
SATURATION-BASED QUERY
ANSWERING AND REWRITING
PROCEDURES FOR GUARDED
FIRST-ORDER FRAGMENTS

A thesis submitted to the University of Manchester
for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2021

Sen Zheng

Department of Computer Science

Contents

List of Figures 4

Abstract 7

Declaration 8

Copyright 9

Acknowledgements 10

1 Introduction 11

2 The guarded fragments and the querying problems 32
2.1 The guarded first-order fragments 32
2.2 The BCQ answering and rewriting problems 40

3 Saturation-based theorem proving for first-order logic 43
3.1 First-order logic . 43
3.2 Clausification techniques . 48
3.3 Back-translation techniques . 51
3.4 Saturation-based theorem proving 53

4 The decision procedure for answering BCQs in GF 63
4.1 Clausifying GF and BCQs . 63
4.2 The resolution-based P-Res inference system 67
4.3 The top-variable refinement . 74
4.4 Deciding the guarded clausal class 79
4.5 Handling query clauses . 88
4.6 A decision procedure of answering BCQs for GF 109

2

5 The saturation-based BCQ rewriting procedure in GF 116
5.1 The aligned guarded clauses . 117
5.2 Deciding the GQ− clausal class 119
5.3 Back-translating GQ− clausal sets 124
5.4 A decision procedure for rewriting BCQs for GF 135

6 Querying for LGF and CGF 138
6.1 Clausal normal forms of LGF and CGF 139
6.2 The top-variable refinement for the LGQ clausal class 147
6.3 Deciding the LGQ clausal class 149
6.4 Decision procedures of querying in LGF and/or CGF 156

7 Querying for GNF and CGNF 166
7.1 Clausifications for GNF and CGNF 166
7.2 The superposition-based top-variable system 175
7.3 Deciding the LGQ≈ clausal class 179
7.4 Answering and rewriting BCQs for GNF and/or CGNF 190

8 Related work 199

9 Conclusions 204

Bibliography 209

Index 230

Word Count: 57295

3

List of Figures

1.1 The relationshipof the targeted fragments, the customised clausi-
fication processes and the obtained clausal classes 20

1.2 The relationship of the newly devised inference systems and the
related clausal classes . 21

1.3 A classification of the provided inference systems 21
1.4 Handling query clauses in the presence of studied clausal classes 23
1.5 The saturation-based query answering procedure 24
1.6 The back-translation procedure 25
1.7 The saturation-based query rewriting procedure 26
1.8 Relationships between the studied clausal classes and fragments 28

2.1 The relationship of the considered guarded fragments and FOL 33
2.2 Interesting properties of the considered guarded fragments . . . 34
2.3 The relationship between the considered fragments, negated

BCQ and FOL . 41
2.4 Known properties of querying in the studied fragments 42

3.1 The hypergraphs associated with �1 and �2 47

4.1 The hypergraphs associated with &1 and &2 89
4.2 The hypergraphs associated with &3 and &4 90
4.3 The application of the Sep rule to & 92
4.4 Separating &1 into HG clauses . 94
4.5 Separates &2 into HG clauses and an indecomposable CO clause 95
4.6 Separating &4 into HG clauses �6 and �7 100
4.7 The hypergraph associated with & 103

6.1 The hypergraphs associated with �′′ 146

4

List of Algorithms

Algorithm 1: Determining the (P-Res) eligible literals for GQ clauses 74
Algorithm 2: The PResT function . 75
Algorithm 3: The FindClosedT function 101
Algorithm 4: Partitioning a top-variable subclause 102
Algorithm 5: The BCQ answering procedure for GF 110
Algorithm 6: The PreProcessGF function 111
Algorithm 7: The Print function . 112
Algorithm 8: Normalising GQ− clausal sets 125
Algorithm 9: Transforming a GQ−n clausal set to a unique clausal set . 127
Algorithm 10: Renaming variables of GQ−nu clausal sets 130
Algorithm 11: The FindInt function 131
Algorithm 12: Unskolemising a GQ−nucl clausal set to a formula 135
Algorithm 13: The saturation-based BCQ rewriting procedure for GF 136
Algorithm 14: Determining the (P-Res) eligible literals for LGQ clauses148
Algorithm 15: The BCQ answering procedure for LGF and CGF . . . 157
Algorithm 16: The PreProcessCGF function 158
Algorithm 17: Determining the (P-Res) eligible literals for LGQ≈ clauses178
Algorithm 18: The PreProcessCGNF function 190
Algorithm 19: The BCQ answering procedure for GNF and CGNF . . 192

5

List of Rules

The NNF rules . 48
The Miniscoping rules . 48
The Trans rules . 49
The Skolem rule . 49
The CNF rules . 50
The Abstract rule . 52
The Rename rule . 52
The Unsko rule . 53
The Deduce rule (for clauses without equality) 56
The Fact rule . 56
The Res rule . 57
The Delete rule . 57
The Sep rule . 58
The Split rule . 59
The Deduce rule (for clauses with equality) 61
The Para rule . 61
The E-Fact rule . 62
The E-Res rule . 62
The P-Res rule . 69
The QuerySepOne rule . 90
The QuerySepTwo rule . 91
The T-Trans rule . 101
The ConAbs rule . 124
The VarAbs rule . 126
The VarRe rule . 129
The UnskoOne rule . 132
The UnskoTwo rule . 133

6

Abstract
This thesis presents the first practical Boolean conjunctive query answering
and the first saturation-based Boolean conjunctive query rewriting procedures
for the guarded fragment and its extensions: the loosely guarded, the clique
guarded, the guarded negation and the clique guarded negation fragments.
All these fragments are robustly decidable, hence they are exceptionally qual-
ified candidates as logical formalisms. The problems of answering Boolean
conjunctive queries in all of these fragments are also decidable, nonetheless it
is open whether there exist practical decision procedures for these problems.
We close this gap by developing a theoretical framework for practical query
answering procedures for all of these fragments, presenting new techniques,
new inference systems and new procedures. In particular we devise a partial
selection-based resolution rule, based on which we establish new, elegant and
powerful saturation-based systems, named the top-variable inference systems.
We formally prove the system are sound and refutationally complete for first-
order clausal logic (with equality). Using these systems, we devise the first
resolution-based decision procedure for the clique guarded fragment, and the
first practical decision procedures for the unary negation, the guarded negation
and the clique guarded negation fragments.

Another significant contribution is the presentation of saturation-based
rewriting approaches, allowing a new perspective to the topic of query rewrit-
ing through the use of powerful automated deduction techniques. Our rewrit-
ing procedures guarantee successful back-translation from the clausal sets, de-
rivedwith our query answering procedures, to a first-order formula. In general
the back-translation problem is undecidable and often fails, nonetheless by our
rules, this problem is solvable for Boolean conjunctive queries for all the consid-
ered guarded fragments. For practicality we use a saturation-based approach
as the basis, so that all the procedures are well-primed for implementation in
state-of-the-art modern first-order theorem provers in the future.

7

Declaration
No portion of the work referred to in this thesis has
been submitted in support of an application for another
degree or qualification of this or any other university
or other institute of learning.

8

Copyright
i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/hehas givenTheUniversity ofManchester certain rights touse such
Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard
or electronic copy, may be made only in accordance with the Copyright,
Designs and Patents Act 1988 (as amended) and regulations issued under
it or, where appropriate, in accordance with licensing agreements which
the University has from time to time. This page must form part of any
such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and
other intellectual property (the “Intellectual Property”) and any repro-
ductions of copyright works in the thesis, for example graphs and ta-
bles (“Reproductions”), which may be described in this thesis, may not
be owned by the author andmay be owned by third parties. Such Intellec-
tual Property and Reproductions cannot and must not be made available
for use without the prior written permission of the owner(s) of the rele-
vant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, pub-
lication and commercialisation of this thesis, the Copyright and any
Intellectual Property and/or Reproductions described in it may take
place is available in the University IP Policy (see http://documents.
manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis
restriction declarations deposited in the University Library, The Univer-
sity Library’s regulations (see http://www.manchester.ac.uk/library/
aboutus/regulations) and in The University’s policy on presentation of
Theses.

9

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements
This thesiswouldbe impossiblewithout the support of the followingwonderful
people.

I am deeply indebted to my supervisor Renate A. Schmidt for her knowl-
edge, inspiration and enthusiasm throughout my PhD, particularly during
the pandemic. Without her unequivocal support and guidance, this thesis
would never have been completed. I express my warmest gratitude to my
co-supervisor Giles Reger, for his valuable advice and support.

I am very appreciative of my examiners Konstantin Korovin and Pascal
Fontaine for reviewing this thesis and providing constructive feedback. Special
thanks toUweWaldmann for the comments on selection functions andHans de
Nivelle for the insights on deciding the guarded fragment. Iwould like to thank
my MSc project supervisor Ning Zhang for her support and encouragement.

Many thanks to my past paper reviewers for their helpful comments. I wish
to thank the Great Britain-China Educational Trust for the generous funding.

It is the following lovely people that make Manchester an engaging place
for me to live. Thank you Chen Qian for tolerating my complaints in pubs
every-time, thank you Haoruo, Heng and Rui for saving me when I am buried
in work, thank you Ruba for your constant support and thank you Yizheng for
your invaluable suggestions in surviving in academic. Thank you Albudula,
Chai, Chen Li, David, Hiris, Hizal, Julio, Ghadah, Kiana, Meizhi, Mostafa,
Warren, Xue Hua, Yangmei and the list is largely incomplete. I would like to
thank all the friends Imade inUK, in China andworldwide, whomade the past
years joyful and unforgettable. For people I forgot to mention, my apologies.

Last but not least, I thank my family for the moral and financial support,
particularly my mother, for your unwavering love and belief in me.

I better stop here before these acknowledgements receive an immediate
rejection for being overly long.

It is a pleasure to have this journeywith you all. Thank you, for everything.

10

Chapter 1

Introduction

Developing automated querying procedures is an indispensable, yet challenging
task in modern information systems. On the abstract level in these systems,
rules and queries are commonly formalised as first-order formulas, hence the
querying problem is indeed a reasoning task in first-order logic. In particular
a querying procedure should be sound, complete and practical. Due to unde-
cidability of first-order logic [Chu36, Tur36], ideally one wants to use decidable
and computationally well-behaved fragments of first-order logic as a basis for
querying tasks. In this thesis, we devise the first practical decision procedures
for querying in arguably the most pioneering and robustly decidable frag-
ments of first-order logic, namely a family of the guarded first-order fragments;
see [ANvB98, Grä99a, Mar07, tCS13, BtCS15].

Why the guarded first-order fragments? In mathematical logic, a funda-
mental problem is checking whether an arbitrary first-order formula is satisfi-
able. In 1928 this problem was formalised as the Entscheidungsproblem [HA28,
Page 77], literally meaning ‘decision problem’. The first groundbreaking re-
sult isGödel’s Incomplete Theorem [Göd30, Göd31], techniques of which inspired
Church and Turing to independently prove that first-order logic is undecid-
able [Chu36, Tur36]. Despite the negative effect of the Church-Turing thesis, the
decision problem retains its vitality, being revised as a classification problem pos-
ing the question: in first-order logic, which fragments are decidable and which
are not?

As early as 1915, first-order logic with unary predicate symbols was proved
decidable, but not with binary predicate symbols [Löw15]. This result was then

11

CHAPTER 1. INTRODUCTION 12

strengthened to three binary predicate symbols [Her31] and subsequently one
binary predicate symbol [Kal37]. At the same period the prefix quantifier classes,
of which quantifiers only occur at the outermost of formulas, are progressively
discovered. Among others the Bernays-Schönfinkel class [BS28], the Ackermann
class [Ack28] and the Gödel class [Göd32, Kal33, Sch34] were found to be decid-
able as well as many undecidable classes were identified [Gur65, Gur68, Gol84,
GL75, Sur59]. By the early 1980s the classification task was by and large com-
plete; see [DG79, BGG97, Lew79] for a comprehensive treatment and [Grä03]
for a succinct discussion.

However from a practical perspective, the prefix quantifier classes are not
suitable for computational purposes for lack of good model-theoretic proper-
ties. In contrast to the prefix quantifier classes, propositional modal logic [Pop94,
BRV01a], because of its well-behaved model-theoretic properties [BvB07] and ro-
bust decidability [Var96], has been applied to various areas of computer sci-
ence such as program verification [Pra80, CES86, Seg82], databases [dCCF82,
Mar88, Fit00], artificial intelligence [BLMS94, MH69] and multi-agents sys-
tems [Lia03, HF89]; see also [BvBW07, Part 4]. Therefore, the possibility of
first-order generalisation of modal logic was spotlighted.

The two-variable fragment of first-order logic [vB91, Gab81] can be seen as a
first-order generalisation ofmodal logic, which has been proved to be decidable
by reducing the decision problem of it to that of the Gödel class; see [Sco62].
Though the Gödel class with equality is undecidable [Gol84], the two-variable
fragment with equality is decidable [Mor75]. Nevertheless, the decidability result
of two-variable fragment is not as robust as that of modal logic, since with
common properties such as transitivity the two-variable fragment becomes
highly undecidable; see [GO99, GKV97, GOR99].

Eventually attention shifted to the guarded fragment [vB97, ANvB98]. Un-
like all of the aforementioned decidable fragments, the guarded fragment is
decidable [ANvB98], it has the tree model property and the finite model property
like modal logic, and is thus robustly decidable [Grä99b]. Due to these hoped-for
properties, the guarded fragment has been considered with numerous exten-
sions: the guarded fragment with either functionality, or with counting quanti-
fiers or with transitivity axioms is undecidable [Grä99b] but the guarded fragment
with transitive guards, viz. the transitive predicate symbols appear only in the
guard positions, is decidable [ST04]. The guarded fragment has also been

CHAPTER 1. INTRODUCTION 13

merged with characterisations the two-variable fragment: the combination of
the guarded fragment and the two-variable fragment is decidable [Kaz06], the tri-
guarded fragment extending both the guarded and the two-variable fragments
is decidable [RS18], the two-variable guarded fragment with transitive relations is
undecidable [GMV99] and the guarded two-variable fragment with counting quan-
tifiers is decidable [Pra07].

By relaxing the condition of the ‘guard’ literals, the guarded fragment ex-
tends to the loosely guarded fragment (the pairwise guarded fragment) [vB97] and the
clique guarded fragment [Grä99a], which is also called the packed fragment [Mar07].
These fragments are called the guarded quantification fragments since the distin-
guishing ‘guardedness’ pattern is in quantified formulas of these fragments. If
the ‘guardedness’ restriction is applied to the negated formulas, then one obtains
the guarded negation fragments, consisting of the unary negation fragment [tCS13]
and its extensions: the guarded negation and the clique guarded negation frag-
ments [BtCS15]. All these guarded fragments are robustly decidable and they
enjoy well-behaved computational properties; see also [Grä99b, BBtC18, HM02,
BtCO12, BBtC13]. Further details on these guarded fragments are presented in
Section 2.1.

In real-world applications, multiple restricted forms of the aforementioned
guarded fragments have been used as logical formalism in several areas of
computer science. In knowledge representation and semantics web expressive
description logic AℒCℋOℐ and its fragments [BHLS17, BN07, CG07], which
can be viewed as guarded fragments with unary and binary predicate symbols, are
successfully applied to diverse areas such as medical informatics and natu-
ral language processing; see [HPMW07, Part III] and [HPvH03]. In the past
twelve years, Datalog±, an extension of Datalog [CGT89], has been developed
as an expressive ontological language for querying purposes; see [CGL09,
CGL+10, CGL12]. In Datalog± rules, the linear, the guarded and the frontier
guarded Datalog± rules are pinpointed for having nice computational properties
as these rules are Horn fragments of the guarded negation fragment; see [BLMS11,
BtCO12, GRS14]. Datalog± is also investigated in connection with existential
rules and tuple-generating dependency.

These facts motivated us to develop practical decision procedures for satis-
fiability checking and querying for these guarded fragments.

CHAPTER 1. INTRODUCTION 14

Why the saturation-based procedures? Given an arbitrary problem, can one
solve it by formalising the problem and then applying mechanical computa-
tions to the formalised axioms? This vision can be traced back to the calculus
ratiocinator by Leibniz. After about three centuries this vision is eventually
realised in the availability of automated theorem provers. Using mathemati-
cal logic as foundation, automated theorem provers productively build proofs
for a given problem. Unlike model-theoretic procedures, automated provers are
rooted in the proof-theoretic tradition, empowering machines to automatically or
interactively solve problems, given as sets of formulas.

An important landmark in the development of automated provers is Robin-
son [Rob65a], inventing the combined use of unification and the resolution
principle. In the same year many efficient and elegant techniques such as
the hyperresolution rule [Rob65b] and the set-of-support strategy [WRC65] were
created. Until now for many practical reasoning tasks the area has flourished
with diverse advanced methods such as the tableaux methods [Häh01], the in-
verse method [DV01b], the resolution calculus [BG01], the paramodulation calcu-
lus [GR69] the superposition calculus [BG98] and the sequent calculus [DV01a]
being developed. Among these techniques resolution and superposition are
the core to saturation-based inference systems, on which state-of-the-art first-
order automated theorem provers such as E [Sch13], Vampire [RV01b] and
Spass [WDF+09] are built. The foundation to these saturation-basedprovers are
the powerful resolution and superposition-based frameworks of [BG01, BG98]. Cur-
rently automated theorem proving have been broadly applied to real-world ap-
plications suchasproblemsolving [FN71,Gre69], software engineering [Sch01],
verification [Har08, CRSS94,Moo10] and assistingmathematical proofs [NS56];
see also [Sut] and also [NML+19] for a survey of theorem provers.

In the seminal work of [Joy76] resolution is used as a basis for decision
procedures for several prefix quantifier classes. About 1990 the development
of resolution-based (and superposition-based) decision procedures outbursts
fruitful results for decidable classes of first-order clauses; see [HS99, FLTZ93,
FLHT01] for comprehensive treatments andalso [GHS02, SH00, dN00, BGW93].
Due to the many successful applications of modal logic and its close cousin de-
scription logic to computer science, practical resolution-based decision proce-
dures have been developed for these logics; see [Hus99, AdRdN01, AdNdR99,
FLHT01] for both modal logics and description logics; see also [Mot06, KM08,

CHAPTER 1. INTRODUCTION 15

HMS08, Kaz06] for description logics and [HdNS00, Sch96, GHMS98, Sch98,
Sch99, SH13, ZHD09, NDH19] for modal logics.

After 2000 attention gradually turned to developing practical decision pro-
cedures for the first-order generalisations of modal logic. Resolution-based
procedures have been devised for the two-variable fragment with equality [dNP01]
and a restricted form of the guarded fragment, viz.GF1− and its extensions [GHS03].
As for the guarded fragmentswe are interested in this thesis, resolution-based de-
cision procedures have been devised for the guarded fragment [dNdR03, Kaz06],
the loosely guarded fragment [dNdR03, ZS20a], the guarded fragment with equal-
ity [GdN99, Kaz06] and the loosely guarded fragment with equality [GdN99]; see
also [KdN04] and [Kaz06] for investigation on deciding the guarded fragment
with transitive guards and transitive and compositional guards, respectively. The
tableau-based decision procedures were also developed for GF1− [LST99], the
guarded fragment [Hla02] and the clique guarded fragment with equality [HT01].
At that time the development of practical decision procedures kept up with
the hunt of new decidable first-order fragment. At present there exist however
no practical decision procedures for the newly discovered unary negation, the
guarded negation and the clique guarded negation fragments, not to mention the
absence of practical decision procedures for querying in the guarded, the loosely
guarded, the clique guarded, the unary negation, the guarded negation and the clique
guarded negation fragments. This thesis aims to close this gap. Our methods
are based on the resolution and superposition situated in the saturation-based
frameworks of [BG01, BG98].

Why the targeted querying problems? Conjunctive queries [AHV95, Ull89],
corresponding to select-project-join queries in relation algebras, enjoy prominent
presence in the areas of database and knowledge presentation. Boolean con-
junctive queries (BCQs), also known as positive existential queries, are conjunctive
queries without answer variables (free variables). The problem of answering con-
junctive queries is generally understood as that of answering BCQs, since by
instantiating the answer variables in conjunctive queries with constants in the
database, the problem of conjunctive query answering can be reduced to that of
BCQ answering in polynomial time. More importantly, vital problems such as
query evaluation [CM77], query containment [CM77], constraint-satisfaction
problems [KV00] and homomorphism problems [Var00], can be recast as BCQ

CHAPTER 1. INTRODUCTION 16

answering problems.
Ontology-mediated querying, also called ontology-based data access (OBDA), is

widely regarded as a key component of next generation information systems;
see [PLC+08, CDGL+07, DFK+08, HMA+08] for its origins. Given (possibly in-
complete) dataD ofmultiple (possibly heterogeneous) databases and a query @,
an OBDA system defines a global conceptual schema (i.e. a knowledge base or
an ontology) Σ from the databases, so that with a new query Σ@ compiled from
Σ and @, the problem of checking @ over multi-schemas and cross-datatypes
databases is reduced to amodel checking problemD |= Σ@ , which can be solved
by highly-efficient SQL, Datalog or other database engines. OBDA systems are
discussed in [CGL+11, PCS14, CCK+17, SM13, MGS+19]. Important works on
query rewriting techniques with the ontologies generally expressible in the
considered guarded fragments are [GOP14, AOS18, BBGP21] for guarded Datalog±

and [CTS11, PHM09, CGL+07] for description logics. See [XCK+18, Kog12] for
surveys on OBDA techniques and systems; [KRZ13] gives a tutorial on OBDA.

Unfortunately with arbitrary formulas Σ in any of the guarded fragment and
its extensions, a union @ of BCQs and datasets D, there may not exist a first-
order formula (or a Datalog rule)Σ@ such that the entailment checking problem
Σ∪D |= @ can be reduced to amodel checking problemD |= Σ@ . [BBGP21] gives
a counter-example (Example 2.2) for the case of guarded Datalog±. In this
case Σ and @ are said to be not first-order (Datalog) rewritable [CDGL+07]. For
recent techniques and results on the first-order and the Datalog rewritings, the
papers [BKK+18, HLPW18, TW21, KNG16, FKL19, AOS20] may be consulted.

Due to the negative result of first-order rewritability for the guarded fragment
and its extensions, we propose novel settings of saturation-based BCQ answering
and rewriting for the considered guarded fragments. The following two sce-
narios show the benefit of using saturation-based approaches for solving BCQ
answering problems: deciding the entailmentΣ∪D |= @ or equivalently check-
ing unsatisfiability of {¬@} ∪ Σ ∪ D with Σ formulas in any of the considered
guarded fragments, @ a union of BCQs and D databases.

1. Suppose Σ is fixed and #1 is computed as the saturation of Σ. With
constantly updated @ and D, #1 can be reused in saturating {¬@}∪#1∪D
to avoid repeated inference steps in saturating #1, thus accelerating the
querying processes.

2. Suppose both Σ and @ are fixed. Different to the case of Scenario 1., here

CHAPTER 1. INTRODUCTION 17

it makes sense to pre-saturate {¬@} ∪ Σ. If #2 is this pre-saturation, then
regardless as to whether adding, deleting or updating datasets D, #2 can
be reused to prevent recomputing numerously inferences unnecessarily
in checking the satisfiability of #2 ∪D.

Next we motivate the our saturation-based BCQ rewriting problem. Suppose
#3 is a clausal set produced by saturating {¬@} ∪ Σ. We propose an attempt
to back-translate (and then negate) #3 into a first-order formula � such that
Σ∪D |= @ if and only if D |= �. � is then a first-order formula or even a (clique)
guarded formula that gives user an explicit view of the querying process. The
saturation-based rewritings have potential to be useful for query explanation.
Most importantly devising the back-translation procedures is interesting and
challenging in its own right, as in general it is an undecidable problem and
often fails.

The problem of BCQ answering for ontologies is traditionally handled by
database techniques such as the chase algorithm [ABU79,MMS79] (also knownas
materialisation), and the forward and backward chaining techniques [RN20, Chap-
ter 7]. Versatile as automated theorem provers are, they have insufficiently
used as query engines. Hence, we are interested to see how automated reason-
ing techniques handle BCQ answering and rewriting problems, especially how
saturation-based decision procedures can be developed to solve conventional
querying problems.

Challenges

The focuses of the thesis are the following two problems.

i. BCQ answering: Given a set Σ of first-order formulas in any of the
considered guarded fragments, a dataset D and a union @ of BCQs, we
determine whether Σ ∪D |= @, viz. test if {¬@} ∪ Σ ∪D is unsatisfiable.

ii. Saturation-based BCQ rewriting: As the saturation-based frameworks
are based on first-order clauses, saturations {¬@} ∪ Σ ∪D represented as
clausal sets. The second problem we are interested in is the saturation
of the set {¬@} ∪ Σ and its back-translation into a first-order formula Σ@
such that Σ ∪D |= @ if and only if D |= Σ@ .

Problems i. and ii. are formally defined in Section 2.2.

CHAPTER 1. INTRODUCTION 18

To use saturation-based methods to address i. and ii. the first and foremost
task is devising saturation-based inference systems that are sound and refu-
tationally complete. The next main task is to develop refinements to ensure
termination on all input problems. As our procedures are in line with either
resolution [BG01] or superposition-based framework of [BG98], for termination
the following properties must hold.

1. The depth, viz. the nesting number of compound terms, of any derived
clauses is finitely bounded.

2. The width, viz. the number of distinct variables, in any derived clause, is
finitely bounded.

3. In any derivation the number of symbols in the signature is finitely
bounded.

In a saturation-based derivation, Properties 1.–3. can be ensured if the conclu-
sions are no deeper and no wider than at least one of its premises and only
finitely many signature symbols are needed. Property 2. above assumes that
clauses are condensed [NW01] and are identical modulo variable renaming.

For conciseness we use the notations BCQ and FOL to represent the Boolean
conjunctive query and first-order logic, respectively, and use BCQ≈ and FOL≈ to
denote BCQ with equality and FOL with equality, respectively. Further we use
the notations GF, LGF, CGF, UNF, GNF and CGNF to denote the guarded, the
loosely guarded, the clique guarded, the unary negation, the guarded negation and the
clique guarded negation fragments, respectively. In general when we say BCQ, we
mean BCQ when the querying fragments are one of the guarded quantification
fragments (as equality is not allowed), otherwise we mean BCQ≈. Note that
UNF is a special case of GNF with only equality literals as the ‘guard’ literals,
therefore all results established for GNF immediately hold for UNF. Hence this
thesis does not particularly discuss the querying procedures for UNF. All the
aforementioned fragments are surveyed in Section 2.1.

To solve the twomain problems i. and ii. of interest the following challenges
need to be tackled.

1) Devising saturation-based decision procedures for checking satisfiability
of GF, LGF, CGF, GNF and/or CGNF.

2) Handling BCQs with the presence of GF, LGF, CGF, GNF and/or CGNF.
3) Finely combining the procedures for 1) and 2) to solve BCQ answering for

GF, LGF, CGF, GNF and/or CGNF.

CHAPTER 1. INTRODUCTION 19

4) Back-translating the clausal sets obtained by the procedures developed
in 3) to a first-order formula, thereby obtaining saturation-based BCQ
rewriting procedures for GF, LGF, CGF, GNF and/or CGNF.

We separately discuss how Challenges 1)–4) have been tackled in this thesis.

Deciding the guarded first-order fragments The first challenge is developing
saturation-based decision procedures for the considered guarded fragments.
For each fragment it requires us to address three tasks, namelydevising a clausi-
fication process, developing a saturation-based inference system and proving
a termination result.

We first develop the clausification processes for BCQs and the considered
guarded fragments. For GF and LGF we devise the clausification process
TransGF, transforming formulas into guarded and loosely guarded clauses (LG
clauses), respectively. By rigorously investigating the guardedness patterns
in CGF, GNF and CGNF, we devise three innovative clausification processes,
namely the TransCGF, the TransGNF and the TransCGNF processes, so that CGF,
GNF and CGNF are transformed to LG clauses, guarded clauses with equality and
query clauses with equality (GQ≈ clauses) and loosely guarded clauses with equality
and query clauses with equality (LGQ≈ clauses), respectively. Our clausification
transforms a union of BCQs to query clauses and query clauses with equality (Q≈
clauses). The class of LGQ≈ clauses can be seen as the combination of loosely
guarded clauses with equality (LG≈ clauses) and Q≈ clauses. Figure 1.1 summaries
the way that the formulas from different guarded fragments and BCQs are
transformed into their respective types of clauses.

Next, we devise the saturation-based inference systems in accordance with
either the resolution-based framework of [BG97, BG01] or the superposition-
based framework of [BG98]. Our inference systems aim to decide satisfiability
of the classes of guarded, LG, GQ≈ and LGQ≈ clauses associatedwith the targeted
fragments. Unlike conventional saturation-based systems (such as the Satu
and Satu≈ systems presented in Section 3.4), our inference systems make use
of two innovative techniques: the partial selection-based resolution rule (theP-Res
rule) and the top-variable resolution refinement.

1. The P-Res rule is critical to our systems. Whenever the standard selection-
based ordered resolution rule (the Res rule) is applicable to a clause � (as
the main premise) and clauses �1, . . . , �= (as the side premises), one

CHAPTER 1. INTRODUCTION 20

GF

LGF

CGF

GNF

CGNF

BCQ

BCQ≈

TransGF

(Section 4.1)

TransCGF

(Section 6.1)

TransGNF

(Section 7.1)

TransCGNF

(Section 7.1)

guarded clauses
(Section 4.1)

LG
(Section 6.1)

GQ≈
(Section 7.1)

LGQ≈
(Section 7.1)

query clauses
(Section 4.1)

Q≈
(Section 7.1)

Figure 1.1: The relationship of the targeted fragments, the customised clausifi-
cation processes and the obtained clausal classes

can apply the P-Res rule to � (as the main premise) and a subset of
�1, . . . , �= (as the side premises) instead. With the same main premise
as the Res rule, a P-Res inference step allows any subset of the Res side
premises to be its side premises, thus gives us the flexibility to derive only
the desirable P-Res resolvents from all the possible P-Res resolvents.

Given any sound and refutationally complete saturation-based resolution
inference system, its resolution rule can be safely replaced by the P-Res
rule. In this thesis we develop the P-Res inference systems Inf and Inf≈,
for first-order clausal logic without and with equality, respectively.

2. For the P-Res rule, we devise the top-variable resolution refinement so that in
an P-Res inference step the chosen Res side premises contain the poten-
tially deepest terms. For the considered clausal classes, this refinement
effectively avoids term depth increase in the P-Res resolvents, ideally
satisfying Property 1. crucial for having termination.

Based on the top-variable refinement, we define the T-RefGQ, the T-
RefLGQ and the T-RefLGQ≈≈ refinements. These refinements and the P-Res
inference systems provide the basis for the top-variable resolution systems
T-InfGQ, T-InfLGQ and the top-variable superposition system T-InfLGQ≈≈ we
devise. All are proved sound and refutationally complete for first-order

CHAPTER 1. INTRODUCTION 21

Inf T-RefGQ

(Section 4.3)

T-RefLGQ

(Section 6.2)

T-RefLGQ≈≈
(Section 7.2)Inf≈

T-InfGQ

T-InfLGQ

T-InfLGQ≈≈

guarded
clauses

GQ≈
LGQ≈

LG

Figure 1.2: The relationship of the newly devised inference systems and the
related clausal classes

clausal logic (with equality). Figure 1.2 describes the relationship of theP-
Res systems, the top-variable-based refinements (and the sections when
they are presented), the top-variable inference systems and the relevant
clausal classes.

The P-Res rule and the top-variable technique are presented in Sections 4.2
and 4.3, respectively. The inference systems presented in this thesis are exhib-
ited in Figure 1.3 with the sections where they can be found.

The last task is proving that for the aforementioned guarded clausal classes,
the top-variable inference systems are guaranteed to terminate. With termination
established, these systems provide decision procedures for our guarded clausal
classes due to the fact that these systems are sound and refutationally complete
for first-order clausal logic (with equality). We formally prove application
of the T-InfGQ, T-InfLGQ and the T-InfLGQ≈≈ systems, respectively, to classes
of guarded, LG and LG≈ clauses derive only guarded, LG and LG≈ clauses
with bounded width. Hence the T-InfGQ, T-InfLGQ and the T-InfLGQ≈≈ systems
decide satisfiability of the guarded, LG and LG≈ clauses classes, respectively.

resolution-based
(for FOL)

superposition-based
(for FOL≈)

basic
inference systems Satu (Section 3.4) Satu≈ (Section 3.4)

the P-Res
inference systems Inf (Section 4.2) Inf≈ (Section 7.2)

the top-variable
inference systems

T-InfGQ (Section 4.3)
T-InfLGQ (Section 6.2) T-InfLGQ≈≈ (Section 7.2)

Figure 1.3: A classification of the provided inference systems

CHAPTER 1. INTRODUCTION 22

Roughly speaking in our top-variable refinements, we adopt the principle that
the eligible literals in a clause are the deepest and the widest literals, one ofwhich is
thekey to ensure termination. Sections 4.4, 6.3 and 7.3presenthowsatisfiability
of the guarded, LG and LG≈ clausal classes are can be decided.

Handling BCQs The second main challenge is the handling of the given
union of BCQs. In the previously discussed clausification processes, a union
of BCQs is transformed to query clauses and Q≈ clauses (i.e., query clauses with
equality). In the conclusions of query and Q≈ clauses, one needs to ensure that
no unbounded depth or width increase occurs. For this goal we introduce new
techniques, concisely discussed as follows.

I. For Q≈ clauses with inequality literals occurringwe use the equality resolution
rule (the E-Res rule). By the carefully devised superposition refinement, it is
ensured that in our inference systems only the E-Res rule is applicable to
Q≈ clauses, so that applying rules in the top-variable systems to Q≈ clauses
solely derives Q≈ clauses and query clauses.

II. In query clauses occurrences of variables are unrestricted, thus analysing
the conclusions of these clauses is difficult. To dissect variables in query
clauses, we create two novel separation rules and a goal-oriented query
separation procedure (the Q-Sep procedure). TheQ-Sep procedure is crucial
to control the computations of inferences on query clauses. By this pro-
cedure, a query clause & is replaced by an equisatisfiable set # of less
wide inseparable query clauses and Horn guarded clauses (HG clauses).

By our definitions the inseparable query clauses are formally defined as
indecomposable chained-only query clauses (indecomposableCO clauses), which
enjoy a key property: in these query clause each variable ‘chains’ at least
two distinct literals.

III. We use the top-variable resolution rule to compute the conclusions of inde-
composable CO clauseswith in the presence of guarded, LG and LG≈ clauses.
In this resolution computation, an indecomposable CO clause is the main
premise and guarded clauses (respectively LG and LG≈ clauses) are the side
premises. By the top-variable technique, the derived top-variable resolvent
is guaranteed to be no deeper than at least one of its premises. However,
the resolvent can be wider than all of its premises.

CHAPTER 1. INTRODUCTION 23

<latexit sha1_base64="LmEDZVK2LOqVEIwzaNEbcO5GlYs=">AAACQHicbVBNSwMxEM367fpV9ShIsAgepOwWUY+CF48KVoVuKdl0akOT7JrMqmXZm7/Gq/4C/4X/wJt49WS69mDVgcDjvZl5kxenUlgMgldvYnJqemZ2bt5fWFxaXqmsrl3YJDMcGjyRibmKmQUpNDRQoISr1ABTsYTLuH881C9vwViR6 HMcpNBS7FqLruAMHdWubEag0l4eYQ9YJ7/JwAxoFHHJMgu2KNqValALyqJ/QTgCVTKq0/aq50edhGcKNLot1jbDIMVWzgwKLqHwI7c4ZbzPrqHpoGYKbCsvP1LQbcd0aDcx7mmkJftzImfK2oGKXadi2LO/tSH5n9bMsHvYyoVOMwTNv426maSY0GEqtCMMcJQDBxg3wt1KeY8ZxtFlN+ai4S69R7jH3RKVjmMNivWBg5SF77v0wt9Z/QUX9Vq4X9s7q1ePDkc5zpENskV2SEgOyBE5IaekQTh5II/kiTx7L96b9+59fLdOeKOZdTJW3ucXrNSwtg==</latexit> query
clauses

<latexit sha1_base64="JOHUmg7dF7R6gzL59tjrOHMf3BI=">AAACVnicbVDLTttAFB2b8qh5NNBlN6NGSF1UkY1QyxKJDTuo1ABSHEXj8TUZZV6auS5Eln+Er2HbfgH9maoTk0UDPdJIR+fcx9xTWCk8punvKF57s76xufU22d7Z3XvX2z+48qZ2HIbcSONuCuZBCg1DFCjhxjpgqpBwXczOFv71D3BeGP0d5xbGit1qUQnOMEiT3nEOyk6bHKfAykboErhR1ngWBtA8pznCPfqqObtoKZes9uDbdtLrp4O0A31NsiXpkyUuJ/tRkpeG1wo0hinej7LU4rhhDgWX0CZ5GGwZn7FbGAWqmQI/brrzWnoYlJJWxoWnkXbqvx0NU97PVREqFcOpf+ktxP95oxqrk3E42tYImj8vqmpJ0dBFVrQUDjjKeSCMOxH+SvmUOcYxJLqyRcOdvV9E9blj3caVAsVmwEHKNklCetnLrF6Tq6NB9mVw/O2of3qyzHGLfCAfySeSka/klJyTSzIknDyQR/KT/Iqeoj/xerz5XBpHy573ZAVx7y97QLbo</latexit>

indecomposable
CO clauses

<latexit sha1_base64="Rlg2jBE4oC9ggBLjGhc3ai9VQok=">AAACRHicbVDLSgMxFM34dnxVXboJFsGFlBkRdSm40KWCrUJbSia9Y0OTzJDc0ZZh9n6NW/0C/8F/cCduxXTswqoXQg7n3HtPcqJUCotB8OpNTc/Mzs0vLPpLyyura5X1jYZNMsOhzhOZmJuIWZBCQx0FSrhJDTAVSbiO+qcj/foOjBWJvsJhCm3FbrWIBWfoqE5luwUq7eUt7AHrugsGaOP8/KygXLLMgi2KTqUa1IKy6F8QjkGVjOuis+75rW7CMwUa3RZrm2GQYjtnBgWXUPgttzhlvM9uoemgZgpsOy8/U9Adx3RpnBh3NNKS/TmRM2XtUEWuUzHs2d/aiPxPa2YYH7dzodMMQfNvoziTFBM6SoZ2hQGOcugA40a4t1LeY4ZxdPlNuGi4TwejqPZKVDpONCjWBw5SFr7v0gt/Z/UXNPZr4WHt4HK/enI8znGBbJFtsktCckROyDm5IHXCyQN5JE/k2Xvx3rx37+O7dcobz2ySifI+vwAy9bJx</latexit>

HG clauses

<latexit sha1_base64="g78xYbJqKx3NXFVvz4wGJj+xtNY=">AAACeHicbZBNixNBEIY749c6fmX16KUxKypImAmie1zwoAcPK5jsQiaEmp6apEl3T9NdownD/DP/iFev+gs82ZkNYna3oOHlrbeqmie3SnpKkh+96MbNW7fvHNyN791/8PBR//DxxFe1EzgWlarceQ4elTQ4JkkKz61D0LnCs3z1fts/+4rOy8p8oY3FmYaFkaUUQMGa9ycZartsMloiFM2iBldgwYWC2qPnWcYzwjX5svn0ob3ePppnYK2r1kf/Am077w+SYdIVvyrSnRiwXZ3OD3txVlSi1mgobPF+miaWZg04kkJhG2dhsQWxggVOgzSg0c+aDkDLnwen4GXlwjPEO/f/iQa09xudh6QGWvrLva15XW9aU3k8a6SxNaERF4fKWnGq+JYmL6RDQWoTBAgnw1+5WIIDQYH53hWD3+x6C+11p7qLewENKxSoVBvHgV56mdVVMRkN07fDN59Hg5PjHccD9pQ9Yy9Zyt6xE/aRnbIxE+w7+8l+sd+9PxGPXkSvLqJRbzfzhO1VNPoLNQnDjw==</latexit>

guarded clauses
LG clauses

LG⇡ clauses

<latexit sha1_base64="nG7N2tl6yxmQ3rMuJyM/J0LKMe0=">AAACJnicbVDLTgJBEJzFF64v0KOXjcTEgyG7xCjxROJFb5jIIwFCZocGRmZnNzO9CiH8g1f9Ar/GmzHe/BSHhYOAnXRSqapOd5cfCa7Rdb+t1Nr6xuZWetve2d3bP8hkD6s6jBWDCgtFqOo+1SC4hApyFFCPFNDAF1DzBzdTvfYESvNQP uAoglZAe5J3OaNoqOqdjGK8bmdybt5NylkF3hzkyLzK7axlNzshiwOQyATVuuG5EbbGVCFnAiZ2M9YQUTagPWgYKGkAujVOzp04p4bpON1QmZboJOzfiTENtB4FvnEGFPt6WZuS/2mNGLvF1phPfwLJZou6sXAwdKa/Ox2ugKEYGUCZ4uZWh/WpogxNQgtbJDxHQ4Qhnico2bhgCOgAGAgxsW2Tnrec1SqoFvLeZf7ivpArFec5pskxOSFnxCNXpERuSZlUCCOP5IW8kjfr3fqwPq2vmTVlzWeOyEJZP7+LG6WJ</latexit>

Input:

<latexit sha1_base64="iGSpm9sYS4t2Qtzr/01bVEBYC3I=">AAACUnicbVJNSwMxEM3W7/Wr6tFLsAgetOyKqEfBi0cFq0K3lNl01oZms0syq5alf8Nf41V/gRf/iifTtQerDiQ83rzHZB6JcyUtBcGHV5uZnZtfWFzyl1dW19brG5s3NiuMwJbIVGbuYrCopMYWSVJ4lxuENFZ4Gw/Ox/3bBzRWZvqahjl2UrjXMpECyFHdehBRH6FXuptTlh88gJHgzDyKuEGbqWKs41InaFALHHXrjaAZVMX/gnACGmxSl90Nz496mShS1CQUWNsOg5w6JRiSQuHIjwqLOYgB3GPbQQ0p2k5ZrTbiu47p8SQz7mjiFfvTUUJq7TCNnTIF6tvfvTH5X69dUHLaKaXOC3J7fQ9KCuVC4OOceE8aFKSGDoAw0r2Viz4YEOTSnJqi8TF/Inyi/QpVE6cEKQxQoFIj33fphb+z+gtuDpvhcfPo6rBxdjrJcZFtsx22x0J2ws7YBbtkLSbYM3thr+zNe/c+a+6XfEtr3sSzxaaqtvIF9Ki0sw==</latexit>

the top-variable
resolution inference

<latexit sha1_base64="aM/AgF8zQndRrMdzc8IKKQx4Tho=">AAACOHicbVDLSsNAFJ34Nr5aBTdugkVwoSUpol0Kbly2aFVoS5lMb9qhk0mYudGWmJ9xq1/gn7hzJ279AqexC1s9MHA491zOnePHgmt03Tdrbn5hcWl5ZdVeW9/Y3CoUt290lCgGDRaJSN35VIPgEhrIUcBdrICGvoBbf3Axnt/eg9I8k tc4iqEd0p7kAWcUjdQp7LawD7SbthCG6Adp/fgK4izrFEpu2c3h/CXehJTIBLVO0bJb3YglIUhkgmrd9NwY2ylVyJmAzG4lGmLKBrQHTUMlDUG30/wDmXNglK4TRMo8iU6u/t5Iaaj1KPSNM6TY17OzsfjfrJlgUG2nXMYJgmQ/QUEiHIyccRtOlytgKEaGUKa4udVhfaooQ9PZVIqEh3g4LukoZ3nilCGkA2AgRGbbpj1vtqu/5KZS9k7LJ/VK6bw66XGF7JF9ckg8ckbOySWpkQZh5JE8kWfyYr1a79aH9fljnbMmOztkCtbXNyrDrPE=</latexit>

Q-Sep

<latexit sha1_base64="RDEOVolt3+wvfZgmG7eSNZjxTcc=">AAACT3icbZDPThsxEMa9KW1h+4fQHnuxGiH1UKJdhIAjEpceqdQAUjaKZp0JsWJ7LXs2EK32Kfo0XOEJeuyT9FbVWfZAoCPZ+umbGY/ny62SnpLkd9R5sfHy1evNrfjN23fvt7s7H859UTqBA1Gowl3m4FFJgwOSpPDSOgSdK7zI56er/MUCnZeF+UFLiyMNV0ZOpQAK0ri7l6G2syqjGcKkCjenwu4twEkIT/As4w59oRZoyNf1uNtL+kkT/DmkLfRYG2fjnSjOJoUodegXCrwfpomlUQWOpFBYx1np0YKYwxUOAxrQ6EdVs1fNd4My4dPChWOIN+rjjgq090udh0oNNPNPcyvxf7lhSdPjUSWNLQmNeBg0LVXYna9M4hPpUJBaBgDhZPgrFzNwIChYuTbF4LW9Ibyhrw01E9cKNMxRoFJ1HAf30qdePYfz/X562D/4vt87OW593GSf2Gf2haXsiJ2wb+yMDZhgP9ktu2P30a/oT/S305Z2ohY+srXobP0DEIK0xA==</latexit>

the top-variable
resolvents

<latexit sha1_base64="g5p2aZhfn5O+qxE6iEl49v0rjvQ=">AAACOnicbVDLSsNAFJ34Nr6qbgQ3wSK40JKIqEvBjUuFVoW2lJvpjR06mYSZG7WE+DVu9Qv8EbfuxK0f4DR2YdUDA4dzz+XcOWEqhSHff3UmJqemZ2bn5t2FxaXllcrq2qVJMs2xwROZ6OsQDEqhsEGCJF6nGiEOJV6F/dPh/OoWtRGJqtMgxXYMN0pEggNZqVPZaFEPoZu3CO8pjPL6Xl2DMkXRqVT9ml/C+0uCEamyEc47q47b6iY8i1ERl2BMM/BTauegSXCJhdvKDKbA+3CDTUsVxGjaefmFwtu2SteLEm2fIq9Uf27kEBsziEPrjIF65vdsKP43a2YUHbdzodKMUPHvoCiTHiXesA+vKzRykgNLgGthb/V4DzRwsq2NpSi8S++HNe2WrEwcM8TQR45SFq5r2wt+d/WXXO7XgsPawcV+9eR41OMc22RbbIcF7IidsDN2zhqMswf2yJ7Ys/PivDnvzse3dcIZ7ayzMTifXxJnreg=</latexit>

T-Trans

<latexit sha1_base64="aM/AgF8zQndRrMdzc8IKKQx4Tho=">AAACOHicbVDLSsNAFJ34Nr5aBTdugkVwoSUpol0Kbly2aFVoS5lMb9qhk0mYudGWmJ9xq1/gn7hzJ279AqexC1s9MHA491zOnePHgmt03Tdrbn5hcWl5ZdVeW9/Y3CoUt290lCgGDRaJSN35VIPgEhrIUcBdrICGvoBbf3Axnt/eg9I8ktc4iqEd0p7kAWcUjdQp7LawD7SbthCG6Adp/fgK4izrFEpu2c3h/CXehJTIBLVO0bJb3YglIUhkgmrd9NwY2ylVyJmAzG4lGmLKBrQHTUMlDUG30/wDmXNglK4TRMo8iU6u/t5Iaaj1KPSNM6TY17OzsfjfrJlgUG2nXMYJgmQ/QUEiHIyccRtOlytgKEaGUKa4udVhfaooQ9PZVIqEh3g4LukoZ3nilCGkA2AgRGbbpj1vtqu/5KZS9k7LJ/VK6bw66XGF7JF9ckg8ckbOySWpkQZh5JE8kWfyYr1a79aH9fljnbMmOztkCtbXNyrDrPE=</latexit>

Q-Sep

<latexit sha1_base64="LmEDZVK2LOqVEIwzaNEbcO5GlYs=">AAACQHicbVBNSwMxEM367fpV9ShIsAgepOwWUY+CF48KVoVuKdl0akOT7JrMqmXZm7/Gq/4C/4X/wJt49WS69mDVgcDjvZl5kxenUlgMgldvYnJqemZ2bt5fWFxaXqmsrl3YJDMcGjyRibmKmQUpNDRQoISr1ABTsYTLuH881C9vwViR6HMcpNBS7FqLruAMHdWubEag0l4eYQ9YJ7/JwAxoFHHJMgu2KNqValALyqJ/QTgCVTKq0/aq50edhGcKNLot1jbDIMVWzgwKLqHwI7c4ZbzPrqHpoGYKbCsvP1LQbcd0aDcx7mmkJftzImfK2oGKXadi2LO/tSH5n9bMsHvYyoVOMwTNv426maSY0GEqtCMMcJQDBxg3wt1KeY8ZxtFlN+ai4S69R7jH3RKVjmMNivWBg5SF77v0wt9Z/QUX9Vq4X9s7q1ePDkc5zpENskV2SEgOyBE5IaekQTh5II/kiTx7L96b9+59fLdOeKOZdTJW3ucXrNSwtg==</latexit> query
clauses

<latexit sha1_base64="Rlg2jBE4oC9ggBLjGhc3ai9VQok=">AAACRHicbVDLSgMxFM34dnxVXboJFsGFlBkRdSm40KWCrUJbSia9Y0OTzJDc0ZZh9n6NW/0C/8F/cCduxXTswqoXQg7n3HtPcqJUCotB8OpNTc/Mzs0vLPpLyyura5X1jYZNMsOhzhOZmJuIWZBCQx0FSrhJDTAVSbiO+qcj/foOjBWJvsJhCm3FbrWIBWfoqE5luwUq7eUt7AHrugsGaOP8/KygXLLMgi2KTqUa1IKy6F8QjkGVjOuis+75rW7CMwUa3RZrm2GQYjtnBgWXUPgttzhlvM9uoemgZgpsOy8/U9Adx3RpnBh3NNKS/TmRM2XtUEWuUzHs2d/aiPxPa2YYH7dzodMMQfNvoziTFBM6SoZ2hQGOcugA40a4t1LeY4ZxdPlNuGi4TwejqPZKVDpONCjWBw5SFr7v0gt/Z/UXNPZr4WHt4HK/enI8znGBbJFtsktCckROyDm5IHXCyQN5JE/k2Xvx3rx37+O7dcobz2ySifI+vwAy9bJx</latexit>

HG clauses

Figure 1.4: Handling query clauses in the presence of studied clausal classes

IV. For the top-variable resolvents ' of indecomposable CO clauses in the pres-
ence of guarded, LG and LG≈ clauses, we devise a sophisticated form of
structural transformation (the T-Trans rule) so that ' is transformed into
an equisatisfiable set # of query clauses and guarded, LG and LG≈ clauses,
respectively. In particular in # each clause is no wider than at least one
of its top-variable premises. The derived query clauses are coped with
by the Q-Sep procedure, and the derived guarded, LG and LG≈ clauses
are handled by their respective top-variable inference systems.

The results of I.–II. are presented in Sections 7.3 and 4.5, respectively. For
guarded, LG and LG≈ clauses, the rest of results are discussed inSections 4.5, 6.3
and 7.3, respectively. Figure 1.4 is a flow chart of the query handling procedure
presented in II.–IV.

Devising BCQ answering procedures With the query handling procedures and
the decision procedures for the targeted guarded fragments created, the next main
challenge is to properly amalgamate these procedures, give us the sought deci-
sion procedures for answering BCQs in the targeted guarded fragments.

Integrating the query handling processes into saturation-based systems
poses new challenges. Once two procedures are combined, new predicate
symbols (introduced in handling queries) occur in the saturation, hence for the
termination results we need to ensure only finitely many of these symbols are
introduced. We formally prove that if we reuse the existing introduced predicate
symbols to define clauses that are identical modulo variable renaming, in the
saturation only finitely many new predicate symbols are required. This result
is based on the facts that newly introduced clauses have a bounded number

CHAPTER 1. INTRODUCTION 24

<latexit sha1_base64="15MnsNetfp1rafT5rfZ/F9Lwidw=">AAACTnicbVDLSiNBFK2Oj4ntY6KzdFMYBBcSumUYXQpuZunAJBHSIdyu3DZFqqubqtujoemfmK+Z7cwXuPVHZidaaYMY9UDB4Zx7ObdOnCtpKQjuvcbK6tr6p+aGv7m1vfO5tbvXs1lhBHZFpjJzFYNFJTV2SZLCq9wgpLHCfjy9mPv9X2iszPRPmuU4TOFay0QKICeNWscR4S3FSRnRBGFcXigo7IvPo4jnJhNoLdqqGrXaQSeowd+TcEHabIHL0a7nR+NMFClqEgqsHYRBTsMSDEmhsPKjwmIOYgrXOHBUQ4p2WNbfqvihU8Y8yYx7mnitvt4oIbV2lsZuMgWa2LfeXPzIGxSUnA1LqfOCUIvnoKRQnDI+74iPpUFBauYICCPdrVxMwIAg1+RSisab/Hbe4HHN6sSlgRSmKFCpyvdde+Hbrt6T3kkn/Nb5+uOkfX626LHJ9tkBO2IhO2Xn7Du7ZF0m2G/2h/1l/7w777/34D0+jza8xc4XtoRG8wnhqbWl</latexit>

Clausification
processes

<latexit sha1_base64="v4yqchZch0s6KruWKgfQtQwxLho=">AAACXnicbVDBbhMxEHWWtpSF0rRckLhYpEg9oGi3QtADh0pcOLZS01bKRtGsM9tYsb3GnoVEq/2Zfg1XuHHjU3C2qUTajmTp6b2ZeeOXWyU9JcmfTvRkY3Pr6faz+PmLnZe73b39C19WTuBAlKp0Vzl4VNLggCQpvLIOQecKL/PZl6V++R2dl6U5p4XFkYZrIwspgAI17n7OUNtpndEUYVJ/q9AtuFBQefQ8y3hGOCdf1GfNwTgDa105P7jTm2bc7SX9pC3+EKQr0GOrOh3vdeJsUopKo6Gwxfthmlga1eBICoVNnIXFFsQMrnEYoAGNflS332z4u8BMeFG68Azxlv1/ogbt/ULnoVMDTf19bUk+pg0rKo5HtTS2IjTi1qioFKeSLzPjE+lQkFoEAMLJcCsXU3AgKCS75mLwh50vM3vfotZxrUHDDAUq1cRxSC+9n9VDcHHUTz/2P5wd9U6OVzluszfsLTtkKfvETthXdsoGTLAb9pP9Yr87f6OtaCfavW2NOquZV2ytotf/ACbOuRY=</latexit>

query clauses
Q⇡ clauses <latexit sha1_base64="g78xYbJqKx3NXFVvz4wGJj+xtNY=">AAACeHicbZBNixNBEIY749c6fmX16KUxKypImAmie1zwoAcPK5jsQiaEmp6apEl3T9NdownD/DP/iFev+gs82ZkNYna3oOHlrbeqmie3SnpKkh+96MbNW7fvHNyN791/8PBR//DxxFe1EzgWlarceQ4elTQ4JkkKz61D0LnCs3z1fts/+4rOy8p8oY3FmYaFkaUUQMGa9ycZartsMloiFM2iBldgwYWC2qPnWcYzwjX5svn0ob3ePppnYK2r1kf/Am077w+SYdIVvyrSnRiwXZ3OD3txVlSi1mgobPF+miaWZg04kkJhG2dhsQWxggVOgzSg0c+aDkDLnwen4GXlwjPEO/f/iQa09xudh6QGWvrLva15XW9aU3k8a6SxNaERF4fKWnGq+JYmL6RDQWoTBAgnw1+5WIIDQYH53hWD3+x6C+11p7qLewENKxSoVBvHgV56mdVVMRkN07fDN59Hg5PjHccD9pQ9Yy9Zyt6xE/aRnbIxE+w7+8l+sd+9PxGPXkSvLqJRbzfzhO1VNPoLNQnDjw==</latexit>

guarded clauses
LG clauses

LG⇡ clauses

<latexit sha1_base64="OO3vZe2BhafZFxod9hwPWivc8Ug=">AAACTHicbVDLSiNBFK3OzPjoeUVduikMA8MwhG4Z1KXgxqUBo0ISwu3q20mR6uqm6rYamv4Hv8atfsHs/Q93IljpZGHUCwWHc86tU3WiXElLQfDgNT59/rKyurbuf/32/cfP5sbmmc0KI7ArMpWZiwgsKqmxS5IUXuQGIY0UnkeTo5l+fonGykyf0jTHQQojLRMpgBw1bP7pE15TlJR9GiPEZadAM+Vj0LG7ccRzkwmMC4O2qobNVtAO6uHvQbgALbaYk+GG5/fjTBQpahIKrO2FQU6DEgxJobDy+4XFHMQERthzUEOKdlDWn6r4L8fEPMmMO5p4zb7eKCG1dppGzpkCje1bbUZ+pPUKSg4GpdR5QajFPCgpFKeMzxrisTQoSE0dAGGkeysXYzAgyPW4lKLxKr+e9fe3RnXikiGFCQpUqvJ91174tqv34Gy3He61/3V2W4cHix7X2DbbYb9ZyPbZITtmJ6zLBLtht+yO3Xv/vUfvyXueWxveYmeLLU1j5QVUerTr</latexit>

Query handling procedures

<latexit sha1_base64="Ch9VnkBbqQFwyhP+kZjY3PcrXP8=">AAACR3icbVDBattAFFy5aeMqbWM3x16WmEAOxUghJD4acunRoXESsI15Wj/Zi1crsfuUxAh9Qb6m1/YL+gn9itxKjlnLPtROBxaGmfeYtxNlSloKgj9e7c3O23e79ff+3oePn/Ybzc/XNs2NwL5IVWpuI7CopMY+SVJ4mxmEJFJ4E80vlv7NHRorU31FiwxHCUy1jKUActK4cTQkfKAoLoY0Q5gU34FyU3k8M6lAa9GW5bjRCtpBBf6ahGvSYmv0xk3PH05SkSeoSSiwdhAGGY0KMCSFwtIf5hYzEHOY4sBRDQnaUVH9p+RHTpnwODXuaeKV+u9GAYm1iyRykwnQzG57S/F/3iCnuDMqpM5yQi1WQXGuOKV8WQ6fSIOC1MIREEa6W7mYgQFBrsKNFI332cOyuq8VqxI3BhKYo0ClSt937YXbXb0m1yft8Kx9ennS6nbWPdbZF3bIjlnIzlmXfWM91meCPbIf7Cf75f32nry/3vNqtOatdw7YBmreC1VQswM=</latexit>

Saturation processes

<latexit sha1_base64="eRwt1fxPeZ19hePSyy0WwZkaxHQ=">AAACPXicbVDBTttAFFyHUsDQEuDIZdWoEkhVZEeozTESF06FigaQ4ih63rwkq6zX1u4zEFk58DVc6RfwHXwAN9QrVzYmhwY60kqjefM0byfOlLQUBA9eZenD8seV1TV/fePT583q1vaZTXMjsC1SlZqLGCwqqbFNkhReZAYhiRWex+PD2fz8Eo2Vqf5Nkwy7CQy1HEgB5KRedTeiEUK/OAXKTalZHkV87+fx/rRXrQX1oAR/T8I5qbE5Tnpbnh/1U5EnqEkosLYTBhl1CzAkhcKpH+UWMxBjGGLHUQ0J2m5R/mLKvzqlzwepcU8TL9V/NwpIrJ0ksXMmQCP7djYT/zfr5DRodgups5xQi9egQa44pXxWCe9Lg4LUxBEQRrpbuRiBAUGuuIUUjVfZNeE1fStZmbhgSGCMApWa+r5rL3zb1Xty1qiH3+sHvxq1VnPe4yrbZV/YHgvZD9ZiR+yEtZlgN+yW3bE/3r336D15f1+tFW++s8MW4D2/AMjerh8=</latexit>

Saturations
(NO)

<latexit sha1_base64="Kpi/71rc90TgWzXbJidNdrQj1Rc=">AAACOXicbVDLSsNAFJ34rPFVdeHCzWAVFKQkIuqyIIJLReuDppTJ9NYOnUzCzI1aQr7GrX6BX+LSnbj1B5zGLqx6YOBw7rmcOydMpDDoea/O2PjE5NR0acadnZtfWCwvLV+aONUc6jyWsb4OmQEpFNRRoITrRAOLQglXYe9oML+6A21ErC6wn0AzYrdKdARnaKVWeTXALrB2thGEMW7QIKBbN8fn23mrXPGqXgH6l/hDUiFDnLaWHDdoxzyNQCGXzJiG7yXYzJhGwSXkbpAaSBjvsVtoWKpYBKaZFT/I6aZV2rQTa/sU0kL9uZGxyJh+FFpnxLBrfs8G4n+zRoqdw2YmVJIiKP4d1EklxZgO6qBtoYGj7FvCuBb2Vsq7TDOOtrSRFAX3yQPCA+4UrEgcMUSsBxykzF3Xtuf/7uovudyt+vvVvbPdSu1w2GOJrJF1skV8ckBq5ISckjrhJCeP5Ik8Oy/Om/PufHxbx5zhzgoZgfP5BeDTq5c=</latexit> ?
(YES)

<latexit sha1_base64="Kgc6zLEj0sjFDv82UPdgCyRc8tQ=">AAACM3icbVDLSgNBEJz1GddXokcvi0HwEMKuBPUo6MFjRGOEJITZSScZMjO7zPSqYcmneNUv8GPEm3j1H5ysezDGgoaiuppqKowFN+j7b87C4tLyymphzV3f2NzaLpZ2bk2UaAYNFolI34XUgOAKGshRwF2sgcpQQDMcnU/3zXvQhkfqBscxdCQdKN7njKKVusVS+5oPJK20JcWhlunFpFss+1U/gzdPgpyUSY56t+S47V7EEgkKmaDGtAI/xk5KNXImYOK2EwMxZSM6gJalikownTT7feIdWKXn9SNtR6GXqb8vUiqNGcvQOqcvmr+7qfjfrpVg/7STchUnCIr9BPUT4WHkTYvwelwDQzG2hDLN7a8eG1JNGdq6ZlIUPMSPCI9YyViWOGOQdAQMhJi4rm0v+NvVPLk9qgbH1dpVrXx2mvdYIHtknxySgJyQM3JJ6qRBGHkgT+SZvDivzrvz4Xz+WBec/GaXzMD5+gZQbKp6</latexit>

⌃,D <latexit sha1_base64="JCte+FFsdYaA7Pq+CTKJGECqTYg=">AAACIXicbVDLTsJAFJ36xPoCXbppJCYuDGkNUZYkblxCIo8ECJkOF5gwndaZW4U0fIFb/QK/xp1xZ/wZh8JCwJNMcnLOvTl3jh8JrtF1v62Nza3tnd3Mnr1/cHh0nM2d1HUYKwY1FopQNX2qQXAJNeQooBkpoIEvoOGP7mZ+4wmU5qF8wEkEnYAOJO9zRtFI1cduNu8W3BTOOvEWJE8WqHRzlt3uhSwOQCITVOuW50bYSahCzgRM7XasIaJsRAfQMlTSAHQnSS+dOhdG6Tn9UJkn0UnVvxsJDbSeBL6ZDCgO9ao3E//zWjH2S52EyyhGkGwe1I+Fg6Ez+7bT4woYiokhlClubnXYkCrK0JSzlCLhORojjPEqZWni0kBAR8BAiKltm/a81a7WSf264N0UitVivlxa9JghZ+ScXBKP3JIyuScVUiOMAHkhr+TNerc+rE/raz66YS12TskSrJ9fldKjgA==</latexit>@

Figure 1.5: The saturation-based query answering procedure

of variables, and these clauses are composed of the signature symbols before
saturation processes.

The next task considers the inference steps in the saturation for query clauses
and Q≈ clauses. As said above, for Q≈ clauses we devise superposition refinement
so that only the E-Res rule is applicable to these clauses. In query clauses only
the indecomposable CO clauses derives conclusions, therefore for these clauses
we devise an appropriate resolution refinement, so that it is guaranteed that only
the top-variable resolution rule is applicable to the indecomposable CO clause
with itself being the main premise and guarded clauses (LG and LG≈ clauses
thereof) being the side premises.

The final task requires us to formally present the query answering proce-
dures in the saturation-based framework. Though our procedures do not rely
on a particular form of saturation processes, we devise the query answering
procedures in accordance with the given-clause algorithm in [Wei01, MW97],
since this algorithm has been implemented as a basis for modern first-order
theorem provers such as Spass [WDF+09], Vampire [RV01b] and E [Sch13].
This choice ensures the implementation of our procedures is practical and
approachable.

Suppose Σ are formulas in one of our guarded fragments, @ is a union
of BCQs and D is a set of ground atoms. To check whether Σ ∪ D |= @, we
transform {¬@} ∪ Σ ∪ D to a clausal set # . If # is unsatisfiable, then it is the
case that Σ ∪ D |= @, otherwise Σ ∪ D 6 |= @. Figure 1.5 illustrates our decision
procedures for answering @ in Σ and D. The decision procedures for answering
BCQs for GF (the Q-AnsGF procedure), LGF/CGF (the Q-AnsCGF procedure) and
GNF/CGNF (theQ-AnsCGNF procedure) are presented inSections 4.6, 6.4 and 7.4,
respectively.

CHAPTER 1. INTRODUCTION 25

Devising saturation-based BCQ rewriting procedures Finally we address
Challenge 4): back-translating the clausal set, produced by the previous BCQ
answering procedures, to a first-order formula. The target of Challenge 4) is
stronger than that ofmain problem ii. since this challenge aims to back-translate
a derivation, not necessarily a saturation.

For the considered guarded clausal classes the back-translation task is not
straightforward. For example it is impossible to back-translate the guarded
clause ¬�(G, H) ∨ �1(5 (G, H)) ∨ �1(5 (H, G)) to a first-order formula, due to the
co-occurrences of the compound terms 5 (G, H) and 5 (H, G). In fact a clausal set#
can be successfully back-translated to a first-order formula if# isnormal, unique,
globally consistent and globally linear [Eng96]. Basedon the theseprerequisiteswe
devise our back-translationprocedures. To avoid ambiguity theword compatible
is used to replace the word consistent.

By investigating the applications of our clausification processes to GF, LGF,
CGF, GNF and CGNF, we realise from these fragments the clausal classes have
a nice property, viz. the strong compatibility property, which requires that the
argument lists of all compound terms on one clause are identical. These clauses
are the aligned clauses. To be specific the problem of answering BCQs for GF,
for LGF/CGF and for GNF/CGNF is reduced to deciding satisfiability of the
class of query clauses and aligned guarded clauses (GQ− clauses, consisting of query
clauses and G− clauses), of query clauses and aligned loosely guarded clauses (LGQ−

clauses, consisting of query clauses and LG− clauses) and of query clauses with
equality and aligned loosely guarded clauses with equality (LGQ−≈ clauses, consisting
of Q≈ clauses and LG−≈ clauses), respectively.

Next, we formally prove that our query answering procedures as well de-
cide satisfiability of the classes of GQ−, LGQ− and LGQ−≈ clauses. Notably these

<latexit sha1_base64="HQFZUdOhAGJR00nsH6aa/o+SBPQ=">AAACinicfVHBThsxEHUW2tItbQM9crGaVOqhjXYRakFckKgEBw4gEUDKppHXmWWt2F7LnoVEq/1F7v2PXlvVWYLUQNWRLD+992bGek6NFA6j6EcrWFl99vzF2svw1frrN2/bG5sXrigthz4vZGGvUuZACg19FCjhylhgKpVwmU4O5/rlDVgnCn2OMwNDxa61yARn6KlRO09AmbxKMAc29hdM0WXV0Vnd/f65S7lkpQNHk4Q+SCf/1yqvjRJmjC2m3bp+cNX1qN2JelFT9CmIF6BDFnU62miFybjgpQKNfopzgzgyOKyYRcEl1GHiBxvGJ+waBh5qpsANqyaSmn7wzJhmhfVHI23YvzsqppybqdQ7FcPcPdbm5L+0QYnZ7rAS2pQImt8vykpJsaDzfOlYWOAoZx4wboV/K+U5s4yj/4WlLRpuzXSe3KcGNRuXDIpNgIOUdRj69OLHWT0FF9u9+Etv52ync7C7yHGNbJH35COJyVdyQI7JKekTTu7IT/KL/A7Wg+1gL9i/twatRc87slTBtz97Dci/</latexit>

GQ� clauses
LGQ� clauses
LGQ�⇡ clauses

<latexit sha1_base64="k8Rn4ikTQavu+8bHGTDlKNsAw2k=">AAACLnicbVDLSsNAFJ34rPFZXboJFsGFlkREXVbcuFSwD2hjmUxvdOhkEmZu1BL6H271C/wawYW49TOcplnY1gMXDufcy7mcIBFco+t+WnPzC4tLy6UVe3VtfWNzq7zd0HGqGNRZLGLVCqgGwSXUkaOAVqKARoGAZtC/HPnNR1Cax/IWBwn4Eb2XPOSMopHuOgjPGITZzdFFoIfdrYpbdXM4s8QrSIUUuO6WLbvTi1kagUQmqNZtz03Qz6hCzgQM7U6qIaGsT++hbaikEWg/y98eOvtG6TlhrMxIdHL170VGI60HUWA2I4oPetobif957RTDcz/jMkkRJBsHhalwMHZGHTg9roChGBhCmeLmV4c9UEUZmqYmUiQ8Jc+jjg5zlidOLES0DwyEGNq2ac+b7mqWNI6r3mn15OakUjsveiyRXbJHDohHzkiNXJFrUieMKPJCXsmb9W59WF/W93h1zipudsgErJ9fVbapBg==</latexit>

Q-Abs
<latexit sha1_base64="sqGr8TzJQL+Tyl6msTnjDbplxRQ=">AAACanicbVDLattAFB2rr1R9OemqZDPULXQRjBRKm2WgmyxTqJOAZczV6NoePK/MXLUxQr/Ur+mmi+QL+hEdK17USS8MHM459zGndEoGyrLfveTBw0ePn+w8TZ89f/HyVX937yzY2gscCausvyghoJIGRyRJ4YXzCLpUeF4uv6z18+/og7TmG60cTjTMjZxJARSpaf+kQO0WTUELhKox1mtQB7w28rJGDqbiRcEDeWvmasWF1S72xdlrWiioAygekELbTvuDbJh1xe+DfAMGbFOn091eWlRW1BoNxVEhjPPM0aQBT1IobNOiDuhALGGO4wgNaAyTpvtyy99HpuIz6+MzxDv2344GdAgrXUanBlqEu9qa/J82rml2NGmkcTWhEbeLZrXiZPk6P15Jj4JiGJUE4WW8lYsFeBAUU97aYvCHuyK8ooMOdRu3DBqWKFCpNk1jevndrO6Ds8Nh/mn48evh4Phok+MO22dv2QeWs8/smJ2wUzZigv1kv9g1u+n9SfaSN8n+rTXpbXpes61K3v0FCXy9lQ==</latexit>

normal, unique and
strongly compatible

clausal sets

<latexit sha1_base64="EniJTPWChRGPqaozOktdk6LCgzM=">AAACMXicbVDLSsNAFJ34rPHV6tJNsAgutCQi2mXBjctW7APaUibTGx06mYSZG20J/RK3+gV+TXfi1p9wmnZhWw9cOJxzL+dy/Fhwja47sdbWNza3tnM79u7e/sFhvnDU0FGiGNRZJCLV8qkGwSXUkaOAVqyAhr6Apj+4m/rNF1CaR/IRRzF0Q/okecAZRSP18ocdhCH6QVq7fABJx7180S25GZxV4s1JkcxR7RUsu9OPWBKCRCao1m3PjbGbUoWcCRjbnURDTNmAPkHbUElD0N00+3zsnBml7wSRMiPRydS/FykNtR6FvtkMKT7rZW8q/ue1EwzK3ZTLOEGQbBYUJMLByJnW4PS5AoZiZAhliptfHfZMFWVoylpIkfAaD6clXWQsS1xYCOkAGAgxtm3Tnrfc1SppXJW8m9J17apYKc97zJETckrOiUduSYXckyqpE0YS8kbeyYf1aU2sL+t7trpmzW+OyQKsn1/BRKmv</latexit>

Q-Rena

<latexit sha1_base64="6LK5wr3inpp8udXxNswf8aSF7pg=">AAACMnicbVDLSsNAFJ3UV42vVpdugkVwoSUpoi4FNy4V7APaUCbTGztkMgkzN9US+idu9Qv8Gd2JWz/CaezCWg9cOJxzL+dyglRwja77ZpWWlldW18rr9sbm1vZOpbrb0kmmGDRZIhLVCagGwSU0kaOATqqAxoGAdhBdTf32CJTmibzDcQp+TO8lDzmjaKR+pdJDeMQgzG9PmlJHyaRfqbl1t4CzSLwZqZEZbvpVy+4NEpbFIJEJqnXXc1P0c6qQMwETu5dpSCmL6D10DZU0Bu3nxesT59AoAydMlBmJTqH+vshprPU4DsxmTHGo/3pT8T+vm2F44edcphmCZD9BYSYcTJxpD86AK2AoxoZQprj51WFDqihD09ZcioSH9HHa0nHBisS5hZhGwECIiW2b9ry/XS2SVqPundVPbxu1y4tZj2WyTw7IEfHIObkk1+SGNAkjI/JEnsmL9Wq9Wx/W589qyZrd7JE5WF/f3LqqQw==</latexit>

Q-Unsko

<latexit sha1_base64="829YsUCm2GKDH05Qz9ygne/iRP8=">AAACfnicbZDLbtNAFIYn5tJibiks2YyIQCxCsKuqZFmpG5ZFIm2lOIqOxyfJKHMxM8elkeWX4y14g27hCRi7WZCWI4306z+Xf/TlpZKekuRXL3rw8NHjvf0n8dNnz1+87B+8Ove2cgInwirrLnPwqKTBCUlSeFk6BJ0rvMjXp23/4gqdl9Z8o02JMw1LIxdSAAVr3s8y1OWqzmiFUNTGOg1qyCsjv1c45FnGl8rmoNSGtwngOJhixxZWl+FWyGttoaDyoLhH8k0z7w+SUdIVvy/SrRiwbZ3ND3pxVlhRaTQUTnk/TZOSZjU4kkJhE2eVxxLEGpY4DdKARj+rOwwNfxecgi+sC88Q79x/N2rQ3m90HiY10Mrf7bXm/3rTihbjWS1NWREacRu0qBQny1umvJAOBQUYhQThZPgrFytwICiQ30kx+KO8JrymYae6xJ0BDWsUqFQTx4FeepfVfXF+OEqPR0dfDwcn4y3HffaGvWUfWMo+sxP2hZ2xCRPsJ7thv9mfiEXvo4/Rp9vRqLfdec12Khr/BSmHxEc=</latexit>

normal, unique,
globally linear and
globally compatible

clausal sets

<latexit sha1_base64="tXa2wQm8tVTytViX6gR0UU0Yw/M=">AAACV3icbVBNb9NAFFwbaIP5SuDIZUWEVCQU2VWBHou4cCwSaSvFUfS8fklW2V2b3belkeVfwq/hCr+gvwY2bg6kZaSVRvPmad5OUSvpKE2vo/je/Qd7+72HyaPHT54+6w+en7nKW4FjUanKXhTgUEmDY5Kk8KK2CLpQeF6sPm3m55donazMV1rXONWwMHIuBVCQZv13Oep62eS0RCibj/xAKPnN4xu+8GBLLHmec4OLzs3nldVeQdvO+sN0lHbgd0m2JUO2xelsECV5WQmv0ZBQ4NwkS2uaNmBJCoVtknuHNYgVLHASqAGNbtp0/2v566CUm/TwDPFO/XejAe3cWhfBqYGW7vZsI/5vNvE0P5420tSe0IiboLlXnCq+KYuX0qIgtQ4EhJXhVi6WYEFQqHQnxeD3+orwit52rEvcMWhYoUCl2iQJ7WW3u7pLzg5H2fvR0Zej4cnxtscee8lesQOWsQ/shH1mp2zMBPvBfrJf7Hd0Hf2J9+LejTWOtjsv2A7iwV9HPrY3</latexit>

A (clique) guarded
negation formula

<latexit sha1_base64="oTq5SZRLI1k2Q7EJjRRRCqtyM08=">AAACRnicbVBNb9NAEB2HQov5SuHIZdWAxAEiu0KlxyIuHItE2kpJFI3X42aV3bW1O24bWf4D/Bqu8Av4C/wJbogrGzcH0vKklZ7evNGbfVmlleck+Rn17mzdvbe9cz9+8PDR4yf93acnvqydpJEsdenOMvSklaURK9Z0VjlCk2k6zRYfVvPTC3JelfYzLyuaGjy3qlASOUiz/osJmWreTHhOmDfvRaGc5zely8mJonSm1ti2s/4gGSYdxG2SrskA1jie7UbxJC9lbciy1Oj9OE0qnjboWElNbTypPVUoF3hO40AtGvLTpvtOK14GJV+lh2dZdOq/Gw0a75cmC06DPPc3Zyvxf7NxzcXhtFG2qpmsvA4qai24FKtuRK4cSdbLQFA6FW4Vco4OJYcGN1IsXVZXTFf8umNd4obB4IIkad3GcWgvvdnVbXKyP0wPhm8/7Q+ODtc97sBz2INXkMI7OIKPcAwjkPAFvsI3+B79iH5Fv6M/19ZetN55BhvowV8mPLHd</latexit>

A first-order formula

<latexit sha1_base64="zvus32QUxdLc3eqGgCJ00JyjCWE=">AAACMnicbVDLSsNAFJ34Nr5aXboJFsGFlqSIdlnQhUuFVoU2lMn0ph06mYSZm9oS+idu9Qv8Gd2JWz/CaczCqgcuHM65l3M5QSK4Rtd9tRYWl5ZXVtfW7Y3Nre2dUnn3VsepYtBisYjVfUA1CC6hhRwF3CcKaBQIuAuGFzP/bgRK81g2cZKAH9G+5CFnFI3ULZU6CGMMwuzypKmo1NNuqeJW3RzOX+IVpEIKXHfLlt3pxSyNQCITVOu25yboZ1QhZwKmdifVkFA2pH1oGyppBNrP8tenzqFRek4YKzMSnVz9eZHRSOtJFJjNiOJA//Zm4n9eO8Ww7mdcJimCZN9BYSocjJ1ZD06PK2AoJoZQprj51WEDqihD09ZcioSHZDxr6ThneeLcQkSHwECIqW2b9rzfXf0lt7Wqd1Y9valVGvWixzWyTw7IEfHIOWmQK3JNWoSREXkkT+TZerHerHfr43t1wSpu9sgcrM8vt72qLg==</latexit>

D-Trans
<latexit sha1_base64="oTq5SZRLI1k2Q7EJjRRRCqtyM08=">AAACRnicbVBNb9NAEB2HQov5SuHIZdWAxAEiu0KlxyIuHItE2kpJFI3X42aV3bW1O24bWf4D/Bqu8Av4C/wJbogrGzcH0vKklZ7evNGbfVmlleck+Rn17mzdvbe9cz9+8PDR4yf93acnvqydpJEsdenOMvSklaURK9Z0VjlCk2k6zRYfVvPTC3JelfYzLyuaGjy3qlASOUiz/osJmWreTHhOmDfvRaGc5zely8mJonSm1ti2s/4gGSYdxG2SrskA1jie7UbxJC9lbciy1Oj9OE0qnjboWElNbTypPVUoF3hO40AtGvLTpvtOK14GJV+lh2dZdOq/Gw0a75cmC06DPPc3Zyvxf7NxzcXhtFG2qpmsvA4qai24FKtuRK4cSdbLQFA6FW4Vco4OJYcGN1IsXVZXTFf8umNd4obB4IIkad3GcWgvvdnVbXKyP0wPhm8/7Q+ODtc97sBz2INXkMI7OIKPcAwjkPAFvsI3+B79iH5Fv6M/19ZetN55BhvowV8mPLHd</latexit>

A first-order formula

Figure 1.6: The back-translation procedure

CHAPTER 1. INTRODUCTION 26

clausal classes are each closed under the application of these query answer-
ing procedures. To back-translate GQ−, LGQ− and/or LGQ−≈ clausal sets to a
first-order formula, one first needs to transform these clausal sets into logically
equivalent normal, unique, globally compatible and globally linear clausal sets.
Based on the term abstraction and variable renaming rules in [Eng96, GSS08a],
we devise customised rules (the constant and variable abstraction procedure (the
Q-Abs procedure) and the variable renaming procedure (the Q-Rena procedure)),
so that GQ−, LGQ− and/or LGQ−≈ clausal sets are ensured to be transformed
into a clausal set # satisfying the mentioned pre-requisites for successful back-
translation. By our customised unskolemisation procedure (the Q-Unsko pro-
cedure), # is ensured to be unskolemised into a first-order formula. Unlike
the classes of GQ− and LGQ− clauses, the LGQ−≈ clausal class is defined with
the protect property, so that by a special transformation (the D-Trans procedure),
the first-order formula � (back-translated from an LGQ−≈ clausal set) is reformu-
lated as a clique guarded negation formula. The back-translation of GQ− and LGQ−

clauses is not ensured to be reformed as formulas in GF, LGF and/or CGF, due
to the fact that our back-translation procedures may introduce equality, which
is not allowed in GF, LGF and/or CGF. Figure 1.6 describes the back-translation
procedures for the targeted aligned clausal classes.

The decision procedures for the saturation-based BCQ rewriting for GF (the Q-
RewGF procedure), LGF/CGF (the Q-RewCGF procedure) and GNF/CGNF (the

<latexit sha1_base64="15MnsNetfp1rafT5rfZ/F9Lwidw=">AAACTnicbVDLSiNBFK2Oj4ntY6KzdFMYBBcSumUYXQpuZunAJBHSIdyu3DZFqqubqtujoemfmK+Z7cwXuPVHZidaaYMY9UDB4Zx7ObdOnCtpKQjuvcbK6tr6p+aGv7m1vfO5tbvXs1lhBHZFpjJzFYNFJTV2SZLCq9wgpLHCfjy9mPv9X2iszPRPmuU4TOFay0QKICeNWscR4S3FSRnRBGFcXigo7IvPo4jnJhNoLdqqGrXaQSeowd+TcEHabIHL0a7nR+NMFClqEgqsHYRBTsMSDEmhsPKjwmIOYgrXOHBUQ4p2WNbfqvihU8Y8yYx7mnitvt4oIbV2lsZuMgWa2LfeXPzIGxSUnA1LqfOCUIvnoKRQnDI+74iPpUFBauYICCPdrVxMwIAg1+RSisab/Hbe4HHN6sSlgRSmKFCpyvdde+Hbrt6T3kkn/Nb5+uOkfX626LHJ9tkBO2IhO2Xn7Du7ZF0m2G/2h/1l/7w777/34D0+jza8xc4XtoRG8wnhqbWl</latexit>

Clausification
processes

<latexit sha1_base64="v4yqchZch0s6KruWKgfQtQwxLho=">AAACXnicbVDBbhMxEHWWtpSF0rRckLhYpEg9oGi3QtADh0pcOLZS01bKRtGsM9tYsb3GnoVEq/2Zfg1XuHHjU3C2qUTajmTp6b2ZeeOXWyU9JcmfTvRkY3Pr6faz+PmLnZe73b39C19WTuBAlKp0Vzl4VNLggCQpvLIOQecKL/PZl6V++R2dl6U5p4XFkYZrIwspgAI17n7OUNtpndEUYVJ/q9AtuFBQefQ8y3hGOCdf1GfNwTgDa105P7jTm2bc7SX9pC3+EKQr0GOrOh3vdeJsUopKo6Gwxfthmlga1eBICoVNnIXFFsQMrnEYoAGNflS332z4u8BMeFG68Azxlv1/ogbt/ULnoVMDTf19bUk+pg0rKo5HtTS2IjTi1qioFKeSLzPjE+lQkFoEAMLJcCsXU3AgKCS75mLwh50vM3vfotZxrUHDDAUq1cRxSC+9n9VDcHHUTz/2P5wd9U6OVzluszfsLTtkKfvETthXdsoGTLAb9pP9Yr87f6OtaCfavW2NOquZV2ytotf/ACbOuRY=</latexit>

query clauses
Q⇡ clauses <latexit sha1_base64="EFupf8GVmAtTTA7bqRetJ8EuKoc=">AAACh3icfVFNbxMxEHWWr3b5aApHLhYJEgcIuxUqPRZxgAOHIpG2UjZEs85sY8X2WvYsJFrtL+QX8DO4wgVn2UqkRYxk+em9NzPWc26V9JQk33vRjZu3bt/Z2Y3v3rv/YK+///DUl5UTOBalKt15Dh6VNDgmSQrPrUPQucKzfPl2o599QedlaT7R2uJUw4WRhRRAgZr1MUNtF3VGC4R5uHBFvqjfNcPPL4ZcKKg8ep5l/FL58D+pDtIsA2tduRo2zaWpaWb9QTJK2uLXQdqBAevqZLbfi7N5KSqNhsIU7ydpYmlagyMpFDZxFgZbEEu4wEmABjT6ad3m0fCngZnzonThGOIt+3dHDdr7tc6DUwMt/FVtQ/5Lm1RUHE1raWxFaMSfRUWlOJV8Ey6fS4eC1DoAEE6Gt3KxAAeCwhdsbTH41a42wT1vUbtxy6BhiQKVauI4pJdezeo6OD0YpYejVx8PBsdHXY477DF7wp6xlL1mx+w9O2FjJtg39oP9ZL+i3ehldBh13qjX9TxiWxW9+Q34Cses</latexit>

G� clauses
LG� clauses
LG�⇡ clauses

<latexit sha1_base64="OO3vZe2BhafZFxod9hwPWivc8Ug=">AAACTHicbVDLSiNBFK3OzPjoeUVduikMA8MwhG4Z1KXgxqUBo0ISwu3q20mR6uqm6rYamv4Hv8atfsHs/Q93IljpZGHUCwWHc86tU3WiXElLQfDgNT59/rKyurbuf/32/cfP5sbmmc0KI7ArMpWZiwgsKqmxS5IUXuQGIY0UnkeTo5l+fonGykyf0jTHQQojLRMpgBw1bP7pE15TlJR9GiPEZadAM+Vj0LG7ccRzkwmMC4O2qobNVtAO6uHvQbgALbaYk+GG5/fjTBQpahIKrO2FQU6DEgxJobDy+4XFHMQERthzUEOKdlDWn6r4L8fEPMmMO5p4zb7eKCG1dppGzpkCje1bbUZ+pPUKSg4GpdR5QajFPCgpFKeMzxrisTQoSE0dAGGkeysXYzAgyPW4lKLxKr+e9fe3RnXikiGFCQpUqvJ91174tqv34Gy3He61/3V2W4cHix7X2DbbYb9ZyPbZITtmJ6zLBLtht+yO3Xv/vUfvyXueWxveYmeLLU1j5QVUerTr</latexit>

Query handling procedures

<latexit sha1_base64="Ch9VnkBbqQFwyhP+kZjY3PcrXP8=">AAACR3icbVDBattAFFy5aeMqbWM3x16WmEAOxUghJD4acunRoXESsI15Wj/Zi1crsfuUxAh9Qb6m1/YL+gn9itxKjlnLPtROBxaGmfeYtxNlSloKgj9e7c3O23e79ff+3oePn/Ybzc/XNs2NwL5IVWpuI7CopMY+SVJ4mxmEJFJ4E80vlv7NHRorU31FiwxHCUy1jKUActK4cTQkfKAoLoY0Q5gU34FyU3k8M6lAa9GW5bjRCtpBBf6ahGvSYmv0xk3PH05SkSeoSSiwdhAGGY0KMCSFwtIf5hYzEHOY4sBRDQnaUVH9p+RHTpnwODXuaeKV+u9GAYm1iyRykwnQzG57S/F/3iCnuDMqpM5yQi1WQXGuOKV8WQ6fSIOC1MIREEa6W7mYgQFBrsKNFI332cOyuq8VqxI3BhKYo0ClSt937YXbXb0m1yft8Kx9ennS6nbWPdbZF3bIjlnIzlmXfWM91meCPbIf7Cf75f32nry/3vNqtOatdw7YBmreC1VQswM=</latexit>

Saturation processes
<latexit sha1_base64="Kpi/71rc90TgWzXbJidNdrQj1Rc=">AAACOXicbVDLSsNAFJ34rPFVdeHCzWAVFKQkIuqyIIJLReuDppTJ9NYOnUzCzI1aQr7GrX6BX+LSnbj1B5zGLqx6YOBw7rmcOydMpDDoea/O2PjE5NR0acadnZtfWCwvLV+aONUc6jyWsb4OmQEpFNRRoITrRAOLQglXYe9oML+6A21ErC6wn0AzYrdKdARnaKVWeTXALrB2thGEMW7QIKBbN8fn23mrXPGqXgH6l/hDUiFDnLaWHDdoxzyNQCGXzJiG7yXYzJhGwSXkbpAaSBjvsVtoWKpYBKaZFT/I6aZV2rQTa/sU0kL9uZGxyJh+FFpnxLBrfs8G4n+zRoqdw2YmVJIiKP4d1EklxZgO6qBtoYGj7FvCuBb2Vsq7TDOOtrSRFAX3yQPCA+4UrEgcMUSsBxykzF3Xtuf/7uovudyt+vvVvbPdSu1w2GOJrJF1skV8ckBq5ISckjrhJCeP5Ik8Oy/Om/PufHxbx5zhzgoZgfP5BeDTq5c=</latexit> ?
(YES)

<latexit sha1_base64="MMUBHcPQFWLmG6slWQJ1vhJobVw=">AAACRnicbVDLTttAFL1OKQ8XaKBLNlaTSixKZEcVZImE1LKEqoFIcRqNJ9dklPHYmrkGIss/0K/ptv0CfqE/0V3VbccmCxJ6pJHOnHOvzsyJMikM+f4vp/Fi7eX6xuaW+2p7Z/d1c2//yqS55tjnqUz1IGIGpVDYJ0ESB5lGlkQSr6PZWeVf36I2IlVfaJ7hKGE3SsSCM7LSuNkOaYpsUoSE9xTFxeXRZ7xrf62vJi4+fSzbZTlutvyOX8N7ToIFacECF+M9xw0nKc8TVMQlM2YY+BmNCqZJcImlG+YGM8Zn7AaHliqWoBkV9XdK751VJl6cansUebX6dKNgiTHzJLKTCaOpWfUq8X/eMKe4NyqEynJCxR+D4lx6lHpVN95EaOQk55YwroV9q8enTDNOtsGlFIV32X3V0fua1YlLAwmbIUcpS9e17QWrXT0nV91OcNz5cNltnfYWPW7CAbyFQwjgBE7hHC6gDxy+wXf4AT+dB+e388f5+zjacBY7b2AJDfgHzWixqQ==</latexit>

Q-RewGF<latexit sha1_base64="oTq5SZRLI1k2Q7EJjRRRCqtyM08=">AAACRnicbVBNb9NAEB2HQov5SuHIZdWAxAEiu0KlxyIuHItE2kpJFI3X42aV3bW1O24bWf4D/Bqu8Av4C/wJbogrGzcH0vKklZ7evNGbfVmlleck+Rn17mzdvbe9cz9+8PDR4yf93acnvqydpJEsdenOMvSklaURK9Z0VjlCk2k6zRYfVvPTC3JelfYzLyuaGjy3qlASOUiz/osJmWreTHhOmDfvRaGc5zely8mJonSm1ti2s/4gGSYdxG2SrskA1jie7UbxJC9lbciy1Oj9OE0qnjboWElNbTypPVUoF3hO40AtGvLTpvtOK14GJV+lh2dZdOq/Gw0a75cmC06DPPc3Zyvxf7NxzcXhtFG2qpmsvA4qai24FKtuRK4cSdbLQFA6FW4Vco4OJYcGN1IsXVZXTFf8umNd4obB4IIkad3GcWgvvdnVbXKyP0wPhm8/7Q+ODtc97sBz2INXkMI7OIKPcAwjkPAFvsI3+B79iH5Fv6M/19ZetN55BhvowV8mPLHd</latexit>

A first-order formula

<latexit sha1_base64="PHvT16nUH632s/4IZhCrbeb8ZH0=">AAACUHicbVBNa9tAFHxy0zZVP+K0x16WmEAPxUghpDkGeukxgToJWMY8rZ7sxauV2H1qYoT+RX9Nr+0v6K3/pLdkrbhQJ3mw7DAzj9mdtNLKcRT9CXpPtp4+e779Inz56vWbnf7u23NX1lbSSJa6tJcpOtLK0IgVa7qsLGGRarpIF59X+sU3sk6V5isvK5oUODMqVxLZU9P+MGG65jRvEp4TZs1ZTXYp0LgrssrMRJKIypaSstqSa9tpfxANo27EQxCvwQDWczrdDcIkK2VdkGGp0blxHFU8adCykpraMKkdVSgXOKOxhwYLcpOm+1gr9j2Tiby0/hgWHfv/RoOFc8si9c4Cee7uayvyMW1cc348aZSpaiYj74LyWgsuxaolkSlLkvXSA5RW+bcKOUeLkn2XGymGrqrrVYcfO9QlbhgKXJAkrdsw9O3F97t6CM4PhvHR8PDsYHByvO5xG97DHnyAGD7BCXyBUxiBhO/wA37Cr+B38De46QV31n83vION6YW3c1q1dQ==</latexit>

Query answering
procedures

<latexit sha1_base64="JCte+FFsdYaA7Pq+CTKJGECqTYg=">AAACIXicbVDLTsJAFJ36xPoCXbppJCYuDGkNUZYkblxCIo8ECJkOF5gwndaZW4U0fIFb/QK/xp1xZ/wZh8JCwJNMcnLOvTl3jh8JrtF1v62Nza3tnd3Mnr1/cHh0nM2d1HUYKwY1FopQNX2qQXAJNeQooBkpoIEvoOGP7mZ+4wmU5qF8wEkEnYAOJO9zRtFI1cduNu8W3BTOOvEWJE8WqHRzlt3uhSwOQCITVOuW50bYSahCzgRM7XasIaJsRAfQMlTSAHQnSS+dOhdG6Tn9UJkn0UnVvxsJDbSeBL6ZDCgO9ao3E//zWjH2S52EyyhGkGwe1I+Fg6Ez+7bT4woYiokhlClubnXYkCrK0JSzlCLhORojjPEqZWni0kBAR8BAiKltm/a81a7WSf264N0UitVivlxa9JghZ+ScXBKP3JIyuScVUiOMAHkhr+TNerc+rE/raz66YS12TskSrJ9fldKjgA==</latexit>@
<latexit sha1_base64="9Yp8lU693wf2Jw1A+NIqB6hJuF4=">AAACJnicbVDLSgMxFM34rOOzunQzWAQXUmakqMuCG5eKtgptKZn0ThubZIbkjraU/oNb/QK/xp2IOz/FdJyFbT0QOJxzL+fmhIngBn3/y1lYXFpeWS2suesbm1vbO8XduolTzaDGYhHr+5AaEFxBDTkKuE80UBkKuAv7FxP/7hG04bG6xWECLUm7ikecUbRSvXnDu5K2d0p+2c/gzZMgJyWS46pddNxmJ2apBIVMUGMagZ9ga0Q1ciZg7DZTAwllfdqFhqWKSjCtUXbu2Du0SseLYm2fQi9T/26MqDRmKEM7KSn2zKw3Ef/zGilG560RV0mKoNhvUJQKD2Nv8nevwzUwFENLKNPc3uqxHtWUoW1oKkXBUzJAGOBxxrLEqQFJ+8BAiLHr2vaC2a7mSf2kHJyWK9eVUvU877FA9skBOSIBOSNVckmuSI0w8kCeyQt5dd6cd+fD+fwdXXDynT0yBef7B5CtpY4=</latexit>

⌃

<latexit sha1_base64="wSeUgVuTwiflxje1SQvjRq7OPsI=">AAACtnicjZFNbxMxEIa9y1dZPprCkYtFggQIot0KQY6VOMCBQytIWylOI693NrFi71r2LCSy9l/w5/grnHC2ESJtD4xk6dU7j2fsmdwo6TBNf0Xxrdt37t7bu588ePjo8X7v4MmpqxsrYCxqVdvznDtQsoIxSlRwbixwnSs4y5cfN/mz72CdrKtvuDYw1XxeyVIKjsGa9X5ShgvghfesK+YtFC39yrGxHeFayhhloM3CM4QVutJ/OmkHF28HVCjeOLiJ+PJfiA/IjHFjbL0atO1fuJ31+ukw7YJeF9lW9Mk2jmcHUcKKWjQaKgxVnJtkqcGp5xalUNAmLBQ2XCz5HCZBVlyDm/ruxy19EZyClrUNp0Lauf/e8Fw7t9Z5IDXHhbua25g35SYNlqOpl5VpECpx2ahsFMWabnZBC2lBoFoHwYWV4a1ULLjlAsPGdrpU8MOsNpN706mu4w6g+RIEKNUmSZhednVW18Xp4TB7P3x3ctg/Gm3nuEeekefkJcnIB3JEPpNjMiaC/I5o9Cp6HY/iixji+SUaR9s7T8lOxOYPSA3Y7w==</latexit>

Saturations
GQ� clauses
LGQ� clauses
LGQ�⇡ clauses

<latexit sha1_base64="yqelkpDrWKpYHnSsgiqIk0CU+kY=">AAACR3icbVBLTsMwFHTKP/wKLNlEFCQWUCWoApZISMCyRbRFakvluC/UquNE9gtQRTkBp2ELJ+AInIIdYokbuqDASJbGM+9p7PFjwTW67ptVmJqemZ2bX7AXl5ZXVotr6w0dJYpBnUUiUtc+1SC4hDpyFHAdK6ChL6DpD05HfvMOlOaRvMJhDJ2Q3koecEbRSN3iThv7QHtpG+EB/SCt7V/C/fZNftVBenp+lm1nWbdYcstuDucv8cakRMaodtcsu92LWBKCRCao1i3PjbGTUoWcCcjsdqIhpmxAb6FlqKQh6E6a/ydzdozSc4JImSPRydWfGykNtR6GvpkMKfb1b28k/ue1EgyOOymXcYIg2XdQkAgHI2dUjtPjChiKoSGUKW7e6rA+VZShqXAiRcJ9/DAqaS9neeLEQEgHwECIzLZNe97vrv6SxkHZOyxXapXSyfG4x3mySbbILvHIETkhF6RK6oSRR/JEnsmL9Wq9Wx/W5/dowRrvbJAJFKwvdYax+A==</latexit>

Q-RewCGF

<latexit sha1_base64="sCCIJu/X06zqLv803ZjvpB6UaQU=">AAACSHicbVBLTsMwFHTKr4RfgSWbiAJiAVWCELBEQgJWCBAFpLZUjvvSWnWcyH6hVFFuwGnYwgm4Abdgh9jhhi4oMJKl8cx7Gnv8WHCNrvtmFcbGJyanitP2zOzc/EJpcelaR4liUGWRiNStTzUILqGKHAXcxgpo6Au48btHA//mHpTmkbzCfgyNkLYlDzijaKRmaaOOHaCttI7wgH6QXmxfQm/tLr/qID06OTvO1rKsWSq7FTeH85d4Q1ImQ5w3Fy273opYEoJEJqjWNc+NsZFShZwJyOx6oiGmrEvbUDNU0hB0I80/lDnrRmk5QaTMkejk6s+NlIZa90PfTIYUO/q3NxD/82oJBgeNlMs4QZDsOyhIhIORM2jHaXEFDEXfEMoUN291WIcqytB0OJIioRc/DFraylmeODIQ0i4wECKzbdOe97urv+R6p+LtVXYvdsuHB8Mei2SFrJJN4pF9ckhOyTmpEkYeyRN5Ji/Wq/VufVif36MFa7izTEZQKHwBMKOyUA==</latexit>

Q-RewCGNF<latexit sha1_base64="Xex4CjGHKwG9gYxqf9XrWIukERQ=">AAACVHicbVBNaxsxFNRuPppsk9Rpj72ImkAKweyG0OaY0kuPKdRJwDbmrfbZFpa0G+mpjVn2f/TX9Nr+gkL/Sw+VNz7ESQcEw7x5zNPklZKO0vRPFG9sbm0/29lNnu/tH7zoHL68cqW3AvuiVKW9ycGhkgb7JEnhTWURdK7wOp9/XM6vv6J1sjRfaFHhSMPUyIkUQEEad06HqKtZPaQZQlF/4MdCyVuPb/nUgy2w4AanrZVPSqu9gqYZd7ppL23Bn5JsRbpshcvxYZQMi1J4jYaEAucGWVrRqAZLUihskqF3WIGYwxQHgRrQ6EZ1+7mGHwWlWKaHZ4i36sONGrRzC50Hpwaaucezpfi/2cDT5HxUS1N5QiPugyZecSr5sileSIuC1CIQEFaGW7mYgQVBoc+1FIPfqjvCOzppWZu4ZtAwR4FKNUkS2ssed/WUXJ32sne9s89n3YvzVY877DV7w45Zxt6zC/aJXbI+E+w7+8F+sl/R7+hvvBFv3VvjaLXziq0hPvgHK3e1QQ==</latexit>

A (clique) guarded negation formula

Figure 1.7: The saturation-based query rewriting procedure

CHAPTER 1. INTRODUCTION 27

Q-RewCGNF procedure) are presented in Chapter 5, Sections 6.4 and 7.4, respec-
tively. Figure 1.7 gives a complete view of the saturation-based query rewriting
procedureswith @ a union of BCQs andΣ formulas in the fragments considered
in this thesis.

Figure 1.8 on the next page summarises the relationships between the stud-
ied guarded fragments, queries, and clausal classes, in which an upper node is
strictly more expressive than the adjacent one below it.

Contributions

The main contributions of thesis are:

1. We give the first resolution-based decision procedure for CGF, and the first
practical decision procedures for UNF, GNF and/or CGNF.

2. We devise the first practical decision procedures for answering BCQs for GF,
LGF, CGF, UNF, GNF and/or CGNF. These procedures provide practical
solutions to arguably the most difficult decision problems currently open in
first-order logic (with equality).

3. We develop the first practical decision procedures for saturation-based BCQ
rewriting in GF, LGF, CGF, UNF, GNF and/or CGNF. In general back-
translating a clausal set to a first-order formula is an undecidable problem
and often fails, however by our clausification processes, saturation procedures
and back-translation techniques, for the clausal classes we define it is en-
sures that the clausal sets can be back-translated to a first-order formula. The
clausal sets of GNF and CGNF are even ensured to be back-translated to a
(clique) guarded negation formula. These are interesting results.

4. We devise innovative and elegant P-Res inference systems and top-variable
inference systems. These systems are robust as they are formally proved to
be sound and refutationally complete for general first-order clausal logic (with
equality), not just our clausal classes. These systems are well-prepared
to provide good foundations of practical decision procedures for checking sat-
isfiability for function-free fragments of first-order logic (with equality).
With suitable clausification processes, the top-variable technique guaran-
tees to avoid term depth increase in the conclusions (although in general this

CHAPTER 1. INTRODUCTION 28

LG
Q
≈
(L

G
Q
− ≈)

C
G

N
F

G
N

F

U
N

F

G
Q
≈
(G

Q
− ≈)

Q
≈

ne
ga

te
d

BC
Q
≈

qu
er
y
cl
au

se
s

ne
ga

te
d

BC
Q
s

G
Q
(G

Q
−)

gu
ar
de
d
cl
au

se
s(

G
−)LG

Q
(L

G
Q
−)

LG
(L

G
−)

C
G

F

LG
F

G
F

LG
≈
(L

G
− ≈)

Fi
gu

re
1.
8:

Re
la
tio

ns
hi
ps

be
tw

ee
n
th
e
st
ud

ie
d
cl
au

sa
lc
la
ss
es

an
d
fr
ag

m
en

ts

CHAPTER 1. INTRODUCTION 29

technique does not guarantee that the conclusions is no wider than its
premises).

5. We devise original automated reasoning techniques that may advance the de-
velopment of saturation-based theorem proving. The techniques include
but are not limited to the customised separation rules and goal-oriented query
handling procedures, the novel clausification processes, and the back-translation
rules and procedures.

6. Our inference systems are modular. For any of our inference systems,
by either removing some refinement or adding a new refinement (satisfying
the minimal requirements of admissible orderings and selection functions), the
system remains sound and refutationally complete for first-order clausal
logic (with equality). In addition simplification rules and redundant elim-
ination techniques (compatible with the saturation framework of [BG01])
are freely allowed in any of our systems.

More broadly the contributions of this thesis are:

1. We take a step forwards bridging the gap between automated reasoning and
databases. In the area of databases saturation-based procedures are not
typically applied as querying methods, as there are more well-developed
techniques (such as the chase algorithm [ABU79, MMS79] and its varia-
tions) for database querying problems. Nevertheless due to the successful
applications of highly-tuned automated theorem provers to real-world
problems, it would be interesting to see how automated reasoners can
be developed as query engines for solving real-world database query-
ing problems. This direction of research has also been suggested in the
database community [BKM+17].

2. Our saturation-based query answering and rewriting procedures are
well-equipped to provide the foundation for other querying applications
such as query explanation. Our query rewriting procedures produce a
Skolem-symbol-free formula representing a derivation, thus allows users to
abstract explicit information during proof search of the given queries and
formulas.

3. Our procedures are primed for querying in real-world ontological languages
such as guarded Datalog± and frontier guarded Datalog± [CGK13, BLMS11]

CHAPTER 1. INTRODUCTION 30

and the expressive description logic AℒCℋOℐ [BHLS17] since these lan-
guages can be embedded in the considered guarded fragments.

Organisation

This thesis is organised as follows.

• Chapter 2 formally defines all of the considered guarded fragments, the
saturation-based BCQ answering and rewriting problems and summarises the
known results for these fragments.

• Chapter 3 gives both basic and customised notions of first-order logic, and
the fundamentals of saturation-based theorem proving.

• Chapter 4 first presents theP-Res and the top-variable resolution inference
systems, and then devises a saturation-based decision procedure for answering
a union of BCQs for GF, which is the first main contribution of this thesis.
A part of the result in this chapter is published in
[ZS20b] Sen Zheng and Renate A. Schmidt. Querying the guarded frag-
ment via resolution (extended abstract). In Proc. PAAR’20, volume 2752
of CEUR Workshop Proceedings, pages 167–177. CEUR-WS.org, 2020.

• Chapter 5 devises the decision procedure for saturation-based BCQ rewriting
in GF. Notably we define a refined clausal form of GF, namely the aligned
guarded clauses, which by our customised rules, is guaranteed to be back-
translatable to a first-order formula.

• In Chapter 6, we develop the decision procedures for BCQ answering and
saturation-based BCQ rewriting in LGF and/or CGF. Unlike the procedures
inChapters 4 and 5, in this chapter our procedures particularly copewith
the loose and the clique guards in LGF and CGF, respectively. The result of
answering BCQs for the Horn fragment of LGF is published in
[ZS20a] SenZheng andRenateA. Schmidt. Deciding theLooselyGuarded
Fragment and Querying Its Horn Fragment Using Resolution. In Proc.
AAAI’20, pages 3080–3087. AAAI, 2020.

• Chapter 7 is dedicated to devising the BCQ answering and saturation-based
BCQ rewriting procedures for GNF and/or CGNF. Due to the occurrence of

CHAPTER 1. INTRODUCTION 31

equality and inequality literals in GNF and CGNF, a novel superposition-
based top-variable inference system is devised. Furthermore we identify
amore sophisticated clausal form, viz. aligned (loosely) guarded clauses with
equality, which comes with the assurance of being back-translatable to a
(clique) guarded negation formula.

• Chapter 8 discusses related work in three respects: existing resolution-
based or superposition-based decision procedures for GF and LGF, cur-
rent advancement for answering query in the fragments of the considered
fragments and known query rewriting techniques.

• The last chapter concludes the thesis and suggests directions for future
work.

Chapter 2

The guarded fragments and the
querying problems

2.1 The guarded first-order fragments

The guarded fragment (GF) and the loosely guarded fragment (LGF) are introduced
in [vB97, ANvB98], characterised asmodal fragments of first-order logic (FOL). By
the standard translation [BRV01b], modal formulas are translated into guarded
formulas, where all quantified variables are ‘guarded’ by an atom. LGF, occa-
sionally referred to as the pairwise guarded fragment [vB97, AMdNdR99], prop-
erly extends GF such that temporal operators [RU12] until and since can be
expressed. Roughly speaking, in a loosely guarded formula all quantified vari-
ables are pairwise ‘guarded’ by a conjunction of atoms, namely a loose guard,
in which the quantified variables form a ‘clique’. Further LGF is extended to
the clique guarded fragment (CGF) [Grä99a] such that existential quantifications
are allowed in the loose guard, converting the ‘clique’ for the quantified vari-
ables to a branched ‘clique’ with branches made of the existential quantified
variables in the loose guard. In [Hod02, Mar07] CGF is called the packed frag-
ment. The findings of GF, LGF and CGF are based on the observation that all
quantified formulas are relativised to (a conjunction of existentially quantified)
atoms, hence the aforementioned guarded fragments are also called the guarded
quantification fragments.

In the recent proposals, the guardedness pattern is associated with the
negated formulas, leading to the unary negation fragment (UNF) [tCS13], the

32

2.1. THE GUARDED FIRST-ORDER FRAGMENTS 33

the pairwise guarded fragment

<latexit sha1_base64="L7uwHGd/PoqRBS3z6l+lrRpFFWE=">AAACJHicbVDLSsNAFJ34rPVVdaebwSK4kJIUUZcFNy4r2Cq0oUymN+3gZBJmbrQlFPyabvVD3IkLN/6EP+AkduHrwMDh3Hs4d06QSGHQdd+cufmFxaXl0kp5dW19Y7Oytd02cao5tHgsY30TMANSKGihQAk3iQYWBRKug9vzfH59B9qIWF3hOAE/YgMlQsEZWqlX2cUh0C5EyTBLGL+FPg01G0SgcNKrVN2aW4D+Jd6MVMkMzV7lo9uPeZqbuWTGdDw3QT9jGgWXMCl3UwN5CBtAx1LFIjB+VvxhQg+sYsNjbZ9CWqjfHRmLjBlHgd2MGA7N71ku/jfrpBie+ZlQSYqg+FdQmEqKMc0LoX2hgaMcW8K4FvZWyodMM462th8pCu6TEcIIjwpWJJZtS97vTv6Sdr3mndSOL+vVhjfrq0T2yD45JB45JQ1yQZqkRTh5IFPySJ6cqfPsvDivX6tzzsyzQ37Aef8EVjqmHA==</latexit>

the packed fragment

LGF
<latexit sha1_base64="RAnICqNtzOOR+fRrzeTYsVx/YRs=">AAACE3icbVDLSsNAFJ3UV62vqks3wSK4kJJIUZcFQV1WsA9oS5lMb9qhk0mYudGW0M/oVj/Enbj1A/wOf8Bp2oVtvTBwOOdezpnjRYJrdJxvK7O2vrG5ld3O7ezu7R/kD49qOowVgyoLRagaHtUguIQqchTQiBTQwBNQ9wa3U73+DErzUD7hKIJ2QHuS+5xRNFSzFVDsaz+5vxt38gWn6KRjrwJ3DgpkPpVO/qfVDVkcgEQmqNZN14mwnVCFnAkY51qxhoiyAe1B00BJA9DtJI08ts8M07X9UJkn0U7ZvxcJDbQeBZ7ZTCMua1PyP60Zo3/TTriMYgTJZkZ+LGwM7en/7S5XwFCMDKBMcZPVZn2qKEPT0oKLhJdoiDDEixSljjnTkrvcySqoXRbdq2LpsVQol+Z9ZckJOSXnxCXXpEweSIVUCSMhmZBX8mZNrHfrw/qcrWas+c0xWRjr6xerTp+D</latexit>

GFCGF

UNF

<latexit sha1_base64="v4khpeiXRHcYGNz+N8pDUFkojT4=">AAACFHicbVDLSgNBEJz1GeMr6tHLYhA8SNiVoB4DgnqSCOYBSQizk95kyOzsMtOrCUt+I1f9EG/i1bvf4Q842eRgEhsaiqpuqigvElyj43xbK6tr6xubma3s9s7u3n7u4LCqw1gxqLBQhKruUQ2CS6ggRwH1SAENPAE1r38z0WvPoDQP5RMOI2gFtCu5zxlFQzWbAcWe9pO7h9tRO5d3Ck469jJwZyBPZlNu536anZDFAUhkgmrdcJ0IWwlVyJmAUbYZa4go69MuNAyUNADdStLMI/vUMB3bD5VZiXbK/v1IaKD1MPDMZZpxUZuQ/2mNGP3rVsJlFCNINjXyY2FjaE8KsDtcAUMxNIAyxU1Wm/WoogxNTXMuEl6iAcIAz1OUOmZNS+5iJ8ugelFwLwvFx2K+VJz1lSHH5IScEZdckRK5J2VSIYxEZExeyZs1tt6tD+tzerpizX6OyNxYX79U+Z/b</latexit>

GNF

CGNF

FOL

Figure 2.1: The relationship of the considered guarded fragments and FOL

guarded negation fragment (GNF) [BtCS15] and the clique guarded negation frag-
ment (CGNF) [BtCS15], all of which are called the guarded negation fragments
thereof. Unlike GF, UNF orthogonally generalises modal logic such that the
negated formulas only have one free variable, thus UNF and GF are incompa-
rable in terms of expressive power. GNF on the other hand, is more expressive
than GF, since every guarded sentence can be represented as a guarded nega-
tion sentence [BtCS15]. In GNF all free variables of negated formula must be
‘guarded’ by an atom, and if that atom is an inequality literal G 0 G, GNF
reduces to UNF. CGNF adopts the notion of ‘clique’ from CGF, extending GNF
by allowing all free variables of the negated formulas to be pairwise ‘guarded’
by a conjunction of existentially quantified atoms. An informative introduction
for the guarded negation fragments can be found in [Seg17]. Figure 2.1 presents
the relationship between the aforementioned guarded fragments and FOL.

Both the guarded quantification and the guarded negation fragments are robustly
decidable [Var96], meaning that these fragments have the finite model property,
viz. every satisfiable formula has a finite model, and the tree-like model prop-
erty, viz. if a formula has a model, then it has one of bounded tree width;
see references in Figure 2.2. Satisfiability checking for any of guarded quantifi-
cation fragments is 2ExpTime-complete, and is reduced to ExpTime-complete if
a fragment has a fixed signature [Grä99b], however regardless of fixed signa-
tures, checking satisfiability for any of guarded negation fragments is 2ExpTime-
complete [tCS13, BtCS15].

2.1. THE GUARDED FIRST-ORDER FRAGMENTS 34

Guarded quantification
fragments

Guarded negation
fragments

GF LGF CGF UNF GNF CGNF

Decidability
3

[vB97]
[ANvB98]

3
[vB97]

3
[Grä99b]
[Mar07]

3
[tCS13]

3
[BtCS15]

Satisfiability
checking

EXP
[Grä99b]

EXP
[Grä99b]

EXP
[Grä99b]
[Mar07]

2EXP
[tCS13]

2EXP
[BtCS15]

Tree-like model
property

3
[Grä99b]

3
[Grä99a]

3
[Grä99a]

3
[tCS13]

3
[BtCS15]

Finite model
property

3
[Grä99b]

3
[Hod02]

3
[Mar07]
[Hod02]

3
[tCS13]

3
[BtCS15]

Craig
interpolation

7
[HM02]

3
[tCS13]

3
[BtCS15]

Uniform
interpolation

7
[HM02] open

Figure 2.2: Interesting properties of the considered guarded fragments

We briefly discuss the uniform interpolation problem for these guarded
fragments. A logical fragment S is said to have the Craig interpolation prop-
erty [Cra57a, Cra57b] if �1 and �2 are two formulas in S such that �1 |= �2, then
in S there exists a formula � expressed using only the common symbols of �1

and �2 such that �1 |= � and � |= �2. A fragment S has the uniform interpola-
tion property [Hen63] if for any S-formula � and a set of predicate symbols Δ,
there is an S-formula �′ with its symbols occurring in Δ such that � |= �′ and
� is the strongest such entailment. Uniform interpolation entails Craig inter-
polation, but not vice-versa. The guarded quantification fragments do not have
the Craig interpolation property, and hence also not the uniform interpolation
property [HM02]. The guarded negation fragments have the Craig interpolation
property [tCS13, BtCS15], yet it is unknown whether any the guarded negation
fragments have the uniform interpolation property. For a restricted form of
uniform interpolation (the uniform modal interpolation) for GF, see [DL15].

Figure 2.2 lists important properties of all these guarded fragments, using 3

and 7 to denote positive and negative answers, respectively. In the satisfiability
checking row in Figure 2.2, all guarded fragments are assumed to have a fixed
signature, so that they satisfy the assumptions of the thesis.

2.1. THE GUARDED FIRST-ORDER FRAGMENTS 35

As UNF is a trivial special case of GNF with G ≈ G as guards, this thesis
does not independently discuss UNF. The decision procedures established for
querying in GNF instantly are the practical decision procedures for querying
in UNF.

The first-order guarded fragments

Guarded quantification fragments We now formally define the guarded, the
loosely guarded and the clique guarded fragments. In guarded quantification frag-
ments constants are freely allowed, but not equality.

Definition 1. The guarded fragment (GF) is a fragment of FOL without function
symbols, inductively defined as follows:

1. > and ⊥ belong to GF.
2. If � is an atom, then � belongs to GF.
3. GF is closed under Boolean connectives.
4. Let � be a guarded formula and � an atom. Then ∃G(� ∧ �) and ∀G(� → �)

belong to GF if all free variables of � occur in �.

Definition 2. The loosely guarded fragment (LGF) is a fragment of FOL without
function symbols, inductively defined as follows:

1. > and ⊥ belong to LGF.
2. If � is an atom, then � belongs to LGF.
3. LGF is closed under Boolean connectives.
4. Let � be a loosely guarded formula andG a conjunction of atoms. Then ∀G(G→
�) and ∃G(G ∧ �) belong to LGF if

(a) all free variables of � occur in G, and
(b) for each variable G in G and each variable H occurring in G that is distinct

from G, G and H co-occur in an atom of G.

Definition 3. The clique guarded fragment (CGF) is a fragment of FOL without
function symbols, inductively defined as follows:

1. > and ⊥ belong to CGF.
2. If � is an atom, then � belongs to CGF.

2.1. THE GUARDED FIRST-ORDER FRAGMENTS 36

3. CGF is closed under Boolean connectives.
4. Let � be a clique guarded formula and G(G, H) a conjunction of atoms. Then
∀I(∃GG(G, H) → �) and ∃I(∃GG(G, H) ∧ �) belong to CGF, if

(a) all free variables of � occur in H, and
(b) each variable in G occurs in only one atom of G(G, H), and
(c) for each variable I in I and each variable H occurring in G(G, H) that is

distinct from I, I and H co-occur in an atom of ∃GG(G, H).

In 4. of Definitions 1–3, the atom �, the conjunction of atoms G and the
formula ∃GG(G, H) are called the guard, the loose guard and the clique guard for
the formula �, respectively.

In guarded formulas all quantified formulas contain at least one guard.
Consider the following formulas.

�1 = �(G) �2 = ∀G[�(G)] �3 = ∀G[�(G, H) → �(G, H)]
�4 = ∀G[�(G, H) → ∃H(�(H, I))] �5 = ∀G[�(G, H) → ⊥]
�6 = ∃G[�(G, H) ∧ ∀I(�(G, I) → ∃D('(I, D)))]
�7 = ∀G[%(G) → ∃H('(G, H) ∧ ∀I('(H, I) → %(I))))]

The formulas �1, �3, �5, �6 and �7 are guarded formulas, but the rest are not.
The formulas �2 and �4 are not guarded as they do not contain a ‘guard’ atom.
The formula �7 is the standard translation [BRV01b] of the description logic
AℒCℋOℐ axiom % v ∃'.∀'.% and the modal formula % → ^ � %.

By the standard translation, description logicAℒCℋOℐ axioms andmodal
formulas can be translated into non-guarded formulas. For example applying
the standard translation to ∀'.% v ⊥ produces

� = ∀G(∀H('(G, H) → %(H)) → ⊥)

with G not guarded. Nonetheless as these translated formulas contain only
one ‘unguarded’ variable G, this variable can be regarded as being implicitly
guarded by G ≈ G. In this example � can be reformulated as a logical equivalent
formula �′ = ∀G(G ≈ G → ∀H('(G, H) → %(H)) → ⊥)). The formula �′ is a
guarded formulawith equality, handledby thedecisionprocedure for querying
in GNF as GNF subsumes GF with equality.

LGF strictly extends GF by allowing a conjunction of atoms to pairwise

2.1. THE GUARDED FIRST-ORDER FRAGMENTS 37

guard quantified variables. For example ∀I(('(G, I) ∧ '(I, H)) → %(I)) is
loosely guarded, not guarded. The standard translation the temporal formula
% until &, namely

∃H('(G, H) ∧&(H) ∧ ∀I(('(G, I) ∧ '(I, H)) → %(I)))),

belongs to LGF, but not GF. The transitivity formula

∀GHI(('(G, H) ∧ '(H, I)) → '(G, I))

is neither guarded nor loosely guarded.
CGF further extends LGF by allowing existential quantification to atoms in

loose guards. For example,

� = ∀G1G2(�(G1, G2) → ∀G3(�1(G1, G3) ∧ �1(G2, G3) → ∃G6�(G1, G6))),

is a loosely guarded formula, in which �1(G1, G3) ∧ �1(G2, G3) and �(G1, G2) are,
respectively, the loose guards for ∀G3(�1(G1, G3) ∧ �1(G2, G3) → ∃G6�(G1, G6))
and �. By adding existential quantifications the loose guards of∀G3(�1(G1, G3)∧
�1(G2, G3) → ∃G6�(G1, G6)), one obtains the clique guarded formula

∀G1G2(�(G1, G2) → ∀G3(∃G4G5(�(G1, G3, G4) ∧ �(G2, G3, G5)) → ∃G6�(G1, G6))),

where ∃G4G5(�(G1, G3, G4) ∧ �(G2, G3, G5)) is the clique guard for

∀G3(∃G4G5(�(G1, G3, G4) ∧ �(G2, G3, G5)) → ∃G6�(G1, G6))),

and �(G1, G2) is the guard for the entire formula.
Although equality is prohibited in the guarded quantification fragments, it

is allowed in the guarded negation fragments, which in general subsume the
guarded quantification fragments.

Guarded negation fragments Next, we formally define the unary negation,
the guarded negation and the clique guarded negation fragments. Compared to
the guarded quantification fragments, both constants and equality are freely
allowed in guarded negation fragments.

2.1. THE GUARDED FIRST-ORDER FRAGMENTS 38

Definition 4. The unary negation fragment (UNF) is a fragment of FOL≈ without
functional symbols, inductively defined as follows:

1. > and ⊥ belong to UNF.
2. If � is an atom, then � belongs to UNF.
3. If � and � are atoms, then � ∨ � and � ∧ � belong to UNF.
4. If � belongs to UNF, then ∃G� belongs to UNF.
5. Let � be a unary negation formula. Then ¬� belongs to UNF if � contains only

one free variable.

Definition 5. The guardednegation fragment (GNF) is a fragment ofFOL≈without
functional symbols, inductively defined as follows:

1. > and ⊥ belong to GNF.
2. If � is an atom, then � belongs to GNF.
3. If � and � are atoms, then � ∨ � and � ∧ � belong to GNF.
4. If � belongs to GNF, then ∃G� belongs to GNF.
5. Let � be a guarded negation formula and � an atom. Then � ∧ ¬� belongs to

GNF if all free variables of � belong to the variables of �.

Definition 6. The clique guarded negation fragment (CGNF) is a fragment of
FOL≈ without functional symbols, inductively defined as follows:

1. > and ⊥ belong to CGNF.
2. If � is an atom, then � belongs to CGNF.
3. If � and � are atoms, then � ∨ � and � ∧ � belong to CGNF.
4. If � belongs to CGNF, then ∃G� belongs to CGNF.
5. Let � be a clique guarded negation formula and G(G, H) a conjunction of atoms.

Let I denote the free variables of �. Then ∃GG(G, H) ∧ ¬� belongs to CGNF if

(a) I is a subset of H, and
(b) each variable in G occurs in only one atom of G(G, H), and
(c) each pair of distinct variables in H co-occurs in an atom of ∃GG(G, H).

In 5. of Definitions 5–6, the atom � and the formula ∃GG(G, H) are called
the guard and the clique guard for the formula �, respectively.

GNF subsumes GF since every guarded sentence is expressible in GNF, but
not vice-versa [BtCS15, Proposition 2.2]. However not all guarded formulas can

2.1. THE GUARDED FIRST-ORDER FRAGMENTS 39

be transformed to a guarded negation formula; consider ¬�(G, H, I). By limiting
the guard of a guarded negation formula to be an equality literal, one obtains a
unary negation formula.

Comparing 5c. in the definitions ofGCNF andCGF, an important distinction
is that the pairwise guarded condition is changed from the quantified variables
to the variables occurring in the negated formulas. In the clique guarded
formula ∃I(∃GG(G, H) ∧ �) the pairwise guardedness is required for the variables
in I and the variables in H, whereas in the clique guarded negation formula
∃GG(G, H) ∧ ¬� the pairwise guardedness is imposed on the variables in H. A
sample clique guarded negation formula is:

� =

[
¬∃G1G2G3(∃H1H2(�1(G1, G2, H1) ∧ �1(G2, G3, H2) ∧ G1 ≈ G3)∧

¬∃G4(�(G1, G2, G4) ∧ �(G2, G3, G4)))

]
.

Using the notion of generalised guard for GNF in [BtCO12], we obtain gener-
alised guards, generalised loose guards and generalised clique guards, by the following
method. Suppose � is a formula in any of guarded first-order fragments and �1

is a disjunction of existentially quantified atoms such that the free variables of �
occur in each atom of �1. Then if one adds a guard, a loose guard or a clique guard
to �, any atom � in these guards can be replaced by �1, forming a generalised
guard, a generalised loose guard or a generalised clique guard for �, respectively. By
replacing � with �1 in �, one obtains the generalised formula �′. The formula �′

extends the expressive power of � if � belongs to GF, LGF or CGF, otherwise
� and �′ are of the same expressivity. For example by replacing �(G, H) by
∃G1�1(G, H, G1) ∨ ∃G2�2(G, H, G2) for the guarded formula

� = ∀G(�(G, H) → ∃H�(H)),

one obtains the generalised guarded formula

�′ = ∀G((∃G1�1(G, H, G1) ∨ ∃G2�2(G, H, G2)) → ∃I�(H, I)).

The formula �′ is not in GF or LGF due to the occurrence of the existential
quantifiers and the disjunction in its guard, and it is not inCGF as the generalised
guard ∃G1�1(G, H, G1) ∨ ∃G2�2(G, H, G2) is a disjunction, not conjunction.

2.2. THE BCQ ANSWERING AND REWRITING PROBLEMS 40

2.2 The BCQ answering and rewriting problems

The queries considered in this thesis are unions of Boolean conjunctive queries.
A conjunctive query (CQ) is a first-order formula (with equality) of the form
∃G�(G, H), where �(G, H) is a conjunction of atoms, with only variables and
constants occurring as arguments. A Boolean conjunctive query (BCQ) is a first-
order sentence (with equality) of the form ∃G�(G) where �(G) is a conjunction
of atoms with only variables and constants occurring as arguments. A Boolean
conjunctive query with equality (BCQ≈) is a BCQ with equality literals allowed. A
union of Boolean conjunctive queries (union of BCQs) is a disjunction of BCQs (and
a union of BCQ≈s).

Recall that equality is allowed in the guarded negation fragments, but not in
the guarded quantification fragments. Consequently in querying for the guarded
negation fragments, we consider BCQ≈s as the query language, and for the
rest of the query tasks we consider BCQs. For readability BCQ and BCQ≈ are
mostly not distinguished in the rest of the thesis.

BCQ answering problems

Now we give the formal definition of the BCQ answering problem we investi-
gate.

Problem 1. Given a set Σ of first-order formulas (with equality), a set D of ground
atoms and a union @ of BCQs, can a saturation-based procedure decide Σ ∪D |= @?

Since ground atoms belong to any of the considered guarded fragments,
Problem 1 can be refined as follows.

Problem 2. Given a set Σ of first-order formulas (with equality) and a union @ of
BCQs, can a saturation-based procedure decide Σ |= @?

In the formal definition of the BCQ answering problem for the guarded
first-order fragments, the formulation of Problem 2 is used for its simplicity.

In Problem 2 one negates the given union of BCQs, obtaining the negated
BCQ, so that Problem 2 is reduced to deciding whether the combination of the
given formulas and the negated BCQs is satisfiable. BCQs (a union of BCQs)
and their negations are expressible in the guarded negation fragments, but not in
the guarded quantification fragments. Figure 2.3 summaries the relationship of
the aforementioned guarded fragments, the negated BCQ and FOL.

2.2. THE BCQ ANSWERING AND REWRITING PROBLEMS 41

the pairwise guarded fragment

<latexit sha1_base64="L7uwHGd/PoqRBS3z6l+lrRpFFWE=">AAACJHicbVDLSsNAFJ34rPVVdaebwSK4kJIUUZcFNy4r2Cq0oUymN+3gZBJmbrQlFPyabvVD3IkLN/6EP+AkduHrwMDh3Hs4d06QSGHQdd+cufmFxaXl0kp5dW19Y7Oytd02cao5tHgsY30TMANSKGihQAk3iQYWBRKug9vzfH59B9qIWF3hOAE/YgMlQsEZWqlX2cUh0C5EyTBLGL+FPg01G0SgcNKrVN2aW4D+Jd6MVMkMzV7lo9uPeZqbuWTGdDw3QT9jGgWXMCl3UwN5CBtAx1LFIjB+VvxhQg+sYsNjbZ9CWqjfHRmLjBlHgd2MGA7N71ku/jfrpBie+ZlQSYqg+FdQmEqKMc0LoX2hgaMcW8K4FvZWyodMM462th8pCu6TEcIIjwpWJJZtS97vTv6Sdr3mndSOL+vVhjfrq0T2yD45JB45JQ1yQZqkRTh5IFPySJ6cqfPsvDivX6tzzsyzQ37Aef8EVjqmHA==</latexit>

the packed fragment

LGF GFCGF UNF

GNF

<latexit sha1_base64="glC0DNGD9bIkrZklG+PhURb0mls=">AAACKnicbVDLSgMxFM34rPVVdekmWAQFKTNS1GWxG5cVrAqdUjLpnTY0kxmSO9oydOvXdKsf4q649Q/8AdOxC18HAodz7uXcnCCRwqDrTp2FxaXlldXCWnF9Y3Nru7Sze2viVHNo8ljG+j5gBqRQ0ESBEu4TDSwKJNwFg/rMv3sAbUSsbnCUQDtiPSVCwRlaqVOi1EcYYnakoMcQusdj6lM/Ytg3YXZZvx53SmW34uagf4k3J2UyR6NT+vC7MU8jUMglM6bluQm2M6ZRcAnjop8aSBgfsB60LFUsAtPO8p+M6aFVujSMtX0Kaa5+38hYZMwoCuxkfuNvbyb+57VSDC/amVBJiqD4V1CYSooxndVCu0IDRzmyhHEt7K2U95lmHG15P1IUPCbDWWcnOcsTi7Yl73cnf8ntacU7q1Svq+Vadd5XgeyTA3JEPHJOauSKNEiTcPJEJuSZvDgT59WZOm9fowvOfGeP/IDz/gnMY6fN</latexit>

(negated) BCQ

CGNF

FOL

Figure 2.3: The relationship between the considered fragments, negated BCQ
and FOL

The computational complexity of the BCQ answering problem for GF is
2ExpTime-complete [BGO14]. By the fact that formulas in CGF and the negated
BCQs are expressible in CGNF, the problem of answering BCQs for LGF and/or
CGF is a subproblem of deciding satisfiability of CGNF. Therefore, answering
BCQs for LGF and/or CGF is 2ExpTime-complete [BtCS15]. Due to the fact
that the negated BCQs are expressible in GNF or CGNF, the problems of BCQ
answering for GNF and/or CGNF have the same complexity as the satisfiability
checking problem for GNF and CGNF, which is 2ExpTime-complete [BtCS15].
These complexity results mean that the problems of answering BCQs for GF,
LGF, CGF, GNF and/or CGNF are all decidable.

Saturation-based BCQ rewriting and back-translation problems

The saturation-based rewritingproblem ismotivated by the first-order rewritabil-
ity, introduced for the lightweight description logic DL-Lite family, tackling
the ontology-mediated querying tasks [CGL+07]. For a union of BCQs, first-order
rewritability is formally defined as follows.

Definition 7. Given a set Σ of first-order formulas (with equality), a set D of ground
atoms and a union @ of BCQs, @ and Σ are said to be first-order rewritable if @
andΣ can be complied into a (function-free) first-order formulaΣ@ such that for any D,
Σ ∪D |= @ if and only if D |= Σ@ .

As given in Definition 7, the first-order rewritability is devised such that the
entailment checking problem Σ ∪ D |= @ is reduced to the model checking

2.2. THE BCQ ANSWERING AND REWRITING PROBLEMS 42

GF LGF CGF UNF GNF CGNF

BCQ
answering

2ExpTime
[BGO14]

2ExpTime
[BtCS15]

2ExpTime
[tCS13]

2ExpTime
[BtCS15]

First-order
rewritability

7
[BBLP18, BBGP21] open 7

[BBLP18, BBGP21]

Figure 2.4: Known properties of querying in the studied fragments

problem D |= Σ@ . The latter is in the AC0 complexity class [Var95]. Though
desirable as the first-order rewritability is, BCQs (and their extensions thereof)
and GF (and its extensions thereof) do not have this property; see [BBGP21,
Example 2.2] and [BBLP18, Example 1]. Figure 2.4 summarises the known
results for the complexity of BCQ answering and first-order rewritability of all
the targeted guarded fragments (with respect to BCQs). In the figure, the 7

mark means a negative answer.
Proposing a new perspective to the rewriting problem, we consider it as a

back-translation problem, formally stated as follows.

Problem 3. Given a set Σ of first-order formulas (with equality), a set D of ground
atoms and a union @ ofBCQs, canwe compute a (function-free) first-order formula (with
equality)Σ@ that is the negated back-translation of the saturated clausal set ofΣ∪{¬@}
such that Σ ∪D |= @ if and only if D |= Σ@?

Problem 3 is formalised in a way so that it is established on the solutions to
Problem 1. In Problem 1 the problem of Σ ∪D |= @ is generally considered as
that of checking unsatisfiability of {¬@}∪Σ∪D. Without D, from {¬@}∪Σ one
can either derive ⊥ or a saturated clausal set # . Suppose ⊥ is derived. This
case is trivial when Σ |= @ and hence Σ@ in Problem 3 is >. Otherwise # is
derived, and Problem 3 then aims to back-translate # to a first-order formula,
which is then negated and used as Σ@ in deciding D |= Σ@ .

The technical challenge in Problem 3 is the back-translation of a clausal
set to a first-order formula, which is a form of second-order quantifier elimina-
tion [GSS08a]. In Problem 3 it is the existentially quantified Skolem function
symbols and constants are intended to be eliminated.

Chapter 3

Saturation-based theorem proving
for first-order logic

This chapter is organised as follows. Section 3.1 introduces basic notions of
first-order logic and first-order clausal logic. Section 3.2 and Section 3.3 give
the clausification and the back-translation techniques, respectively. Section 3.4
presents fundamentals for saturation-based inference systems.

3.1 First-order logic

Basic notions in first-order logic

This section formally defines the syntax of first-order logic (FOL). Let C, F, P
and V be four countably infinite sets that are pair-wise disjoint. The elements
in C, F and P are the constant symbols (constants), the function symbols and the
predicate symbols. We say a tuple (C, F, P) is a signature. The elements in V
are variables. A function symbol or a predicate symbol is considered with a
unique integer, denoting the arity of that symbol. A predicate symbol of arity
zero is a propositional variable. Note that in this thesis the function symbols are
considered as non-constant function symbols.

A term is either a constant, or a variable, or 5 (C1, . . . , C=) if i) 5 is a function
symbol of arity = and ii) C1, . . . , C= are terms. A term B is a subterm of a term C if
B is identical to C, or C = 5 (C1, ..., C=) and B is a subterm of one of terms C1, ..., C= .
A term B is a strict subterm of a term C if B is a subterm of C, and B is not identical
to C. A compound term is a term that is neither a constant nor a variable.

43

3.1. FIRST-ORDER LOGIC 44

We use the following logical connectives: > (verum), ⊥ (falsum), ¬ (nega-
tion), ∨ (disjunction), ∧ (conjunction),→ (implication) and↔ (double impli-
cation). A Boolean connective is one of the following symbols: ∧, ∨,→ and↔.
The symbol ∀ is the universal quantifier and is read ‘for all’. The symbol ∃ is the
existential quantifier and is read ‘there exists’.

If% is apredicate symbol of arity =, and C1, . . . , C= are terms, then%(C1, . . . , C=)
is an atomic formula (atom). We regard > and ⊥ as atoms. A literal is either an
atom (denoted as a positive literal), or a negated atom (denoted as a negative
literal). The literal ! denotes either an atom � or a negated atom ¬�. A lit-
eral in propositional logic is either a propositional variable or its negation. Two
literals � and ¬� are called a complementary literals. For a literal !(C1, . . . , C=)
and a compound term 5 (C1, . . . , C=), i) a term in C1, . . . , C= is called an argument
of ! and C, respectively, and ii) C1, . . . , C= is called the argument list of ! and C,
respectively.

A set of first-order formulas (formulas) over a signature (C, F, P) is inductively
defined as follows.

1. If � is an atom, then � and ¬� are first-order formulas.
2. First-order formulas are closed under Boolean connectives.
3. If � is a first-order formula and G is a variable, then ∀G� and ∃G� are

first-order formulas.

The proper subformula of a first-order formula � is inductively defined as follows.

1. Atomic formulas have no proper subformulas.
2. � = ¬�1: The proper subformulas of � are �1 and all proper subformulas

of �1.
3. � = �1◦�2 where ◦denotes aBoolean connective: Theproper subformulas

of � are �1, �2, and all proper subformulas of �1 and �2.
4. � = QG�1 where Q denotes a quantifier: The proper subformulas of � are
�1 and all proper subformulas of �1.

The subformula of � are � and the proper subformulas of �. The immediate
subformula of a first-order formula � is inductively defined as follows.

1. Atomic formulas have no immediate subformulas.
2. � = ¬�1: The immediate subformula of � is �1.
3. � = �1 ◦ �2 where ◦ denotes a Boolean connective: The immediate sub-

formulas of � are �1 and �2.

3.1. FIRST-ORDER LOGIC 45

4. � = QG�1 where Q denotes a quantifier: The immediate subformula of �
is �1.

In a quantified formula∀G�, G is the quantified variable and � is the scopeof the
quantified variable G. An occurrence of a variable G in a first-order formula � is
a free variable of � if and only if G is not within the scope of quantified variables.
A variable is a bound variable of � if it is not a free variable of �. A sentence (closed
formula) is a first-order formula without free variables.

If a signature (C, F, P) allows special predicate symbols ≈ and 0, then we
consider first-order logic with equality, an extension of FOL. We use the infix
notation for equational atoms, denoted as B ≈ C. We use the notation B 0 C to
denote the negation of B ≈ C. The literals B ≈ C and B 0 C are called an equality
literal and an inequality literal, respectively.

First-order clauses

A first-order clause (clause) is a multiset of literals, denoting a finite disjunction
of literals. A first-order clause with equality (clause with equality) is a first-order
clause that may contain the predicate symbols ≈ and 0. A subclause � of a
clause �, is a sub-multiset� of �. A set (of clause (clausal set () is a conjunction
of all clauses in (, where every variable in (is considered to be universally
quantified.

An expression � is either a term, or an atom, or a literal or a clause. An
expression � is a subexpression of an expression �1 if � occurs in �1. An
expression � is a proper subexpression of an expression �1 if � is a subexpression
of �1 and � is not identical to �1. The expressions �1 and �2 are variable-
disjoint if they share no common variables. A ground expression is a variable-free
expression. A clause � is Horn if � contains at most one positive literal. A
clause � is negative if � contains only negative literals. A clause � is positive if �
contains only positive literals. A clause � is decomposable if � can be partitioned
into two variable-disjoint subclauses, or else � is indecomposable.

Customised definitions

Now we give definitions particularly devised for this thesis.
The set of variables that occurs in an expression � is denoted as var(�). We

use notations �(C) and �(C) to, respectively, denote a clause with equality � and

3.1. FIRST-ORDER LOGIC 46

a formula with equality �, in which the term C occurs.
To describe argument positions in a pair of terms, in [dNdR03] the no-

tion pair is introduced. Given two expressions �1 = �(. . . , C , . . .) and �2 =

�(. . . , B , . . .), we say C pairs B (with respect to C of �1 and B of �2) if the argument
position of C in� is the same as that of D in �. For example in�(G1, 5 (G1, G2), G2)
and �(6(H1), H1, H2), G1 pairs 6(H1), 5 (G1, G2) pairs H1, and G2 pairs H2.

The depth of a term C is denoted as dep(C), defined as follows:

1. If C is a variable or a constant, then dep(C) = 0, and
2. if C is a compound term 5 (C1, . . . , C=), then dep(C) = 1+<0G({dep(C8) | 1 ≤
8 ≤ =}).

The depth of an expression � is the deepest term depth in �, denoted as dep(�). If
no terms occur in an expression �, then dep(�) = 0. The width of the expression
� is the number of distinct variables in �. For example, given the clause
� = ¬�1(5 (G1), G1) ∨ �2(G1, G2) ∨ �3(G2, 6(G2, G3)), the depth of � is one since
the deepest term in � is 5 (G1), and 6(G2, G3) and the width of � is three since �
contains three distinct variables G1, G2 and G3.

In [FLTZ93] the notion covering for terms is introduced. In this thesis, we
generalise this notion so that it is applicable to clauses. A term C is covering if
for every compound subterm B of C, the variables sets of B and C are identical,
namely var(B) = var(C). A literal ! is covering if each argument of ! is either
a constant, or a variable or a covering term C satisfying var(C) = var(!). A
clause � is covering if for each literal ! in �, each argument of ! is either a
constant, or a variable, or a covering term C satisfying var(C) = var(�). For
instance, �1 = �1(5 (G1, G2, 0), G1)∨�2(G1, G2) is a covering clause since the only
compound term 5 (G1, G2, 0) in �1 satisfies that var(5 (G1, G2, 0)) = var(�1). The
clause �2 = �1(5 (G1), G1) ∨ �2(6(G2)) is not covering since var(�) ≠ var(6(G2)),
however �1(5 (G1), G1) is a covering literal since var(5 (G1)) = var(�1(5 (G1), G1)).

The notions of flatness and simpleness are introduced in [GdN99]. We use
flat and simple to define an expression that is of depth zero and of depth zero or
one, respectively. A compound term 5 (C1, . . . , C=) is flat if each term in C1, . . . , C=
is either a variable or a constant. A literal ! is flat if each argument in ! is either
a constant or a variable. A clause � is flat if all literals in � are flat. A literal ! is
simple if each argument of ! is either a variable, or a constant or a flat compound
term. A clause � is simple if all literals in � are simple. A literal (clause) is a
compound-term literal (compound-term clause) if the depth of this literal (clause)

3.1. FIRST-ORDER LOGIC 47

<latexit sha1_base64="yhw98xn/BiFtrqa/dVcQeCACF/A=">AAACDHicbVDLSsNAFJ34rPVVdekmWAQXUhIpKq6K3bisYB/QhjKZ3rZDJ5Mwc6Mtob/QrX6IO3HrP/gd/oBJmoVtPTBwOOdezp3jBoJrtKxvY219Y3NrO7eT393bPzgsHB03tB8qBnXmC1+1XKpBcAl15CigFSigniug6Y6qid98BqW5L59wEoDj0YHkfc4oJlK1a991C0WrZKUwV4mdkSLJUOsWfjo9n4UeSGSCat22rQCdiCrkTMA03wk1BJSN6ADaMZXUA+1E6a1T8zxWembfV/GTaKbq342IelpPPDee9CgO9bKXiP957RD7t07EZRAiSDYP6ofCRN9MPm72uAKGYhITyhSPbzXZkCrKMK5nIUXCSzBGGONlytLEfNySvdzJKmlclezrUvmxXKzcZ33lyCk5IxfEJjekQh5IjdQJI0MyI6/kzZgZ78aH8TkfXTOynROyAOPrFxkrm/Q=</latexit>

⇠1 :
<latexit sha1_base64="+NZZHJd7PETIkUw9oMAu2G0XL4I=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNISosYVkY1LTOSRQEOmwwUmTKfNzK1CCL/AVj/EnXHrP/gd/oBt6ULAk0xycs69OXeOGwiu0bK+jczG5tb2TnY3t7d/cHiUPz5paD9UDOrMF75quVSD4BLqyFFAK1BAPVdA0x1VY7/5DEpzXz7hJADHowPJ+5xRjKVqt3TXzResopXAXCd2SgokRa2b/+n0fBZ6IJEJqnXbtgJ0plQhZwJmuU6oIaBsRAfQjqikHmhnmtw6My8ipWf2fRU9iWai/t2YUk/riedGkx7FoV71YvE/rx1i/9aZchmECJItgvqhMNE344+bPa6AoZhEhDLFo1tNNqSKMozqWUqR8BKMEcZ4lbAkMRe1ZK92sk4apaJ9XSw/lguV+7SvLDkj5+SS2OSGVMgDqZE6YWRI5uSVvBlz4934MD4Xoxkj3TklSzC+fgEa0Zv1</latexit>

⇠2 :<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1
<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1

<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2
<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2

<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1 <latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1
<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2 <latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3
<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

Figure 3.1: The hypergraphs associated with �1 and �2

is one. The definitions of the compound-term literal (clause) are restricted to
non-nested compound terms since this thesis only focuses on simple clauses.
For example �1(G1), ¬�1(G1, 01) ∨�2(G2, G3) and �1(01) ∨�2(02, 03) are flat and
simple clauses, however the clauses ¬�1(5 (G1), 01) ∨ �2(G2, G3) and �1(01) ∨
�2(5 (02), 03) are simple but not flat as they contain flat compound terms. In
fact they are compound-term clauses. The clause ¬�1(G1, 01) ∨�2(G2, 5 (5 (G3)))
is neither flat nor simple as it contains a non-flat compound term 5 (5 (G3)).

An expression is flat if each of its argument is either a variable or a constant.
Given a flat expression � and a term C occurring in �, we use Occ(C , �) to denote
the number of occurrences of C in �. For example, Occ(G, 5 (G, H, G)) = 2 as G
occurs twice in 5 (G, H, G) and Occ(0,¬�1(G, H) ∨ �2(I, 0)) = 1 as 0 occurs once
in ¬�1(G, H) ∨ �2(I, 0).

Suppose� is a flat clause andℋ(+, �) is a hypergraph consisting of a set+ of
vertices and a set � of hyperedges. Thenwe associate the hypergraphℋ(+, �)with
� as follows: The set+ of vertices consists of all variables in �, and the set � of
hyperedges contains, for each literal ! in �, the set of variables that appear in !.
To represent a flat clause by a hypergraph, we use rectangles and variable sym-
bols to represent hyperedges and vertices, respectively. Dotted-line and solid-
line rectangles represent positive and negative literals, respectively, and nega-
tion symbols are omitted. Figure 3.1 presents the hypergraphs associated with
�1 = �1(G1, G2) ∨ ¬�2(G2, G3) and �2 = ¬�1(G1, G2) ∨ ¬�2(G2, G3) ∨ �3(G3, G4).

In the rest of the thesis, we use the following notational conventions:

• G, H, I, D, E, G1, . . . for variables • 0, 1, 2, 01, . . . for constant symbols
• 5 , 6, ℎ, . . . for function symbols • �, �, �, %, . . . for predicate symbols
• ?, ?1, . . . for propositional variables • �, �1, . . . for formulas
• �, �, &, �1, . . . for clauses • B, C , D, . . . for terms
• !, !1, . . . for literals

3.2. CLAUSIFICATION TECHNIQUES 48

3.2 Clausification techniques

This section gives the techniques that transform a formula to a clausal set. This
transformation is called the clausal normal form transformation or clausification.

Negation normal form

A formula � is in negation normal form if every negation symbol in � occurs
directly in front of an atom. Exhaustively applying the following rules to a
formula transforms it to negation normal form.

The NNF rules

�1 ↔ �2 ⇒ (�1 → �2) ∧ (�2 → �1)
¬(�1 ∨ �2) ⇒ ¬�1 ∧ ¬�2 ¬(�1 ∧ �2) ⇒ ¬�1 ∨ ¬�2

¬∀G� ⇒ ∃G¬� ¬∃G� ⇒ ∀G¬�
�1 → �2 ⇒ ¬�1 ∨ �2 ¬¬� ⇒ �

¬> ⇒ ⊥ ¬⊥ ⇒ >

Miniscoping and prenex normal form

A formula � is in prenex normal form if � = Q1G1 . . .QnG=�1 where Q1, . . . ,Qn

are quantifiers and �1 is a quantifier-free first-order formula. In contrast to
prenex normal form, a formula � is anti-prenex normal form if the quantifiers
of � are moved to its quantified variables as much as possible.

Quantifiers are moved to its quantified variables using

The Miniscoping rules

∃G(�1 ∨ �2) ⇒ ∃G�1 ∨ �2 if G does not occur in �2.
∃G(�1 ∧ �2) ⇒ ∃G�1 ∧ �2 if G does not occur in �2.
∀G(�1 ∨ �2) ⇒ ∀G�1 ∨ �2 if G does not occur in �2.
∀G(�1 ∧ �2) ⇒ ∀G�1 ∧ �2 if G does not occur in �2.
∀G(�1 ∧ �2) ⇒ ∀G�1 ∧ ∀G�2 if G occurs in both �1 and �2.
∃G(�1 ∨ �2) ⇒ ∃G�1 ∨ ∃G�2 if G occurs in both �1 and �2.

3.2. CLAUSIFICATION TECHNIQUES 49

Structural transformation

Let �1 be a subformula of a formula �. Then �1 has positive polarity (with respect
to �) if and only if �1 occurs in the scope of an even number of implicit or explicit
negation symbols. �1 has negation polarity (with respect to �) if and only if �1

occurs in the scope of an odd number of implicit or explicit negation symbols.
A formula is renamed using

The Trans rules

�[�1(G)] ⇒ �[%(G)] ∧ ∀G(%(G) → �1(G))
if �1 has the positive polarity and % is a predicate symbol
that does not occur in �.

�[�1(G)] ⇒ �[%(G)] ∧ ∀G(�1(G) → %(G))
if �1 has the negative polarity and % is a predicate symbol
that does not occur in �.

The Trans rules is also referred to as the formula renaming technique. The
formula renaming technique is also applicable to clauses, which can be seen as
a sentence with all variables universally quantified. Such application can be
implemented in a more general approach so that the polarity of the introduced
literals is not restricted. Consider a clause � = �1 ∨ �2. By introducing a fresh
predicate symbol % with var(%) = var(�2) for �2, � can be renamed as either
{�1 ∨ %,¬% ∨ �2} or {�1 ∨ ¬%, % ∨ �2}.

Skolemisation

Skolemisationaims to eliminate existential quantifications andexistentiallyquan-
tified variables from a formula.

A formula is skolemised using

The Skolem rule

∀G1 . . .∀G=∃H�(H)
∀G1 . . .∀G=�(5 (G1, . . . , G=))

if 5 is a Skolem function symbol that does not occur in∀G1 . . .∀G=∃H�(H).

3.2. CLAUSIFICATION TECHNIQUES 50

In the Skolem rule, we say 5 is a Skolem function symbol, and it is a Skolem
constant symbol (Skolem constant) if = = 1. The term 5 (G1, . . . , G=) is a Skolem
compound term. A Skolem term is either a Skolem compound term or a Skolem
constant. For more advanced and comprehensive Skolemisation techniques
such as Strong Skolemisation andOptimised Skolemisation, see [NW01, Section 5].
In the thesis the Skolem rule is sufficient for the hope-for results.

Conjunctive normal form

A formula � = �1∨ . . .∨ �= is a disjunction or disjunctive formula and each �8 is a
disjunct of �. A formula � = �1 ∧ . . . ∧ �= is a conjunction or conjunctive formula
and each �8 is a conjunct of �. A formula � is in conjunctive normal form if and
only if � is a conjunction of disjunctions of literals, and � is in disjunctive normal
form if and only if � is a disjunction of conjunctions of literals.

A formula is transformed to conjunctive normal form using

The CNF rules

∀G�1 ∨ �2 ⇒ ∀G(�1 ∨ �2) if G does not occur in �2.
∀G�1 ∧ �2 ⇒ ∀G(�1 ∧ �2) if G does not occur in �2.
� ∨ (�1 ∧ �2) ⇒ (� ∨ �1) ∧ (� ∨ �2)

By the CNF rules, transforming a formula to conjunctive normal form can
cause exponential blow-up due to the following distribution of disjunctions.

� = (�1
1 ∧ �1

2 ∧ . . . ∧ �1
<) ∨ (�2

1 ∧ �2
2 ∧ . . . ∧ �2

<) ∨ . . . ∨ (�=1 ∧ �=2 ∧ . . . ∧ �=<).

A commonly used method to reduce the above blow-up to a polynomial-time
problem is applying the Trans rule to �, that is, introducing a fresh predicate
symbols for each conjunction that is under a disjunction in �. We introduce
fresh predicate symbols %8 for (� 81∧� 82∧ . . .∧� 8<) for all 8with 1 ≤ 8 ≤ =. Then �
is transformed into

%1 → �1
1 ∧ �1

2 ∧ . . . ∧ �1
< , , . . . , %= → �=1 ∧ �=2 ∧ . . . ∧ �=< ,

%1 ∨ . . . ∨ %= ,

which can be transformed to conjunctive normal form in polynomial time.

3.3. BACK-TRANSLATION TECHNIQUES 51

The above rules are standard clausification techniques in [NW01], trans-
forming a first-order formula to clausal normal forms.

Lemma 3.1 ([NW01]). The NNF, the Miniscoping and the CNF rules preserve
logical equivalence. The Trans rules and the Skolem rule preserve satisfiability.

3.3 Back-translation techniques

Pre-conditions for a successful back-translation

In [Eng96, Chapter 5], it is shown that a clausal set # can be unskolemised if #
is normal, unique, globally linear and globally consistent. To avoid ambiguity we
use the word compatible to replace the word consistent.

Now we formally introduce these definitions.

Definition 8. A compound term C is compatible with another distinct compound
term B if the argument lists of C and B are identical. A clause � is compatible if in �,
compound terms that are under the same function symbol are compatible.

A clausal set # is locally compatible if all clauses in # are compatible. A clausal
set# isglobally compatible if in# , compound terms that are under the same function
symbol are compatible.

Definition 9. Compound terms C and B are linear if the set of arguments of C is a
subset of that of B or vice-versa. A clause � is linear if each pair of compound terms in
� is linear.

A clausal set # is locally linear if every clause in # is linear. A clausal set # is
globally linear if each pair of compound terms in # is linear.

Definition 10. A compound term 5 (C1, . . . , C=) is normal if C1, . . . , C= are variables.
A clause is normal if every compound term in � is normal. A clausal set # is normal
if every clause in # is normal.

Definition 11. A compound term 5 (C1, . . . , C=) is unique if each pair of terms in
C1, . . . , C= is a pair of distinct variables. A clause � is unique if every compound term
in � is unique. A clausal set # is unique if every compound term in # is unique.

In this thesis a new notion strong compatibility is introduced.

3.3. BACK-TRANSLATION TECHNIQUES 52

Definition 12. A clause � is strongly compatible if all compound terms in � are
compatible, and a clausal set # is strongly compatible is each clause in # is strong
compatible.

A strongly compatible clause is both linear and compatible. By generalising
this claim to clausal sets, we have the following statement.

Lemma 3.2. Let # be a strongly compatible clausal set. Then, # is locally compatible
and locally linear.

Proof. By Definitions 8, 9 and 12. �

For a successful back-translation the pre-conditions are stated as follows.

Theorem 3.1 ([Eng96, Chapter 5]). Let# be a first-order clausal set. Then, # can be
unskolemised into a first-order formula (with equality) if # is normal, unique, globally
linear and globally compatible.

Back-translation rules

Rules that help the back-translation steps are the variable renaming ruleRename,
the term abstraction rule Abstract and the unskolemisation rule Unsko.

A term C is abstracted from a clause � using

The Abstract rule

∪ {�(C)}
∪ {�(H) ∨ C 0 H}

if H does not occur in �(C).

A variable G of a clause � is rename to a distinct variable using

The Rename rule

∪ {�(G)}
∪ {�(H)}

if each occurrences of G in�(G) is replaced by H, and H does not occur in�(G).

A clausal set # is back-translated into a first-order formula using

3.4. SATURATION-BASED THEOREM PROVING 53

The Unsko rule

#
∃G1∀G2∃G3∀G4�

if the following conditions are satisfied.

1. # is a normal, unique, globally linear and globally compatible
clausal set.

2. G1 and G3 represent the restored Skolem constants and Skolem func-
tions, respectively.

3. G1 and G3 do not occur in # , and G2 and G4 are variables in # .
4. � is a first-order formula without Skolem symbols.

The challenge of applying the Unsko rule to a clausal set # is not simply
about computing a correction conclusion, but it is more about ensuring that #
satisfies 1. in the Unsko rule, so that # can be unskolemised into a first-order
formula. Given a clausal set# that is obtainedby transforming a set of formulas
to a clausal set #′ and then saturating #′, the Unsko rule restores first-order
quantifications for # by eliminating Skolem symbols introduced during the
Skolemisation step. We refer readers to [Eng96, Chapter 5] and [GSS08b] for
more details of unskolemisation techniques.

Lemma 3.3 ([GSS08b]). The Abstract, Rename and Unsko rules preserve logical
equivalence.

3.4 Saturation-based theorem proving

Substitution and unification

A substitution of terms for variables is a set {G1 ↦→ C1, . . . , G= ↦→ C=} where
each G8 is a distinct variable and each C8 is a term, which is not identical to the
corresponding variable G8 . We use lower-case Greek letters �, � and � to denote
substitutions. By ��, we denote the result of the application of a substitution � to
an expression �. �� is said to be an instance of �.

A variable renaming is a substitution � such that � = {G1 ↦→ H1, . . . , G= ↦→ H=}
where G1, . . . , G= and H1, . . . , H= are variables. An expression �1 is a variant of
an expression � if there exists a variable renaming � such that �1 = ��. We

3.4. SATURATION-BASED THEOREM PROVING 54

consider twoclauses�1 and�2 be identical if�1 is a variant of�2. A substitution
is called grounding if it substitutes all variables of an expression with ground
terms. Given substitutions � and �, the composition �� denotes that for each
variable G, G�� = (G�)�.

A substitution � is a unifier of a set {�1, . . . , �=} of expressions if and only if
�1� = . . . = �=�. The set {�1, . . . , �=} is said to be unifiable if there is a unifier for
it. A unifier � of a set {�1, . . . , �=} of expressions is a most general unifier (mgu)
if and only if for each unifier � for the set, there exists a substitution � such
that � = ��. A unifier � is a simultaneous mgu of two sequence �1, . . . , �=
and �′1, . . . , �

′
= of expressions (where = > 1), if � is an mgu for each pair �8

and �′8 . By � = mgu(� � �′), we denote that � is an mgu of expressions �
and �′. By � = mgu(�1 � �′1, . . . , �= � �

′
=) (where = > 1), we denote that � is a

simultaneous mgu of two sequences �1, . . . , �= and �′1, . . . , �
′
= of expressions.

Orderings

Let (be a set. A binary relation ' on (is a subset of (× (. A partial ordering �
on a set (is a reflexive, antisymmetric and transitive binary relation. A strict
partial ordering � on a set (is an asymmetric and transitive binary relation. A
strict ordering � is total on a set (if for any two distinct elements G and H in (,
either G � H or H � I. A strict ordering � is well-founded on a set (if there is no
infinite chain G1 � G2 � . . . of elements in (.

We use "(G) to denote the number of occurrences of variable G in a mul-
tiset ". A strict partial ordering � on a set (can be extended to a multiset
ordering �< on (finite) multisets over (as follows. Let "1 and "2 be two
multisets. Then "1 �< "2 if i) "1 ≠ "2, and ii) if "2(G) > "1(G) then
"1(H) > "2(H) for some H � G.

A binary relation� on expressions is stable under contexts if�1 � �2 implies
�[�1] � �[�2] for all expressions �, �1 and �2. A binary relation� is stable
under substitutions (liftable) if �1 � �2 implies �1� � �2� for all expressions
�1 and �2, and any substitution �. A binary relation� is a rewrite relation if�
is stable under contexts and stable under substitutions.

Anordering�has the subtermproperty if�[�1] � �1, for all for all expressions
� and proper subexpressions �1 of �. A subterm ordering is an ordering of a
rewrite relation. An ordering � is a reduction ordering if � is a well-founded
rewrite ordering. An ordering � is a simplification ordering if � is a reduction

3.4. SATURATION-BASED THEOREM PROVING 55

ordering with the subterm property.
An ordering � on literals is admissible if

1. � is well-founded and total on ground literals,
2. � is stable under substitutions,
3. ¬� � � for all ground atoms �,
4. if � � �, then � � ¬� for all ground atoms � and �.

An ordering � on literals can be extended to clauses by extending � to clauses.
Let� be anordering, called a precedence, on thegiven set of function symbols,

predicate symbols and logical symbols. Then based on this precedence, a
lexicographic path ordering �;?> is defined as follows: B �;?> C if and only if

1. C ∈ var(B) and B ≠ C, or
2. B = 5 (B1, . . . , B<), C = 6(C1, . . . , C=), and

(a) B8 �;?> C for some 8 with 1 ≤ 8 ≤ <, or
(b) 5 �;?> 6 and B �;?> C 9 for all 9 with 1 ≤ 9 ≤ =, or
(c) i) 5 = 6, and ii) for some 9, we have (B1, . . . , B 9−1) = (C1, . . . , C 9−1),

B 9 �;?> C 9 , and iii) B �;?> C: , for all : with 9 < : ≤ =.

If the precedence � of a lexicographic path ordering is well-founded, then �
is a simplification ordering. A lexicographic path ordering �;?> over a total
precedence is admissible if predicate symbols have higher precedence than
logical connectives, which have higher precedence than > and ⊥.

The ordered resolution calculus

In this section, we give fundamentals of a saturation-based inference system, based
on the ordered resolution framework of [BG01, BG97]. The resolution calculus
in the framework of [BG01, BG97] employs admissible orderings and selection
functions as its refinement.

Let � be an admissible ordering. Then we define maximality of a literal in a
clause as follows.

• A ground literal ! is called maximal with respect to a ground clause � if and
only if for all !′ in �, ! � !′.

• A ground literal ! is called strictly maximal with respect to a ground clause �
if and only if for all !′ in �, ! � !′.

3.4. SATURATION-BASED THEOREM PROVING 56

• A non-ground literal ! is (strictly) maximal with respect to a clause � if
and only if there is some ground substitution � such that !� is (strictly)
maximal respect to ��, that is for all !′ in �, ! � !′ (! � !′).

Let � be a clause. Then the selection function Select(�) is a mapping of
a multiset of negative literals in �, and literals returned by Select(�) are the
selected literals. There is no restriction imposed on selection functions. An
eligible literal is either a (strictly) maximal literal or a selected literal. In this
thesis, we annotate the (strictly) maximal literal !with ‘stars’ as in !∗ and ‘box’
the selected literal ! as in ! .

We use the notation Satu to denote a resolution-based inference system that
is parameterised by admissible orderings and selection functions. The Satu
system consists of the deduction rule Deduce, the positive factoring rule Fact, the
selection-based ordered resolution rule Res and the deletion ruleDelete. In the Fact
and Res rules, the conclusion are called a factor and a resolvent of its premises,
respectively.

A saturation is deduced by

The Deduce rule (for clauses without equality)

#
∪ {�}

if � is a conclusion of either the Fact or Res rule of clauses in # .

Factors are derived using

The Fact rule

� ∨ �∗1 ∨ �2

(� ∨ �1)�
if the following conditions are satisfied.

1. Nothing is selected in � ∨ �1 ∨ �2.
2. �1� is �-maximal with respect to ��.
3. � = mgu(�1 � �2)

Resolvents are computed using

3.4. SATURATION-BASED THEOREM PROVING 57

The Res rule

�∗1 ∨ �1, . . . , �∗= ∨ �= ¬�1 ∨ . . . ∨ ¬�= ∨ �
(�1 ∨ . . . ∨ �= ∨ �)�

if the following conditions are satisfied.

1. No literal is selected in �1, . . . , �= , and �1�, . . . , �=� are strictly
�-maximal with respect to �1�, . . . , �=�, respectively.

2a. If = = 1, then i) either ¬�1 is selected, or nothing is selected in
¬�1 ∨ � and ¬�1� is �-maximal with respect to ��, and ii) � =
mgu(�1 � �1), or

2b. if = > 1, then ¬�1, . . . ,¬�= are selected and � = mgu(�1 �

�1, . . . , �= � �=).
3. All premises are variable disjoint.

For decidability, we minimally need the following deletion rule.

The Delete rule

∪ {�}
#

if � is a tautology, or # contains a variant of �.

In the Res rule, the premises �1 ∨ �1, . . . , �= ∨ �= are called the positive
premises (side premises), and the premise ¬�1 ∨ . . . ∨ ¬�= ∨ � is called the
negative premise (main premise). If there is only one positive premise and one
negative premise in the Res rule, we say it is a binary resolution rule.

The ordering refinement in inference rules can be applied by either a prior
checking or a posterior checking. Let � be a premise in an inference rule, � be
the mgu in the rule and � be the ordering refinement. Then if the maximal
literal is determined in ��, we say that � is applied by a posteriori checking. If
the maximal literal is determined in �, then � is applied using a prior checking.
In the Fact and Res rules, orderings are applied by a posterior checking.

The performance of a resolution-based inference system replies on sophisti-
cated yet powerful standard redundancy elimination techniques. The Satu system
only employs the Deduce rule, as it is sufficient for the results of this thesis.

Let # be a ground clausal set. A ground clause � is redundant with respect

3.4. SATURATION-BASED THEOREM PROVING 58

to# if there exists�1, . . . , �= in# such that�1, . . . , �= |= � and� � �8 for each
8with 1 ≤ 8 ≤ =. Let# be a clausal set. Then a ground clause� is redundantwith
respect to # if there exists ground instances �1�, . . . , �=� of clauses �1, . . . , �=
in # such that �1�, . . . , �=� |= � and � � �8� for each 8 with 1 ≤ 8 ≤ =. A
non-ground clause � is redundant with respect to # if every ground instance of
� is redundant with respect to # . Let � be a distinguished premise, �1, . . . , �=
be other premises and � a conclusion in an inference I. Then the I inference is
redundant with respect to # if there exist clauses�1, . . . , �: in # that are smaller
than � such that �1, . . . , �= , �1, . . . , �: |= �. A clausal set # is saturated up to
redundancy with respect to an inference systemR if all inferences in theR inference
system with non-redundant premises are redundant with respect to # .

A derivation relation ⊲ is a binary relation defined on sets of clauses. Let #1

and #2 be two clausal set. By #1 ⊲ #2 on an inference system R, we mean that
by using the rules in the R system to add conclusions or eliminate redundancy
in clauses of #1, we obtain #2. A theorem proving derivation (derivation) on an
inference system R is a sequence #1 ⊲ #2 ⊲ . . . of derivation.

The refutational completeness of the Satu system is given as follows.

Theorem 3.2 ([BG01, Theorem 5.5]). If a set # of first-order clauses is saturated up
to standard redundancy under the Satu system, then # is unsatisfiable if and only if it
contains a contradiction.

The soundness of the Satu system is obvious as it consists of sound rules.

Theorem 3.3. The Satu system is a sound system for general first-order clausal logic.

For the decidability results of this thesis the separation rule Sep rule is used.
A clause can be separated by

The Sep rule

∪ {� ∨ �}
∪ {� ∨ %(G),¬%(G) ∨ �}

if the following conditions are satisfied.

1. � and � are non-empty subclauses.
2. var(�) * var(�) and var(�) * var(�).
3. var(�) ∩ var(�) = G.
4. Predicate symbol % does not occur in # ∪ {� ∨ �}.

3.4. SATURATION-BASED THEOREM PROVING 59

The Sep rule is introduced in [SH00] to decide satisfiability of fluted logic.
This rule is also referred to as ‘splitting throughnewpredicate symbol’ in [Kaz06,
Section 3.5.6].

The split rule Split is very similar to the Sep rule. A derivation sequence is
branched to a derivation tree by

The Split rule

∪ {� ∨ �}
∪ {�} | # ∪ {�}

if the following conditions are satisfied.

1. � and � are non-empty subclauses.
2. � and � are variable-disjoint.

In the above Split rule, the symbol ‘|’ in the Split conclusions means that
the sequence of derivation on # ∪ {� ∨ �} is split into two branches # ∪ {�}
and # ∪ {�}.

One can regard the Sep rule as a generalisation of the Split rule. Suppose
that in the Sep premise # ∪ {� ∨ �}, the subclauses � and � are variable
disjoint. Then using a fresh predicate symbol ?, the Sep rule derives # ∪ {� ∨
?,¬? ∨ �} from # ∪ {� ∨ �}. This implies that the Sep rule can be regarded
as a generalisation of the Split rule by using a new predicate symbol [RV01a].
Compared to the Sep rule, the Split rule splits # ∪ {� ∨ �} to two branches
∪ {�} and # ∪ {�}. This requires backtracking when an empty clause
is found in one branch. Hence, using the Split rule makes the saturation
procedure non-deterministic. However, the Split rule has an advantage that
one can use the subsumption elimination rule [BG01] to remove clauses in the
forms of � ∨ �′ and � ∨ �′ in # ∪ {�} and # ∪ {�}, respectively. The Sep
conclusion # ∪ {� ∨ ?,¬? ∨ �} does not have this advantage because of the
occurrences of the propositional symbol ?.

The Sep rule is a sound rule. This is formally stated as:

Lemma 3.4 ([SH00, Theorem 3]). The Sep premises # ∪ {� ∨ �} are satisfiable if
and only if the Sep conclusions # ∪ {� ∨ %(G),¬%(G) ∨ �} are satisfiable.
Proof. ⇐: By respectively making %(G) and ¬%(G) in � ∨ %(G) and ¬%(G) ∨ �
eligible, applying resolution to � ∨ %(G) and ¬%(G) ∨� derives � ∨�. Hence,

3.4. SATURATION-BASED THEOREM PROVING 60

for any interpretation � such that � |= # ∪ {� ∨ %(G),¬%(G) ∨ �}, it is the case
that � |= # ∪ {� ∨ �}.
⇒: Suppose � is amodel of#∪{�∨�}. We aim to prove that an extension �′

of � satisfies that �′ |= # ∪ {� ∨ %(G),¬%(G) ∨ �}. As �′ is an extension of �,
�′ |= # ∪ {� ∨ �}. We next prove that �′ |= � ∨ %(G) and �′ |= ¬%(G) ∨ �.

Suppose G is a sequence of variables G1, . . . , G= , B is a sequence of ground
terms B1, . . . , B= . Further suppose � is a ground substitution that substitutes
G1, . . . , G= through {G1 ↦→ B1, . . . , G= ↦→ B=}. LetΣ be a set of all possible ground
substitutions of �. Thenwe interpret %(B1, . . . , B=) as follows. An interpretation
�′ is a model of %(B1, . . . , B=) if and only if � |= �� for all � in Σ.

Let � be an arbitrary ground substitution. We aim to prove that

�′ |= �� ∨ %(G�), (3.1)

�′ |= ¬%(G�) ∨ ��. (3.2)

We distinguish two cases:
i: Assume �′ |= %(G�). By the interpretation of %(G�), �′ |= ��, hence

(3.1)–(3.2) hold.
ii: Suppose �′ 6 |= %(G�). Immediately (3.2) holds. We prove (3.1) by con-

tradiction. Suppose there exists a ground substitution �′ such that i) �′ and
� coincide on substituting G and ii) �′ 6 |= ��′. By our interpretation of %(G�),
there exists a ground substitution �′′ such that i) �′′ and � coincide on substi-
tuting G and ii) �′ 6 |= ��′′. Since �′ 6 |= ��′ and �′ 6 |= ��′′ and �′ and �′′ coincide
on substituting common variables G of � and �, �′ 6 |= ��′�′′ ∨ ��′�′′. This
contradicts that �′ |= # ∪ {� ∨ �}.

W.l.o.g. the proof can be generalised to the caseswhen� or� is negative. �

The ordered superposition calculus

Now we introduce superposition calculus to reason equality literals. As for
the purpose of this thesis, a weaker form of superposition calculus, namely the
paramodulation calculus, is sufficient. The paramodulation calculus are also
in the framework of [BG98].

For the ordering purpose for equality, non-equational literals %(C1, . . . , C=)
with % a non-equational predicate symbol, are treated as %(C1, . . . , C=) ≈ ttwith

3.4. SATURATION-BASED THEOREM PROVING 61

tt a distinguished constant. In any admissible ordering �, tt is always the min-
imal constant. Admissible orderings � are extended to multiset orderings �<
by comparing literals in a way such that equality literals B ≈ C are regarded as
{B, C} and inequality literals B 0 C are regarded as {B, C , tt}, respectively.

We use the notation Satu≈ to denote the Satu systemwith the equality factor-
ing rule E-Fact, the equality resolution rule E-Res and the ordered paramodulation
rule Para and a revised Deduce rule. We assume that equality literals are
oriented: whenever we write B ≈ C and B 0 C, it is the case that B � C.

A derivation is computed using

The Deduce rule (for clauses with equality)

#
∪ {�}

if � is a conclusion of either the Fact, or Res, or E-Fact, or E-Res or the
Para rule of clauses in # .

Conclusions of the ordered paramodulation rule is computed using

The Para rule

C1 ≈ D ∨ �1 ![C2] ∨ �2

(![D] ∨ �1 ∨ �2)�
if the following conditions are satisfied.

1. Nothing is selected in �1� and (C1 ≈ D)� is strictly �<-maximal
with respect to �1�.

2. If ![C2] is positive, ![C2]� is strictly �<-maximalwith respect to�2�,
or else ![C2]� is either selected or �<-maximal with respect to �2�.

3. C2 is not a variable.
4. D� � C1�.
5. � = mgu(C1 � C2).
6. Premises are variable disjoint.

In the Para rule, the premises C1 ≈ D ∨ �1 and ![C2] ∨ �2 are called the left
premise and the right premise, respectively.

Conclusions of the equality factoring rule is computed using

3.4. SATURATION-BASED THEOREM PROVING 62

The E-Fact rule

C1 ≈ D ∨ C2 ≈ E ∨ �
(D 0 E ∨ C1 ≈ E ∨ �)�

if the following conditions are satisfied.

1. Nothing is selected in � and (C1 ≈ D)� is �<-maximal with respect
to (C2 ≈ E ∨ �)�.

2. D� � C1�.
3. � = mgu(C1 � C2).

Conclusions of the equality resolution rule is computed using

The E-Res rule

C1 0 C2 ∨ �
��

if the following conditions are satisfied.

1. Either (C1 0 C2)� is selected or it is �<-maximal with respect to ��.
2. � = mgu(C1 � C2).

Theorem 3.4. The Satu≈ system is sound and refutationally complete for general
first-order clausal logic with equality.

Proof. It can easily be checked that the E-Fact, E-Res and Para rules preserve
satisfiability, as they are standard rules in [BG90]. By [BG90, Theorem 1],
the Satu≈ system is refutationally complete for first-order clausal logic with
equality. �

Chapter 4

The decision procedure for
answering BCQs in GF

In this chapter, we tackle the problemof answeringBCQs for guarded formulas.
This is formally stated as:

Problem 4. Given a set Σ of formulas in GF and a union @ of BCQs, can a saturation-
based procedure decide whether Σ |= @?

This chapter is constructed as follows. Section 4.1 describes the clausifica-
tion process that transforms guarded formulas and BCQ into a suitable clausal
form, namely guarded clauses and query clauses, respectively. Section 4.2
then gives a P-Res resolution inference system Inf. Based on the Inf system,
Section 4.3 then devises the top-variable inference system T-InfGQ, particu-
larly for the guarded clauses and query clauses. Section 4.4 then formally
proves that the T-InfGQ system decides satisfiability of the guarded clauses,
and Section 4.5 presents the procedure of handling the query clauses. Finally
combining the results of Sections 4.1–4.5, Section 4.6 gives a saturation-based
decision procedure for answering BCQs for GF.

4.1 Clausifying GF and BCQs

In this section, we aim to reduce the BCQ answering problem for GF to a satis-
fiability checking problem for a specific clausal class, and we use a customised
form of clausal normal form transformation to achieve this goal.

63

4.1. CLAUSIFYING GF AND BCQS 64

We use the notation TransGF to denote our clausal normal form transformation
for guarded formulas and BCQs. In the first step, a union of BCQs is simply
negated to obtain query clauses. The second step transforms guarded formulas
to a set of guarded clauses. Recall the definition of GF from Section 2.1.

Definition 1. The guarded fragment (GF) is a fragment of FOL without function
symbols, inductively defined as follows:

1. > and ⊥ belong to GF.
2. If � is an atom, then � belongs to GF.
3. GF is closed under Boolean connectives.
4. Let � be a guarded formula and � an atom. Then ∃G(� ∧ �) and ∀G(� → �)

belong to GF if all free variables of � occur in �.

Note that we assume that all free variables in guarded formulas are existen-
tially quantified as we are focusing on checking satisfiability.

Using sample guarded formulas

� = [∃G(�(G, H) ∧ ∀I(�(G, I) → ∃D'(I, D)))],

the second step of the TransGF process is detailed next.

1. Add existential quantifiers to all free variables of �, and by theNNF rules,
transforming � to negation normal form, obtaining

�1 =

[
∃HG(�(G, H) ∧ ∀I(

¬�(G, I) ∨ ∃D'(I, D)))

]
.

2. By introducing predicate symbols % (and respective literals %(· · ·)), ap-
plying the Trans rules for each universally quantified subformula of �1.
Then we obtain

�2 =

[
∃HG(�(G, H) ∧ %(G))∧
∀G(¬%(G) ∨ ∀I(¬�(G, I) ∨ ∃D'(I, D)))

]
.

We say that

• ∃HG(�(G, H) ∧ %(G)) is the replacing formula of �1, and

• ∀G(¬%(G) ∨ ∀I(¬�(G, I) ∨ ∃D'(I, D))) is the definition formula of %.

4.1. CLAUSIFYING GF AND BCQS 65

3. Transform each immediate subformula of �2 to prenex normal form, and
then applying the Skolem rule to the resulting formula. By introducing
Skolem constants 0, 1 and a Skolem function 5 (G, I), we obtain

�3 =

�(0, 1) ∧
%(0) ∧

∀GI(¬%(G) ∨ ¬�(G, I) ∨ '(I, 5 (G, I)))

 .
4. Drop universal quantifiers of �3, and then by the CNF rules, �3 is trans-

formed to a set of guarded clauses

{�(0, 1), %(0), ¬%(G) ∨ ¬�(G, I) ∨ '(I, 5 (G, I))}

The guarded, Horn guarded and query clauses are formally defined as follows.

Definition 13. A guarded clause � is a simple and covering clause satisfying the
following conditions:

1. � is either a ground clause, or
2. � contains a negative flat literal ¬� such that var(�) = var(�).

A Horn guarded clause (HG clause) is a guarded clause containing at most one
positive literal.

Wecall the literal¬� in 2. ofDefinition 13 the guard of the guarded clause�.
A clause is guarded if it contains a guard.

Definition 14. A query clause is a flat and negative clause.

In 2. of Definition 13, the literal ¬� is called the guard of the clause �. A
query clause is not necessarily a guarded clause, and vice-versa. For example,
¬�(G, H)∨�(5 (G, H)) is guardedbut not a query clause, and¬�1(G, H)∨¬�2(H, I)
is a query clause, but not guarded. The class of guarded clauses is more
expressive than GF, since compound terms are allowed in the clausal class, but
not in GF.

As the TransGF process only provides essential steps, one can use more
exhaustive structural transformations to transform guarded formulas to a sim-
pler form of guarded clauses and obtain guarded clauses in a more efficiently
way. For example, guarded formulas are transformed to guarded clauses with

4.1. CLAUSIFYING GF AND BCQS 66

at most three literals in [Kaz06, Pages 103–104]. Moreover by applying the
TransGF rules to conjunctive formulas that are disjunctively connected, one
can avoid the exponential-time blow-up caused by distributing disjunctions to
conjunctions. For example, it takes exponential steps for TransGF process to
transform the guarded formula

� = ∀GH(�(G, H) → (�(G) ∧ �(H)) ∨ (�(H) ∧ �(G)))),

to the guarded clauses

¬�(G, H) ∨ �(G) ∨ �(H), ¬�(G, H) ∨ �(H) ∨ �(H),
¬�(G, H) ∨ �(G) ∨ �(G), ¬�(G, H) ∨ �(H) ∨ �(G).

However in �, using newpredicate symbols %1(G, H) and %2(G, H) for�(G)∧�(H)
and �(H) ∧ �(G), respectively, the distribution of disjunctions to conjunctions
can be avoided. Then � is transformed into the guarded clauses

¬�(G, H) ∨ %1(G, H) ∨ %2(G, H),
¬%1(G, H) ∨ �(G) ∨ �(H),
¬%2(G, H) ∨ �(H) ∨ �(G).

Note that by i) renaming universal quantified subformulas, ii) transforming
formulas to prenex normal form and then applying Skolemisation to the result-
ing formulas, the TransGF process intentionally introduces Skolem functions
of a higher arity. To be specific i)–ii) ensure that a guarded clause � has the
covering property, i.e., any compound term in � contains exactly the same set
of variables as �. This property is essential to guarantee termination of our
BCQ answering procedures for GF. Also i)–ii) ensure compound terms in the
guarded clause � are aligned (see Section 5.1), i.e., all compound terms in �
share the same sequence of variables (i.e. the strong compatibility property). This
property makes our back-translation procedure possible.

Lemma 4.1. Applying the TransGF process to a guarded formula transforms it into a
set of guarded clauses.

Proof. Suppose � is a guarded formula. In the TransGF process, 1.–2. use
new predicate symbols (and literals) to rename universally quantified formulas

4.2. THE RESOLUTION-BASED P-RES INFERENCE SYSTEM 67

in �. W.l.o.g. suppose % is the newly introduced predicate symbol, �1 is the
definition formula of %, and �′ is the replacing formula of �. Nowwe show that
3.–4. transform �1 and �′ into guarded clause. Because �′ is an existentially
quantified sentence, skolemising �′ transforms it into (a set of) flat ground
clauses (if conjunctions occur in �′), which are guarded clauses. �1 can be
represented as

∀G(%(G) → ∀H(�(G, H) →)(H)))

where)(H) is a formula of literals andexistentially quantifiedguarded formulas
that are connectedbyBoolean connectives. Note that)(H) contains nouniversal
quantifications. By 4. in the TransGF process, �1 is simplified as

�′1 = ∀GH(¬%(G) ∨ ¬�(G, H) ∨)(H)).

Suppose � is a clause obtained from �′1. 1) The literal ¬�(G, H) is a guard of �
as var(�) = var(�). 2) For any existential quantified variable I in)(H), I is
Skolemised into a flat compound term only containing G and H. 3) Since �′1 is
free of function symbols, � contains no nested compound terms. By 1)–3), � is
simple, covering and contains the guard ¬�, thus � is a guarded clause. �

We use GQ to denote the class of guarded clauses and query clauses.

Theorem 4.1. The TransGF process reduces the problem of BCQ answering for GF to
that of deciding satisfiability of the GQ clausal class.

Proof. Suppose @ = @1∨. . .∨@= is aunionofBCQs,Σ is a set of guarded formulas,
and D is a set of ground atoms. Since ground atoms D are in GF, the problem
of checking whether Σ∪D |= @ is reduced to that of Σ |= @. This problem is the
same as the problem of checking unsatisfiability of Σ∪ {¬@1, . . . ,¬@=}. By the
definition of the union of BCQs, {¬@1, . . . ,¬@=} is a set of query clauses. By
Lemma 4.1, Σ is transformed to a set of guarded clauses. �

4.2 The resolution-based P-Res inference system

In this section, we presents the first P-Res inference system Inf, which provides
a basis for the decision procedures in this thesis. The Inf system is built on

4.2. THE RESOLUTION-BASED P-RES INFERENCE SYSTEM 68

the Satu system from Section 3.4, however unlike the Satu system, the Inf
system generalises theRes rule to a novel partial selection-based ordered resolution
rule P-Res. Therefore we call this system a P-Res system. The P-Res rule allows
us to choose a desirable resolvent from a set of the potential partial resolvents.
In this section, we extensively discuss the P-Res rule and formally prove the
soundness and refutational completeness of the Inf system.

The Inf system contains the following rules: the deduction rule Deduce, the
positive factoring rule Fact, the partial selection-based resolution rule P-Res and the
deletion rule Delete.

A saturation is deduced using

The Deduce rule (for clauses without equality)

#
∪ {�}

if � is a conclusion of the P-Res or Fact rule of clauses in # .

Factors are computed using

The Fact rule

� ∨ �∗1 ∨ �2

(� ∨ �1)�
if the following conditions are satisfied.

1. Nothing is selected in � ∨ �1 ∨ �2.
2. �1� is �-maximal with respect to ��.
3. � = mgu(�1 � �2)

For decidability, we use the following deletion rule.

The Delete rule

∪ {�}
#

if � is a tautology, or # contains a variant of �.

A partial selection-based resolution P-Res computes resolvents using

4.2. THE RESOLUTION-BASED P-RES INFERENCE SYSTEM 69

The P-Res rule

�∗1 ∨ �1, . . . , �∗< ∨ �< , . . . , �∗= ∨ �= ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ �
(�1 ∨ . . . ∨ �< ∨ ¬�<+1 ∨ . . . ∨ ¬�= ∨ �)�

if the following conditions are satisfied.

1. No literal is selected in �1, . . . , �= and �1�, . . . , �=� are strictly
�-maximal with respect to �1�, . . . , �=�, respectively.

2a. If = = 1, i) either ¬�1 is selected, or nothing is selected in ¬�1 ∨ �
and ¬�1� is maximal with respect to ��, and ii) � = mgu(�1 �

�1) or
2b. if = > 1 and there exists an mgu �′ such that �′ = mgu(�1 �

�1, . . . , �= � �=), then � = mgu(�1 � �1, . . . , �< � �<) where
< ≤ =.

3. All premises are variable disjoint.

Only essential rules are presented in the Inf system. The Inf system is
devised in line with the resolution framework of [BG01], therefore more so-
phisticated simplification rule (such as the condensation rule) and redundant elim-
ination techniques (such as forward and backward subsumption elimination) [BG01,
Section 4.3], can be immediately added to the Inf system.

In the P-Res rule, the distinguished premise

¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ �

is called the main premise (negative premise) and the other premises

�1 ∨ �1, . . . , �< ∨ �< , . . . , �= ∨ �=

are called the side premises (positive premises). The P-Res rule generalises the
hyper-resolution rule in [BG01, Section 6.2], since in the P-Res rule, side premises
and the subclause � in the main premise are not necessarily positive. This re-
laxed condition implicitly ensures that the P-Res rule is a natural generalisation
of the binary resolution rule (the ordered resolution rule with selection) in [BG01],
if there exists exactly one eligible literal in the main premise. By the binary

4.2. THE RESOLUTION-BASED P-RES INFERENCE SYSTEM 70

resolution rule, we mean a resolution rule with only one positive premise and
one negative premise.

The P-Res rule is a form of ‘partial’ selection-based resolution rule. In the
conditions of the P-Res rule, 2b. requires the existence of an mgu between
�1, . . . , �= and �1, . . . , �= . This implies that one can perform a selection-based
resolution inference on

�1 ∨ �1, . . . , �= ∨ �= , ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ �

with ¬�1, . . . ,¬�= selected. However, instead of performing this selection-
based resolution inference, we perform a partial selection-based resolution
inference on

�1 ∨ �1, . . . , �< ∨ �< , ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ �.

This ‘partial’ inference on � and a subset of �1, . . . , �= makes a selection-based
resolution inference on � and �1, . . . , �= redundant. This claim is formally
proved inLemmas 4.2–4.3, startingwith consideringgroundfirst-order clauses.

Lemma 4.2 ([BG01, Pages 53–54] and [BG97, Page 28]). Let the following rule
present the Res rule of the Satu system for ground clauses.

�1 ∨ �1, . . . , �= ∨ �= ¬�1 ∨ . . . ∨ ¬�= ∨ �Res (for ground clauses):
�1 ∨ . . . ∨ �= ∨ �

if the following conditions are satisfied.

1. No literals are selected in�1, . . . , �= and�1, . . . , �= are strictly�-maximal
with respect to �1, . . . , �= , respectively.

2a. If = = 1, then either ¬�1 is selected, or nothing is selected in ¬�1 ∨ � and
¬�1 is �-maximal with respect to �, or

2b. if = > 1, then ¬�1, . . . ,¬�= are selected.
3. All premises are variable disjoint.

Let {1, . . . , =} be partitioned into two subsets {81, . . . , 8:} and { 91, . . . , 8ℎ}, and

4.2. THE RESOLUTION-BASED P-RES INFERENCE SYSTEM 71

be a clausal set. Then an Res inference is redundant in # if the ‘partial conclusion’

¬� 91 ∨ . . . ∨ ¬� 9ℎ ∨ �81 ∨ . . . ∨ �8: ∨ �

is implied by �1 ∨�1, . . . , �= ∨�= and finitely many clauses Δ in # that are smaller
than ¬�1 ∨ . . . ∨ ¬�= ∨ �.

Proof. W.l.o.g., let the main premise of an Res inference be of the form

¬�1 ∨ . . . ∨ ¬�< ∨ ¬�<+1 ∨ . . . ∨ ¬�= ∨ �

and the ‘partial conclusion’ be of the form

¬�<+1 ∨ . . . ∨ ¬�= ∨ �1 ∨ . . . ∨ �< ∨ �

where < < =. When < = =, the statement trivially holds.
By the definition of redundant inference, this claim requires to prove that

�1 ∨ �1, . . . , �= ∨ �= ,Δ |= �1 ∨ . . . ∨ �= ∨ �.

Firstly, in (4.1)–(4.7), we aim to prove that

�1, . . . , �= , �1 ∨ �1, . . . , �= ∨ �= ,Δ |= �1 ∨ . . . ∨ �= ∨ �.

By the assumption on ‘partial conclusion’,

�1 ∨ �1, . . . , �= ∨ �= ,Δ |= (4.1)

¬�<+1 ∨ . . . ∨ ¬�= ∨ �1 ∨ . . . ∨ �< ∨ �. (4.2)

Suppose � is an interpretation of (4.1) and suppose � |= �1, . . . , �= . Then

� |= �1, . . . , �= , �1 ∨ �1, . . . , �= ∨ �= ,Δ. (4.3)

Since � |= �<+1, . . . , �= and � |= (4.2), we obtain that

� |= �1 ∨ . . . ∨ �< ∨ �. (4.4)

4.2. THE RESOLUTION-BASED P-RES INFERENCE SYSTEM 72

This implies that

�1, . . . , �= , �1 ∨ �1, . . . , �= ∨ �= ,Δ (4.5)

|= �1 ∨ . . . ∨ �< ∨ �. (4.6)

Since < < =, clause in (4.6) is a subclause of �1 ∨ . . . ∨ �= ∨ �. Hence:

�1, . . . , �= , �1 ∨ �1, . . . , �= ∨ �= ,Δ

|= �1 ∨ . . . ∨ �= ∨ �.
(4.7)

Next, in (4.9)–(4.12), we aim to prove that

�1 ∨ �1, . . . , �= ∨ �= ,Δ |= �1 ∨ . . . ∨ �= ∨ �. (4.8)

We prove (4.8) by contradiction. Let � be an arbitrary model satisfying that

� |= �1 ∨ �1, . . . , �= ∨ �= ,Δ, (4.9)

but � 6 |= �1 ∨ . . . ∨ �= ∨ �. (4.10)

(4.10) implies � 6 |= �1, . . . , � 6 |= �= , therefore, considering (4.9) we get that

� |= �1, . . . , �= ,Δ. (4.11)

By (4.9) and (4.11), we obtain

� |= �1, . . . , �= , �1 ∨ �1, . . . , �= ∨ �= ,Δ. (4.12)

By (4.7), (4.12) implies � |= �1 ∨ . . . ∨ �= ∨ �, which refutes (4.10). �

Using Lemma 4.2, we prove that an P-Res inference makes its respective
Res inference redundant, formally stated:

Lemma4.3. Let# a clausal set. Suppose theRes rule (for ground clauses) is applicable
in# to the premises �1 = �1∨�1, . . . , �= = �=∨�= and � = ¬�1∨ . . .∨¬�=∨�.
Suppose the ‘partial conclusion’ ' = �81∨ . . .∨�8: ∨�′ is obtained by performing the
following inference on the main premise � and a subset of the side premises �1, . . . , �= .

4.2. THE RESOLUTION-BASED P-RES INFERENCE SYSTEM 73

�81 ∨ �81 , . . . , �8: ∨ �8: ¬�81 ∨ . . . ∨ ¬�8: ∨ �′P-Res:
�81 ∨ . . . ∨ �8: ∨ �′

if the following conditions are satisfied.

1. {�81 ∨ �81 , . . . , �8: ∨ �8: } is a subset of {�1, . . . , �=}.
2. ¬�81 ∨ . . . ∨ ¬�8: ∨ �′ is the same as the main premise �.

Then the application of the Res rule (for ground clauses) to �1, . . . , �= and � is
redundant with respect to # ∪ '.
Proof. By maximality refinement, �8 9 � �8 9 for all 9 such that 8 ≤ 9 ≤ :. Hence,
' is smaller than ¬�81∨ . . .∨¬�8: ∨�′, thus ' is smaller than �. By Lemma 4.2
and the fact that �1, . . . , �= , ' |= ', the specified application of theRes rule (for
ground clauses) is redundant in # ∪ '. �

InLemmas 4.2–4.3, theRes andP-Res rules use admissible orderings and se-
lection functionas resolution refinements, thereforeby theLiftingLemma [BG01,
Lemma 4.12], the result of Lemma 4.3 can be immediately lifted to general first-
order clauses.

Suppose the Res rule is applicable to �1 = �1 ∨ �1, . . . , �= = �= ∨ �=

and � = ¬�1 ∨ . . . ∨ ¬�= ∨ �. Then one derives a ‘partial conclusion’ by
applying the P-Res rule to a subset of {�1, . . . , �=} and �, where a subset of
{¬�1, . . . ,¬�=} are resolved. We say this subset of {¬�1, . . . ,¬�=} are the
P-Res eligible literal (with respect to a Res inference to �1, . . . , �= and �). In
this paper, we consider applications of the P-Res rule by focusing on finding
appropriate P-Res eligible literals.

Now we give the main result of this section.

Theorem 4.2. The Inf system is sound and refutationally complete for general first-
order clausal logic.

Proof. Compared to theSatu resolution system inSection 3.4, in the Inf system,
the novel rule is the P-Res rule. The P-Res rule is sound as it is a resolution
rule. Hence, the Inf system is sound. We know that the Res rule is a standard
rule in the Satu system. By Lemma 4.3, a P-Res inference can be regarded as a

4.3. THE TOP-VARIABLE REFINEMENT 74

form of redundancy elimination for its respective Res inference. Then the Inf
system is refutationally complete for first-order clauses as the Satu system is
refutationally complete for first-order clauses. �

4.3 The top-variable refinement

In this section, we give the top-variable refinement T-RefGQ, so that the Inf
system, equippedwith the T-RefGQ refinement, decides satisfiability of the GQ
clausal class. We use the notation T-InfGQ to denote the Inf system endowed
with the T-RefGQ refinement.

As admissible orderings we use any lexicographic path ordering �;?> with
a precedence in which function symbols are larger than constant, which are
larger than predicate symbols. This requirement holds however for any admis-
sible ordering (e.g., Knuth-Bendix ordering [KB83]) with the same precedence
restriction.

Algorithm 1: Determining the (P-Res) eligible literals for GQ clauses

Input: A GQ clausal set # and a clause � in #
Output: The eligible literals or the P-Res eligible literals (with

respect to a Res inference) in �
1 if � is a ground clause then
2 return Max(�)
3 else if � has negatively occurring compound-term literals then
4 return SelectNC(�)
5 else if � has positively occurring compound-term literals then
6 return Max(�)
7 else if � is a flat guarded clause then
8 return SelectG(�)
9 else return PResT(#, �)

Algorithm 1 specifies conditions for applying the T-RefGQ refinement to
GQ clauses. The T-RefGQ refinement consists of the following functions.

• Max(�) returns the (strictly) �;?>-maximal literal with respect to clause �.

4.3. THE TOP-VARIABLE REFINEMENT 75

• SelectNC(�) selects oneof thenegative compound-term literals in clause�.

• SelectG(�) selects one of the guards in clause �.

• PResT(#, �)
1. either returns (selects) all negative literals of clause �, in the case

that the Res rule is not applicable to �, in which all negative literals
are selected (as the main premise), and clauses in # (as the side
premises), or

2. returns the top-variable literals (with respect to a Res inference) of
clause �, in the case that the Res rule is applicable to �, in which
all negative literals are selected (as the main premise), and clauses
in # (as the side premises).

Algorithm 2 details the PResT function. By Algorithm 1, the PResT(#, �)
takes a GQ clausal set # and a query clause � as inputs. Lines 2–4 aim to
check whether the Res rule is applicable to �1, . . . , �= (occurring in #) and
� with all negative literals selected. If the Res rule is applicable to �1, . . . , �=
and �, then Line 5 uses the CompT(�1, . . . , �= , �) function to compute the
P-Res eligible literals in � (with respect to an Res inference to �1, . . . , �= and
�). In particular these P-Res eligible literals are called the top-variable literals,
since they are computed by the so-called the top-variable technique. However if
the Res rule is not applicable to �1, . . . , �= and �, all selected negative literals
of � are returned, as shown in Line 6.

Algorithm 2: The PResT function

Input: A clausal set # and a clause � in #
Output: The eligible literals or the P-Res eligible literals (with

respect to a Res inference) in �
1 Function PResT(#, �):
2 Select all negative literals in �
3 Find the side premises of � occurring in # , namely �1, . . . , �=
4 if �1, . . . , �= exist then
5 return CompT(�1, . . . , �= , �)
6 else return all negative literals in �

4.3. THE TOP-VARIABLE REFINEMENT 76

Nowwe formally introduce the top-variable technique, given by theCompT
function. Suppose in a Res inference, �1 = �1 ∨ �1, . . . , �= = �= ∨ �= are the
side premises and � = ¬�1 ∨ . . . ∨ ¬�= ∨ � is the main premise, in which
¬�1∨. . .∨¬�= are selected. Then theCompT(�1, . . . , �= , �) function computes
the top variables and the top-variable literals of � as follows.

1. Without producing or adding the resolvent, compute an mgu �′ for
�1, . . . , �= and � such that �′ = mgu(�1 � �1, . . . , �= � �=).

2. Compute the variable ordering >E and =E over the variables of ¬�1 ∨ . . . ∨
¬�= . By definition G >E H and G =E H with respect to an mgu �′, if
dep(G�′) > dep(H�′) and dep(G�′) = dep(H�′), respectively.

3. Based on >E and =E , the maximal variables in ¬�1 ∨ . . . ∨ ¬�= are called
the top variables. The subset ¬�1, . . . ,¬�< of ¬�1, . . . ,¬�= (< ≤ =) are
the top-variable literals if each literal in ¬�1, . . . ,¬�< contains at least one
of the top variables, and ¬�1 ∨ . . .∨¬�< is the top-variable subclause of �.

The definitions of the top variable, the top-variable literal and the top-
variable subclause are only in effect with respect to applications of the Res
rule, to locate suitable P-Res eligible literals, therefore a top-variable resolution
inference step can be seen as a special application of the P-Res rule. In general
the top-variable technique does not requires one to select all the negative literals
in the main premise � in an Res inference. In the PResT function, all the
negative literals in � are selected, specifically for deciding satisfiability of the
GQ clausal class.

The top-variable technique is devised to avoid term depth increase in the
resolvents ofGQ clauses. ByAlgorithm2,CompT(�1, . . . , �= , �) function takes
a query clause� = ¬�1∨. . .∨¬�=∨� as themainpremise (inwhich all negative
literals ¬�1 ∨ . . . ∨ ¬�= are selected), and GQ clauses �1 = �1 ∨ �1, . . . , �= =

�=∨�= as the sidepremises. In theCompT(�1, . . . , �= , �) function, 1. computes
an mgu �′ such that �′ = mgu(�1 � �1, . . . , �= � �=). In 2.–3., if a variable
G in � is unified to be the deepest term G�′ in ��′, then G is the top variable.
If G�′ is a nested compound term, it may become a deeper term in the Res
resolvent. To avoid this potential term depth increase, we compute a partial
resolvent, by only resolving the top-variable literals of � with �1, . . . , �= in
an P-Res inference. Lemma 6.6 (in Section 4.4) formally states that in the

4.3. THE TOP-VARIABLE REFINEMENT 77

application of the P-Res rule (endowedwith theT-RefGQ refinement) to the GQ
clauses, there is no term depth increase in the partial conclusions. Examples of
applying the top-variable technique toGQ clauses (to avoid termdepth increase
in the resolvents) is given in Section 4.5 and Section 6.3. For readability, we
sometimes call a P-Res inference endowed with the T-RefGQ refinement as the
top-variable resolution inference.

The top-variable technique ensures to compute at least one top-variable
literal with respect to a Res inference, formally stated as:

Lemma 4.4. Suppose there is an application of the Res rule to �1, . . . , �= as the
side premises and � as the main premise. Then the CompT(�1, . . . , �= , �) function
computes at least one top-variable literal in �.

Proof. Since the Res rule is applicable to �1, . . . , �= and �, there exists an mgu
�′ for �1, . . . , �= and �, therefore there exists at least one negative literal ¬��′
in ��′ that is deeper than any other negative literals in ��′. Hence, ¬� is a
top-variable literal (with respect to an Res inference to �1, . . . , �= and �). �

A similar claim to Lemma 4.4, for the ‘MAXVAR’ technique to decide sat-
isfiability of the guarded clausal class with no term depth restrictions, can be
found in [dNdR03, Page 45].

Although the T-RefGQ refinement is specially devised for deciding satisfi-
ability of the GQ class, this refinement is also applicable to general first-order
clauses, as the T-RefGQ refinement only uses admissible orderings with selec-
tion functions and a special application of the P-Res rule. By Theorem 4.2, we
give the first main result of this paper.

Theorem 4.3. The T-InfGQ system is sound and refutationally complete for general
first-order clausal logic.

In the resolution framework of [BG01], particularly in resolution-based de-
cision procedures [FLHT01], the resolution and positive factoring rules are
preferred to be applied with a posteriori checking. This checking means that in a
resolution or factoring inference I, one first computes instantiations �� of the
premise � (where � is an mgu in I), and then determines the (strictly) maxi-
mal literal with respect to �� as the eligible literal. Opposite to a posteriori
checking, a prior checking determines the (strictly) maximal literal with respect
to the non-instantiated premise � as an eligible literal. Generally speaking, a

4.3. THE TOP-VARIABLE REFINEMENT 78

posteriori checking is stronger than a priori checking, nonetheless, a posteri-
ori checking requires one to pre-compute an mgu before finding the (strictly)
maximal literals, which is not required when using a priori checking.

In the Inf system, we use a-posteriori checking, as shown in 2. in the Fact
rule, and 1. and 2a. in the P-Res rule. However, thanks to the covering property
of GQ clausal class, we can use a priori checking to avoid overheads pre-
computing of unifications, caused by a posteriori checking. This property is
briefly discussed in [GdN99] for guarded clauses, without providing proofs.
We now formally prove this claim.

First we give a property of �;?> on covering clauses.

Lemma 4.5. Let a covering clause � contain a compound-term literal !1 and a non-
compound-term literal !2. Then !1 �;?> !2.

Proof. We distinguish two cases:
i) Suppose !1 contains a ground compound term. By the covering property,

� is ground. Then !1 �;?> !2 as !1 contains at least one function symbol but !2

does not.
ii) Suppose !1 contains a non-ground compound term C. By the covering

property, var(C) = var(!1) = var(�). Since var(!2) ⊆ var(!1) and !1 contain at
least one function symbol but !2 does not, !1 �;?> !2. �

By the T-RefGQ refinement and the covering property, if the (strictly) �;?>-
maximal literal with respect to a GQ clause � is literal !, then !� is the (strictly)
�;?>-maximal literal with respect to ��, for any substitution �. This means
that the result of an application of a priori checking coincides with that of a
posteriori checking with respect to the T-RefGQ refinement and GQ clauses.
This is formally stated as:

Lemma 4.6. Under the restrictions of the T-RefGQ refinement, in a GQ clause �, if
an eligible literal ! is (strictly) �;?>-maximal with respect to �, then !� is (strictly)
�;?>-maximal with respect to ��, for any substitution �.

Proof. In Algorithm 1, the Max(�) function is used in either Lines 1–2 or 5–6.
The case in Lines 1–2 make the claim trivially holds, since � is ground.

Lines 5–6 mean that � contains compound-term literals. By Lemma 4.5, the
(strictly) �;?>-maximal literal ! in � is a compound-term literal. Since � is
covering and ! is compound-term literal, var(!) = var(�). In �, suppose there

4.4. DECIDING THE GUARDED CLAUSAL CLASS 79

is a literal !′ that is distinct from !. By the facts that var(!′) ⊆ var(!) and
! �;?> !′ (! �;?> !′), !� �;?> !′� (!� �;?> !′�) under any substitution �. Then
!� is (strictly) �;?>-maximal with respect to ��. �

The property of Lemma 4.6 can be easily generalised to any covering clause
endowed with the idea of T-RefGQ refinement, since it is the covering property
that makes the application of a priori checking possible.

By Lemma 4.6, from now on, we assume to use a priori checking to deter-
mine the (strictly) maximal literals in Fact and P-Res inferences. This also has
the advantage in clearing the discussions and simplifying proofs related to the
applications of these inference rules to guarded clauses.

4.4 Deciding the guarded clausal class

In this section, we show that the T-InfGQ system decides satisfiability of the
guarded clausal class. Our goal is to show: given a finite signature (C, F, P),
applying the conclusion-deriving rules in the T-InfGQ system, namely the Fact
and P-Res rules, to guarded clauses only derives guarded clauses that are of
bounded depth and width using symbols in (C, F, P).

By Lines 1–8 inAlgorithm 1, no top-variable resolution inference is needed
when premises are guarded clauses, therefore only a binary form of the P-
Res rule is used in performing inference for guarded clauses. However in
Lemma 4.13 of this section, we investigate the case when performing the top-
variable resolution inference on a flat clause and a set of guarded clauses,
preparingus forunderstanding the inferencebetweenquery clauses andguarded
clauses. Note that although a guard is a negative flat literal, for readability we
sometimes omit the negation symbol in front of guards.

In the T-InfGQ system, the T-RefGQ refinement ensures that any derived
guarded clause is of bounded depth andwidth, which is achieved by restricting
that in a guarded clause �, any eligible literal

i) shares the same variables set as �, and
ii) is the deepest literal in �.

The T-RefGQ refinement ensures the fact that given a guarded clause �, the
eligible literal in � shares the same variable set as �, formally stated as:

4.4. DECIDING THE GUARDED CLAUSAL CLASS 80

Lemma 4.7. Under the restrictions of the T-RefGQ refinement, the eligible literal in a
guarded clause � share the same variable set as �.

Proof. By Algorithm 1, we distinguish three cases:
Lines 1–2: When � is ground the statement trivially holds.
Lines 3–6: Suppose � is a compound-term guarded clause and ! is the

eligible literal in �. By Lemma 4.5 (if ! is positive) and the definition of the
SelectNC function (if ! is negative), ! is a compound-term literal. By the
covering property, var(!) = var(�).

Lines 7: Suppose � is a flat guarded clause and ¬� is a guard in �. By 2. of
Definition 13, var(�) = var(�). �

The T-RefGQ refinement also ensures that in a guarded clause, the deepest
literal is eligible. In specific Lines 3–6 in Algorithm 1 ensure that in a non-
ground compound-termguarded clause, at least one of compound-term literals
is eligible.

Next we look at how the restrictions of eligible literals ensure that applying
the T-InfGQ system to guarded clauses derives only clauses of bounded depth
and width. We look into the unification for eligible literals in guarded clauses,
starting with investigating the pairing property of compound-term eligible
literals.

Lemma 4.8. Let �1 and �2 be two simple and covering compound-term literals, and
suppose �1 and �2 are unifiable using an mgu �. Then compound terms in �1 pair
only compound terms in �2, and vice-versa.

Proof. We distinguish three cases:
i) The statement trivially holds when both �1 and �2 are ground.
ii) Suppose one of �1 and �2 is ground and the other one is non-ground.

By the covering property, if a literal ! contains a ground compound term,
then ! is ground. Hence, a non-ground compound term pairs either a ground
compound term, or a constant. As it is impossible to unify a non-ground
compound term and a constant, a non-ground compound term must pair a
ground compound term.

iii) Suppose both �1 and �2 are non-ground. W.l.o.g. we represent �1 and
�2 as �1(C , C′, . . .) and �2(D, D′, . . .), respectively. By the covering property and
the assumption that �1 and �2 are non-ground, C, C′, D and D′ are non-ground

4.4. DECIDING THE GUARDED CLAUSAL CLASS 81

compound terms, since the presence of ground compound terms means that a
covering clause is ground.

Suppose C is a compound term. We prove that D is a compound term by
contradiction. Assume that D is either a constant or a variable. Immediately D
being a constant prevents the unification C� = D�. Now suppose D is a variable.
As �2 is a compound-term literal, w.l.o.g. we assume that D′ is a compound
term in �2. Then C′ is not a constant as it prevents the unification of D′ and C′,
therefore C′ is a variable or a compound term. We distinguish these two cases
of C′:

1. Suppose C′ is a variable. By the covering property, w.l.o.g. we use
5 (. . . , G, . . .), G, H and 6(. . . , H, . . .) to represent C, C′, D and D′, respectively.
Then �1(C , C′, . . .) and �2(D, D′, . . .) are represented as �1(5 (. . . , G, . . .), G, . . .)
and �2(H, 6(. . . , H, . . .), . . .), respectively. The unification between �1 and �2 is
impossible.

2. Suppose C′ is a compound term. By the covering property, w.l.o.g. we
use 5 (G), 6(G), H and 6(. . . , H, . . .) to represent C, C′, D and D′, respectively.
Then �1(C , C′, . . .) and �2(D, D′, . . .) are represented as �1(5 (G), 6(G), . . .) and
�2(H, 6(. . . , H, . . .), . . .), respectively. Then there exists no unifier for �1 and �2.

Hence, D is a compound term. �

Let a guarded clause � be a premise in Fact or P-Res inferences. Then if
guards ¬� in � is not eligible literals, then the ¬� literals will become the
guard in the conclusion (after unification). This is formally stated as:

Lemma 4.9. Let �1 and �2 be simple and covering atoms and suppose �1 and �2 are
unifiable by anmgu �. Further suppose� is a flat literals satisfying var(�1) = var(�).
Then, if �1 is a compound-term atom, var(�1�) = var(��) and �� is a flat literal.

Proof. Since var(�1) = var(�), it is immediate that var(�1�) = var(��).
We prove that �� is flat by distinguish two cases of �2:
i) Assume that �2 is flat. This implies that � substitutes variables in �1 with

either variables or constants. By the facts that � is flat and var(�1) = var(�),
�� is flat.

ii) Assume that �2 is a compound-term literal. By Lemma 4.8, compound
terms in �1 only pair compound terms in �2. Then the mgu � substitutes
variables in �1 with either variables or constants. By the facts that � is flat and
var(�1) = var(�), �� is flat. �

4.4. DECIDING THE GUARDED CLAUSAL CLASS 82

Next, Lemmas 4.10–4.11 consider non-guard literals occurring in conclu-
sions. Lemma 4.6 in [GdN99] gives a similar result to Lemma 4.10, but a key
‘covering’ condition is missed.

First we look at the depth of eligible literals in conclusions.

Lemma4.10 ([GdN99, Lemma4.6]). Suppose�1 and�2 are two simple and covering
literals, and they are unifiable using an mgu �. Then, �1� is simple.

Proof. If either of �1 and �2 is ground, or either of �1 and �2 is non-ground
and flat, then immediately �1� is simple.

Let both �1 and �2 be compound-term literals. By Lemma 4.8, the mgu �

substitutes variables in �1 or �2 with either constants or variables. By the fact
that �1 is simple, �1� is simple. �

Next we look at the depth and width of non-eligible literals in conclusions.

Lemma 4.11. Let �1 and �2 be two simple atoms satisfying var(�2) ⊆ var(�1).
Then given an arbitrary substitution �, these properties hold:

1. If �1� is simple, then �2� is simple.
2. var(�2�) ⊆ var(�1�).

Further suppose that C and D are, respectively, compound terms occurring in �1 and
�2, satisfying var(C) = var(D) = var(�1). Then var(C�) = var(D�) = var(�1�).

Proof. By the assumptions that �1 and �1� are simple, � does not cause term
depth increase in �1�. Since var(�2) ⊆ var(�1) and �2 is simple, �2� is simple.

By the facts that var(�2) ⊆ var(�1) and var(C) = var(D) = var(�1), immedi-
ately var(�2�) ⊆ var(�1�) and var(C�) = var(D�) = var(�1�), respectively. �

Given a compound-term guarded clause �, one obtains a guarded clause
by removing a compound-term literal from �, formally stated as:

Lemma 4.12. Let � = � ∨ � be a guarded clause with � a compound-term literal.
Let � be a substitution that substitutes all variables in � with constants and variables.
Then �� is a guarded clause.

Proof. If � is a ground substitution, then the lemma trivially holds. Let � be a
non-ground substitution. We prove that �� is simple, covering and contains a
guard. Suppose� is a guard and C is a compound term in �. Since � substitutes

4.4. DECIDING THE GUARDED CLAUSAL CLASS 83

variables with either constants or variables, �� is simple, and �� is flat. Since
var(�) = var(�) = var(�), var(��) = var(��). Then �� is a guard in ��.
Since var(C) = var(�) = var(�), var(C�) = var(��). Hence, �� is covering.
Then �� is a guarded clause. �

Next we give the properties of applying the top-variable resolution rule to
a flat clause and guarded clauses.

Lemma 4.13. In an application of the P-Res rule, endowed with the T-RefGQ re-
finement, to a flat clause satisfying Line 9 of Algorithm 1 (as the main premise) and
guarded clauses (as the side premises), the following conditions hold.

1. In the main premise, top variables pair either constants or compound terms, and
non-top variables pair constants and variables.

2. In the eligible literals of side premises, compound terms pair top variables, and
either variables or constants pair non-top variables.

3. In the main premise, top variables G are unified with either constants or the
compound term pairing G (modulo variables substituted with either variables or
constants), and non-top variables are unified with constants and variables.

4. In the side premises, variables are unified with constants and variables.
5. Suppose a top variable G pairs a constant. Then in the main premise, all negative

literals are the top-variable literals and all variables are unified with constants.

Proof. It is assured that maximality is determined before the mgu is computed,
as justified in Lemma 4.6. Thus, the P-Res rule (endowed with the T-RefGQ

refinement) is performed in the following form.

�1 ∨ �1, . . . , �< ∨ �< , . . . , �= ∨ �= ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ �
(�1 ∨ . . . ∨ �< ∨ ¬�<+1 ∨ . . . ∨ ¬�= ∨ �)�

if the following conditions are satisfied.

1. No literal is selected in �1, . . . , �= and �1, . . . , �= are strictly �;?>-
maximal with respect to �1, . . . , �= , respectively.

2a. If = = 1, i) either ¬�1 is selected, or nothing is selected in ¬�1∨� and
¬�1 is �;?>-maximal with respect to �, and ii) � = mgu(�1 � �1) or

4.4. DECIDING THE GUARDED CLAUSAL CLASS 84

2b. if = > 1 and there exists an mgu �′ such that �′ = mgu(�1 �

�1, . . . , �= � �=), then � = mgu(�1 � �1, . . . , �< � �<)where< ≤ =.
3. All premises are variable disjoint.

Assume that the PResT function returns ¬�1 ∨ . . . ∨ ¬�< as top-variable
literals. W.l.o.g. assume that¬�C(. . . , G, . . . , H, . . .) is a literal in¬�1∨ . . .∨¬�< ,
and G is a top variable and H is a non-top variable (if it exists). Suppose
�C = �C(. . . , C1, . . . , C2, . . .) ∨ �C is a side premise, in which C1 and C2 pair G and
H, respectively.

1.: We show that C1 is either a constant or a compound term and C2 is either
a constant or a variable. We distinguish two cases of �C :

1.-1: Suppose �C is ground. Then immediately C1 is either a constant or
a ground compound term. We prove that C2 is a constant by contradiction.
Assume that C2 is not a constant, thus C2 is a ground compound term. Hence,
dep(C2) ≥ dep(C1). Since C1 and C2 are ground, dep(C2�′) ≥ dep(C1�′) with
respect to the mgu �′. Then dep(H�′) ≥ dep(G�′), which contradicts that H is
non-top variable.

1.-2: Suppose �C is not ground. By Algorithm 1 and the covering property,
�C contains non-ground compound-term literals, otherwise at least one literal
in �C would be selected. By Lemma 4.5, the �;?>-maximal literal �C (with
respect to�C) is a compound-term literal. We prove that C1 is a compound term
and C2 is a variable or a constant by contradiction. Assume C1 is not a compound
term. As �C is a compound-term literal, suppose C is a compound term in �C .
W.l.o.g. suppose C pairs a variable I in �C . By the facts that var(C1) ⊆ var(C) (due
to the covering property) and dep(C1) < dep(C), dep(C1�′) < dep(C�′). Hence,
dep(G�′) < dep(I�′). This contradicts that G is a top variable. Thus C1 must be a
compound term. Now assume C2 is neither a constant nor a variable, i.e., C2 is a
compound term. The facts that var(C1) = var(C2) (by the covering property) and
dep(C1) = dep(C2) imply dep(C1�′) = dep(C2�′). Hence dep(G�′) = dep(H�′).
This contradicts that H is not a top variable.

2.: Immediately follow 1..
3.: Because of the pairing property established in 1., the mgu � substitutes

top variables G with either constants or compound terms that G pairs (modulo
variables substituted with either variables or constants), and substitutes any

4.4. DECIDING THE GUARDED CLAUSAL CLASS 85

non-top variable H with either a constant or variable that H pairs.
4.: By 3..
5.: Suppose a top variable G pairs a constant. By the definition of theCompT

function, for any non-top variable H, it is the case that dep(G�′) > dep(H�′).
The fact that G pairing a constant indicates that G�′ is a constant, therefore
dep(G�′) = 0. Then dep(H�′) = 0 and hence all variables in ¬�1 ∨ . . .∨¬�= are
top variables and are substituted with constants. �

Lemma 4.14. In an application of the P-Res rule, endowed with the T-RefGQ refine-
ment, to a flat clause as the main premise and guarded clauses as the side premises, the
P-Res resolvent is no deeper than its premises.

Proof. By 3.–4. in Lemma 4.13 and the fact that the top-variable literals are
resolved in a top-variable resolution inference. �

Nowwe investigate the applications of the Fact and P-Res rules to guarded
clauses, starting with the application of the Fact rule.

Lemma 4.15. In the application of the Fact rule (endowed with the T-RefGQ refine-
ment) to guarded clauses, the factors are guarded clauses.

Proof. Consider a priori maximality checking revisit of the Fact rule (endowed
with the T-RefGQ refinement).

� ∨ �1 ∨ �2Fact: (� ∨ �1)�
if the following conditions are satisfied.

1. Nothing is selected in � ∨ �1 ∨ �2.
2. �1 is �;?>-maximal with respect to �.
3. � = mgu(�1 � �2).

Let the premise �′ = � ∨ �1 ∨ �2 be a guarded clause. By Algorithm 1, we
distinguish two cases of �′:

Lines 1–2: By the fact that �′ is simple and ground, the factor (� ∨ �1)� is
also simple and ground, which is a guarded clause.

Lines 5–6: The premise �′ is non-ground and contains positive compound-
term literals. By Lemma 4.5, �1 is a compound-term literal. By the covering

4.4. DECIDING THE GUARDED CLAUSAL CLASS 86

property, var(�2) ⊆ var(�1). Hence, �2 must be a compound-term literal,
otherwise�1 and�2 are not unifiable. Then by the covering property, var(�2) =
var(�1). By Lemma 4.8, compound terms in �1 pair only compound terms in
�2, and vice-versa. Hence, themgu � substitutes variableswith either variables
or constants. By Lemma 4.12, the factor (� ∨ �1)� is a guarded clause. �

Next, we discuss the resolvents of applying the P-Res rule to guarded
clauses.

Lemma 4.16. In the application of the P-Res rule (endowed with the T-RefGQ refine-
ment) to guarded clauses, the resolvents are guarded clauses.

Proof. By Algorithm 1, we distinguish all possible cases of applying the P-Res
rule to guarded clauses. In particular we consider the P-Res inferences when
the top-variable technique is not used, since Line 9 in Algorithm 1 requires a
query clause as a premise. Let guarded clauses�1 = �1∨�1 and� = ¬�1∨� be
the positive and negative premises in an P-Res inference, deriving the resolvent
�′ = (�1 ∨ �)�, where � is the mgu of �1 and �1. By Algorithm 1, � is either
ground, or contains a negative non-ground compound term literal or is a flat
guarded clause (Lines 1–2, or 3–4 or 7–8, respectively), and �1 satisfies either
Lines 1–2 or 5–6. We distinguish three cases of �:

Lines 1–2: The negative premise � is ground. By the definition of guarded
clauses, �1 is either a ground flat literal or a ground compound-term literal.
First suppose �1 is a ground flat literal. Then the eligible literal �1 of �1 must
be flat otherwise �1 and �1 are unifiable. By Algorithm 1, �1 is a flat ground
clause. Hence, it is immediate that the resolvent �′ is a flat ground clause, that
is, a guarded clause. Next assume that �1 is a ground compound-term literal.
Then �1 is a compound-term literal, otherwise �1 and �1 are not unifiable.
By Lemma 4.8, compound terms in �1 pair only compound terms in �1 and
vice-versa. Then the mgu � substitutes variables in �1 with constants. By
Lemma 4.7, all variables in �1 are substituted with constants. Hence, �′ is a
ground and simple clause, that is, a guarded clause.

Lines 3–4: Thenegativepremise� contains at least onenegativenon-ground
compound-term literal. By Algorithm 1, �1 is a negative compound-term
literal, and �1 is either i) a ground clause, or ii) contains positive non-ground
compound-terms, but no negative non-ground compound-terms. By the facts
that �1 and �1 are unifiable and Lemma 4.5, �1 is a positive compound-term

4.4. DECIDING THE GUARDED CLAUSAL CLASS 87

literal. Assume that � is a guard in �1, ! is a literal and C is a compound term
in either � or �1. As �1 and �1 satisfy conditions of Lemma 4.9, �� is flat
and var(�1�) = var(��). We know var(�1�) = var(�1�). Then by Lemma 4.7,
var(�1�) = var(��) and var(�1�) = var(�1�), therefore var(��) = var(�1�) =
var(�2�) = var(�′). Hence �� is a guard of the resolvent �′. By Lemma 4.7,
var(!) ⊆ var(�1) (or var(!) ⊆ var(�1)). By Lemma 4.10, �1� (or �1�) are
simple. Then by 1. in Lemma 4.11, !� is simple. Hence, �′ is simple. By
Lemma 4.7, var(C) = var(�1) = var(�1) (or var(C) = var(�1) = var(�2)). By
Lemma 4.11, var(C�) = var(�1�) (or var(C�) = var(�1�)). By the facts that
var(�1�) = var(�1�) = var(�′) (or var(�1�) = var(�2�) = var(�′)), var(C�) =
var(�′) and hence �′ is covering. Then � is a guarded clause.

Line 7–8: The negative premise � is a flat guarded clause. By Algorithm 1,
�1 is a guard of �, and �1 is either i) a ground clause, or ii) contains positive
non-ground compound-terms, but no negative non-ground compound-terms.
Suppose �1 is ground. Then �1 is either a ground flat literal, or a ground
compound-term literal. In these cases, � substitutes variables in �1 with either
constants or ground compound-terms of depth one. ByDefinition 13, var(�) =
var(�1). Then � substitutes variables in � with ground terms of depth less one.
Hence, the resolvent �′ is a simple and ground clause, namely a guarded
clause. Next suppose �1 contains positive non-ground compound-terms, but
no negative non-ground compound-terms. Assume that � is a guard in �1, !
is a literal and C is a compound term in either � or �1. As �1 and �1 satisfy
conditions of Lemma 4.9, �� is flat and var(�1�) = var(��). By the fact
that var(�1�) = var(�1�) and Lemma 4.7, var(�1�) = var(��) and var(�1�) =
var(�1�), hence var(��) = var(�1�) = var(�2�) = var(�′). Then �� is a guard
of the resolvent �′. By Lemma 4.7, var(!) ⊆ var(�1) (or var(!) ⊆ var(�1)).
By Lemma 4.10, �1� (or �1�) are simple. Then by 1. in Lemma 4.11, !� is
simple. Hence �′ is simple. By Lemma 4.7, var(C) = var(�1) = var(�1) (or
var(C) = var(�1) = var(�2)). By Lemma 4.11, var(C�) = var(�1�) (or var(C�) =
var(�1�)). By the facts that var(�1�) = var(�1�) = var(�′) (or var(�1�) =
var(�2�) = var(�′)), var(C�) = var(�′) and hence �′ is covering. Then � is a
guarded clause. �

Lemmas 4.15–4.16 prove that applying the Fact and P-Res rules (endowed
with the T-RefGQ refinement) to guarded clauses derive only guarded clauses.
As guarded clauses are simple, these derived guarded clauses are of bounded

4.5. HANDLING QUERY CLAUSES 88

depth. Let us now investigate the width of derived guarded clauses. Recall
that by the width of a clause, we mean the number of distinct variables in that
clause.

Lemma 4.17. In applications of the T-InfGQ system to guarded clauses, the derived
guarded clause is no wider than at least one of its premises.

Proof. By Lemmas 4.15–4.16, the conclusion of applying the Fact and P-Res
rules to guarded clauses is a guarded clause. Then the guard in the conclusion
contains all variables of this conclusion. In the conclusion of applying the Fact
rule to guarded clauses, variables of the guard are inherited from that of a guard
in the premise (modulo variable renaming and ground instantiation). In the
conclusion of applying theP-Res rule to guarded clauses, variables of the guard
are inherited from that of a guard in one of the positive premises (modulo vari-
able renaming and ground instantiation). Hence in applying T-InfGQ system
to guarded clauses, the conclusion is no wider than its (positive) premise. �

Now we give the first main result of this section.

Theorem 4.4. The T-InfGQ system decides satisfiability of the guarded clausal class.

Proof. Suppose (C, F, P) is a finite set of signature for the given guarded clauses.
By Lemmas 4.15–4.16, applying the T-InfGQ system to guarded clauses derives
the guarded clauseswith boundeddepth. ByLemma 4.17, the derived guarded
clauses are of boundedwidth. These derived guarded clauses only use symbols
in (C, F, P), as no symbols are introduced in this derivation. �

4.5 Handling query clauses

In this section, we give our techniques to handle query clauses.
Suppose a GQ clausal set contains a query clause & and a set # of guarded

clauses. Tohandle&, wefirst recursively apply twocustomised separation rules
to replace& byHornguarded clauses (HG clauses). Suppose& canbe separated
intoHG clauses. Then byTheorem 6.4, theT-InfGQ systemdecides satisfiability
of&∪# . If& cannot be expressed in HG clauses, we the apply the top-variable
resolution rule to & (as a main premise) and clauses in # (as side premises),
deriving the top-variable resolvent '. This top-variable resolvent ' is not
necessarily aGQ clause, hence in the last stepa formof structural transformation
is applied to ' to replace it by an equisatisfiable set of GQ clauses.

4.5. HANDLING QUERY CLAUSES 89

x9
<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1
<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1
<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2

<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2
<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1
<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2
<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3
<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="/bPOW8lZ0p+FWbzGyzL6Dez5orY=">AAACDHicbVDLSsNAFJ34rPVVdekmWAQXUhIpKq6Kbly2YB/QhjKZ3rZDJ5Mwc6Mtob/QrX6IO3HrP/gd/oBJmoVtPTBwOOdezp3jBoJrtKxvY219Y3NrO7eT393bPzgsHB03tB8qBnXmC1+1XKpBcAl15CigFSigniug6Y4eEr/5DEpzXz7hJADHowPJ+5xRTKRa177rFopWyUphrhI7I0WSodot/HR6Pgs9kMgE1bptWwE6EVXImYBpvhNqCCgb0QG0YyqpB9qJ0lun5nms9My+r+In0UzVvxsR9bSeeG486VEc6mUvEf/z2iH2b52IyyBEkGwe1A+Fib6ZfNzscQUMxSQmlCke32qyIVWUYVzPQoqEl2CMMMbLlKWJ+bgle7mTVdK4KtnXpXKtXKzcZ33lyCk5IxfEJjekQh5JldQJI0MyI6/kzZgZ78aH8TkfXTOynROyAOPrFzBbnAI=</latexit>

&1 :
<latexit sha1_base64="X7chus/1gv5fF8TlNl18AAQWau4=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNISosYV0Y1LSOSRQEOmwwUmTKfNzK1CCL/AVj/EnXHrP/gd/oBt6ULAk0xycs69OXeOGwiu0bK+jczG5tb2TnY3t7d/cHiUPz5paD9UDOrMF75quVSD4BLqyFFAK1BAPVdA0x09xH7zGZTmvnzCSQCORweS9zmjGEu1bumumy9YRSuBuU7slBRIimo3/9Pp+Sz0QCITVOu2bQXoTKlCzgTMcp1QQ0DZiA6gHVFJPdDONLl1Zl5ESs/s+yp6Es1E/bsxpZ7WE8+NJj2KQ73qxeJ/XjvE/q0z5TIIESRbBPVDYaJvxh83e1wBQzGJCGWKR7eabEgVZRjVs5Qi4SUYI4zxKmFJYi5qyV7tZJ00SkX7uliulQuV+7SvLDkj5+SS2OSGVMgjqZI6YWRI5uSVvBlz4934MD4Xoxkj3TklSzC+fgEyAZwD</latexit>

&2 :

<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4

<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4
<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5

<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5
<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6
<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6

<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="KZhD+PqJJ6bqblY7f+QZTOtLq5o=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdcvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv8/Kb4g==</latexit>G8

Figure 4.1: The hypergraphs associated with &1 and &2

Basic notions of query clauses

Toanalysequery clauses,we introduce thenotions surface literal, chained variables
and isolated variableswith respect to query clauses.

Definition 15. Let& be a query clause. Then in&, a literal ! is a surface literal (with
respect to &) if there exists no literal !′ such that var(!) ⊂ var(!′).

Suppose in&, !1 and !2 are two surface literals such that var(!1) ≠ var(!2). Then
G is a chained variable (with respect to &) if G occurs in var(!1) ∩ var(!2). The
other non-chained variables in &, are isolated variables (with respect to &).

For example, in

&1 = ¬�1(G1, G2) ∨ ¬�2(G2, G3) ∨ ¬�3(G3, G4, G5) ∨ ¬�4(G5, G6) ∨ ¬�5(G3, G4),

¬�1(G1, G2),¬�2(G2, G3),¬�3(G3, G4, G5) and ¬�4(G5, G6) are surface literals, but
¬�5(G3, G4) is not as var(�5) ⊂ var(�3). Then, with respect to &1, G2, G3, G5 are
chained variables and G1, G4, G6 are isolated variables. In

&2 = ¬�1(G1, G2, G3) ∨ ¬�2(G3, G4, G5) ∨ ¬�3(G5, G6, G7)∨
¬�4(G1, G7, G8) ∨ ¬�5(G3, G4, G9),

all literals are surface literals, therefore with respect to &2, G1, G3, G4, G5, G7 are
chained variables and G2, G6, G8, G9 are isolated variables. Figure 4.1 shows the
associated hypergraphs with &1 and &2.

Using Definition 15, we define two special forms of query clauses.

Definition 16. A chained-only query clause (CO) and an isolated-only query
clause (IO) are query clauses containing only chained variables, and only isolated

4.5. HANDLING QUERY CLAUSES 90

<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1 <latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1

<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2
<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2
<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3
<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2
<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3
<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="MQQdA2c+21jCXJGzxiCtUeStjJk=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNIqUeOK6MYlJPJIoCHT4QITptNm5lYhhF9gqx/izrj1H/wOf8C2dCHgSSY5OefenDvHDQTXaFnfRmZtfWNzK7ud29nd2z/IHx7VtR8qBjXmC181XapBcAk15CigGSigniug4Q4fYr/xDEpzXz7hOADHo33Je5xRjKVq5+quky9YRSuBuUrslBRIikon/9Pu+iz0QCITVOuWbQXoTKhCzgRMc+1QQ0DZkPahFVFJPdDOJLl1ap5FStfs+Sp6Es1E/bsxoZ7WY8+NJj2KA73sxeJ/XivE3q0z4TIIESSbB/VCYaJvxh83u1wBQzGOCGWKR7eabEAVZRjVs5Ai4SUYIYzwImFJYi5qyV7uZJXUL4v2dbFULRXK92lfWXJCTsk5sckNKZNHUiE1wsiAzMgreTNmxrvxYXzORzNGunNMFmB8/QIzp5wE</latexit>

&3 :
<latexit sha1_base64="g/OUfc3hOyvcxF5ADkKXN1BIKIE=">AAACDHicbVDLSsNAFJ34rPVVdekmWAQXUhIpKq6Kbly2YB/QhjKZ3rZDJ5Mwc6Mtob/QrX6IO3HrP/gd/oBJmoVtPTBwOOdezp3jBoJrtKxvY219Y3NrO7eT393bPzgsHB03tB8qBnXmC1+1XKpBcAl15CigFSigniug6Y4eEr/5DEpzXz7hJADHowPJ+5xRTKRat3zXLRStkpXCXCV2RookQ7Vb+On0fBZ6IJEJqnXbtgJ0IqqQMwHTfCfUEFA2ogNox1RSD7QTpbdOzfNY6Zl9X8VPopmqfzci6mk98dx40qM41MteIv7ntUPs3zoRl0GIINk8qB8KE30z+bjZ4woYiklMKFM8vtVkQ6oow7iehRQJL8EYYYyXKUsT83FL9nInq6RxVbKvS+VauVi5z/rKkVNyRi6ITW5IhTySKqkTRoZkRl7JmzEz3o0P43M+umZkOydkAcbXLzVNnAU=</latexit>

&4 :

Figure 4.2: The hypergraphs associated with &3 and &4

variables, respectively.

For example,&3 = ¬�(G1, G2)∨¬�2(G2, G3, G4)∨¬�3(G1, G3, G4) is aCO clause
and &4 = ¬�1(G1) ∨ ¬�2(G1, G2) ∨ ¬�3(G1, G2, G3) is an IO clause. Figure 4.2
shows the associated hypergraphs with &3 and &4.

The customised separation rules

In this section, by our customised notions of query clauses, we present two
novel separations rules. These rules are variations of the Sep rule, and they
provide goal-oriented approaches to separate query clauses. We then formally
prove that these variations can be used as simplification rules in the T-InfGQ

system.
Recall that a clause is decomposable if this clause consists of variable-disjoint

subclauses, otherwise this clause is indecomposable.
A decomposable query clause is separated by

The QuerySepOne rule

∪ {� ∨ �}
∪ {� ∨ ¬?1,¬?2 ∨ �, ?1 ∨ ?2}

if the following conditions are satisfied.

1. � ∨ � is a decomposable query clause.
2. � and � are not empty.
3. var(�) ∩ var(�) = ∅.
4. Propositional variables ?1 and ?2 do not occur in # ∪ {� ∨ �}.

An indecomposable query clause is separated using

4.5. HANDLING QUERY CLAUSES 91

The QuerySepTwo rule

∪ {� ∨ !(G, H) ∨ �}
∪ {� ∨ !(G, H) ∨ %(G),¬%(G) ∨ �}

if the following conditions are satisfied.

1. � ∨ !(G, H) ∨ � is an indecomposable query clause.
2. !(G, H) is a surface literal and var(�) ⊆ var(!).
3. G are chained variables and G ⊆ var(�).
4. H are isolated variables and H ∩ var(�) = ∅.
5. Predicate symbol % does not occur in # ∪ {� ∨ !(G, H) ∨ �}.

Next we prove that the QuerySepOne and QuerySepTwo rules are varia-
tions of the Sep rule. The QuerySepOne rule is immediately a variation the
Sep rule. The fact that the QuerySepTwo rule is a variation of the Sep rule is
formally stated as:

Lemma 4.18. Given a clausal set # , the following conditions are satisfied.

1. If the QuerySepTwo rule is applicable to # , then, the Sep rule is applicable
to # .

2. Applying the QuerySepTwo and Sep rules to # , respectively, derive the same
conclusions.

Proof. Suppose # = #′∪ {� ∨ !(G, H) ∨�} is theQuerySepTwo premises. We
aim to prove that the Sep rule is applicable to # , and applying the Query-
SepTwo and Sep rules to # , respectively, derive exactly the same conclusions.

1.: We aim toprove that�∨!(G, H)∨� has the followingproperty: 1)var(�∨
!(G, H)) * var(�), 2) var(�) * var(�∨!(G, H)) and 3) �∨!(G, H)) and� are not
empty. By 3. in the QuerySepTwo rule, 3) trivial holds. Now we prove 1)–2).
By 4. in theQuerySepTwo rule, H∩var(�) = ∅. This implies var(�∨!(G, H)) *
var(�). Weprovevar(�) * var(�∨!(G, H))by contradiction. Supposevar(�) ⊆
var(� ∨ !(G, H)). By 2. of the QuerySepTwo rule, var(�) ⊆ var(�). Then
var(�∨!(G, H)∨�) = {G, H}. This contradicts 3. in theQuerySepTwo rule that
G are chained variables.

2.: By 3.–5. in theQuerySepTwo rule, G = var(� ∨ !(G, H))∩var(�). Hence,
the Sep rule can separate � ∨ !(G, H) ∨� into � ∨ !(G, H) ∨ %(G) and ¬%(G) ∨�
where G = var(� ∨ !(G, H)) ∩ var(�). �

4.5. HANDLING QUERY CLAUSES 92

<latexit sha1_base64="ggUPm3Q4ujGk4fpPR97c2vpKLPY=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoi6JblxilEcCDZkOF5gwnTYztwpp+AS2+iHujFs/wu/wBxwKCwFPMsnJOffm3Dl+JLhGx/m2MmvrG5tb2e3czu7e/kH+8Kimw1gxqLJQhKrhUw2CS6giRwGNSAENfAF1f3A39evPoDQP5ROOIvAC2pO8yxlFIz1W2m47X3CKTgp7lbhzUiBzVNr5n1YnZHEAEpmgWjddJ0IvoQo5EzDOtWINEWUD2oOmoZIGoL0kPXVsnxmlY3dDZZ5EO1X/biQ00HoU+GYyoNjXy95U/M9rxti98RIuoxhBsllQNxY2hvb033aHK2AoRoZQpri51WZ9qihD085CioSXaIgwxIuUpYk505K73MkqqV0W3ati6aFUKN/O+8qSE3JKzolLrkmZ3JMKqRJGemRCXsmbNbHerQ/rczaaseY7x2QB1tcvqVmbvQ==</latexit>

%1

<latexit sha1_base64="ggUPm3Q4ujGk4fpPR97c2vpKLPY=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoi6JblxilEcCDZkOF5gwnTYztwpp+AS2+iHujFs/wu/wBxwKCwFPMsnJOffm3Dl+JLhGx/m2MmvrG5tb2e3czu7e/kH+8Kimw1gxqLJQhKrhUw2CS6giRwGNSAENfAF1f3A39evPoDQP5ROOIvAC2pO8yxlFIz1W2m47X3CKTgp7lbhzUiBzVNr5n1YnZHEAEpmgWjddJ0IvoQo5EzDOtWINEWUD2oOmoZIGoL0kPXVsnxmlY3dDZZ5EO1X/biQ00HoU+GYyoNjXy95U/M9rxti98RIuoxhBsllQNxY2hvb033aHK2AoRoZQpri51WZ9qihD085CioSXaIgwxIuUpYk505K73MkqqV0W3ati6aFUKN/O+8qSE3JKzolLrkmZ3JMKqRJGemRCXsmbNbHerQ/rczaaseY7x2QB1tcvqVmbvQ==</latexit>

%1

<latexit sha1_base64="3enj92va7QuA1qKxot2h3FuWee0=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUtI5JEAIdPhFiZMp83MrUIavoCtfog749av8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N3iY+vVnUJqH8glHEbQD2pPc54yikSp3nVzeKTgp7FXizkmezFHu5H5a3ZDFAUhkgmrddJ0I2wlVyJmAcbYVa4goG9AeNA2VNADdTtJDx/a5Ubq2HyrzJNqp+ncjoYHWo8AzkwHFvl72puJ/XjNG/7adcBnFCJLNgvxY2Bja01/bXa6AoRgZQpni5lab9amiDE03CykSXqIhwhAvU5YmZk1L7nInq6R2VXCvC8VKMV+6n/eVIafkjFwQl9yQEnkkZVIljACZkFfyZk2sd+vD+pyNrlnznROyAOvrF1jEmwo=</latexit>

�

<latexit sha1_base64="3enj92va7QuA1qKxot2h3FuWee0=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUtI5JEAIdPhFiZMp83MrUIavoCtfog749av8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N3iY+vVnUJqH8glHEbQD2pPc54yikSp3nVzeKTgp7FXizkmezFHu5H5a3ZDFAUhkgmrddJ0I2wlVyJmAcbYVa4goG9AeNA2VNADdTtJDx/a5Ubq2HyrzJNqp+ncjoYHWo8AzkwHFvl72puJ/XjNG/7adcBnFCJLNgvxY2Bja01/bXa6AoRgZQpni5lab9amiDE03CykSXqIhwhAvU5YmZk1L7nInq6R2VXCvC8VKMV+6n/eVIafkjFwQl9yQEnkkZVIljACZkFfyZk2sd+vD+pyNrlnznROyAOvrF1jEmwo=</latexit>

�

<latexit sha1_base64="3enj92va7QuA1qKxot2h3FuWee0=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUtI5JEAIdPhFiZMp83MrUIavoCtfog749av8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N3iY+vVnUJqH8glHEbQD2pPc54yikSp3nVzeKTgp7FXizkmezFHu5H5a3ZDFAUhkgmrddJ0I2wlVyJmAcbYVa4goG9AeNA2VNADdTtJDx/a5Ubq2HyrzJNqp+ncjoYHWo8AzkwHFvl72puJ/XjNG/7adcBnFCJLNgvxY2Bja01/bXa6AoRgZQpni5lab9amiDE03CykSXqIhwhAvU5YmZk1L7nInq6R2VXCvC8VKMV+6n/eVIafkjFwQl9yQEnkkZVIljACZkFfyZk2sd+vD+pyNrlnznROyAOvrF1jEmwo=</latexit>

�

<latexit sha1_base64="pFQ2TKDTe9vSfscIaQEXFZEXjD0=">AAACCnicbVBLTgJBFOzBH+IPdelmIjFxYciMIWpcEd24BCOfBAjpad5Ah56eSfcbhRBuwFYP4s649RKewwvYDCwErKSTStV7qdflRYJrdJxvK7W2vrG5ld7O7Ozu7R9kD4+qOowVgwoLRajqHtUguIQKchRQjxTQwBNQ8/r3U7/2DErzUD7hMIJWQLuS+5xRNNJj+badzTl5J4G9Stw5yZE5Su3sT7MTsjgAiUxQrRuuE2FrRBVyJmCcacYaIsr6tAsNQyUNQLdGyaVj+8woHdsPlXkS7UT9uzGigdbDwDOTAcWeXvam4n9eI0b/pjXiMooRJJsF+bGwMbSn37Y7XAFDMTSEMsXNrTbrUUUZmnIWUiS8RAOEAV4kLEnMmJbc5U5WSfUy717lC+VCrng37ytNTsgpOScuuSZF8kBKpEIY8cmEvJI3a2K9Wx/W52w0Zc13jskCrK9f98ybXg==</latexit>

& : <latexit sha1_base64="3enj92va7QuA1qKxot2h3FuWee0=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUtI5JEAIdPhFiZMp83MrUIavoCtfog749av8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N3iY+vVnUJqH8glHEbQD2pPc54yikSp3nVzeKTgp7FXizkmezFHu5H5a3ZDFAUhkgmrddJ0I2wlVyJmAcbYVa4goG9AeNA2VNADdTtJDx/a5Ubq2HyrzJNqp+ncjoYHWo8AzkwHFvl72puJ/XjNG/7adcBnFCJLNgvxY2Bja01/bXa6AoRgZQpni5lab9amiDE03CykSXqIhwhAvU5YmZk1L7nInq6R2VXCvC8VKMV+6n/eVIafkjFwQl9yQEnkkZVIljACZkFfyZk2sd+vD+pyNrlnznROyAOvrF1jEmwo=</latexit>

�

<latexit sha1_base64="3enj92va7QuA1qKxot2h3FuWee0=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUtI5JEAIdPhFiZMp83MrUIavoCtfog749av8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N3iY+vVnUJqH8glHEbQD2pPc54yikSp3nVzeKTgp7FXizkmezFHu5H5a3ZDFAUhkgmrddJ0I2wlVyJmAcbYVa4goG9AeNA2VNADdTtJDx/a5Ubq2HyrzJNqp+ncjoYHWo8AzkwHFvl72puJ/XjNG/7adcBnFCJLNgvxY2Bja01/bXa6AoRgZQpni5lab9amiDE03CykSXqIhwhAvU5YmZk1L7nInq6R2VXCvC8VKMV+6n/eVIafkjFwQl9yQEnkkZVIljACZkFfyZk2sd+vD+pyNrlnznROyAOvrF1jEmwo=</latexit>

�

<latexit sha1_base64="3enj92va7QuA1qKxot2h3FuWee0=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUtI5JEAIdPhFiZMp83MrUIavoCtfog749av8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N3iY+vVnUJqH8glHEbQD2pPc54yikSp3nVzeKTgp7FXizkmezFHu5H5a3ZDFAUhkgmrddJ0I2wlVyJmAcbYVa4goG9AeNA2VNADdTtJDx/a5Ubq2HyrzJNqp+ncjoYHWo8AzkwHFvl72puJ/XjNG/7adcBnFCJLNgvxY2Bja01/bXa6AoRgZQpni5lab9amiDE03CykSXqIhwhAvU5YmZk1L7nInq6R2VXCvC8VKMV+6n/eVIafkjFwQl9yQEnkkZVIljACZkFfyZk2sd+vD+pyNrlnznROyAOvrF1jEmwo=</latexit>

�

<latexit sha1_base64="MsyB79t9/EzPvZMdbv+0eihahXI=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEuCG5eQyCMBQqbDBSZMp83MrUIavoCtfog749av8Dv8AYfShYAnmeTknHtz7hwvFFyj43xbG5tb2zu7mb3s/sHh0XHu5LSug0gxqLFABKrpUQ2CS6ghRwHNUAH1PQENb/Qw9xvPoDQP5BNOQuj4dCB5nzOKRqqWu7m8U3AS2OvETUmepKh0cz/tXsAiHyQyQbVuuU6InZgq5EzANNuONISUjegAWoZK6oPuxMmhU/vSKD27HyjzJNqJ+ncjpr7WE98zkz7FoV715uJ/XivC/n0n5jKMECRbBPUjYWNgz39t97gChmJiCGWKm1ttNqSKMjTdLKVIeAnHCGO8TliSmDUtuaudrJP6TcG9LRSrxXypnPaVIefkglwRl9yREnkkFVIjjACZkVfyZs2sd+vD+lyMbljpzhlZgvX1C1ppmws=</latexit>

⌫

<latexit sha1_base64="MsyB79t9/EzPvZMdbv+0eihahXI=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEuCG5eQyCMBQqbDBSZMp83MrUIavoCtfog749av8Dv8AYfShYAnmeTknHtz7hwvFFyj43xbG5tb2zu7mb3s/sHh0XHu5LSug0gxqLFABKrpUQ2CS6ghRwHNUAH1PQENb/Qw9xvPoDQP5BNOQuj4dCB5nzOKRqqWu7m8U3AS2OvETUmepKh0cz/tXsAiHyQyQbVuuU6InZgq5EzANNuONISUjegAWoZK6oPuxMmhU/vSKD27HyjzJNqJ+ncjpr7WE98zkz7FoV715uJ/XivC/n0n5jKMECRbBPUjYWNgz39t97gChmJiCGWKm1ttNqSKMjTdLKVIeAnHCGO8TliSmDUtuaudrJP6TcG9LRSrxXypnPaVIefkglwRl9yREnkkFVIjjACZkVfyZs2sd+vD+lyMbljpzhlZgvX1C1ppmws=</latexit>

⌫

<latexit sha1_base64="MsyB79t9/EzPvZMdbv+0eihahXI=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEuCG5eQyCMBQqbDBSZMp83MrUIavoCtfog749av8Dv8AYfShYAnmeTknHtz7hwvFFyj43xbG5tb2zu7mb3s/sHh0XHu5LSug0gxqLFABKrpUQ2CS6ghRwHNUAH1PQENb/Qw9xvPoDQP5BNOQuj4dCB5nzOKRqqWu7m8U3AS2OvETUmepKh0cz/tXsAiHyQyQbVuuU6InZgq5EzANNuONISUjegAWoZK6oPuxMmhU/vSKD27HyjzJNqJ+ncjpr7WE98zkz7FoV715uJ/XivC/n0n5jKMECRbBPUjYWNgz39t97gChmJiCGWKm1ttNqSKMjTdLKVIeAnHCGO8TliSmDUtuaudrJP6TcG9LRSrxXypnPaVIefkglwRl9yREnkkFVIjjACZkVfyZs2sd+vD+lyMbljpzhlZgvX1C1ppmws=</latexit>

⌫

<latexit sha1_base64="MsyB79t9/EzPvZMdbv+0eihahXI=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEuCG5eQyCMBQqbDBSZMp83MrUIavoCtfog749av8Dv8AYfShYAnmeTknHtz7hwvFFyj43xbG5tb2zu7mb3s/sHh0XHu5LSug0gxqLFABKrpUQ2CS6ghRwHNUAH1PQENb/Qw9xvPoDQP5BNOQuj4dCB5nzOKRqqWu7m8U3AS2OvETUmepKh0cz/tXsAiHyQyQbVuuU6InZgq5EzANNuONISUjegAWoZK6oPuxMmhU/vSKD27HyjzJNqJ+ncjpr7WE98zkz7FoV715uJ/XivC/n0n5jKMECRbBPUjYWNgz39t97gChmJiCGWKm1ttNqSKMjTdLKVIeAnHCGO8TliSmDUtuaudrJP6TcG9LRSrxXypnPaVIefkglwRl9yREnkkFVIjjACZkVfyZs2sd+vD+lyMbljpzhlZgvX1C1ppmws=</latexit>

⌫

<latexit sha1_base64="MsyB79t9/EzPvZMdbv+0eihahXI=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEuCG5eQyCMBQqbDBSZMp83MrUIavoCtfog749av8Dv8AYfShYAnmeTknHtz7hwvFFyj43xbG5tb2zu7mb3s/sHh0XHu5LSug0gxqLFABKrpUQ2CS6ghRwHNUAH1PQENb/Qw9xvPoDQP5BNOQuj4dCB5nzOKRqqWu7m8U3AS2OvETUmepKh0cz/tXsAiHyQyQbVuuU6InZgq5EzANNuONISUjegAWoZK6oPuxMmhU/vSKD27HyjzJNqJ+ncjpr7WE98zkz7FoV715uJ/XivC/n0n5jKMECRbBPUjYWNgz39t97gChmJiCGWKm1ttNqSKMjTdLKVIeAnHCGO8TliSmDUtuaudrJP6TcG9LRSrxXypnPaVIefkglwRl9yREnkkFVIjjACZkVfyZs2sd+vD+lyMbljpzhlZgvX1C1ppmws=</latexit>

⌫
<latexit sha1_base64="MsyB79t9/EzPvZMdbv+0eihahXI=">AAACCXicbVDLTsJAFJ36RHyhLt00EhMXhrSGqEuCG5eQyCMBQqbDBSZMp83MrUIavoCtfog749av8Dv8AYfShYAnmeTknHtz7hwvFFyj43xbG5tb2zu7mb3s/sHh0XHu5LSug0gxqLFABKrpUQ2CS6ghRwHNUAH1PQENb/Qw9xvPoDQP5BNOQuj4dCB5nzOKRqqWu7m8U3AS2OvETUmepKh0cz/tXsAiHyQyQbVuuU6InZgq5EzANNuONISUjegAWoZK6oPuxMmhU/vSKD27HyjzJNqJ+ncjpr7WE98zkz7FoV715uJ/XivC/n0n5jKMECRbBPUjYWNgz39t97gChmJiCGWKm1ttNqSKMjTdLKVIeAnHCGO8TliSmDUtuaudrJP6TcG9LRSrxXypnPaVIefkglwRl9yREnkkFVIjjACZkVfyZs2sd+vD+lyMbljpzhlZgvX1C1ppmws=</latexit>

⌫

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1
<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="dWIXDLt8VAVjqnm8oIY7C4S5yxw=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JEDIdbmHCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+d4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWRzUILqGOHAW0IgU08AQ0vdHD3G8+g9I8lE84iaAb0IHkPmcUjVQb9/IFp+iksDeJuyQFskS1l//p9EMWByCRCap123Ui7CZUIWcCprlOrCGibEQH0DZU0gB0N0kPndpXRunbfqjMk2in6t+NhAZaTwLPTAYUh3rdm4v/ee0Y/XI34TKKESRbBPmxsDG057+2+1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7A1mzc=</latexit>G

<latexit sha1_base64="dWIXDLt8VAVjqnm8oIY7C4S5yxw=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JEDIdbmHCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+d4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWRzUILqGOHAW0IgU08AQ0vdHD3G8+g9I8lE84iaAb0IHkPmcUjVQb9/IFp+iksDeJuyQFskS1l//p9EMWByCRCap123Ui7CZUIWcCprlOrCGibEQH0DZU0gB0N0kPndpXRunbfqjMk2in6t+NhAZaTwLPTAYUh3rdm4v/ee0Y/XI34TKKESRbBPmxsDG057+2+1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7A1mzc=</latexit>G

<latexit sha1_base64="dWIXDLt8VAVjqnm8oIY7C4S5yxw=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JEDIdbmHCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+d4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWRzUILqGOHAW0IgU08AQ0vdHD3G8+g9I8lE84iaAb0IHkPmcUjVQb9/IFp+iksDeJuyQFskS1l//p9EMWByCRCap123Ui7CZUIWcCprlOrCGibEQH0DZU0gB0N0kPndpXRunbfqjMk2in6t+NhAZaTwLPTAYUh3rdm4v/ee0Y/XI34TKKESRbBPmxsDG057+2+1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7A1mzc=</latexit>G

<latexit sha1_base64="xlvaabIGK6MwKmZlIQcg8IgZVQs=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocd91uvuAUnRT2OnEXpEAWqHbzP+1eyOIAJDJBtW65ToSdhCrkTMAk1441RJQNaR9ahkoagO4k6akT+8IoPdsPlXkS7VT9u5HQQOtx4JnJgOJAr3oz8T+vFaNf7iRcRjGCZPMgPxY2hvbs33aPK2AoxoZQpri51WYDqihD085SioSXaIQwwquUpYk505K72sk6qV8X3Zti6aFUqJQXfWXJGTknl8Qlt6RC7kmV1AgjfTIlr+TNmlrv1of1OR/NWIudU7IE6+sX6hab3A==</latexit>H1

<latexit sha1_base64="xlvaabIGK6MwKmZlIQcg8IgZVQs=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocd91uvuAUnRT2OnEXpEAWqHbzP+1eyOIAJDJBtW65ToSdhCrkTMAk1441RJQNaR9ahkoagO4k6akT+8IoPdsPlXkS7VT9u5HQQOtx4JnJgOJAr3oz8T+vFaNf7iRcRjGCZPMgPxY2hvbs33aPK2AoxoZQpri51WYDqihD085SioSXaIQwwquUpYk505K72sk6qV8X3Zti6aFUqJQXfWXJGTknl8Qlt6RC7kmV1AgjfTIlr+TNmlrv1of1OR/NWIudU7IE6+sX6hab3A==</latexit>H1

<latexit sha1_base64="eR+Zwg/72NG1wTakTBUqM7jqXJ8=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OO8VOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX67ub3Q==</latexit>H2

<latexit sha1_base64="eR+Zwg/72NG1wTakTBUqM7jqXJ8=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OO8VOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX67ub3Q==</latexit>H2

Figure 4.3: The application of the Sep rule to &

Indeed the Sep rule is more powerful than the QuerySepOne and Query-
SepTwo rules. Given a query clause

& = ¬�(G1, G) ∨ ¬�(G1, G2) ∨ ¬�(G2, G) ∨ ¬�(H1, G) ∨ ¬�(H1, H2) ∨ ¬�(H2, G),

the Sep rule separates it into an HG clause

¬�(G1, G) ∨ ¬�(G1, G2) ∨ ¬�(G2, G) ∨ %(G)

and a query clause ¬�(H1, G) ∨¬�(H1, H2) ∨¬�(H2, G) ∨¬%(G)where % is a new
predicate symbol. Yet neither QuerySepOne nor QuerySepTwo is applicable
to &, since & is an indecomposable CO clause. Figure 4.3 on the next page
shows the process of applying the Sep rule to & and the derived clauses are in
the coloured box.

The QuerySepOne and QuerySepTwo rules are specially devised for sep-
arating query clauses. Unlike the Sep rule, the QuerySepOne and Query-
SepTwo rules specifically use our notions for query clauses. This is due to the
fact that identifying the conclusions of applying the Sep rule to query clauses
is difficult. Moreover in the QuerySepOne and QuerySepTwo conclusions,
the polarity of newly introduced symbols are assigned in a way such that these
conclusions are in our desire form, namely the GQ clauses. For example in
conclusions of the QuerySepOne rule, we use not one, but two propositional
variables, so that by our assigning of polarity to fresh propositional variables
?1 and ?2, applying the QuerySepOne rule to a decomposable query clause

4.5. HANDLING QUERY CLAUSES 93

derives two query clauses � ∨ ¬?1 and ¬?2 ∨ � and a guarded clause ?1 ∨ ?2.
TheQuerySepOne andQuerySepTwo rules are sound, formally stated as:

Lemma 4.19. QuerySepOne and QuerySepTwo preserve logical equivalence.

Proof. By Lemmas 3.4–4.18, the QuerySepTwo rule preserves logical equiva-
lence. Immediately, the statement holds for the QuerySepOne rule. �

Note that in the applications of theQuerySepOne andQuerySepTwo rules,
the newly introduced predicate symbols are smaller than those in QuerySe-
pOne and QuerySepTwo premises, respectively. Hence, as long as the ap-
plications of these separation rules do not introduce infinitely many predicate
symbols, one can regard theQuerySepOne andQuerySepTwo rules as simpli-
fication rules in the resolution framework of [BG01]. Lemma 4.27 (in Section
4.6) formally proves that in our procedures, these separation rules only intro-
duce finitely many predicate symbols when separating query clauses. Thus we
consider the QuerySepOne and QuerySepTwo rules as simplification rules
for extending the T-InfGQ system.

Separating query clauses

In this section, we investigate the applications of theQuerySepOne andQuery-
SepTwo rules to query clauses. We start with the QuerySepOne rule.

Lemma 4.20. Suppose & is a decomposable query clause. Then recursively applying
the QuerySepOne rule to & separate it into less wide indecomposable query clauses
and HG clauses.

Proof. By the definitions of indecomposable query clauses and HG clauses. �

By 2.–4. in theQuerySepTwo rule, one can apply theQuerySepTwo rule to
indecomposable query clause & only if there exists a surface literal in & where
both chained and isolated variables occur. Based on this fact, we look at how
the QuerySepTwo rule is applied to indecomposable query clauses.

Lemma 4.21. Suppose& is an indecomposable query clause, in which a surface literal
that contains both chained and isolated variables occurs. Then the QuerySepTwo rule
separates & into less wide query clauses and HG clauses.

4.5. HANDLING QUERY CLAUSES 94

<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1

<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1
<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2

<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2

<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3
<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3
<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2

<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4
<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4
<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4

<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4

<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5
<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5
<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5

<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5

<latexit sha1_base64="MpwlwJRKqWBcoNAbH7UzA5wtiKA=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNISoi6JblxiFCSBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXYawY1FgoQtXwqQbBJdSQo4BGpIAGvoAnf3A785+eQWkeykccReAFtCd5lzOKRnqotkvtfMEpOgnsVeKmpEBSVNv5n1YnZHEAEpmgWjddJ0JvTBVyJmCSa8UaIsoGtAdNQyUNQHvj5NSJfWaUjt0NlXkS7UT9uzGmgdajwDeTAcW+XvZm4n9eM8butTfmMooRJJsHdWNhY2jP/m13uAKGYmQIZYqbW23Wp4oyNO0spEh4iYYIQ7xIWJKYMy25y52sknqp6F4Wy/flQuUm7StLTsgpOScuuSIVckeqpEYY6ZEpeSVv1tR6tz6sz/loxkp3jskCrK9fqv6bvg==</latexit>

%2

<latexit sha1_base64="MpwlwJRKqWBcoNAbH7UzA5wtiKA=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNISoi6JblxiFCSBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXYawY1FgoQtXwqQbBJdSQo4BGpIAGvoAnf3A785+eQWkeykccReAFtCd5lzOKRnqotkvtfMEpOgnsVeKmpEBSVNv5n1YnZHEAEpmgWjddJ0JvTBVyJmCSa8UaIsoGtAdNQyUNQHvj5NSJfWaUjt0NlXkS7UT9uzGmgdajwDeTAcW+XvZm4n9eM8butTfmMooRJJsHdWNhY2jP/m13uAKGYmQIZYqbW23Wp4oyNO0spEh4iYYIQ7xIWJKYMy25y52sknqp6F4Wy/flQuUm7StLTsgpOScuuSIVckeqpEYY6ZEpeSVv1tR6tz6sz/loxkp3jskCrK9fqv6bvg==</latexit>

%2
<latexit sha1_base64="MpwlwJRKqWBcoNAbH7UzA5wtiKA=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNISoi6JblxiFCSBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbmbX1jc2t7HZuZ3dv/yB/eFTXYawY1FgoQtXwqQbBJdSQo4BGpIAGvoAnf3A785+eQWkeykccReAFtCd5lzOKRnqotkvtfMEpOgnsVeKmpEBSVNv5n1YnZHEAEpmgWjddJ0JvTBVyJmCSa8UaIsoGtAdNQyUNQHvj5NSJfWaUjt0NlXkS7UT9uzGmgdajwDeTAcW+XvZm4n9eM8butTfmMooRJJsHdWNhY2jP/m13uAKGYmQIZYqbW23Wp4oyNO0spEh4iYYIQ7xIWJKYMy25y52sknqp6F4Wy/flQuUm7StLTsgpOScuuSIVckeqpEYY6ZEpeSVv1tR6tz6sz/loxkp3jskCrK9fqv6bvg==</latexit>

%2
<latexit sha1_base64="qfqUMS5f1STR0/jMc81NGElgK/g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRK1CXRjUuM8kiAkOlwCxOm02bmViENn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8eLBNfoON/Wyura+sZmZiu7vbO7t587OKzqMFYMKiwUoap7VIPgEirIUUA9UkADT0DN699N/NozKM1D+YTDCFoB7Uruc0bRSI/l9mU7l3cKTgp7mbgzkiczlNu5n2YnZHEAEpmgWjdcJ8JWQhVyJmCUbcYaIsr6tAsNQyUNQLeS9NSRfWqUju2HyjyJdqr+3UhooPUw8MxkQLGnF72J+J/XiNG/aSVcRjGCZNMgPxY2hvbk33aHK2AohoZQpri51WY9qihD085cioSXaIAwwPOUpYlZ05K72MkyqV4U3KtC8aGYL93O+sqQY3JCzohLrkmJ3JMyqRBGumRMXsmbNbberQ/rczq6Ys12jsgcrK9frKObvw==</latexit>

%3

<latexit sha1_base64="qfqUMS5f1STR0/jMc81NGElgK/g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRK1CXRjUuM8kiAkOlwCxOm02bmViENn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8eLBNfoON/Wyura+sZmZiu7vbO7t587OKzqMFYMKiwUoap7VIPgEirIUUA9UkADT0DN699N/NozKM1D+YTDCFoB7Uruc0bRSI/l9mU7l3cKTgp7mbgzkiczlNu5n2YnZHEAEpmgWjdcJ8JWQhVyJmCUbcYaIsr6tAsNQyUNQLeS9NSRfWqUju2HyjyJdqr+3UhooPUw8MxkQLGnF72J+J/XiNG/aSVcRjGCZNMgPxY2hvbk33aHK2AohoZQpri51WY9qihD085cioSXaIAwwPOUpYlZ05K72MkyqV4U3KtC8aGYL93O+sqQY3JCzohLrkmJ3JMyqRBGumRMXsmbNbberQ/rczq6Ys12jsgcrK9frKObvw==</latexit>

%3

<latexit sha1_base64="qfqUMS5f1STR0/jMc81NGElgK/g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRK1CXRjUuM8kiAkOlwCxOm02bmViENn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8eLBNfoON/Wyura+sZmZiu7vbO7t587OKzqMFYMKiwUoap7VIPgEirIUUA9UkADT0DN699N/NozKM1D+YTDCFoB7Uruc0bRSI/l9mU7l3cKTgp7mbgzkiczlNu5n2YnZHEAEpmgWjdcJ8JWQhVyJmCUbcYaIsr6tAsNQyUNQLeS9NSRfWqUju2HyjyJdqr+3UhooPUw8MxkQLGnF72J+J/XiNG/aSVcRjGCZNMgPxY2hvbk33aHK2AohoZQpri51WY9qihD085cioSXaIAwwPOUpYlZ05K72MkyqV4U3KtC8aGYL93O+sqQY3JCzohLrkmJ3JMyqRBGumRMXsmbNbberQ/rczq6Ys12jsgcrK9frKObvw==</latexit>

%3

<latexit sha1_base64="vKSg1BnL3HSaUYycSmDtzOEQhrs=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoi6JblxilEcCDZkOF5gwnTYztwohfAJb/RB3xq0f4Xf4Aw6lCwFPMsnJOffm3Dl+JLhGx/m2MmvrG5tb2e3czu7e/kH+8Kimw1gxqLJQhKrhUw2CS6giRwGNSAENfAF1f3A38+vPoDQP5ROOIvAC2pO8yxlFIz1W2qV2vuAUnQT2KnFTUiApKu38T6sTsjgAiUxQrZuuE6E3pgo5EzDJtWINEWUD2oOmoZIGoL1xcurEPjNKx+6GyjyJdqL+3RjTQOtR4JvJgGJfL3sz8T+vGWP3xhtzGcUIks2DurGwMbRn/7Y7XAFDMTKEMsXNrTbrU0UZmnYWUiS8REOEIV4kLEnMmZbc5U5WSe2y6F4VSw+lQvk27StLTsgpOScuuSZlck8qpEoY6ZEpeSVv1tR6tz6sz/loxkp3jskCrK9frkibwA==</latexit>

%4<latexit sha1_base64="vKSg1BnL3HSaUYycSmDtzOEQhrs=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoi6JblxilEcCDZkOF5gwnTYztwohfAJb/RB3xq0f4Xf4Aw6lCwFPMsnJOffm3Dl+JLhGx/m2MmvrG5tb2e3czu7e/kH+8Kimw1gxqLJQhKrhUw2CS6giRwGNSAENfAF1f3A38+vPoDQP5ROOIvAC2pO8yxlFIz1W2qV2vuAUnQT2KnFTUiApKu38T6sTsjgAiUxQrZuuE6E3pgo5EzDJtWINEWUD2oOmoZIGoL1xcurEPjNKx+6GyjyJdqL+3RjTQOtR4JvJgGJfL3sz8T+vGWP3xhtzGcUIks2DurGwMbRn/7Y7XAFDMTKEMsXNrTbrU0UZmnYWUiS8REOEIV4kLEnMmZbc5U5WSe2y6F4VSw+lQvk27StLTsgpOScuuSZlck8qpEoY6ZEpeSVv1tR6tz6sz/loxkp3jskCrK9frkibwA==</latexit>

%4

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2
<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3
<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4
<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5
<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6
<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6

<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6

<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="/bPOW8lZ0p+FWbzGyzL6Dez5orY=">AAACDHicbVDLSsNAFJ34rPVVdekmWAQXUhIpKq6Kbly2YB/QhjKZ3rZDJ5Mwc6Mtob/QrX6IO3HrP/gd/oBJmoVtPTBwOOdezp3jBoJrtKxvY219Y3NrO7eT393bPzgsHB03tB8qBnXmC1+1XKpBcAl15CigFSigniug6Y4eEr/5DEpzXz7hJADHowPJ+5xRTKRa177rFopWyUphrhI7I0WSodot/HR6Pgs9kMgE1bptWwE6EVXImYBpvhNqCCgb0QG0YyqpB9qJ0lun5nms9My+r+In0UzVvxsR9bSeeG486VEc6mUvEf/z2iH2b52IyyBEkGwe1A+Fib6ZfNzscQUMxSQmlCke32qyIVWUYVzPQoqEl2CMMMbLlKWJ+bgle7mTVdK4KtnXpXKtXKzcZ33lyCk5IxfEJjekQh5JldQJI0MyI6/kzZgZ78aH8TkfXTOynROyAOPrFzBbnAI=</latexit>

&1 :

Figure 4.4: Separating &1 into HG clauses

Proof. Suppose � ∨ !(G, H) ∨� is an indecomposable query clause as the main
premise of the QuerySepTwo rule. Further suppose applying the Query-
SepTwo rule to � ∨ !(G, H) ∨ � derives ¬%(G) ∨ � and � ∨ !(G, H) ∨ %(G).

First consider ¬%(G) ∨ �. As � is a query clause, ¬%(G) ∨ � is a query
clause. By the facts that all variables in ¬%(G) ∨� occur in � ∨ !(G, H) ∨�, but
¬%(G) ∨ � does not contain H, ¬%(G) ∨ � is less wide than � ∨ !(G, H) ∨ �.

Next consider � ∨ !(G, H) ∨ %(G). By 2. in the QuerySepTwo rule, the
variables in !(G, H) are the same as the variables in � ∨ !(G, H) ∨ %(G). Then
� ∨ !(G, H) ∨ %(G) is flat with a guard !(G, H). It is an HG clause. We prove that
� ∨ !(G, H) ∨ %(G) is less wide than � ∨ !(G, H) ∨ � by contradiction. Suppose
var(�) ⊆ G ∪ H. By 2. in the QuerySepTwo rule, var(� ∨ �) ⊆ var(!). This
contradicts that G are chained variables. Hence, � contains more types of
variables than G ∪ H. �

ByLemmas4.20–4.21, applying theQuerySepOne andQuerySepTwo rules
to a query clause derives a new query clause, therefore one can recursively
apply these separation rules to a query clause. We use Q-Sep to denote this
procedure. For example, applying the Q-Sep procedure to

&1 = ¬�1(G1, G2) ∨ ¬�2(G2, G3) ∨ ¬�3(G3, G4, G5) ∨ ¬�4(G5, G6) ∨ ¬�5(G3, G4),

4.5. HANDLING QUERY CLAUSES 95

……
<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2
<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3
<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6

<latexit sha1_base64="zfrlTrZw7CcBqG1dTBP+2CJyk60=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGIEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcEuF4kMxXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8Kib4A==</latexit>G6

<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="KZhD+PqJJ6bqblY7f+QZTOtLq5o=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdcvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv8/Kb4g==</latexit>G8

<latexit sha1_base64="KZhD+PqJJ6bqblY7f+QZTOtLq5o=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdcvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv8/Kb4g==</latexit>G8

<latexit sha1_base64="buUBWYc9m2KSCBnbS7BLX38ZRZw=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKO5I3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtra1vbG5tZ3ayu3v7B4e5o+OaDmPFoMpCEaqGTzUILqGKHAU0IgU08AXU/cHdzK8/g9I8lE84isALaE/yLmcUjfQ4bN+2c3mn4CSwV4mbkjxJUWnnflqdkMUBSGSCat10nQi9MVXImYBJthVriCgb0B40DZU0AO2Nk1Mn9rlROnY3VOZJtBP178aYBlqPAt9MBhT7etmbif95zRi7JW/MZRQjSDYP6sbCxtCe/dvucAUMxcgQyhQ3t9qsTxVlaNpZSJHwEg0RhniZsCQxa1pylztZJbWrgntdKD4U8+VS2leGnJIzckFcckPK5J5USJUw0iNT8krerKn1bn1Yn/PRNSvdOSELsL5+AfWXm+M=</latexit>G9

<latexit sha1_base64="buUBWYc9m2KSCBnbS7BLX38ZRZw=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKO5I3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtra1vbG5tZ3ayu3v7B4e5o+OaDmPFoMpCEaqGTzUILqGKHAU0IgU08AXU/cHdzK8/g9I8lE84isALaE/yLmcUjfQ4bN+2c3mn4CSwV4mbkjxJUWnnflqdkMUBSGSCat10nQi9MVXImYBJthVriCgb0B40DZU0AO2Nk1Mn9rlROnY3VOZJtBP178aYBlqPAt9MBhT7etmbif95zRi7JW/MZRQjSDYP6sbCxtCe/dvucAUMxcgQyhQ3t9qsTxVlaNpZSJHwEg0RhniZsCQxa1pylztZJbWrgntdKD4U8+VS2leGnJIzckFcckPK5J5USJUw0iNT8krerKn1bn1Yn/PRNSvdOSELsL5+AfWXm+M=</latexit>G9

<latexit sha1_base64="X7chus/1gv5fF8TlNl18AAQWau4=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNISosYV0Y1LSOSRQEOmwwUmTKfNzK1CCL/AVj/EnXHrP/gd/oBt6ULAk0xycs69OXeOGwiu0bK+jczG5tb2TnY3t7d/cHiUPz5paD9UDOrMF75quVSD4BLqyFFAK1BAPVdA0x09xH7zGZTmvnzCSQCORweS9zmjGEu1bumumy9YRSuBuU7slBRIimo3/9Pp+Sz0QCITVOu2bQXoTKlCzgTMcp1QQ0DZiA6gHVFJPdDONLl1Zl5ESs/s+yp6Es1E/bsxpZ7WE8+NJj2KQ73qxeJ/XjvE/q0z5TIIESRbBPVDYaJvxh83e1wBQzGJCGWKR7eabEgVZRjVs5Qi4SUYI4zxKmFJYi5qyV7tZJ00SkX7uliulQuV+7SvLDkj5+SS2OSGVMgjqZI6YWRI5uSVvBlz4934MD4Xoxkj3TklSzC+fgEyAZwD</latexit>

&2 :
<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1

<latexit sha1_base64="qTyI13UKu4GFR2Z9eNMWpVFUx3A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebltvK5Z2Ck8JeJu6M5MkM5Vbup9mOWBKCRCao1g3XidEbUoWcCRhlm4mGmLIe7UDDUElD0N4wPXVknxqlbQeRMk+inap/N4Y01HoQ+mYypNjVi95E/M9rJBhce0Mu4wRBsmlQkAgbI3vyb7vNFTAUA0MoU9zcarMuVZShaWcuRcJL3Efo43nK0sSsacld7GSZVC8K7mWh+FDMl25nfWXIMTkhZ8QlV6RE7kmZVAgjHTImr+TNGlvv1of1OR1dsWY7R2QO1tcvkJCbrg==</latexit>

�1

<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2

<latexit sha1_base64="MYtEao1Fuq1F0USmiYpQQF354jA=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIeoSdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Nr6xuZWejuzs7u3f5A9PKrqIFIMKiwQgap7VIPgEirIUUA9VEB9T0DNG9zN/NozKM0D+YSjEFo+7Une5YyikR5v2oV2NufknRj2KnETkiMJyu3sT7MTsMgHiUxQrRuuE2JrTBVyJmCSaUYaQsoGtAcNQyX1QbfG8akT+8woHbsbKPMk2rH6d2NMfa1HvmcmfYp9vezNxP+8RoTd69aYyzBCkGwe1I2EjYE9+7fd4QoYipEhlClubrVZnyrK0LSzkCLhJRwiDPEiZnFixrTkLneySqqFvHuZLz4Uc6XbpK80OSGn5Jy45IqUyD0pkwphpEem5JW8WVPr3fqwPuejKSvZOSYLsL5+AZI1m68=</latexit>

�2

<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="v1/wn6eKFQ2nt5rHRwxb/47cGek=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEnWJunGJUT4JENLTPKBDT8+k+41CCEdgqwdxZ9x6CM/hBWyGWQhYSSeVqvdSr8sLBdfoON9WamV1bX0jvZnZ2t7Z3cvuH1R0ECkGZRaIQNU8qkFwCWXkKKAWKqC+J6Dq9e+mfvUZlOaBfMJhCE2fdiXvcEbRSI83rYtWNufknRj2MnETkiMJSq3sT6MdsMgHiUxQreuuE2JzRBVyJmCcaUQaQsr6tAt1QyX1QTdH8alj+8QobbsTKPMk2rH6d2NEfa2HvmcmfYo9vehNxf+8eoSd6+aIyzBCkGwW1ImEjYE9/bfd5goYiqEhlClubrVZjyrK0LQzlyLhJRwgDPAsZnFixrTkLnayTCrnefcyX3go5Iq3SV9pckSOySlxyRUpkntSImXCSJdMyCt5sybWu/Vhfc5GU1ayc0jmYH39ApPam7A=</latexit>

�3

<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4

<latexit sha1_base64="q/vUF5db6xxT8cpccN5BUxPzW/M=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqEvUjUuM8kigIdPhFiZMp83MrUIIn8BWP8SdcetH+B3+gENhIeBJJjk5596cO8ePBdfoON/Wyura+sZmZiu7vbO7t587OKzqKFEMKiwSkar7VIPgEirIUUA9VkBDX0DN791N/NozKM0j+YSDGLyQdiQPOKNopMebVrGVyzsFJ4W9TNwZyZMZyq3cT7MdsSQEiUxQrRuuE6M3pAo5EzDKNhMNMWU92oGGoZKGoL1heurIPjVK2w4iZZ5EO1X/bgxpqPUg9M1kSLGrF72J+J/XSDC49oZcxgmCZNOgIBE2Rvbk33abK2AoBoZQpri51WZdqihD085cioSXuI/Qx/OUpYlZ05K72MkyqV4U3MtC8aGYL93O+sqQY3JCzohLrkiJ3JMyqRBGOmRMXsmbNbberQ/rczq6Ys12jsgcrK9flX+bsQ==</latexit>

�4

<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5

<latexit sha1_base64="eQItKmPk5MyexZFCqg/VDhY3hfQ=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwc8SdeMSo3wSIKSneUCHnp5J9xuFEI7AVg/izrj1EJ7DC9gMsxCwkk4qVe+lXpcXCq7Rcb6t1Mrq2vpGejOztb2zu5fdP6joIFIMyiwQgap5VIPgEsrIUUAtVEB9T0DV699N/eozKM0D+YTDEJo+7Ure4YyikR5vWhetbM7JOzHsZeImJEcSlFrZn0Y7YJEPEpmgWtddJ8TmiCrkTMA404g0hJT1aRfqhkrqg26O4lPH9olR2nYnUOZJtGP178aI+loPfc9M+hR7etGbiv959Qg7180Rl2GEINksqBMJGwN7+m+7zRUwFENDKFPc3GqzHlWUoWlnLkXCSzhAGOBZzOLEjGnJXexkmVTO8+5lvvBQyBVvk77S5Igck1PikitSJPekRMqEkS6ZkFfyZk2sd+vD+pyNpqxk55DMwfr6BZckm7I=</latexit>

�5

<latexit sha1_base64="eNcfMuVbe1BUMwERd4RB7GIg6q0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGH0uiG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6tldW19Y3NzFZ2e2d3bz93cFjVYawYVFgoQlX3qAbBJVSQo4B6pIAGnoCa17+b+LVnUJqH8gmHEbQC2pXc54yikR7L7ct2Lu8UnBT2MnFnJE9mKLdzP81OyOIAJDJBtW64ToSthCrkTMAo24w1RJT1aRcahkoagG4l6akj+9QoHdsPlXkS7VT9u5HQQOth4JnJgGJPL3oT8T+vEaN/00q4jGIEyaZBfixsDO3Jv+0OV8BQDA2hTHFzq816VFGGpp25FAkv0QBhgOcpSxOzpiV3sZNlUr0ouFeF4kMxX7qd9ZUhx+SEnBGXXJMSuSdlUiGMdMmYvJI3a2y9Wx/W53R0xZrtHJE5WF+/r+2bwQ==</latexit>

%5

<latexit sha1_base64="eNcfMuVbe1BUMwERd4RB7GIg6q0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGH0uiG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6tldW19Y3NzFZ2e2d3bz93cFjVYawYVFgoQlX3qAbBJVSQo4B6pIAGnoCa17+b+LVnUJqH8gmHEbQC2pXc54yikR7L7ct2Lu8UnBT2MnFnJE9mKLdzP81OyOIAJDJBtW64ToSthCrkTMAo24w1RJT1aRcahkoagG4l6akj+9QoHdsPlXkS7VT9u5HQQOth4JnJgGJPL3oT8T+vEaN/00q4jGIEyaZBfixsDO3Jv+0OV8BQDA2hTHFzq816VFGGpp25FAkv0QBhgOcpSxOzpiV3sZNlUr0ouFeF4kMxX7qd9ZUhx+SEnBGXXJMSuSdlUiGMdMmYvJI3a2y9Wx/W53R0xZrtHJE5WF+/r+2bwQ==</latexit>

%5

<latexit sha1_base64="fCDkLi6ubvYCmykGsRuE49/CrjI=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNIagi6JblxiIo8EGjIdLjBhOm1mbhXS8Ats9UPcGbf+g9/hD9iWLgQ8ySQn59ybc+e4geAaLevbyG1sbm3v5HcLe/sHh0fF45Om9kPFoMF84au2SzUILqGBHAW0AwXUcwW03PF94reeQWnuyyecBuB4dCj5gDOKiVTvVQu9YskqWynMdWJnpEQy1HvFn27fZ6EHEpmgWndsK0Anogo5EzArdEMNAWVjOoROTCX1QDtReuvMvIiVvjnwVfwkmqn6dyOintZTz40nPYojveol4n9eJ8TBrRNxGYQIki2CBqEw0TeTj5t9roChmMaEMsXjW002oooyjOtZSpHwEkwQJniVsjQxacle7WSdNK/LdrVceayUandZX3lyRs7JJbHJDamRB1InDcLIiMzJK3kz5sa78WF8LkZzRrZzSpZgfP0C5/Kb1g==</latexit>

%6

<latexit sha1_base64="fCDkLi6ubvYCmykGsRuE49/CrjI=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNIagi6JblxiIo8EGjIdLjBhOm1mbhXS8Ats9UPcGbf+g9/hD9iWLgQ8ySQn59ybc+e4geAaLevbyG1sbm3v5HcLe/sHh0fF45Om9kPFoMF84au2SzUILqGBHAW0AwXUcwW03PF94reeQWnuyyecBuB4dCj5gDOKiVTvVQu9YskqWynMdWJnpEQy1HvFn27fZ6EHEpmgWndsK0Anogo5EzArdEMNAWVjOoROTCX1QDtReuvMvIiVvjnwVfwkmqn6dyOintZTz40nPYojveol4n9eJ8TBrRNxGYQIki2CBqEw0TeTj5t9roChmMaEMsXjW002oooyjOtZSpHwEkwQJniVsjQxacle7WSdNK/LdrVceayUandZX3lyRs7JJbHJDamRB1InDcLIiMzJK3kz5sa78WF8LkZzRrZzSpZgfP0C5/Kb1g==</latexit>

%6

<latexit sha1_base64="Of/fTamCtczBhqX+leNoCrtgOe0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGiEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLF74425jGIEyeZB3VjYGNqzf9sdroChGBlCmeLmVpv1qaIMTTsLKRJeoiHCEC8TliRmTUvucierpHZVcK8LxYdivnyb9pUhp+SMXBCXlEiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvszebww==</latexit>

%7

<latexit sha1_base64="Of/fTamCtczBhqX+leNoCrtgOe0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGiEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLF74425jGIEyeZB3VjYGNqzf9sdroChGBlCmeLmVpv1qaIMTTsLKRJeoiHCEC8TliRmTUvucierpHZVcK8LxYdivnyb9pUhp+SMXBCXlEiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvszebww==</latexit>

%7

<latexit sha1_base64="VmJ1oNeLocNyfQGAi6qX+4X924A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLFb8sZcRjGCZPOgbixsDO3Zv+0OV8BQjAyhTHFzq836VFGGpp2FFAkv0RBhiJcJSxKzpiV3uZNVUrsquNeF4kMxX75N+8qQU3JGLohLbkiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvtNybxA==</latexit>

%8

<latexit sha1_base64="VmJ1oNeLocNyfQGAi6qX+4X924A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLFb8sZcRjGCZPOgbixsDO3Zv+0OV8BQjAyhTHFzq836VFGGpp2FFAkv0RBhiJcJSxKzpiV3uZNVUrsquNeF4kMxX75N+8qQU3JGLohLbkiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvtNybxA==</latexit>

%8

<latexit sha1_base64="D4ULSKRh2QEQQWY9nJyWi4MCHW4=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSG+NgR3bjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtrayurW9sZray2zu7e/u5g8OqDmPFoMJCEaq6RzUILqGCHAXUIwU08ATUvP7dxK89g9I8lE84jKAV0K7kPmcUjfRYbt+0c3mn4KSwl4k7I3kyQ7md+2l2QhYHIJEJqnXDdSJsJVQhZwJG2WasIaKsT7vQMFTSAHQrSU8d2adG6dh+qMyTaKfq342EBloPA89MBhR7etGbiP95jRj961bCZRQjSDYN8mNhY2hP/m13uAKGYmgIZYqbW23Wo4oyNO3MpUh4iQYIAzxPWZqYNS25i50sk+pFwb0sFB+K+dLtrK8MOSYn5Iy45IqUyD0pkwphpEvG5JW8WWPr3fqwPqejK9Zs54jMwfr6BbaBm8U=</latexit>

%9

<latexit sha1_base64="D4ULSKRh2QEQQWY9nJyWi4MCHW4=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSG+NgR3bjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtrayurW9sZray2zu7e/u5g8OqDmPFoMJCEaq6RzUILqGCHAXUIwU08ATUvP7dxK89g9I8lE84jKAV0K7kPmcUjfRYbt+0c3mn4KSwl4k7I3kyQ7md+2l2QhYHIJEJqnXDdSJsJVQhZwJG2WasIaKsT7vQMFTSAHQrSU8d2adG6dh+qMyTaKfq342EBloPA89MBhR7etGbiP95jRj961bCZRQjSDYN8mNhY2hP/m13uAKGYmgIZYqbW23Wo4oyNO3MpUh4iQYIAzxPWZqYNS25i50sk+pFwb0sFB+K+dLtrK8MOSYn5Iy45IqUyD0pkwphpEvG5JW8WWPr3fqwPqejK9Zs54jMwfr6BbaBm8U=</latexit>

%9

Figure 4.5: Separates &2 into HG clauses and an indecomposable CO clause

derives HG clauses:

¬�1(G1, G2) ∨ %2(G2), ¬�3(G3, G4) ∨ ¬�5(G3, G4, G5) ∨ ¬%4(G3) ∨ %3(G5),
¬�4(G5, G6) ∨ ¬%4(G5), ¬�2(G2, G3) ∨ ¬%2(G2) ∨ %3(G3).

The Q-Sep procedure separates

&2 = ¬�1(G1, G2, G3) ∨ ¬�2(G3, G4, G5) ∨ ¬�3(G5, G6, G7)∨
¬�4(G1, G7, G8) ∨ ¬�5(G3, G4, G9),

into HG clauses:

¬�(G1, G2, G3) ∨ %5(G1, G3), �(G1, G7, G8) ∨ %6(G1, G7),
�(G5, G6, G7) ∨ %7(G5, G7), ¬�(G3, G4, G9) ∨ %8(G3, G4),
¬�(G3, G4, G5) ∨ ¬%8(G3, G4) ∨ %9(G3, G5)

and a CO clause ¬%5(G1, G3) ∨ ¬%9(G3, G5) ∨ ¬%7(G5, G7) ∨ ¬%6(G1, G7).
Figures 4.4 and 4.5 show how the Q-Sep procedure separates &1 into HG

clauses, and separates &2 into a CO clause and HG clauses, respectively. The
produced clauses are framed in the coloured box.

The application of Q-Sep to a query clause terminates if the derived (or
given) query clause & is indecomposable and contains either only chained

4.5. HANDLING QUERY CLAUSES 96

variables or only isolated variables, namely an indecomposable CO clause or
an indecomposable IO clause, respectively.

Analysis of indecomposable IO clauses andHG clauses reveals the following
property:

Lemma 4.22. An indecomposable IO clause is an HG clause.

Proof. Suppose & is an IO clause. Recall that if & contains two surface literals
!1 and !2 such that var(!1) ≠ var(!2) and G ∈ var(!1) ∩ var(!2), then G is a
chained variable with respect to &. Since & contains no chained variables, it
is the case that either i) & contains only one surface literal, or ii) & contains
multiple surface literal and each pair !1 and !2 of surface literals satisfies either
var(!1) = var(!2) or var(!1) ∩ var(!2) = ∅. We distinguish these two cases:

i): An indecomposable IO clause & is flat, negative and contains only one
surface literal !. By the definition of surface literal, var(!) = var(&). Hence, &
is an HG clause with a guard !.

ii): If in &, any pair !1 and !2 of surface literals satisfies var(!1) = var(!2),
then it is the same case as i), except that there are guards !1 and !2. If there
exists a pair !1 and !2 of surface literals satisfies var(!8) ∩ var(! 9) = ∅, then &
is decomposable. This contradicts the assumption. �

Next we give the result of applying theQ-Sep procedure to query clauses.

Lemma 4.23. Applying the Q-Sep procedure to a query clause replaces that query
clause by less wide HG clauses (and an indecomposable CO clause).

Proof. By Lemmas 4.20–4.22. �

Note that depending on surface literals one picks, applying the Q-Sep
procedure to a query clause may derive different sets of HG clauses (and an
indecomposable CO clause).

If we consider a query clause as a hypergraph, then the Q-Sep procedure
‘cuts the branches off’ the hypergraph. Interestingly, the Q-Sep procedure
handles query clauses similarly as the so-called GYO-reduction in [YO79]. Us-
ing the notion of cyclic queries in [BFMY83], GYO-reduction identifies cyclic
conjunctive queries by recursively removing branches (‘ears’) in the hyper-
graph of queries, and it reduces a conjunctive query to an empty formula if
the query is acyclic. In our definition of query clauses, an ‘ear’ map to the sur-
face literal containing both isolated and chained variables, and by the Q-Sep

4.5. HANDLING QUERY CLAUSES 97

procedure, these surface literals are removed from query clauses. Hence, one
can regard the Q-Sep procedure (to query clauses) as an implementation of
GYO-reduction (to conjunctive queries). The fact that an acyclic conjunctive
query can be expressed as guarded formulas is also given in [FFG02, GLS03].

Cyclicity of a query clause can be checked by applying theQ-Sep procedure
to it. This is formally stated as:

Lemma 4.24. Applying the Q-Sep procedure to a query clause & replaces it by

• HG clauses if & is acyclic,
• HG clauses and an indecomposable CO clause if & is cyclic.

Proof. By the definition of GYO-reduction in [YO79]. �

By Lemma 4.24 and the facts the Q-Sep procedure separates &1 into HG
clauses and separates &2 into HG clauses and an indecomposable CO clause,
&1 and &2 are identified as an acyclic query and a cyclic query, respectively.

By Theorem 4.4, the T-InfGQ system decides the guarded clausal class. By
Lemma 4.23, query clauses can be replaced by an equisatisfiable set of HG
clauses and an indecomposable CO clause. Hence, the only new class of clauses
that we cannot handle are indecomposable CO clauses. In the next section, we
give techniques to handle these clauses.

Handling indecomposable CO clauses

In this section, we first show how the top-variable resolution rule solves the
termdepth increase problem in reasoningwith indecomposableCO clauses and
guarded clauses. As these top-variable resolvents are not necessarily in the GQ
clausal class, we devise a novel form of structure transformation to handle
these resolvents. For readability, in the following sections we sometimes refer
indecomposable CO clauses as CO clauses.

In an indecomposable CO clause such as

&3 = ¬%5(G1, G3) ∨ ¬%9(G3, G5) ∨ ¬%7(G5, G7) ∨ ¬%6(G1, G7),

variable G1, G3, G5, G7 forms a ’cycle’ through literals %5, %9, %7, %6, as shown in
the top-right corner of Figure 4.5. If one applies the Res rule, or the binary
Res rule, to &3 and guarded clauses, nested compound-terms may occur in

4.5. HANDLING QUERY CLAUSES 98

the conclusions. For example, consider a GQ clausal set # containing &3 and
guarded clauses:

�1 = %5(G, 6(G, H, I1, I2))∗ ∨ ¬�1(G, H, I1, I2),
�2 = ¬�2(G, H, I1, I2) ∨ %9(6(G, H, I1, I2), G)∗ ∨ �(ℎ(G, H, I1, I2)),
�3 = %7(5 (G), G)∗ ∨ ¬�3(G),
�4 = %6(5 (G), G)∗ ∨ ¬�4(G).

Suppose one applies theRes rule to�1, . . . , �4 as the sidepremises and&3 (with
all negative literals selected) as the main premise, deriving the resolvent:

'1 = ¬�3(G) ∨ ¬�4(G)∨
¬�1(5 (G), H, I1, I2) ∨ ¬�2(5 (G), H, I1, I2) ∨ �(ℎ(5 (G), H, I1, I2)).

A nested compound-term literal �(ℎ(5 (G), H, I1, I2)) occurs in the resolvent '1.
Next, suppose one applies the binary Res rule to clauses in # . Applying the
binary Res rule to �3 and &3 (with ¬%7(G5, G7) selected) derives

'2 = ¬%5(G1, G3) ∨ ¬%9(G3, 5 (G)) ∨ ¬�3(G) ∨ ¬%6(G1, G).

Then apply the binary Res rule to �2 and '2 (with ¬%9(G3, 5 (G)) selected)
derives

'3 = ¬%5(G1, G3)∨
¬�3(G) ∨ ¬%6(G1, G) ∨ ¬�2(5 (G), H, I1, I2) ∨ �(ℎ(5 (G), H, I1, I2)),

in which, again, the nested compound-term literal �(ℎ(5 (G), H, I1, I2)) occurs.
Now we show how the top-variable technique tackles this term depth in-

crease problem. ByAlgorithms 1–2, the top-variable resolution rule is applied
to &3 and �1 . . . , �4 as follows.

1. The PResT(&3, #) function first selects all negative literals in&3, and then
finds the Res side premises of &3, namely �1, . . . , �4.

2. The mgu of �1, . . . , �4 and &3 is

{G1 ↦→ 5 (G), G5 ↦→ 5 (G), G7 ↦→ G, G3 ↦→ 6(5 (G), H, I1, I2)}

4.5. HANDLING QUERY CLAUSES 99

for variables in &3, hence, G3 is the top variable.

3. PResT(&3, #) then returns ¬%5(G1, G3) and ¬%9(G3, G5) as top-variable
literals. An top-variable resolution inference is performed on &3, �1

and �2, deriving the top-variable resolvent

' = ¬�1(G, H, I1, I2) ∨ ¬�2(G, H, I1, I2)∨
�(ℎ(G, H, I1, I2))∗ ∨ ¬%7(G, G7) ∨ ¬%6(G, G7),

which does not contain any nested compound terms.

4. There is nopossible inference for clauses in#∪', hence#∪' is saturated.

Although the top-variable resolvent ' does not contain nested compound
terms, ' is wider than any of its premise �1, . . . , �4, &3; moreover it is even
not a GQ clause. Using a new predicate symbol %8 (and a respective literal
¬%8(G, H, I1, I2)) to define¬�1(G, H, I1, I2)∨¬�2(G, H, I1, I2)∨�(ℎ(G, H, I1, I2)),
the top-variable resolvent ' is replaced by its equisatisfiable set of GQ clauses:

�5 = ¬�1(G, H, I1, I2) ∨ ¬�2(G, H, I1, I2) ∨ �(ℎ(G, H, I1, I2))∗ ∨ %8(G, H, I1, I2),
&4 = ¬%7(G, G7) ∨ ¬%6(G, G7) ∨ ¬%8(G, H, I1, I2).

Note that �5 is a guarded clause and &4 is a query clause. Since &4 is an
indecomposable query clause, we can apply the Q-Sep procedure to it (using
a new predicate symbol %10), to replace it by HG clauses:

�6 = ¬%7(G, G7) ∨ ¬%6(G, G7) ∨ ¬%10(G),
�7 = ¬%8(G, H, I1, I2) ∨ %10(G).

Figure 4.6 shows how the Q-Sep procedure separates &4 into Horn guarded
clauses �6 and �7, and The produced clauses are framed in the coloured box.
Then the top-variable resolvent ' is replaced by guarded clauses �5, �6 and �7.
To sum up, given an GQ clausal set {&3, �1, . . . , �4}, the InfGQ system derives
a saturated GQ clausal set {&3, �1, . . . , �7}.

Transforming the top-variable resolvent (of an indecomposable CO clause
and a guarded clausal set) to GQ clauses is not straightforward. We use no-
tions connected top variables and closed top-variable subclauses to find disjunctively
connected GQ subclauses in the top-variable resolvents.

4.5. HANDLING QUERY CLAUSES 100

<latexit sha1_base64="g/OUfc3hOyvcxF5ADkKXN1BIKIE=">AAACDHicbVDLSsNAFJ34rPVVdekmWAQXUhIpKq6Kbly2YB/QhjKZ3rZDJ5Mwc6Mtob/QrX6IO3HrP/gd/oBJmoVtPTBwOOdezp3jBoJrtKxvY219Y3NrO7eT393bPzgsHB03tB8qBnXmC1+1XKpBcAl15CigFSigniug6Y4eEr/5DEpzXz7hJADHowPJ+5xRTKRat3zXLRStkpXCXCV2RookQ7Vb+On0fBZ6IJEJqnXbtgJ0IqqQMwHTfCfUEFA2ogNox1RSD7QTpbdOzfNY6Zl9X8VPopmqfzci6mk98dx40qM41MteIv7ntUPs3zoRl0GIINk8qB8KE30z+bjZ4woYiklMKFM8vtVkQ6oow7iehRQJL8EYYYyXKUsT83FL9nInq6RxVbKvS+VauVi5z/rKkVNyRi6ITW5IhTySKqkTRoZkRl7JmzEz3o0P43M+umZkOydkAcbXLzVNnAU=</latexit>

&4 : <latexit sha1_base64="9TUjxyfUvptXp4DWTU0aEllSKg4=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNIagsYVkY1LTOSRQEOmwwUmTKfNzK1CGn6BrX6IO+PWf/A7/AHbwkLAk0xycs69OXeOGwiu0bK+jczG5tb2TnY3t7d/cHiUPz5paD9UDOrMF75quVSD4BLqyFFAK1BAPVdA0x1VE7/5DEpzXz7hJADHowPJ+5xRTKRqt3zXzResopXCXCf2ghTIArVu/qfT81nogUQmqNZt2wrQiahCzgRMc51QQ0DZiA6gHVNJPdBOlN46NS9ipWf2fRU/iWaq/t2IqKf1xHPjSY/iUK96ifif1w6xf+tEXAYhgmTzoH4oTPTN5ONmjytgKCYxoUzx+FaTDamiDON6llIkvARjhDFepSxNzMUt2audrJPGddEuF0uPpULlftFXlpyRc3JJbHJDKuSB1EidMDIkM/JK3oyZ8W58GJ/z0Yyx2DklSzC+fgEhaZv5</latexit>

⇠6 :

<latexit sha1_base64="v4zDiS2C1IpBj/wD1+ScW50z1xY=">AAACDHicbVDLTsJAFJ3iC/GFunTTSExcGNIaIsYVkY1LTOSRQEOmwwUmTKfNzK1CGn6BrX6IO+PWf/A7/AHbwkLAk0xycs69OXeOGwiu0bK+jczG5tb2TnY3t7d/cHiUPz5paD9UDOrMF75quVSD4BLqyFFAK1BAPVdA0x1VE7/5DEpzXz7hJADHowPJ+5xRTKRqt3zXzResopXCXCf2ghTIArVu/qfT81nogUQmqNZt2wrQiahCzgRMc51QQ0DZiA6gHVNJPdBOlN46NS9ipWf2fRU/iWaq/t2IqKf1xHPjSY/iUK96ifif1w6xf+tEXAYhgmTzoH4oTPTN5ONmjytgKCYxoUzx+FaTDamiDON6llIkvARjhDFepSxNzMUt2audrJPGddG+KZYeS4XK/aKvLDkj5+SS2KRMKuSB1EidMDIkM/JK3oyZ8W58GJ/z0Yyx2DklSzC+fgEjD5v6</latexit>

⇠7 :<latexit sha1_base64="6JhyYElV3TKib7cjt6fB7vlBlcg=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGoEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLF74425jGIEyeZB3VjYGNqzf9sdroChGBlCmeLmVpv1qaIMTTsLKRJeoiHCEC8TliRmTUvucierpHZVcEuF4kMxX75N+8qQU3JGLohLrkmZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvsZKbwg==</latexit>

%6

<latexit sha1_base64="6JhyYElV3TKib7cjt6fB7vlBlcg=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGoEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLF74425jGIEyeZB3VjYGNqzf9sdroChGBlCmeLmVpv1qaIMTTsLKRJeoiHCEC8TliRmTUvucierpHZVcEuF4kMxX75N+8qQU3JGLohLrkmZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvsZKbwg==</latexit>

%6

<latexit sha1_base64="Of/fTamCtczBhqX+leNoCrtgOe0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGiEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLF74425jGIEyeZB3VjYGNqzf9sdroChGBlCmeLmVpv1qaIMTTsLKRJeoiHCEC8TliRmTUvucierpHZVcK8LxYdivnyb9pUhp+SMXBCXlEiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvszebww==</latexit>

%7
<latexit sha1_base64="Of/fTamCtczBhqX+leNoCrtgOe0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGiEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLF74425jGIEyeZB3VjYGNqzf9sdroChGBlCmeLmVpv1qaIMTTsLKRJeoiHCEC8TliRmTUvucierpHZVcK8LxYdivnyb9pUhp+SMXBCXlEiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvszebww==</latexit>

%7

<latexit sha1_base64="VmJ1oNeLocNyfQGAi6qX+4X924A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLFb8sZcRjGCZPOgbixsDO3Zv+0OV8BQjAyhTHFzq836VFGGpp2FFAkv0RBhiJcJSxKzpiV3uZNVUrsquNeF4kMxX75N+8qQU3JGLohLbkiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvtNybxA==</latexit>

%8

<latexit sha1_base64="VmJ1oNeLocNyfQGAi6qX+4X924A=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKEuiG5cY5ZFAQ6bDBSZMp83MrUIIn8BWP8SdcetH+B3+gEPpQsCTTHJyzr05d44fCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqQbBJVSRo4BGpIAGvoC6P7ib+fVnUJqH8glHEXgB7Une5YyikR4r7VI7l3cKTgJ7lbgpyZMUlXbup9UJWRyARCao1k3XidAbU4WcCZhkW7GGiLIB7UHTUEkD0N44OXVinxulY3dDZZ5EO1H/boxpoPUo8M1kQLGvl72Z+J/XjLFb8sZcRjGCZPOgbixsDO3Zv+0OV8BQjAyhTHFzq836VFGGpp2FFAkv0RBhiJcJSxKzpiV3uZNVUrsquNeF4kMxX75N+8qQU3JGLohLbkiZ3JMKqRJGemRKXsmbNbXerQ/rcz66ZqU7J2QB1tcvtNybxA==</latexit>

%8

<latexit sha1_base64="Z9YymlT2fwWoPaF7Ht1fnLOxz1c=">AAACDnicbVDLTsJAFJ3iC/GFunTTSExcGNIaoi6JblxiIo8EGjIdLjAynTYztwpp+Ae2+iHujFt/we/wBxwKCwFPMsnJOffm3Dl+JLhGx/m2MmvrG5tb2e3czu7e/kH+8Kimw1gxqLJQhKrhUw2CS6giRwGNSAENfAF1f3A39evPoDQP5SOOIvAC2pO8yxlFI9Uq7cR1xu18wSk6KexV4s5JgcxRaed/Wp2QxQFIZIJq3XSdCL2EKuRMwDjXijVElA1oD5qGShqA9pL02rF9ZpSO3Q2VeRLtVP27kdBA61Hgm8mAYl8ve1PxP68ZY/fGS7iMYgTJZkHdWNgY2tOv2x2ugKEYGUKZ4uZWm/WpogxNQQspEl6iIcIQL1KWJuZMS+5yJ6ukdll0r4qlh1KhfDvvK0tOyCk5Jy65JmVyTyqkShh5IhPySt6sifVufVifs9GMNd85Jguwvn4BA3+dAw==</latexit>

%10

<latexit sha1_base64="Z9YymlT2fwWoPaF7Ht1fnLOxz1c=">AAACDnicbVDLTsJAFJ3iC/GFunTTSExcGNIaoi6JblxiIo8EGjIdLjAynTYztwpp+Ae2+iHujFt/we/wBxwKCwFPMsnJOffm3Dl+JLhGx/m2MmvrG5tb2e3czu7e/kH+8Kimw1gxqLJQhKrhUw2CS6giRwGNSAENfAF1f3A39evPoDQP5SOOIvAC2pO8yxlFI9Uq7cR1xu18wSk6KexV4s5JgcxRaed/Wp2QxQFIZIJq3XSdCL2EKuRMwDjXijVElA1oD5qGShqA9pL02rF9ZpSO3Q2VeRLtVP27kdBA61Hgm8mAYl8ve1PxP68ZY/fGS7iMYgTJZkHdWNgY2tOv2x2ugKEYGUKZ4uZWm/WpogxNQQspEl6iIcIQL1KWJuZMS+5yJ6ukdll0r4qlh1KhfDvvK0tOyCk5Jy65JmVyTyqkShh5IhPySt6sifVufVifs9GMNd85Jguwvn4BA3+dAw==</latexit>

%10
<latexit sha1_base64="uK9+tD0VJD0WFcDedo5PGYZmHes=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JNGQ6XGDCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+f4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWTzUILqGOHAW0IgU08AU0/dHD3G8+g9I8lE84icAL6EDyPmcUjVSbdPMFp+iksDeJuyQFskS1m//p9EIWByCRCap123Ui9BKqkDMB01wn1hBRNqIDaBsqaQDaS9JDp/aVUXp2P1TmSbRT9e9GQgOtJ4FvJgOKQ73uzcX/vHaM/bKXcBnFCJItgvqxsDG057+2e1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7Hamzg=</latexit>H

<latexit sha1_base64="uK9+tD0VJD0WFcDedo5PGYZmHes=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JNGQ6XGDCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+f4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWTzUILqGOHAW0IgU08AU0/dHD3G8+g9I8lE84icAL6EDyPmcUjVSbdPMFp+iksDeJuyQFskS1m//p9EIWByCRCap123Ui9BKqkDMB01wn1hBRNqIDaBsqaQDaS9JDp/aVUXp2P1TmSbRT9e9GQgOtJ4FvJgOKQ73uzcX/vHaM/bKXcBnFCJItgvqxsDG057+2e1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7Hamzg=</latexit>H <latexit sha1_base64="rb0DpHUYfpnl7l6Q80PSDAAhaHE=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIcqSxI1LjPJJgJCe5gEdenom3W8UJByBrR7EnXHrITyHF7AZZiFgJZ1Uqt5LvS4vFFyj43xbqY3Nre2d9G5mb//g8Ch7fFLTQaQYVFkgAtXwqAbBJVSRo4BGqID6noC6N7yd+/UnUJoH8hHHIbR92pe8xxlFIz28dAqdbM7JOzHsdeImJEcSVDrZn1Y3YJEPEpmgWjddJ8T2hCrkTMA004o0hJQNaR+ahkrqg25P4lOn9oVRunYvUOZJtGP178aE+lqPfc9M+hQHetWbi/95zQh7pfaEyzBCkGwR1IuEjYE9/7fd5QoYirEhlClubrXZgCrK0LSzlCLhORwhjPAqZnFixrTkrnayTmqFvHudL94Xc+VS0leanJFzcklcckPK5I5USJUw0icz8krerJn1bn1Yn4vRlJXsnJIlWF+/7WKb3g==</latexit>I2

<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="69pEIpdPhrBTHcTKJh0HEzaT6ng=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKEsSNy4xyiMBQqbDLUyYTpuZWwUbPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7id+vUnUJqH8hFHEbQD2pPc54yikR5eOm4nl3cKTgp7lbhzkidzVDq5n1Y3ZHEAEpmgWjddJ8J2QhVyJmCcbcUaIsoGtAdNQyUNQLeT9NSxfW6Uru2HyjyJdqr+3UhooPUo8MxkQLGvl72p+J/XjNEvtRMuoxhBslmQHwsbQ3v6b7vLFTAUI0MoU9zcarM+VZShaWchRcJzNEQY4mXK0sSsacld7mSV1K4K7nWheF/Ml0vzvjLklJyRC+KSG1Imd6RCqoSRHpmQV/JmTax368P6nI2uWfOdE7IA6+sX672b3Q==</latexit>I1

<latexit sha1_base64="dWIXDLt8VAVjqnm8oIY7C4S5yxw=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JEDIdbmHCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+d4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWRzUILqGOHAW0IgU08AQ0vdHD3G8+g9I8lE84iaAb0IHkPmcUjVQb9/IFp+iksDeJuyQFskS1l//p9EMWByCRCap123Ui7CZUIWcCprlOrCGibEQH0DZU0gB0N0kPndpXRunbfqjMk2in6t+NhAZaTwLPTAYUh3rdm4v/ee0Y/XI34TKKESRbBPmxsDG057+2+1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7A1mzc=</latexit>G
<latexit sha1_base64="dWIXDLt8VAVjqnm8oIY7C4S5yxw=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JEDIdbmHCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+d4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWRzUILqGOHAW0IgU08AQ0vdHD3G8+g9I8lE84iaAb0IHkPmcUjVQb9/IFp+iksDeJuyQFskS1l//p9EMWByCRCap123Ui7CZUIWcCprlOrCGibEQH0DZU0gB0N0kPndpXRunbfqjMk2in6t+NhAZaTwLPTAYUh3rdm4v/ee0Y/XI34TKKESRbBPmxsDG057+2+1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7A1mzc=</latexit>G <latexit sha1_base64="rb0DpHUYfpnl7l6Q80PSDAAhaHE=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIcqSxI1LjPJJgJCe5gEdenom3W8UJByBrR7EnXHrITyHF7AZZiFgJZ1Uqt5LvS4vFFyj43xbqY3Nre2d9G5mb//g8Ch7fFLTQaQYVFkgAtXwqAbBJVSRo4BGqID6noC6N7yd+/UnUJoH8hHHIbR92pe8xxlFIz28dAqdbM7JOzHsdeImJEcSVDrZn1Y3YJEPEpmgWjddJ8T2hCrkTMA004o0hJQNaR+ahkrqg25P4lOn9oVRunYvUOZJtGP178aE+lqPfc9M+hQHetWbi/95zQh7pfaEyzBCkGwR1IuEjYE9/7fd5QoYirEhlClubrXZgCrK0LSzlCLhORwhjPAqZnFixrTkrnayTmqFvHudL94Xc+VS0leanJFzcklcckPK5I5USJUw0icz8krerJn1bn1Yn4vRlJXsnJIlWF+/7WKb3g==</latexit>I2

<latexit sha1_base64="dWIXDLt8VAVjqnm8oIY7C4S5yxw=">AAACCXicbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LiERB4JEDIdbmHCdNrM3Cqk4QvY6oe4M279Cr/DH3AoLAQ8ySQn59ybc+d4keAaHefbymxt7+zuZfdzB4dHxyf507OGDmPFoM5CEaqWRzUILqGOHAW0IgU08AQ0vdHD3G8+g9I8lE84iaAb0IHkPmcUjVQb9/IFp+iksDeJuyQFskS1l//p9EMWByCRCap123Ui7CZUIWcCprlOrCGibEQH0DZU0gB0N0kPndpXRunbfqjMk2in6t+NhAZaTwLPTAYUh3rdm4v/ee0Y/XI34TKKESRbBPmxsDG057+2+1wBQzExhDLFza02G1JFGZpuVlIkvERjhDHepCxNzJmW3PVONknjtujeFUu1UqFSXvaVJRfkklwTl9yTCnkkVVInjACZkVfyZs2sd+vD+lyMZqzlzjlZgfX1C7A1mzc=</latexit>G<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="69pEIpdPhrBTHcTKJh0HEzaT6ng=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGKEsSNy4xyiMBQqbDLUyYTpuZWwUbPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7id+vUnUJqH8hFHEbQD2pPc54yikR5eOm4nl3cKTgp7lbhzkidzVDq5n1Y3ZHEAEpmgWjddJ8J2QhVyJmCcbcUaIsoGtAdNQyUNQLeT9NSxfW6Uru2HyjyJdqr+3UhooPUo8MxkQLGvl72p+J/XjNEvtRMuoxhBslmQHwsbQ3v6b7vLFTAUI0MoU9zcarM+VZShaWchRcJzNEQY4mXK0sSsacld7mSV1K4K7nWheF/Ml0vzvjLklJyRC+KSG1Imd6RCqoSRHpmQV/JmTax368P6nI2uWfOdE7IA6+sX672b3Q==</latexit>I1
<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

<latexit sha1_base64="Tecjr5B3MndU8cls5HSJK7MGrec=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGCEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOqVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpH5TcG8LxYdivlJO+8qQc3JBrohLSqRC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX8k2b4Q==</latexit>G7

Figure 4.6: Separating &4 into HG clauses �6 and �7

Definition 17. In a P-Res inference step I (endowed with the T-RefGQ refinement) to
an indecomposable CO clause with the top-variable subclause �, and guarded clauses,
we say that

1. in �, top variables G8 and G 9 are connected (with respect to I) if there exists
a sequence of top variables G8 , . . . , G 9 such that each pair of adjacent variables
co-occurs in a top-variable literal, and

2. subclause �′ is a closed top-variable subclause of � (with respect to I) if

(a) each pair of top variables in �′ are connected, and
(b) top variables in �′ do not connect to top variables in �, but not in �′.

Suppose a top-variable resolution inference is performed on an indecom-
posable CO clause & and a guarded clausal set # . Then each closed top-
variable subclause in & is resolved with a subset #′ of # , and the disjunc-
tion of remainders of #′ forms a guarded clause (after unification). Consider
the previous example. In a top-variable resolution inference of �1, . . . , �4

and &3, ¬%5(G1, G3) ∨ ¬%9(G3, G5) is the top-variable subclause, which is also
the only closed top-variable subclause, as G3 is the only top variable. The
matching side premises of ¬%5(G1, G3) ∨ ¬%9(G3, G5) are �1 and �2. Then the
disjunction of remainders (after unification) of �1 and �2 forms a guarded
clause �′ = ¬�1(G, H, I1, I2) ∨ ¬�2(G, H, I1, I2) ∨ �(ℎ(G, H, I1, I2)) in the top-
variable resolvent ' = ¬�1(G, H, I1, I2) ∨ ¬�2(G, H, I1, I2) ∨�(ℎ(G, H, I1, I2))∗ ∨
¬%7(G, G7) ∨ ¬%6(G, G7). In the previous example, to abstract �′ from ', we use
a fresh predicate symbol %8 to transform ' into GQ clauses &4 and �5.

The top-variable resolvents are handled by

4.5. HANDLING QUERY CLAUSES 101

The T-Trans rule

In an application of the P-Res rule (endowed with the T-RefGQ re-
finement) to an indecomposable CO clause ¬�1 ∨ . . . ∨ ¬�= with the
top-variable subclause ¬�1 ∨ . . . ∨ ¬�< where < ≤ =, and guarded
clauses �1 = �1 ∨ �1, . . . , �= = �= ∨ �= , the top variable resolvent is
' = (¬�<+1 ∨ . . . ∨ ¬�= ∨ �1 ∨ . . . ∨ �<)� where � is an mgu such that
� = mgu(�1 � �1, . . . , �< � �<).
Suppose¬�1∨. . .∨¬�< is partitioned into closed top-variable subclauses
�′1, . . . , �

′
C , so that ' is represented as (¬�<+1∨ . . .∨¬�= ∨�′1∨ . . . �′C)�.

Then the top-variable resolvent ' is transformed using

∪ {(¬�<+1 ∨ . . .¬�= ∨ �′1 ∨ . . . �′C)�}
∪ {(¬�<+1 ∨ . . .¬�=)� ∨ ¬%1 ∨ . . . ∨ ¬%C , %1 ∨ �′1�, . . . , %C ∨ �′C�}

if %1, . . . , %C are new predicate symbols for �1�, . . . , �C�, respectively.

The following procedure partitions top-variable clauses.

Algorithm 3: The FindClosedT function

Input: A top-variable literal ! and subclause �
Output: A closed top-variable subclause �8

1 Function FindClosedT(!, �):
2 NewTopVar← Top variables in !
3 LinkedTopVarLit← !

4 while NewTopVar ≠ ∅ do
5 !=4F ← Literals in � that contains NewTopVar
6 if !=4F ⊆ LinkedTopVarLit then
7 NewTopVar← ∅
8 else
9 NewTopVar← Top variables in !=4F
10 LinkedTopVarLit← LinkedTopVarLit ∪ !=4F
11 return LinkedTopVarLit

4.5. HANDLING QUERY CLAUSES 102

In the T-Trans rule a top-variable subclause is partitioned into closed top-
variable subclauses. This partition is achieved by traversing all top-variable
literals and checking if a top-variable literal belongs a closed top-variable sub-
clause. Algorithm 3 gives the FindClosedT(!, �) function, finding !-occurring
closed top-variable subclause in the top-variable subclause �.

Algorithm 4: Partitioning a top-variable subclause

Input: A top-variable subclause �
Output: Closed top-variable subclauses �1, . . . , �=

1 8 ← 1
2 while � ≠ ∅ do
3 Pick a top-variable literal ! from �

4 �8 = FindClosedT(!, �)
5 return �8
6 � ← �/�8
7 8 ← 8 + 1

Algorithm 4 gives the partitioning procedure for a top-variable subclause.
The following example showshowAlgorithm4, togetherwith theT-Trans rule,
handles the top-variable resolvents (with respect to a top-variable resolution
inference to an indecomposable CO clause as the main premise and guarded
clauses as the side premises). Consider an indecomposable CO clause

& = ¬�1(G1, G2) ∨ ¬�2(G1, G3) ∨ ¬�3(G2, G3)∨
¬�4(G3, G4) ∨ ¬�5(G3, G5) ∨ ¬�6(G4, G5) ∨ ¬�(G3)

and the following set # of guarded clauses

�1 = �1(5 (G, H), 5 (G, H)) ∨ �1(ℎ1(G, H)) ∨ ¬�1(G, H),
�2 = �2(5 (G, H), G) ∨ ¬�2(G, H), �3 = �3(5 (G, H), G) ∨ ¬�3(G, H),
�4 = �4(G, 5 (G, I)) ∨ ¬�4(G, I), �5 = �5(G, 5 (G, I)) ∨ ¬�5(G, I),
�6 = �6(5 (G, I), 5 (G, I)) ∨ �2(ℎ2(G, I)) ∨ ¬�6(G, I),
�7 = �(6(G)) ∨ ¬�7(G).

Figure 4.7 shows the hypergraph that is associated with &.

4.5. HANDLING QUERY CLAUSES 103

<latexit sha1_base64="tywurskG9HGUL3p/PIySfWFitKE=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqHGFceMSozwSaMh0uIUJ02kzc6sQwiew1Q9xZ9z6EX6HP+BQWAh4kklOzrk3587xY8E1Os63tbK6tr6xmdnKbu/s7u3nDg6rOkoUgwqLRKTqPtUguIQKchRQjxXQ0BdQ83t3E7/2DErzSD7hIAYvpB3JA84oGunxtuW2cnmn4KSwl4k7I3kyQ7mV+2m2I5aEIJEJqnXDdWL0hlQhZwJG2WaiIaasRzvQMFTSELQ3TE8d2adGadtBpMyTaKfq340hDbUehL6ZDCl29aI3Ef/zGgkG196QyzhBkGwaFCTCxsie/NtucwUMxcAQyhQ3t9qsSxVlaNqZS5HwEvcR+niesjQxa1pyFztZJtWLgntZKD4U86WbWV8ZckxOyBlxyRUpkXtSJhXCSIeMySt5s8bWu/VhfU5HV6zZzhGZg/X1C44om6Y=</latexit>

�1

<latexit sha1_base64="KxmMfZNvMwI/kQeOzIKMAu7RYSU=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIWpcYdy4xCifBAjpaR7Qoadn0v1GIYQjsNWDuDNuPYTn8AI2wywErKSTStV7qdflhYJrdJxvK7W2vrG5ld7O7Ozu7R9kD4+qOogUgwoLRKDqHtUguIQKchRQDxVQ3xNQ8wZ3M7/2DErzQD7hKISWT3uSdzmjaKTH23ahnc05eSeGvUrchORIgnI7+9PsBCzyQSITVOuG64TYGlOFnAmYZJqRhpCyAe1Bw1BJfdCtcXzqxD4zSsfuBso8iXas/t0YU1/rke+ZSZ9iXy97M/E/rxFh97o15jKMECSbB3UjYWNgz/5td7gChmJkCGWKm1tt1qeKMjTtLKRIeAmHCEO8iFmcmDEtucudrJJqIe9e5osPxVzpJukrTU7IKTknLrkiJXJPyqRCGOmRKXklb9bUerc+rM/5aMpKdo7JAqyvX4/Nm6c=</latexit>

�2
<latexit sha1_base64="TrRv77VdcjxlyyVVcyB47oAmiO8=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqHGFceMSozwSaMh0uIUJ02kzc6sQwiew1Q9xZ9z6EX6HP+BQWAh4kklOzrk3587xY8E1Os63tbK6tr6xmdnKbu/s7u3nDg6rOkoUgwqLRKTqPtUguIQKchRQjxXQ0BdQ83t3E7/2DErzSD7hIAYvpB3JA84oGunxtlVs5fJOwUlhLxN3RvJkhnIr99NsRywJQSITVOuG68ToDalCzgSMss1EQ0xZj3agYaikIWhvmJ46sk+N0raDSJkn0U7VvxtDGmo9CH0zGVLs6kVvIv7nNRIMrr0hl3GCINk0KEiEjZE9+bfd5goYioEhlClubrVZlyrK0LQzlyLhJe4j9PE8ZWli1rTkLnayTKoXBfeyUHwo5ks3s74y5JickDPikitSIvekTCqEkQ4Zk1fyZo2td+vD+pyOrliznSMyB+vrF5MXm6k=</latexit>

�4

<latexit sha1_base64="/KTUm7YxUQgKPfmMMy5cKdTEqKI=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEjWuMG5cYpRPAoT0NA/o0NMz6X6jEMIR2OpB3Bm3HsJzeAGbYRYCVtJJpeq91OvyQsE1Os63lVpZXVvfSG9mtrZ3dvey+wcVHUSKQZkFIlA1j2oQXEIZOQqohQqo7wmoev27qV99BqV5IJ9wGELTp13JO5xRNNLjbeuilc05eSeGvUzchORIglIr+9NoByzyQSITVOu664TYHFGFnAkYZxqRhpCyPu1C3VBJfdDNUXzq2D4xStvuBMo8iXas/t0YUV/roe+ZSZ9iTy96U/E/rx5h57o54jKMECSbBXUiYWNgT/9tt7kChmJoCGWKm1tt1qOKMjTtzKVIeAkHCAM8i1mcmDEtuYudLJPKed69zBceCrniTdJXmhyRY3JKXHJFiuSelEiZMNIlE/JK3qyJ9W59WJ+z0ZSV7BySOVhfv5Fym6g=</latexit>

�3
<latexit sha1_base64="LWNunrc0ftGXjlPI61JOFstqyH0=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMwU9cYdy4xCifBAjpaR7Qoadn0v1GIYQjsNWDuDNuPYTn8AI2wywErKSTStV7qdflhYJrdJxvK7Wyura+kd7MbG3v7O5l9w8qOogUgzILRKBqHtUguIQychRQCxVQ3xNQ9fp3U7/6DErzQD7hMISmT7uSdzijaKTH29ZFK5tz8k4Me5m4CcmRBKVW9qfRDljkg0QmqNZ11wmxOaIKORMwzjQiDSFlfdqFuqGS+qCbo/jUsX1ilLbdCZR5Eu1Y/bsxor7WQ98zkz7Fnl70puJ/Xj3CznVzxGUYIUg2C+pEwsbAnv7bbnMFDMXQEMoUN7farEcVZWjamUuR8BIOEAZ4FrM4MWNachc7WSaV87x7mS88FHLFm6SvNDkix+SUuOSKFMk9KZEyYaRLJuSVvFkT6936sD5noykr2Tkkc7C+fgGUvJuq</latexit>

�5

<latexit sha1_base64="8F1b6MDglejxHg5/ePQZn1GqmbY=">AAACDHicbVDLSsNAFJ34rPVVdekmWAQXUhIpVVxV3LisYB/QhjKZ3rZDJ5Mwc6Mtob/QrX6IO3HrP/gd/oBJmoVtPTBwOOdezp3jBoJrtKxvY219Y3NrO7eT393bPzgsHB03tB8qBnXmC1+1XKpBcAl15CigFSigniug6Y7uE7/5DEpzXz7hJADHowPJ+5xRTKS7biXfLRStkpXCXCV2RookQ61b+On0fBZ6IJEJqnXbtgJ0IqqQMwHTfCfUEFA2ogNox1RSD7QTpbdOzfNY6Zl9X8VPopmqfzci6mk98dx40qM41MteIv7ntUPs3zgRl0GIINk8qB8KE30z+bjZ4woYiklMKFM8vtVkQ6oow7iehRQJL8EYYYyXKUsTk5bs5U5WSeOqZFdK5cdysXqb9ZUjp+SMXBCbXJMqeSA1UieMDMmMvJI3Y2a8Gx/G53x0zch2TsgCjK9fzLKbvw==</latexit>

�6

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="pFQ2TKDTe9vSfscIaQEXFZEXjD0=">AAACCnicbVBLTgJBFOzBH+IPdelmIjFxYciMIWpcEd24BCOfBAjpad5Ah56eSfcbhRBuwFYP4s649RKewwvYDCwErKSTStV7qdflRYJrdJxvK7W2vrG5ld7O7Ozu7R9kD4+qOowVgwoLRajqHtUguIQKchRQjxTQwBNQ8/r3U7/2DErzUD7hMIJWQLuS+5xRNNJj+badzTl5J4G9Stw5yZE5Su3sT7MTsjgAiUxQrRuuE2FrRBVyJmCcacYaIsr6tAsNQyUNQLdGyaVj+8woHdsPlXkS7UT9uzGigdbDwDOTAcWeXvam4n9eI0b/pjXiMooRJJsF+bGwMbSn37Y7XAFDMTSEMsXNrTbrUUUZmnIWUiS8RAOEAV4kLEnMmJbc5U5WSfUy717lC+VCrng37ytNTsgpOScuuSZF8kBKpEIY8cmEvJI3a2K9Wx/W52w0Zc13jskCrK9f98ybXg==</latexit>

& :

Figure 4.7: The hypergraph associated with &

Next, we compute the top-variable resolvent of # and &, and we use I
to denote this top-variable resolution inference step. By the CompT(#, &)
function, we compute the mgu

{G1 ↦→ 5 (6(G), H), G2 ↦→ 5 (6(G), H), G3 ↦→ 6(G), G4 ↦→ 5 (6(G), I), G5 ↦→ 5 (6(G), I)}

for variables in &. Then in &, G1, G2, G4 and G5 are top variables (with respect
to I) since they are unified with the deepest terms. These top variables occur
in all literals except ¬�(G3), therefore P-Res(#, &) returns

¬�1(G1, G2),¬�2(G1, G3),¬�3(G2, G3),¬�4(G3, G4),¬�5(G3, G5),¬�6(G4, G5)

as the top-variable literals (with respect to I). Then applying the top-variable
resolution inference to & and # produces

' = �1(ℎ1(G, H)) ∨ ¬�1(G, H) ∨ ¬�2(G, H) ∨ ¬�3(G, H)∨
�2(ℎ2(G, I)) ∨ ¬�6(G, I) ∨ ¬�4(G, I) ∨ ¬�5(G, I) ∨ ¬�(G).

Algorithm 4 first finds the closed top-variable subclauses in &, and then
the T-Trans rule transforms ' into GQ clauses. In this example, the input of
Algorithm 4 is the top-variable subclause

&top = ¬�1(G1, G2) ∨ ¬�2(G1, G3) ∨ ¬�3(G2, G3)∨
¬�4(G3, G4) ∨ ¬�5(G3, G5) ∨ ¬�6(G4, G5).

in&with respect to I. InAlgorithm4, Line 3 first picks an arbitrary top-variable
literal, for example ¬�1(G1, G2), in &top, and Line 4 then use the FindClosedT

4.5. HANDLING QUERY CLAUSES 104

function finds a closed top-variable subclause that contains ¬�1(G1, G2). The
FindClosedT(¬�1(G1, G2), &top) function find this closed top-variable subclause
as follows. In Algorithm 3, Line 2 first identifies that ¬�1(G1, G2) contains top
variables G1 and G2, and Line 5 then finds literals in &top that contains G1 and
G2. Since ¬�2(G1, G3) and ¬�3(G2, G3) contain G1 and G2,

&1
close = ¬�1(G1, G2) ∨ ¬�2(G1, G3) ∨ ¬�3(G2, G3)

is a temporary closed top-variable subclause. Next,Algorithm 3 keeps looking
for the top variables in &1

close, which are G1 and G2. There are no new literals
in &top that contain G1 or G2, hence the FindClosedT(¬�1(G1, G2), &top) function
returns &1

close as the first closed top-variable subclause of &top. Then Line 6 in
Algorithm 4 removes &1

close from &top, obtaining

&′top = ¬�4(G3, G4) ∨ ¬�5(G3, G5) ∨ ¬�6(G4, G5).

Like the previous procedure, a top-variable literal ¬�4(G3, G4) is picked from
¬�4(G3, G4) ∨ ¬�5(G3, G5) ∨ ¬�6(G4, G5) and the FindClosedT(¬�4(G3, G4), &′top)
function is applied tofind the closed top-variable subclause containing¬�4(G3, G4).
Eventually, the FindClosedT(¬�4(G3, G4), &′top) function returns

&2
close = ¬�4(G3, G4) ∨ ¬�5(G3, G5) ∨ ¬�6(G4, G5).

Algorithm 4 splits &top into closed top-variable subclauses &1
close and &2

close.
Using these closed top-variable subclauses &1

close and &2
close, the T-Trans

rule requires us to find the remainders in side premises (of the I inference) that
match them. The closed top-variable subclause &1

close contains top-variable
literals ¬�1(G1, G2),¬�2(G1, G3) and ¬�3(G2, G3), which match side premises
�1, �2 and �3, respectively. Then for the top-variable resolvent '„ the T-Trans
rule introduces a fresh predicate symbol %1 (and a respective literal ¬%1(G, H))
for the disjunction of the remainders of �1, �2 and �3, namely

�1(ℎ1(G, H)) ∨ ¬�1(G, H) ∨ ¬�2(G, H) ∨ ¬�3(G, H).

Similarly, since the literals in &2
close match to �4, �5 and �6, for the top-variable

resolvent ', the T-Trans rule introduces a fresh predicate symbol %2 (and a

4.5. HANDLING QUERY CLAUSES 105

respective literal ¬%2(G, I)) for the remainders of �4, �5 and �6, namely

�2(ℎ2(G, I)) ∨ ¬�6(G, I) ∨ ¬�4(G, I) ∨ ¬�5(G, I).

Then the T-Trans rule transforms ' into guarded clauses

�1(ℎ1(G, H)) ∨ ¬�1(G, H) ∨ ¬�2(G, H) ∨ ¬�3(G, H) ∨ %1(G, H),
�2(ℎ2(G, I)) ∨ ¬�6(G, I) ∨ ¬�4(G, I) ∨ ¬�5(G, I) ∨ %2(G, I),

and a query clause ¬�(G) ∨ ¬%1(G, H) ∨ ¬%2(G, I).
By the T-Trans rule, the top-variable resolvent of a CO clause and a guarded

clausal set is replaced by its equisatisfiable GQ clausal set, formally stated as:

Lemma 4.25. Let ' be the resolvent of applying the P-Res rule (endowed with the T-
Ref GQ refinement) to an indecomposable CO clause & and a set # of guarded clauses.
Then, the following conditions hold.

1. Applying the T-Trans rule to ' replaces it by a set #′ of guarded clauses and a
query clause &′.

2. Applying the Q-Sep procedure to &′ separates it into a set #′′ of HG clauses
and an indecomposable CO clause &′′.

3. The top-resolvent ' is satisfiable if and only if the GQ clausal set #′∪#′′∪&′′
is satisfiable.

4. For each clause �′ in #′ ∪ #′′, there exists a clause � in # such that �′ is no
wider than �, and &′′ is less wide than &.

Proof. Recall the P-Res rule (with a priori checking for maximality and the
T-RefGQ refinement).

�1 ∨ �1, . . . , �< ∨ �< , . . . , �= ∨ �= ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ �
(�1 ∨ . . . ∨ �< ∨ ¬�<+1 ∨ . . . ∨ ¬�= ∨ �)�

if the following conditions are satisfied.

1. No literal is selected in �1, . . . , �= and �1, . . . , �= are strictly �;?>-
maximal with respect to �1, . . . , �= , respectively.

4.5. HANDLING QUERY CLAUSES 106

2a. If = = 1, i) either ¬�1 is selected, or nothing is selected in ¬�1∨� and
¬�1� is�;?>-maximalwith respect to��, and ii) � = mgu(�1 � �1) or

2b. if = > 1 and there exists an mgu �′ such that �′ = mgu(�1 �

�1, . . . , �= � �=), then � = mgu(�1 � �1, . . . , �< � �<)where< ≤ =.
3. All premises are variable disjoint.

Suppose in a P-Res inference (endowed with the T-RefGQ refinement), the
main premise � = ¬�1∨ . . .∨¬�<∨ . . .∨¬�= is a CO clause and side premises
�1 = �∗1 ∨ �1, . . . , �< = �∗< ∨ �< , . . . , �= = �∗= ∨ �= are guarded clauses. We
use ' to denote the top-variable resolvents (�1∨ . . .∨�<∨¬�<+1∨ . . .∨¬�=)�.

1.: By the T-RefGQ refinement, a side premise is either a flat ground clause,
or a compound-term clause. Suppose a side premise in �1. . . . , �< is flat and
ground. Then by 5. in Lemma 4.13, all side premises are flat and ground, and
' is a flat ground clause, which is an LGQ clause. Now consider the case that
each side premise contains at least one compound terms. By Lemma 4.5, �8 is
a compound-term literal for all 8 such that 1 ≤ 8 ≤ =.

Step 1: We now prove that (¬�<+1 ∨ . . . ∨¬�=)� is a query clause. By 3. in
Lemma 4.13, the mgu � substitutes variables in ¬�<+1 ∨ . . . ∨ ¬�= with either
variables or constants. Hence, (¬�<+1 ∨ . . . ∨ ¬�=)� is a query clause. If � is
a ground substitution, then (¬�<+1 ∨ . . . ∨ ¬�=)� is a flat ground clause. If
all literals in � are top-variable literal, then (¬�<+1 ∨ . . . ∨ ¬�=)� is ⊥. Our
statement trivially holds for these two special cases.

Step 2: we prove that (�1∨. . .∨�<)� is a disjunction of guarded clauses. We
prove this by the following steps: 2-i) �8� is a guarded clause, 2-ii) (�8 ∨�9)� a
guarded clause if�8 and� 9 contains connected top variables, and 2-iii) Suppose
¬�81 ∨ . . . ∨ ¬�8: is a closed top-variable subclause of ¬�1 ∨ . . . ∨ ¬�< , and
�′9 represents �81 ∨ . . . ∨ �8: . Then (�1 ∨ . . . ∨ �<)� can be represented as
(�′1 ∨ . . . ∨ �′C)� where C ≤ <.

Step 2-i): First we prove that remainder �8 of side premise is a guarded
clause. By the covering property and the fact the �8 is a compound-term literal,
var(�8) = var(�8). By 4. in Lemma 4.13, the mgu � substitutes variables in �8
with variables and constants. Then by the fact that �8 is a guarded clause and
Lemma 4.12, �8� is a guarded clause.

Step 2-ii): Next we prove that if �8 and � 9 contains connected top variables,

4.5. HANDLING QUERY CLAUSES 107

the disjunction of �8� and �9� is a guarded clause. Suppose G and H are,
respectively, top variables in �8 and � 9 , and G and H are connected. By the
definition of connected top variables, there exists a sequence of top variables
G, . . . , H such that each pair of adjacent variables co-occurs in a top-variable
literal. By 3. in Lemma 4.13, each adjacent variables G′ and H′ have the property
that var(G′�) = var(H′�), since G′ and H′ match compound terms in the same
covering literal. Hence, var(G�) = var(H�). This implies that after unification,
the compound term C in �8 (that G matches) have the same variable set as the
compound term B in � 9 (that Hmatches), i.e., var(B�) = var(C�). By the covering
property, var(�8�) = var(�9�). The guarded clauses �8� and �9� contain the
same variable sets, therefore, �8� ∨ �9� is a guarded clause.

Step 2-iii): Suppose ¬�81 ∨ . . . ∨ ¬�8: is a closed top-variable subclause of
¬�1 ∨ . . . ∨ ¬�< , and �′9 represents �81 ∨ . . . ∨ �8: . We aim to prove that
(�1∨ . . .∨�<)� can be represented as (�′1∨ . . .∨�′C)�where C ≤ <. We use �′

to denote a top-variable subclause ¬�1∨ . . .∨¬�< . By the fact that each literal
in �′ contains at least one top variable, and 2b. of Definition 17 that each pair
of closed top-variable subclauses of �′ shares no connected top variables, �′ is
partitioned into a set of closed top-variable subclauses, denoted as �′1, . . . , �

′
C .

Let �′8 = ¬�81 ∨ . . . ∨ ¬�8: be a closed top-variable subclause of �′. By 2a. of
Definition 17, each pair of top variables in �′8 is connected. Then by the result
of Step 2-ii), (�81 ∨ . . . ∨ �8:)� is a guarded clause.

Now we present the resolvent as ' = (�′1 ∨ . . . ∨�′C ∨¬�<+1 ∨ . . . ∨¬�=)�.
Then applying the T-Trans rule to ' transforms it into

�′1� ∨ %1, . . . , �′C� ∨ %C , &′ = (¬�<+1 ∨ . . . ∨ ¬�=)� ∨ ¬%1 ∨ . . . ∨ ¬%C .

We consider whether�′8�∨%8 and&′ are LGQ clauses. Suppose�′8� is ground.
Then immediately �′8� ∨ %8 is a guarded clause. Now assume that �′8� ∨ %8
is non-ground. By the result of Step 2-iii), �′8� is a guarded clause. By the
definition of structural transformation, var(�′8�) = var(%8) and %8 is a flat literal,
hence, �′8� ∨ %8 is a guarded clause. Next we consider &′. By the definition of
structural transformation, ¬%1 ∨ . . . ∨¬%C is a negative flat clause. Then by the
result of Step 1, &′ is a query clause.

2.: By Lemma 4.23.
3.: By the facts that the Q-Sep procedure (Lemma 4.19) and the structural

transformation preserve logical equivalence.

4.5. HANDLING QUERY CLAUSES 108

4.: First we prove that �′8� ∨ %8 is no wider than one of side premises in
�1, . . . , �< . By the result of Step 2-i), i) the loose guard G� in �′8� is inherited
from one of loose guards G in a side premise in �1, . . . , �< , and ii) the mgu
substitutes variables inGwith either constants or variables. Hence, there exists
at least one side premise in �1, . . . , �< such that it contains no less types of
variables than �′8� ∨ %8 .

Next, we consider the width of the conclusions of applying the Q-Sep
procedure to &′ = (¬�<+1 ∨ . . . ∨ ¬�=)� ∨ ¬%1 ∨ . . . ∨ ¬%C . To understand
the application of the Q-Sep procedure to &′, we analyse the variables in &′.
By the T-Trans rule, var(%8) = var(�′8�) for all 8 such that 1 ≤ 8 ≤ C. Hence,
w.l.o.g. we consider variables in %1 (i.e., variables in �′1�), and we suppose
�′1 = �1 ∨ �2 and ¬�1 ∨ ¬�2 is a closed top variable subclause. Hence, we
analyse overlapping variables of �′1� and (¬�<+1 ∨ . . . ∨ ¬�=)�. By 4. of
Lemma 4.13, � substitutes variables in �′1 with either variables or constants.
W.l.o.g. suppose variables of �1 and �2 are substituted with the variables of
¬�1 ∨ ¬�2. Since �1 and �2, respectively, contain loose guards of �1 and �2,
� substitutes the variables of �′1 with the variables of ¬�1 ∨ ¬�2. Then the
variables in �′1� depend on two factors: 1) whether all variables in �1 and
�2 are substituted, 2) whether (non-top) variables in ¬�1 ∨ ¬�2 occur in the
variables of ¬�<+1 ∨ . . . ∨ ¬�= . We distinguish two cases:

4-i): Suppose all variables in �1 and �2 are substituted using �, and all
non-top-variables in ¬�1 ∨¬�2 occur in ¬�<+1 ∨ . . .∨¬�= . Then all variables
in �′1� are non-top-variables in ¬�1 ∨ ¬�2, therefore, var(%1) ⊆ var((¬�<+1 ∨
. . .∨¬�=)�). For each %8 in %1, . . . , %C that satisfies conditions of 4-i), var(%8) ⊆
var((¬�<+1 ∨ . . . ∨ ¬�=)�). These %8 literals introduce no new variables to
¬�<+1 ∨ . . . ∨ ¬�= .

4-ii): Next suppose not all non-top-variables in ¬�1∨¬�2 occur in ¬�<+1∨
. . . ∨ ¬�= , or only a part of variables in �1 and �2 are substituted. Then
¬%1 can be represented as ¬%1(G, H), where G represent substituted variables
in �1 and �2 that occur in both ¬�1 ∨ ¬�2 and (¬�<+1 ∨ . . . ∨ ¬�=), and H

represents either variables that are not substituted in �1 and �2, or variables
in ¬�1 ∨ ¬�2 but not in ¬�<+1 ∨ . . . ∨ ¬�= . Hence, H does not occur in
(¬�<+1∨ . . .∨¬�=)�∨¬%2∨ . . .∨¬%C . Applying theQuerySepTwo rule to&′

derivesHornguarded clauses¬%1(G, H)∨%′1(G) andaquery clause (¬�<+1∨. . .∨
¬�=)�∨¬%′1(G)∨ . . .∨¬%C (using a new predicate symbol %′1). By Step 2-iii) and

4.6. A DECISION PROCEDURE OF ANSWERING BCQS FOR GF 109

the fact that ¬%1(G, H)∨%′1(G) is no wider than�′1�∨%1, there exists at least one
side premises �1, . . . , �< that is wider than ¬%1(G, H) ∨ %′1(G). After separating
all %8 satisfying 4-ii), we obtained query clause &′′. Since &′′ contains only
non-top-variables (after substituted by �) from &, &′′ is less wider than &. �

An alternative approach for the T-Trans rule is the Sep rule. Let us use

' = (¬�<+1 ∨ . . . ∨ ¬�= ∨ �′1 ∨ . . . �′C)�

in the definition of the T-Trans rule to denote the top-variable resolvent of
an indecomposable CO clause and a set of guarded clauses. By the proof in
Lemma 4.25, recursively applying the Sep rule to ' also separates ' into GQ
clauses. In this thesis, we choose the T-Trans rule for its intuitiveness.

We use Q-COGQ to denote the following procedure:

1. Apply the top-variable resolution rule to an indecomposableCO clause (as
the main premise) and guarded clauses (as the side premises), deriving
the top-variable resolvent '.

2. Apply the T-Trans rule to ', replacing ' by a query clause & and a set of
guarded clauses.

3. Apply the Q-Sep procedure to &, replacing & by HG clauses and an
indecomposable CO clause.

Lemma 4.26. The conclusions of applying the Q-COGQ procedure to an indecompos-
able CO clause & and a set # of guarded clause satisfy the following conditions.

1. They consist of an indecomposable CO clause&′ and a set #′ of guarded clauses.
2. The clausal sets &′ ∪ #′ and & ∪ # are equisatisfiable.
3. For each clause �′ in #′, there exists a clause � in # such that �′ is no wider

than �, and &′ is less wide than &.

Proof. By Lemmas 4.23 and 4.25, 1. and 3. hold. By Lemma 3.4 and the fact that
any form of structural transformation rule preserves satisfiability, 2. hold. �

4.6 A decision procedure of answering BCQs for GF

Now we are ready to give our saturation-based procedure for answering a
union of BCQs of GF, and we use Q-AnsGF to denote this procedure. To

4.6. A DECISION PROCEDURE OF ANSWERING BCQS FOR GF 110

show that the Q-AnsGF procedure is suitable for implementations in modern
saturation-based first-order provers, this procedure is devised in the form of
the given-clause algorithm [Wei01, MW97].

Algorithm 5 describes the formal BCQ answering procedure for GF.

Algorithm 5: The BCQ answering procedure for GF

Input: A union @ of BCQs and a set Σ of formulas in GF
Output: ‘Yes’ or ‘No’

1 workedOff← ∅
2 usable← PreProcessGF(Σ, @)
3 while usable = ∅ and ⊥ ∉ usable do
4 given← Pick(usable)
5 workedOff←workedOff ∪ given
6 if given is an indecomposable CO clause then
7 tResolvent← P-Res(workedOff, given)
8 G, Q← T-Trans(tResolvent)
9 CO,HG← Sep(Q)
10 new← G ∪ CO ∪ HG

11 else
12 new← P-Res(workedOff, given) ∪ Fact(given)
13 new← Red(new, new)
14 new← Red(Red(new, workedOff), usable)
15 workedOff← Red(workedOff, new)
16 usable← Red(usable, new) ∪ new

17 Print(usable)

Functions in Algorithm 5 are described as follows.

1. Sep(�) applies the Q-Sep procedure to separate a query clause �, and
returns HG clauses and indecomposable CO clauses. If � is an indecom-
posable CO clause or an HG clause, then the Sep(�) function returns �.

2. Pick(#) picks a clause from the clausal set # , and then removes that
clause from # .

4.6. A DECISION PROCEDURE OF ANSWERING BCQS FOR GF 111

3. P-Res(#, �) applies the P-Res rule (endowed with the T-RefGQ refine-
ment) to clauses # and a clause � in # , returning the top-variable resol-
vent.

4. T-Trans(�) applies the T-Trans rule to the top-variable resolvent �, and
returns guarded clauses and a query clause.

5. Fact(�) applies the Fact rule (endowed with the T-RefGQ refinement) to
a clause �, and returns a factor of �.

6. Red(#1, #2) returns all clauses from #1 that are not redundant with
respect to clauses in #2.

7. Print(#) takes a saturated clausal set # as input, and returns either ‘Yes’
or ‘No’ for the BCQ answering problem.

We now give the PreProcessGF function. See Algorithm 6.

Algorithm 6: The PreProcessGF function

Input: A union @ of BCQs and a set Σ of guarded formulas
Output: A set of indecomposable CO clauses and guarded

clauses
1 Function PreProcessGF(Σ, @):
2 usable← ∅
3 G,Q← TransGF(Σ, @)
4 foreach clause Q in Q do
5 CO,HG← Sep(Q)
6 usable← usable ∪ CO ∪ HG

7 usable← Red(usable ∪ G, usable ∪ G)
8 return usable

The PreProcessGF(Σ, @) function pre-processes the given set Σ of guarded
formulas and the given union @ of BCQs to a set of guarded clauses and inde-
composable CO clauses. In the PreProcessGF(Σ, @) function, the TransGF(Σ, @)
function applies the TransGF process to Σ and @, returning GQ clauses.

Algorithms 5–6 use the notationsG,HG,Q andCO to denote guarded, Horn
guarded, query and indecomposable chained-only query clauses, respectively.

4.6. A DECISION PROCEDURE OF ANSWERING BCQS FOR GF 112

Algorithm 7 gives the Print function, simply prints ‘Yes’ or ‘No’ for the BCQ
answering problem.

Algorithm 7: The Print function

Input: A clausal set #
Output: ‘Yes’ or ‘No’

1 Function Print(#):
2 if ⊥ ∈ # then Print ‘Yes’
3 else Print ‘No’

As a given-clause algorithm,Algorithm5 splits input clauses into aworked-
off clause set workedOff where all inferences between clauses in workedOff are
finished, andausable clause setusable, inwhich clausesneeded tobe considered
for further inferences. Then for each clause � in usable, we remove � from
usable, add � to workedOff and then add all conclusions between the � and the
clauses in workedOff to usable. During such a loop, reduction rules are applied
to guarantee termination.

Algorithm 5 consists of the following stages.

• Lines 1–3 transform BCQs and GF into CO clauses and guarded clauses.
• Lines 4–17 saturate the above set of CO clauses and guarded clauses.
• Line 18 outputs the answer to the given BCQs and guarded formulas.

Lines 1 initialises the workedOff and usable sets with empty sets. Line 2,
namelyAlgorithm 6, then transforms BCQs and GF to CO clauses and guarded
clauses, and then add all the obtained clauses to the usable set. Line 3 is the
input reduction that removes redundancy in the usable set.

The while-loop in Lines 4–13 terminates if either usable is empty or it con-
tains an empty clause ⊥. Lines 5–6 pick a clause, namely the given clause, from
the usable set and then add the given clause to workdedOff . Note that the Pick
function is fair [BG01, Page 37], which means that no clause in the usable set
waits infinitely long without being picked. Lines 7–13 generate new conclu-
sions. Lines 7–11 say that if given is an indecomposable CO clause, then the
Q-COGQ procedure, namely a sequence of rules consisting of i) the top-variable
resolution inference, ii) the T-Trans rule and iii) the Q-Sep procedure, is ap-
plied to this CO clause, producing an indecomposable CO clause and guarded

4.6. A DECISION PROCEDURE OF ANSWERING BCQS FOR GF 113

clauses, and we then denote these new clauses as new. Lines 12–13 say that if
given is a guarded clause, then P-Res and Fact rules are applied to that guarded
clause, producing new conclusions new. Lines 14–17 are the inter-reduction step
that removes redundancy in the new, workdedOff and usable clausal sets.

Lines 18, namely Algorithm 7, outputs the answer to the given BCQs.
Suppose @ is the given union of BCQs andΣ is the given guarded formulas. An
empty usable clausal set implies that Σ ∪ {¬@} is satisfiable. Then the answer
to @ is ‘No’, and the workdedOff clausal set stores the saturated clausal set of
Σ ∪ {¬@}. Otherwise the usable clausal set contains an empty clause, then
Σ ∪ {¬@} is unsatisfiable. Then the answer to @ is ‘Yes’.

The Q-AnsGF procedure guarantees termination. The termination result
requires that given a union of BCQs, a set of guarded formulas and a finite
signature (F, P, C), the Q-AnsGF procedure derives clauses of bounded depth
and width only using symbols in (F, P, C). In Algorithm 5, Lines 7–13 derive
new clauses. In Lines 14–17, given an indecomposable CO clause and guarded
clauses, the Q-COGQ procedure produces GQ of bounded width, as proved in
Lemma 4.26. Since the class of GQ clauses are simple, their depths are bounded
as well. For Lines 12–13, Theorem 4.4 ensures that given guarded clauses, the
P-Res and Fact rules (endowedwith theT-RefGQ refinement) produce guarded
clauses of bounded width and depth. To sum up, Lines 7–13 derive new GQ
clauses of bounded width and depth. Next it is important to ensure that the
number of new symbols introduced in Q-AnsGF procedure are finitely many.
In particular, we consider the new predicate symbols that are introduced in
the derivation, particularly for the T-Trans rule in Line 9 and for the Q-Sep
procedure in Line 10.

In the Q-AnsGF procedure, suppose a predicate symbol % is used to repre-
sent a GQ clause � at a derivation stage. Then, in any further stage whenever
a predicate symbol is needed for �, the symbol % is used again. The Q-AnsGF

procedure requires only a finite number of predicate symbols, formally stated
as:

Lemma 4.27. In the application of the Q-AnsGF procedure to the BCQ answering
problem for GF, only finitely many predicate symbols are introduced.

Proof. In the Q-AnsGF procedure, new predicate symbols are introduced in
either the TransGF process, or theQ-Sep procedure, or theQ-COGQ procedure.
We distinguish these cases:

4.6. A DECISION PROCEDURE OF ANSWERING BCQS FOR GF 114

1.: In the TransGF process, BCQs and formulas in GF are transformed into
GQ clauses. This is a one-time process, hence in this step, only a finite number
of new predicate symbols are introduced.

2.: In the Q-Sep procedure, the QuerySepOne and QuerySepTwo rules
are recursively applied to query clauses. By Lemma 4.23, applying the Q-Sep
procedure to a query clause derives less wide GQ clauses. Then finitely many
new predicate symbols are needed.

3.: In theQ-COGQ procedure, theT-Trans rule and theQ-Sep procedure are
applied. By Lemma 4.23, the Q-Sep procedure introduces finitely many new
predicate symbols. Now we consider the new predicate symbols introduced
in the application of the T-Trans rule to the top-variable resolvents of a CO
clause and guarded clauses. Consider the T-Trans rule as follows: Let #
be a set of compound-term guarded clauses, as the side premises in the top-
variable resolution rule. Then in this top-variable inference, we first unify
clauses in # , and then removes a compound-term literal (eligible literals) in
each clause of # , respectively, and finally the T-Trans rule makes remainder of
clauses (that map to the same closed top-variable subclause) in# a disjunction.
W.l.o.g. assume the T-Trans rule introduce a new predicate symbol for �1 and
�2 in # , producing �. By 1. of Lemma 4.25, � is no wider than �1 and
�2. Hence we can regard the T-Trans rule as a method that i) first unifies
a compound-term guarded clausal set # by their compound-term literals, ii)
remove these unified compound-term literal in clauses of # , obtaining #′, ii)
use the disjunctive symbol to connect clauses in #′, as a new guarded clause
�. By the covering and pairing properties, no new variables are needed in
i)–iii). By Lemma 4.23, Lemma 4.26 and Theorem 6.4, apart from the T-Trans
rule, the Q-AnsGF procedure guarantees producing a finite number of GQ
clauses. As we reuse predicate symbols for duplicate GQ clauses, the T-Trans
rule introduces a finite number of predicate symbols. �

Finally, we give the main result of this chapter.

Theorem 4.5. The Q-AnsGF procedure is a decision procedure for answering BCQs
for GF.

Proof. By Theorem 4.1, the Q-AnsGF procedure reduces the problem of an-
swering BCQs for GF to that of deciding satisfiability of the GQ clausal class.

4.6. A DECISION PROCEDURE OF ANSWERING BCQS FOR GF 115

By Lemma 4.19 and Theorem 4.3, the T-InfGQ system is a sound and refuta-
tionally complete system for general first-order clausal logic. As the Q-AnsGF

procedure is based on theT-InfGQ system and our customised separation rules,
theQ-AnsGQ procedure is a sound and refutational complete procedure if only
finitely many predicate symbols are introduced.

By Lemma 4.23, Lemma 4.26 and Theorem 4.4, applying theQ-AnsGF pro-
cedure to GQ clauses guarantees producing GQ clauses of bounded depth and
bounded width. By Lemma 4.27, only a finitely number of new symbols (with
respect to the given signature) are introduced. Then the Q-AnsGF procedure
guarantees termination. Since theQ-AnsGF procedure is sound, refutationally
complete for first-order clausal logic and guarantees termination for the GQ
clausal class, it is a decision procedure for answering BCQs for GF. �

Chapter 5

The saturation-based BCQ rewriting
procedure in GF

In this chapter, we aim to address the saturation-based rewriting problem for
GF, formally defined as follows.

Problem 5. Given a setΣ of formulas in GF, a set D of ground atoms and a union @ of
BCQs, does there exist a (function-free) first-order formula (with equality) Σ@ , which is
the negated back-translation of the saturated clausal set ofΣ∪{¬@} such thatΣ∪D |= @
if and only if D |= Σ@?

Problem 5 considers the back-translation of a clausal set to a function-free
first-order formula. Consider formulasΣ in GF, ground atoms D and a union @
of BCQs, we use the following steps to tackle Problem 5.

1. Apply the Q-AnsGF procedure to Σ ∪ {¬@}, computing a saturation # of
Σ ∪ {¬@} as long as Σ 6 |= @.

2. Back-translate# to a (Skolem-symbol-free) first-order formula �, and then
negate � to obtain a (function-free) first-order formula (with equality)Σ@ .

As guarded formulas and BCQs contain no function symbol, the function sym-
bols in # are introduced by Skolemisation. Back-translating # to a first-order
formula � ensures to eliminate all Skolem function symbols in �, thereforeΣ@ a
function-free first-order formula. In general, the back-translation from a clausal
set to a first-order formula is a non-trivial task, as it often fails [GSS08a]. By
Theorem 3.1, our aim is to transform the saturation# to its logically equivalent

116

5.1. THE ALIGNED GUARDED CLAUSES 117

clausal set that is unique, normal, globally linear and globally compatible, so
that # can be back-translated to a first-order formula.

In this chapter, we investigate a more refined clausal form for guarded
clauses, that is the aligned guarded clauses, in which all compound terms have a
common argument list. We prove that theQ-AnsGF procedure is also a decision
procedure for the aligned guarded clausal class. Then, byour customisedRename,
Abstract andUnsko rules (fromSection 3.3), any aligned guarded clausal set#
is ensured to transformed into a unique, normal, globally linear and globally
compatible clausal set #′ that is logically equivalent to # . In the last step, #′

is unskolemised to a first-order formula.
We use the notation #a to denote a clausal set # that has the property a.

In particular we use n, u, l and c to denote the properties of normality, unique-
ness, global linearity and global compatibility, respectively. For example, #nu

denotes a clausal set # that is unique and normal.
This chapter is organised as follows. Section 5.1 presents the formal defini-

tion of the aligned guarded clauses, and Section 5.2 then formally proves that
the Q-AnsGF procedure decides satisfiability of the aligned guarded clausal
class. Section 5.3 introduces our variations of Rename, Abstract and Unsko
rules and the back-translation procedure. The last section formally formalises
decision procedure for the saturation-based BCQ rewriting in GF.

5.1 The aligned guarded clauses

In this section, we first introduce the aligned guarded clauses, and then show
that by theTransGF process, guarded formulas are clausified to alignedguarded
clauses.

Recall Definition 12 that a clause is strongly compatible if all of its com-
pound terms share a common argument list. Then an aligned guarded clause is
formally defined as follows.

Definition 18. An aligned guarded clause (G− clause) is strongly compatible and
a guarded clause.

Comparing Definitions 13 and 18, the class of G− clauses is a strict subset
of that of guard clauses. This means that the results established in Section 4.4
hold for the G− clausal class as well. The notion of strongly compatible is more

5.1. THE ALIGNED GUARDED CLAUSES 118

restrictive than that of compatible, since all compound termsmust be compatible.
For example, the clause

� = ¬�(G1, G2) ∨ �1(5 (G1, G1, G2), G1) ∨ �2(5 (G1, G1, G2), G1, 6(G1, G2))

is compatible and a guarded clause, however it is not a G− clause since
5 (G1, G1, G2) and 6(G1, G2) arenot compatible. Theguardedclause� = ¬�(G, H)∨
�(5 (G, H), 5 (H, G)) is not aG− clause, since in � the compound terms 5 (G, H) and
5 (H, G) are not compatible. Note that even by theRename,Abstract andUnsko
rules in Section 3.3, � cannot be back-translated into a first-order formula as it
is impossible to make the argument lists of 5 (G, H) and 5 (H, G) identical.
Lemma 5.1. Applying the TransGF process to a guarded formula transforms it into a
set of G− clauses.

Proof. We particularly show that the obtained clauses are strongly compatible.
The fact that the obtained clauses are guarded clauses follows from Lemma 4.1.

Suppose � is a guarded formula. By1.–2. of theTransGF process,w.l.o.g. sup-
pose % is the new predicate symbol, �1 is the definition formula of %, and �′

is the replacing formula of �. Next, we show that 3.–4. of the TransGF process
transform �1 and �′ into strongly compatible clauses. Since �′ is an existen-
tially quantified sentence, skolemising �′ transforms it into flat ground clauses,
which are aligned guarded clauses. �1 can be represented as

∀G(%(G) → ∀H(�(G, H) →)(H)))

where)(H)may contain existential quantifications and literals, but no universal
quantifications. The existential quantified variables in)(H) are the only source
of compound terms, since guarded formulas contain no function symbols. By
applying prenex normal form transformation and then the Skolem rule to
�1, existential quantified variables in)(H) are skolemised to compound terms
containing a common argument list G, H. �

We use the notation GQ− to denote the class of G− and query clauses.

Theorem 5.1. The TransGF process reduces the problem of BCQ answering for GF to
that of deciding satisfiability of the GQ− clausal class.

Proof. By Lemma 5.1. �

5.2. DECIDING THE GQ− CLAUSAL CLASS 119

5.2 Deciding the GQ− clausal class

In this section, we aim to prove that the Q-AnsGF procedure decides satisfia-
bility of the GQ− clausal class. By Theorem 4.5 and the fact that the G− clausal
class is a subset of the guarded clausal class, applying theQ-AnsGF procedure
to GQ− clauses derives GQ clauses. Hence in this section, we put our focus on
proving that the derived GQ clauses are strongly compatible.

Recall that flat compound terms are non-nested compound terms. We first
investigate the unification of flat and compatible compound terms.

Lemma5.2. Let B, B′, C and C′ be flat compound terms. Suppose B and B′ are compatible,
and C and C′ are compatible. Then, if B and C are unifiable by an mgu �, the following
conditions are satisfied.

1. B and C are compatible, and B� and C� are compatible.
2. B� and B′� are compatible, and C� and C′� are compatible.
3. B′� and C′� are compatible.

Proof. Since B and C are, respectively, compatible with B′ and C′, B� and C�

are compatible with B′� and C′�, respectively. By the fact that B and C are
unifiable by � and Definition 8, B� and C� are compatible. Then B′� and C′�
are compatible. �

Nowwe look at the conclusions that are obtained by applying theQ-AnsGF

procedure to GQ− clauses. In particular we focus on the checking the strong
compatibility property of the derived clauses.

By Lemma 4.6 and the fact that the GQ− clausal class belong to the guarded
clausal class, a priori checking is applied in performing the Fact and P-Res rules
to GQ− clauses. We start with checking whether the T-InfGQ system decides
satisfiability of the aligned guarded clauses.

We start with considering the applications of the Fact rule to GQ− clauses.

Lemma 5.3. Applying the Fact rule (endowed with the T-RefGQ refinement) to GQ−

clauses derives GQ− clauses.

Proof. Recall the Fact rule (with an a priori checking for maximality and the
T-RefGQ refinement).

5.2. DECIDING THE GQ− CLAUSAL CLASS 120

� ∨ �1 ∨ �2Fact: (� ∨ �1)�
if the following conditions are satisfied.

1. Nothing is selected in � ∨ �1 ∨ �2.
2. �1 is �;?>-maximal with respect to �.
3. � = mgu(�1 � �2).

Since the Fact rule is not applicable to query clauses, we consider the case
when a G− clause is the premise of the Fact rule. By Lemma 4.15, the factors of
applying the Fact rule (endowed with the T-RefGQ refinement) to G− clauses
are guarded clauses. We prove that these factor are strongly compatible. By
Algorithm 1, the premise � ∨ �1 ∨ �2 is a G− clause. By Algorithm 1, we
distinguish two cases of � ∨ �1 ∨ �2.

Lines 1–2: The case is trivial when � ∨ �∗1 ∨ �2 is ground.
Lines 5–6: The premise � ∨ �∗1 ∨ �2 is non-ground and contains positively

occurring compound-term literals, but no negatively occurring compound-
term literals. By Definition 18, all compound terms in � ∨ �1 ∨ �2 share a
common argument list, therefore all compound terms in (� ∨ �1 ∨ �2)� are
compatible. Hence (� ∨ �1)� is strongly compatible. �

Next we consider the applications the P-Res rule to GQ− clauses. We first
check the case when all the premises are G− clauses, and then consider the case
when the main premise is a query clause and the side premises are G− clauses.

Lemma 5.4. Applying the P-Res rule (endowed with the T-RefGQ refinement) to G−

clauses derives G− clauses.

Proof. By Lemma 4.16, applying the P-Res rule (endowed with the T-RefGQ

refinement) to G− clauses derives guarded clauses. Now we focus on proving
that these derived guarded clauses are strongly compatible.

ByAlgorithm1, the binary formof theP-Res rule is usedwhen the premises
are G− clauses. Suppose G− clauses �1 = �1 ∨ �1 and � = ¬�1 ∨ � are the
positive and the negative premise in the P-Res rule, respectively, deriving the
resolvent �′ = (�1 ∨ �)�, where � is the mgu of �1 and �1. By Algorithm 1,
� either is ground, or has at least one a negatively occurring non-ground

5.2. DECIDING THE GQ− CLAUSAL CLASS 121

compound-term literal or is flat (Lines 1–2, or 3–4 or 7–8, respectively) and �1

satisfies either Lines 1–2 or 5–6. We distinguish three cases of �:
Lines 1–2: The negative premise � is a ground clause. By Algorithm 1, the

positive premise �1 is either a ground flat clause or a ground compound-term
clause. The case is trivial when � is flat and ground. When � is a ground
compound-term and , this case is a special case when � satisfies Lines 3–4,
which is proved next.

Lines 3–4: Thenegativepremise� contains at least onenegativenon-ground
compound-term literal. By Algorithm 1, the positive premise �1 is either
i) a simple ground clause, or ii) contains positive non-ground compound-
terms, but no negative non-ground compound-terms. In i) �1 is a ground
compound-term clause, otherwise �1 and �1 are not unifiable. The case �1 is a
ground compound-term clause is a special case of ii). Next we consider ii). By
Lemma 4.5, �1 is a compound-term literal. By Lemma 4.8, compound terms in
�1 pair only compound term in �1, and vice-versa. W.l.o.g. suppose B, B′, C and
C′ are compound terms in �1, �1, �1 and �, respectively. Further suppose B
pairs C. By Definition 18, B and B′ are compatible, and C and C′ are compatible.
By the fact that B pairs C, B� and C� are compatible. By Lemma 5.2, B′� and C′�
are compatible. Hence all compound terms in (�1 ∨ �2)� are compatible. By
Lemma 4.16, (�1 ∨ �2)� is an aligned guarded clause.

Lines 7–8: The negative premise � is a flat guarded clause. Algorithm 1,
�1 is either i) a simple and ground clause, or ii) contains positive non-ground
compound-terms, but no negative non-ground compound-terms. By the fact
that � is flat and �1 is strongly compatible, the compound terms in the resol-
vent �′ are from �1, therefore �′ is strongly compatible. Next suppose �1 is an
aligned guarded clause containing positive non-ground compound-terms, but
no negative non-ground compound-terms. Since � is a flat guarded clause,
all compound terms in the resolvent �′ originate from compound terms in �1.
Suppose B and C are two arbitrary compound terms in �1. By 2a. of Def-
inition 18, B and C are compatible. Hence B� and C� are compatible. Then
all compound terms in �′ are compatible. By Lemma 4.16, �′ is an aligned
guarded clause. �

We now conclude the result of applying the T-InfGQ system to G− clauses.
This is formally stated as:

Theorem 5.2. The T-InfGQ system decides satisfiability of the G− clausal class.

5.2. DECIDING THE GQ− CLAUSAL CLASS 122

Proof. By Theorem 4.4 and Lemmas 5.3–5.4. �

Next we consider the application of the P-Res rule to a query clauses and
G− clauses. In the Q-AnsGF procedure, the top-variable resolution rule is per-
formed on an indecomposable CO query clause and guarded clauses, deriving
the top-variable resolvent ', and then by the T-Trans rule, ' is transformed
into a set # of guarded clauses (and query clauses). We check that whether
the guarded clauses in # are strongly compatible.

Lemma 5.5. Let ' be the top-variable resolvent of applying the P-Res rule (endowed
with the T-Ref GQ refinement) to an indecomposable CO clause and G− clauses. Then,
by the T-Trans rule ' is replaced by G− clauses and a query clause.

Proof. By Lemma 4.25 and the fact that the G− clausal class is a strict subset
of the guarded clausal class, ' is replaced by a set # of guarded clauses and
a query clause. Hence we focuses on proving that clauses in # are strongly
compatible.

Recall theP-Res rule (with a priori checking formaximality and theT-RefGQ

refinement).

�1 ∨ �1, . . . , �< ∨ �< , . . . , �= ∨ �= ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ �
(�1 ∨ . . . ∨ �< ∨ ¬�<+1 ∨ . . . ∨ ¬�= ∨ �)�

if the following conditions are satisfied.

1. No literal is selected in �1, . . . , �= and �1, . . . , �= are strictly �;?>-
maximal with respect to �1, . . . , �= , respectively.

2a. If = = 1, i) either ¬�1 is selected, or nothing is selected in ¬�1∨� and
¬�1 is �;?>-maximal with respect to �, and ii) � = mgu(�1 � �1) or

2b. if = > 1 and there exists an mgu �′ such that �′ = mgu(�1 �

�1, . . . , �= � �=), then � = mgu(�1 � �1, . . . , �< � �<)where< ≤ =.
3. All premises are variable-disjoint.

Suppose �1 = �1 ∨ �1, . . . , �= = �= ∨ �= and � = ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨
¬�= ∨ �. Recall that in the Q-COGQ procedure, one first finds connected top-
variable subclause �′ of � and then disjunctively connected the remainders of

5.2. DECIDING THE GQ− CLAUSAL CLASS 123

side premises, whichmatch literals in �′, as a guarded clause. W.l.o.g. suppose
¬�1 ∨ ¬�2 is a connected top-variable subclause of �, and G1 and G2 are
connected top variables that occurs in ¬�1 and ¬�2, respectively. Suppose
G1 and G2 pair to B1 and C1, respectively, and B1 and C1 occur in �1 and �2,
respectively. Further suppose that B and C, respectively, are compound terms
that occur in�1 and�2, and D is a compound term in�1 that is distinct from B.
Using the T-Trans rule and a fresh predicate symbol %, (�1 ∨ �2)� ∨ % is
the obtained guarded clause. Hence our aim is to show all compound terms in
(�1∨�2)� are compatible (as % is a flat literal), that is, B, C and D are compatible.

ByDefinition17 and the fact that G1 and G2 are connected topvariables, there
exists a sequence of top variables G1, . . . G2 in � such that each pair of variable
in this sequence co-occurs in a literal of �. W.l.o.g. suppose H1 and H2 are two
variables in this sequence that occur in a literal ¬�8 . Hence ¬�1 ∨ ¬�2 ∨ ¬�8
is a connected top-variable subclause of �. By 3. of Lemma 4.13, in �8 , H1 and
H2 pair either constants or compound terms. By 5. of Lemma 4.13, if either H1

or H2 pairs a constant, (�1 ∨ �2)� ∨ % is a flat and ground clause. In this case,
the statement immediately holds. Now assume that H1 and H2 pair ground
compound terms. By the covering property, �8 is a ground compound-term
clause, which contradicts the fact that �8 is an aligned guarded clause. Hence,
H1 and H2 must pair non-ground compound terms. Suppose H1 and H2 pairs
non-ground compound terms B2 and C2, respectively. By Definition 18, B2 and
C2 are compatible. By 2. of Lemma 5.2, B2� and C2� are compatible, therefore
H1� and H2� are compatible. By the fact that H1 and H2 are connected to G1 and
G2, G1� and G2� are compatible. By the facts that G1 pairs to B1 and G2 pairs to
C1, B1� and C1� are compatible. By the facts that �1 and �2 are aligned guarded
clauses, B is compatible to B1 and C is compatible to C1. Then by 3. of Lemma 5.2
and the facts that B1� and C1� are compatible, and B� and C� are compatible.
By Definition 18, B and D are compatible. By 1. of Lemma 5.2, B� and D� are
compatible. Hence, B�, D� and C� are compatible. Then all compound terms
in (�1 ∨ �2)� ∨ % are compatible. �

Now we can give the main result of this section.

Theorem 5.3. The Q-AnsGF procedure decides satisfiability of the GQ− clausal class.

Proof. ByLemma 5.5,Theorems 4.5 and 5.2 and the fact that the class of aligned
guarded clauses is a strict subset of that of guarded clauses. �

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 124

5.3 Back-translating GQ− clausal sets

In this section,weaim toback-translate aGQ− clausal set to afirst-order formula.
We give our variations of the Rename, Abstract and Unsko rules, based on
which we provide the formal procedure that transform a GQ− clausal set into
a unique, normal, globally compatible and globally linear clausal set # . In the
last step, we back-translate # into a first-order formula.

Since query clauses are free of compound terms, each query clause in GQ−

clausal sets # can be straightforwardly unskolemised into a universally quan-
tified first-order formula, without affecting the G− clauses in # . Thus in this
section we concentrate on unskolemising clauses, especially compound-term
clauses, in the G− clausal class.

Making a GQ− clausal set normal and unique

Normalising GQ− clausal sets

In this section, we give the technique and algorithm that transform GQ− clausal
sets to a normal and strongly compatible clausal sets.

Recall the definition of normality from Section 3.3. A GQ− clause is not
necessarily normal. For example in the GQ− clause ¬�(G, 0) ∨ �(5 (G, 0), G) ∨
�(6(G, 0), G), constant 0 occurs in compounds terms 5 (G, 0) and 6(G, 0).

Constants occurring in compound terms ofGQ− clauses are abstractedusing

The ConAbs rule

∪ {�(0)}
∪ {�(H) ∨ H 0 0}

if the following conditions are satisfied.

1. �(0) is a compound-term GQ− clause.
2. 0 occurs in compound terms of �(0).
3. H does not occur in �(H).
4. �(H) does not contain 0.

Suppose � is a GQ− clause and 0 is a constant occurring in compound
terms of �. By 4. of the ConAbs rule, all occurrences of 0 are simultaneously
abstracted, hence applying theConAbs rule to aGQ− clause produces a strongly

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 125

compatible clause. Consider the previous GQ− clause � as an example, applying
the ConAbs rule to � derives the strongly compatible clause

¬�(G, H) ∨ �(5 (G, H), G) ∨ �(6(G, H), G) ∨ H 0 0,

rather than ¬�(G, H) ∨ �(5 (G, H), G) ∨ �(6(G, I), G) ∨ H 0 0 ∨ I 0 0.
Algorithm 8 is the procedure that normalises GQ− clausal sets. In Algo-

rithm 8, the AbstractConstant(�) function takes a GQ− clause � as input, and
then is applied to � as follows.

• If the ConAbs rule is not applicable to �, then � is returned.
• Otherwise theConAbs rule is recursively applied to �, until no constants

occur in compound terms of the ConAbs conclusions of �, producing a
normal clause �′.

Algorithm 8: Normalising GQ− clausal sets

Input: A GQ− clausal set #
Output: A normalised GQ− clausal set

1 #′← ∅
2 foreach clause � in # do
3 �← AbstractConstant(�)
4 #′← #′ ∪ �
5 return #′

Applying the ConAbs rule to a GQ− clause ensures to procedure a strongly
compatible clause, as the ConAbs rule simultaneously pull out all occurrences
of a constant.

Lemma 5.6. Applying Algorithm 8 to a GQ− clausal set transforms it to a normal
and strongly compatible clausal set # .

Proof. By the definition of Algorithm 8 and Definition 18. �

We use the notation GQ−n to denote the clausal sets that are obtained by
applying Algorithm 8 to GQ− clausal sets. Note that a GQ−n clause � may not
belong to the GQ− clausal class (and the GQ clausal class thereof), as � may
contain equalities.

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 126

Making a GQ−n clausal set normal and unique

In this section, we handle duplicate variables that occur in compound terms of
GQ−n clauses. By handling these duplicate variables, we transform GQ−n clausal
sets to a normal, uniqueand strongly compatible clausal set.

Recall the definition of uniqueness from Section 3.3.

Definition 11. A compound term 5 (C1, . . . , C=) is unique if each pair of terms in
C1, . . . , C= is a pair of distinct variables. A clause � is unique if every compound term
in � is unique. A clausal set # is unique if every compound term in # is unique.

By Definition 11, a unique clause � requires that there are no duplicate
variables that occur in compound term of �. However, a GQ−n clause may not
be unique. An example is the GQ−n clause

� = ¬�(G, G) ∨ �(5 (G, G), G) ∨ �(6(G, G), G).

Duplicate variables in compound terms of GQ−n clauses are abstracted using

The VarAbs rule

∪ {�(5 (. . . , G, . . . , G, . . .)}
∪ {�(5 (. . . , G, . . . , H, . . .) ∨ H 0 G}

if the following conditions are satisfied.

1. �(5 (. . . , G, . . . , G, . . .)) is a GQ−n clause.
2. H does not occur in �(5 (. . . , G, . . . , G, . . .)).
3. Let the second G in 5 (. . . , G, . . . , G, . . .) occur at the position 8. Then,

in every 8 position in compound terms of �(5 (. . . , G, . . . , G, . . .)), G
is replaced by H.

Observe that in a GQ−n clause �, if a compound term in � contains duplicate
variables G, which occurs in positions 8 and 9, then in all compound terms of �,
G occurs in positions 8 and 9. By this observation, applying the VarAbs rule
to a GQ−n clause transform it into a unique clause. Consider the previous GQ−n
clause � as an example. Applying the VarAbs rule to � transform it into

¬�(G, H) ∨ �(5 (G, H), G) ∨ �(6(G, H), G) ∨ G 0 H,

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 127

which is a unique, normal and strongly compatible clause. Like the ConAbs
rule, the VarAbs rule restricts that one use a common variable to abstract all
occurrences of one duplicate variable. For example, applying the VarAbs rule
to � cannot derive

¬�(G, H) ∨ �(5 (G, H), G) ∨ �(6(G, I), G) ∨ G 0 H ∨ G 0 I.

Algorithm 9 gives the formal procedure that transforms a GQ−n clausal set
to a unique, normal and strongly compatible clausal set.

Algorithm 9: Transforming a GQ−n clausal set to a unique clausal set

Input: A GQ−n clausal set #
Output: A unique clausal set #′

1 #′← ∅
2 foreach clause � in # do
3 �← AbstractVariable(�)
4 #′← #′ ∪ �
5 return #′

Algorithm 9 aims to remove duplicate variables that occur in the compound
terms of GQ−n clauses. In Algorithm 9, the AbstractVariable(�) function takes
a GQ−n clause � as input, and then applied to � as follows.

• If the VarAbs rule is not applicable to �, then � is returned.
• Otherwise, theVarAbs rule is recursively applied to �, until no duplicate

variables occur in compound terms of conclusions of �, producing a
unique clause �′, and then �′ is returned.

Lemma 5.7. Applying Algorithm 9 to a GQ−n clausal set transforms it into a normal,
unique and strongly compatible clausal set # .

Proof. By the definition of Algorithm 9 and Lemma 5.6. �

We use the notation GQ−nu to denote the normal, unique, locally linear and
locally compatible clausal sets that are obtained by applying Algorithm 9 to
a GQ−n clausal set. Moreover, given a GQ− clausal set # , we use the notation
Q-Abs to denote the variable and constant abstraction procedure of applying the
ConAbs and the VarAbs rules, given as follows.

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 128

1. ApplyAlgorithm 8 to # , transforming it into a normal, locally linear and
locally compatible GQ−n clausal set #1.

2. Apply Algorithm 9 to #1 to transform it into a normal, unique, locally
linear and locally compatible GQ−nu clausal set #2.

Preparing a GQ−nu clausal set for unskolemisation

In this section, we aim to transform a GQ−nu clausal set into a normal, unique,
globally compatible and globally linear clausal set, preparing this clausal set for
unskolemisation.

ByDefinitions 8, a globally compatible clausal set# requires that in clauses
of # , compound terms that are under the same function symbol share the
same argument list. Hence we need to find clauses in # that contain the same
function symbols. Weuse the notions connected clausal sets andan inter-connected
clausal set to formal define this problem.

Definition 19. Two clauses are connected clausal sets if they contain at least one
common function symbol, otherwise they are unconnected. Two clausal sets are
connected if they contain at least one common function symbol, otherwise they are
unconnected.

A clausal set # is an inter-connected clausal set if for any pair of clauses � and
�′ in # , there exists a sequence of clauses �, . . . , �′ in # such that each adjacent pair
of clauses in �, . . . , �′ is connected.

By Definition 19, one can partition a GQ−nu clausal set # into a clausal
set #′ containing only flat clauses and inter-connected clausal sets #1, . . . , #=

such that each pair of clausal sets in #1, . . . , #= are unconnected. We say
#′, #1, . . . , #= are closed clausal sets (with respect to #).

The back-translation of a closed GQ−nu clausal set consisting of flat clauses,
into a first-order formula is easy. Hence we put our focus on unskolemising
inter-connected GQ−nu clausal sets. An inter-connected GQ−nu clausal set has the
following nice property:

Lemma 5.8. Let # be an inter-connected GQ−nu clausal set. Then, all compound terms
in # have the same arity.

Proof. By the fact that GQ−nu clausal sets is strongly compatible (Lemma 5.7) and
Definition 19, compound terms in any pair of connected GQ−nu clauses have the

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 129

same arity. Then all compound terms in an inter-connected GQ−nu clausal set
have the same arity. �

Lemma5.8 implies that given an inter-connectedGQ−nu clausal set# , one can
use a sequence of variables to substitute all variable sequences of compound
terms in # . Next, we devise the following VarRe rule.

In compound terms of inter-connected GQ−nu clausal sets, the variables ar-
guments are renamed using

The VarRe rule

∪ {�(5 (G1, . . . , G=))}
∪ {�(5 (H1, . . . , H=)))}

if the following conditions are satisfied.

1. # ∪ {�(5 (G1, . . . , G=))} is an inter-connected GQ−nu clausal set.
2. All occurrences of G1, . . . , G= in �(5 (G1, . . . , G=)) are replaced by
H1, . . . , H= , respectively.

3. H1, . . . , H= do not occur in # ∪ {�(5 (G1, . . . , G=))}.

Let # be an inter-connected GQ−nu clausal set. To transform # to a globally
compatible clausal set, the VarRe rule is applied to all clauses in # . Suppose
5 (G1, . . . , G=) is a compound term of a clause in # . Using a sequence of fresh
variables H1, . . . , H= that does not occur in # , the VarRe rule substitutes vari-
ables in all clauses of # through {G1 ↦→ H1, . . . , G= ↦→ H=}, so that # can be
transformed into a globally compatible clausal set.

We use ReInt to denote the procedure of renaming variables of all clauses
in inter-connected GQ−nu clausal sets. By the inter-connected GQ−nu clausal set

=

{ ¬�1(G1, G2) ∨ �1(5 (G1, G2), G2) ∨ G1 0 0,

¬�2(G3, G4) ∨ �2(5 (G3, G4), G3) ∨ �3(6(G3, G4), G3),
¬�3(G5, G6) ∨ �4(6(G5, G6), G5) ∨ G5 0 H

}

(where 0 is a Skolem constant), we show how the ReInt procedure renames
variables. The ReInt procedure consists of two steps:

1. Find the arity of any compound term in # , which is two. Then introduce
a sequence of two fresh variables that do not occur in # . We use H1, H2 as

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 130

this sequence of fresh variables.

2. For each clause�(5 (G1, . . . , G=)) in# , apply theVarRe rule it, substituting
G1, . . . , G= by {G1 ↦→ H1, . . . , G= ↦→ H=}. We obtain the clausal set

#′ =

{ ¬�1(H1, H2) ∨ �1(5 (H1, H2), H2) ∨ H1 0 0,

¬�2(H1, H2) ∨ �2(5 (H1, H2), H1) ∨ �3(6(H1, H2), H1),
¬�3(H1, H2) ∨ �4(6(H1, H2), H1) ∨ H1 0 H

}
.

Then a normal, unique, globally compatible and globally linear clausal set #′

is obtained.

Lemma 5.9. Applying the ReInt procedure to an inter-connected GQ−nu clausal set
transforms it into a normal, unique, globally compatible and globally linear clausal set.

Proof. By Lemmas 3.2, 5.7, 5.8 and the definition of the ReInt procedure. �

The ReInt procedure renames all variables of inter-connected GQ−nu clausal
sets. However to rename the whole of a GQ−nu clausal set # , one needs to
partition # into closed clausal sets. We use the notation Q-Rena to denote
the procedure of partitioning GQ−nu clausal sets to closed clausal sets, and then
renames all variables of these closed clausal sets. See Algorithm 10.

Algorithm 10: Renaming variables of GQ−nu clausal sets

Input: A GQ−nu clausal set #
Output: A normal, unique, globally linear and globally

compatible clausal set #′

1 #′← ∅
2 while there exists compound-term clause in # do
3 Find a compound-term clause � in #
4 ClosedSet← FindInt(�, #)
5 # ← #\ ClosedSet
6 ClosedSet← Rename(ClosedSet)
7 #′← #′∪ ClosedSet

8 #′← #′ ∪ #
9 return #′

Algorithm 10 consists of the following functions:

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 131

1. The FindInt(�, #) function takes a GQ−nu clausal set # and a compound-
term clause � in # as input, outputting the inter-connected GQ−nu clausal
set, in which � occurs.

2. The Rename(#) function applies the ReInt procedure to rename vari-
ables of an inter-connected clausal set # , and outputs a normal, unique,
globally compatible and globally linear clausal set.

In Algorithm 10, the while-loop in Lines 2–7 iteratively find closed clausal
sets in a GQ−nu clausal set # , and then removes these closed clausal sets from # .
Lines 3–4 first find an arbitrary compound-term clause � in # , and then uses
the FindInt(�, #) function to find the �-occurring inter-connected clausal set
in # . Then Line 6 rename variables in this inter-connected GQ−nu clausal set.
Line 7 uses #′ to store the inter-connected clausal sets in # in which variables
are renamed. In the last step, Line 8 adds the remaining clauses in # , which
are flat clauses, to #′.

Algorithm 11: The FindInt function

Input: A GQ−nu clausal set # and a compound-term clause � in #
Output: An inter-connected GQ−nu clausal set that � occurs

1 Function FindInt(�, #):
2 FunSym← FindFunSymbol(�)
3 NewClosedSet← FindNewClosedSet(FunSym, #)
4 ExistClau← NewClosedSet
5 NewClau← ExistClau \�
6 while NewClau is not empty do
7 FunSym← FindFunSymbol(ExistClau)
8 NewClosedSet← FindNewClosedSet(FunSym, #)
9 NewClaus← NewClosedSet \ ExistClau
10 ExistClau← NewClosedSet

11 return ExistClau

On the next page Algorithm 11 describes the FindInt function, containing
the following two functions:

1. The FindFunSymbol(#) function returns all function symbols in the
clausal set # .

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 132

2. The FindNewClosedSet(F, #) takes a set F of functions symbols and a
clausal set # as input, and returns a subset #′ of # such that each clause
in #′ contains at least one function symbol in F.

Lemma 5.10. Applying the Q-Rena procedure to a GQ−nu clausal set transforms it
into a normal, unique, globally compatible and globally linear clausal set.

Proof. By Lemma 5.9 and the definition of VarRe procedure. �

We use the notation GQ−nucl to denote the clausal class obtained by applying
the Q-Rena procedure to the GQ−nu clausal class.

Unskolemising a GQ−nucl clausal set

In this section, we introduce the customised unskolemisation rules for GQ−nucl
clausal sets. By these rules, we give the formal procedure that back-translate a
GQ−nucl clausal set into a first-order formula.

By Definition 19, one can partition a GQ−nucl clausal set into a set of closed
GQ−nucl clausal sets, in which are inter-connected GQ−nucl clausal sets and a GQ−nucl
clausal set consisting of flat clauses.

If GQ−nucl clausal set # contains only flat clauses, # is unskolemised using

The UnskoOne rule

∪ {�1(G, 0), . . . , �=(H, 1)}
∪ {∃I∀GH(�1(G, I) ∧ . . . ∧ �=(H, 1))}

if the following conditions are satisfied.

1. {�1(G, 0), . . . , �=(H, 1)} is a compound-term-free GQ−nucl clausal set,
2. 0 and 1 represent Skolem and non-Skolem constants, respectively.
3. I does not occur in {�1(G, 0), . . . , �=(H, 1)}.

Consider a compound-term-free GQ−nucl clausal set

=

{
¬�1(01, 02) ∨ ¬�1(01),
¬�2(H1, H2) ∨ �2(0, H1)

}
where 01 and 02 are Skolem constants and 0 is a non-Skolem constant. The
UnskoOne rule unskolemises # using the following steps.

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 133

1. For each constant 08 in # , introduce an existentially quantified variable
and an existential quantification for all occurrences of 08 , obtaining

#1 = ∃I1I2

[
(¬�1(I1, I2) ∨ ¬�1(I1))∧
(¬�2(H1, H2) ∨ �2(0, H1))

]
.

2. Add universal quantifications for all free variables in #1, obtaining a
first-order formula

∃I1I2∀H1H2

[
(¬�1(I1, I2) ∨ ¬�1(I1))∧
(¬�2(H1, H2) ∨ �2(0, H1))

]
.

Nextweunskolemise compound-termGQ−nucl clausal sets. An inter-connected
GQ−nucl clausal set is unskolemised using

The UnskoTwo rule

Let #1 be a GQ−nucl clausal set, # be a closed GQ−nucl clausal set in #1, and
#′ be the set #1 \ # . Suppose # is an inter-connected GQ−nucl clausal set{ �1(G1, . . . , G= , 5 (G1, . . . , G=), I1, 0),

. . .

�=(G1, . . . , G= , 6(G1, . . . , G=), IC , 1)

}

where 0, 1, G1, . . . , G= and I1, . . . , IC represent Skolem constants, non-
Skolem constants and variables introduced in the Q-Rena and Q-Abs
procedures, respectively. Let � be the first-order formula

∃H∀G1 . . . G=∃H1 . . . H<∀I1, . . . , IC

�1(G1, . . . , G= , H1, I1, H)∧

. . .

�=(G1, . . . , G= , H< , IC , 1)

 .
Then # is unskolemised to a first-order formula using

#′ ∪ #
#′ ∪ {�}

if H1, . . . , H< and H do not occur in #′ ∪ # .

5.3. BACK-TRANSLATING GQ− CLAUSAL SETS 134

Using the inter-connected GQ−nucl clausal set

=

{ ¬�1(H1, H2) ∨ �1(5 (H1, H2), H2) ∨ H1 0 0,

¬�2(H1, H2) ∨ �2(5 (H1, H2), H1) ∨ �3(6(H1, H2), H1),
¬�3(H1, H2) ∨ �4(6(H1, H2), H1) ∨ H1 0 H

}

with 0 a Skolem constant, the following steps show how the UnskoTwo rule
unskolemises inter-connected GQ−nucl clausal sets.

1. Add existential quantifications and existentially quantified variables to
replace Skolem constants in # , obtaining

#1 = ∃I

(¬�1(H1, H2) ∨ �1(5 (H1, H2), H2) ∨ H1 0 I)∧
(¬�2(H1, H2) ∨ �2(5 (H1, H2), H1) ∨ �3(6(H1, H2), H1))∧
(¬�3(H1, H2) ∨ �4(6(H1, H2), H1) ∨ H1 0 H)

 .
2. Introduce universal quantifications for variables that occur in the com-

pound terms in #1, obtaining

#2 = ∃I∀H1H2

(¬�1(H1, H2) ∨ �1(5 (H1, H2), H2) ∨ H1 0 I)∧
(¬�2(H1, H2) ∨ �2(5 (H1, H2), H1) ∨ �3(6(H1, H2), H1))∧
(¬�3(H1, H2) ∨ �4(6(H1, H2), H1) ∨ H1 0 H)

 .
3. For each function symbol 58 in#2, introduce a newexistentially quantified

variable and a new existential quantification, to replace all occurrences of
Skolem compound terms that are under 58 , obtaining

#3 = ∃I∀H1H2∃I1I2

(¬�1(H1, H2) ∨ �1(I1, H2) ∨ H1 0 I)∧
(¬�2(H1, H2) ∨ �2(I1, H1) ∨ �3(I2, H1))∧
(¬�3(H1, H2) ∨ �4(I2, H1) ∨ H1 0 H)

 .
4. Finally, add universal quantifications for free variables in #3, obtaining

� = ∃I∀H1H2∃I1I2∀H

(¬�1(H1, H2) ∨ �1(I1, H2) ∨ H1 0 0)∧
(¬�2(H1, H2) ∨ �2(I1, H1) ∨ �3(I2, H1))∧
(¬�3(H1, H2) ∨ �4(I2, G1) ∨ H1 0 H)

 .
Lemma 5.11. Given an inter-connected GQ−nucl clausal set # , the UnskoTwo rule
transforms it into a first-order formula without Skolem symbols.

5.4. A DECISION PROCEDURE FOR REWRITING BCQS FOR GF 135

Proof. By Lemma 5.10 and Theorem 3.1. �

We use the notation Q-Unsko to denote the procedure of unskolemising a
GQ−nucl clausal set into a first-order formula. See Algorithm 12.

In Algorithm 12, the Unsko(#) function takes a closed clausal set # as
input. Otherwise the UnskoTwo rule is applied to # , outputting a first-order
formula. If # is a compound-term-free GQ−nucl clausal set, then the UnskoOne
rule is applied to # , outputting a first-order formula.

Algorithm 12: Unskolemising a GQ−nucl clausal set to a formula

Input: A GQ−nucl clausal set #
Output: A first-order formula �

1 �← ∅
2 foreach closed clausal set #′ in # do
3 �1 ← Unsko(#)
4 �← �1 ∪ �
5 return �

Lemma 5.12. Applying the Q-Unsko procedure to a GQ−nucl clausal set transforms it
to a first-order formula without Skolem symbols, but with equality.

Proof. By Lemmas 5.10–5.11, Theorem 3.1 and the definition of the Q-Unsko
procedure. �

5.4 A decision procedure for rewriting BCQs for GF

By combining all results from the previous sections, we give a decision proce-
dure for saturation-based BCQ rewriting for GF.

We use Q-RewGF to denote the procedure of rewriting BCQ for GF. See
Algorithm 13 on the next page.

Algorithm 13 contains the following functions.

• The Q-AnsGF(Σ, @) function takes a set Σ of guarded formulas and a
union @ of BCQs as input, and then applies the Q-AnsGF procedure to
compute the saturation of Σ ∪ {¬@}.

5.4. A DECISION PROCEDURE FOR REWRITING BCQS FOR GF 136

• The Q-Abs(#) function takes a GQ− clausal set # as input, and applies
the Q-Abs procedure to # , outputting a unique, normal and strongly
compatible clausal set.

• The Q-Rena(#) function takes a GQ−nu clausal set # as input, and then
applies theQ-Rena procedure to it, returning a normal, unique, globally
compatible and globally linear clausal set GQ−nucl.

• The Q-Unsko(#) function takes a GQ−nucl clausal set # as input, and then
applies theQ-Unskoprocedure to it, returning a first-order formulawith-
out Skolem symbols.

Algorithm 13: The saturation-based BCQ rewriting procedure for GF

Input: A union @ of BCQs and a set Σ of guarded formulas
Output: A first-order formula without Skolem symbols

1 # ← Q-AnsGF(Σ, @)
2 #1 ← Q-Abs(#)
3 #2 ← Q-Rena(#1)
4 �← Q-Unsko(#2)
5 return Negated �

Lemma 5.13. The Q-RewGF procedure preserves logical equivalence.

Proof. The Q-RewGF procedure uses variations of the Rename rule, the Ab-
stract rule and theQ-Unsko rule fromSection 3.3. ByLemma 3.3, any variation
of these rules are sound and preserve logical equivalence. Hence, theQ-RewGF

procedure preserves logical equivalence. �

Finally, we give a positive answer to Problem 5.

Theorem 5.4. Suppose Σ is a set of formulas in GF, D is a set of ground atoms and @
is a union of BCQs. The Q-RewGF procedure is a decision procedure that negates, and
then back-translates the saturated clausal set ofΣ∪{¬@} to a (function-free) first-order
formula with equality Σ@ such that Σ ∪D |= @ if and only if D |= Σ@ .

Proof. By Theorem 5.1, the problem of answering BCQs for GF is reduce to
that of deciding satisfiability of the GQ− clausal class. By Theorem 5.3 and
the fact that the Q-AnsGF procedure is a part of the Q-RewGF procedure, the

5.4. A DECISION PROCEDURE FOR REWRITING BCQS FOR GF 137

Q-RewGF procedure decides satisfiability of the GQ− clausal class. By Lemmas
5.6, 5.7 and 5.10, theQ-RewGF procedure ensures to back-translate GQ− clausal
sets to a unique, normal, locally linear and locally compatible clausal set # . By
Lemma5.12, theQ-RewGF procedure ensures to back-translate# to afirst-order
formula without Skolem symbols. By Lemma 5.13, the Q-RewGF procedure
preserves logical equivalence. �

Chapter 6

Querying for LGF and CGF

In this chapter, we investigate the problems of answering and rewriting BCQs
formore expressiveguarded fragments, namely the loosely guarded fragment (LGF)
and the clique guarded fragment (CGF). We start with investigating the BCQs an-
swering problem for LGF and/or CGF, formally stated as:

Problem 6. Given a set Σ of formulas in LGF and/or CGF and a union @ of BCQs,
can a saturation-based procedure decide whether Σ |= @?

The next problem is the saturation-based BCQ rewriting problem for LGF
and/or CGF, formally stated as:

Problem 7. Given a setΣ of formulas in LGF and/orCGF, a setD of ground atoms and
a union @ of BCQs, does there exist a (function-free) first-order formula (with equality)
Σ@ that is the negated back-translation of the saturated clausal set of Σ ∪ {¬@} such
that Σ ∪D |= @ if and only if D |= Σ@?

This chapter is organised as follows. We first introduce the clausifications
that transform LGF and CGF to the so-called loosely guarded clauses. Section 6.2
gives a new top-variable inference system T-InfLGQ, particularly devised for
deciding satisfiability of the loosely guarded clausal class, andSection 6.3 then for-
mally proves the decidability claim. The last section formalises the saturation-
based decision procedures for answering and rewriting BCQs for LGF and/or
CGF.

138

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 139

6.1 Clausal normal forms of LGF and CGF

In this section, we give our structural transformations that process formulas in
LGF and CGF into a proper normal clausal form.

Transforming LGF to the LG clausal class

Recall the definition of LGF from Section 2.1.

Definition 2. The loosely guarded fragment (LGF) is a fragment of FOL without
function symbols, inductively defined as follows:

1. > and ⊥ belong to LGF.
2. If � is an atom, then � belongs to LGF.
3. LGF is closed under Boolean connectives.
4. Let � be a loosely guarded formula andG a conjunction of atoms. Then ∀G(G→
�) and ∃G(G ∧ �) belong to LGF if

(a) all free variables of � occur in G, and
(b) for each variable G in G and each variable H occurring in G that is distinct

from G, G and H co-occur in an atom of G.

The TransGF process (from Section 4.1) was originally devised for trans-
forming guarded formulas, however this process also is sufficient to transform
a loosely guarded formula to a set of loosely guarded clauses. We use the loosely
guarded formula

� = ∃G2(�1(G1, G2) ∧ �(G2) ∧ ∀G3((�1(G1, G3) ∧ �1(G3, G2)) → ∃G4�2(G4, G2)))

as a sample to show how the TransGF process is applied, given as follows.

1. Add existential quantifiers to all free variables of �, and by theNNF rules,
transforming � to negation normal form, obtaining

�1 =

[
∃G1G2(�1(G1, G2) ∧ �(G2) ∧ ∀G3(

¬�1(G1, G3) ∨ ¬�1(G3, G2) ∨ ∃G4�2(G4, G2)))

]
.

2. By introducing predicate symbols %8 (and respective literals %8(· · ·)), ap-
plying the Trans rules for each universally quantified subformula of �1.

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 140

Then we obtain

�2 =

[
∃G1G2(�1(G1, G2) ∧ �(G2) ∧ %(G1, G2))∧
∀G1G2G3(¬%(G1, G2) ∨ ¬�1(G1, G3) ∨ ¬�1(G3, G2) ∨ ∃G4�2(G4, G2)))

]
.

We say that

• ∃G1G2(�1(G1, G2)∧�(G2)∧%(G1, G2)) is the replacing formula of �1, and

• ∀G1G2G3(¬%(G1, G2)∨¬�1(G1, G3)∨¬�1(G3, G2)∨∃G4�2(G4, G2))) is the
definition formula of %.

3. Transform each immediate subformula of �2 to prenex normal form, and
then applying the Skolem rule to the resulting formula. By introducing
Skolem constants 0, 1 and a Skolem function 5 (G1, G2, G3), we obtain

�3 =

[
�1(0, 1) ∧ �(1) ∧ %1(0, 1)∧
¬%(G1, G2) ∨ ¬�1(G1, G3) ∨ ¬�1(G3, G2) ∨ �2(5 (G1, G2, G3), G2))

]
.

4. Drop universal quantifiers, and then transform �3 to conjunctive normal
form, obtaining a set of loosely guarded clauses{

�1(0, 1), �(1), %1(0, 1),
¬%(G1, G2) ∨ ¬�1(G1, G3) ∨ ¬�1(G3, G2) ∨ �2(5 (G1, G2, G3), G2))

}
The formal definition of the loosely guarded clauses is given as follows.

Definition 20. A loosely guarded clause (LG clause) � is a simple and covering
clause, satisfying the following conditions:

1. � is either ground, or
2. � contains a negative flat subclause ¬�1 ∨ . . . ∨ ¬�= such that each variable

pair in � co-occurs in a literal of ¬�1 ∨ . . . ∨ ¬�= .

In 2. of Definition 20, the negative flat subclause ¬�1 ∨ . . . ∨ ¬�= is called
the loose guard of the LG clause �. The class of LG clauses strictly extends that
of guarded clauses, since given an LG clause �, one can restrict the loose guard
in � to be single literal to obtain a guarded clause, but not vice-versa.

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 141

Consider the clauses

�1 = ¬�1(G, H) ∨ ¬�2(H, I) ∨ ¬�3(I, G),
�2 = ¬�1(G, H, 0) ∨ ¬�2(H, I, 1) ∨ ¬�3(I, G, F).

The clause �1 is an LG clause (and a query clause), but �2 is not, as F and H do
not co-occur in any negative flat literal, which does not satisfy 2. of Definition
20.

Lemma 6.1. Applying the TransGF process to a loosely guarded formula transforms it
into a set of LG clauses.

Proof. We prove that the TransGFprocess transforms a loosely guarded formula
to a set of LG clauses. Suppose � is a loosely guarded formula. In the TransGF

process, 1.–2. use new predicate symbols (and literals) to rename universally
quantified formulas in �. W.l.o.g., suppose % is the newly introduced predicate
symbol, �1 is the definition formula of %, and �′ is the replacing formula
of �. Now we show that 3.–4. transform �1 and �′ into LG clauses. �′ is an
existentially quantified sentence, hence, skolemising �′ transforms it into (a set
of) flat ground clauses (if conjunctions occur in �′), which are LG clauses. �1

can be represented as

∀G(%(G) → ∀H(G(G, H) →)(H)))

where i)G(G, H) is in the form of �1∧ . . .∧�= where each variable in H and each
variable in G ∪ H co-occur in an atom of �1∧ . . .∧�= (by 4b. ofDefinition 2), ii)
)(H) consists of atoms and existentially quantified formulas that are connected
by Boolean connectives. By 4. of the TransGF process, �1 is simplified as

�′1 = ∀GH(¬%(G) ∨ ¬�1(. . .) ∨ . . . ∨ ¬�=(. . .) ∨)(H)).

Suppose � is the clause obtained from �′1. 1) ¬% ∨ ¬�1 ∨ . . . ∨ ¬�= is a loose
guard of �, since each pair of distinct variables in G ∪ H co-occurs in a literal
of ¬% ∨ ¬�1 ∨ . . . ∨ ¬�= . 2) for any existential quantified variable I in)(H), I
is Skolemised into a compound term that contains GH. This ensures that any
compound term in � shares the same variable set as �. 3) Since �′1 is contains
no function symbol, � contains non-nested compound terms. By 1)–3), � is
simple, covering and contains a loose guard. Hence, it is an LG clause. �

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 142

Recall the fact that TransGF process transforms a union of BCQs to a set of
query clauses (from Section 4.1). We use the notation LGQ to denote the class of
LG clauses and query clauses.

Theorem 6.1. The TransGF process reduces the problem of BCQ answering for LGF
to that of deciding satisfiability of the LGQ clausal class.

Proof. By Theorem 4.1 and Lemma 6.1. �

Transforming CGF to the LG clausal class

In this section,wegive a customisednovel clausificationprocess that transforms
clique guarded formulas to an LG clausal set.

Recall the definition of CGF from Section 2.1.

Definition 3. The clique guarded fragment (CGF) is a fragment of FOL without
function symbols, inductively defined as follows:

1. > and ⊥ belong to CGF.
2. If � is an atom, then � belongs to CGF.
3. CGF is closed under Boolean connectives.
4. Let � be a clique guarded formula and G(G, H) a conjunction of atoms. Then
∀I(∃GG(G, H) → �) and ∃I(∃GG(G, H) ∧ �) belong to CGF, if

(a) all free variables of � occur in H, and
(b) each variable in G occurs in only one atom of G(G, H), and
(c) for each variable I in I and each variable H occurring in G(G, H) that is

distinct from I, I and H co-occur in an atom of ∃GG(G, H).
Unlike the notion of the loose guardG in 4. ofDefinition 2, the clique guard

∃GG(G, H) contains existential quantificationswith existentially quantified vari-
ables G. Because of the occurrence of these arbitrary existential quantifications,
the clausal normal form of clique guarded formulas cannot be easily defined.
For example, consider the clique guard formula

�′ = ∀G1G2G3(∃G4G5(�1(G1, G3, G4) ∧ �2(G2, G3, G5) ∧ �3(G1, G2)) → ∃G6�(G1, G6)).

Using a Skolem function symbol 5 , clausifying �′ (for example, by the TransGF

process) transforms it into

�′ = ¬�1(G1, G3, G4) ∨ ¬�2(G2, G3, G5) ∨ ¬�3(G1, G2) ∨ �(G1, 5 (G1, G2, G3, G4, G5)),

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 143

which is neither an LG clause nor a guarded clause. Observe that although �′

has the covering property, variables in it do not have the variable co-occurrence
property. Nonetheless in �′, G1, G2 and G3 have this variable co-occurrence
property. Based on this observation, we realise that one can use the Minis-
coping and the Trans rules to handle the existential quantifications in �′. For
example, by theMiniscoping rules, �′ is transformed into

�′1 = ∀G1G2G3(∃G4�1(G1, G3, G4) ∧ ∃G5�2(G2, G3, G5) ∧ �3(G1, G2) → ∃G6�(G1, G6)),

and then by the Trans rules, one can abstract existential quantified formu-
las in the clique guard of �′1. Using new predicate symbols %′1 and %′2 for
∃G4�1(G1, G3, G4) and ∃G5�2(G2, G3, G5), respectively, �′1 is transformed into

�′2 =

∀G1G2G3(%′1(G1, G3) ∧ %′2(G2, G3) ∧ �3(G1, G2) → ∃G6�(G1, G6)) ∧
∀G1G3(∃G4�1(G1, G3, G4) → %′1(G1, G3)) ∧
∀G2G3(∃G5�2(G2, G3, G5) → %′2(G2, G3))

 .
Finally by the Skolem rules (using a new Skolem function symbol 6) and then
the CNF rules, �′2 is transformed into a set of loosely guarded clauses:

¬%′1(G1, G3) ∨ ¬%′2(G2, G3) ∨ ¬�3(G1, G2) ∨ �(G1, 6(G1, G2, G3)),
¬�1(G1, G3, G4) ∨ ¬%′1(G1, G3),
¬�2(G2, G3, G5) ∨ ¬%′2(G2, G3).

We use the notation TransCGF to denote the structural transformation for
clique guarded formulas and a union of BCQs. Like the TransGF process, the
TransCGF process first negate a union of BCQs to obtains a set of query clauses.
The next step of the TransCGF process is computing clausal normal forms of
clique guarded formulas. We use the clique guarded formula

� =

∀G1G2(�(G1, G2) → ∀G3(

∃G4G5(�(G1, G3, G4) ∧ �(G2, G3, G5)) →
∃G6�(G1, G6)))

to elucidate the application of theTransCGF process to clique guarded formulas,
given as follows.

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 144

1. Add existential quantification for free variables in �, and then apply the
Miniscoping rules to clique guards in �, obtaining

�1 =

∀G1G2(�(G1, G2) → ∀G3(

∃G4�(G1, G3, G4) ∧ ∃G5�(G2, G3, G5) →
∃G6�(G1, G6)))

 .
2. By theNNF rules, transform �1 to negation normal, obtaining

�2 =

∀G1G2(¬�(G1, G2) ∨ ∀G3(

∀G4 ¬�(G1, G3, G4) ∨ ∀G5 ¬�(G2, G3, G5)∨
∃G6�(G1, G6)))

 .
3. Then theTrans rules areused as follows. i) For eachuniversally quantified

atomic formula that occurs in the clique guard of �′2, we introduce a fresh
predicate symbol %8 (and respective literals ¬%8(· · ·)), and ii) for the rest
of universally quantified formulas of �′2, we introduce fresh predicate
symbols %9 (and respective literals %9(· · ·)). Then from �2, we obtain �3,
representing as

?

(¬? ∨ ∀G1G2(¬�(G1, G2) ∨ %1(G1, G2)))∧
∀G1G3(%2(G1, G3) ∨ ∀G4 ¬�(G1, G3, G4))∧
∀G2G3(%3(G2, G3) ∨ ∀G5 ¬�(G2, G3, G5))∧
∀G1G2(¬%1(G1, G2) ∨ ∀G3(¬%2(G1, G3) ∨ ¬%3(G2, G3) ∨ ∃G6�(G1, G6)))

.

In �3, we say that

¬? ∨ ∀G1G2(¬�(G1, G2) ∨ %1(G1, G2)),
∀G1G2(¬%1(G1, G2) ∨ ∀G3(¬%2(G1, G3) ∨ ¬%3(G2, G3) ∨ ∃G6�(G1, G6))),
∀G1G3(%2(G1, G3) ∨ ∀G4 ¬�(G1, G3, G4)),
∀G2G3(%3(G2, G3) ∨ ∀G5 ¬�(G2, G3, G5)),

are the definition formulas of ?, %1, %2 and %3, respectively, and ? is the
replacing formula of �2.

4. Transform each immediate subformula of �3 (connecting by conjunctions)
to prenex normal form, and then apply Skolem rule. Using a Skolem

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 145

function symbol 5 , �3 is transformed into �4, presenting as

?

(¬? ∨ ∀G1G2(¬�(G1, G2) ∨ %1(G1, G2)))∧
∀G1G3G4(%2(G1, G3) ∨ ¬�(G1, G3, G4))∧
∀G2G3G5(%3(G2, G3) ∨ ¬�(G2, G3, G5))∧
∀G1G2G3(¬%1(G1, G2) ∨ ¬%2(G1, G3) ∨ ¬%3(G2, G3) ∨ �(G1, 5 (G1, G2, G3)))

.

5. Drop universal quantifiers of �4, and then by the CNF rules, �4 is trans-
formed to a set of LG clauses

?, ¬? ∨ ¬�(G1, G2) ∨ %1(G1, G2),
%2(G1, G3) ∨ ¬�(G1, G3, G4), %3(G2, G3) ∨ ¬�(G2, G3, G5),
¬%1(G1, G2) ∨ ¬%2(G1, G3) ∨ ¬%3(G2, G3) ∨ �(G1, 5 (G1, G2, G3))

 .
Lemma 6.2. The TransCGF process reduces the problem of deciding satisfiability of
clique guarded formulas to that of deciding satisfiability of the LG clausal class.

Proof. We show that theTransCGF process transforms a clique guarded formula
to a set of LG clauses. Suppose � is a clique guarded formula. In 1.–3. of
the TransCGF process, universal quantified subformula in � are abstracted.
W.l.o.g. we use a new predicate symbol %1 (and respective literal ¬%1(· · ·)) to
abstract universally quantified formulas that occur in the clique guard of �,
and we use %2 (and respective literal %2(· · ·)) to abstract the rest of universally
quantified formulas in �. Suppose �1 and �2 are the definition formulas of %1

and %2, respectively, and �′ is the replacing formula of �. Now we show that
by 4.–5. of the TransCGF process, �1, �2 and �′ are transformed to a set of LG
clauses. Suppose ∀H¬!(G, H) is an atomic formula in a clique guard. Then �1

can be represented in the form of ∀G(%1(G) ∨∀H¬!(G, H)). 4.–5. of the TransCGF

process transforms �1 to %1(G) ∨ ¬!(G, H), which immediately is an LG clause.
�2 can be presented as

∀GH(¬%2(G) ∨ ¬�1(. . .) ∨ . . . ∨ ¬�=(. . .) ∨)(H)),

where i))(H) is a formula of atoms and existentially quantified formulas that
are connected by Boolean connectives, and ii) each pair of distinct variables
in G ∪ H co-occurs in a literal of ¬%2(G) ∨ ¬�1(. . .) ∨ . . . ∨ ¬�=(. . .). Note that
)(H) contains no universal quantifications. By Lemma 6.1, 4.–5. transform

6.1. CLAUSAL NORMAL FORMS OF LGF AND CGF 146

<latexit sha1_base64="eBKPbKx10nr3cOLImV1eNLZ6euI=">AAACHHicbVDLSsNAFJ34rPUV69JNsAgupCRSVFwV3LisYB/Q1jKZ3rZDJ5Mwc6Mtob/SrX6IO3Er+B3+gNO0C9t6YIbDOfdyLsePBNfout/W2vrG5tZ2Zie7u7d/cGgf5ao6jBWDCgtFqOo+1SC4hApyFFCPFNDAF1DzB3dTv/YMSvNQPuIoglZAe5J3OaNopLadKz8lzUjxAGb/uO217bxbcFM4q8SbkzyZo9y2f5qdkMUBSGSCat3w3AhbCVXImYBxthlriCgb0B40DJU0AN1K0tvHzplROk43VOZJdFL170ZCA61HgW8mA4p9vexNxf+8Rozdm1bCZRQjSDYL6sbCwdCZFuF0uAKGYmQIZYqbWx3Wp4oyNHUtpEh4iYYIQ7xIWZqYNS15y52skuplwbsqFB+K+dLtvK8MOSGn5Jx45JqUyD0pkwphZEgm5JW8WRPr3fqwPmeja9Z855gswPr6BeEzosQ=</latexit>

%001
<latexit sha1_base64="KxmMfZNvMwI/kQeOzIKMAu7RYSU=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYcgMIWpcYdy4xCifBAjpaR7Qoadn0v1GIYQjsNWDuDNuPYTn8AI2wywErKSTStV7qdflhYJrdJxvK7W2vrG5ld7O7Ozu7R9kD4+qOogUgwoLRKDqHtUguIQKchRQDxVQ3xNQ8wZ3M7/2DErzQD7hKISWT3uSdzmjaKTH23ahnc05eSeGvUrchORIgnI7+9PsBCzyQSITVOuG64TYGlOFnAmYZJqRhpCyAe1Bw1BJfdCtcXzqxD4zSsfuBso8iXas/t0YU1/rke+ZSZ9iXy97M/E/rxFh97o15jKMECSbB3UjYWNgz/5td7gChmJkCGWKm1tt1qeKMjTtLKRIeAmHCEO8iFmcmDEtucudrJJqIe9e5osPxVzpJukrTU7IKTknLrkiJXJPyqRCGOmRKXklb9bUerc+rM/5aMpKdo7JAqyvX4/Nm6c=</latexit>

�2

<latexit sha1_base64="tywurskG9HGUL3p/PIySfWFitKE=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSGqHGFceMSozwSaMh0uIUJ02kzc6sQwiew1Q9xZ9z6EX6HP+BQWAh4kklOzrk3587xY8E1Os63tbK6tr6xmdnKbu/s7u3nDg6rOkoUgwqLRKTqPtUguIQKchRQjxXQ0BdQ83t3E7/2DErzSD7hIAYvpB3JA84oGunxtuW2cnmn4KSwl4k7I3kyQ7mV+2m2I5aEIJEJqnXDdWL0hlQhZwJG2WaiIaasRzvQMFTSELQ3TE8d2adGadtBpMyTaKfq340hDbUehL6ZDCl29aI3Ef/zGgkG196QyzhBkGwaFCTCxsie/NtucwUMxcAQyhQ3t9qsSxVlaNqZS5HwEvcR+niesjQxa1pyFztZJtWLgntZKD4U86WbWV8ZckxOyBlxyRUpkXtSJhXCSIeMySt5s8bWu/VhfU5HV6zZzhGZg/X1C44om6Y=</latexit>

�1 <latexit sha1_base64="/KTUm7YxUQgKPfmMMy5cKdTEqKI=">AAACC3icbVBLTgJBFOzBH+IPdelmIjFxYciMEjWuMG5cYpRPAoT0NA/o0NMz6X6jEMIR2OpB3Bm3HsJzeAGbYRYCVtJJpeq91OvyQsE1Os63lVpZXVvfSG9mtrZ3dvey+wcVHUSKQZkFIlA1j2oQXEIZOQqohQqo7wmoev27qV99BqV5IJ9wGELTp13JO5xRNNLjbeuilc05eSeGvUzchORIglIr+9NoByzyQSITVOu664TYHFGFnAkYZxqRhpCyPu1C3VBJfdDNUXzq2D4xStvuBMo8iXas/t0YUV/roe+ZSZ9iTy96U/E/rx5h57o54jKMECSbBXUiYWNgT/9tt7kChmJoCGWKm1tt1qOKMjTtzKVIeAkHCAM8i1mcmDEtuYudLJPKed69zBceCrniTdJXmhyRY3JKXHJFiuSelEiZMNIlE/JK3qyJ9W59WJ+z0ZSV7BySOVhfv5Fym6g=</latexit>

�3<latexit sha1_base64="R1c7Xeqv2EtrSJYVddg4PEgqiYI=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8ECJkOtzBhOm1mbhXS8Als9UPcGbd+hN/hDzgUFgKeZJKTc+7NuXO8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXToxoEl1BDjgKakQIaeAIa3vBu5jeeQWkeyiccR9AJaF9ynzOKRnocdUvdfMEpOinsdeIuSIEsUO3mf9q9kMUBSGSCat1ynQg7CVXImYBJrh1riCgb0j60DJU0AN1J0lMn9oVRerYfKvMk2qn6dyOhgdbjwDOTAcWBXvVm4n9eK0a/3Em4jGIEyeZBfixsDO3Zv+0eV8BQjA2hTHFzq80GVFGGpp2lFAkv0QhhhFcpSxNzpiV3tZN1Ur8uujfF0kOpUCkv+sqSM3JOLolLbkmF3JMqqRFG+mRKXsmbNbXerQ/rcz6asRY7p2QJ1tcv7V6b3g==</latexit>G4

<latexit sha1_base64="/e9p+vUyaYzt1YGjLtiPcLU/k7g=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrRKlCWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv67mb3Q==</latexit>G3

<latexit sha1_base64="90GoSbI+d37Rr0AZmqIfsnSxlto=">AAACC3icbVDLTsJAFJ3iC/GFunTTSExcGNIaoixJ3LjEKI8EGjIdLjBhOm1mbhVC+AS2+iHujFs/wu/wBxxKFwKeZJKTc+7NuXP8SHCNjvNtZTY2t7Z3sru5vf2Dw6P88Uldh7FiUGOhCFXTpxoEl1BDjgKakQIa+AIa/vBu7jeeQWkeyiccR+AFtC95jzOKRnocddxOvuAUnQT2OnFTUiApqp38T7sbsjgAiUxQrVuuE6E3oQo5EzDNtWMNEWVD2oeWoZIGoL1JcurUvjBK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8SliTmTEvuaifrpH5ddG+KpYdSoVJO+8qSM3JOLolLbkmF3JMqqRFG+mRGXsmbNbPerQ/rczGasdKdU7IE6+sX6G+b2w==</latexit>G1

<latexit sha1_base64="WA5TT1EI05oYyRXkCXkslGEnYy0=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrSEKEsSNy4xyiOBhkyHC0yYTpuZW4UQPoGtfog749aP8Dv8AYfShYAnmeTknHtz7hw/Elyj43xbG5tb2zu7mb3s/sHh0XHu5LSuw1gxqLFQhKrpUw2CS6ghRwHNSAENfAENf3g39xvPoDQP5ROOI/AC2pe8xxlFIz2OOsVOLu8UnAT2OnFTkicpqp3cT7sbsjgAiUxQrVuuE6E3oQo5EzDNtmMNEWVD2oeWoZIGoL1JcurUvjRK1+6FyjyJdqL+3ZjQQOtx4JvJgOJAr3pz8T+vFWOv7E24jGIEyRZBvVjYGNrzf9tdroChGBtCmeLmVpsNqKIMTTtLKRJeohHCCK8TliRmTUvuaifrpF4suDeF0kMpXymnfWXIObkgV8Qlt6RC7kmV1AgjfTIjr+TNmlnv1of1uRjdsNKdM7IE6+sX6hSb3A==</latexit>G2
<latexit sha1_base64="oxUIVpx6F5Jfoh5GN+yGz1J0uoc=">AAACC3icbVDLTsJAFJ36RHyhLt00EhMXhrQGlSWJG5cY5ZEAIdPhFiZMp83MrUIaPoGtfog749aP8Dv8AYfCQsCTTHJyzr05d44XCa7Rcb6ttfWNza3tzE52d2//4DB3dFzTYawYVFkoQtXwqAbBJVSRo4BGpIAGnoC6N7ib+vVnUJqH8glHEbQD2pPc54yikR6HnetOLu8UnBT2KnHnJE/mqHRyP61uyOIAJDJBtW66ToTthCrkTMA424o1RJQNaA+ahkoagG4n6alj+9woXdsPlXkS7VT9u5HQQOtR4JnJgGJfL3tT8T+vGaNfaidcRjGCZLMgPxY2hvb033aXK2AoRoZQpri51WZ9qihD085CioSXaIgwxMuUpYlZ05K73MkqqV0V3JtC8aGYL5fmfWXIKTkjF8Qlt6RM7kmFVAkjPTIhr+TNmljv1of1ORtds+Y7J2QB1tcv7wOb3w==</latexit>G5

<latexit sha1_base64="HLkX2IxjjqRVDPo90ktgnfpzr60=">AAACG3icbVDLSgMxFM34rPVVdekmWAQXUmakqLgSu3GpYB/Q1pJJbzWYyYTkjlqGfopb/RB34taF3+EPmE67sK0HEg7n3Mu5nFBLYdH3v725+YXFpeXcSn51bX1js7C1XbNxYjhUeSxj0wiZBSkUVFGghIY2wKJQQj18qAz9+iMYK2J1g30N7YjdKdETnKGTOoWtym3a0kZEMPoHZ51C0S/5GegsCcakSMa46hR+Wt2YJxEo5JJZ2wx8je2UGRRcwiDfSixoxh/YHTQdVSwC206z0wd03yld2ouNewpppv7dSFlkbT8K3WTE8N5Oe0PxP6+ZYO+0nQqlEwTFR0G9RFKM6bAH2hUGOMq+I4wb4W6l/J4ZxtG1NZGi4Ek/IzzjYcayxLxrKZjuZJbUjkrBcal8XS6eX4z7ypFdskcOSEBOyDm5JFekSjh5Ii/klbx5L9679+F9jkbnvPHODpmA9/ULE8GiXw==</latexit>

⇠00 :

Figure 6.1: The hypergraphs associated with �′′

�2 to a set of LG clauses. Because �′ is an existentially quantified sentence
without function symbols, skolemising �′ transform it into (a set of) flat ground
clauses (if conjunctions occur in �′), which are LG clauses. �

To handle existential quantifications in the clique guards, one can also use
the Sep rule. Recall the clique guarded formula

�′ = ∀G1G2G3(∃G4G5(�1(G1, G3, G4) ∧ �2(G2, G3, G5) ∧ �3(G1, G2)) → ∃G6�(G1, G6))

from the previous example. Using a new predicate symbol %′′1 and the Trans
rules, we abstract the clique guard in �′, transforming �′ into �′′1 ∧ �′′2 where

�′′1 = ∀G1G2G3(%′′1 (G1, G2, G3) → ∃G6�(G1, G6)) and
�′′2 = ∀G1G2G3(∃G4G5(�1(G1, G3, G4) ∧ �2(G2, G3, G5) ∧ �3(G1, G2)) → %′′1 (G1, G2, G3)).

Using the Skolem rule and a Skolem symbol 6, the subformula �′′1 is trans-
formed into a (loosely) guarded clause ¬%′′1 (G1, G2, G3) ∨ �(G1, 6(G1, G2, G3)). Since
in �′′2 , the clique guard

∃G4G5(�1(G1, G3, G4) ∧ �2(G2, G3, G5) ∧ �3(G1, G2))

occurs negatively, �′′2 is transformed into

�′′ = ¬�1(G1, G3, G4) ∨ ¬�2(G2, G3, G5) ∨ ¬�3(G1, G2) ∨ %′′1 (G1, G2, G3).

By presenting �′′ in its associated hypergraph (see Figure 6.1), we realise that
one can use the Sep rule to ‘cut off branches’ of �′′, transforming �′′ to LG

6.2. THE TOP-VARIABLE REFINEMENT FOR THE LGQ CLAUSAL CLASS147

clauses. By introducing fresh predicate symbols %′′2 and %′′3 , applying the Sep
rule to �′′ separates it into LG clauses

¬%′′2 (G1, G3) ∨ ¬%′′3 (G2, G3) ∨ ¬�3(G1, G2) ∨ %′′1 (G1, G2, G3),
¬�1(G1, G3, G4) ∨ %′′2 (G1, G3),¬�2(G2, G3, G5) ∨ %′′3 (G2, G3).

To sum up, by the previous process the clique guarded formula �′ is trans-
formed into a set of LG clauses

¬%′′1 (G1, G2, G3) ∨ �(G1, 6(G1, G2, G3)),
¬%′′2 (G1, G3) ∨ ¬%′′3 (G2, G3) ∨ ¬�3(G1, G2) ∨ %′′1 (G1, G2, G3),
¬�1(G1, G3, G4) ∨ %′′2 (G1, G3), ¬�2(G2, G3, G5) ∨ %′′3 (G2, G3).

This sample process shows that in the TransCGF process, one can use i) the
applications of theTrans and the Sep rules, instead of ii) the applications of the
Miniscoping and the Trans rules, to handle clique guards. However ii) needs
fewer new symbols and produces fewer clauses. For example, given �′ from
the previous process, i) transforms it into four clauses with three new predicate
symbols, whereas ii) requires two new predicate symbols and produces three
clauses. The reason for this fact is that i) needs an additional predicate symbol
for the whole of clique guard while ii) does not. Hence we use the current form
of the TransCGF process, which is also more intuitive.

Now we give the result of structural transformation for CGF and BCQs.

Theorem 6.2. The TransCGF process reduces the problem of BCQ answering for CGF
to that of deciding satisfiability of the LGQ clausal class.

Proof. By Theorem 4.1 and Lemma 6.2. �

6.2 The top-variable refinement for the LGQ clausal
class

In this section, we give the top-variable inference system T-InfLGQ, which is
an extension of the T-InfGQ system from Section 4.3. The T-InfLGQ system is
specially devised for deciding satisfiability of the LGQ clausal class.

6.2. THE TOP-VARIABLE REFINEMENT FOR THE LGQ CLAUSAL CLASS148

The T-InfLGQ system consists of the same rules as the T-InfGQ system,
but with a new resolution refinement T-RefLGQ. The T-RefLGQ refinement
consists of the same functions and the same resolution refinement as the ones
in the T-RefGQ refinement from Section 4.3, however this T-RefLGQ considers
clauses that are loosely guarded, but not guarded. Recall that in the T-RefGQ

refinement, we can use any admissible orderings with a precedence in which
function symbols are larger than constant, which are larger than predicate
symbols. Here a lexicographic path ordering �;?> is used as an example. The
application of theT-RefLGQ refinement to LGQ clauses is given inAlgorithm14.

Algorithm 14: Determining the (P-Res) eligible literals for LGQ clauses

Input: An LGQ clausal set # and a clause � in #
Output: The eligible literals or the P-Res eligible literals (with

respect to a Res inference) in �
1 if � is a ground clause then
2 return Max(�)
3 else if � has negatively occurring compound-term literals then
4 return SelectNC(�)
5 else if � has positively occurring compound-term literals then
6 return Max(�)
7 else return PResT(#, �)

Recall thatAlgorithm1 is the procedure that determines the (P-Res) eligible
literals for GQ clauses. In 1–6 of Algorithm 14, we use the same strategy as
the one for determining the (P-Res) eligible literals for the GQ clauses (given
in 1–6 of Algorithm 1), that is i) for ground clauses �, the �;?>-maximal literal
with respect to � is eligible, and ii) for compound-term clauses, one of its
compound-term literal is eligible. Unlike Algorithm 1, in Line 7 Algorithm 14
uses the PResT function to determine the P-Res eligible literals for flat guarded
clauses (and flat LG clauses). This means one needs to perform a top-variable
resolution inference step on a flat guarded clauses (as the main premise) and
LGQ clauses (as the side premises), which causes the overhead of computing
top-variable literals of flat guarded clauses � (with respect to a top-variable
inference step). By the SelectG function in Algorithm 1, one can select the

6.3. DECIDING THE LGQ CLAUSAL CLASS 149

guard in � (that contains all variables of �) instead, so that only the binary form
of the P-Res rule is needed for �. We keep the current form of Algorithm 14
for its compactness.

By the covering property of LGQ clauses, an a priori checking, as well as an a
posteriori checking, can be used in applying the T-InfLGQ system to LGQ clauses.
This is formally stated as:

Lemma 6.3. Under the restrictions of the T-RefLGQ refinement, if an eligible literal
! is (strictly) �;?>-maximal in an LGQ clause �, then !� is (strictly) �;?>-maximal
in ��, for any substitution �.

Proof. By Lemma 4.6 and the fact that LGQ clauses are covering clauses. �

The main result of this section is given as follows.

Theorem 6.3. The T-InfLGQ system is sound and refutational complete for general
first-order clausal logic.

Proof. By Theorem 4.3 and the facts that the T-InfLGQ system consists of the
same rules as the T-InfGQ system, and these rules are refined by admissible
orderings with selection functions and a particular form of the P-Res rule. �

6.3 Deciding the LGQ clausal class

In this section, we first formally prove that the T-InfLGQ system decides satis-
fiability of the LG clausal class, and then investigate inference steps of query
clauses and LG clauses.

Deciding satisfiability of the LG clausal class

In this section, we show that theT-InfLGQ systemdecides satisfiability of the LG
clausal class. By the facts that the LG clausal class extends the guarded clausal
class by replacing guards by loose guards and the T-InfLGQ system extends the
T-InfGQ system correspondingly, the result of this section heavily rely on the
lemmas established in Section 6.3. In particular we focus on the cases when
loose guards, rather than guards, are the (P-Res) eligible literals in applications
of the rules from the T-InfLGQ system.

6.3. DECIDING THE LGQ CLAUSAL CLASS 150

First we show that the T-RefLGQ refinement ensures that in an LG clause �,
the eligible literals or the P-Res eligible literals (with respect to aRes inference)
contain the same variable set as �. This is formally stated as:

Lemma 6.4. Under the restrictions of the T-RefLGQ refinement, the eligible literals or
the P-Res eligible literals (with respect to a Res inference) in an LG clause � share the
same variable set as �.

Proof. By Algorithm 14, we distinguish three cases of �:
Lines 1–2: When � is ground the statement trivially holds.
Lines 3–6: Suppose � is a compound-term LG clause and ! is the eligible

literal in �. By Lemma 4.5 (if ! is positive) and the definition of the SelectNC
function (if ! is negative), ! is a compound-term literal. By the covering
property, var(!) = var(�).

Lines 7: Suppose� is aflatLG clause andL are theP-Res eligible literals (top-
variable literals) in �. Assume G is a top variable in �. By 2. of Definition 20
and the definition of top-variable literals, G co-occurs with all other variables
of � in L, therefore var(L) = var(�). �

The T-RefLGQ refinement ensures that in an LG clause, the deepest literal in
it is eligible. Specifically Lines 3–6 ofAlgorithm 14 ensure that in a non-ground
compound-term LG clause, at least one of its compound-term literals is eligible.

Next, we give the pairing properties in the applications of the top-variable
resolution rule to a flat clause and LG clauses.

Lemma 6.5. In an application of the P-Res rule, endowed with the T-RefLGQ refine-
ment, to a flat clause as a main premise and LG clauses as side premises, the following
conditions hold.

1. In themain premise, top variables pair constants or compound terms, and non-top
variables pair constants or variables.

2. In the eligible literals of side premises, compound terms pair top variables, and
variables or constants pair non-top variables.

3. In the main premise, top variables G are unified with either constants or the
compound term pairing G (modulo variables substituted with either variables or
constants), and non-top variables are unified with either constants or variables.

4. In the side premises, variables are unified with either constants or variables.

6.3. DECIDING THE LGQ CLAUSAL CLASS 151

5. Let a top variable G pair a constant. Then in the main premise, all negative
literals are the top-variable literals and all variables are unified with constants.

Proof. By Lemma 4.13. �

Lemma 6.6. In an application of the P-Res rule, endowed with the T-RefLGQ refine-
ment, to a flat clause as the main premise and LG clauses as the side premises, the
P-Res resolvent is no deeper than its premises.

Proof. By 3.–4. in Lemma 6.5. �

Now we investigate the applications of the Fact and P-Res rules to LG
clauses, starting with the application of the Fact rule.

Lemma 6.7. In the application of the Fact rule (endowed with the T-RefLGQ refine-
ment) to LG clauses, the factor of an LG clause is an LG clause.

Proof. By adapting ‘guards’ to ‘loose guards’ in the proof of Lemma 4.15. �

We then discuss the resolvents of applying the top-variable resolution rule
to the LG clauses.

Lemma 6.8. In the application of the P-Res rule (endowed with the T-RefLGQ refine-
ment) to LG clauses, the resolvents of LG clauses are LG clauses.

Proof. By Algorithm 14, we consider the case when the top-variable technique
is used in the P-Res rule. For the rest of cases of performing inference steps on
LG clauses, their results can be obtained by adapting ‘guards’ to ‘loose guards’
in the proof of Lemma 4.16.

Assume the side premises are LG clauses �1 = �1 ∨ �1, . . . , �= = �= ∨ �= ,
the main premise is an LG clause � = ¬�1 ∨ . . . ∨ ¬�< ∨ . . . ∨ ¬�= ∨ � and
the resolvent is �′ = (�1 ∨ . . . ∨�< ∨¬�<+1 ∨ . . . ∨¬�= ∨�)� with � an mgu
such that � = mgu(�1 � �1, . . . , �< � �<). By Line 7 in Algorithm 14, � is
a non-ground flat LG clause and ¬�1 ∨ . . . ∨ ¬�< is a top-variable subclause
of �. By 3.–4. in Lemma 6.5, the mgu � substitutes variables in �1, . . . , �<

and ¬�<+1 ∨ . . . ∨ ¬�= ∨ � with either variables or constants, therefore �′ is
simple. Next we prove that �′ is covering and contains a loose guard. Suppose
G1, . . . , G<′ are the set of top variables in �. By 3. in Lemma 6.5, any variable
G8 in G1, . . . , G<′ is substituted by either a compound term or a constant that G8
pairs. First suppose G8 pairs a constant. By Lemma 6.4 and 5. of Lemma 6.5,

6.3. DECIDING THE LGQ CLAUSAL CLASS 152

�′ is a flat and ground clause, therefore �′ is an LG clause. Next, suppose
G8 pairs a compound term. W.l.o.g. further suppose G8 and G 9 co-occur in a
literal ¬�C of ¬�1 ∨ . . .∨¬�< . By the facts that G8 and G 9 are top variables and
G8 pairs a compound term, G 9 pairs a compound term as well. Then G8� and
G 9� are compound terms. Suppose �C = �C ∨ �8 is the side premise that �C
pairs �C . By the covering property, var(G8�) = var(G 9�) = var(�C�) = var(�C�).
By 2. of Definition 20 (the variable co-occurrence property), var(G1�) = . . . =

var(G<′�) = var((¬�1 ∨ . . . ∨ ¬�<)�) = var(�C�). By 2. of Definition 20 and
Lemma 6.4, var(�) = var(¬�1 ∨ . . . ∨ ¬�<). Thus var(��) = var(G1�) =
. . . = var(G<′�). By the covering property, var(�C) = var(�C). Then var(��) =
var(�C�). Then we have var(��) = var(�8�) for all 8 such that 1 ≤ 8 ≤ <.
Since � is a flat clause, compound terms in the resolvent �′ are inherited
from �1, . . . , �< . Let G be a loose guard and C a compound term in a �8
of �1, . . . , �< . By Definition 20, var(C) = var(G) = var(�). Then var(C�) =
var(G�) = var(��) = var(�8�) for all 8 such that 1 ≤ 8 ≤ <. By 4. in Lemma 6.5,
G� is flat and C� is a non-nested compound term. Hence, �′ is simple, covering
and contains a loose guard G�, hence, �′ is an LG clause. �

Lemmas 6.7–6.8 prove that applying the Fact and P-Res rules (endowed
with the T-RefLGQ refinement) to LG clauses derive LG clauses. This proves
that the derived LG clauses are of bounded depth, as LG clauses are simple. Let
us now investigate the width of derived LG clauses. Recall that by the width of
a clause, we mean the number of distinct variables in that clause.

Lemma 6.9. In applications of the T-InfLGQ system to LG clauses, the derived LG
clause is no wider than at least one of its premises.

Proof. By adapting ‘guards’ to ‘loose guards’ in the proof of Lemma 4.17. �

Now we give the first main result of this section.

Theorem 6.4. The T-InfLGQ system decides satisfiability of the LG clausal class.

Proof. Suppose (C, F, P) is a finite set of signature for the given LG clauses. By
Lemmas 6.7–6.8, applying the T-InfLGQ system to LG clauses derives the LG
clauses with bounded depth. By Lemma 6.9, the derived LG clauses are of
bounded width. These derived LG clauses only use symbols in (C, F, P), as no
symbols are introduced in the derivation. �

6.3. DECIDING THE LGQ CLAUSAL CLASS 153

To properly end this section, we give a sample derivation to show how the
T-InfLGQ system decide an unsatisfiable set of LG clauses.

Consider an unsatisfiable set # of LG clauses �1, . . . , �9:

�1 = ¬�1(G, H) ∨ ¬�2(H, I) ∨ ¬�3(I, G) ∨ �(G, H, 1),
�2 = �3(G, 5 (G)) ∨ ¬�3(G), �3 = �2(5 (G), 5 (G)) ∨ ¬�2(G),
�4 = �1(5 (G), G) ∨ �(6(G)) ∨ ¬�1(G), �5 = ¬�(G, H, 1),
�6 = ¬�(G), �7 = �1(5 (0)), �8 = �3(5 (0)), �9 = �2(0).

Suppose the precedence on which �;?> is based is 5 > 6 > 0 > 1 > � > �1 >

�2 > �3 > � > �1 > �2 > �3. Recall that by ! and !∗ we mean the literal ! is
selected and ! is the (strictly) maximal literal, respectively. Then by restrictions
of the T-RefLGQ refinement, �1, . . . , �9 are presented as:

�1 = ¬�1(G, H) ∨ ¬�2(H, I) ∨ ¬�3(I, G) ∨ �(G, H, 1),
�2 = �3(G, 5 (G))∗ ∨ ¬�3(G), �3 = �2(5 (G), 5 (G))∗ ∨ ¬�2(G),
�4 = �1(5 (G), G)∗ ∨ �(6(G)) ∨ ¬�1(G), �5 = ¬�(G, H, 1) ,
�6 = ¬�(G) , �7 = �1(5 (0))∗, �8 = �3(5 (0))∗, �9 = �2(0)∗.

One can use any clause to start the derivation, w.l.o.g. we start with �1. For
each newly derived clause,Algorithms 14 is immediately applied to determine
the (PRes) eligible literals of it.

1. ByAlgorithms 14 and the fact that�1 is a flat LG clause, theP-Res function
is used to �1. By Algorithms 2, all negative literals in �1 are selected to
check if the Res rule is applicable to �1.

2. As an Res inference step is applicable to �2, �3, �4 (as the side premises)
and �1 (as the main premise), CompT(�2, �3, �4, �1) computes an mgu

�′ = {G ↦→ 5 (5 (G′)), H ↦→ 5 (G′), I ↦→ 5 (G′)}

for variables of �1. Hence in �1, G is the only top variable and ¬�1(G, H)
and ¬�3(I, G) are the P-Res eligible literals.

3. The top-variable resolution inference is applied to �2, �4 and �1 with an

6.3. DECIDING THE LGQ CLAUSAL CLASS 154

mgu � = {G ↦→ 5 (G′), H ↦→ G′, I ↦→ G′}, deriving

�10 = ¬�2(G, G) ∨ �(5 (G), G, 1)∗ ∨ �(6(G)) ∨ ¬�1(G) ∨ ¬�3(G),

where G′ is renamed as G. No resolution step can be performed on �3 and
�10 as they do not have complementary eligible literals, but an inference
can be performed between �5 and �10.

4. Applying (the binary form of) the P-Res rule to �5 and �10 derives

�11 = ¬�2(G, G) ∨ �(6(G))∗ ∨ ¬�1(G) ∨ ¬�3(G).

5. Applying (the binary form of) the P-Res rule to �6 and �11 derives

�12 = ¬�2(G, G) ∨ ¬�1(G) ∨ ¬�3(G).

6. Since �12 is a flat LG clause, we apply the P-Res function to it. Due to
the presence of �3, �7, �8 and �12 satisfy conditions of the top-variable
resolution rule,CompT(�3, �7, �8, �12)finds that G is theonly topvariable
in �12, using an mgu �′ = {G ↦→ 5 (0)}. Then all literals in �12 are
selected. Applying the top-variable resolution rule to �3, �7, �8 (as the
side premises) and �12 (as the main premise) derives �13 = ¬�2(G) .

7. Applying (the binary form of) the P-Res rule to �9 and �13 derives ⊥.

Given an LG clausal set, resolution refinement and the P-Res rule allow
inferences building a model or deriving a contradictory without producing
unnecessary conclusions. Using the T-RefLGQ refinement, fewer inferences are
computed to derive a contradiction. For instance, in the previous example
inferences between �2 and �8 and between �3 and �9 are prevented since
these pairs do not contain complementary eligible literals. These unnecessary
inferences would be computed if there is no refinement guiding resolution.

Note that in the previous example, one can also select the literal¬�2(G, G) in
�12 as �12 is a flat guarded clause. The fact that in theT-RefLGQ refinement, one
can use the SelectG function to flat guarded clauses is discussed in Section 6.2.

6.3. DECIDING THE LGQ CLAUSAL CLASS 155

Handing query clauses (in the presence of LG clauses)

In this section, we consider deciding satisfiability of the whole of LGQ clausal
class. In particular we handle query clauses in the presence of LG clauses.
By Lemma 4.23, the Q-Sep procedure separates query clauses into Horn
guarded clauses (HG clauses) and indecomposable chained-only query clauses
(CO clauses), therefore we focus on investigating the inferences performed on
indecomposable CO clauses and LG clauses.

Recall that in Section 4.5, the T-Trans rule transforms the top-variable re-
solvents of an indecomposable CO clause and guarded clauses to GQ clauses.
In this section, we abusively reuse the notion T-Trans to denote the rule that
handles the top-variable resolvents of an indecomposable CO clause and LG
clauses. This new T-Trans rule is the same as the T-Trans rule in Section 4.5,
except that in (the P-Res rule of) this new T-Trans rule, the side premises are
not guarded clauses, but LG clauses.

The T-Trans rule transforms the resolvents of an indecomposable CO clause
and LG clauses to LGQ clauses. This result is formally reported as follows.

Lemma 6.10. Let ' be the resolvent of applying the P-Res rule (endowed with the
T-RefLGQ refinement) to an indecomposable CO clause & and a set # of LG clauses.
Then, the following conditions hold.

1. Applying the T-Trans rule to ' replaces it by a set #′ of LG clauses and a query
clause &′.

2. Applying the Q-Sep procedure to &′ separates it into a set #′′ of HG clauses
and an indecomposable CO clause &′′.

3. The top-resolvent ' is satisfiable if and only if the LGQ clausal set #′∪#′′∪&′′
is satisfiable.

4. For each clause �′ in #′ ∪ #′′, there exists a clause � in # such that �′ is no
wider than �, and &′′ is less wide than &.

Proof. By Lemma 6.5 and by adapting the notion of ‘guard’ to that of ‘loose
guard’ in the proof of Lemma 4.25. �

We use the notation Q-COLGQ to denote the procedure for handling CO
clauses in the presence of LG clauses, given as follows.

1. Apply the top-variable resolution rule to an indecomposable CO clause
and LG clauses, deriving the top-variable resolvent '.

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 156

2. Apply the T-Trans rule to ', deriving a query clause & and LG clauses.

3. Apply theQ-Sep procedure to&, producing HG clauses and an indecom-
posable CO clause.

The result of handling indecomposable CO clauses (in the presence of LG
clauses) is formally stated as:

Lemma 6.11. The conclusions of applying the Q-COLGQ procedure to an indecom-
posable CO clause & and a set # of LG clauses satisfy the following conditions.

1. The conclusions are an indecomposable CO clause&′ and a set #′ of LG clauses.
2. The clausal sets &′ ∪ #′ and & ∪ # are equisatisfiable.
3. For each clause �′ in #′, there exists a clause � in # such that �′ is no wider

than �, and &′ is less wide than &.

Proof. By Lemmas 4.23 and 6.10, 1. and 3. hold. By Lemma 3.4 and the fact that
any form of structural transformation rule preserves satisfiability, 2. hold. �

6.4 Decision procedures of querying in LGF and/or
CGF

A BCQ answering procedure for LGF and CGF

In this section, we present the saturation-based decision procedure for an-
swering BCQs for LGF and/or CGF. Like the saturation-based BCQ answering
procedure for GF (see Algorithm 5), the procedure of querying LGF and/or
CGF is also devised in line with the give-clause algorithms in [Wei01, MW97].

We start with introducing the BCQ answering procedure for LGF and CGF,
and we use the notation Q-AnsCGF to denote this procedure. The Q-AnsCGF

procedure consists of the same functions as theQ-AnsGF procedure, except the
PreProcessCGF function and the fact that the input clauses are the LG clauses,
rather than the guarded clauses. See Algorithm 15 on the next page. We refer
readers to Section 4.6 for the detailed descriptions of the functions and the
processes in Algorithm 15.

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 157

Algorithm 15: The BCQ answering procedure for LGF and CGF

Input: A union @ of BCQs, sets Σ1 and Σ2 of formulas in LGF and
CGF, respectively

Output: ‘Yes’ or ‘No’
1 workedOff← ∅
2 usable← PreProcessCGF(Σ1,Σ2, @)
3 while usable = ∅ and ⊥ ∉ usable do
4 given← Pick(usable)
5 workedOff←workedOff ∪ given
6 if given is an indecomposable CO clause then
7 tResolvent← P-Res(workedOff, given)
8 G, Q← T-Trans(tResolvent)
9 CO,HG← Sep(Q)
10 new← G ∪ CO ∪ HG

11 else
12 new← P-Res(workedOff, given) ∪ Fact(given)
13 new← Red(new, new)
14 new← Red(Red(new, workedOff), usable)
15 workedOff← Red(workedOff, new)
16 usable← Red(usable, new) ∪ new

17 Print(usable)

Next,Algorithm 16 describes the PreProcessCGF(Σ1,Σ2, @) function, which
pre-processes a union @ of BCQs and sets Σ1 and Σ2 of formulas LGF and CGF,
respectively, transforming these formulas to indecomposable CO clauses and
LG clauses. In Algorithm 16, the notations LG1 and LG2 are used to denote the
LG clausal sets that are obtained from LGF and CGF, respectively.

Comparing to Algorithm 6 that handles GF and BCQs, Algorithm 16 con-
tains the following novel functions.

1. TransGF(Σ, @) applies the TransGF process to a set Σ of formulas in LGF
and a union @ of BCQs, returning LG clauses and query clauses.

2. TransCGF(Σ, @) applies the TransCGF process to a set Σ of formulas in
CGF and a union @ of BCQs, returning LG clauses and query clauses.

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 158

Like the Q-AnsGF procedure, the Q-AnsCGF procedure reuses predicate
symbols in the derivation. By reusing, we mean that in the Q-AnsCGF proce-
dure, if a predicate symbol % is used to represent a LGQ clause � at a deriva-
tion stage, then, in any further derivation step whenever a predicate symbol is
needed for �, we use the symbol % again.

Algorithm 16: The PreProcessCGF function

Input: A union @ of BCQs, sets Σ1 and Σ2 of formulas in LGF and
CGF, respectively

Output: A set of indecomposable CO and LG clauses
1 Function PreProcessCGF(Σ1,Σ2, @):
2 usable← ∅
3 LG1, Q← TransGF(Σ1, @)
4 LG2, Q← TransCGF(Σ2, @)
5 foreach clause Q in Q do
6 CO, HG← Sep(Q)
7 usable← usable ∪ CO ∪ HG

8 usable← usable ∪ LG1 ∪ LG2

9 usable← Red(usable, usable)
10 return usable

Lemma 6.12. In the application of the Q-AnsCGF procedure to the BCQ answering
problem for LGF and/or CGF, only finitely many predicate symbols are introduced.

Proof. By adapting the notion of ‘guard’ to that of ‘loose guard’ in the proof of
Lemma 4.27. �

Finally, we give a positive answer to Problem 6.

Theorem 6.5. The Q-AnsCGF procedure is a decision procedure for answering BCQs
for LGF and/or CGF.

Proof. By Theorems 6.1–6.2, the problems of answering BCQs for LGF and/or
CGF are reduced to that of deciding satisfiability of the LGQ clausal class. By
Lemma 4.19, Theorem 6.3 and the fact that the Q-AnsCGF procedure is based
on the T-InfLGQ system, the Q-AnsCGF procedure is sound and refutational

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 159

complete for general first-order clausal logic (if only finitely many predicate
symbols are introduced in the derivation).

By Lemma 4.23, Lemma 6.11 and Theorem 6.4, applying the Q-AnsLGF

procedure to LGQ clauses guarantees producing LGQ clauses of bounded depth
andboundedwidth. ByLemma6.12, only finitelymanynewpredicate symbols
are introduced. Thus the Q-AnsGF procedure guarantees termination. The Q-
AnsGF procedure is sound, refutationally complete for first-order clausal logic
and guarantees termination for the LGQ clausal class, hence it is a decision
procedure for answering BCQs for LGF and/or CGF. �

A saturation-based BCQ rewriting procedure for LGF and CGF

Deciding satisfiability of the LGQ− clausal class

In this section we give a more refined clausal form of LGF and CGF, namely
the aligned loosely guarded clauses, and then formally prove that the Q-AnsCGF

procedure decides satisfiability of the aligned loosely guarded clausal class and
query clauses.

Recall the saturation-based rewriting problem for BCQs with LGF and/or
CGF.

Problem 7. Given a setΣ of formulas in LGF and/orCGF, a setD of ground atoms and
a union @ of BCQs, does there exist a (function-free) first-order formula (with equality)
Σ@ that is the negated back-translation of the saturated clausal set of Σ ∪ {¬@} such
that Σ ∪D |= @ if and only if D |= Σ@?

We define a more specific clausal form of LGF and CGF as follows.

Definition 21. An aligned loosely guarded clause (LG− clause) is strongly com-
patible and an LG clause.

We use the notation LGQ− to denote the class of LG− clauses and query
clauses. The LG− clausal class is a strict subset of that of the LG clausal class.

Lemma 6.13. i) Applying theTransGF process to a loosely guarded formula transforms
it into a set of LG− clauses, and ii) applying the TransCGF process to a clique guarded
formula transforms it into a set of LG− clauses.

Proof. By Lemma 6.1 and Lemma 6.2, the TransGF process and the TransCGF

process transform, respectively, loosely guarded formulas and clique guarded

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 160

formulas to either flat LG clauses or non-ground compound-term LG clauses.
Hence, all ground clauses in the LG clausal class are flat, which satisfies 1. in
Definition 21. In this proof, we focus on proving that all compound terms of
the non-ground compound-term LG clauses are compatible.

Compounds terms in LG clauses are derived by Skolemising existential
quantified variables. By the proofs of Lemmas 6.1–6.2, compound terms are
obtained from Skolemising the definition formula

� = ∀GH(¬%(G) ∨ ¬�1 ∨ . . . ∨ ¬�= ∨)(H))

where i))(H) is a formula of atoms and existentially quantified formulas that
are connected by Boolean connectives, and ii) each pair of distinct variables
in G ∪ H co-occurs in a literal of ¬%(G) ∨ ¬�1(. . .) ∨ . . . ∨ ¬�=(. . .). Note that
)(H) contains no universal quantifications. Then for all existential quantified
variables in)(H), they are Skolemised into the Skolem compound terms that
are with the same argument list GH. Hence all compound terms in non-ground
compound-term LG clauses are compatible. �

Next, we prove that theQ-AnsCGF procedure decides the LGQ− clausal class.
By the covering property of the LGQ− clauses, an a priori checking is used in the
application of the Q-AnsCGF procedure for the LGQ− clausal class.

We start with considering the application of the Fact rule to LGQ− clauses.

Lemma 6.14. Applying the Fact rule (endowed with the T-RefLGQ refinement) to
LGQ− clauses derives LGQ− clauses.

Proof. By Algorithm 14, the Fact rule is only applicable to LG− clauses. By
adapting ‘guards’ to ‘loose guards’ in the proof of Lemma 5.3, applying the
Fact rule (endowed with the T-RefLGQ refinement) to LG− clauses derives LG−

clauses. �

Next, we consider applying the P-Res rule to LGQ− clauses.

Lemma 6.15. Applying the P-Res rule (endowed with the T-RefLGQ refinement) to
LGQ− clauses derives LGQ− clauses.

Proof. In this proof, we discuss the inference I when the P-Res rule (en-
dowed with the T-RefLGQ refinement) is applied to a flat LG− clause (as the
main premise) and compound-term LG− clauses (as the side premises). By

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 161

Lemma 6.8, the conclusions of I are LG clauses. Hence we focus on proving
that all compound terms in these derived LG clauses are strongly compatible.
For the rest of cases of applying the P-Res rule (endowed with the T-RefLGQ

refinement) to LGQ− clauses, their results can be easily obtained by adapting
the proofs in Lemmas 5.4 and 5.5.

Assume the top-variable resolution rule is applied to compound-term LG−

clauses �1 = �1 ∨ �1, . . . , �= = �= ∨ �= as the side premises, and a flat LG−

clause � = ¬�1 ∨ . . . ∨¬�< ∨ . . . ∨¬�= ∨� as the main premise, deriving the
resolvent ' = (�1∨ . . .∨�<∨¬�<+1∨ . . .∨¬�=∨�)�where � is anmgu such
that � = mgu(�1 � �1, . . . , �< � �<). By the fact that � is flat, compound
terms in ' come from �1, . . . , �< . W.l.o.g. assume that B and D are compound
terms in �1 and C is a compound term in �1. To show all compound terms
in ' are compatible, one needs to show that B�, D� and C� are compatible.
By 1. of Lemma 5.2, B� and D� are compatible. Now we prove that B� and
C� are compatible. By Algorithm 14, �1 and �2 are compound-term literals.
Then suppose B′ and C′ are compound terms in �1 and �2, respectively. By
Lemma 6.5, B′ and C′ pair top variables. W.l.o.g. suppose B′ and C′ pair top-
variables G1 and G2 in �1 and �2, respectively. By 2. of Definition 21, suppose
G1 and G2 co-occur in the literal ¬�8 of ¬�1, . . . ,¬�< . By Lemma 6.5, G1 and G2

pair compound terms in �8 . Suppose G1 and G2 pair B′′ and C′′ in �8 , respectively.
As all compound terms in �8 are compatible, B′′ and C′′ are compatible. By 1. of
Lemma 5.2, B′′� and C′′� are compatible, hence G1� and G2� are compatible. By
the facts that G1 pairs B′ and G2 pairs C′, B′� and C′� are compatible. By 3. of
Lemma 5.2 and the facts that B′ and C′ are compatible with B and C, respectively,
B� and C� are compatible. By the fact that B�, C� and D� are compatible, all
compound terms in ' are compatible. �

There are finitelymany newpredicate symbols that are introduced in apply-
ing theQ-AnsCGF procedure to the LGQ− clausal class. This result immediately
follows from Lemma 6.12, since the class of LGQ− clauses is a strict subset of
that of LGQ clauses.

Theorem 6.6. The Q-AnsCGF procedure decides satisfiability of the LGQ− clausal
class.

Proof. By Lemma 6.12 and Lemmas 6.14–6.15. �

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 162

Back-translating LGQ− clausal sets to first-order formulas

In this section, we first give the procedure that back-translates LGQ− clausal
sets into a first-order formula with equality, but without Skolem symbols, and
we then present our saturation-based rewriting procedure for BCQs with LGF
and/or CGF, with a complete example.

Recall that given a clausal set # , # can be back-translated to a first-order
formula if # can be transformed into a unique, normal, globally linear and
globally compatible clausal set. This transformation requires one to align
argument lists of compound terms of clauses in # . Since in LGQ− clauses,
loose guards contain no compound terms, one can use the back-translation
procedure for the GQ− clausal class to back-translate LGQ− clausal sets. We
abusively use notations Q-Abs, Q-Rena and Q-Unsko (for transforming GQ−

clausal sets) to back-translate LGQ− clausal sets to a first-order formula, with the
restriction that in these procedures, the conditions are changed from ‘guard’
to ‘loose guard’.

Lemma 6.16. Suppose # is an LGQ− clausal set. Then, the following condition hold.

1. # is a locally linear and locally compatible clausal set.
2. Applying the Q-Abs procedure to # transforms # to a normal, unique, locally

linear and locally compatible clausal set #1.
3. Applying the Q-Rena procedure to #1 transforms #1 to a normal, unique,

globally linear and globally compatible clausal set #2.
4. Applying the Q-Unsko procedure to #2 transform it to a first-order formula

without Skolem symbol, but with equality.

Proof. We adapt the notion of ‘guard’ to that of ‘loose guard’ in the proofs of
the following lemmas. By Lemma 3.2, 1. holds. By Lemmas 5.6–5.7, 2. holds.
By Lemma 5.10, 3. holds. By Lemma 5.12, 4. holds. �

We use the notation Q-RewCGF to denote our saturation-based rewriting
procedure for BCQs with LGF and/or CGF. Given a union @ of BCQs, a set Σ
of formulas in LGF and/or CGF and a set D of ground atoms, to compute a
first-order formula the negated back-translation of Σ ∪ {¬@}, the Q-RewCGF

procedure uses the following steps.

1. Apply the Q-AnsCGF procedure to Σ ∪ {¬@}, producing a set # of LGQ−

clauses.

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 163

2. Apply the Q-Abs procedure to # , obtaining a normal, unique, strongly
compatible clausal set #1.

3. Apply theQ-Rena procedure to #1, obtaining a normal, unique, globally
linear and globally compatible clausal set #2.

4. Apply theQ-Unsko procedure to #2, obtaining a first-order formula �.

5. Negate �, obtaining Σ@ .

By Theorem 5.4, we give a positive answer to Problem 7. This is also the
second main contribution of this chapter.

Theorem 6.7. Suppose Σ is a set of formulas in LGF and/or CGF, D is a set of
ground atoms and @ is a union of BCQs. The Q-RewCGF procedure is the decision
procedure that back-translates, and then negates the saturated clausal set of Σ ∪ {¬@}
to a (function-free) first-order formula with equality Σ@ such that Σ ∪ D |= @ if and
only if D |= Σ@ .

Proof. By Lemma 6.16. �

To end this chapter, we use the following rewriting problem as an example
to show how theQ-RewCGF procedure is performed. Given a union @ of BCQs,
a setΣ of formulas inCGF, a setD of dataset, theQ-AnsCGF procedure computes
the saturation of Σ ∪ {¬@} as

=

¬�1(G1, 0) ∨ �1(5 (G1, 0), G1) ∨ �2(6(G1, 0), G1),
¬�2(G2, G3) ∨ �3(5 (G2, G3), G2) ∨ �4(6(G2, G3), G2),
¬�3(1, G4) ∨ �5(6(1, G4), 1)
¬�4(G5, 2, 2) ∨ �6(ℎ(2, 2, G5))
¬�1(G8, G6) ∨ ¬�2(G6, G7) ∨ ¬�3(G7, G8)

where 0 and 2 are non-Skolem constants and 1 is a Skolem constant. Now we
aim to back-translate # to a first-order formulaΣ@ such that D |= Σ@ if and only
if Σ ∪D |= @. The Q-RewCGF procedure back-translates # to Σ@ as follows.

In the first step, the Q-Abs procedure is applied to # , given as follows.

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 164

1. For each clause in# , recursively applying theConAbs rule to it, obtaining

#1 =

¬�1(G1, H1) ∨ �1(5 (G1, H1), G1) ∨ �2(6(G1, H1), G1) ∨ H1 0 0,

¬�2(G2, G3) ∨ �3(5 (G2, G3), G2) ∨ �4(6(G2, G3), G2),
¬�3(H2, G4) ∨ �5(6(H2, G4), H2) ∨ H2 0 1,

¬�4(G5, H3, H3) ∨ �6(ℎ(H3, H3, G5)) ∨ H3 0 2

¬�1(G8, G6) ∨ ¬�2(G6, G7) ∨ ¬�3(G7, G8)

.

2. For each clause in #1, recursively apply the VarAbs rule to it, obtaining

#2 =

¬�1(G1, H1) ∨ �1(5 (G1, H1), G1) ∨ �2(6(G1, H1), G1) ∨ H1 0 0,

¬�2(G2, G3) ∨ �3(5 (G2, G3), G2) ∨ �4(6(G2, G3), G2),
¬�3(H2, G4) ∨ �5(6(H2, G4), H2) ∨ H2 0 1,

¬�4(G5, H3, H4) ∨ �6(ℎ(H3, H4, G5)) ∨ H3 0 2 ∨ H4 0 H3

¬�1(G8, G6) ∨ ¬�2(G6, G7) ∨ ¬�3(G7, G8)

.

In the second step, the Q-Rena procedure is applied to #2.

1. Partition #2 into closed clausal sets

#′2 =

¬�1(G1, H1) ∨ �1(5 (G1, H1), G1) ∨ �2(6(G1, H1), G1) ∨ H1 0 0,

¬�2(G2, G3) ∨ �3(5 (G2, G3), G2) ∨ �4(6(G2, G3), G2),
¬�3(H2, G4) ∨ �5(6(H2, G4), 1) ∨ H2 0 1

 ,
#′′2 =

{
¬�4(G5, H3, H4) ∨ �6(ℎ(H3, H4, G5)) ∨ H3 0 2 ∨ H4 0 H3

}
,

and #′′′2 = {¬�1(G8, G6) ∨ ¬�2(G6, G7) ∨ ¬�3(G7, G8)}.

2. Since #′2 and #
′′
2 are inter-connected clausal sets and #′′′2 is a compound-

term-free clausal set, the VarRe rule is only applied to #′2 and #′′2 . As
compound terms in #′2 are binary, a new variable sequence G, H (with
respect to #′2) is used to rename all variables in #′2, transforming #′2 into

#′3 =

¬�1(G, H) ∨ �1(5 (G, H), G) ∨ �2(6(G, H), G) ∨ H 0 0,

¬�2(G, H) ∨ �3(5 (G, H), G) ∨ �4(6(G, H), G),
¬�3(G, H) ∨ �5(6(G, H), G) ∨ G 0 1

 .
A new variable sequence G1, H1, I1 (with respect to #′′2) is used to rename

6.4. DECISION PROCEDURES OF QUERYING IN LGF AND/OR CGF 165

all variables in #′′2 , transforming #′′2 into

#′′3 =
{
¬�4(G1, H1, I1) ∨ �6(ℎ(H1, I1, G1)) ∨ H1 0 2 ∨ I1 0 H1

}
.

3. Eventually, from #2, we obtain the clausal set #′3 ∪ #′′3 ∪ #′′′2 .

In the third step, theQ-Unsko procedure is used to unskolemise#′3∪#′′3 ∪#′′′2 .

1. As #′3 and #
′′
3 are inter-connected clausal sets, the UnskoOne rule is ap-

plied to these clausal sets. Applying theUnskoOne rule to#′3 transforms
it into

�1 = ∃I′∀GH∃G′H′

(¬�1(G, H) ∨ �1(G′, G) ∨ �2(H′, G) ∨ H 0 0) ∧
(¬�2(G, H) ∨ �3(G′, G) ∨ �4(H′, G)) ∧
(¬�3(G, H) ∨ �5(H′, G) ∨ G 0 I′)

 ,
and applying UnskoOne rule to #′′3 transforms it into

�2 = ∀G1H1I1∃G′1
[
¬�4(G1, H1, I1) ∨ �6(G′1) ∨ �7(G′1) ∨ H1 0 2 ∨ I1 0 H1

]
.

2. As #′′′2 is a compound-term-free clause set, applying the UnskoTwo rule
to #′′′2 unskolemise it into

�3 = ∀G6G7G8

[
¬�1(G8, G6) ∨ ¬�2(G6, G7) ∨ ¬�3(G7, G8)

]
.

3. Finally # is back-translated into a first-order formula � = �1 ∧ �2 ∧ �3.

In the last step, � is negated to obtain Σ@ , given as follows.

∀I′∃GH∀G′H′

(�1(G, H) ∧ ¬�1(G′, G) ∧ ¬�2(H′, G) ∧ H ≈ 0) ∨
(�2(G, H) ∧ ¬�3(G′, G) ∧ ¬�4(H′, G)) ∨
(�3(G, H) ∧ ¬�5(H′, G) ∧ G ≈ I′)

∨

∃G1H1I1∀G′1
[
�4(G1, H1, I1) ∧ ¬�6(G′1) ∧ ¬�7(G′1) ∧ H1 ≈ 2 ∧ I1 ≈ H1

]
∨

∃G6G7G8[�1(G8, G6) ∧ �2(G6, G7) ∧ �3(G7, G8)]

Chapter 7

Querying for GNF and CGNF

In this chapter we focus on the querying in the guarded negation fragments.

Problem 8. Given a set Σ of formulas GNF and/or CGNF and a union @ of BCQs,
does there exist a practical decision procedure that decides Σ |= @?

As for the saturation-based BCQ rewriting problem, we consider a more
challenging problem, that is the back-translation of the saturation to a (clique)
guarded negation formula.

Problem 9. Given a set Σ of (clique) guarded negation formulas, a set D of ground
atoms and a union @ of BCQs, does there exist a (clique) guarded negation formula Σ@
that is the negated back-translation of the saturated clausal set of Σ ∪ {¬@} such that
Σ ∪D |= @ if and only if D |= Σ@?

Note that in this chapter we consider BCQ as BCQ with equality as equality
is allowed in GNF and CGNF.

7.1 Clausifications for GNF and CGNF

Transforming GNF to the GQ≈ clausal class

Recall the definition of GNF from Section 2.1.

Definition 5. The guardednegation fragment (GNF) is a fragment ofFOL≈without
functional symbols, inductively defined as follows:

1. > and ⊥ belong to GNF.

166

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 167

2. If � is an atom, then � belongs to GNF.
3. If � and � are atoms, then � ∨ � and � ∧ � belong to GNF.
4. If � belongs to GNF, then ∃G� belongs to GNF.
5. Let � be a guarded negation formula and � an atom. Then � ∧ ¬� belongs to

GNF if all free variables of � belong to the variables of �.

We use the notation TransGNF to denote our customised structural transfor-
mation for guarded negation formulas and a union of BCQs with equality. In
the first step, theTransGNF process negates the given union of BCQs with equal-
ity, obtaining a set of Q≈ clauses. In the second step of the TransGNF process,
guarded negation formula are transformed into clauses. We use the guarded
negation formula

� = �(G, H) ∧ ¬∃DEF(�(G, D) ∧ �(D, E) ∧ �(E, F) ∧ �(F, H))

as an example to show how the TransGNF process is performed.

1. Add existential quantifiers for all free variables in �, obtaining

�1 = ∃GH(�(G, H) ∧ ¬∃DEF(�(G, D) ∧ �(D, E) ∧ �(E, F) ∧ �(F, H))).

2. Apply the Trans rules to �1, introducing fresh predicate symbols % (and
respective literals %(. . .)) for all occurrences of the guarded negation pat-
tern � ∧ ¬�′ that occur in �2, obtaining

�2 =

∃GH(%(G, H))∧
∀GH(%(G, H) → (�(G, H) ∧ ¬∃DEF(

�(G, D) ∧ �(D, E) ∧ �(E, F) ∧ �(F, H))))

 .
We say that

• ∃GH%(G, H) is the replacing formula of �1, and

• ∀GH(%(G, H) → (�(G, H)∧¬∃DEF(�(G, D)∧�(D, E)∧�(E, F)∧�(F, H))))
is the definition formula of %.

3. Apply the NNF rules to �2 to transform it to negation normal form,

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 168

obtaining

�3 =

∃GH(%(G, H))∧
∀GH(¬%(G, H) ∨ (�(G, H) ∧ ∀DEF(

¬�(G, D) ∨ ¬�(D, E) ∨ ¬�(E, F) ∨ ¬�(F, H))))

 .
4. Transform immediate subformulas (that are connected by conjunctions)

of �3 to prenex normal form and then apply the Skolem rule to these sub-
formulas, eliminating their existential quantifications and existentially
quantified variables. Then we obtain

�4 =

%(0, 1) ∧

∀GHDEF(¬%(G, H) ∨ (�(G, H) ∧ (
¬�(G, D) ∨ ¬�(D, E) ∨ ¬�(E, F) ∨ ¬�(F, H))))

 .
5. Apply the CNF rules to �4 to transform it to conjunctive normal form,

and then drop all universal quantifiers. Finally we obtain a set of clauses:
%(0, 1),
¬%(G, H) ∨ �(G, H),
¬%(G, H) ∨ ¬�(G, D) ∨ ¬�(D, E) ∨ ¬�(E, F) ∨ ¬�(F, H).

 .
Unlike the TransGF and the TransCGF processes, this TransGNF process uses

a more exhaustive structural transformation. In 2. of the TransGNF process,
we abstract all occurrences of the guarded negation pattern in �1, and this
step is applied before �1 is transformed to negation normal form. The current
formula renaming process gives us a better picture of the clausal forms of
guarded negation formulas, even though the essential step in 2. is renaming
the (implicit and explicit) universally quantified formulas, which are in the
form of the guarded negation �(H) ∧ ¬∃G#(G, H). See details in the proofs of
Lemma 7.1.

Definition 22. A guarded clause with equality (G≈ clause) � is a simple and
covering clause that may contain equality, satisfying the following conditions:

1. � is either ground, or
2. � is a positive and single-variable clause, or

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 169

3. � contains a negative flat literal ¬� satisfying var(�) = var(�).
Definition 23. A query clause with equality (Q≈ clause) is a flat and negative
clause that may contain inequality literals.

In 3. of Definition 24, the literal ¬� is called the guard of the clause �. We
use the notation GQ≈ to denote the class of G≈ clauses and Q≈ clauses.

The G≈ clausal class strictly extends the guarded clausal class by allowing
equality literals. Note that by simplifying the G≈ clauses in which inequality
literal are guards, one obtains flat and single variable clauses, as defined in
2. of Definition 22. For example, the G≈ clause G 0 H ∨ �(G, H) ∨ �(G, G) is
immediately simplified as �(G, G)∨�(G, G). This simplification step is achieved
by the E-Res rule, which is discussed in Lemma 7.8 from Section 7.3.

Note that in [GdN99, Definition 4.2], the clause � in 2. of Definition 22
is defined as ‘a positive, non-functional, single-variable clause’. We relax this
condition by defining � as a single-variable clause, since � may contain com-
pound terms. For example, by the NNF, the Skolem and the CNF rules, the
guarded negation formula ¬∃G(G ≈ G ∧ ¬∃H'(G, H)) (or the guarded formula
with equality ∀G(G ≈ G → ∃H'(G, H))) is transformed into '(G, 5 (G)), which is
not a positive, non-functional and single-variable clause. By the TransGF and
theTransGNF processes, one alsoobtains'(G, 5 (G)) from∀G(G ≈ G → ∃H'(G, H))
and ¬∃G(G ≈ G ∧ ¬∃H'(G, H)), respectively.
Lemma 7.1. The TransGNF process transforms a guarded negation formula to a set of
GQ≈ clauses.

Proof. Let � be a guarded negation formula. In this proof, we show that how
the TransGNF process transforms � to a GQ≈ clausal set.

By 2. of theTransGNF process, we use predicate symbols %1 and %2 to abstract
positive and negative occurrences of the guarded pattern in �, respectively.
W.l.o.g. suppose �′ is the replacing formula of �, �1 = ∀G(%1(G) → �(G) ∧ ¬�′)
is the definition formula of %1 and �2 = ∀G(�(G)∧¬�′→ %2(G)) is the definition
formula of %2. Now we prove that by 3.–5. of the TransGNF process, �′, �1 and
�2 are transformed to GQ≈ clauses. We distinguish cases of �′, �1 and �2 as
follows.

i.: Consider �′. By the facts that �′ is obtained by abstracting all guarded
negation pattern from � and the universal quantifications in the � are only
expressed by the guarded negation pattern �(H) ∧ ¬∃G#(G, H), �′ contains

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 170

no universal quantifications. Hence �′ is an existentially quantified sentence
containing only flat and positive literals. Hence, by 4. of the TransGNF process,
�′ is Skolemised to a (set of) flat and ground clause (if conjunctions occur in
�′), which satisfies 1. of the Definition 22. Hence, �′ is a G≈ clause.

ii.: Consider �1. By 3. of the TransGNF process, ∀G(%1(G) → �(G) ∧ ¬�′)
is transformed to ¬%1(G) ∨ �(G) and ¬%1(G) ∨ ¬�′. Immediately ¬%1(G) ∨
�(G) is a G≈ clause. Now consider ¬%1(G) ∨ ¬�′. By i., �′ is an existentially
quantified sentence containing only flat and positive literals, hence ¬�′ is a
universally quantified sentence containing only flat and negative literals. Since
the existentially quantified variables in �′ are universally quantified variables
in¬�′,¬�′may containmore variables than G. By 3.–5. of theTransGNF process,
¬%(G) ∨ ¬�′ is transformed into either a Q≈ clause (if no conjunction occurs in
¬�′), or a set of Q≈ clauses (if conjunctions occur in ¬�′).

iii.: Consider �2. By 3. of the TransGNF process, ∀G(�(G) ∧ ¬�′ → %2(G)) is
transformed to∀G(¬�(G)∨�′∨%2(G)). W.l.o.g. suppose∀G(¬�(G)∨�′∨%2(G)) is
transformed to� (if no conjunctionoccurs in �′), or transformed to�1, . . . , �= (if
conjunctions occur in �′). For each �8 in �1, . . . , �= , ¬�(G) is the guard. The
existential quantified variables in �′ are skolemised into 5 (G) where 5 is a
Skolem function. Hence �8 is covering. By the fact that �2 contains no function
symbols, �8 is simple. By 3. in Definition 22, �8 is a G≈ clause. Note that if
an equality literal G 0 H is the only guard in a flat �8 , then by the equality
resolution rule, G 0 H ∨ �′ ∨ %(G, H) is simplified into positive, flat and single-
variable clauses �′ ∨ %(G, G). By 2. of Definition 22, �8 is a G≈ clause. �

Theorem 7.1. The TransGNF process reduces the problem of BCQ answering for GNF
to that of deciding satisfiability of the GQ≈ clausal class.

Proof. By Lemma 6.2 and the fact that the TransGNF process transforms a union
of BCQs to a set of query clauses. �

Transforming CGNF to the LGQ≈ clausal class

Next, we present the structural transformation that transforms clique guarded
negation formulas, with a detailed example.

Recall the definition of CGNF from Section 2.1.

Definition 6. The clique guarded negation fragment (CGNF) is a fragment of
FOL≈ without functional symbols, inductively defined as follows:

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 171

1. > and ⊥ belong to CGNF.
2. If � is an atom, then � belongs to CGNF.
3. If � and � are atoms, then � ∨ � and � ∧ � belong to CGNF.
4. If � belongs to CGNF, then ∃G� belongs to CGNF.
5. Let � be a clique guarded negation formula and G(G, H) a conjunction of atoms.

Let I denote the free variables of �. Then ∃GG(G, H) ∧ ¬� belongs to CGNF if

(a) I is a subset of H, and
(b) each variable in G occurs in only one atom of G(G, H), and
(c) each pair of distinct variables in H co-occurs in an atom of ∃GG(G, H).

We use the notation TransCGNF to denote the procedure of transforming
clique guarded negation formulas and a union of BCQs with equality. The
TransCGNF process first negates the given union of BCQs with equality, obtain-
ing a set of Q≈ clauses. In the second step, the TransCGNF process transform
clique guarded negation formulas to their clausal normal forms. We use the
clique guarded negation formula

� =

[
¬∃G1G2G3(∃H1H2(�1(G1, G2, H1) ∧ �1(G2, G3, H2) ∧ �(G1, G3))∧

¬∃G4(�(G1, G2, G4) ∧ �(G2, G3, G4)))

]
.

to show the computation of the TransCGNF process, given as follows. Note
that � is implicitly (clique) guarded by >.

1. Add existential quantifications for free variables in �, and then apply the
Miniscoping rules to the clique guards of �, obtaining

�1 =

[
¬∃G1G2G3(∃H1�1(G1, G2, H1) ∧ ∃H2�1(G2, G3, H2) ∧ �(G1, G3)∧

¬∃G4(�(G1, G2, G4) ∧ �(G2, G3, G4)))

]
.

2. Apply the Trans rules to �1, introducing fresh predicate symbols % (and
respective literals %(. . .)) to replace the clique guarded negation patterns
∃GG(G, H) ∧ ¬�′ in �1, obtaining

�2 =
[
? ∧ (¬∃G1G2G3%(G1, G2, G3) ∨ ¬?) ∧ �′2

]

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 172

where

�′2 = ∀G1G2G3((∃H1�1(G1, G2, H1) ∧ ∃H2�1(G2, G3, H2) ∧ �(G1, G3)∧
¬∃G4(�(G1, G2, G4) ∧ �(G2, G3, G4))) → %(G1, G2, G3)).

We say that

• ? is the replacing formula of �1, and

• ¬∃G1G2G3%(G1, G2, G3) ∨ ¬? and �′2 are the definition formulas of ? and
%, respectively.

3. Apply the NNF rules to �2 to transform it to negation normal form,
obtaining

�3 =
[
? ∧ (¬∃G1G2G3%(G1, G2, G3) ∨ ¬?) ∧ �′3

]
where

�′3 = ∀G1G2G3(∀H1¬�1(G1, G2, H1) ∨ ∀H2¬�1(G2, G3, H2) ∨ ¬�(G1, G3)∨
∃G4(�(G1, G2, G4) ∧ �(G2, G3, G4)) ∨ %(G1, G2, G3))

4. Apply the Trans rules to �3, introducing fresh predicate symbols %′ (and
respective negative literals ¬%′(. . .)) to replace universally quantified for-
mulas in the clique guards of �3, obtaining

�4 =

?∧
(¬∃G1G2G3 %(G1, G2, G3) ∨ ¬?)∧
∀G1G2G3(¬%′1(G1, G2) ∨ ¬%′2(G2, G3) ∨ ¬�(G1, G3) ∨ ∃G4(

�(G1, G2, G4) ∧ �(G2, G3, G4)) ∨ %(G1, G2, G3))∧
∀G1G2(%′1(G1, G2) ∨ ∀H1¬�1(G1, G2, H1))∧
∀G2G3(%′2(G2, G3) ∨ ∀H2¬�1(G2, G3, H2))

.

We say that

• ∀G1G2G3(¬%′1(G1, G2) ∨ ¬%′2(G2, G3) ∨ ¬�(G1, G3) ∨ ∃G4(�(G1, G2, G4) ∧
�(G2, G3, G4)) ∨ %(G1, G2, G3)) is the replacing formula of �′3.

• ∀G1G2(%′1(G1, G2) ∨ ∀H1¬�1(G1, G2, H1)) is the definition formula of %′1.

• ∀G2G3(%′2(G2, G3) ∨ ∀H2¬�1(G2, G3, H2)) is the definition formula of %′2.

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 173

5. Transform formulas in �4 to prenex normal form, and then apply Skolemi-
sation using a Skolem function symbol 5 , obtaining

�5 =

? ∧ �′5 ∧

∀G1G2G3 ¬%(G1, G2, G3) ∨ ¬? ∧
∀G1G2H1(%′1(G1, G2) ∨ ¬�1(G1, G2, H1))∧
∀G2G3H2(%′2(G2, G3) ∨ ¬�1(G2, G3, H2))

.

where

�′5 = ∀G1G2G3(¬%′1(G1, G2) ∨ ¬%′2(G2, G3) ∨ ¬�(G1, G3)∨
(�(G1, G2, 5 (G1, G2, G3)) ∧ �(G2, G3, 5 (G1, G2, G3))) ∨ %(G1, G2, G3))

6. Finally, apply the CNF rules to �5 to transform it to conjunctive normal
form and drop all universal quantifiers, obtaining a clausal set

?, ¬%(G1, G2, G3) ∨ ¬?,
%′1(G1, G2) ∨ ¬�1(G1, G2, H1), %′2(G2, G3) ∨ ¬�1(G2, G3, H2),
¬%′1(G1, G2) ∨ ¬%′2(G2, G3) ∨ ¬�(G1, G3) ∨ �(G1, G2, 5 (G1, G2, G3)) ∨ %(G1, G2, G3),
¬%′1(G1, G2) ∨ ¬%′2(G2, G3) ∨ ¬�(G1, G3) ∨ �(G2, G3, 5 (G1, G2, G3)) ∨ %(G1, G2, G3)

By theTransCGNF process, a clique guarded negation formula is transformed
into a set of loosely guarded clauses with equality and query clauses with equality.
The loosely guarded clauses with equality are formally defined as follows.

Definition 24. A loosely guarded clause with equality (LG≈ clause) � is a simple
and covering clause that may contain equality, satisfying the following conditions:

1. � is either ground, or
2. � is a positive and single-variable clause, or
3. � contains a negative flat subclause ¬�1 ∨ . . . ∨ ¬�= such that each variable

pair in � co-occurs in a literal of ¬�1 ∨ . . . ∨ ¬�= .
In 3. Definition 24, the negative flat subclause ¬�1 ∨ . . . ∨ ¬�= is call the

loose guard of the clause �.
We use the notation LGQ≈ to denote the class of LG≈ clauses and Q≈ clauses.

The TransCGNF process transforms a clique guarded negation formula to a set
of LGQ≈ clauses, formally stated as:

7.1. CLAUSIFICATIONS FOR GNF AND CGNF 174

Lemma 7.2. Applying the TransCGNF process to a clique guarded negation formula
transforms it to a LGQ≈ clausal set.

Proof. Suppose � is a clique guarded negation formula. Suppose that in 2. of
the TransCGNF process, �′ is the replacing formula for �, and �1 and �2 are the
definition formulas for∀G(%1(G) → ∃HG(G, H)∧¬�′) and∀G(∃HG(G, H)∧¬�′→
%1(G)) with %1 and %2 fresh predicate symbols, respectively. By the fact that �′

is an existentially quantified sentence containing only flat and positive literals,
3.–6. in the TransCGNF process transform �′ into a ground and flat clause (if no
conjunction occurs in �′), or a set of ground and flat clauses (if conjunctions
occur in �′). In either case, �′ is transformed into LGQ≈ clauses. Now we
distinguish cases of �1 and �2.

�1: By 3.–4. of the TransCGNF process, �1 is transformed into ¬%1(G) ∨
∃HG(G, H) and¬%1(G)∨¬�′. We first consider¬%1(G)∨¬�′. By the fact that �′ is
an existentially quantified sentence containingonlyflat andpositive literals,¬�′
is a universally quantified sentence containing only flat and negative literals.
Then¬%1(G)∨¬�′ is transformed into a (set of)Q≈ clauses (if conjunctions occur
in ¬�′). Next, we consider ¬%1(G)∨∃HG(G, H). Since ∃HG(G, H) is a conjunction
of atoms, the CNF rules transform ¬%1(G) ∨ ∃HG(G, H) into a set of clauses.
Suppose � is one of these clauses. Then for each existential quantified variable
H in � (if H exists), the prenex normal form and then applying the Skolem rule
transform H to a compound term 5 (G) where 5 is a Skolem symbol. Hence, �
is covering. By the fact that ¬%1(G) ∨ ∃HG(G, H) contains no function symbol,
�1 is simple. By the definition of structural transformation, ¬%1(G) is the guard
for �. Hence � is an LGQ≈ clause.

�2: By 3. of the TransCGNF process, �2 is transformed into ∀G(∀H¬G(G, H) ∨
�′ ∨ %1(G)). Suppose 4. of the TransCGNF process introduce a predicate symbol
%′. W.l.o.g. further suppose ∀H¬!(G, H) is a literal in ∀H¬G(G, H) where G ∈ G
and H ∈ H, and �′2 is the replacing formula of �2, and %′(G) ∨ ¬!(G, H) is the
definition of %′(G). Then immediately %′(G) ∨ ¬!(G, H) is an LGQ≈ clause. We
use ∀G(¬G1(G) ∨ �′ ∨ %1(G)) to denote �′2, and hence �′2 can be presented as

∀G(¬�1(. . .) ∨ . . . ∨ ¬%′(. . .) . . . ∨ ¬�=(. . .) ∨ �′ ∨ %1(G)),

where ¬�1(. . .) ∨ . . . ∨ ¬%′(. . .) . . . ∨ ¬�=(. . .) represents ¬G1(G). Note that �′

is an existentially quantified sentence containing only flat and positive literals.

7.2. THE SUPERPOSITION-BASED TOP-VARIABLE SYSTEM 175

If there exists conjunctions in �′, then the CNF rules transform �′2 to a set of
clauses. Suppose � is one of these clauses. ByDefinition 6, the set of negative
literals ¬G1(G) is the loose guard of �. For any existential quantified variable
in �′, it is skolemised into a compound term containing variables G, hence �
is covering. As ∀GH(¬G1(G, H) ∨ �′ ∨ %1(G)) contains no function symbols, � is
simple. Hence � is an LGQ≈ clause. �

One can also use the Sep rule to handle existential quantifications in the
clique guard of clique guarded negation formulas. This fact follows from the
discussion for the TransCGF process, from Section 6.1.

Now we give the main result of this section.

Theorem 7.2. The TransCGNF process reduces the problem of BCQ answering for
CGNF to that of deciding satisfiability of the LGQ≈ clausal class.

Proof. By Lemma 7.2 and the fact that TransCGNF process transforms a union of
BCQs to Q≈ clauses. �

The LGQ≈ clausal class strictly subsumes the GQ≈ clausal class, since by
restricting the number of literals in a loose guard in LGQ≈ clauses to one,
one obtains a GQ≈ clause. Hence in the next sections, we focus on deciding
satisfiability of the LGQ≈ clausal class.

7.2 The superposition-based top-variable system

In this section, we first give the basis of a saturation-based superposition in-
ference system. Then based on this system, we given the superposition-based
top-variable system, specifically devised for deciding satisfiability of the LGQ≈
clausal class.

A saturation-based superposition inference system

We use the notation T-Inf≈ to denote our superposition-based P-Res system
for first-order clausal logic with equality.

The Inf≈ system is the combination of the Deduce, the E-Fact, the E-Res
and the Para rules from the Satu≈ system (from Section 3.4) and the P-Res,
the Fact, theDelete rules from the Inf system (from Section 4.2). In particular
admissible orderings � are extended to the multiset ordering �< as follows.

7.2. THE SUPERPOSITION-BASED TOP-VARIABLE SYSTEM 176

Non-equational literals %(C1, . . . , C=) are treated as %(C1, . . . , C=) ≈ ttwhere tt is a
distinguished constant. By� it is always the case that tt is theminimal constant.
Positive equality literals B ≈ C are regard as {B, C} and negative equality literals
B 0 C are regard as {B, C , tt}, respectively. This extension is also given in the
paramodulation calculus in Section 3.4.

Recall the Satu≈ system from Section 3.4. A derivation is computed using

The Deduce rule (for clauses with equality)

#
∪ {�}

if � is a conclusion of either the Fact, or the P-Res, or the E-Fact, or the
E-Res or the Para rule of clauses in # .

Conclusions of the equality factoring rule is computed using

The E-Fact rule

C1 ≈ D ∨ C2 ≈ E ∨ �
(D 0 E ∨ C1 ≈ E ∨ �)�

if the following conditions are satisfied.
1. Nothing is selected in � and (C1 ≈ D)� is �<-maximal with respect

to (C2 ≈ E ∨ �)�.
2. D� � C1�.
3. � = mgu(C1 � C2).

Conclusions of the equality resolution rule is computed using

The E-Res rule

C1 0 C2 ∨ �
��

if the following conditions are satisfied.
1. Either (C1 0 C2)� is selected or it is �<-maximal with respect to ��.
2. � = mgu(C1 � C2).

Conclusions of the ordered paramodulation rule is computed using

7.2. THE SUPERPOSITION-BASED TOP-VARIABLE SYSTEM 177

The Para rule

C1 ≈ D ∨ �1 ![C2] ∨ �2

(![D] ∨ �1 ∨ �2)�
if the following conditions are satisfied.

1. Nothing is selected in �1� and (C1 ≈ D)� is strictly �<-maximal
with respect to �1�.

2. If ![C2] is positive, ![C2]� is strictly �<-maximalwith respect to�2�,
or else ![C2]� is either selected or �<-maximal with respect to �2�.

3. C2 is not a variable.
4. D� � C1�.
5. � = mgu(C1 � C2).
6. Premises are variable disjoint.

Recall that in the Para rule, the premises C1 ≈ D ∨ �1 and ![C2] ∨ �2 are
called the left premise and the right premise, respectively.

Theorem 7.3. The Inf≈ system is sound and refutationally complete for general first-
order clausal logic with equality.

Proof. By Theorems 3.4 and 4.2. �

The top-variable superposition system

In this section, we give a new top-variable refinement and a new superposition-
based top-variable inference system for the LGQ≈ clauses. We use the notation
T-RefLGQ≈≈ to denote this new superposition-based top-variable refinement,
and use the notation T-InfLGQ≈≈ to denote the Inf≈ system endowed with the
T-RefLGQ≈≈ refinement.

Like the T-RefGQ and the T-RefLGQ refinements, the T-RefLGQ≈≈ refinement
uses any admissible ordering with a precedence in which function symbols
are larger than constant, which are larger than predicate symbols. With this
precedence, a lexicographic path ordering�;?> is used as an example. However,
unlike the T-RefGQ and the T-RefLGQ refinements, the T-RefLGQ≈≈ refinement
extends �;?> with a multiset ordering to consider equality literals, which is
given in the previous section. We use �<;?> to denote this ordering refinement.

Algorithm 17 determines the eligible literal, or the P-Res eligible liter-
als (with respect to a Res inference step), to an LGQ≈ clause.

7.2. THE SUPERPOSITION-BASED TOP-VARIABLE SYSTEM 178

Algorithm 17: Determining the (P-Res) eligible literals for LGQ≈ clauses

Input: A LGQ≈ clausal set # and a clause � in #
Output: The (P-Res) eligible literals in �

1 if � is a ground clause then
2 return Max(�)
3 else if � has negatively occurring compound-term literals then
4 return SelectNC(�)
5 else if � has positively occurring compound-term literals then
6 return Max(�)
7 else if � contains negatively occurring equality literals then
8 return SelectNE(�)
9 else if � is a flat and single-variable positive clause then
10 return Max(�)
11 else return PResT(#, �)

Different from the T-RefLGQ refinement, the T-RefLGQ≈≈ refinement (Lines 7–
10) considers LGQ clauses with equality literals occurring. The following func-
tions are new to find eligible literals in the LGQ≈ clauses.

• Max(�) returns the (strictly) �<;?>-maximal literal with respect to the
clause �.

• SelectNE(�) selects one of the inequality literals in the clause �.

In the T-RefLGQ≈ refinement, one can use a priori checking for the (strictly)
maximal literals. This statement is formally supported by:

Lemma 7.3. Under the restrictions of the T-RefLGQ≈ refinement, if an eligible literal !
is (strictly) �<;?>-maximal with respect to an LGQ≈ clause �, then !� is (strictly)
�<;?>-maximal with respect to ��, for any substitution �.

Proof. By the covering property of LGQ≈ clauses and Lemma 4.6. �

Theorem 7.4. The T-Inf LGQ≈≈ system is sound and refutationally complete for general
first-order clausal logic with equality.

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 179

Proof. By Theorem 7.3 and the fact that the T-RefLGQ≈ refinement consists of
admissible orderings with selection functions, and a specific form of the P-Res
rule (the top-variable resolution rule). �

7.3 Deciding the LGQ≈ clausal class

Deciding satisfiability of the LG≈ clausal class

In this section, our aim is to prove that the T-InfLGQ≈≈ system decides satisfia-
bility of the LG≈ clausal class. In particular we focus on the inference steps that
are not included in the result from Section 6.3, i.e. the applications of the Fact
and the P-Res rules to flat, single-variable and positive LG≈ clauses, and the
applications of the E-Fact, the E-Res or the Para rules to LG≈ clauses.

We investigate the applications of the Fact rule to LG≈ clauses, starting with
the following supporting lemma.

Lemma 7.4. Let � = � ∨ � be an LG≈ clause with � a compound-term literal. Let �
be a substitution that substitutes all variables in � with either constants or variables.
Then �� is an LG≈ clause.

Proof. When � is a single-variable positive clause, the statement trivially holds.
The results for the rest of cases of � can be obtained by adapting ‘guarded
clauses’ to ‘LG≈ clauses’ in Lemma 4.12. �

Now we consider the conclusions of applying the Fact rule to LG≈ clauses.

Lemma 7.5. Applying the Fact rule (endowed with the T-RefLGQ≈ refinement) to LG≈
clauses derives LG≈ clauses.

Proof. When � is a positive single-variable clause, this lemma trivially holds.
By Lemma 7.4, the results of rest of cases follow from Lemma 6.7. �

Next we consider the application of the E-Fact rule to LG≈ clauses.

Lemma 7.6. Applying the E-Fact rule (endowed with the T-Ref LGQ≈ refinement) to
LG≈ clauses derives LG≈ clauses.

Proof. Recall the E-Fact rule (with a priori checking for maximality and the
T-RefLGQ≈ refinement).

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 180

C1 ≈ D ∨ C2 ≈ E ∨ �
(D 0 E ∨ C1 ≈ E ∨ �)�

if the following conditions are satisfied.

1. Nothing is selected in � and C1 ≈ D is �<;?>-maximal with respect to
C2 ≈ E ∨ �.

2. D �<;?> C1.
3. � = mgu(C1 � C2).

In the application of the E-Fact rule, suppose an LG≈ clause � is the premise
C1 ≈ D ∨ C2 ≈ E ∨ � and �′ is the conclusion (D 0 E ∨ C1 ≈ E ∨ �)� where
� = mgu(C1 � C2). By Algorithm 17, � satisfies either Line 1, or 5 or 9. We
distinguish these cases.

Line 1: When � is ground and simple, it is immediate that �′ is ground and
simple. Thus �′ is an LG≈ clause.

Line 5: Thepremise� containspositivelyoccurring compound-term literals,
and no negatively occurring compound-term literals. Now suppose � is a
single-variable, positive compound-term clause. By Lemma 4.5 and 1.–2. of
the E-Fact rule, C1 is a compound term. By the covering property and 3. of the
E-Fact rule, C2 is a compound term. Then by 1.–2. of the E-Fact rule, D and E
are variables. By the fact that � is a single-variable clause, � is void and then
�′ is a single-variable LG≈ clause with the loose guard D 0 E. Hence, �′ is
an LG≈ clause. Next suppose � is an LG≈ clause satisfying 3. of Definition 24.
By Lemma 4.5 and 1.–2. of the E-Fact rule, C1 is a compound term. By the
fact that in a covering clause �, the presence of a ground compound in �

means that � is ground, C1 is a non-ground compound term. By the covering
property, C1 and C2 are both non-ground compound terms, otherwise they are
not unifiable. Suppose in �, G is the loose guard, ! is a literal and C is a
compound term. By Definition 24, C1 ≈ D and C2 ≈ E are simple and covering
such that var(C1 ≈ D) = var(C2 ≈ E) = var(�). By Lemma 4.10, (C1 ≈ D)� and
(C2 ≈ E)� are simple. Then (D 0 E ∨ C1 ≈ E)� is simple. By 1. in Lemma 4.11
and the facts that ! is simple and var(!) ⊆ var(C1 ≈ D), !� is simple. This
mean all literals in �′ is simple, hence �′ is simple. By the covering property,
var(�) = var(C1) = var(C). By 3. in Lemma 4.11, var(��) = var(C1�) = var(C�).

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 181

Hence �′ is covering. By 3. of the E-Fact rule and the facts that C1 and C2
are flat non-ground compound terms such that var(C1) = var(C2), the mgu �

substitutes variables in � with either variables or constants. Then by the fact
that var(G) = var(�), var(G�) = var(��) and G� is flat, hence �� is loosely
guarded by G�. Then �′ is an LG≈ clause.

Line 9: The premise � is a positive single-variable clause. When � is flat,
the statement trivially holds. �

Next we look at the conclusions of applying the Para rule to LG≈ clauses.

Lemma 7.7. Applying the Para rule (endowed with the T-Ref LGQ≈ refinement) to
LG≈ clauses derives LG≈ clauses.

Proof. Recall the Para rule with a priori checking for maximality and the T-
RefLGQ≈ refinement.

C1 ≈ D ∨ �1 ![C2] ∨ �2

(![D] ∨ �1 ∨ �2)�
if the following conditions are satisfied.

1. Nothing is selected in �1 and (C1 ≈ D) is strictly �<;?>-maximal with
respect to �1.

2. If ![C2] is positive, ![C2] is strictly �<;?>-maximal with respect to �2, or
else ![C2] is either selected or �<;?>-maximal with respect to �2.

3. C2 is not a variable.
4. D �<;?> C1.
5. � = mgu(C1 � C2).
6. Premises are variable disjoint.

Suppose LG≈ clauses �1 = C1 ≈ D ∨�1 and �2 = ![C2] ∨�2 are the premises
in an application of thePara rule, producing a conclusion�′ = (![D]∨�1∨�2)�
with � = mgu(C1 � C2). By Algorithm 14, �1 satisfies either Line 1, or Line 5 or
Line 9, and �2 satisfies either Line 1, or Line 3, or Line 5, Line 7 or Line 9. We
distinguish cases of �1

Line 1: Suppose �1 is a ground and simple clause. By 1. and 3. of the Para
rule, C1 is either a constant or a ground and flat compound term. Suppose C1

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 182

is a ground compound term. By 3. of the Para rule and the fact that C1 and
C2 are unifiable, C2 is a compound term. Since C1 is ground, � substitutes all
variables of C2 by constants. By the covering property, var(C2) = var(�2). Hence
� substitutes all variables of �2 by constants. Then �′ is a simple and ground
clause, namely is an LG≈ clause. Next suppose C1 is a constant. By 1. and 4. of
the Para rule, �1 is a flat and ground clause. By 3. of the Para rule, C2 is a
constant. Hence � is void. By the facts that �2 is an LG≈ clause and �1 is a flat
and ground clause, �′ is an LG≈ clause.

Line 5: Suppose �1 contains no negative compound-term literal, but con-
tains positive compound-term literals. Then � satisfies either 2. or 3. of Defi-
nition 24. Suppose � is a compound-term single-variable positive clause. By
1. of the Para rule and Lemma 4.5, C1 is a compound term. By 3. of the Para
rule, C2 is a compound term. By the covering property, var(C2) = var(�2). Then
either all variables of �2 are substituted by the variable in �1, or �2 is ground,
and the variable in �1 is substituted by a constant. By the fact that �2 is an
LG≈ clause and the mgu �, the resolvent �′ is an LG≈ clause. Next suppose
� satisfies 3. of Definition 24. By Lemma 4.5, C1 ≈ D is a compound-term
literal. By 3. of the Para rule, C2 is a compound term. By Algorithm 17, �2

satisfies either Line 1, Line 5 or Line 7. Suppose �2 is a ground compound-
term clause (Line 1). Then C2 is ground. By the covering property and the
fact that C1 and C2 are unifiable, � substitutes all variables of �1 with con-
stants. Then the resolvent �′ is a simple and ground clauses, which is an
LG≈ clause. Suppose �2 is a non-ground compound-term clause (Lines 5 and
7). Suppose in either �1 or �2, ! is a simple literal and C is a compound
term. Further suppose G is the loose guard of �1. By the covering property
and the fact that C1 and C2 are unifiable, � substitutes all variables with either
constants or variables. Then !� is simple and G� is flat. By the covering
property and the fact that var(C1�) = var(C2�), var(�1�) = var(�2�). By the
fact that var(G) = var(�1), var(G�) = var(�1�) = var(�2�). Then G� the loose
guard of �′. Since var(C1) = var(C) = var(�1) (or var(C1) = var(C) = var(�2)),
var(C�) ⊆ var(�1�) (or var(C�) ⊆ var(�2�)). Then �′ is covering. Hence, �′ is
an LG≈ clause.

Line 9: Suppose �1 is a flat and single-variable positive clause. Suppose C1
is a constant. By 1. of the Para rule, �1 is a flat ground clause. By the facts
that �2 is an LG≈ clause and �1 is a flat ground clause, the resolvent �′ is an

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 183

LG≈ clause. Now suppose C1 is a variable. By 3. of the Para rule, C2 is either
a constant or a compound term. Then � substitutes the only variable in �1

with either a constant or a compound term. Hence �1� is either a flat ground
clause, or a compound-term single-variable clause. Then by the facts that �2 is
an LG≈ clause and � does not substitute variables in �2, the resolvent �′ is an
LG≈ clause. �

Next we discuss the applications of the E-Res rule to LG≈ clauses.

Lemma 7.8. Applying the E-Res rule (endowed with the T-Ref LGQ≈ refinement) to
an LG≈ clause derives an LG≈ clause.

Proof. Recall the E-Res rule (with a priori checking for maximality and the
T-RefLGQ≈ refinement).

C1 0 C2 ∨ �
��

if the following conditions are satisfied.

1. Either C1 0 C2 is selected or it is �<;?>-maximal with respect to �.
2. � = mgu(C1 � C2).

Suppose � is the E-Res premise C1 0 C2 ∨ � and �′ is the E-Res conclu-
sion ��. By Algorithm 17, � satisfies either Line 1, or Line 3 or Line 7. We
distinguish these cases as follows.

Line 1: When � is a simple ground LG≈ clause, the lemma trivially holds.
Line 3: The equality literal C1 0 C2 contains compound terms. By the

covering property, C1 and C2 are both compound terms, otherwise C1 and C2 are
not unifiable. Then � substitutes variables with variables and constants. By
Lemma 7.4, �� is an LG≈ clause.

Line 7: The premise � is flat and C1 0 C2 is selected by the SelectNE(�)
function. Then the terms C1 and C2 are either variables or constants, and hence
� substitutes a variable in � with either a variable or a constant. By Lemma 7.4,
�� is an LG≈ clause. �

Nowwe investigate the pairing property and the unification in applications
of the P-Res rule to LG≈ clauses when multiple side premises occur.

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 184

Lemma 7.9. In applications of the P-Res rule, endowed with the T-Ref LGQ≈ re-
finement, to a flat clause � = ¬�1 ∨ . . . ∨ ¬�< ∨ ¬�<+1 ∨ . . . ∨ ¬�= ∨ � with
¬�1∨. . .∨¬�< as the top-variable literals and LG≈ clauses�1 = ¬�1∨�1, . . . , �< =

¬�= ∨ �= with < ≤ =. Further suppose �8 and � 9 are, respectively, compound-term
literals and flat literals in �8 and � 9 with 1 ≤ 8 ≤ < and 1 ≤ 9 ≤ <. Then the
following conditions hold.

1. In ¬�8 , top variables pair compound terms and non-top variables pair constants
or variables.

2. All variables in ¬� 9 are top variables, pairing either constants or variables.
3. In ¬�8 , top variables G are unified with the compound terms pairing G (modulo

variables that are substituted with either variables or constants), and non-top
variables are unified with either constants or variables.

4. In ¬� 9 , either all variables are unified with a common non-nested compound
term and constants, or all variables are unified with variables and constants.

5. In �8 , all variables are unified with variables and constants.
6. In � 9 , either all variables are unified with non-nested compound terms or all

variables are unified with variables and constants.
7. Suppose a top variable G pairs a constant. Then in �, all negative literals are

top-variable literals and all variables are unified with constants.

Proof. Assume that � and �′ are mgus such that � = mgu(�1 � �1, . . . , �< �

�<) and �′ = mgu(�1 � �1, . . . , �= � �=), respectively .
1.: This proof is similar to 1. of Lemma 4.13. W.l.o.g. suppose ¬�8 and �8

are in the forms of ¬�8(. . . , G, . . . , H, . . .) and �8(. . . , C1, . . . , C2, . . .), respectively.
Further suppose in ¬�8(. . . , G, . . . , H, . . .), G is a top-variable, H is a non-top
variable, and G and H pair C1 and C2, respectively. We prove 1. by contradiction.

First assume that C1 is not a compound term. This implies that C1 is either a
variable or a constant. By the fact that �8 is a compound-term literal, w.l.o.g. we
assume that in �8 , C occurs as a compound term, pairing a variable I in ¬�8 .
By the covering property, var(C1) ⊂ var(C). Then by the fact that dep(C1) <
dep(C), dep(C1�′) < dep(C�′), hence dep(G�′) < dep(I�′). By the definition
of variable orderings, the case dep(G�′) < dep(I�′) contradicts the fact that
G is a top variable. Hence C1 is a compound term, pairing G. Next assume
that C2 is neither a variable nor a constant. Then C2 is a compound term. By
the covering property and the fact that C1 is a compound term, dep(C1�′) =

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 185

dep(C2�′), therefore dep(G�′) = dep(H�′). This contradicts the fact that H is
non-top variable.

2.: By Algorithm 17 and the fact that � 9 is a flat literal, � 9 is either a flat
ground clause or a flat single-variable clause. Then 2. follows from the fact that
� 9 is an eligible literal.

3.: By the pairing property proved in 1. and 2..
4.: By Algorithm 17, we distinguish two cases of side premises.
4.-1: Assume that all side premises �1, . . . , �< are flat clauses. It is imme-

diate that in ¬� 9 , all variables are unified with variables and constants.
4.-2: Assume that both compound-terms clauses andflat clauses occur in the

side premises �1, . . . , �< . Suppose G and H are top variables in the compound-
term literal �8 and the flat literal � 9 , respectively. By 3., dep(G�) = 1. By the
fact that G and H are both top variables, dep(H�) = 1. Hence H is unified with
a non-nested compound-term. By Algorithm 17, � 9 is a flat single-variable
clause such that only a single variable and constants occur as its arguments.
Suppose H is unified with the compound-term C. Then the only variable in
� 9 is unified with C. Hence, all variables in ¬�8 are unified with a common
non-nested compound term and constants.

5. and 6.: By 3. and 4., respectively.
7.: By the proof in 5. of Lemma 4.13. �

Now we apply the top-variable resolution rule to LG≈ clauses.

Lemma 7.10. Applying the P-Res rule (endowed with the T-Ref LGQ≈ refinement) to
LG≈ clauses derives LG≈ clauses.

Proof. By Algorithm 17, in applications of the P-Res rule (endowed with the
T-RefLGQ≈ refinement) to LG≈ clauses, the positive premise satisfies either
Line 1 (it is ground), or Line 5 (it has positively occurring compound-term
literals, but does not have negatively occurring compound-term literals), or
Line 9 (it is a flat and single-variable positive clause). In this proof, we focus on
the case when flat and single-variable positive clauses occur as side premises.
Note that when a side premise is a compound-term single-variable positive
clauses, these side premises are implicitly guarded by the inequality literal
G 0 G. For the rest of cases when side premises satisfy Lines 1 and 5 in Algo-
rithm 17, by 3. and 5. in Lemma 7.9, it follows from Lemma 6.8 that applying

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 186

the P-Res rule (endowedwith theT-RefLGQ≈ refinement) to LG≈ clauses derives
LG≈ clauses.

By Algorithm 17, in applications of the P-Res rule (endowed with the T-
RefLGQ≈ refinement) to LG≈ clauses, the negative premise satisfies either Line 1,
or Line 3 or Line 11. Note that the P-Res rule is reduced to a binary resolution
rule when the negative premise satisfies either Line 1 or Line 3. Suppose in
applications of the P-Res rule, the negative premise � = ¬�1 ∨ � is either a
simple and ground clause (Line 1), or has negatively occurring compound-term
literals (Line 3), the positive premise �1 = �1 ∨ �1 is a flat and single-variable
positive clause and the resolvent is �′ = (� ∨ �1)� with an mgu � such that
� = mgu(�1 � �1). As �1 is flat, single-variable and positive, it is trivial that
in either case the resolvent �′ is an LG≈ clause.

Next we consider the case when the negative premise satisfies Line 11 in
Algorithm 17. Suppose in an application of the P-Res rule to LG≈ clauses,
the positive premises are LG≈ clauses �1 = �1 ∨ �1, . . . , �= = �= ∨ �= , the
negative premise is a non-ground flat LG≈ clause � = ¬�1 ∨ . . . ∨ ¬�< ∨
¬�<+1 ∨ . . . ∨ ¬�= ∨ � (with � a positive subclause) and the resolvent is
�′ = (�1 ∨ . . . ∨ �< ∨ ¬�<+1 ∨ . . . ∨ �= ∨ �)� with � an mgu such that
� = mgu(�1 � �1, . . . , �< � �<) where < ≤ =. We distinguish two cases
when flat and single-variable positive clauses occur in �1, . . . , �= .

1.: All of clauses in �1, . . . , �= are flat and single-variable positive clauses.
By the CompT(�1, . . . , �= , �) function and the fact that �1, . . . , �= are flat, in �
all variables in ¬�1∨ . . .∨¬�= are top variables and ¬�1, . . . ,¬�= are the top-
variable literals with< = =. By 4. of Lemma 7.9, all variables in¬�1∨ . . .∨¬�=
are unified with constants and variables. Now we consider the unification of
variables in �. Suppose G8 and G 9 are two variables occurring in¬�1∨ . . .∨¬�= .
Since � has the variable co-occurrence property, w.l.o.g. we assume that G8 and
G 9 co-occur in ¬�C with 1 ≤ C ≤ =. As �C is a flat and single-variable literal, G8�
is either a variable or a constant, and G8� is identical to G 9�. Hence all variables
in ¬�1 ∨ . . . ∨¬�= are unified with a common variable and constants. By 3. of
Definition 24 and the fact that� is an LG≈ clause, var(¬�1∨. . .∨¬�=) = var(�).
Then all variables in � are unified with a common variable and constants. By
the fact that �1, . . . , �= are single-variable clauses, all variables in �1, . . . , �=
are unified with a common variable and constants. Since �1, . . . , �= and � are
flat, �′ is a flat clause containing no more than one variable. By the fact that

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 187

all negative literals in � are resolved as top-variable literals and �1, . . . , �= are
positive clauses, �′ is positive. Then �′ is an LG≈ clause.

2.: Both flat, single-variable positive clauses and compound-term clauses
occur in �1, . . . , �= . W.l.o.g. suppose �8 and � 9 are, respectively, a compound-
term clause and a flat, single-variable and positive clause with 1 ≤ 8 ≤ <

and 1 ≤ 9 ≤ <. By Algorithm 17, �8 and � 9 are, respectively, a compound-
term literal and a flat, single-variable and positive literal. We prove that the
resolvent �′ is an LG≈ clause by proving that � is simple, covering and has
a loose guard. By the covering property and the fact that � 9 contains only
one variable, var(�8) = var(�8) and var(� 9) = var(� 9), respectively. By 3.–6. of
Lemma 7.9, �′ is simple. Next we prove that �′ is covering and contains a
loose guard. Suppose G1, . . . , G<′ are the set of top variables in �. Further
suppose that G8 and G 9 are top-variables in G1, . . . , G<′, occurring in ¬�8 and
¬� 9 , respectively. By 3. of Lemma 7.9, G8 is substituted by either a compound
term or a constant that G8 pairs. First suppose G8 pairs a constant. By 7. of
Lemma 7.9 and the fact that an eligible literals of the side premise in �1, . . . , �=
shares the samevariable set as that sidepremise, the resolvent�′ is a flat ground
clause, therefore �′ is an LG≈ clause. Next suppose G8 pairs a compound term.
By the variable co-occurrence property of �, further suppose G8 and G 9 co-
occur in a literal ¬�C of ¬�1 ∨ . . . ∨ ¬�< . Suppose �C = �C ∨ �8 is that side
premise such that �C pairs �C . By the covering property and 3. of Lemma 7.9,
var(G8�) = var(G 9�) = var(�C�) = var(�C�). By the variable co-occurrence
property of �, var(G1�) = . . . = var(G<′�) = var((¬�1 ∨ . . . ∨ ¬�<)�). By 3. of
Definition 24, G8 co-occurswith all other variable in� in¬�1∨. . .∨¬�< . Hence
var(�) = var(¬�1 ∨ . . . ∨ ¬�<). Then var(��) = var(G1�) = . . . = var(G<′�).
By the covering property, var(�C) = var(�C). Then var(��) = var(�C�). Then
we have var(��) = var(�8�) for all 8 such that 1 ≤ 8 ≤ <. Since � is a flat
clause, compound terms in the resolvent �′ are inherited from compound-
term clauses in �1, . . . , �< . Suppose G is a loose guard and C a compound
term in a �8 of �1, . . . , �< . By Definition 24, var(C) = var(G) = var(�). Then
var(C�) = var(G�) = var(��) = var(�8�) for all 8 such that 1 ≤ 8 ≤ <. By
3.–6. of Lemma 7.9, G� is flat and C� is a non-nested compound term. Hence,
�′ is simple, covering and has a loose guardG�, hence, �′ is an LG≈ clause. �

In applications of the T-InfLGQ≈≈ system to LG≈ clauses, the width of the
derived LG≈ clauses are bounded, formally stated as:

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 188

Lemma 7.11. In applications of the T-InfLGQ≈≈ system to LG≈ clauses, the derived LG≈
clause is no wider than at least one of its premises.

Proof. The statement trivially holdswhena conclusion is either a single-variable
clause or a ground clause.

By Lemmas 7.5, 7.6 and 7.8, applying, respectively, the Fact, E-Fact and
E-Res rules to LG≈ clauses derives LG≈ clauses �′. By the fact that the loose
guard in �′ is inherited from its premise, �′ contains nomore types of variables
than its premise. By Lemmas 7.7 and 7.10, applying the Para and P-Res rules to
LG≈ clauses derives LG≈ clauses �′. The loose guard in �′ is inherited from the
right premise in the Para inference and the side premise in the P-Res inference.
Hence �′ is no more wider than at least one of its premises. �

Theorem 7.5. The T-Inf LGQ≈≈ system decides satisfiability of the LG≈ clausal class.

Proof. By Lemmas 7.5–7.8 and 7.10, applying the rules in the T-InfLGQ≈≈ system
to LG≈ clauses derives LG≈ clauses. By the fact that LG≈ clauses are simple, the
depth of derived LG≈ clauses is bounded by a constant. By Lemma 7.11, the
width of derived LG≈ clauses is also bounded by a constant. �

Handling Q≈ clauses (in the presence of the LG≈ clauses)

In this section, we compute inferences when a Q≈ clause is the premise. Our
aim is to eliminate inequality literals inQ≈ clauses, reducingQ≈ clauses to query
clauses, which can be handled by the techniques in Section 4.5.

Since Q≈ clauses are negative clauses, the Fact and the E-Fact rules are not
applicable to them. By the fact that Q≈ clauses are negative and flat, in the
Para rule a Q≈ clause cannot be a left premise and a right premise, respectively.
Hence we focus on the applications of the E-Res and P-Res rules to Q≈ clauses.

We start with considering applying the E-Res rule to Q≈ clauses.

Lemma 7.12. Applying the E-Res rule (endowed with the T-Ref LGQ≈ refinement) to
Q≈ clauses derives Q≈ clauses.

Proof. Recall the E-Res rule (with a priori checking for maximality and the
T-RefLGQ≈ refinement).

7.3. DECIDING THE LGQ≈ CLAUSAL CLASS 189

C1 0 C2 ∨ �
��

if the following conditions are satisfied.

1. Either C1 0 C2 is selected or it is �<;?>-maximal with respect to �.
2. � = mgu(C1 � C2).

Suppose the E-Res premise is a Q≈ clause � such that � = C1 0 C2 ∨ �, and
the conclusion is �′ such that �′ = ��. By Algorithm 17, a Q≈ clause satisfies
either Line 1 or Line 7. The case is trivial when the premise � is a flat and
negative ground clause. Line 7 in Algorithm 17 requires the premise � to be
a non-ground, flat and negative clause. Then the mgu � substitutes a variable
in � with either a constant or a variable. In either case, �� is a Q≈ clause. �

Observed that by Algorithm 17, in the T-InfLGQ≈≈ system only the E-Res
rule is applicable to non-ground Q≈ clauses with inequality literals occurring.
By this observation, we can put our focus on equality-free Q≈ clauses, i.e., query
clauses.

Recall that in Section 4.5 the Q-Sep procedure separates a query clause
into Horn guarded clauses (HG clauses) and an indecomposable chained-only query
clause (indecomposable CO clause). By Algorithm 14, the P-Res rule is applied
to an indecomposable CO clause (as a main premise) and LG≈ clauses (as side
premises), deriving the top-variable resolvents '. We abusively reuse the
notion T-Trans to denote the formula renaming technique that transforms ' to
query clauses and LG≈ clauses. The only difference of this T-Trans rule and the
T-Trans rule in Section 4.5 is that the side premises are LG≈ clauses, instead of
guarded clauses.

We use notationQ-COLGQ≈ to denote our procedure to handle indecompos-
able CO clauses in the presence of LG≈ clauses, given as follows.

1. Apply the top-variable resolution rule to an indecomposable CO clause
and LG≈ clauses, deriving the top-variable resolvent '.

2. Apply the T-Trans rule to ', deriving a query clause & and LG≈ clauses.

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 190

3. Apply theQ-Sep procedure to&, producing HG clauses and an indecom-
posable CO clause.

Lemma 7.13. The conclusions of applying the Q-COLGQ≈ procedure to an indecom-
posable CO clause & and a set # of LG≈ clauses satisfy the following conditions.

1. The conclusions are an indecomposableCO clause&′ and a set#′ of LG≈ clauses.
2. The clausal sets &′ ∪ #′ and & ∪ # are equisatisfiable.
3. For each clause �′ in #′, there exists a clause � in # such that �′ is no wider

than �, and &′ is less wide than &.

Proof. By Lemma 7.9 and the fact that flat and single-variable positive clauses
occurring as the side premises of the P-Res rule does not hurt the result estab-
lished in Lemma 6.10. �

7.4 Decision procedures for answering and rewrit-
ing BCQs for GNF and/or CGNF

BCQ answering for GNF and CGNF

In this section, we give the formal decision procedure for answering BCQs for
GNF and/or CGNF.

Algorithm 18 gives the pre-process steps for the given (clique) guarded
negation formulas and union of BCQs.

Algorithm 18: The PreProcessCGNF function

Input: A union @ of BCQs, sets Σ1 and Σ2 of formulas in GNF and
CGNF, respectively

Output: A set of LGQ≈ clauses
1 Function PreProcessCGNF(Σ1,Σ2, @):
2 usable← ∅
3 G≈,Q1≈← TransGNF(Σ1, @)
4 LG≈,Q2≈← TransCGNF(Σ2, @)
5 usable← usable ∪ G≈ ∪ LG≈ ∪ Q1≈ ∪ Q2≈
6 usable← Red(usable, usable)
7 return usable

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 191

Unlike the PreProcessCGF function from Section 6.4, Algorithm 18 uses
the following new functions.

1. TransGNF(Σ, @) applies the TransGNF process to a set Σ of guarded nega-
tion formulas and a union @ of BCQs, outputting a set of GQ≈ clauses.

2. TransCGNF(Σ, @)uses theTransCGNF process to a clique guardednegation
formula set Σ and a union @ of BCQs, outputting an LGQ≈ clausal set.

3. PreProcessCGNF(Σ1,Σ2, @) takes a union @ of BCQs, a set Σ1 of formulas
in GNF and a set Σ2 of formulas in CGNF as input, returning an LGQ≈
clausal set.

Based on the give-clause algorithm, Algorithm 19 on the next page gives a
sample decision procedure for answering a union of BCQs for GNF and/or
CGNF. We use the notation Q-AnsCGNF to denote the decision procedure in
Algorithm 19. Compared to the Q-AnsCGF procedure, the Q-AnsCGNF proce-
dure has the following new functions, specially for reasoning with the equality
literals.

1. E-Fact(�) applies the E-Fact rule (endowed with the T-RefLGQ≈ refine-
ment) to the clause �, outputting the conclusion of �.

2. E-Res(�) applies theE-Res rule (endowedwith theT-RefLGQ≈ refinement)
to the clause �, outputting the conclusion of �.

3. Para(�1, �2) applies the Para rule (endowed with the T-RefLGQ≈ refine-
ment) to the clauses �1 and �2, outputting the conclusion of �1 and �2.

Another major difference of the Q-AnsCGF and the Q-AnsCGNF procedures
is that in theQ-AnsCGNF procedure, the Sep function (theQ-Sep procedure) is
applied in the saturation process in Lines 11–13 of Algorithm 19.

Lemma 7.14. In the Q-AnsCGNF procedure, only finitely many predicate symbols are
introduced.

Proof. It follows from the fact that allowing equality literals and single-variable
positive clause in the LG clausal class does not hurt the results established in
Lemmas 4.27 and 6.12. �

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 192

Algorithm 19: The BCQ answering procedure for GNF and CGNF

Input: A union @ of BCQs and sets Σ1 and Σ2 of formulas in GNF
and CGNF, respectively

Output: ‘Yes’ or ‘No’
1 workedOff← ∅
2 usable← PreProcessCGNF(Σ1,Σ2, @)
3 while usable = ∅ and ⊥ ∉ usable do
4 given← Pick(usable)
5 workedOff←workedOff ∪ given
6 if given is a query clause then
7 CO,HG← Sep(given)
8 new← CO ∪ HG

9 if given is an indecomposable CO clause then
10 tResolvent← P-Res(workedOff, given)
11 LG≈, Q← T-Trans(tResolvent)
12 CO,HG← Sep(Q)
13 new← LG≈ ∪ CO ∪ HG

14 else
15 new← P-Res(workedOff, given) ∪ Fact(given) ∪

E-Fact(given) ∪ E-Res(given) ∪ Para(workedOff, given)
16 new← Red(new, new)
17 new← Red(Red(new, workedOff), usable)
18 workedOff← Red(workedOff, new)
19 usable← Red(usable, new) ∪ new

20 Print(usable)

Finally we give the first main result of this chapter, providing a positive
answer to Problem 8.

Theorem 7.6. The Q-AnsCGNF procedure is a decision procedure for answering BCQs
for UNF, GNF and/or CGNF.

Proof. By Theorems 7.1–7.2 and the fact that UNF is a subfragment of GNF
such that guards are restricted to the inequality literal G 0 H, the Q-AnsCGNF

procedure reduces the problemof answeringBCQs forUNF,GNF and/orCGNF

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 193

to that of deciding satisfiability of the LGQ≈ clausal class. By Lemma 4.19 and
Theorem 7.4, the T-InfLGQ≈≈ system is a sound and refutationally complete
system for general first-order clausal logic. As the Q-AnsCGNF procedure is
based on the T-InfLGQ≈≈ system and our customised separation rules, the Q-
AnsCGNF procedure is a sound and refutational complete procedure if only
finitely many predicate symbols are introduced.

By Lemma 4.23, Lemma 7.13 and Theorem 7.5, applying the Q-AnsCGNF

procedure to LGQ≈ clauses guarantees producing LGQ≈ clauses of bounded
depth and bounded width. By Lemma 7.14, only finitely many new predicate
symbols (with respect to the given signature) are introduced, hence the Q-
AnsCGNF procedure guarantees termination. Since the Q-AnsCGNF procedure
is sound, refutationally complete for first-order clausal logic and guarantees
termination for the LGQ≈ clausal class, it is a decision procedure for answering
BCQs for UNF, GNF and/or CGNF. �

TheQ-AnsCGNF procedure can be altered by the following implementations:

1. In Lines 6–8 of Algorithm 19, the Q-Sep procedure can be extended to
apply to the Q≈ clausal class, instead of query clauses. Regarding equality
literals as general binary literals, the result established in Lemma 4.23 can
be easily generalised to Q≈ clauses. However this alteration complicates
the followingQ-COLGQ≈ procedure, since applying theQ-Sep procedure
to Q≈ clauses derives indecomposable CO clause with equality, which are
not suitable premises for the top-variable resolution rule. For example,
due to the occurrence of the equality literal G 0 I, the CO clause with
equality & = ¬�(G, H) ∨ ¬�(H, I) ∨ G 0 I cannot be the main premise
in the top-variable resolution rule. Hence this alteration may not be a
wise choice. By the T-InfLGQ≈≈ system, only the E-Res rule is applicable
to clauses like &, deriving new query clauses, which are then handled by
the Q-Sep procedure. In this example, applying E-Res rule to & derives
an IO clause ¬�(G, H) ∨ ¬�(H, G), which is also an HG clause.

2. The applications of the E-Res rule to Q≈ clauses in the saturation pro-
cess (Lines 3–15 of Algorithm 19) can be moved to the PreProcessCGNF
function. Note that i) by Algorithm 17, only the E-Res rule is applicable
to non-ground Q≈ clause, and ii) by Lemma 7.12, applying the E-Res
rule to non-ground Q≈ clauses only derives Q≈ clauses. By i) and ii), one

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 194

can independently saturate the non-ground Q≈ clauses with equality literal
occurring by the E-Res rule. Suppose # is a Q≈ clausal set. By the E-Res
rule, # can be saturated to a set #1 of non-ground Q≈ clauses with equality
literal occurring, a set #2 of ground Q≈ clauses and a set #3 of non-ground
query clauses. Though the clauses in #2 and #3 need to be considered
in the saturation process (Lines 3–15 of Algorithm 19), the clauses in #1

can be immediately added to the final saturated clausal set (the workedOff
clausal set in Line 18 of Algorithm 19). This is due to the fact that in the
Q-AnsCGNF procedure, only the E-Res rule is applicable to clauses in #1.

Rewriting BCQs for GNF and CGNF

In contrast to the saturation-based BCQ rewriting procedures for the guarded
quantification fragments that a clausal set is back-translated to a first-order formula,
in this section we tackle a more challenging task, that is the back-translation
from a saturated clausal set of negated BCQs and (C)GNF to a (clique) guarded
negation formula.

Unlike the classes of GQ− and the LGQ− clauses, the LG≈ clausal class is
further refined by the notion protect.

Definition 25. A clause � is protected if all compound terms C = (B1, . . . , B<) in �
satisfy the following conditions.

1. There exists a negative flat subclause ¬�1 ∨ . . . ∨ ¬�= in � such that each pair
of arguments in C co-occurs in a literal of ¬�1 ∨ . . . ∨ ¬�= , and

2. for each term B8 in B1, . . . , B< , Occ(B8 , C) ≤ Occ(B8 ,¬�1 ∨ . . . ∨ ¬�=).

By adopting the notions of strongly compatible (from Definition 12) and
protect to LG≈ clauses, we formally define the aligned (loosely) guarded clauses
with equality.

Definition 26. An aligned loosely guarded clause with equality (LG−≈ clause) is
an LG≈ clause that is protected and strongly compatible.

A aligned guarded clause with equality is an LG−≈ clause with one negative flat
literal as its loose guard.

The protect property ensures that given an LG−≈ clause �, every argument in
the compound terms of � is mapped to an argument in its loose guard.

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 195

Note that if an LG−≈ clause � is a positive single-variable clause, � is also
protected as � is implicitly guarded by the inequality literal G 0 G.

Lemma 7.15. Applying the TransGNF process to a guarded negation formula trans-
forms it into a set of aligned guarded clauses with equality, and ii) applying the
TransCGNF process to a clique guarded formula transforms it into a set of LG−≈ clauses.

Proof. This follows from Lemma 7.1 and Lemma 7.2 and the fact that the strong
compatibility and the protect property hold by the applying the combination of
prenex normal form and then the Skolemisation to (clique) guarded negation
formulas. �

We use the notation LGQ−≈ to denote the class of the LG−≈ and Q≈ clauses. As
the class of LG−≈ clauses subsumes that of aligned guarded clauses, we put our
focus on LG−≈ clauses.

Theorem 7.7. The Q-AnsCGNF procedure decides satisfiability of the LGQ−≈ clausal
class.

Proof. By the fact that the loose guarded in the derived clauses are inherited
from at least one of its premises, the protect property holds in the derived
clauses. Then by Theorem 6.6 and Theorem 7.6, the statement holds. �

Next we consider back-translating LGQ−≈ clausal sets. Unlike the back-
translation procedure for the class of LGQ≈ clausal sets, applying the Q-Abs
and the Q-Rena procedures to LGQ−≈ clausal sets produces LGQ−≈ clausal sets.
The protect property ensures that in a compound-term LGQ−≈ clause �, the
variables (or constants) in compound terms of � have their respective ‘copy’ in
the (loose) guard of �, so that the derived clauses remain (loosely) guarded.

Lemma 7.16. Suppose # is an LGQ−≈ clausal set. Then, the following condition hold.

1. # is a locally linear and locally compatible clausal set.
2. Applying the Q-Abs procedure to # transforms # to a normal, unique, locally

linear and locally compatible LGQ−≈ clausal set #1.
3. Applying the Q-Rena procedure to #1 transforms #1 to a normal, unique,

globally linear and globally compatible LGQ−≈ clausal set #2.

Proof. By the protect property and Lemma 6.16. �

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 196

Recall that we partition a normal, unique, globally linear and globally com-
patible LGQ−≈ clausal set into two types of clausal sets: one is LGQ−≈ clausal sets
#1 containing only flat clauses, and another is an inter-connected compound-
term LGQ−≈ clausal sets #2. By the Q-Unsko procedure #1 and #2 are trans-
formed into first-order formulas as they both satisfy pre-conditions for the
back-translation. Moreover by the fact that #1 consists of flat LGQ−≈ clauses, #1

is back-translated to a (clique) guardednegation formula since each clause in#1

is ensured to have a loose guard. Now we give the procedure so that the un-
skolemisation result of #2 can be presented as a (clique) guarded negation for-
mula. We useD-Trans to denote this procedure. Consider the inter-connected
compound-term LGQ−≈ clausal set

=

{
¬�1(G, H) ∨ �1(5 (G, H), G),
¬�2(G, H) ∨ �2(5 (G, H), G),

}
.

By applying the Q-Unsko procedure to # , one obtains

� = ∀GH∃G′
[
(¬�1(G, H) ∨ �1(G′, G)) ∧
(¬�2(G, H) ∨ �2(G′, G)) ∧

]
.

We aim tomove ∃G′ to its quantified formulas while ensuring that subformulas
in � are loosely guarded. The D-Trans process is given as below.

1. The first step transforms � to disjunctive normal form, obtaining

�1 = ∀GH∃G′

(¬�2(G, H) ∧ �1(G′, G)) ∨
(¬�1(G, H) ∧ �2(G′, G)) ∨
(�1(G′, G) ∧ �2(G′, G)) ∨
(¬�1(G, H) ∧ ¬�2(G, H))

.

2. Next applying the Miniscoping rule to �1, moving its existential quan-
tifications ∃G′ inwards as much as possible, obtaining

�2 = ∀GH

(¬�2(G, H) ∧ ∃G′�1(G′, G)) ∨
(¬�1(G, H) ∧ ∃G′�2(G′, G)) ∨
∃G′(�1(G′, G) ∧ �2(G′, G)) ∨
(¬�1(G, H) ∧ ¬�2(G, H))

.

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 197

3. Applying the CNF rules to �2 such that distributing the (loose) guard
¬�1(G, H) and ¬�2(G, H) in the subformula ¬�1(G, H) ∧ ¬�2(G, H) to each
rest of formulas in �2, obtaining a (clique) guarded negation formula �3.
In the immediately subformulas of �3, either �1(G, H) or �2(G, H) is the
(clique) guard. The output of this step is omitted.

Suppose # is a normal, unique, globally linear and globally compatible
inter-connectedLGQ−≈ clausal set consistingof clauses�1, . . . , �= . By theprotect
property, each�8 in�1, . . . , �= contains a (loose) guard¬�8 . By the fact that# is
strongly and globally compatible and inter-connected, for all compound terms C
in # , var(C) ⊆ var(�8). Hence, ¬�8 can be used as a guard for any of clauses in
. Now suppose � is obtained by applying the Q-Unsko procedure to # . By
applying Steps 1.–2. of theD-Trans process to �, � is reformulated as ∃G∀H(�1∨
. . .∨ �<). There exists �9 in �1, . . . , �< such that �9 is a conjunction ¬�1 ∧ . . .∧
¬�= where ¬�1, . . . ,¬�= are (loose) guards for �1, . . . , �= , respectively. Then
in Steps 3., by distributing the loose guards in �9 to each subformulas in �, each
subformulas in � are (loosely) guarded. Hence, � can be presented as a (clique)
guarded negation formula. By the above discussion, we claim:

Lemma 7.17. Suppose � is the first-order formula obtained by applying the Q-Unsko
procedure to a normal, unique, globally linear and globally compatible LGQ−≈ clausal
set # . Then, applying the D-Trans process to � transforms it to a (clique) guarded
negation formula.

We use the notation Q-RewCGNF to denote the procedure of the saturation-
based rewriting for BCQs in GNF and/or CGNF. Given a union @ of BCQs,
a set Σ of formulas in GNF and/or CGNF, the Q-RewCGNF procedure back-
translates Σ ∪ {¬@} by the following steps.

1. Apply theQ-AnsCGNF procedure to Σ∪ {¬@}, producing an LGQ−≈ clausal
set # .

2. Apply theQ-Absprocedure to# , obtaininganormal, uniqueandstrongly
compatible LGQ−≈ clausal set #1.

3. Apply theQ-Rena procedure to #1, obtaining a normal, unique, globally
linear and globally compatible LGQ−≈ clausal set #2.

4. Apply theQ-Unsko procedure to #2, obtaining a first-order formula �.

7.4. ANSWERING AND REWRITING BCQS FOR GNF AND/OR CGNF 198

5. Apply the D-Trans process to �, obtaining a (clique) guarded negation
formula �1.

6. Negate �1, obtaining Σ@ .

Now we give a positive answer to Problem 9, as the second main contribu-
tion of this chapter.

Theorem 7.8. Suppose Σ is a set of formulas in UNF, GNF and/or CGNF, D is a set
of ground atoms and @ is a union of BCQs. The Q-RewCGNF procedure negates the
back-translation of the saturated clausal set of Σ ∪ {¬@}, obtaining a (clique) guarded
negation formula Σ@ such that Σ ∪D |= @ if and only if D |= Σ@ .

Proof. By Theorem 5.4 and Lemmas 7.16–7.17. �

Chapter 8

Related work

Resolution-based decision procedures

The P-Res rule is inspired by the ‘partial replacement’ strategy in [BG97, BG01]
and the ‘partial conclusion’ of the ‘Ordered Hyper-Resolution with Selection’
rule in [GdN99]. The idea of ‘partial conclusion’ is given in [GdN99]. Without
formal proofs and discussions on the integration of the ‘partial conclusion’
and the resolution framework of [BG01], [GdN99] claims that its result can be
easily generalised into the framework of [BG01]. In [BG97, BG01] the ‘partial
replacement’ strategy seems to be the idea behind the ‘partial conclusions’.
[BG97, BG01] give formal proofs to show that the ‘partial replacement’ strat-
egy makes the computation of a selection-based resolution rule (the Res rule)
redundant. However [BG97, BG01, GdN99] do not consider the ‘partial re-
placement’ strategy as a general resolution rule in the resolution framework
of [BG01]. This thesis considers the P-Res rule as a core rule for any resolution
system following the framework of [BG01]. We show that thisP-Res rulemakes
a resolution inference step flexible, as one can choose any subset of the given
side premises with respect to a computation of the Res rule. Moreover we give
detailed explanations and examples to demonstrate applications of the P-Res
rule, and formally prove that the P-Res rule can be used as a core rule to replace
the resolution rules (with the refinement of admissible orderings and selection
functions) in the resolution framework of [BG01].

Inspired by the ‘MAXVAR’ technique in [dNdR03] we devise the top-
variable technique. The ‘MAXVAR’ technique and the top-variable technique
are also used in [GdN99] and [ZS20a], respectively. Although [GdN99] gives

199

CHAPTER 8. RELATED WORK 200

a detailed example to demonstrate how the ‘MAXVAR’ technique is applied,
it does not give formal procedures to compute the ‘MAXVAR’ values, formal
proofs, and how the ‘MAXVAR’ technique is integrated into its inference sys-
tem, instead [GdN99] refers readers to the manuscript of [dNdR03] for details.
[dNdR03] uses the ‘MAXVAR’ technique to avoid term depth increase in the
resolvents of loosely guarded clauses with nested compound terms allowed.
In [dNdR03] the ‘MAXVAR’ technique is complicated: one first identifies the
depth of a sequence of variable, and then applies a specially devised unifica-
tion algorithm to find the ‘MAXVAR’. Furthermore the ‘MAXVAR’ technique
requires the use of non-liftable orderings, which are not compatible with the
framework of [BG01] (the reasons for using the framework of [BG01] are given
in the next paragraph). As a variation of the ‘MAXVAR’ technique, the top-
variable technique, devised in [ZS20a], simplifies the procedure of computing
top variables as loosely guarded clauses without nested compound terms are
considered. In particular [ZS20a] generalises the top-variable technique to in-
clude query clauses. This top-variable technique uses liftable orderings, so that
it fits into the framework of [BG01]. However in [ZS20a] the pre-conditions of
the top-variable technique, the so-called query pair, cannot be immediately
used in our query answering setting. Improving on [ZS20a, GdN99, dNdR03],
this thesis gives an innovative and simple approach, namely the CompT func-
tion, to compute top variables, and encodes the top-variable technique in the
plain PResT function. We formally prove that the top-variable resolution rule
can be used in any saturation-based inference system following the framework
of [BG01, BG98]. Moreover we generalise the premises of the top-variable res-
olution rule to flat clauses and (loosely) guarded clauses (with equality), with
detailed proofs; see Lemmas 4.13, 6.5 and 7.9.

The T-RefLGQ refinement extends the resolution refinement for the guarded
fragment in [dNdR03, Kaz06, GdN99] and for the loosely guarded fragment
in [dNdR03, GdN99, ZS20a]. Though [Kaz06] does not consider the loosely
guarded fragment, it points out that by its clausification process, the obtained
guarded clauses are strongly compatible, which is an essential property in our
saturation-based rewriting procedures. Nonetheless in [Kaz06] the compati-
bility property is used in analysing complexity of its resolution decision proce-
dure for the guarded fragment. [GdN99] discusses a refinement for the loosely
guarded fragment, but does not give a formal description of the refinement

CHAPTER 8. RELATED WORK 201

or proofs. A detailed refinement for the loosely guarded fragment is given
in [dNdR03] with formal proofs, however [dNdR03] uses non-liftable order-
ings, which are not compatible with the framework of [BG01]. The framework
of [BG01] provides powerful simplification rules and redundancy elimination
techniques, and forms the basis of the most state-of-the-art first-order theorem
provers, such as Spass [WDF+09], Vampire [RV01b] and E [Sch13]. [ZS20a] only
focuses on BCQ answering for the Horn fragment of LGF. This thesis devises
a simple refinement (for examples Algorithms 1 and 14) for the whole of GF
and LGF, extended to handle also BCQs. All these results are reported with
detailed formal proofs.

Overall, we significantly improve and extend previous resolution decision
procedures for GF and LGF in [dNdR03, Kaz06, GdN99, ZS20a]. Most impor-
tantly based on these improved resolution decision procedure, we devise the
first practical BCQ answering and saturation-based BCQ rewriting procedures
for whole of GF and LGF.

BCQ answering problem

Existingworks consider theBCQ answering problem forDatalog± [CGL09] and
description logics, such as guarded Datalog± rules [CGP15, CGL12, CGK13]
and fragments of the description logicAℒCℋOℐ [KKZ12, CDGL+07,MRC14,
RA10], respectively.

In knowledge bases a general ontological language is Datalog± rules, there-
fore devising automated querying procedures for Datalog± is an important
task. A Datalog± rule is a first-order formula in the form

� = ∀GH()(G, H) → ∃I#(G, I)),

where)(G, H) and#(G, I) are conjunctions of atoms. AlthoughansweringBCQs
forDatalog± rules is undecidable [BV81], answeringBCQs for the guarded frag-
ment of Datalog±, i.e., guarded Datalog± rules, is 2ExpTime-complete [CGK13].
The above Datalog± rule � is a guarded Datalog± rule if there exists an atom in
)(G, H) that contains all free variables of ∃I#(G, I). By adopting the definition
of the loosely guarded and the clique guarded fragments to Datalog± rules,
guarded Datalog± can be extended to loosely guarded Datalog± and clique

CHAPTER 8. RELATED WORK 202

guarded Datalog±, respectively. For example,

∀GHI(Siblings(G, H) ∧ Siblings(H, I) ∧ Siblings(I, G) → ∃D(Mother(D, G, H, I)))

is a loosely guarded Datalog± rule. Guarded, loosely guarded and clique
guarded Datalog± can be seen as Horn fragments of GF, LGF and CGF, respec-
tively. Hence, our query answering procedures are also the first practical de-
cision procedures of answering BCQs for these Datalog± rules, thus providing
an alternative BCQ answering procedure to traditional query answering tech-
niques such as the chase algorithm. Note that there are guardedDatalog± rules
that are not expressible in the guarded fragment (see an example in [BBtC13,
Page 103]), however our TransGF process can be seen to transform guarded
Datalog± rules into Horn guarded clauses.

Expressive description logic AℒCℋOℐ and it fragments [BHLS17] are
prominent ontological languages in semantic web [Har08]. Query answering
approaches for fragments of AℒCℋOℐ have been extensively studied in the
literature; see [KKZ12,CDGL+07,MRC14,RA10,Gli07]. In querying answering
problems one of the key target is transforming a BCQ into knowledge bases;
see the rolling-up technique [Tes01] and the tuple graph technique [CDGL98].
Interestingly theQ-Sepprocedure also encodes query clauses to the knowledge
base. By the standard translation, problems in the description logicAℒCℋOℐ
can be translated into guarded formulas (with equality) using unary and binary
predicate symbols. Thus our query answering procedures can also be used as
a practical decision procedure for the BCQ answering for the description logic
AℒCℋOℐ and its fragments.

The squid decomposition technique is a useful technique to analyse the com-
plexity for answering BCQs over weakly guarded Datalog± [CGK13]. In squid
decompositions, a BCQ is regarded as a squid-like graph in which branches are
‘tentacles’ and variable cycles are ‘heads’. Squid decomposition finds ground
atoms that are complementary in the squid head, and then use ground unit
resolution to eliminate the heads. In contrast, our approach first uses the sepa-
ration rules to cut all ‘tentacles’, and thenuses the top-variable resolution rule to
resolve cycles in ‘heads’. Our approach produces compact saturations of BCQs
and the targeted guarded fragments which avoids the significant overhead of
grounding, thus yielding a more practical BCQ answering procedure.

CHAPTER 8. RELATED WORK 203

Saturation-based BCQ rewriting problem

Traditional BCQ rewriting settings consider the following problem: given a
union @ of BCQs, a set Σ of ontological languages, and datasets D, can we
produce (function-free) first-order formulas (or Datalog-like rules) Σ@ , so that
the problem of the entailment checking D ∪ Σ |= @ is reduced to that of the
model checking of D |= Σ@ . We say that Σ and @ ensure the first-order or
(Datalog) rewritability if Σ@ can be expressed in (function-free) first-order for-
mulas (or Datalog rules) [CDGL+07]. Problems on the first-order (andDatalog)
rewritabilitypropertyhasbeen extensively studied for fragments of thedescrip-
tion logic [CDGL+07, HLPW18, BdBF+10, TW20, TSCS15], and for fragments of
Datalog± rules [GOP14, CGL12, HLPW18, BBLP18]. However it is known that
BCQ and GF (and its extensions) are not first-order or Datalog rewritable. An-
other interesting saturation-based rewriting approach is [HMS07], inwhich one
first saturates axioms of the description logicSℋℐQ, presenting the saturation
as disjunctive Datalog, and then these disjunctive Datalog are handled by tech-
niques of deductive databases . Unlike the first-order (or Datalog) rewritability
and the procedure in [HMS07], our saturation-based BCQ rewriting procedure
focus on back-translating clausal sets to a first-order formula, thus our rewriting
procedures and existing rewriting procedures are incomparable.

Chapter 9

Conclusions

By nowwe have presented the first practical (saturation-based) decision procedures
for arguably the most advanced first-order decision problems: the Boolean con-
junctive query answering problems for the guarded, the loosely guarded, the clique
guarded, the unary negation, the guarded negation, and the clique guarded negation
fragments, making development of automated decision procedures catch up with
the hunt of decidable fragments (problems) in first-order logic. Along with the
developed query answering procedures, we have provided new saturation-based
Boolean conjunctive query rewriting procedures for the considered guarded frag-
ments. We use saturation to compile the schema and query into a first-order
formula and reduce the problem to entailment checking relative to data.

Using the developed decision procedures, the research questions posed in
Problems 4–9 have been positively answered. To startwith,Chapter 4develops
the resolution-based P-Res and top-variable inference systems, and a query handling
procedure, solving the BCQ answering problem for the guarded fragment. For
the problem of query answering in the loosely and the clique guarded fragments,
Chapter 6 devises novel clausification processes so that these fragments are clausi-
fied to a unified form (viz. the class of loosely guarded clauses), and then revises
the previous top-variable inference system and query handling procedures to tackle
the loose guards. Finally, Chapter 7 solves the query answering problem in the
guarded negation and the clique guarded negation fragments. New clausification
processes are developed to transform these fragments to the class of loosely
guarded clauses with equality. As this clausal class allows equality, we devise
the superposition-based P-Res and top-variable inference systems and redevelop the
previous query handling procedures to accommodate equality, solving the query

204

CHAPTER 9. CONCLUSIONS 205

answering problem for the guarded negation fragments.
Another line of this thesis is the development of saturation-based BCQ rewrit-

ing procedures. Initially Chapter 5 identifies a refined clausal class (viz. aligned
guarded clauses) obtained by applying our clausifications to the guarded fragment,
formally proves that the query answering procedure for the guarded fragment
provides a decision procedure for this new clausal class, and gives a novel
procedure for back-translating clausal sets in this class to a first-order formula.
Chapter 6 successfully generalises these results to the loosely guarded and the
clique guarded fragments. Chapter 7 further strengthens the previous results
by sharpening the definition of aligned clauses and adding additional transfor-
mations, so that the back-translated first-order formula can be expressed as a
(clique) guarded negation formula.

By the devised practical decision procedures, this thesis gives the following
contributions.

• Our query answering procedures fill the gap of the absence of resolution-
based (or superposition-based) decision procedures for the clique guarded frag-
ment (with equality), and practical decision procedures for the unary negation,
the guarded negation and the clique guarded negation fragments.

• Ourquery answeringproceduresprovidepractical solutions to real-world
problems. As far as we know, our querying procedures provide the first
practical decision procedures for the loosely guarded, the clique guarded and
the frontier guarded Datalog± rules and the first practical decision procedures
for conjunctive query answering in the guarded, the loosely guarded, the clique
guarded and the frontier guarded Datalog± rules. Our query answering pro-
cedures also give alternative practical decision procedures for conjunctive query
answering in the expressive description logicAℒCℋOℐ and its fragments.

• Our query answering procedures provide the theoretical foundations for
saturation-based ontology-enriched querying in any of the considered guarded
fragments.

• We have devised a series of the novel, robust andmodular P-Res and top-
variable inference systems and introduced several new automated reasoning
techniques. These inference systems and techniques provide a powerful a
toolkit for developing practical decision procedures for satisfiability checking,

CHAPTER 9. CONCLUSIONS 206

conjunctive queries answering and back-translating tasks for other first-order
fragments.

• Our query answering procedures provide the minimal essentials for tun-
ing saturation-based theorem provers as preliminary querying engines, particu-
larly for the considered guarded fragments, thus bridging the gap of the
lack of theoretical foundations for saturation-based querying.

• Our saturation-based query rewriting procedures are well-suited to pro-
vide better explanations of saturation. Our rewriting procedures allow
users to view saturating clausal sets in the form of first-order formulas,
thus giving users explicit information (compared to clauses) on how in-
ferences are computed on the given queries and formulas. Moreover
our approach have the flexibility that they can be combined with other
reasoningmethods applied to formulas, obtained by the back-translation.

Future work

Implementation We are confident that our systems provide a solid founda-
tion for practical implementations of decision procedures and query answering
systems for the family of guarded fragment considered. As we use the resolu-
tion and superposition-based framework in [BG01, BG98], any state-of-the-art
saturation-based theorem prover could provide a platform for an implementa-
tion of our procedures. The key novel techniques in this thesis are the separation
rules for query clauses, the P-Res and the top-variable inference systems, and the rules
in the back-translation procedures.

Given a query clause &, the application of our separation rules to & consists
of the following three steps:

1. Finding surface literals with respect to &. Considering literals ! in & as
multisets containing the variable arguments of !, one needs to implement
a multiset ordering for literals in &, in which the maximal multisets map
to the surface literals with respect to &.

2. Finding separable subclauses in &. This requires us to check every pair
of surface literals with respect to& to see if they satisfy the conditions for
the separation rules.

CHAPTER 9. CONCLUSIONS 207

3. Separating subclauses �1 and �2 of&. This can be implemented as a form
of structural transformation with the newly introduced predicate symbols
containing only the overlapping variables of �1 and �2.

Suppose theP-Res rule is applied to amainpremise�with literals !1, . . . , !=
selected and side premises �1, . . . , �= . The P-Res resolvent of � and �1, . . . , �=
can be computed by the following steps.

1. Without deriving resolvents apply the selection-based resolution rule (the
Res rule) to � and �1, . . . , �= , computing an mgu �′ for � and �1, . . . , �= .

2. Unselect the literals !1, . . . , != in �, and then select a subset !1, . . . , !< of
!1, . . . , != with < ≤ =, performing the Res rule on �1, . . . , �< and � with
!1, . . . , !< selected.

In the application of the top-variable resolution rule, !1, . . . , !< are the top-
variable literals, computed by the variable orderingwith respect to �′.

3. When the P-Res resolvent is derived, unselect !1, . . . , !< .

Themain techniques in our back-translation procedures are variations of the
term abstraction, the variable renaming and the unskolemisation rules. These rules
are standard rules in eliminating second-order quantifications, as implemented
in the SCAN system [Ohl96]. This provides evidence that implementing our
back-translation procedures is highly feasible.

Practical decision procedures for other problems As the P-Res and the
top-variable systems are formally proved sound and refutationally complete,
our inference systems are widely applicable to other problems in first-order
logic (with equality). It is interesting to exploit the capability of these systems.

It is interesting to push the application of the P-Res rule further. For ex-
ample can we use variations of the P-Res rule to handle transitivity relations?
Particularly one needs to consider how to avoid the increasing number of dis-
tinct variables in the conclusions. Deciding the guarded fragment with transitive
guards can be a good starting point. Although it is known that resolution
decides the guarded fragment with transitive guards [Kaz06, KdN04], it is still in-
teresting to see how our techniques tackle transitivity relations, since handling
of transitivity opens the door for deciding and/or querying a new range of frag-
ments such as the expressive description logic Sℋℐ, the modal logics 4, (4 and

CHAPTER 9. CONCLUSIONS 208

(5 and the monadic guarded two-variable fragment with transitive guards [GPT13].
Other possible fragments are the triguarded fragment [RS18] and the guarded
two-variable fragment with counting quantifiers [Pra07].

Applications Other future work includes implementing and evaluating our
query answering and rewriting procedures on real-world applications such as
the description logic AℒCℋOℐ and the (frontier) guarded Datalog± rules, since
the number of guarded formulas in the first-order theoremproving benchmark,
the TPTP library [Sut16], is rather small.

Generally one reduces the problem of answering conjunctive queries to that
of answering Boolean conjunctive queries. It would be interesting to investigate
whether our query answering procedures can be adapted to retrieve non-Boolean
answers from databases and knowledge bases.

We envisage that our back-translation methods could benefit the develop-
ment of procedures for computing Craig interpolation and uniform interpola-
tion (when they exist) for guarded negation fragments, but this will of course
need to be investigated.

Final remark Overall, this thesis develops practical decision procedures for
the conjunctive query answering and rewriting problems in a family of the
guarded first-order fragments. The developed inference systems and auto-
mated reasoning techniques provide the basis for potential practical reasoning
tasks in first-order logic (with equality). These procedures also lay the theoretical
foundations for the possibility of developing alternative methods to traditional
database approaches, based on first-order theorem proving methods.

Bibliography

[ABU79] Alfred Vaino Aho, Catriel Beeri, and Jeffrey David Ullman. The
Theory of Joins in Relational Databases. ACM Trans. Database
Syst., 4(3):297–314, 1979.

[Ack28] Wilhelm Ackermann. Über die Erfüllbarkeit gewisser Zählaus-
drücke. Math. Annalen, 100(1):638–649, 1928.

[AdNdR99] Carlos Areces, Hans de Nivelle, and Maarten de Rĳke. Prefixed
Resolution: A Resolution Method for Modal and Description
Logics. In Proc. CADE’99, volume 1632 of LNCS, pages 187–201.
Springer, 1999.

[AdRdN01] Carlos Areces, Maarten de Rĳke, and Hans de Nivelle. Reso-
lution in modal, description and hybrid logic. J. Logic Comput.,
11(5):717–736, 2001.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases: The Logical Level. Addison-Wesley Longman, 1995.

[AMdNdR99] Carlos Areces, Christof Monz, Hans de Nivelle, and Maarten
de Rĳke. The guarded fragment: Ins and outs. Essays dedicated
to Johan van Benthem on the occasion of his 50th birthday, 28:1–14,
1999.

[ANvB98] Hajnal Andréka, IstvánNémeti, and Johan van Benthem. Modal
Languages and Bounded Fragments of Predicate Logic. J. Philos.
Logic, 27(3):217–274, 1998.

[AOS18] Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus.

209

BIBLIOGRAPHY 210

Rewriting Guarded Existential Rules into Small Datalog Pro-
grams. In Proc. ICDT’18, volume 98 of LIPIcs, pages 4:1–4:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[AOS20] MedinaAndresel,MagdalenaOrtiz, andMantas Simkus. Query
Rewriting forOntology-MediatedConditionalAnswers. InProc.
AAAI’20, pages 2734–2741. AAAI, 2020.

[BBGP21] Pablo Barceló, Gerald Berger, Georg Gottlob, and Andreas
Pieris. GuardedOntology-MediatedQueries. In JuditMadarász
and Gergely Székely, editors, Hajnal Andréka and István Németi
on Unity of Science: From Computing to Relativity Theory Through
Algebraic Logic, pages 27–52. Springer, 2021.

[BBLP18] Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas
Pieris. First-Order Rewritability of Frontier-Guarded Ontology-
Mediated Queries. In Proc. ĲCAI’18, pages 1707–1713. ĲCAI,
2018.

[BBtC13] Vince Bárány, Michael Benedikt, and Balder ten Cate. Rewriting
Guarded Negation Queries. In Proc. MFCS’13, pages 98–110.
Springer, 2013.

[BBtC18] Vince Bárány, Michael Benedikt, and Balder ten Cate. Some
Model Theory of Guarded Negation. J. Symb. Logic, 83(4):1307–
1344, 2018.

[BdBF+10] Alexander Borgida, Jos de Bruĳn, Enrico Franconi, Inanç Seylan,
Umberto Straccia, David Toman, and Grant E. Weddell. On
Finding Query Rewritings under Expressive Constraints. In
Proc. SEDB’10, pages 426–437. Esculapio Editore, 2010.

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yan-
nakakis. On the Desirability of Acyclic Database Schemes. J.
ACM, 30(3):479–513, 1983.

[BG90] Leo Bachmair and Harald Ganzinger. On Restrictions of Or-
dered Paramodulation with Simplification. In Proc. CADE’90,
volume 449 of LNCS, pages 427–441. Springer, 1990.

BIBLIOGRAPHY 211

[BG97] Leo Bachmair and Harald Ganzinger. A theory of resolution.
Research Report MPI-I-97-2-005, Max-Planck-Institut für Infor-
matik, 1997.

[BG98] Leo Bachmair and Harald Ganzinger. Equational Reasoning
in Saturation-Based Theorem Proving. In Wolfgang Bibel and
Peter H. Schmitt, editors, Automated Deduction: A Basis for Appli-
cations, pages 353–397. Kluwer, 1998.

[BG01] LeoBachmair andHaraldGanzinger. ResolutionTheoremProv-
ing. In JohnAlanRobinson andAndrei Voronkov, editors,Hand-
book ofAutomatedReasoning, pages 19–99. Elsevier andMITPress,
2001.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical
Decision Problem. Springer, 1997.

[BGO14] Vince Bárány, Georg Gottlob, and Martin Otto. Querying the
Guarded Fragment. Logic Methods Comput. Sci., 10(2), 2014.

[BGW93] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Su-
perposition with simplification as a decision procedure for the
monadic class with equality. In Proc. KGC’93, volume 713 of
LNCS, pages 83–96. Springer, 1993.

[BHLS17] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An
Introduction to Description Logic. Cambridge Univ. Press, 2017.

[BKK+18] Meghyn Bienvenu, Stanislav Kikot, Roman Kontchakov,
Vladimir V. Podolskii, and Michael Zakharyaschev. Ontology-
Mediated Queries: Combined Complexity and Succinctness of
Rewritings via Circuit Complexity. J. ACM, 65(5):28:1–28:51,
2018.

[BKM+17] Michael Benedikt, George Konstantinidis, GiansalvatoreMecca,
Boris Motik, Paolo Papotti, Donatello Santoro, and Efthymia
Tsamoura. Benchmarking the Chase. In Proc. PODS’17, pages
37–52. ACM, 2017.

BIBLIOGRAPHY 212

[BLMS94] Ronen I. Brafman, Jean-Claude Latombe, Yoram Moses, and
Yoav Shoham. Knowledge as a tool in motion planning un-
der uncertainty. In Ronald Fagin, editor, Theoretical Aspects of
Reasoning About Knowledge, pages 208–224. Morgan Kaufmann,
1994.

[BLMS11] Jean-François Baget, Michel Leclére, Marie-Laure Mugnier, and
Eric Salvat. On Rules with Existential Variables: Walking the
Decidability Line. Artif. Intell., 175(9):1620–1654, 2011.

[BN07] Franz Baader and Werner Nutt. Basic Description Logics.
In Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider, editors, The De-
scription LogicHandbook: Theory, Implementation, andApplications,
pages 47–104. Cambridge Univ. Press, 2 edition, 2007.

[BRV01a] Patrick Blackburn, Maarten de Rĳke, and Yde Venema. Modal
Logic. Cambridge Tracts in Theor. Comp. Sci. Cambridge Univ.
Press, 2001.

[BRV01b] Patrick Blackburn, Maarten de Rĳke, and Yde Venema. Modal
Logic. Cambridge Tracts in Theor. Comp. Sci., chapter 2, pages
83–90. Cambridge Univ. Press, 2001.

[BS28] Paul Bernays andMoses Schönfinkel. Zum entscheidungsprob-
lem der mathematischen logik. Math. Annalen, 99(1):342–372,
1928.

[BtCO12] Vince Bárány, Balder ten Cate, and Martin Otto. Queries with
Guarded Negation. Proc. VLDB Endow., 5(11):1328–1339, 2012.

[BtCS15] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded
Negation. J. ACM, 62(3):22:1–22:26, 2015.

[BV81] Catriel Beeri and Moshe Y. Vardi. The Implication Problem for
Data Dependencies. Springer, 1981.

[BvB07] Patrick Blackburn and Johan van Benthem. Modal logic: a
semantic perspective. In Patrick Blackburn, Johan van Benthem,
and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of

BIBLIOGRAPHY 213

Studies in logic and practical reasoning, pages 1–84.North-Holland,
2007.

[BvBW07] Patrick Blackburn, Johan van Benthem, and Frank Wolter, ed-
itors. Handbook of Modal Logic, volume 3 of Studies in logic and
practical reasoning. North-Holland, 2007.

[CCK+17] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman
Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-
Muro, and Guohui Xiao. Ontop: Answering SPARQL queries
over relational databases. Semant. Web, 8(3):471–487, 2017.

[CDGL98] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenz-
erini. On the Decidability of Query Containment under Con-
straints. In Proc. PODS’98, pages 149–158, 1998.

[CDGL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
Ontology-Based Database Access. In Proc. SEBD’07, pages 324–
331. SEBD, 2007.

[CES86] EdmundM. Clarke, E. Allen Emerson, and A. Prasad Sistla. Au-
tomatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst.,
8(2):244–263, 1986.

[CG07] Diego Calvanese and Giuseppe De Giacomo. Expressive De-
scription Logics. In Franz Baader, Diego Calvanese, Deborah L.
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, edi-
tors, The Description Logic Handbook: Theory, Implementation, and
Applications, pages 193–236. Cambridge Univ. Press, 2 edition,
2007.

[CGK13] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the
Infinite Chase: Query Answering Under Expressive Relational
Constraints. J. Artif. Intell. Res., 48(1):115–174, 2013.

[CGL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,

BIBLIOGRAPHY 214

Maurizio Lenzerini, and Riccardo Rosati. Tractable Reason-
ing and Efficient Query Answering in Description Logics: The
DL-Lite Family. J. Autom. Reason., 39(3):385–429, 2007.

[CGL09] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz.
Datalog+/-: A Unified Approach to Ontologies and Integrity
Constraints. In Proc. ICDT’09, pages 14–30. ACM, 2009.

[CGL+10] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Mar-
nette, and Andreas Pieris. Datalog+/-: A Family of Logical
Knowledge Representation and Query Languages for New Ap-
plications. In Proc. LICS’10, pages 228–242. IEEE, 2010.

[CGL+11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Mariano Rodriguez-
Muro, Riccardo Rosati, Marco Ruzzi, andDomenico Fabio Savo.
The MASTRO system for ontology-based data access. Semant.
Web, 2(1):43–53, 2011.

[CGL12] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A Gen-
eral Datalog-based Framework for Tractable Query Answering
over Ontologies. J. Web Semant., 14:57–83, 2012.

[CGP15] Marco Calautti, Georg Gottlob, and Andreas Pieris. Chase ter-
mination for guarded existential rules. In Proc. PODS’15, pages
91–103. ACM, 2015.

[CGT89] StefanoCeri, GeorgGottlob, andLetiziaTanca.What youalways
wanted to know about datalog (and never dared to ask). IEEE
Trans. Knowl. Data Eng., 1(1):146–166, 1989.

[Chu36] Alonzo Church. A note on the Entscheidungsproblem. J. Symb.
Logic, 1(1):40–41, 1936.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal Implemen-
tation of Conjunctive Queries in Relational Data Bases. In Proc.
SToC’77, pages 77–90. ACM, 1977.

[Cra57a] William Craig. Linear reasoning. a new form of the herbrand-
gentzen theorem. J. Symb. Logic, 22(3):250–268, 1957.

BIBLIOGRAPHY 215

[Cra57b] William Craig. Three uses of the Herbrand-Gentzen theorem in
relatingmodel theory andproof theory. J. Symb. Logic, 22(3):269–
285, 1957.

[CRSS94] David Cyrluk, S. Rajan, Natarajan Shankar, and Mandayam K.
Srivas. Effective Theorem Proving for Hardware Verification. In
Proc. TPCD’94, volume 901 of LNCS, pages 203–222. Springer,
1994.

[CTS11] Alexandros Chortaras, Despoina Trivela, and Giorgos B. Sta-
mou. Optimized Query Rewriting for OWL 2 QL. In Proc.
CADE’11, volume 6803 of LNCS, pages 192–206. Springer, 2011.

[dCCF82] José Mauro Volkmer de Castilho, Marco A. Casanova, and An-
tonio L. Furtado. A Temporal Framework for Database Specifi-
cations. In Proc. VLDB’82, pages 280–291. Morgan Kaufmann,
1982.

[DFK+08] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Li Ma, Edith
Schonberg, Kavitha Srinivas, and Xingzhi Sun. Scalable
Grounded Conjunctive Query Evaluation over Large and Ex-
pressive Knowledge Bases. In Proc. ISWC’08, volume 5318 of
LNCS, pages 403–418. Springer, 2008.

[DG79] Burton Dreben and Warren D. Goldfarb. The Decision Problem:
Solvable Classes of Quantificational Formulas. Addison-Wesley,
1979.

[DL15] Giovanna D’Agostino and Giacomo Lenzi. Bisimulation quan-
tifiers and uniform interpolation for guarded first order logic.
Theor. Comput. Sci., 563:75–85, 2015.

[dN00] Hans de Nivelle. Deciding the E+ - class by an a posteriori,
liftable order. Ann. Pure Appl. Logic, 104(1-3):219–232, 2000.

[dNdR03] Hans de Nivelle and Maarten de Rĳke. Deciding the Guarded
Fragments by Resolution. J. Symb. Comput., 35(1):21–58, 2003.

BIBLIOGRAPHY 216

[dNP01] Hans de Nivelle and Ian Pratt-Hartmann. A Resolution-Based
Decision Procedure for the Two-Variable Fragment with Equal-
ity. In Proc. ĲCAR’01, volume 2083 of LNCS, pages 211–225.
Springer, 2001.

[DV01a] Anatoli Degtyarev and Andrei Voronkov. Equality Reasoning
in Sequent-Based Calculi. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning (in 2 vol-
umes), pages 611–706. Elsevier and MIT Press, 2001.

[DV01b] Anatoli Degtyarev and Andrei Voronkov. The Inverse Method.
In John Alan Robinson and Andrei Voronkov, editors,Handbook
of Automated Reasoning (in 2 volumes), pages 179–272. Elsevier
and MIT Press, 2001.

[Eng96] Thorsten Engel. Quantifier Elimination in Second-Order Pred-
icate Logic. Diplomarbeit, Fachbereich Informatik, Univ. des
Saarlandes, Saarbrücken, Germany, October 1996.

[FFG02] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation
via tree-decompositions. J. ACM, 49(6):716–752, 2002.

[Fit00] Melvin Fitting. Modality andDatabases. InProc. TABLEAUX’00,
volume 1847 of LNCS, pages 19–39. Springer, 2000.

[FKL19] Cristina Feier, Antti Kuusisto, and Carsten Lutz. Rewritabil-
ity in Monadic Disjunctive Datalog, MMSNP, and Expressive
Description Logics. Logic Methods Comput. Sci., 15(2), 2019.

[FLHT01] Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and
Tanel Tammet. Resolution Decision Procedures. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, pages 1791–1849. Elsevier and MIT Press, 2001.

[FLTZ93] Christian G. Fermüller, Alexander Leitsch, Tanel Tammet, and
N. K. Zamov. ResolutionMethods for the Decision Problem, volume
679 of LNCS. Springer, 1993.

BIBLIOGRAPHY 217

[FN71] Richard Fikes and Nils J. Nilsson. STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving. Artif.
Intell., 2(3/4):189–208, 1971.

[Gab81] Dov M. Gabbay. Expressive Functional Completeness in Tense
Logic (Preliminary report), pages 91–117. Springer, 1981.

[GdN99] Harald Ganzinger and Hans de Nivelle. A Superposition De-
cision Procedure for the Guarded Fragment with Equality. In
Proc. LICS’99, pages 295–303. IEEE, 1999.

[GHMS98] Harald Ganzinger, Ullrich Hustadt, Christoph Meyer, and Re-
nate A. Schmidt. A Resolution-Based Decision Procedure for
Extensions of K4. In Proc. AiML’98, pages 225–246. CSLI, 1998.

[GHS02] LiliaGeorgieva, UllrichHustadt, andRenateA. Schmidt. ANew
Clausal Class Decidable by Hyperresolution. In Proc. CADE’02,
volume 2392 of LNCS, pages 260–274. Springer, 2002.

[GHS03] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hy-
perresolution for guarded formulae. J. Symb. Comput., 36(1-
2):163–192, 2003.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On
the Decision Problem for Two-Variable First-Order Logic. The
Bulletin of Symb. Logic, 3(1):53–69, 1997.

[GL75] Warren D. Goldfarb and Harry R. Lewis. Skolem Reduction
Classes. J. Symb. Logic, 40(1):62–68, 1975.

[Gli07] Birte Glimm. Querying Description Logic Knowledge Bases. PhD
thesis, Univ. Manchester, Manchester, U.K., 2007.

[GLS03] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers,
Marshals, and Guards: Game Theoretic and Logical Characteri-
zations ofHypertreeWidth. J. Comp. and Syst. Sci., 66(4):775–808,
2003.

[GMV99] Harald Ganzinger, Christoph Meyer, and Margus Veanes. The
Two-Variable Guarded Fragment with Transitive Relations. In
Proc. LICS’99, pages 24–34. IEEE, 1999.

BIBLIOGRAPHY 218

[GO99] Erich Grädel and Martin Otto. On Logics with Two Variables.
Theor. Comput. Sci., 224(1-2):73–113, 1999.

[Göd30] Kurt Gödel. Die vollständigkeit der axiome des logischen funk-
tionenkalküls. Monatshefte für Mathematik und Physik, 37(1):349–
360, 1930.

[Göd31] Kurt Gödel. Über formal unentscheidbare sätze der principia
mathematica und verwandter systeme. Monatshefte für Mathe-
matik und Physik, 38(1):173–198, 1931.

[Göd32] Kurt Gödel. Ein Spezialfall des Entscheidungsproblems der
theoretischenLogik. Ergebnisse einesmathematischenKolloquiums,
2:27–28, 1932.

[Gol84] Warren D. Goldfarb. The Unsolvability of the Godel Class with
Identity. J. Symb. Logic, 49(4):1237–1252, 1984.

[GOP14] GeorgGottlob, Giorgio Orsi, andAndreas Pieris. Query Rewrit-
ing and Optimization for Ontological Databases. ACM Trans.
Database Syst., 39(3):25:1–25:46, 2014.

[GOR99] Erich Grädel, Martin Otto, and Eric Rosen. Undecidability re-
sults on two-variable logics. Arch. Math. Logic, 38(4-5):313–354,
1999.

[GPT13] GeorgGottlob, Andreas Pieris, and Lidia Tendera. Querying the
Guarded Fragment with Transitivity. In Proc. ICALP’13, volume
7966 of LNCS, pages 287–298. Springer, 2013.

[GR69] Larry Wos George Robinson. Paramodulation and Theorem-
proving in First-Order Theories with Equality. Machine intelli-
gence, 4:135–150, 1969.

[Grä99a] Erich Grädel. Decision Procedures for Guarded Logics. In Proc.
CADE’16, volume 1632 of LNCS, pages 31–51. Springer, 1999.

[Grä99b] Erich Grädel. On the Restraining Power of Guards. J. Symb.
Logic, 64(4):1719–1742, 1999.

BIBLIOGRAPHY 219

[Grä03] ErichGrädel. Decidable fragments of first-order and fixed-point
logic – Fromprefix-vocabulary classes to guarded logics. InProc.
Kalmár Workshop on Logic and Comput. Sci., 2003.

[Gre69] C. Cordell Green. Application of Theorem Proving to Problem
Solving. In Donald E. Walker and Lewis M. Norton, editors,
Proc. ĲCAI’69, pages 219–240. William Kaufmann, 1969.

[GRS14] GeorgGottlob, Sebastian Rudolph, andMantas Simkus. Expres-
siveness of guarded existential rule languages. InProc. PODS’14,
pages 27–38. ACM, 2014.

[GSS08a] DovM. Gabbay, Renate A. Schmidt, andAndrzej Szałas. Second-
order Quantifier Elimination. College publications, 2008.

[GSS08b] DovM. Gabbay, Renate A. Schmidt, andAndrzej Szałas. Second-
order Quantifier Elimination, chapter 5, pages 63–69. College
publications, 2008.

[Gur65] Yuri Gurevich. Existential interpretation. Algebra and logic,
4(4):71–84, 1965.

[Gur68] Yuri Gurevich. The Decision Problem for Some Algebraic Theories.
PhD thesis, Ural State Univ., Sverdlovsk, USSR, 1968.

[HA28] DavidHilbert andWilhelmAckermann. Grundzüge der theoretis-
chen Logik. Springer, 1928.

[Häh01] Reiner Hähnle. Tableaux and Related Methods. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning (in 2 volumes), pages 100–178. Elsevier andMIT Press,
2001.

[Har08] John Harrison. Theorem Proving for Verification (Invited Tu-
torial). In Proc. CAV’08, volume 5123 of LNCS, pages 11–18.
Springer, 2008.

[HdNS00] Ullrich Hustadt, Hans de Nivelle, and Renate A. Schmidt.
Resolution-Based Methods for Modal Logics. Logic J. IGPL,
8(3):265–292, 2000.

BIBLIOGRAPHY 220

[Hen63] Leon Henkin. An Extension of the Craig-Lyndon Interpolation
Theorem. J. Symb. Logic, 28(3):201–216, 1963.

[Her31] Jacques Herbrand. Sur le problème fondamental de la logique
mathématique. Comptes Rendus Soc. Sci. Lett. Varsovie, Classe III,
24:12–56, 1931.

[HF89] JosephY.Halpern andRonald Fagin. ModellingKnowledge and
Action inDistributedSystems.DistributedComput., 3(4):159–177,
1989.

[Hla02] Jan Hladik. Implementation and Optimisation of a Tableau
Algorithm for the Guarded Fragment. In Proc. TABLEAUX’02,
volume 2381 of LNCS, pages 145–159. Springer, 2002.

[HLPW18] André Hernich, Carsten Lutz, Fabio Papacchini, and Frank
Wolter. Horn-Rewritability vs PTime Query Evaluation in
Ontology-Mediated Querying. In Proc. ĲCAI’18, pages 1861–
1867, 2018.

[HM02] Eva Hoogland and Maarten Marx. Interpolation and Definabil-
ity in Guarded Fragments. Studia Logica, 70(3):373–409, 2002.

[HMA+08] Stĳn Heymans, Li Ma, Darko Anicic, Zhilei Ma, Nathalie
Steinmetz, Yue Pan, Jing Mei, Achille Fokoue, Aditya Kalyan-
pur, Aaron Kershenbaum, Edith Schonberg, Kavitha Srinivas,
Cristina Feier, Graham Hench, Branimir Wetzstein, and Uwe
Keller. Ontology Reasoning with Large Data Repositories. In
MartinHepp, Pieter De Leenheer, Aldo deMoor, and York Sure,
editors, Ontology Management, Semantic Web, Semantic Web Ser-
vices, and Business Applications, volume 7 of Semantic Web and Be-
yond: Computing for Human Experience, pages 89–128. Springer,
2008.

[HMS07] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in
Description Logics by a Reduction to Disjunctive Datalog. J.
Autom. Reason., 39(3):351–384, 2007.

BIBLIOGRAPHY 221

[HMS08] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Deciding ex-
pressive description logics in the framework of resolution. Inf.
Comput., 206(5):579–601, 2008.

[Hod02] IanHodkinson. LooselyGuarded Fragment of First-Order Logic
Has the Finite Model Property. Studia Logica, 70(2):205–240,
2002.

[HPMW07] Ian Horrocks, Peter F. Patel-Schneider, Deborah L. McGuinness,
andChristopherA.Welty. OWL: aDescription-Logic-BasedOn-
tology Language for the Semantic Web. In Franz Baader, Diego
Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors, The Description Logic Handbook: The-
ory, Implementation, and Applications, pages 458–486. Cambridge
Univ. Press, 2 edition, 2007.

[HPvH03] IanHorrocks, Peter F. Patel-Schneider, andFrankvanHarmelen.
From SHIQ and RDF to OWL: the making of a Web Ontology
Language. J. Web Semant., 1(1):7–26, 2003.

[HS99] Ullrich Hustadt and Renate A. Schmidt. Maslov’s Class K Re-
visited. In Proc. CADE’99, volume 1632 of LNCS, pages 172–186.
Springer, 1999.

[HT01] Colin Hirsch and Stephan Tobies. A Tableau Algorithm for the
Clique Guarded Fragment. In Advances in Modal Logics Volume
3. CSLI, 2001.

[Hus99] Ullrich Hustadt. Resolution Based Decision Procedures for Sub-
classes of First-order Logic. PhD thesis, Univ. Saarlandes, Saar-
brücken, Germany, 1999.

[Joy76] WilliamH. Joyner. ResolutionStrategies asDecisionProcedures.
J. ACM, 23(3):398–417, 1976.

[Kal33] László Kalmár. Über die Erfüllbarkeit derjenigen Zählaus-
drücke, welche in derNormalform zwei benachbarteAllzeichen
enthalten. Math. Annalen, 108(1):466–484, 1933.

BIBLIOGRAPHY 222

[Kal37] LászlóKalmár. ZurückführungdesEntscheidungsproblems auf
denFall vonFormelnmit einer einzigen, binären, Funktionsvari-
ablen. Compositio Mathematica, 4:137–144, 1937.

[Kaz06] Yevgeny Kazakov. Saturation-Based Decision Procedures for Ex-
tensions of the Guarded Fragment. PhD thesis, Univ. Saarlandes,
Saarbrücken, Germany, 2006.

[KB83] Donald Ervin Knuth and Peter Bendix. Simple Word Problems in
Universal Algebras, pages 342–376. Springer, 1983.

[KdN04] Yevgeny Kazakov and Hans de Nivelle. A Resolution Decision
Procedure for the Guarded Fragment with Transitive Guards.
In Proc. ĲCAR’04, pages 122–136. Springer, 2004.

[KKZ12] Stanislav Kikot, Roman Kontchakov, and Michael Za-
kharyaschev. Conjunctive query answering with OWL 2 QL.
In Proc. KR’12, pages 275–285. AAAI, 2012.

[KM08] Yevgeny Kazakov and Boris Motik. A Resolution-Based Deci-
sion Procedure for SℋOℐQ. J. Autom. Reason., 40(2-3):89–116,
2008.

[KNG16] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Dat-
alog rewritability of Disjunctive Datalog programs and non-
Horn ontologies. Artif. Intell., 236:90–118, 2016.

[Kog12] Mikhail R. Kogalovsky. Ontology-based data access systems.
Program. Comput. Softw., 38(4):167–182, 2012.

[KRZ13] RomanKontchakov,MarianoRodriguez-Muro, andMichael Za-
kharyaschev. Ontology-based data access with databases: A
short course. In Sebastian Rudolph, Georg Gottlob, Ian Hor-
rocks, and Frank van Harmelen, editors, Proc. Reasoning Web
Summer School, volume 8067 of LNCS, pages 194–229. Springer,
2013.

[KV00] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query
Containment and Constraint Satisfaction. J. Comput. Syst. Sci.,
61(2):302–332, 2000.

BIBLIOGRAPHY 223

[Lew79] Harry R. Lewis. Unsolvable Classes of Quantificational Formulas.
Addison-Wesley, 1979.

[Lia03] Churn-Jung Liau. Belief, information acquisition, and trust in
multi-agent systems–A modal logic formulation. Artif. Intell.,
149(1):31–60, 2003.

[Löw15] Leopold Löwenheim. Über möglichkeiten im relativkalkül.
Mathematische Annalen, 76:447–470, 1915.

[LST99] Carsten Lutz, Ulrike Sattler, and Stephan Tobies. A Suggestion
for an n-ary Description Logic. In Proc. DL’99, volume 22 of
CEUR Workshop Proceedings. CEUR-WS.org, 1999.

[Mar88] V. Wiktor Marek. A Natural Semantics for Modal Logic Over
Databases. Theor. Comput. Sci., 56:187–209, 1988.

[Mar07] Maarten Marx. Queries determined by views: Pack your views.
In Proc. PODS’07, pages 23–30. ACM, 2007.

[MGS+19] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Ha-
jira Jabeen, Sören Auer, and Jens Lehmann. Squerall: Vir-
tual Ontology-Based Access to Heterogeneous and Large Data
Sources. In Proc. ISWC’19, volume 11779 of LNCS, pages 229–
245. Springer, 2019.

[MH69] John McCarthy and Patrick J. Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In B. Meltzer
and D. Michie, editors, Machine Intelligence 4, pages 463–502.
Edinburgh Univ. Press, 1969.

[MMS79] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Test-
ing Implications of Data Dependencies. ACM Trans. Database
Syst., 4(4):455–469, 1979.

[Moo10] J Strother Moore. Theorem Proving for Verification: The Early
Days. In Proc. LICS’10, page 283. IEEE, 2010.

[Mor75] Michael Mortimer. On languages with two variables. Math.
Logic Q., 21(1):135–140, 1975.

BIBLIOGRAPHY 224

[Mot06] Boris Motik. Reasoning in description logics using resolution and
deductive databases. PhD thesis, Karlsr. Inst. of Technology, Ger-
many, 2006.

[MRC14] Jose Mora, Riccardo Rosati, and Oscar Corcho. Kyrie2: Query
Rewriting Under Extensional Constraints in ℰℒℋOℐ. In Proc.
ISWC’14, volume 8796 of LNCS, pages 568–583. Springer, 2014.

[MW97] WilliamMcCune and Larry Wos. Otter - The CADE-13 Compe-
tition Incarnations. J. Autom. Reason., 18(2):211–220, 1997.

[NDH19] Cláudia Nalon, Clare Dixon, and Ullrich Hustadt. Modal Res-
olution: Proofs, Layers, and Refinements. ACM Trans. Comput.
Logic, 20(4):23:1–23:38, 2019.

[NML+19] M. SaqibNawaz,MoinMalik, Yi Li, Meng Sun, andMuhammad
Ikram Ullah Lali. A Survey on Theorem Provers in Formal
Methods. CoRR, abs/1912.03028, 2019.

[NS56] Allen Newell and Herbert A. Simon. The logic theory machine–
A complex information processing system. IRE Trans. on Inf.
Theory, 2(3):61–79, 1956.

[NW01] Andreas Nonnengart and Christoph Weidenbach. Computing
Small ClauseNormal Forms. In JohnAlan Robinson andAndrei
Voronkov, editors, Handbook of Automated Reasoning, pages 335–
367. Elsevier and MIT Press, 2001.

[Ohl96] Hans Jürgen Ohlbach. SCAN—Elimination of predicate quan-
tifiers. In Proc. CADE’96, pages 161–165. Springer, 1996.

[PCS14] Freddy Priyatna, Óscar Corcho, and Juan F. Sequeda. Formali-
sation and experiences of R2RML-based SPARQL to SQL query
translation using morph. In Proc. WWW’14, pages 479–490.
ACM, 2014.

[PHM09] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient
Query Answering for OWL 2. In Proc. ISWC’09, volume 5823 of
LNCS, pages 489–504. Springer, 2009.

BIBLIOGRAPHY 225

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe
De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Linking
Data to Ontologies. In Stefano Spaccapietra, editor, J. on Data
Semantics X, pages 133–173. Springer, 2008.

[Pop94] Sally Popkorn. First Steps inModal Logic. Cambridge Univ. Press,
1994.

[Pra80] Vaughan R. Pratt. Application of Modal Logic to Programming.
Studia Logica, 39:257–274, 1980.

[Pra07] Ian Pratt-Hartmann. Complexity of the Guarded Two-
variable Fragment with Counting Quantifiers. J. Logic Comput.,
17(1):133–155, 2007.

[RA10] Riccardo Rosati and Alessandro Almatelli. Improving Query
Answering over DL-Lite Ontologies. In Proc. KR’10, pages 290–
300. AAAI, 2010.

[RN20] Stuart J. Russell andPeterNorvig.Artificial Intelligence: AModern
Approach (4th Edition). Pearson, 2020.

[Rob65a] John Alan Robinson. A Machine-Oriented Logic Based on the
Resolution Principle. J. ACM, 12(1):23–41, 1965.

[Rob65b] John Alan Robinson. Automatic deduction with hyper-
resolution. Int. J. Comp. Math., 1:227–234, 1965.

[RS18] Sebastian Rudolph and Mantas Simkus. The Triguarded Frag-
ment of First-Order Logic. In Proc. LPAR’18, volume 57, pages
604–619. EasyChair, 2018.

[RU12] Nicholas Rescher and Alasdair Urquhart. Temporal logic, vol-
ume 3. Springer Science & Business Media, 2012.

[RV01a] Alexandre Riazanov and Andrei Voronkov. Splitting without
Backtracking. In Proc. ĲCAI’01, pages 611–617. Morgan Kauf-
mann, 2001.

BIBLIOGRAPHY 226

[RV01b] AlexandreRiazanov andAndreiVoronkov. Vampire 1.1 (System
Description). In Proc. ĲCAR’01, volume 2083 of LNCS, pages
376–380. Springer, 2001.

[Sch34] Kurt Schütte. Untersuchungen zum Entscheidungsproblem der
mathematischen Logik. Math. Annalen, 109(1):572–603, 1934.

[Sch96] RenateA. Schmidt. Resolution is aDecision Procedure forMany
Propositional Modal Logics. In Proc. AiML’96, pages 189–208.
CSLI, 1996.

[Sch98] Renate A. Schmidt. Decidability by unrefined resolution for
propositional modal logics. In Proc. Int. Semin. RelMiCS’98,
pages 192–196, 1998.

[Sch99] Renate A. Schmidt. Decidability by Resolution for Propositional
Modal Logics. J. Autom. Reason., 22(4):379–396, 1999.

[Sch01] Johann Schumann. Automated theorem proving in software engi-
neering. Springer, 2001.

[Sch13] Stephan Schulz. System Description: E 1.8. In Proc. LPAR’13,
volume 8312 of LNCS, pages 735–743. Springer, 2013.

[Sco62] Dana Scott. A decision method for validity of sentences in two
variables. J. Symb. Logic, 27(377):74, 1962.

[Seg82] Krister Segerberg. A completeness theorem in the modal logic
of programs. Banach Center Publications, 9(1):31–46, 1982.

[Seg17] Luc Segoufin. A Survey on Guarded Negation. ACM SIGLOG
News, 4(3):12–26, 2017.

[SH00] Renate A. Schmidt and Ullrich Hustadt. A Resolution Decision
Procedure for Fluted Logic. In Proc. CADE’00, volume 1831 of
LNCS, pages 433–448. Springer, 2000.

[SH13] Renate A. Schmidt and Ullrich Hustadt. First-Order Resolution
Methods for Modal Logics. In Programming Logics - Essays in
Memory of Harald Ganzinger, volume 7797 of LNCS, pages 345–
391. Springer, 2013.

BIBLIOGRAPHY 227

[SM13] Juan F. Sequeda and Daniel P. Miranker. Ultrawrap: SPARQL
execution on relational data. J. Web Semant., 22:19–39, 2013.

[ST04] Wieslaw Szwast and Lidia Tendera. The guarded fragment with
transitive guards. Ann. Pure Appl. Logic, 128(1-3):227–276, 2004.

[Sur59] János Surányi. Reduktionstheorie des Entscheidungsproblems im
Prädikatenkalkül der ersten Stufe. Ungarische Akademie der Wis-
senschaften, 1959.

[Sut] Geoff Sutcliffe. Geoff sutcliffe’s overview of automated theorem
proving. http://tptp.org/OverviewOfATP.html. Online; last
accessed: 04 Nov. 2021.

[Sut16] Geoff Sutcliffe. The CADEATP System Competition - CASC. AI
Magazine, 37(2):99–101, 2016.

[tCS13] Balder tenCate andLucSegoufin. Unarynegation. LogicMethods
Comput. Sci., 9(3), 2013.

[Tes01] Sergio Tessaris. Questions and Answers: Reasoning and Querying
in Description Logic. PhD thesis, Univ. Manchester, Manchester,
U.K., 2001.

[TSCS15] Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and
Giorgos B. Stamou. Optimising resolution-based rewriting al-
gorithms for OWL ontologies. J. Web Semant., 33:30–49, 2015.

[Tur36] Alan M. Turing. On Computable Numbers, with an Applica-
tion to the Entscheidungsproblem. Proc. the London Math. Soc.,
2(42):230–265, 1936.

[TW20] David Toman and Grant E. Weddell. First Order Rewritability
for Ontology Mediated Querying in Horn-DℒℱD. In Proc
DL’20, volume 2663. CEUR-WS.org, 2020.

[TW21] David Toman and Grant E. Weddell. FO Rewritability for OMQ
using Beth Definability and Interpolation. In Proc. DL’21, vol-
ume 2954 of CEUR Workshop Proceedings. CEUR-WS.org, 2021.

http://tptp.org/OverviewOfATP.html

BIBLIOGRAPHY 228

[Ull89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, Volumes I and II. Comp. Sci. Press, 1989.

[Var95] Moshe Y. Vardi. On the Complexity of Bounded-Variable
Queries. In Mihalis Yannakakis and Serge Abiteboul, editors,
Proc. PODS’95, pages 266–276. ACM, 1995.

[Var96] Moshe Y. Vardi. Why is Modal Logic So Robustly Decidable?
In Proc. DIMACS Workshop’96, pages 149–183. DIMACS/AMS,
1996.

[Var00] Moshe Y. Vardi. Constraint satisfaction and database theory: A
tutorial. In Proc. PODS’00, pages 76–85. ACM, 2000.

[vB91] Johan van Benthem. Temporal logic. Research Report x-91-05,
Institute for Logic, Language and Computation, Univ. Amster-
dam, 1991.

[vB97] Johan van Benthem. Dynamic Bits and Pieces. Research Report
LP-97-01, Univ. Amsterdam, 1997.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Ro-
hit Kumar, Martin Suda, and Patrick Wischnewski. SPASS Ver-
sion 3.5. InProc. CADE’09, volume 5663 of LNCS, pages 140–145.
Springer, 2009.

[Wei01] Christoph Weidenbach. Combining Superposition, Sorts and
Splitting. In John Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, pages 1965–2013. Elsevier and
MIT Press, 2001.

[WRC65] LarryWos, GeorgeA.Robinson, andDaniel F.Carson. Efficiency
and Completeness of the Set of Support Strategy in Theorem
Proving. J. ACM, 12(4):536–541, 1965.

[XCK+18] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico
Lembo, Antonella Poggi, Riccardo Rosati, and Michael Za-
kharyaschev. Ontology-BasedDataAccess: A Survey. In Jérôme
Lang, editor, Proc. ĲCAI’18, pages 5511–5519. ĲCAI, 2018.

BIBLIOGRAPHY 229

[YO79] Clement Yu andMeralOzsoyoglu. AnAlgorithm for Tree-query
Membership of a Distributed Query. In Proc. COMPSAC’79,
pages 306–312. IEEE, 1979.

[ZHD09] Lan Zhang, Ullrich Hustadt, and Clare Dixon. A Refined Res-
olution Calculus for CTL. In Proc. CADE’09, volume 5663 of
LNCS, pages 245–260. Springer, 2009.

[ZS20a] Sen Zheng and Renate A. Schmidt. Deciding the Loosely
Guarded Fragment andQuerying ItsHorn FragmentUsingRes-
olution. In Proc. AAAI’20, pages 3080–3087. AAAI, 2020.

[ZS20b] Sen Zheng and Renate A. Schmidt. Querying the guarded frag-
ment via resolution (extended abstract). In Proc. PAAR’20, vol-
ume 2752 of CEURWorkshop Proceedings, pages 167–177. CEUR-
WS.org, 2020.

Index

Symbols | A | B | C | D | E | F | G
| H | I | L | N | O | P | Q | R | S |
T | U | V

Symbols

!∗ . 56
� . 36
^ . 36
Σ 40, 42, 63, 116, 138, 159, 166
Σ@ 42, 138, 159, 166
≈ . 45
! . 56
◦ . 44
� . 53
G . 35, 139
AℒCℋOℐ . 36
ℋ(+, �) . 47
Q . 44
D 40, 42, 116, 138, 159, 166
C . 43
F . 43
P . 43
V . 43
since . 32
until . 32, 37
0 . 45
� . 53

� . 54, 55
� . 54
�< . 54, 61
�<;?> . 177
�;?> . 55, 74
� . 54, 55
� . 53
× . 54
⊲ . 58
@ 40, 42, 63, 116, 138, 159, 166
Abstract . 6, 52
CNF . 6, 50
ConAbs . 6, 124
D-Trans . 196
Deduce 6, 56, 61, 68, 176
Delete . 6, 57, 68
E-Fact . 6, 62, 176
E-Res . 6, 62, 176
Fact . 6, 56, 68
Miniscoping 6, 48, 144, 171
NNF . 6, 48
P-Res . 6, 69
Para . 6, 61, 177
Q-Abs . 127
Q-AnsCGF . 156
Q-AnsCGNF . 191
Q-AnsGF . 109

230

Index 231

Q-COGQ . 109
Q-COLGQ . 155
Q-COLGQ≈ . 189
Q-Rena . 130
Q-RewCGF . 162
Q-RewCGNF . 197
Q-RewGF . 135
Q-Sep . 94
Q-Unsko . 135
QuerySepOne 6, 90
QuerySepTwo 6, 91
ReInt . 129
Rename . 6, 52
Res . 6, 57
Satu≈ . 61
T-InfLGQ≈≈ . 177
T-Inf≈ . 175

Satu . 56
Inf . 67
T-InfGQ . 74
T-InfLGQ . 147

Sep . 6, 58
Skolem . 6, 49
Split . 6, 59
T-Ref
T-RefGQ . 74
T-RefLGQ . 148
T-RefLGQ≈≈ . 177

T-Trans . 6, 101
TransCGF . 143
TransCGNF . 171
TransGF . 64, 139
TransGNF . 167
Trans . 6, 49
UnskoOne . 6, 132

UnskoTwo . 6, 133
Unsko . 6, 53
VarAbs . 6, 126
tt . 61
CQ . 40

BCQ . 40
union of BCQs 40

BCQ≈ . 40
FOL . 43
GF . 35, 64

CGF . 35, 142
LGF . 35, 139

GQ . 67
GQ− . 118
GQ≈ . 169

G
G− . 117
G≈ . 168, 169
HG . 65

LGQ . 142
LGQ− . 159
LGQ−≈ . 195
LGQ≈ . 173

LG . 140
LG− . 159
LG−≈ . 194
LG≈ . 173

Q
CO . 89
IO . 89
Q≈ . 169

UNF . 38
CGNF . 38, 170
GNF . 38, 166

A

Index 232

argument . 44
∼ list . 44

arity . 43
atom . 44

B

Binary relation
liftable . 54
rewrite ∼ . 54
stable under context 54
stable under substitution 54

Boolean connective 44

C

cheking
a posteriori ∼ 57, 77
a prior ∼ . 57, 77

clausal set . 45
closed ∼ . 128
connected ∼ 128
globally compatible ∼ 51
globally compatible ∼ 51
inter-connected ∼ 128
locally compatible ∼ 51
locally linear ∼ 51
strongly compatible ∼ 52

clause . 45
∼with equality 45
compatible ∼ 51
strongly ∼ . 52

compound-term ∼ 46
covering ∼ . 46
decomposable ∼ 45, 90
indecomposable ∼ 45, 90

flat ∼ . 46

Horn ∼ . 45
linear ∼ . 51
negative ∼ . 45
normal ∼ . 51
positive ∼ . 45
protected ∼ . 194
simple ∼ . 46
subclause . 45
top-variable ∼ 76

unique ∼ 51, 126
clausification . 48
compatible . 51
composition . 54
conjunct . 50
conjunction . 50
consistent . 51
covering . 46
Craig interpolation 34
cyclicity . 97

D

deduction . 56
deletion . 56
derivation relation 58
disjunct . 50
disjunction . 50

E

equality factoring 61
equality resolution 61
expression . 45
depth of ∼ . 46
ground ∼ . 45
subexpression 45
proper ∼ . 45

Index 233

width of ∼ . 46

F

first-order logic 43
∼with equality 45
first-order clause 45
first-order clause with equality . 45
first-order formula 44
first-order rewritability 41

flat . 46
formula . 44
∼ renaming . 49
atomic ∼ . 44
closed ∼ . 45
conjunctive ∼ 50
definition ∼ . . 64, 140, 144, 167, 172
disjunctive ∼ 50
generalised ∼ 39
replacing ∼ . . . 64, 140, 144, 167, 172
subformula . 44
immediate ∼ 44
proper ∼ . 44

G

grounding . 54
guard for clause 65, 169
loose ∼ 140, 173

guard for formula 36, 38
clique ∼ . 36, 38
generalised ∼ 39

generalised ∼ 39
loose ∼ . 36
generalised ∼ 39

guarded clause 65
∼with equality 168

aligned ∼ . 117
aligned ∼with equality 194

Horn ∼ . 65
loosely ∼ . 140
∼with equality 173
aligned ∼ . 159
aligned ∼with equality 194

guarded negation fragments 33
guarded negation fragment 38, 166
clique ∼ 38, 170
unary negation fragment 38

guarded quantification fragments 32
guarded fragment 35, 64
clique ∼ 35, 142
loosely ∼ 35, 139

GYO-reduction 96

H

hypergraphs that are associated with
flat clauses . 47

I

inference system
P-Res ∼ 21, 68, 175
top-variable ∼ 21

infix notation . 45
instance . 53

L

linear . 51
literal . 44
∼ in propositional logic 44
complementary ∼ 44
compound-term ∼ 46
covering ∼ . 46

Index 234

eligible ∼ . 56
P-Res eligible ∼ 73

equality ∼ . 45
flat ∼ . 46
inequality literal 45
maximal ∼ . 55
∼w.r.t. a ground clause 55
(strictly) ∼w.r.t. a clause 56
strictly ∼w.r.t. a ground clause 55

negative ∼ . 44
positive ∼ . 44
selected ∼ . 56
simple ∼ . 46
surface ∼ . 89
top-variable ∼ 76

N

normal . 51
normal form
anti-prenex ∼ 48
clausal ∼ transformation 48
conjunctive ∼ 50
disjunctive ∼ 50
negation ∼ . 48
prenex ∼ . 48

O

ordered paramodulation 61
ordering
admissible ∼ 55
Knuth-Bendix ∼ 74
lexicographic path ∼ 55
multiset ∼ . 54
partial ∼ . 54
precedence . 55

reduction ∼ . 54
rewrite ∼ . 54
simplification ∼ 54
strict partial ∼ 54
subterm property 54
total ∼ . 54
variable ∼ . 76
well-founded ∼ 54

P

packed fragment 32
pair . 46
pairwise guarded fragment 32
polarity
negation ∼ . 49
positive ∼ . 49

positive factoring 56
factor . 56

premise
left ∼ . 61, 177
main ∼ . 57, 69
negative ∼ 57, 69
positive ∼ 57, 69
right ∼ . 61, 177
side ∼ . 57, 69

Q

quantifier
existential ∼ . 44
universal ∼ . 44

query
conjunctive ∼ 40
Boolean ∼ . 40

positive existential ∼ 15
select-project-join ∼ 15

Index 235

query clause . 65
∼with equality 169
chained-only ∼ 89
indecomposable ∼ 97

isolated-only ∼ 89

R

redundant
∼ of clauses . 57
∼ of inferences 58
saturated up to redundancy 58
subsumption elimination 69

S

scope . 45
selection function 56
selection-based ordered resolution 56
binary ∼ . 57, 69
hyper-resolution 69
partial ∼ . 68
top-variable resolution 77

resolvent . 56
partial ∼ . 68

sentence . 45
separation . 58
signature . 43
simple . 46
simplification . 69
condensation 69

Skolem . 49
∼ constant symbol 50
∼ function symbol 50
∼ term . 50
∼ compound term 50
∼ constant . 50

unskolemisation 52
split . 59
substitution . 53
apply ∼ to an expression 53

symbol
constant ∼ . 43
function ∼ . 43
predicate ∼ . 43

T

term . 43
∼ abstraction 52
compound ∼ 43
compatible ∼ 51
linear ∼ . 51
normal ∼ . 51
unique ∼ 51, 126

covering ∼ . 46
depth of ∼ . 46
flat ∼ . 46
subterm . 43
strict ∼ . 43

theorem proving derivation 58
top-variable technique 75

U

unifier . 54
most general ∼ (mgu) 54
simultaneous ∼ 54

unifiable . 54
uniform interpolation 34
uniform modal interpolation 34
unique . 51, 126

V

Index 236

variable . 43
∼ renaming 52, 53
bound ∼ . 45
chained ∼ . 89
free ∼ . 45
isolated ∼ . 89

propositional ∼ 43
quantified ∼ . 45
top ∼ . 76
connected ∼ 99

variable-disjoint 45
variant . 53

	List of Figures
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	The guarded fragments and the querying problems
	The guarded first-order fragments
	The BCQ answering and rewriting problems

	Saturation-based theorem proving for first-order logic
	First-order logic
	Clausification techniques
	Back-translation techniques
	Saturation-based theorem proving

	The decision procedure for answering BCQs in GF
	Clausifying GF and BCQs
	The resolution-based P-Res inference system
	The top-variable refinement
	Deciding the guarded clausal class
	Handling query clauses
	A decision procedure of answering BCQs for GF

	The saturation-based BCQ rewriting procedure in GF
	The aligned guarded clauses
	Deciding the GQ- clausal class
	Back-translating GQ- clausal sets
	A decision procedure for rewriting BCQs for GF

	Querying for LGF and CGF
	Clausal normal forms of LGF and CGF
	The top-variable refinement for the LGQ clausal class
	Deciding the LGQ clausal class
	Decision procedures of querying in LGF and/or CGF

	Querying for GNF and CGNF
	Clausifications for GNF and CGNF
	The superposition-based top-variable system
	Deciding the LGQ clausal class
	Answering and rewriting BCQs for GNF and/or CGNF

	Related work
	Conclusions
	Bibliography
	Index

