.022 305 0.83 0.12 0.14

5 0.028 305 0.81 0.06 0.11

6 0.037 304 0.80 0.02 0.09

7 0.052 304 0.81 0.00 0.11

8 0.076 305 0.80 –0.07 0.07

9 0.132 304 0.67 –0.30 –0.09

10 (H) 0.545 305 0.37 –0.76 –0.34

H–L –0.24 –0.71 –0.32

t-stat. [–0.91] [–3.03] [–1.56]
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Table 3.10: Regressions On Distress Risk and Disinvestment Option
Value (1981–2017)

This table shows the results from Fama and MacBeth (1973) cross-sectional regressions of one-
month-ahead excess stock returns on our firm-level distress risk proxy, disinvestment option value
proxies, interactions between the distress risk and the disinvestment option value proxies, and
control variables, estimated over the extended sample period from 1981 to 2017. The regressions
exclude stocks with a market size below the first quartile at the end of month t− 1. The firm-level
distress risk proxy is the natural log of Campbell et al.’s (2008) hazard-model probability that a
firm fails over the coming twelve months. The disinvestment option value proxies are based on
operating profitability and capacity overhang, with a lower operating profitability and a higher
capacity overhang signalling more valuable disinvestment options. LowGrossProfits is a dummy
variable equal to one if gross profits scaled by total assets is below its median per month, else zero.
HighOverhang is a dummy variable equal to one if capacity overhang, an estimate of the difference
between a firm’s installed productive capacity and its optimal capacity derived using a stochastic

frontier model, is above its median per month, else zero. The control variables are βMKTStock

, βLIQ,
the natural logarithm of the market equity value, the natural logarithm of book-to-market ratio and
the past 11-month average monthly returns as control variables. Betas are estimated using two-year
rolling windows and are winsorized at the first and 99th percentiles. To keep the table concise,
we do not report the estimates on the control variables. Plain numbers are estimates, in monthly
percentage terms. Newey and West (1987)-adjusted t-statistics calculated using a twelve-month
lag-length are in parentheses. The final row of each panel further shows the average adjusted R2

obtained from each Fama and MacBeth (1973) regression.

(1) (2) (3) (4) (5) (6)

Distress 0.09 0.12 0.18 0.13 0.16 0.22

[1.43] [1.78] [2.75] [1.89] [2.45] [3.29]

LowGrossProfits –0.36 –1.28 –1.20

[–4.04] [–3.36] [–3.12]

Distress × LowGrossProfits –0.11 –0.11

[–2.43] [–2.36]

HighOverhang –0.33 –0.84 –0.52

[–3.40] [–2.46] [–1.50]

Distress × HighOverhang –0.06 –0.03

[–1.62] [–0.80]

Constant 1.30 1.58 2.08 1.60 1.93 2.44

[1.42] [1.72] [2.33] [1.72] [2.07] [2.67]

Controls Yes Yes Yes Yes Yes Yes

Avg. Adj. R2 0.05 0.05 0.06 0.05 0.05 0.06
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3.7 Conclusion

We offer empirical evidence suggesting a negative relation between firm-level distress

risk and the cross-section of corporate bond returns, similar to the often negative

relation between distress risk and stock returns obtained in prior studies. The nega-

tive distress risk-bond return relation becomes economically larger and statistically

significant when controlling for popular stock and bond pricing factors, shows up

in both value- and equally-weighted portfolio sorts and FM regressions, and is

not attributable to distressed firms issuing higher-quality bonds than safer firms.

Combining stock and bond returns to calculate a proxy for the asset return, we

further offer evidence that distress risk is also negatively, albeit less significantly so,

related to the cross-section of asset returns.

Our findings have important implications for the literature. In particular, they

are first in casting some doubt on shareholder advantage explaining the distress

anomaly, in particular, and shareholder advantage theories, in general. They do so

since, as we show, shareholder advantage theories are unable to produce a negative

relation between distress risk and debt returns. Consistent with that observation,

popular shareholder advantage proxies fail to condition the bond distress premium

estimate in our empirical work. We finally show that real options asset pricing

models are more promising to explain why both stock and bond returns decrease

with distress risk. These models predict that disinvestment options can lead asset

returns to decrease with distress risk, with the low asset returns likely dragging

down stock and bond returns, too. Supporting these models, disinvestment value

proxies have some ability to condition the relations between distress risk and both

stock and bond returns.
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3.8 Appendix

3.8.1 Supplementary Empirical Tests

A. The Relation between Bond Yields and Distress Risk at Issuance

In Table A1, we show the relation between bond offering yields and distress

risk through both portfolio sorts and regressions 18. We find that, different from

bond returns, bond yields at issuance increase as distress risk increases.

18We report the OLS regressions results of the pooled panel data here, and the FM regressions
produce similar results.
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Table A1: Bond Offering Yields and Firm-Level Distress Risk – Portfolio Sorts and Regressions

In this table, we present the mean offering yields and alphas of bond portfolios univariately sorted on firm-level distress risk (Panel A) and report the coefficients of regressing
bond offering yields on distress risk and some control variables (Panel B). In Panel A, we form the portfolios by sorting bonds into portfolios according to the quantile
breakpoints of our firm-level distress risk proxy at the end of month t− 1. The firm-level distress risk proxy is Campbell et al.’s (2008) hazard-model probability that a firm
fails over the coming twelve months. We either equally- or value-weight the portfolios and hold them over month t. We calculate the bond weights using notional bond
values outstanding. We also form a spread portfolio long the highest distress risk quantile and short the lowest (“H–L”). The table reports the time-series average of the
cross-sectional averages of distress risk, the average numbers of bonds per portfolio, and the average bond offering yields, Fama-French five-factor alphas and Bai et al. (2019)
nine-factor alphas for each portfolio. Average distress risk, the average bond yields, and the alphas are in monthly percentage terms. We obtain the alphas from regressing a
portfolio’s return on the relevant factors and reporting the intercept from that regression. The five-factor model factors are the excess stock market return (MKTStock),
the size factor (SMB), the value factor (HML), the term factor (TERM) and the default factor (DEF). The nine-factor model adds to these the stock momentum factor
(MOMStock), the stock liquidity risk factor (LIQ), the bond market factor (MKTBond) and the bond momentum factor (MOMBond). Newey and West (1987)-adjusted
t-statistics calculated using a twelve-month lag-length are given in parentheses. In Panel B, we regress bond offering yields on distress risk and some control variables. The
control variables include bonds’ years-to-maturity (Maturity), the most recent credit rating (Rating), the natural log of bond amount outstanding (BondSize), the natural log
of market equity (StockSize), the natural log of book-to-market ratio (BMRatio) and the past eleven-month return (StockMom). The sample period is from July 2002 to June
2017.

Panel A: Portfolio Sorts

Equally-Weighted Value-Weighted

Mean Mean

Quantile Dist. Risk # Bonds Mean Yield FF5 Alpha B9 Alpha Mean Yield FF5 Alpha B9 Alpha

1 (L) 0.02 15 0.39 0.39 0.39 0.39 0.39 0.39

2 0.03 16 0.40 0.40 0.39 0.39 0.39 0.39

3 0.05 16 0.39 0.39 0.39 0.38 0.38 0.38
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Table A1 continued

4 (H) 0.12 17 0.41 0.41 0.40 0.41 0.41 0.40

H–L 0.01 0.01 0.01 0.02 0.02 0.02

t-stat. [2.46] [2.20] [2.41] [2.11] [1.94] [2.16]

Panel B: Regressions

(1) (2)

Distress 0.37 0.26

[17.67] [14.14]

Maturity 0.003

[21.89]

Rating 0.005

[8.63]

BondSize -0.01

[-15.97]

StockSize -0.04

[-32.55]
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Table A1 continued

BMRatio 0.002

[1.10]

StockMom -0.26

[-4.36]

Constant 0.42 1.18

[209.08] [53.35]

Adj. R2 0.03 0.27160



B. Monotonicity Test

To investigate whether the relations between mean excess returns, FF5 alphas,

and B9 alphas of bond portfolios and distress risk are monotonic, we apply the

monotonic relation (MR) test method developed by Patton and Timmermann

(2010), and report the results in Table A2. As shown in Table A2, none of the

p-values of the MR test statistics reaches the critical value, which indicates that

the MR test fails to find evidence in favor of a monotonic relation between distress

risk and mean excess returns, FF5 alphas, or B9 alphas of bond portfolios. The

hypothesis of MR test is very strict, and requires that the relation between two

variables is strictly monotonic. However, we did not expect a strictly monoton-

icaly negative relation between bond returns and distress risk. In contrast, we

expect a first flat and then decreasing relation between distress risk and bond

returns. Therefore, failure to prove that the distress risk-bond returns relation is

monotonically negative does not affect our conclusion that the distress risk and

bond returns is generally negatively related.

Table A2: Monotonic Relation Test

This table reports the High–Low spread of mean excess returns, FF5 alphas, and B9 alphas of
the ten value-weighted bond portfolios displayed in Table 3.2 and their corresponding t-statistics
and t-statistic p-values. The last column displays the p-values of monotonic relation (MR) test
statistics, which intend to test whether the relations between mean excess returns, FF5 alphas,
and B9 alphas of bond portfolios and distress risk are monotonic. The MR test statistic p-values
are obtained through appying the monotonic relation (MR) test method developed by Patton and
Timmermann (2010).

Mean Excess Return FF5 Alpha B9 Alpha

High–Low Spread -0.09 -0.41 -0.55

t-statistic -0.34 -2.32 -2.69

t-statistic p-value 0.737 0.021 0.008

MR p-value 0.841 0.756 0.805
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3.8.2 The Fan and Sundaresan (2000) Model

A. Valuing the Equity and Debt Claims

Using contingent claims analysis, Fan and Sundaresan (2000) show that the value

of a firm’s levered assets in their shareholder advantage model, υ(V ), is equal to:

υ(V ) =

 V + τc
r
− λ2

λ2−λ1
τc
r

(
V
ṼS

)λ1
if V > ṼS,

V + −λ1
λ2−λ1

τc
r

(
V
ṼS

)λ2
if V ≤ ṼS,

(A1)

where the optimal (endogenous) strategic default threshold ṼS is given by:

ṼS =
c(1− τ + ητ)

r

−λ1

1− λ1

1

1− ηα
, (A2)

and:

λ1 =

(
1

2
− r − δ

σ2

)
−

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
< 0, (A3)

λ2 =

(
1

2
− r − δ

σ2

)
+

√(
1

2
− r − δ

σ2

)2

+
2r

σ2
> 1. (A4)

Conversely, they show that the value of equity, Ẽ(V ), is equal to:

Ẽ(V ) =

 V − c(1−τ)
r

+
[
c(1−τ)

(1−λ1)r
− λ1(1−λ2)η

(λ2−λ1)(1−λ1)
τc
r

] (
V
ṼS

)λ1
if V > ṼS,

θ∗υ(V ) if V ≤ ṼS,

(A5)

where θ∗ is given in Equation (3.4) in the main text. Finally, the value of debt,

D̃(V ), is the value of the levered assets minus the value of equity, υ(V )− Ẽ(V ).
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B. Deriving the Expected Equity Value

Garlappi et al. (2008) show that the time-0 expectation of the equity value at

time t, E0(Ẽ(Vt)), is:

E0(Ẽ(Vt)) = ηαV0e
(µ−δ)tN

(
h(t)− σ

√
t
)

− η λ1

λ2 − λ1

τc

r

(
V0

ṼS

)λ2
eλ2(γ−λ2)tN

(
h(t)− λ2σ

√
t
)

+ V0e
(µ−δ)tN

(
−h(t) + σ

√
t
)
− c(1− τ)

r
N (−h(t))

+

[
c(1− τ)

(1− λ1)r
− λ1(1− λ2)η

(λ2 − λ1)(1− λ1)

τc

r

](
V

ṼS

)λ1
× eλ1(γ−λ1)tN

(
−h(t) + λ1σ

√
t
)
, (A6)

where γ = µ− δ − 1
2
σ2, h(t) = ln(ṼS/V0)−γt

σ
√
t

, and N(.) is the cumulative standard

normal distribution.

They further show that the probability of the unlevered asset value V hitting the

strategic default threshold ṼS over the period from t = 0 to T (“strategic default

risk”), Pr(0,T ] is:

Pr(0,T ] = N

(
ln(ṼS)− ln(V0)− γT

σ
√
T

)

+ e
2γ(ln(ṼS)−ln(V0))

σ2 N

(
ln(ṼS)− ln(V0) + γT

σ
√
T

)
. (A7)

C. Deriving the Expected Debt Value

In this section, we apply the methods used in Garlappi et al. (2008) to derive the

time 0 expectation of the debt value at time t, E0(D̃(Vt)). Given that D̃(V ) =

υ(V )− Ẽ(V ), we can easily achieve that goal by deriving the time 0 expectation of

the levered asset value at time t, E0(υ(Vt)). Under the assumptions in Section 3.4.1,

the unlevered asset value at time t can be written as:

Vt = V0e
(µ−δ− 1

2
σ2)t+σ(Bt−B0), (A8)
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which is log-normally distributed. Again defining γ = µ− δ − 1
2
σ2, the location

and scale parameters of the natural log of Vt are E[lnVt] = lnV0 + γt and

Var[lnVt] = σ2t, respectively.

Consider the integral
∫ a

0
V b
t p(Vt)dVt, where a and b are constants and p(Vt)

is the probability density function of the log-normal variable Vt. Plugging in for

p(Vt), we obtain:

∫ a

0

V b
t p(Vt)dVt =

∫ a

0

V b
t

1√
2πσ2tVt

e
− 1

2

(
lnVt−(lnV0+γt)

σ
√
t

)2

dVt. (A9)

Using the change of variable Xt = lnVt−lnV0−γt
σ
√
t

, we can rewrite the right-hand side

as:

∫ ln(a/V0)−γt
σ
√
t

−∞
eb(lnV0+γt+σ

√
tXt)

1√
2π
e−

1
2
X2
t dXt (A10)

= V b
0 e

bγt

∫ ln(a/V0)−γt
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√
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−∞

1√
2π
e−

1
2
X2
t +bσ

√
tXt− 1

2
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2
b2σ2tdXt (A11)

= V b
0 e

bγt+ 1
2
b2σ2t

∫ ln(a/V0)−γt
σ
√
t

−∞

1√
2π
e−

1
2

(X2
t−2bσ

√
tXt+b2σ2t)dXt (A12)

= V b
0 e

bγt+ 1
2
b2σ2t

∫ ln(a/V0)−γt
σ
√
t

−∞

1√
2π
e−

1
2

(Xt−bσ
√
t)2dXt. (A13)

Using the change of variable Yt = Xt − bσ
√
t, we can write:

V b
0 e

bγt+ 1
2
b2σ2t

∫ ln(a/V0)−γt
σ
√
t

−bσ
√
t

−∞

1√
2π
e−

1
2
Y 2
t dYt (A14)

= V b
0 e

bγt+ 1
2
b2σ2tN

(
ln(a/V0)− γt

σ
√
t

− bσ
√
t

)
. (A15)

Following the same steps, we can, conversely, also show that:

∫ ∞
a

V b
t p(Vt)dVt = V b

0 e
bγt+ 1

2
b2σ2tN

(
− ln(a/V0)− γt

σ
√
t

+ bσ
√
t

)
. (A16)

Using Equation (A1), we can write the expected levered asset value, E0(υ(Vt)),
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as:

E0(υ(Vt)) =

∫ ∞
0

Vtp(Vt)dVt +

∫ ∞
ṼS

τc

r
p(Vt)dVt

−
∫ ∞
ṼS

λ2

λ2 − λ1

τc

r

(
Vt

ṼS

)λ1
p(Vt)dVt

+

∫ ṼS

0

−λ1

λ2 − λ1

τc

r
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ṼS

)λ2
p(Vt)dVt

=

∫ ∞
0

Vtp(Vt)dVt +
τc

r

∫ ∞
ṼS

p(Vt)dVt

− λ2

λ2 − λ1

τc

r
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)λ1 ∫ ∞
ṼS
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λ1p(Vt)dVt

+
−λ1

λ2 − λ1

τc

r

(
1

ṼS

)λ2 ∫ ṼS

0

V λ2
t p(Vt)dVt. (A17)

Using Equations (A15) and (A16), we finally have:

E0(υ(Vt)) = V0e
(µ−δ)t +

τc

r
N (−h(t))

− λ2

λ2 − λ1

τc

r

(
V0

ṼS

)λ1
eλ1(γ+ 1

2
λ1σ2)tN

(
−h(t) + λ1σ

√
t
)

+
−λ1

λ2 − λ1
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r
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ṼS

)λ2
eλ2(γ+ 1

2
λ2σ2)tN

(
h(t)− λ2σ

√
t
)
, (A18)

where we again use h(t) = ln(ṼS/V0)−γt
σ
√
t

to simplify the notation.

3.8.3 A Real Options Model with Disinvestment

A. Valuing the Operating Assets of the Firm

We use contingent claims analysis to value the incremental production options

owned by the firm described in Section A.. Using K ∈ {0; K̄} to number the

incremental options, incremental option K produces a cash flow of θ−c1−c2K−f

per time unit when switched on to produce output and a payoff of −f per time unit

when switched off. Denoting the value of incremental option K by ∆V (θ;K) and

assuming that there is a traded asset whose value perfectly replicates variations in
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the price θ, it is well known that the value of incremental option K has to satisfy:

1

2
σ2θ2∂

2∆V (θ;K)

∂θ2
+ (r − δ)θ∂∆V (θ;K)

∂θ
− r∆V (θ;K) + π(θ,K) = 0, (A19)

where π(θ,K) is the cash flow produced by the option.

In the θ-region in which the firm uses the incremental option to produce output

(i.e., in which π(θ,K) = θ − c1 − c2K − f), the value of the option takes on the

general form:

∆V (θ,K) = AOθ
β1 +BOθ

β2 +
θ

δ
− c1 + c2K + f

r
, (A20)

where AO and BO are free parameters, and:

β1 =
1

2
− (r − δ)/σ2 +

√[
(r − δ)/σ2 − 1

2

]2

+ 2r/σ2 > 1, (A21)

β2 =
1

2
− (r − δ)/σ2 −

√[
(r − δ)/σ2 − 1

2

]2

+ 2r/σ2 < 0. (A22)

Given that limθ→+∞∆V (θ,K) needs to be θ
δ
− c1+c2K+f

r
, it is obvious that AO = 0.

Conversely, in the region in which the firm does not use the incremental option to

produce output (i.e., in which π(θ,K) = −f), the value of the option takes on

the general form:

∆V (θ,K) = AIθ
β1 +BIθ

β2 +−f
r
, (A23)

where AI and BI are free parameters. Finally, in the region in which the firm

instantaneously sells the option (i.e., when θ drops below the disinvestment

threshold θD, which is another free parameter), the value of the incremental option

is equal to the disinvestment price s.

To find the values of the free parameters BO, AI , BI , and θD, we ensure that

the three regions value-match and smooth-paste into one another. In particular,
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we ensure that:

BO(θP )β2 +
(θP )

δ
− c1 + c2K + f

r
= AI(θ

P )β1 +BI(θ
P )β2 − f

r
, (A24)

BOβ2(θP )β2−1 +
1

δ
= AIβ1(θP )β1−1 +BIβ2(θP )β2−1, (A25)

AI(θ
D)β1 +BI(θ

D)β2 − f

r
= s, (A26)

AIβ1(θD)β1−1 +BIβ2(θD)β2−1 = 0, (A27)

where θD = c1 + c2K is the price θ at which the firm switches on the incremental

option. Equation (A24) ensures that at θP the value of the used option is identical

to the value of the idle option, while Equation (A25) ensures that, at that price,

the two option values do so with identical partial derivatives (i.e., smoothly).

Conversely, Equation (A26) ensures that at the price at which the firm disinvests off

the incremental option, θD, the value of the option is identical to the disinvestment

price, while Equation (A27) ensures that, at that price, the option value has a

zero partial derivative.

Solving for BO, AI , BI , and θD, we obtain:

pD =

rδ(β1 − β2)(s+ f
r
)(c1 + c2K)β1−1

(r − β2(r − δ))
(

1− β1
β2

)
 1

β1

, (A28)

AI =
s+ f

r

(pD)β1
(

1− β1
β2

) , (A29)

BI =
s+ f

r

(pD)β2
(

1− β2
β1

) , (A30)

BO = AI(c1 + c2K)β1−β2 −
(
r − δ
rδ

)
(c1 + c2K)1−β2 +BI . (A31)

Having valued the incremental options, total firm value, V (θ, K̄), is now:

V (θ, K̄) =

∫ K̄

0

∆V (θ,K)dK, (A32)

167



and the expected instantaneous excess asset return of the firm, E[RA]− r, is:

E[RA]− r =
∂V (θ, K̄)

∂θ
× θ

V (θ, K̄)
× (µ− r), (A33)

as shown in, for example, Cox and Rubinstein (1985) or Carlson, Fisher and

Giammarino (2004).

3.8.4 Measuring Capacity Overhang

Aretz and Pope (2018) use a stochastic frontier model to estimate the difference

between a firm’s installed production capacity and the capacity level setting the

marginal benefit of additional capacity equal to its marginal cost (“optimal capacity”).

As they show, real options models often imply that installed capacity cannot fall

below optimal capacity, implying that the difference between the two capacity levels is

truncated from below at zero. Given that, stochastic frontier models are an appealing

method to estimate the difference. Intuitively speaking, such models decompose a

variable (in this case: installed capacity) into a component capturing the minimum

value the variable can take on (optimal capacity) and a positively-signed residual

component (“capacity overhang”). More specifically, we can write a stochastic frontier

model decomposing a firm’s installed capacity as:

ln(K̄i,t) = αk + β′Xi,t + vi,t + ui,t = αk + β′Xi,t + εi,t, (A34)

where K̄i,t is installed capacity, αk + β′Xi,t + vi,t optimal capacity, ui,t capacity

overhang, and εi,t ≡ vi,t + ui,t. Optimal capacity is modeled as a linear function of

industry fixed effects, αk, optimal capacity determinants contained in the vector Xi,t,

and a normally distributed residual vi,t, with mean zero and variance σ2
v. Conversely,

capacity overhang, ui,t, is a normally-distributed residual truncated from below at

zero. The mean of the normally-distributed variable, γ ′Zi,t, is modeled as a linear

function of capacity overhang determinants contained in the vector Zi,t, while its

variance is σ2
u. Finally, β and γ are parameter vectors. The parameter vectors and

variance parameters are estimated recursively using maximum likelihood techniques.
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The first estimation window is July 1963 to December 1971, and the end of the

estimation window is rolled forward on an annual basis until December 2017.

Having estimated the parameters, the estimates obtained from the window ending

with year t− 1 are combined with the values of the optimal capacity determinants

and capacity overhang determinants for year t. We then define µ∗i,t =
εi,tσ

2
u+γ′Zi,tσ2

v

σ2
u+σ2

v

and σ∗i,t = σuσv/
√
σ2
u + σ2

v . We finally calculate firm i’s capacity overhang at time

t as the conditional expectation of the capacity overhang residual:

ûi,t = E[ui,t|εi,t,Zi,t] = µ∗i,t + σ∗i,t

(
n(−µ∗i,t/σ∗i,t)
N(µ∗i,t/σ

∗
i,t)

)
, (A35)

where n(.) and N(.) are the standard normal-density and -cumulative density,

respectively.

Aretz and Pope (2018) use the log of the sum of gross property, plant, and

equipment and intangible assets (intan or intanq) to measure installed capacity.19

As optimal capacity determinants, they use:

• Sales: Log of sales over the prior four fiscal quarters (sale or saleq).

• COGS: Log of COGS over the prior four fiscal quarters (cogs or cogsq).

• SG&A: Log of SGA costs over the prior four quarters (xsga or xsgaq).

• Volatility: Log of the volatility of daily returns (ret) over the prior twelve

months.

• Market beta: Sum of slope coefficients from a stock-level regression of excess

stock returns (ret) on current, one-day lagged, and the sum of two-, three-,

and four-day lagged excess market returns, where the regression is run using

daily data over the prior twelve months (see Lewellen and Nagel (2006) for

more details about the market beta estimation methodology).

• Risk-free rate: Three-month Treasury bill rate (see Kenneth French’s web-

site).

As capacity overhang determinants, they use:

19The terms in parentheses are the database (CRSP or Compustat) mnemonics.
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• Recent sales decline: Percentage decrease in sales (sale or saleq) over the

most recent four fiscal quarters; the variable is set to zero if the decrease is

negative.

• More distant sales decline: Percentage decrease in sales (sale or saleq) from

a stock’s historical maximum of sales, measured twelve months ago, to its

sales twelve months ago; the variable is set to zero if the decrease is negative.

• Loss dummy: Dummy set equal to one if a firm ran a loss (negative ni or

niq) over the prior four fiscal quarters; otherwise, the variable is set to zero.

To improve timeliness, Aretz and Pope (2018) use the most recent quarterly

estimate of installed capacity whenever quarterly accounting data are available. Else

they use the most recent estimate from annual accounting data. With the same

objective, they use four-quarter trailing sums of accounting flow variables (e.g., sales,

COGS, and SG&E) whenever quarterly accounting data are available. Else they

use annual accounting data. In line with Campbell et al. (2008), they assume that

quarterly accounting data are released with a two-month reporting gap, while annual

accounting data are released with a three-month reporting gap. They use stock

market data from CRSP, accounting data from Compustat, and data on the market

return and risk-free rate from Kenneth French’s website.
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Chapter 4

Corporate Bond Return

Prediction via Machine Learning

I perform a comparative analysis of machine learning models in predicting

corporate bond returns. I show that all the machine learning models have better

predictive performance than the traditional simple linear model, for which the

monthly out-of-sample R2 (R2
oos) is -43.00%. Among those linear machine learning

models, the penalized linear models (Lasso, Ridge, and Elastic Net) perform the

best, with the R2
oos ranging from 0.76% to 1.09%. The generalized linear model

(Group Lasso) works the second best, with an R2
oos of 0.90%. The correlations

among predictors are quite low, and thus the advantages of dimension reduction

methods are not fulfilled. Therefore, dimension reduction models have the worst

predictive power, with an R2
oos of -13.95% for the partial least squares and an

R2
oos of -0.66% for the principal component regression. Through allowing for more

flexibility in the functional form of the fitted model and interactions among

predictors, non-linear machine learning models greatly improve their out-of-sample

prediction performance, with an R2
oos of 1.80% for gradient boosted regression

trees and of 1.91% for random forests.

Keywords: Machine Learning, Return Prediction, Corporate Bond Returns.
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4.1 Introduction

Predicting stock returns is a long-standing research objective in the asset pricing

literature.1 Green, Hand and Zhang (2013) analyze the population of predictive

signals for returns and show that there are more than 330 signals discovered over

the 40-year period from 1970 to 2010. With such a large number of predictors,

the predictive performance of traditional simple linear models will deteriorate

seriously because of potential in-sample overfit. As machine learning techniques

become more popular in finance, Gu, Kelly and Xiu (2020) point out that non-linear

machine learning models perform the best in describing stock returns out-of-sample

when the number of predictors is enormous. They summarize three advantages

of machine learning models in predicting returns, (1) machine learning methods

are highly specialized for prediction tasks, (2) machine learning models which

emphasize on variable selection and dimension reduction are powerful in solving

prediction problems when the number of predictors approaches the number of

observations and predictors are highly correlated, (3) diversity of machine learning

models sets few restrictions on the functional form of predictive regressions.

Recently, a growing literature has examined bond return predictability by bond

characteristics and bond market factors.2 Choi and Kim (2018) find evidence that

equity and corporate bond markets are integrated. Besides, Chordia, Goyal, Nozawa,

Subrahmanyam and Tong (2017) find that past equity returns are positively related

to current bond returns, indicating that the equity market leads the bond market.

Therefore, bond returns can be predicted not only by bond characteristics and

bond market factors, but also by stock characteristics, stock market factors and

macroeconomic factors. That is, the advantage of applying machine learning

models in predicting bond returns may be more pronounced than that in the stock

market, since there is an even larger collection of predictors in the bond market.

1Ang and Bekaert (2006) show that dividend yield predicts excess stock returns only at short
horizons, but not at long horizons. Welch and Goyal (2007) argue that predicting excess stock
returns using historical average return performs better than using predictive regressions. However,
Campbell and Thompson (2007) find that many predictive regressions beat the historical average
return in predicting returns. Cochrane (2007) concludes that stock returns are predictable using
the price-dividend ratio.

2See, for example, Bao, Pan and Wang (2011), Jostova, Nikolova, Philipov and Stahel (2013),
and Bai, Bali and Wen (2019).
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This research aims to answer three questions, (1) whether machine learning

models outperform the traditional simple linear model in predicting corporate bond

returns out-of-sample, (2) which predictors are important in predicting corporate

bond returns, (3) which predictors are important in predicting cross-sectional stock

and bond returns simultaneously. In the empirical analysis, I investigate 24,945

individual bonds over the period from 2006 to 2017. I construct 11 bond-level

and 6 stock-level characteristics and 4 bond market factors, and the number of

baseline predictive covariates is 85 (=(11+6)×(4+1)) including interaction terms

between bond-level and stock-level characteristics and bond market factors. I adopt

7 different linear and 2 non-linear machine learning models in predicting bond

returns, and compare the monthly out-of-sample R2s (R2
ooss) of machine learning

models to that of the simple linear model. All of the machine learning models

perform better than the simple linear model, with R2
oos ranging from -39.51% to

1.91%, while the R2
oos of the simple linear model is -43.00%. The simple linear

model with Huber loss, which controls the influence of outliers, improves the R2
oos

to -39.51%. The Lasso, Ridge, and elastic net models, which add penalization to

the OLS loss function and reduce in-sample overfit to ensure stable out-of-sample

prediction, work very well and have R2
ooss of 1.00%, 1.09%, and 0.76% respectively.

Compared with penalized linear models, dimension reduction models that shrink

the predictor set by combining highly correlated predictors, work less well. The

R2
ooss of principal component regression (PCR) and partial least squares (PLS)

are -13.95% and -0.66% respectively. The empirical fact that few predictors are

redundant or highly correlated may cause the inferior performance of dimension

reduction models. The generalized linear model that adopts a spline expansion on

predictors (group lasso), works relatively well, with R2
oos equal to 0.90%, indicating

that univariate expansion of predictors provides incremental information and

performance to the simple linear model. Most importantly, through allowing for

more flexibility in the functional form of the fitted model and interactions among

predictors, non-linear machine learning models greatly improve their out-of-sample

prediction performance, with an R2
oos of 1.80% for gradient boosted regression trees
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and of 1.91% for random forests. These findings suggest that machine learning

models outperform the traditional simple linear model in predicting corporate bond

returns, even when a small bond sample and a relatively small set of predictors

are used in the analysis. Future work could attempt to find more robust evidence

to address question (1) and examine question (2) and (3). The future plan is

described in Section 4.4 in details.

This paper contributes to three strands of literature. First, this paper adds to

the literature that applies machine learning models in predicting returns. Gu et al.

(2020) find that non-linear machine learning models perform the best in predicting

stock returns out-of-sample. Bianchi, Büchner and Tamoni (2019) also find that

non-linear machine learning models can be highly useful for the out-of-sample

prediction of government bond excess returns. Second, this paper connects to a

growing literature that predicts corporate bond returns. Lin, Wang and Wu (2011)

find that liquidity risk is an important determinant of expected corporate bond

returns. Bao et al. (2011) find that bond-level illiquidity can explain individual bond

yields spread significantly. Jostova et al. (2013) document significant momentum

effects in bond returns. Lin, Wu and Zhou (2018) indicate that corporate bond

returns are highly predictable through an iterated combination model and using

27 macroeconomic, stock, and bond predictors. Bai et al. (2019) show that the

downside risk is the strongest predictor of future bond returns. Finally, this paper

contributes to the literature that aims to find the common predictors of stock and

bond returns. Bongaerts, de Jong and Driessen (2017) find that the liquidity level

and exposure to equity market liquidity risk affect expected bond returns. Chordia

et al. (2017) show that profitability and asset growth are negatively related to

corporate bond returns, while past equity returns are positively related to bond

returns. Gebhardt, Hvidkjaer and Swaminathan (2005) discover that firms earning

high (low) equity returns over the previous year earn high (low) bond returns in

the following year.

The rest of the paper is organized as follows. Section 4.2 briefly discusses the

machine learning models used in empirical tests. Section 4.3 calculates corporate
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bond returns and predictors, and shows the predictive performance of each machine

learning model. Section 4.4 describes the future research plan.

4.2 Methodology

In this section, I describe the collection of machine learning methods to be

used in the following empirical analysis. For each model, I provide a detailed

description of the statistical model and an objective function for estimating

the model parameters. All of the models use mean squared predictions error

(MSE) as the objective function. To avoid overfitting problems and improve

models’ out-of-sample predictive performance, I add variant regularization on the

estimation objective function. Finally, I briefly discuss the computational methods

for estimating each model and describe the specific implementation choices of

variant algorithms in Appendix 4.5.1.

I express an asset’s excess return in its most general form, an additive prediction

error model:

ri,t+1 = Et(ri,t+1) + εi,t+1, (4.1)

where

Et(ri,t+1) = g?(zi,t). (4.2)

Corporate bonds are indexed as i = 1, . . . , N and months by t = 1, . . . , T . For

simplicity of presentation, I assume a balanced panel of corporate bonds and discuss

the method to deal with missing data in Section 4.3.3. zi,t is a P -dimensional

vector and denotes predictor variables. I assume that the conditional expected

return, g?(·), is a flexible function of the predictors. My purpose is to estimate

Et(ri,t+1) as a function of the predictors which can maximize the out-of-sample

explanatory power for realized ri,t+1.

Although the form of g?(·) is flexible, there are some important restrictions

on g?(·). The g?(·) function depends neither on i nor t. The restriction indicates

that the form of g?(·) is the same across different bonds and over time. Therefore,

the model can use information from the entire panel in estimation and brings
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stability to estimates of risk premia for any individual bond. It is in contrast to

standard asset pricing approaches that re-estimate a cross-sectional model each

time period, or that independently estimate time-series models for each asset.

Furthermore, g?(·) depends on z only through zi,t. It means that the prediction

only uses information on the time period t and the ith individual bond.

4.2.1 Sample Splitting

Before discussing specific models and regularization approaches, I introduce how

I design disjoint sub-samples for estimation, validation, and testing. In particular,

I divide the sample into three disjoint time periods that maintain the temporal

ordering of the data.

The first or “training” subsample is used to estimate the model subject to

a specific set of tuning parameter values. The second or “validation” sample is

used for tuning the hyperparameters. Hyperparameters are parameters used to

control the complexity of machine learning models, and different machine learning

models have different hyperparameters. I first specify a suitably wide range of

values for hyperparameters. 3 I then construct forecasts for data points in the

validation sample using the estimated model with a specific set of values for

hyperparameters from the training sample. Next, I calculate the performance

evaluation measure (i.e., the out-of-sample R2) based on forecast errors from the

validation sample. Each set of values for hyperparameters has its corresponding

performance evaluation value from the validation sample. I iteratively search

for hyperparameters that optimize the evaluation measure. In its essence, the

validation is to simulate an out-of-sample test of the model. Hyperparameters

tuning intends to search for a degree of model complexity that tends to produce

reliable out-of-sample performance. The validation sample is not truly out-of-

sample because it is used to tune the hyperparameters, and thus an input to the

estimation. Therefore, the third or “testing” subsample is truly out-of-sample and

is used to evaluate a model’s predictive performance.

3A summary of ranges of values for hyperparameters for each model is provided in Appendix
4.5.3.
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Following Gu et al. (2020), I adopt a sample splitting scheme by recursively

increasing the training sample size, periodically re-estimating the model once per

year, and making out-of-sample predictions over the subsequent year. 4 Each time

I re-estimate a model, I increase the training sample size by one year. Meanwhile,

I maintain the same size of the validation sample, but roll it forward to include

the most recent year’s data. I choose not to cross-validate in order to maintain the

temporal ordering of the data for prediction, and calculate the final out-of-sample

R2 as the average value of the R2s from different testing samples.

4.2.2 Simple Linear Model with Huber Loss

I describe the models according to their complexity and begin with the least

complex model, the simple linear predictive regression with Huber loss. The simple

linear regression has been the most widely used model in return predictions over

the past decades and remains one of the most important tools in the empirical

asset pricing literature. 5 Although the simple linear model is expected to perform

poorly with a large number of predictors, I treat it as a benchmark model to

analyze distinctive features of advanced machine learning models.

Model: The simple linear model assumes that the conditional expected return,

g?(zi,t), can be approximated by a linear function of all the predictors,

g(zi,t;θ) = z′i,tθ, (4.3)

where θ is the parameter vector. This model imposes a linear relation between

predictors and expected returns and does not allow for non-linear effects or

interactions among predictors.

Objective Function and Computational Algorithm: Financial returns

and predictors are well-known for their non-normal distributions and heavy tails.

Estimation through ordinary least squares (OLS) puts extreme weights on outliers,

therefore, outliers can weaken the stability of OLS-based predictions. To solve the

4A detailed explanation for the sample splitting scheme is provided in Appendix 4.5.2.
5See Ang and Bekaert (2006), Campbell and Thompson (2007), Cochrane (2007), and Welch

and Goyal (2007).
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problem, the statistics literature has developed modified least squares objective

function that is able to produce more stable predictions in presence of extreme

observations. 6 In the machine learning literature, a common choice to mitigate

the harmful effect of extreme observations is the Huber robust objective function,

LH(θ) =
1

NT

N∑
i=1

T∑
t=1

H(ri,t+1 − g(zi,t;θ), ξ), (4.4)

where

H(x, ξ) =


x2, if |x| ≤ ξ;

2ξ|x| − ξ2, if |x| > ξ.

The Huber loss, H(·), is a hybrid of squared loss for relatively small errors and

absolute loss for relatively large errors, and the degree of combination is governed

by a tuning parameter, ξ, which can be optimized adaptively from the validation

sample. When ξ approaches ∞, the Huber objective function becomes a standard

least squares objective function, which yields the pooled OLS estimator.

4.2.3 Penalized Linear Model (Ridge, Lasso, and Elastic

Net)

When the number of predictors P approaches the number of observations T ,

estimates of the simple linear model become inefficient and inconsistent. 7 It is

well known as the curse of dimensionality (see, e.g., Stein (1956)). As pointed out

in Gu et al. (2020), the curse of dimensionality leads to overfitting noise rather

than extracting signal and can be particularly problematic in forecasting asset

returns where the signal-to-noise ratio is low.

Reducing the number of estimated parameters is crucial for avoiding overfitting.

A popular strategy is to impose parameter sparsity through appending a penalty

term to the objective function. The idea behind the strategy is that it can reduce

in-sample overfitting and improve out-of-sample performance of the linear model by

6See Box (1953), Tukey (1960), and Huber (1964).
7Like stock returns, corporate bond returns strongly depend on each other cross-sectionally.

The incremental information from new cross-sectional observations is limited. Therefore, I
intentionally compare the number of predictors P and the sample time horizon T here.
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keeping the predictive variables with the highest predictive power and discarding

the least relevant ones. This strategy works when the penalization manages to

reduce the model’s fit of noise while preserve its fit of signals.

Objective Function and Computational Algorithm: The functional

form of the penalized linear model is the same as that of the simple linear model

in Equation (4.3). Penalized regressions add a penalty term in the original loss

function,

L(θ; ·) = L(θ) + φ(θ; ·),L(θ) =
1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − g(zi,t;θ))2 (4.5)

where L(θ) is the loss function of the simple linear model and φ(θ; ·) is the penalty

term. More specifically, the penalization term can take the following form (see

Chapter 3 of Friedman, Hastie and Tibshirani (2001)),

φ(θ; ·) =



1

2
λ

P∑
j=1

θ2
j Ridge; (4.6a)

λ
P∑
j=1

|θj | Lasso; (4.6b)

λ(1− ρ)
P∑
j=1

|θj|+
1

2
λρ

P∑
j=1

θ2
j Elastic Net. (4.6c)

Ridge regression shrinks the regression coefficients by imposing a penalty on their

size. In equation (4.6a), λ ≥ 0 is a complexity parameter that controls the amount

of shrinkage: the larger the value of λ, the greater the amount of shrinkage. The

coefficients are shrunk toward zero. By imposing a size constraint on coefficients,

the ridge regression can alleviate the problem that very large coefficients with

opposite signs could arise when there exist many correlated variables in a linear

regression model. Unlike ridge, the lasso method shrinks those sufficiently small

coefficients to be exactly 0.8 In this sense, the lasso imposes parsimony on the

model specification and thus can be seen as a variable selection method.

8In the case of orthonormal inputs, the ridge estimates are just a scaled version of the least
squares estimates, that is, θ̂Ridgej = θ̂OLSj /(1 + 1

2λ), while the lasso translates the least squares

estimates by a constant factor λ, truncating at zero, that is, θ̂Lassoj = sign(θ̂OLSj )(|θ̂OLSj | − λ)+.
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Introduced by Hastie and Zou (2005), the elastic net is a combination of the

ridge and the lasso. The elastic net selects variables like the lasso and shrinks

the coefficients of the highly correlated predictors like the ridge. I adaptively

optimize the tuning parameters, λ and ρ, through the validation sample. I use

the accelerated proximal gradient algorithm to implement the penalized linear

regressions (see Appendix A. for more details).

4.2.4 Dimension Reduction: PCR and PLS

Penalized linear methods use shrinkage and variable selection to relieve the

curse of dimensionality by forcing the coefficients of redundant predictors near or

exactly to zero. When predictors are highly correlated, penalized linear models can

produce suboptimal predictions. In a simple situation where all the predictors are

the forecast target plus an iid noise term, using a simple average of the predictors

in a univariate regression performs better than the penalized linear methods do.

The essence of dimension reduction is predictors averaging, in contrast to

predictors selection. Forming linear combinations of predictors helps reduce noise

and better isolate signals from predictors, and meanwhile de-correlate highly

dependent predictors. Two classic techniques of dimension reduction are principal

components regression (PCR) and partial least squares (PLS).

I implement PCR in two steps. First, I use the principal components analysis

(PCA) to form linear combinations of predictors that best preserve the covariance

structure among predictors. Second, a few leading components (i.e., components

with leading sample variances amongst all normalized linear combinations of

predictors) are used in the predictive regression. PCA condenses regressors into

components only based on the covariation among predictors. Therefore, a drawback

of PCR is that it fails to incorporate our forecasting objective in the dimension

reduction procedure.

Stone and Brooks (1990) and Frank and Friedman (1993) point out that, unlike

PCR, which seeks directions that only maximize the variances of components, the

PLS maximizes both the variances of components and their correlations with the
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forecast target. That is, PLS performs dimension reduction by directly exploiting

covariation of predictors with the forecast target. 9 PLS proceeds iteratively in a

two-step procedure. In the first step, I estimate the univariate regression coefficient

for each predictor. Next, I form a weighted linear combination of all the predictors

into a single component by using weights proportional to their univariate regression

coefficients, placing the highest weight on the strongest univariate predictor and

the least weight on the weakest one. Through this process, PLS reduces dimension

while still considers the ultimate forecasting objective. In the second step, the

forecast target and all the predictors are orthogonalized with previous constructed

components and the procedure of the first step is repeated on the orthogonalized

dataset. This two-step procedure is iterated until the desired number of PLS

components is reached.

Model: To better present the implementation of PCR and PLS, I rewrite the

linear regression ri,t+1 = z′i,tθ + εi,t+1 as,

R = Zθ +E, (4.7)

where R is the NT × 1 vector of ri,t+1, Z is the NT × P matrix of stacked

predictors zi,t and E is a NT × 1 vector of residuals εi,t+1.

Both PCR and PLS use the same principal to reduce the dimensionality. Both

methods transform P predictors into K (smaller than P ) linear combinations of

predictors. Therefore, the statistical forecasting model for both methods can be

written as,

R = (ZΩK)θK + Ẽ. (4.8)

ΩK is a P × K matrix with columns w1, w2, . . . , wK . Vector wj represents

the set of linear combination weights used to construct the jth component, and

ZΩK is the dimension-reduced version of the original predictors. Accordingly, the

coefficient vector θK has dimension K × 1 instead of P × 1.

Objective Function and Computational Algorithm: PCR chooses the

9Kelly and Pruitt (2013) and Kelly and Pruitt (2015) analyze the asymptotic characteristics
of PLS and apply PLS in forecasting risk premia in financial markets.
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combination weights, wj , by solving 10

wj = argmax
wj

Var(Zwj), s.t. w′jwj = 1, Cov(Zwj , Zwl) = 0, l = 1, 2, . . . , j−1.

(4.9)

Intuitively, PCR seeks K linear combinations of Z that retain the most possible

common variation within the predictor set. A well-known solution to Problem (4.9)

computes ΩK through eigen decomposition of Z ′Z, and thus the PCR algorithm

is very computationally efficient.

In contrast to PCR, the PLS objective function searches K linear combinations

of Z that have maximal predictive association with the forecast target. The jth

PLS component is constructed by using weights that solve

wj = argmax
wj

Cov2(R,Zwj), s.t. w′jwj = 1, Cov(Zwj , Zwl) = 0, l = 1, 2, . . . , j−1.

(4.10)

The main difference between PCR and PLS can be observed from the objective

function. PLS sacrifices the accuracy of ZΩK approximating Z in exchange for

more return predictability. We use the SIMPLS algorithm of de Jong (1993) to

solve Problem (4.10).

For both PCR and PLS, θK is estimated through OLS by regressing R on

ZΩK after I have a solution for ΩK .11 For both models, K is a hyperparameter

that can be determined adaptively from the validation sample.

4.2.5 Generalized Linear Model (Group Lasso)

Linear models are very popular in practice, because they are simple, easy

to implement, and can be considered as a first-order approximation to the data

generating process. However, when the “true” model is not linear, using a linear

form to describe the model will introduce approximation error due to model

misspecification. Following Gu et al. (2020), I highlight the importance of specifying

a proper functional form of the model as follows. A model’s forecast error can be

10For two vectors a and b, I denote Cov(a, b) = (a− ā)′(b− b̄), where ā is the average value
of vector a. Following the same rule, I define Var(a) = Cov(a,a).

11Detailed algorithms to solve ΩK for both methods are provided in Appendix B..
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decomposed as,

ri,t+1 − r̂i,t+1 = g?(zi,t)− g(zi,t;θ)︸ ︷︷ ︸
approximation error

+ g(zi,t;θ)− g(zi,t; θ̂)︸ ︷︷ ︸
estimation error

+ εi,t+1︸︷︷︸
intrinsic error

, (4.11)

where g?(zi,t) denotes the true model, g(zi,t;θ) is the specified functional form

of the model, and r̂i,t+1 is the forecasted return from the fitted model g(zi,t; θ̂).

Intrinsic error, which is irreducible, is the unpredictable part of returns induced

by new information and unknown randomness in financial markets. Estimation

error is determined by the data, and can be reduced by having more observations.

Approximation error can be reduced by incorporating flexible specifications of the

model and improving the model’s ability to approximate the true model. However,

one noteworthy fact is that increasing flexibility raises the risk of overfitting

and makes the model instable out-of-sample. In this and following subsections,

I introduce more flexible nonparametric models of g(·) and their regularization

methods to mitigate overfit.

Model: I first consider the generalized linear model, which is the closest to the

linear models. The generalized linear model introduces nonlinear transformations

of the original predictors as new predictors in a linear model. The model I study

replaces the predictors with their K-term spline series expansion in the simple

linear model,

g(z;θ,p(·)) =
P∑
j=1

p(zj)
′θj , (4.12)

where p(·) = (p1(·),p2(·), . . . ,pK(·))′ is a vector of basis functions, and the

parameters matrix becomes a K×P matrix θ = (θ1,θ2, . . . ,θP ). There are many

choices for spline functions, and I adopt a spline series of order two, (1, z, (z −

c1)2, (z − c2)2, . . . , (z − cK−2)2), where c1, c2, . . . , cK−2 are knots.

Objective Function and Computational Algorithm: Although higher

order terms of predictors enter into the model, the functional form of the model

is still linear. Therefore, I can use the same estimation tools of linear models. In

particular, I use a least squares objective function with a penalty term as the

objective function for this model (see equation (4.5)). The penalty term is used
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to control the number of model parameters which grow rapidly because of series

expansion. The penalization function is specialized for the spline expansion setting

and is known as group lasso. The form of the penalty function is

φ(θ;λ,K) = λ

P∑
j=1

(
K∑
k=1

θ2
j,k

) 1
2

. (4.13)

The group lasso selects either all K spline terms of a predictor or none of them. I

also use the accelerated proximal gradient descent to estimate the group lasso (see

Appendix A. for details), and the two tuning parameters, λ and K, are chosen

adaptively from the validation sample.

4.2.6 Gradient Boosted Regression Trees and Random

Forests

The generalized linear model (group lasso) described in Section 4.2.5 captures

how the nonlinear transformations of individual predictors influence expected

returns, however, it does not include the interaction terms among predictors. One

possible way is to include multivariate functions of predictors in the generalized

linear model. But the difficulty lies in that multi-way interactions will increase the

parameterization combinatorially, and the generalized linear model will become

computationally infeasible without knowing which interactions to include.

Different from traditional regressions, regression trees are nonparametric. The

logic of regression trees makes them popular alternative machine learning ap-

proaches to incorporate multi-way predictor interactions. The fundamental logic

of regression trees is to find groups of observations that behave similarly to each

other. A tree ”grows” in sequential steps. At each step, a new ”branch” sorts the

data from the previous step into different bins based on one of the predictors.

This sequential branching process slices the space of predictors into rectangular

partitions, and approximates the unknown function g?(·) with the average value

of the outcome variable (the excess bond returns) within each partition.

Model: The prediction of a tree, T , with K “leaves” or terminal nodes, and

184



depth L, can be formally written as

g(zi,t; θ,K, L) =
K∑
k=1

θk1{zi,t∈Ck(L)}, (4.14)

where Ck(L) is one of the K partitions of the data. Each partition is a product

of up to L indicator functions of the predictors. θk, the constant associated with

partition k, is defined to be the simple average of outcomes within the partition.

Objective Function and Computational Algorithm: The core of regres-

sion trees lies in finding bins that best distinguish among the potential outcomes.

The specific predictor on which a branch is based and the specific value where the

branch is split, are chosen to minimize forecast errors. However, the large quantity

of potential tree structures precludes exact optimization. To quickly converge on

approximately optimal trees, I follow the algorithm of Breiman, Friedman, Stone

and Olshen (1984), which is discussed in Appendix C. in detail. The basic logic

of the algorithm is to optimize the forecast error at the start of and within the

branch. At each branch, a predictor and the corresponding split value are chosen

to maximize the discrepancy among avarage outcomes of bins without considering

other branches. The loss associated with the forecast error for a branch C is called

“impurity”, and captures how similarly observations behave within each bin. We

use the most popular l2 loss function:

H(θ, C) =
1

|C|
∑
zi,t∈C

(ri,t+1 − θ)2, (4.15)

where |C| is the number of observations in set C, and θ = 1
|C|
∑

zi,t∈C ri,t+1. This

process tries to search for the branch which locally minimizes the loss function

and will stop when the number of leaves “K” or the depth of the tree “L” reaches

a pre-specified value which can be chosen adaptively from the validation sample.

The outstanding advantages of a tree model are: (1) it is the same with

monotonic transformations of predictors, (2) it can accommodate categorical

and numerical data at the same time, (3) it can incorporate potentially severe

nonlinearities and a tree of depth L can capture (L−1)-way interactions. However,
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trees suffer greatly from overfit due to their flexibility, and thus must be heavily

regularized. In line with Gu et al. (2020), I apply two “ensemble” tree regularizers

that combine forecasts from many trees into a single forecast.

Boosting (Gradient Boosted Regression Trees): Although shallow trees

in their own are “weak learners” with minor predictive power, however, many

weak learners may, as an ensemble, comprise a single “strong learner” with greater

stability than a single complex tree. Therefore, the “boosting” regularization

method tries to improve the predictive power through recursively combining

forecasts from many over-simplified trees.

The specific boosting procedure I use is called gradient boosted regression trees

(GBRT). It begins with fitting a shallow tree, for example, a tree with depth L = 1.

Next, a second simple tree with the same depth L is used to fit the prediction

residuals from the first tree. At each new step b, a shallow tree is fitted to the

prediction residuals from the tree in step b− 1, and its forecast is added to the

total prediction with a shrinkage weight of v (v ∈ (0, 1) is applied to prevent from

overfitting the prediction residuals.). This procedure is iterated until there are a

total of B trees in the ensemble. The final result is an additive model of shallow

trees with three tuning parameters (L, v, B) which are adaptively chosen from

the validation sample. The detailed algorithm to implement GBRT is displayed in

Appendix C..

Random Forest: Similar to boosting, a random forest is also a kind of ensem-

ble methods that combine forecasts from many different trees. It is a variation of

a more general procedure known as bootstrap aggregation, or “bagging” (Breiman

(2001)). The basic tree bagging procedure randomly draws B different bootstrap

samples from the data, fits a separate regression tree to each sample, and averages

their forecasts. It is likely for trees of individual bootstrap samples to be overfit,

thus making their individual predictions inefficient and vary a lot. Averaging over

multiple predictions can smooth the prediction, and stabilize the trees’ predictive

performance.

There is a drawback of bagging. If, for example, bond credit rating is the
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dominant predictor in the data, then most of the bagged trees will have low-branch

splits on bond credit rating, which will result in substantial correlation among

their ultimate predictions. The random forest method considers a randomly drawn

subset of predictors for splitting at each branch. Through that way, early branches

for some trees will split on predictors other than bond credit rating in the example.

It further improves the variance reduction relative to standard bagging by reducing

the correlation among predictions. Depth L of trees and number of bootstrap

samples B are tuning parameters optimized through validation. Details of the

algorithm to implement random forests are shown in Appendix C..

4.2.7 Performance Evaluation

To evaluate the predictive performance of each machine learning model, I

calculate the out-of-sample R2 as

R2
oos = 1−

∑
(i,t)∈τ3(ri,t+1 − r̂i,t+1)2∑

(i,t)∈τ3(ri,t+1 − r̄)2
, (4.16)

where τ3 indicates data which is only available in the testing sample and

never enters into model estimation or hyperparameter tuning. r̄ is the historical

mean of excess bond returns and obtained by averaging excess returns in the

training sample. The R2
oos pools prediction errors across bonds and over time into

a tremendous panel-level assessment of each model.

As the following extortion, one can use the Diebold and Mariano (2002)

test to make pairwise comparisons and examine the significance of predictive

performance improvement among models. The data structure decides that the

time-series dependence in returns is weak, while the cross-sectional dependence

is strong. It is unlikely that the conditions of weak error dependence underlying

the Diebold-Mariano test apply to the bond-level analysis. Therefore, one can

adapt Diebold-Mariano test to the data by comparing the cross-sectional average

of prediction errors from each model, instead of doing it from the individual

return perspective. To be specific, the test statistic used to test the predictive

performance of model (1) against model (2) is defined as,
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DM12 = d̄12/σ̂d̄12 , d12,t+1 =
1

n3,t+1

n3,t+1∑
i=1

(
(ê

(1)
i,t+1)2 − (ê

(2)
i,t+1)2

)
, (4.17)

where ê
(1)
i,t+1 and ê

(2)
i,t+1 are prediction errors for bond i at time t of model (1) and

model (2), and n3,t+1 is the number of bonds in the testing sample at year t+ 1.

d̄12 and σ̂d̄12 denote the mean and Newey-West standard error of d12,t over the

testing sample. This modified Diebold-Mariano test statistic now bases on a single

time-series of d12,t+1 with small autocorrelation. Therefore, it is likely to satisfy

the conditions for asymptotic normality and provide proper p-values for the model

comparison tests.

4.3 Empirical Study

4.3.1 Bond Data

I collect bond data, including intraday transaction prices, transaction dates,

trading volumes, sale conditions, when-issued indicators, locked-in indicators, trade

status, and commission indicators from the enhanced version of the Trade Report-

ing and Compliance Engine (TRACE). The sample period spands from July 2002

to June 2017. In contrast to the Lehman Brothers Fixed Income Database, Datas-

tream, and Bloomberg, which are quote-based databases, TRACE is a trade-based

database, offering higher market transparency (see Bessembinder, Maxwell and

Venkataraman (2006)) and covering about 99% of all public bond-market transac-

tions since February 2005 (see Bao et al. (2011)). I collect bond characteristics from

the Mergent Fixed Income Securities Database (FISD), including offering-amount

and -date, maturity date, coupon-rate, -type, and -payout frequency, bond-type,

-rating, and -option features, and issuer information. The monthly risk-free rate

(one-month Treasury Bill rate) is obtained from Ibbotson and Associates.

I impose the following standard filters in the literature on the bond data. 1) I

remove bonds not traded or listed in U.S. public markets. 2) I exclude bonds that
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are structured notes, are mortgage-, asset-, or agency-backed, or are equity-linked.

3) I remove convertible bonds. 4) I keep only fixed and zero coupon bonds. 5) I

remove bonds with less than one year to maturity. 6) I eliminate bond transactions

that are labeled as when-issued or locked-in or have special sales conditions. 7) I

remove canceled, corrected, or commission trades.

4.3.2 Calculating Corporate Bond Returns

Following Bessembinder, Kahle, Maxwell and Xu (2009), Bao et al. (2011), and

Jostova et al. (2013), I calculate the net return of corporate bond i over month t,

ri,t, using:

ri,t =
Bi,t + AIi,t + Ci,t
Bi,t−1 + AIi,t−1

− 1, (4.18)

where B is the bond price, AI the accrued interest, and C the coupon payment.

The price B is calculated as follows. Consistent with Bessembinder et al. (2009), I

calculate a bond’s daily price as the trading-volume-weighted average of intraday

transaction prices over that day to minimize microstructure effects caused by

bid-ask spreads. In line with Bai et al. (2019), I next calculate three types of bond

returns, namely: (i) the return from the end of month t− 1 to the end of month

t; (ii) the return from the start of month t to the end of month t; and (iii) the

return from the start of month t to the start of month t+ 1, where I define the

start (end) of a month as the first (last) five trading days within that month. If

I have more than one non-missing daily bond price within either the start- or

end-of-month window, I choose the daily price closest to the first/last trading day

of a month in my calculations. Finally, if it is able to calculate more than one

type of returns, the selection order is type (i), type (ii), and type (iii).

To calculate the accrued interest AI, I first compute the daily coupon rate.

The daily coupon rate is the coupon rate divided by 360 if a bond’s day-count

basis is “30/360” or “ACT/360,” and it is the coupon rate divided by the actual

number of calendar days per year if the day-count basis is “ACT/ACT.” I next

count the calendar days between the current month-end t and the previous coupon
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payment date, assuming that a month has 30 calendar days if the day-count basis

is “30/360” and the actual number of days per month when it is “ACT/360” or

“ACT/ACT.” Also, I use the date of the first coupon payment and the coupon

payment frequency to infer on which days the coupons are paid. I finally calculate

the accrued interest AI as the daily coupon rate multiplied by the number of days

between the current month-end t and the previous coupon payment date.

4.3.3 Calculating Predictors

I construct a collection of bond-level predictive characteristics and predictive

bond market factors based on the literature of cross-sectional bond returns. There

are 11 bond-level characteristics and 4 bond market factors in total. Besides, I

build 6 stock-level characteristics according to predictions of cross-sectional stock

returns literature. All of the predictors are updated monthly. Brief descriptions

and references of all the predictors are provided in Table 4.1. 12 Appendix 4.5.4

provides detailed construction processes of the bond-level characteristics and bond

market factors.

Table 4.2 shows the descriptive statistics of excess corporate bond returns and

bond-level characteristics. The final sample includes 24,945 unique bonds and a

total of 659,299 bond-month return observations during the sample period from

July 2006 to June 2017. There are on average 4,995 bonds per month in the whole

sample. The average monthly excess bond return is 0.55%.

12To construct predictive bond-level characteristics and bond market factors, I lose the first
4 years’ data. The sample used in prediction goes from July 2006 to June 2017. To avoid the
forward-looking bias, the monthly bond-level and stock-level characteristics are delayed by 1
month. Furthermore, I replace missing characteristics with the cross-sectional median of each
month for each bond.
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Table 4.1: Details of the Predictors

This table lists the bond-level characteristics, bond market factors, and stock-level characteristics I use in predicting bond returns. All of the predictors are updated
monthly. Except for def (default spread) and term (term spread), the data used to construct bond-level characteristics and bond market factors are from TRACE and
FISD. Default spread and term spread are constructed with the data from DataStream. Stock-level characteristics are built with the data from CRSP.

No. Symbol Description Paper’s Author(s) Year, Journal

Bond-level Characteristics

1 dsrisk Downside risk Bai, Bali & Wen 2019, JFE

2 illiq Illiquidity Bao, Pan & Wang 2011, JF

3 ltr Long-term reversal Bali, Subrahmanyam & Wen 2019, WP

4 mat Years-to-maturity Bai, Bali & Wen 2019, JFE

5 mom Momentum Jostova, Nikolova, Philipov & Stahel 2013, RFS

6 rating Credit rating Jostova, Nikolova, Philipov & Stahel 2013, RFS

7 size Amount outstanding Bai, Bali & Wen 2019, JFE

8 skew Return skewness Bai, Bali & Wen 2016, WP

9 str Short-term reversal Bali, Subrahmanyam & Wen 2019, WP

10 vol Return volatility Bai, Bali & Wen 2016, WP
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Table 4.1 continued

11 uncbeta Economic uncertainty beta Bali, Subrahmanyam & Wen 2019, WP

Bond Market Factors

1 bmkt Bond market excess return Bai, Bali & Wen 2019, JFE

2 def Default spread Fama & French 1993, JFE

3 liq Market liquidity risk Lin, Wang & Wu 2011, JFE

4 term Term spread Fama & French 1993, JFE

Stock-level Characteristics

1 beta Beta loading on the stock market excess return Fama & MacBeth 1973, JPE

2 betasq Beta squared Fama & MacBeth 1973, JPE

3 ill Stock illiquidity ratio Amihud 2002, JFM

4 maxret Maximum daily return Bali, Cakici & Whitelaw 2011, JFE

5 mom1m 1-month momentum Jegadeesh 1990, JF

6 mom12m 12-month momentum Jegadeesh 1990, JF
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Table 4.2: Descriptive Statistics

This table shows descriptive statistics of excess bond returns, and bond-level and stock-level characteristics. ret, dsrisk, illiq, ltr, mat, mom, rating, size, skew, str, vol,
uncbeta, beta, betasq, ill, maxret, mom1m, mom12m are excess bond return, downside risk, illiquidity, long-term reversal, years-to-maturity, momentum, credit rating,
amount outstanding, return skewness, short-term reversal, return volatility, economic uncertainty beta, beta loading on the excess stock market return, beta squared, stock
illiquidity ratio, maximum daily return, 1-month momentum and 12-month momentum respectively. Details of construction processes of those bond-level characteristics
are provided in Appendix 4.5.4. The sample period is from July 2006 to June 2017.

Standard Percentiles

Obs Mean Deviation 1 5 25 50 75 95 99

Excess Bond Return

ret (%) 659,299 0.55 4.63 -11.70 -3.83 -0.49 0.40 1.58 5.15 13.33

Bond-level Characteristics

dsrisk (%) 659,299 4.20 3.61 0.65 1.15 2.58 2.99 5.40 8.80 20.92

illiq 659,299 1.44 3.95 -1.12 -0.04 0.10 0.39 1.21 6.24 20.15

ltr 659,299 0.19 0.18 -0.08 -0.00 0.06 0.16 0.25 0.47 0.58

mat 659,299 14.23 10.13 2.99 4.93 7.70 10.03 20.03 30.07 33.74

mom 659,299 0.03 0.12 -0.19 -0.06 0.00 0.03 0.05 0.14 0.32

rating 659,299 8.47 3.85 1.00 3.00 6.00 8.00 10.00 16.00 22.00
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Table 4.2 continued

size 659,299 12.36 1.72 7.76 8.87 12.07 12.90 13.46 14.38 14.91

skew 659,299 0.09 0.76 -2.19 -0.94 -0.10 0.07 0.29 1.34 2.70

str (%) 659,299 0.61 4.04 -9.82 -3.43 -0.32 0.47 1.51 4.76 11.90

vol (%) 659,299 0.15 0.31 0.01 0.02 0.04 0.07 0.16 0.43 1.63

uncbeta 659,299 -0.01 0.37 -1.19 -0.44 -0.09 0.01 0.07 0.42 1.00

Stock-level Characteristics

beta 659,299 0.02 0.56 -0.21 -0.04 0.00 0.01 0.02 0.07 0.31

betasq 659,299 0.3121 13.1874 0.0000 0.0000 0.0001 0.0002 0.0007 0.0126 0.7584

ill 659,299 -0.0069 4.3781 0.0000 0.0000 0.0000 0.0001 0.0002 0.0023 0.0308

maxret (%) 659,299 4.23 5.21 0.86 1.21 2.01 2.95 4.59 10.97 25.00

mom1m (%) 659,299 0.80 11.20 -30.82 -14.21 -3.76 0.92 5.36 14.78 30.13

mom12m (%) 659,299 0.73 11.11 -30.47 -14.43 -3.90 0.88 5.35 14.67 29.63
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Table 4.3: Correlations among Bond-Level and Stock-Level Characteristics

This table shows pairwise correlations among bond-level and stock-level characteristics. dsrisk, illiq, ltr, mat, mom, rating, size, skew, str, vol, uncbeta, beta, betasq, ill,
maxret, mom1m, mom12m are excess bond return, downside risk, illiquidity, long-term reversal, years-to-maturity, momentum, credit rating, amount outstanding, return
skewness, short-term reversal, return volatility, economic uncertainty beta, beta loading on the excess stock market return, beta squared, stock illiquidity ratio, maximum
daily return, 1-month momentum and 12-month momentum respectively. Details of construction processes of those bond-level characteristics are provided in Appendix
4.5.4. The sample period is from July 2006 to June 2017.

drisk illiq ltr mat mom rating size skew str vol uncbeta beta betasq ill maxret mom1m mom12m

drisk 1.00

illiq 0.20 1.00

ltr -0.20 -0.07 1.00

mat 0.14 0.13 0.04 1.00

mom 0.19 -0.01 -0.10 0.03 1.00

rating 0.18 0.08 0.03 -0.12 0.02 1.00

size -0.07 -0.12 0.05 -0.07 -0.02 0.07 1.00

skew 0.03 -0.04 0.07 0.03 0.13 -0.02 0.03 1.00

str 0.09 0.01 -0.03 0.02 0.25 0.00 -0.02 0.12 1.00

vol 0.67 0.13 0.06 0.11 -0.25 0.17 -0.05 0.13 0.13 1.00

uncbeta -0.00 -0.00 -0.08 0.04 -0.05 -0.10 -0.01 -0.05 -0.01 -0.09 1.00
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Table 4.3 continued

beta -0.01 0.00 -0.00 -0.00 -0.01 -0.01 -0.02 -0.00 0.00 -0.01 0.02 1.00

betasq 0.00 -0.00 -0.02 -0.00 0.01 0.01 0.01 0.00 -0.01 0.01 -0.01 -0.30 1.00

ill 0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 1.00

maxret 0.24 0.19 -0.10 -0.05 -0.08 0.21 -0.07 -0.09 0.01 0.15 -0.01 0.01 0.00 -0.00 1.00

mom1m 0.02 -0.04 0.02 0.00 0.12 -0.03 0.02 0.07 0.29 0.04 -0.00 0.05 -0.02 -0.00 0.08 1.00

mom12m -0.02 -0.03 0.05 0.00 -0.08 -0.01 0.02 0.02 -0.03 -0.00 0.00 0.00 -0.00 0.00 -0.07 0.02 1.00
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Table 4.3 displays pairwise correlations among bond-level and stock-level

characteristics. Except for the high correlation between return volatility (vol) and

downside risk (dsrisk) which is 0.67, the correlations among other bond-level and

stock-level characteristics are low.

Figure 4.1: Bond Market Factors
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This figure shows 4 bond market factors, with bmkt (bond market excess return) in Panel (a),
def (default spread) in Panel (b), liq (market liquidity risk) in Panel (c), and term (term spread)
in Panel (d).

Figure 4.1 shows the time series of 4 bond market factors. The bond market

excess return and term spread reach their lowest levels during the 2008-2009

financial crisis. By contrast, the default spread reaches its highest level since
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investors become more risk-averse. Besides, the market liquidity risk increases

in the subprime financial crisis period, indicating low liquidity in the market.

Moreover, there is another large decline in market liquidity during 2013-2014 debt

ceiling crisis, which limits the amount of national debt and reduces liquidity in

the bond market.

4.3.4 Performance of Machine Learning Models

The baseline set of predictive covariates can be defined as,

zi,t = ci,t ⊗ xt, (4.19)

where ci,t is a Pc × 1 (Pc = 17 = 11 + 6) vector of characteristics for each bond i,

and xt is a Px× 1 (Px = 5 = 1 + 4) vector of bond market factors, which include a

constant and are common to all bonds. Therefore, zi,t is a P×1 (P = Pc×Px = 85)

vector of covariates, which are used in predicting individual bond returns and

include interaction terms of bond-level and stock-level characteristics and bond

market factors.

Table 4.4 compares the out-of-sample predictive R2
ooss of different machine

learning models. R2
ooss for the entire pooled sample of 10 different models are

reported, including OLS, OLS with Huber loss (OLS+H), PLS, PCR, Lasso,

elastic net (Enet), Group Lasso (GL), gradient boosted regressions (GBRT), and

random forests (RF). The OLS model generates an R2
oos of -43.00%. Using Huber

loss to alleviate the outlier problem slightly improves the R2
oos to -39.51%. The

bad performance of the simple linear model is unsurprising, because the lack of

regularization greatly improves the possibility of in-sample overfit and reduces the

model’s out-of-sample prediction power. Moreover, adding penalization to the OLS

loss function substantially improves the performance of the simple linear model,

which can be seen by the positive R2
ooss of the Lasso (1.00%), Ridge (1.09%),

and Enet (0.76%) models. However, regularization through dimension reduction

does not work very well, though the performances of PLS (R2
oos = −13.95%) and

PCR (R2
oos = −0.66%) are much better than that of the OLS model. It is because
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correlations among bond characteristics are low and few covariates are redundant,

and thus the advantages of dimension reduction methods are not fulfilled. PCR

keeps a few high-variance directions and discards the rest. Meanwhile, it has

been shown that PLS also tends to shrink the low-variance directions, but can

actually inflate some of the higher variance directions. This property makes PLS

a little unstable and causes the inferior performance of PLS compared with PCR.

The generalized linear model with group lasso penalty performs relatively well

with an R2
oos of 0.90%. It suggests that univariate expansion of covariates does

provide incremental information and performance to the simple linear model. Most

importantly, the non-linear machine learning models, GBRT and RF, perform

the best among all the machine learning models with R2
ooss of 1.80% and 1.91%

respectively. Allowing for more flexibility of the functional form and interactions

among predictors greatly improves the predictive power of non-linear models with

respect to linear models.
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Table 4.4: Monthly Out-of-sample Bond-level Prediction Performance

This table reports monthly R2
ooss for the entire panel of bonds using OLS, OLS with Huber loss

(OLS+H), PLS, PCR, Lasso, Ridge, elastic net (Enet), Group Lasso (GL), gradient boosted
regression trees (GBRT), and random forests (RF). R2

ooss are displayed in percentage. The lower
figure provides a visual comparison of R2

oos measures displayed in the table.

OLS OLS+H PLS PCR Lasso Ridge Enet GL GBRT RF

-43.00 -39.51 -13.95 -0.66 1.00 1.09 0.76 0.90 1.80 1.91
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4.4 Future Plan

This paper aims to answer three main questions: (1) whether machine learning

models outperform the traditional simple linear model in predicting corporate bond

returns out-of-sample, (2) which predictors are important in predicting corporate

bond returns, (3) which predictors are important in predicting the cross-sectional

stock and bond returns simultaneously.

My current empirical results indicate that machine learning models indeed

perform much better than the simple linear model, even when a small bond sample

and a relatively small set of bond and stock market predictors are used in the
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analysis.13 To answer question (1) with stronger evidence, I plan to improve the

empirical results from three aspects. First, I will expand the current bond sample

to a large one which ranges from January 1973 to March 2019 and includes bond

transaction data from TRACE, National Association of Insurance Commission

(NAIC), Lehman Brothers fixed income database, DataStream, and Bloomberg.

Second, I will add more stock market predictors in predicting bond returns. In total,

there are 190 predictors, including 94 stock-level characteristics, 11 bond-level

characteristics, 74 firm industry dummies, and 11 market and macroeconomic

factors. Therefore, the total number of covariates will be (11+94)× (11+1)+74 =

1334, when considering the interactions between macroeconomic variables and

bond- and stock-level characteristics. Third, I will also apply more advanced

non-linear machine learning models, i.e., neural networks, in predicting bond

returns.

To answer question (2), I plan to identify predictors that have an important

impact on the cross-sectional bond returns while controlling for other predictors. To

accomplish that goal, I rank influential predictors according to their importance

which is measured by two different methods. The first method calculates the

reduction in R2
oos when setting the value of examined predictor to 0, and holding

the other covariates parameter estimates untouched. The second method measures

the sensitivity of the fit of model to changes in the examined predictor, and

calculates the sum of squared partial derivatives of the model with respect to the

examined variable.14

The plan for answering question (3) is to apply the same set of predictors used

in predicting bond returns to predict stock returns, and identify predictors which

are influential in predicting both bond and stock returns.

13The bond pricing literature documents that corporate bond returns can be predicted not
only by bond market predictors, but also by stock market predictors. (See, e.g., Choi and Kim
(2018).)

14The first and second methods have been used in Kelly, Pruitt and Su (2019) and Dimopoulos,
Bourret and Lek (1995) respectively.
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4.5 Appendix

4.5.1 Algorithms in Details

A. Ridge, Lasso, Elastic Net, and Group Lasso

In this section, I present the procedure of using the accelerated proximal

algorithm to estimate coefficients of the Lasso, Ridge, elastic net and Group Lasso

models. 15 Their regularized objective functions can be written as

L(θ; ·) = L(θ) + φ(θ; ·), (A1)

and

φ(θ; ·) =



1
2
λ

P∑
j=1

θ2
j Ridge;

λ
P∑
j=1

|θj | Lasso;

λ(1− ρ)
P∑
j=1

|θj |+ 1
2
λρ

P∑
j=1

θ2
j Elastic Net;

λ
P∑
j=1

||θj|| Group Lasso.

.

θ? minimizes the objective function (A1) if and only if

θ? = proxγφ(θ? − γ∇L(θ?)), (A2)

where γ is the learning rate. The proximal operators are

proxγφ(θ) =



θ
1+λγ

Ridge;

S(θ, λγ) Lasso;

1
1+λγρ

S(θ, (1− ρ)λγ) Elastic Net;

(S̃(θ1, λγ)ᵀ, S̃(θ2, λγ)ᵀ, . . . , S̃(θP , λγ)ᵀ)ᵀ Group Lasso.

,

15Parikh and Boyd (2014) and Polson, Scott and Willard (2015) provide more detailed
descriptions of the accelerated proximal algorithm.
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where S(x, µ) and S̃(x, µ) are vector-valued functions, whose ith component is

(S(x, µ))i =


xi − µ, if xi > 0 and µ < |xi|;

xi + µ, if xi < 0 and µ < |xi|;

0, if µ ≥ |xi|.

,

and

(S̃(x, µ))i =


xi − µ xi

||xi|| , if ||xi|| > µ;

0, if ||xi|| ≤ µ.

.

The detailed algorithm is described in Algorithm 1.

B. PCR and PLS

I obtain the principal components of the variables in Z through the eigen

decomposition of Z ′Z,

Z ′Z = WD2W ′. (A3)

D is a P ×P diagonal matrix, with diagonal entries d1 ≥ d2 ≥ . . . ≥ dP ≥ 0 called

the singular values of Z. The eigenvectors wj (columns of W ) are the principal

components directions of Z. The first principal component direction w1 has the

property that Zw1 has the largest sample variance amongst all normalized linear

combinations of the columns of Z.

Principal component regression forms the derived input columns xj = Zwj ,

and then regress R on x1,x2, . . . ,xK for some K ≤ P . The number of K is

optimized through the validation sample.

I use the SIMPLS algorithm developed by de Jong (1993) to estimate the

coefficients of partial least squares regression. The detailed algorithm is displayed

in Algorithm 2.
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Algorithm 1 Accelerated Proximal Gradient Method

Standardize each predictor vector Zj to have mean 0 and variance 1. Center
the excess return vector R.
Initialize θ0 = 0, k = 0, γ.
while θk not converged do
θ̄k+1 ← θk − γ∇L(θ)|θ=θk

θ̃k+1 ← proxγφ(θ̄k+1) {The first two iteration steps implement equation
(A2).}
θk+1 ← θ̃k+1+ k

k+3
(θ̃k+1− θ̃k) {This step is a Nesterov momentum (Nesterov

(1983)) adjustment that accelerates convergence.}
k ← k + 1

end while
return θk

Algorithm 2 SIMPLS

Input: NT × P matrix X {the standardized version of the predictor matrix Z}
NT × 1 vector Y {the excess return vector R}
the number of factors A {P in the main text}

Output: B {regression coefficients}
Y0 = Y −MEAN(Y ) {center Y }
S = X ′Y0

for a = 1, . . . , A do
q = dominant eigenvector of S′S
r = Sq
t = Xr
t = t−MEAN(t)
normt = SQRT (t′t)
t = t/normt
r = r/normt
p = X ′t
q = Y ′0t
u = Y0q
v = p
if a > 1 then
v = v − V (V ′p)
u = u− T (T ′u)

end if
v = v/SQRT (v′v)
S = S − v(v′S)
Store r, t, p, q, u, and v into R, T , P , Q, U , and V , respectively.

end for
B = RQ′
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C. Binary Regression Trees, Gradient Boosted Regression Trees, and

Random Forests

Algorithm 3 grows a complete binary regression tree. Algorithm 4 implements

the gradient boosted regression tree, and Algorithm 5 delivers the random forest.

4.5.2 Sample Splitting

Figure A1: Sample Splitting Scheme

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Year

Scheme 3

Scheme 2

Scheme 1

S
a
m

p
le

 S
p

li
tt

in
g

Training

Validation

Testing

This figure displays the sample splitting scheme used for tuning the hyperparameters and
evaluating the out-of-sample performance of machine learning models. The dark, gray, light gray
bars indicate training, validation, and testing samples respectively.

There is 11 years’ data in total (from 2006 to 2017) in the bond sample. The

training sample is started with the first 5 years’ data and the validation sample is

the following 3 years’ data. I refit all the models once every year, and each time I

refit, I increase the training sample by one year. I maintain the same size of the

validation sample, but roll it forward to include the most recent one year data

each time I refit the models. The test sample uses the data from the subsequent

year. Figure A1 vividly displays the sample splitting scheme.

4.5.3 Hyperparameter Tuning

Table A1 describes the set of hyperparameters and their value ranges used for

tuning each machine learning model.
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Algorithm 3 Binary Regression Trees

Initialize the stump. C1(0) denotes the range of all covariates, and Cl(d) denotes
the l-th node of depth d.
for d from 1 to L do

for i in {Cl(d− 1), l = 1, . . ., 2d−1} do
i) For each feature j = 1, 2, . . . , P , and each threshold level α, define a split
as s = (j, α), which divides Cl(d− 1) into Cleft and Cright:

Cleft(s) = {zj ≤ α} ∩ Cl(d− 1); Cright(s) = {zj > α} ∩ Cl(d− 1),

where zj denotes the jth covariate.
ii) Define the impurity function:

L(C,Cleft, Cright) =
|Cleft|
|C|

H(Cleft) +
|Cright|
|C|

H(Cright),

where H(C) = 1
|C|

∑
zi,t∈C

(ri,t+1− θ)2, θ = 1
|C|

∑
zi,t∈C

ri,t+1, and |C| denotes the

number of observations in set C.
iii) Select the optimal split:

s∗ ← argmin
s
L(C(s), Cleft(s), Cright(s)).

iv) Update the nodes:

C2l−1(d)← Cleft(s
∗), C2l(d)← Cright(s

∗).

end for
end for
Result: The output of a binary regression tree is given by:

g(zi,t; θ, L) =
2L∑
k=1

θk1{zi,t ∈ Ck(L)},

where θk = 1
|Ck(L)|

∑
zi,t∈Ck(L)

ri,t+1. For a single binary complete regression tree T

of depth L, the VIP for the covariate zj is

VIP(zj, T ) =
L−1∑
d=1

2d−1∑
i=1

∆im(Ci(d− 1), C2i−1(d), C2i(d))1{zj ∈ T (i, d)},

where T (i, d) represents the covariate on the i-th (internal) node of depth d,
which splits Ci(d− 1) into two sub-regions {C2i−1(d), C2i(d)}, and ∆im(·, ·, ·)
is defined by:

∆im(C,Cleft, Cright) = H(C)− L(C,Cleft, Cright).
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Algorithm 4 Gradient Boosted Regression Trees

Initialize the predictor as ĝ0(·) = 0;
for b from 1 to B do

Compute for each i = 1, 2, . . . , N and t = 1, 2, . . . , T , the negative gradient
of the loss function l(·, ·):

εi,t+1 ← −
∂l(ri,t+1, g)

∂g
|g=ĝb−1(zi,t).

Grow a (shallow) regression tree of depth L with dataset {(zi,t, εi,t+1) : ∀i, ∀t}

f̂b(·)← g(zi,t; θ, L).

Update the model by
ĝb(·)← ĝb−1(·) + vf̂b(·),

where v ∈ (0, 1] is a tuning parameter that controls the step length.
end for
Result: The final model output is

ĝB(zi,t;B, v, L) =
B∑
b=1

vf̂b(·).

Algorithm 5 Random Forests

for b from 1 to B do
Generate Bootstrap samples {(zi,t, ri,t+1), (i, t) ∈ Bootstrap(b)} from the
original dataset, for which a tree is grown using Algorithm 3. At each step of
splitting, use only a random subsample of all predictors. The resulting bth
tree is:

ĝb(zi,t; θ̂b, L) =
2L∑
k=1

θ
(k)
b 1{zi,t ∈ Ck(L)}.

end for
Result: The final random forests output is given by the average of the outputs
of all B trees.

ĝ(zi,t;L,B) =
1

B

B∑
b=1

ĝb(zi,t; θ̂b, L).
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Table A1: Value Ranges of Hyperparameters for Machine Learning Models

This table shows the value ranges of hyperparameters I use to tune the corresponding machine learning model. ξ represents quantiles of residuals from the simple OLS
model. ρ equals 0 for the Lasso method and 1 for the Ridge method. K in the Group Lasso method indicates the number of knots. P under PCR and PLS is the number
of predictors. GBRT and RF denote gradient boosted regression trees and random forests respectively. L indicates the depth of trees. B under GBRT is the number of
trees in the ensemble, and under RF is the number of bootstrap samples. v is the shrinkage weight and F is the number of features in each split.

Linear Machine Learning Models

Model OLS+H Lasso Ridge Elastic Net Group Lasso PCR PLS

Hyperparameters ξ λ λ λ, ρ λ, K K K

Value Range ξ =85% to 99% λ ∈ (10−4, 1010) λ ∈ (10−4, 1010) λ ∈ (10−4, 1010) λ ∈ (10−4, 1010) K ∈ (1, P − 1) K ∈ (1, P − 1)

ρ ∈ (0.1, 0.9) K ∈ (4, 10)

Non-Linear Machine Learning Models

Model GBRT RF

Hyperparameters L, B, v L, B, F

Value Range L = 1, B = 1 ∼ 50 L = 1 ∼ 6, B = 300

v ∈ (10−1, 1) F ∈ {3, 5, 10, 20, 30, 50}
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4.5.4 Construction of Predictors

Bond-level characteristics:

1. dsrisk (downside risk): The proxy for downside risk, 5% VaR, is based on

the lower tail of the empirical return distribution, that is, the second lowest

monthly return observation over the past 36 months. The original measure

is multiplied by -1 for convenience of interpretation. A bond is included

in VaR calculation if it has at least 24 monthly return observations in the

36-month rolling window before the test month.

2. illiq (illiquidity): illiq = −Covt(∆bitd,∆bitd+1), where ∆bitd = ln(Bitd) −

ln(Bitd−1) is the log price change for bond i on day d of month t and Bitd

is the clean end-of-day bond price. Price changes may be between prices

over multiple days if a bond does not trade in some days and the maximum

difference in days is limited to one week.

3. ltr (long-term reversal): The long-term reversal is quantified as the past

36-month cumulative returns from month t − 48 to t − 13, skipping the

12-month momentum and the short-term reversal months.

4. mat (years-to-maturity): Years-to-maturity is calculated as (bond maturity

date-bond offering date)/365.

5. mom (momentum): Momentum is quantified as the past 6-month cumulative

returns from month t− 7 to t− 2, skipping the short-term reversal month.

6. rating (credit rating): The S&P ratings are converted into numerical ratings

to facilitate the analysis, for example, 1 = AAA, 2 = AA+, 3 = AA, . . . ,

20 = CC, 21 = C, and 22 =D. The most recent rating is merged with the

relevant bond-month observation.

7. size (amount outstanding): It is the natural logarithm of bond amount

outstanding.

8. skew (skewness) and vol (volatility): A 60-month rolling window is used

to generate the monthly time-series measures of skewness and volatility of
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excess bond returns. A bond is included in the sample if it has at least 24

monthly return observations in the 60-month rolling window before the test

month.

9. str (short-term reversal): The short-term reversal of a bond for month t is

measured by its previous month return.

10. uncbeta (economic uncertainty beta): The economic uncertainty beta is

estimated from the monthly rolling regressions of excess bond returns on

the change in the economic uncertainty index over a 36-month fixed window

while controlling for the bond market portfolio:

ri,t = αi,t + βUNCi,t ∆UNCt + βMKT
i,t MKTt + εi,t.

ri,t is the excess return of bond i in month t. ∆UNCt is the change in

the economic uncertainty index over month t (One-month-ahead economic

uncertainty index is obtained from Sydney Ludvigson’s website.). MKTt is

the excess return on the bond market portfolio in month t, proxied by the

value-weighted average returns of all corporate bonds in the sample. βUNCi,t

is the uncertainty beta of bond i in month t. A bond is included in economic

uncertainty beta calculation if it has at least 24 monthly return observations

in the 36-month rolling window before the test month.

Bond market factors:

1. bmkt (bond market excess return): The bond market excess return is

calculated as the value-weighted average returns of all corporate bonds in

the sample minus the one-month Treasury bill rate.

2. def (default spread): The default spread is the difference between the return

on a market portfolio of long-term corporate bonds and the long-term

government bond return.

3. liq (market liquidity risk): First, estimate the liquidity level for an individual
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bond (πi,t) in month t using the regression,

rei,j+1,t = ρ0 + ρ1ri,j,t + πi,tsign(rei,j,t)V oli,j,t + εi,j+1,t.

ri,j,t is the return of bond i on day j in month t, rei,j,t is the bond’s return in

excess of the bond market return, sign(rei,j,t) is an indicator function whose

value is equal to 1 if rei,j,t is positive and -1 if it is negative, and V oli,j,t

is the dollar volume of bond i on day j in month t. A bond is included

in the sample only if there are at least 10 daily return observations with

which to estimate the regression in a month. Second, aggregate individual

liquidity measures month by month to generate the marketwide liquidity

series: πt = 1
Nt

∑Nt
i=1 πi,t, where Nt is the number of corporate bonds in each

month. Third, scale the difference in monthly aggregate liquidity measures by

the ratio of capitalization of the bonds in the sample to account for the effects

of changes in the growth in size of the bond market and the sample size, i.e.,

∆πt = (Mt/M1)(πt − πt−1), where Mt is the total dollar value at the end of

month t−1 of bonds included in month t. Fourth, obtain liquidity innovations

(êt) from the following regression, ∆πt = a0 + a1∆πt−1 + a2(Mt−1

M1
)πt−1 + et.

Finally, the market liquidity factor is calculated as residual estimates êt

multiplied by 100, Lt = 100êt, because the residual term is typically small.

4. term (term spread): The term spread is the difference between the monthly

long-term government bond return and the one-month Treasury bill rate

measured at the end of the previous month.
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Chapter 5

Conclusions

This thesis consists of three papers that cover three different topics in empirical

cross-sectional asset pricing. In the first paper (Chapter 2), we identify three

consumption risks from a consumption-based asset pricing model where the

representative agent has recursive utilities and the consumption growth follows a

four-state Markov-switching process through linearizing the pricing kernel. We find

that all the three consumption risks are significantly priced in the cross-section

of options and straddles returns. The consumption growth risk and expected

consumption growth risk command positive risk premiums, while the consumption

volatility risk commands a negative risk premium. Positive consumption growth

and expected consumption growth risk premiums and negative consumption

volatility risk premium indicate that investors prefer early resolution of uncertainty.

Moreover, our empirical results are able to explain the negative relation between

underlying stock idiosyncratic volatilities and delta-hedged options returns, and

the positive relation between option moneyness and delta-hedged options returns.

Options with higher underlying stock idiosyncratic volatilities tend to have larger

negative consumption growth beta and larger positive consumption volatility beta,

and thus have lower returns. Similarly, options with higher moneyness tend to

have smaller negative consumption growth beta and smaller positive consumption

volatility beta, and thus have higher returns.

In the second paper (Chapter 3), we use a harzard model to capture a firm’s

probability of failure in the future twelve months which is also called distress
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risk, and discover a significantly negative relation between distress risk and the

cross-sectional corporate bond returns. The negative relation between distress

risk and bond returns is analogous to the often negative relation between distress

risk and stock returns, which is so-called “distress anomaly”. Our finding of a

negative relation between distress risk and bond returns casts serious doubts to

shareholder advantage theory, which predicts a positive relation between distress

risk and bond returns. Besides, shareholder advantage proxies are not able to

condition the negative relation between distress risk and bond returns empirically.

Therefore, we try to investigate whether asset risks can explain the negative

relations between distress risk and both stock and bond returns instead of financial

risks. In a real options model which allows for gradual disinvestments of productive

capacity, we are able to simulate negative relations between distress risk and both

expected stock and debt returns. We conclude that valuable disinvestment options

of distressed firms can explain the distress anomaly in both stock and bond returns

consistently. Moreover, we find that disinvestment options proxies can condition

the relations between distress risk and stock and bond returns with correct signs

empirically.

In the third paper (Chapter 4), I use 7 linear and 2 non-linear machine learning

models to predict the cross-sectional corporate bond returns out-of-sample. Predic-

tors include 11 bond-level and 6 stock-level characteristics, and their interaction

terms with 4 bond market factors. Therefore, there are 85 predictors in total. I

show that when the number of predictors is large, the simple linear model does

not possess stable out-of-sample predictive power and generates a huge negative

out-of-sample R2. The simple linear model with Huber loss which can mitigate

the influence of outliers improves the performance of the simple linear model, but

still generates a relatively large negative out-of-sample R2. Among all the linear

machine learning models, the penalized linear methods, which include the Lasso,

the Ridge, and the elastic net models, perform the best due to their ability to

reduce influences of noises in in-sample fit and thus generate stable out-of-sample

predictions. The Group Lasso performs the second best since it considers the

216



non-linear transformations of predictors and those non-linear transformations do

add extra information to the regression. The dimension reduction methods, which

include the partial least squares (PLS) and the principal component regression

(PCR) models, perform the least best because the correlations among predictors

are low. Compared with linear machine learning models, the non-linear models

which include gradient boosted regression trees and random forests, posses stronger

predictive power. The outstanding performance of non-linear machine learning

models are due to their ability to allow for flexible functional form of the regression

equation and multi-way interactions among predictors.
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