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Abstract 

        Risk prediction models are mathematical formulas which use disease as outcome 

variable and individual’s characteristics or risk factors as predictors to predict a risk 

of the individual having the disease in future. They are used in health care system to 

assist clinicians to make treatment decisions for patients. Healthcare guideline such as 

NICE recommends prescribing statins to patients who have QRISK3 predicted risk 

above 10%. These models are developed from routinely collected electronic health 

records or longitudinal cohort. However, they are validated on population level but 

being used on individual level for individual patients. Generalisability and clinical 

utility reflect whether a model developed in one setting could be generalised to other 

setting and still being clinical useful. Current statistical framework for the model 

development and validation does not consider reporting or minimally assessing the 

generalisability and clinical utility of risk prediction models especially on individual 

level. The objective of this PhD is to assess the generalisability and clinical utility of 

risk prediction models in different settings especially on accurately predicting high 

risk patients who are missed by the model, with Cardiovascular disease risk prediction 

as exemplar. 

    There are 6 main chapters in this PhD. Chapter 2 evaluated generalisability of 

QRISK3 by assessing the effects of practice variability on individual risk prediction. 

Chapter 3 assessed the effects of data quality and variation of association between 

disease outcome and predictor on the risk predictions of individual patients. Chapter 4 

assessed clinical utility of machine learning models and Cox models on both 

population and individual level. Chapter 5 implemented ClinRisk’s QRISK3 

algorithm into R. Chapter 6 assessed whether a new individual level measurement 

may improve clinical utility of risk prediction model. Chapter 7 discussed all the 

identified generalisability and clinical utility issues for current models and possible 

solutions.  

    This PhD found that risk prediction models may have good performance on 

population level but with limited generalisability and clinical utility especially on 

individual level. The reason is that prediction models based on different techniques or 

modelling decisions can yield inconsistent individual results. Risk prediction models 

should be used in conjunction with additional clinical tests and clinical judgement.
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Chapter 1 General introduction 

1.1 Introduction 

Risk prediction models are mathematical formulas which use disease as outcome 

variable and individual’s characteristics or risk factors as predictors to predict a risk 

of the individual having the disease in future. Clinical risk prediction models are risk 

prediction models used for clinical purpose 1. Models are developed and validated on 

population level and derived from patients’ records such as electronic health records 

(EHR) 2. Models are validated on population level by the discrimination which 

measures the model’s ability to discriminate high and low risk patients and calibration 

which measures the agreement between observed and predicted events. Risk 

prediction models could be derived from statistical models such as logistic model 3 for 

binary outcome and Cox proportional hazard model 4 for survival outcome or from 

machine learning models such as random forest 5 or neural network 6. Clinical risk 

prediction models are developed to predict patients’ risk for long-term chronic 

disease, such as Cardiovascular disease (CVD). Models are used in clinical practice to 

assist the clinical decision making. For example, QRISK 7 is recommended by NICE 

guideline 8 in CVD prevention, i.e. prescribing statins to patients who have a QRISK 

predicted CVD risk above 10%. Risk prediction models were also developed for other 

disease such as breast cancer 1, chronic obstructive pulmonary disease and diabetes 9, 

other healthcare outcome such as death/readmission, number of hospital visits or 

length of stay 9. Besides of disease outcome and healthcare outcome, risk prediction 

models could predict risk of underlying disease to help decide whether further testing 

is needed or estimate short-term risk for surgery 1. For medical research, prediction 

models could help in different ways, such as selecting patients for the study or 

adjusting covariates at baseline for randomised controlled trials 1.  

CVD has been the top cause of death in the US, UK, Europe and China in 

decades and it receives considerable attention from government, healthcare 

institutions and researchers 10. In 2017, there are 80 thousand deaths in the US caused 
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by CVD, and one in three of them is due to CVD 11. In Europe, CVD causes 3.9 

million deaths every year 12. CVD has become the most common cause of deaths in 

UK since 200110. In 2014, China has 29.6 million CVD caused deaths in rural areas 

and 26.2 million in urban areas 13. Studies have suggested that evaluating long-term 

CVD risk of patients is required, and identifying higher risk patients is the first step 14 
15 16 17. Several CVD risk prediction models are developed to identify high risk CVD 

patients such as Framingham from US 18, QRISK from UK 7 and ESC score from 

Europe 14.  

However, these models are only statistical validated on population level with 

discrimination and calibration but being used on individual level for individuals and 

often being applied to a setting which could be much different from the development 

setting. Literature shows that three statistical validated models including QRISK2, 

Framingham and Assign score have much disagreement to predict high risk patients 
19. A systematic literature review of all the existing risk prediction models concludes 

that the clinical usefulness of the most existing predicting models are unclear because 

of “shortage of methodology, inadequate presentation, not enough external validation 

and unclear impact of model” 17. The reviewer recommends rather than developing 

new risk prediction models, research should focus on further validate and improve 

existing risk models considering new clinical setting and environment of population 
17.  

Generalisability and clinical utility are very important aspects of model 

validation for risk prediction model. A model developed from one setting was 

supposed to be generalisable to other setting and the estimated individual risk 

(probability) should be robust enough for clinical decision making. Statistically, 

generalisability of risk prediction model is refer to external validation which validates 

model’s performance by discrimination and calibration in a different setting 1. While 

clinically, models are used for individual patients rather than populations, 

generalisability in this PhD refers to the robustness of model developed in one setting 

and being used in other setting considering both population and individual level. For 
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example, whether a model developed from a setting assumed homogenous of sites 

predicts consistent risk to the same patients in a new setting where there is huge site-

heterogeneity. Whether models with similar population level model performance 

could predict accurate and consistent risk for the same patients. Statistically, clinical 

usefulness of risk prediction model is refer to decision curve analysis with net benefit 
20 on population level. Net benefit measures the number of patients could be correctly 

identified as events by the model without adding any false positive given different 

thresholds, a statistical defined clinical useful model would have a high positive value 

of net benefit 20. While clinically, models are used by their predicted individual risk 

with a selected threshold to help decide patients’ treatment, clinical utility of risk 

prediction model in this PhD refers to whether an accurate and consistent individual 

risk could be predicted by current well performed models (similar high calibration and 

discrimination on population level), and whether these risks are robust enough to 

assist clinical decision making for individual patients. Table 1.1 summarises key 

terms in this PhD.  

Overall, current statistical framework for the model development and validation 
21 (Table 1.2) does not consider to report or minimally assessing the generalisability 

and clinical utility of risk models especially on individual level and it is unclear 

whether a model developed in one setting could be generalised to other setting and 

still being clinical useful. The overall objective of this PhD is to assess the 

generalisability and clinical utility of risk prediction models in different settings 

especially on accurately predicting high risk patients who are missed by the model, 

with CVD risk prediction as exemplar.  
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Table 1.1: Summary of key terms in this PhD 
 

Key terms Definition in statistics  Definition in this PhD How are they related 

Assessing model on 
population level and 

individual level 

Statistically, model was mainly assessed by 
population level measurement including 
discrimination (the ability of model to 
discriminate high/low risk patients) and 
calibration (the agreement between predicted 
and observed risk).  

This PhD assessed model on both 
population level and individual level. The 
consistency of individual risk prediction 
among models with similar population 
level model performance was used to 
assess robustness of model on individual 
level.  

 Models with good calibration and 
discrimination (i.e. statistical validated 
model) needs to be further assessed on 
individual level, as they were ultimately 
used in clinical practice to help clinicians 
to make treatment decisions for individual 
patients.  

Generalisability Statistically, generalisability of risk 
prediction model is refer to external 
validation which validates model’s 
performance by discrimination and 
calibration in a different setting 1 

Generalisability in this PhD refers to the 
robustness of model developed in one 
setting and being used in other setting 
considering both population and 
individual level. 

A model developed from one setting was 
supposed to be generalisable to other 
setting and the estimated individual risk 
(probability) should be robust enough for 
clinical decision making. 

Clinical utility Statistically, clinical usefulness of risk 
prediction model is refer to decision curve 
analysis with net benefit 20 on population 
level.  

Clinical utility of risk prediction model in 
this PhD refers to whether an accurate and 
consistent individual risk could be 
predicted by well performed population 
level models, and whether these risks are 
robust enough to assist clinical decision 
making for individual patients. 

Clinically, models are used by their 
predicted individual risk with a selected 
threshold to help patients’ treatment 
decision, therefore clinical usefulness of 
models on population level does not 
guarantee their clinical utility on individual 
level.  
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Table 1.2 The TRIPOD guideline 21 to report developing and validating risk 

prediction model for diagnosis or prognosis 

 

The first specific research question is risk prediction models such as QRISK3 are 

developed using EHR collected from different sites (practices) while this variability 
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of sites (practice variability) is not considered in the model, whether practice 

variability has effects on individual risk prediction. The motivation is successful risk 

prediction models like QRISK3 is not only used in a setting which is plausible related 

to 1 their development settings (e.g. GP practices in UK) but also could be used in 

very different settings (e.g. China) which may have larger practice variability 

comparing to UK. It is important to assess whether models like QRISK3 could be 

generalised to such a heterogeneous setting before clinical implementation. The 

second research question (based on the conclusion of the first one) is whether data 

quality and variation of association between predictors and outcome (two aspects of 

practice variability) are related to the effects of practice variability on individual risk 

prediction. The motivation is if they are related to the effects of practice variability 

then generalisability and clinical utility of model could be improved by improving 

data quality or incorporating variation of association between predictors and outcome, 

otherwise new predictors are needed. The third research question is whether novel 

approach machine learning models (where literatures claim that they may start 

revolutionary in healthcare system 22) outperform traditional statistical model and 

provide more robust individual risk prediction. The motivation is if machine learning 

models are indeed superior in risk prediction task then they should be further assessed 

in future study rather than the current risk prediction model, otherwise generalisability 

and clinical utility of both machine learning and traditional statistical models should 

be further studied. The fourth research question is whether a new approach which 

considers a different individual level measurement may improve the clinical utility of 

both machine learning and traditional models given findings from previous research 

that all these models have much uncertainty on individual level risk. The motivation is 

if the current model development framework on population level has its underlying 

challenge on individual level (e.g. probability itself is defined on population level), 

new individual level measurement may be considered to strengthen the clinical utility 

of models on individual level.  
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Table 1.3: Summary of research output in this PhD 

 
Chapter Paper Status Objective Doi 

2 Do population-level risk prediction models that use routinely collected 
health data reliably predict individual risks? 

Published Assess the effects of practice variability on individual risk prediction 
using QRISK3 as an exemplar. 

https://doi.org/10.1038/s41
598-019-47712-5  

3 Examining the impact of data quality and completeness of electronic 
health records on predictions of patients' risks of cardiovascular disease 

Published Assess the effects of data quality and variation of association between 
disease outcome and predictor (two aspects of practice variability) on 
the risk predictions of individual patients. 

https://doi.org/10.1016/j.ij
medinf.2019.104033  

4 Does machine learning improve the accuracy of clinical risk 
predictions? An exemplar examining risk of cardiovascular disease 

Submitted Assess model performance and robustness of individual risk prediction 
of machine learning models and Cox models on both population and 
individual level with CVD risk prediction as exemplar 

TBD 

5 R package "QRISK3": an unofficial research purposed implementation 
of ClinRisk's QRISK3 algorithm into R 

Open peer-
review 

Implement ClinRisk's QRISK3 algorithm into R https://doi.org/10.12688/f1
000research.21679.2  

6 The instability of machine learning and statistical models in predicting 
individual patient risks: an approach to improve the clinical utility of 
these models 

Ready to 
Submit 

Assess whether a new individual level measurement may improve 
clinical utility of risk prediction model 

TBD 

7 Clinical risk prediction model using routinely collected electronic health 
records or longitudinal cohort in daily practice: Are they robust enough 
for clinical decision making? 

Ready to 
Submit 

Analysis paper to discuss whether models developed from current 
guideline provide robust individual risk prediction for clinical decision 
making  

TBD 

 

 

https://doi.org/10.1038/s41598-019-47712-5
https://doi.org/10.1038/s41598-019-47712-5
https://doi.org/10.1016/j.ijmedinf.2019.104033
https://doi.org/10.1016/j.ijmedinf.2019.104033
https://doi.org/10.12688/f1000research.21679.2
https://doi.org/10.12688/f1000research.21679.2
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1.2 Contents of this PhD 

        This PhD consists of 6 papers (Table 1.3). Chapter 2 (the 1st paper) assessed the 

effects of practice variability on individual risk prediction using QRISK3 as an 

exemplar. QRISK3 is developed from an integrated EHR cohort of UK population, 

while the variability of practices including coding variation, missing value and 

underlying heterogeneity are not considered in the model. The effects of practice 

variability on risk prediction must be assessed before considering generalise QRISK 

to a different population say Chinese population, as other population like Chinese 

population might have larger practice variability than UK population due to large 

differences of healthcare facilities from different provinces. Chapter 3 (the 2nd paper) 

assessed the effects of data quality and variation of association between disease 

outcome and predictor (two aspects of practice variability) on the risk predictions of 

individual patients. This aims to investigate on what aspects of practice variability 

contribute to the models’ uncertainty on individual risk prediction. Chapter 4 (the 3rd 

paper) assessed model performance and robustness of individual risk prediction of 

machine learning models and Cox models on both population and individual level 

with CVD risk prediction as exemplar, as there is a hype around machine learning 

models that they may start revolutionary in health care 22. This paper aims to evaluate 

whether innovative methods like machine learning models are truly superior than the 

traditional models as claimed 23, and whether machine learning models have more 

certainty on individual risk prediction. Chapter 5 (the 4th paper) implemented 

ClinRisk’s QRISK3 algorithm into R, as there is a gap that QRISK3 model was 

written in a low level programming language C while model development needs high 

level programming language R. Providing a popular applied clinical risk prediction 

model (QRISK3) in an easy accessible way would help research community to better 

understand and improve generalisability and clinical utility of risk prediction model. 

Chapter 6 (The 5th paper) assessed whether a new individual level measurement may 

improve clinical utility of risk prediction model. This implies how the current 

individual risk prediction could be best used for individual patients with an additional 
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new individual measurement and provide a direction to develop new type of model 

based on this new individual level measurement in future. Chapter 7 (The 6th paper) 

discussed all the identified key challenges and possible solutions for models 

developed from current model guideline. 

 

1.3 Author Contributions 

        Specific author contributions are mentioned in each individual chapter. In 

general, for all projects: 

Yan Li as the PhD candidate: Designed the study; designed and conducted all 

statistical analysis; produced all tables and figures; wrote the main manuscript text. 

Matthew Sperrin: Supervised the study; improved study design; improved statistical 

method; improved interpretation of statistical results; reviewed statistical results; 

reviewed and edited the main manuscript text. 

Darren M Ashcroft: Improved the major interpretation of statistical results and 

discussion; reviewed and edited paper; 

Tjeerd Pieter van Staa: Designed and supervised the study; Quality control of all 

aspects of the paper; wrote the main manuscript text;  
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2.1 Abstract 

        The objective of this study was to assess the reliability of individual risk 

predictions based on routinely collected data considering the heterogeneity between 

clinical sites in data and populations. Cardiovascular disease (CVD) risk prediction 

with QRISK3 was used as exemplar. The study included 3.6 million patients in 392 

sites from the Clinical Practice Research Datalink. Cox models with QRISK3 

predictors and a frailty (random effect) term for each site were used to incorporate 

unmeasured site variability. There was considerable variation in data recording 

between general practices (missingness of body mass index ranged from 18.7 to 

60.1%). Incidence rates varied considerably between practices (from 0.4 to 1.3 CVD 

events per 100 patient-years). Individual CVD risk predictions with the random effect 

model were inconsistent with the QRISK3 predictions. For patients with QRISK3 

predicted risk of 10%, the 95% range of predicted risks were between 7.2 and 13.7% 

with the random effects model. Random variability only explained a small part of this. 

The random effects model was equivalent to QRISK3 for discrimination and 

calibration. Risk prediction models based on routinely collected health data perform 

well for populations but with great uncertainty for individuals. Clinicians and patients 

need to understand this uncertainty. 

 

Key words 

EHR; QRISK; practice variability; frailty model; CVD risk prediction
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2.2 Introduction: 

        Cardiovascular disease (CVD) was the primary cause of death in USA, Europe 

and China in 20171. Multiple studies have suggested that the identification of patients 

with high CVD risk is important in its prevention2,3,4,5. Risk prediction models are 

often used to predict CVD risk for individual patients5. Examples are the Framingham 

risk score (FRS) and QRISK which provide risks of developing CVD in the next 10 

years. Information is used on risk factors such as age, gender, body mass index 

(BMI), ethnicity, smoking history and disease histories6,7. FRS models have good 

performance in the USA population, but the risk predictions may be problematic 

when applied to cohorts that are hugely different from the cohort used for model 

development8. In the UK, treatment guidelines for the primary prevention of CVD 

recommend the use of QRISK2 (second version) to identify patients with high CVD 

risk9. 

        QRISK is based on routinely collected data from general practices in the UK7. 

Conventional approaches were used to measure discrimination and calibration in the 

overall population7. However, there can be substantial variation between general 

practices in the style of coding clinical information (coding style) and completeness of 

data recording10. Different coding dictionaries are also currently being used in UK 

primary care as the EHR systems either use Read version 2 or CTV3 codes11. The 

patient case-mix (referring to a variation in risk factors for disease) may also vary 

between practices. This variability in the underlying data sources is currently not 

routinely considered in the development of risk prediction models, but it could 

potentially lead to heterogeneity in the prediction model’s performance12. The 

objective of this study was to assess the level of generalisability of risk prediction 

models that are based on routinely collected data from EHRs, and to measure the 

effects of practice heterogeneity on the individual predictions of risk. The QRISK3 

prediction model (for the 10 year risk of CVD) was used as an exemplar. 

  

 

2.3 Methods 
2.3.1 Data source 

        This study used data from the Clinical Practice Research Datalink (CPRD) which 
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is a database with anonymised EHRs from 674 GP practices in the UK. The database 

includes 4.4 million (6.9% of the UK population) patients and is broadly 

representative of the UK general population in terms of age, gender and ethnicity13. 

CPRD includes patient records of demographics, symptoms, tests, diagnoses, 

therapies, health-related behaviours and referrals to secondary care. Data from over 

half of the practices have been linked using unique patient identifiers to other datasets 

from secondary care, disease-specific cohorts and mortality records13. This study was 

restricted to 392 general practices that have been linked to Hospital Episode Statistics 

(HES), Office for National Statistics (ONS) and Townsend scores7. Over 1,700 

publications have used CPRD data14. Previously, CPRD data has been used to 

externally validate QRISK215. 

 

2.3.2 QRISK prediction models 

        QRISK is a statistical model which is being used to predict a patient’s risk over 

10 years of developing CVD (including coronary heart disease, stroke or transient 

ischaemic attack). The second version (QRISK2) was derived in 2008 using data from 

355 practices in the QResearch database16, and validated using data from 364 

practices from the THIN database17. QRISK3 is the latest version published in 2017, 

which includes more clinical variables, such as migraine and chronic kidney disease, 

than QRISK27. The QRISK3 predicted risks were calculated using the open access 

algorithm18. Calculations were successfully verified to be the same as predictions by 

the online calculator. This was done for simulated different patient groups in which 

each risk factor was changed sequentially covering the changes of all QRISK3 risk 

factors. 

 

2.3.3 Study population 

        The study population in this study was similar to that used for the development 

cohort for QRISK37. Patients were included if they were aged between 25 and 84 

years, had no CVD history or prescribing of statins prior to the index date. The 

follow-up of patients in CPRD cohort started one year after start of data collection, 

patient’s registration date, date of reaching age 25 years, or January 1 1998 (whatever 

came last) and it ended at the end of data collection, a patient leaving the practice, 

date patient’s death or the CVD outcome (whatever came first). Patients were 

censored by the earliest date among the first statin prescription, transfer or the end of 
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follow-up19. The index date (as the start date for evaluating CVD and the baseline 

date for assessing a patient’s history) was chosen randomly from the period of follow-

up. The random index date19 was preferred, because it gets a better spread of calendar 

time and age, and captures the time-relevant practice variability (e.g., change of 

recording and second trend of CVD incidence rate). This study considered the same 

risk factors as in QRISK37.  

  

2.3.4 Statistical analysis 

        The QRISK3 predicted risks were estimated for each patient and were also 

averaged within each practice. Averaged predicted risks were compared to the 

observed risks at year 10 which were based on Kaplan Meier life tables. The observed 

risks were extrapolated for the 13.5% of practices with less than 10 years of follow-

up. It was assumed that the life tables of these practices followed the pattern of the 

overall population life table. We calculated each year’s CVD relative risk (RR) by 

dividing the current year’s CVD proportion by the next year’s CVD proportion. The 

extrapolation was verified using practices with 10 years follow-up. Specifically, we 

randomly remove records to make these practices have less than 10 years follow-up 

and then compared the extrapolated risk to the observed risk. We found no evidence20 

that the extrapolated risks were statistically significant to the actual observed risks. 

        A Cox model with a frailty (random effect) term for each practice was fitted to 

assess the effects of practice heterogeneity21. Patient survival time (time until 

censoring or CVD) was the outcome (dependent variable) and the linear predictor 

from the QRISK3 model was included as an offset. Each patient’s linear predictor was 

calculated using the patient’s risk factors and corresponding QRISK3 coefficients. 

Each practice’s random effects on individual risk prediction and the standard 

deviation of all practices’ random effects were extracted from the frailty model.  

Patient QRISK3 predictions and their corresponding practice random effects were 

combined to calculate a random effects model predicted risk. These were compared 

with the QRISK3 predicted risks. The distribution of the differences between the 

QRISK3 and the random effects model’s predicted risks were plotted.  

         Limited practice size or duration of follow-up could contribute to the unknown 

variability between risks predicted by QRISK3 and the random effects model. In 

order to measure this random error, we simulated data under a null hypothesis of no 

practice level variability and estimated the distribution of the practice level random 
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effects, and compared this with the distribution of the practice level random effects 

observed in the CPRD data (i.e. a permutation test). Specifically, simulations were 

conducted using 2,000 datasets of the same size and follow-up as the CPRD data. The 

CVD outcomes were simulated by assigning a random probability from a uniform 

distribution (0, 1) to each patient. The random effects model was then fitted to these 

simulated data in order to quantify the random variability. The comparison between 

effects of unknown random variability and effects of practice level variability on 

individual patients was plotted using one million patients (50% male and 50% female) 

who had a QRISK3 predicted risk of 10%.  

        We used classical model performance measurements to compare QRISK3 with 

the random effects model. The data from each practice were randomly divided into 

two (70% and 30%) stratified by gender. The first part was used to develop the 

random effects model and the second part to test and calculate model performance 

measurements including the C-statistic22, brier score23,24 and net benefit25. These 

measurements were calculated using QRISK3 predictions, predictions of random 

effects model, patient follow-up time and patient status at the time of censoring. 

Empirical confidence intervals were calculated using 1,000 bootstrap samples.  

        Missing values for ethnicity, BMI, Townsend score, systolic blood pressure 

(SBP), standard deviation of SBP, cholesterol, High-Density Lipoprotein (HDL) and 

smoking status (only these have missing values) were imputed using Markov chain 

Monte Carlo (MCMC) method with monotone style26. The QRISK3 and random 

effects risks were then averaged based on ten imputations. We calculated random 

effects of CPRD practices and random effects separately for females and males 

consistent with QRISK3 development. The random effects of practices were 

calculated independently by both SAS and R with almost identical results. The 

random effects model used procedures from SAS 9.4 and “coxme” package for the R 

3.4.2. The analyses of the datasets, missing value imputation, extrapolation validation 

and life tables were produced by SAS. R was used to model the data. The protocol for 

this work was approved by the independent scientific advisory committee for Clinical 

Practice Research Datalink research (protocol No 17_125RMn2). We confirm that all 

methods were performed in accordance with the relevant guidelines and regulations. 
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2.4 Results 

        Table 2.1 shows the patient characteristics and level of data recording across the 

392 general practices. The mean age of patients varied between practices (5% 

percentile was 40.0 years and 95% percentile was 49.8 years). Presence of CVD risk 

factors also varied between practices. The 5-95% range between practices was 1.9 to 

16.4 for recorded history of severe mental illness. The level of data completeness also 

varied substantially between practices. Ethnicity was not recorded for 19.6% of 

patients in the 5th percentile of practices compared to 93.9% in the 95% percentiles. 

Life table analysis are shown in eTable2.11.1 in the Supplement. 
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Table 2.1: Characteristics of the general practices included in the study and the distribution of 
data recording 

 

 
Distribution of characteristics across 

practices: Percentiles 

 
Mean 
(SD) 5th 25th 50th 75th 95th 

General characteristics of practices 

Total number of CVD events over 10 years in each practice 266.4 
(176.5) 

17.0 129.5 251.5 376.5 581.0 

Average age of patients in each practice 44.9 (3.0) 40.0 42.9 45.0 46.7 49.8 

% female patients 51.2 (2.1) 47.5 50.1 51.2 52.4 54.5 

Total number of patients in each practice 9262.3 
(5072.9) 

2305.0 5292.5 8792.5 12180.0 17616.0 

 

CVD risk factors 

% patients with alcohol abuse 1.4 (1.2) 0.5 0.8 1.1 1.6 3.0 

% patients with anxiety 13.8 (5.3) 6.5 10.0 13.1 16.9 23.4 

% patients with HIV 0.1 (0.1) 0.0 0.0 0.1 0.1 0.3 

% patients with left ventricular hypertrophy 0.2 (0.1) 0.1 0.1 0.2 0.3 0.5 

% patients with atrial fibrillation 0.7 (0.3) 0.3 0.5 0.7 0.9 1.3 

% patients on atypical antipsychotic medication 0.4 (0.2) 0.2 0.3 0.4 0.6 0.9 

% patients with Chronic kidney disease (stage 3, 4 or 5) 1.0 (0.9) 0.3 0.6 0.9 1.3 2.1 

% patients on regular steroid tablets 0.1 (0.1) 0.0 0.0 0.1 0.1 0.2 

% patients with erectile dysfunction 1.5 (0.6) 0.7 1.1 1.5 1.8 2.4 

% patients with angina or heart attack in a 1st degree relative 
< 60 

3.6 (3.0) 0.7 1.8 2.9 4.4 8.7 

% patients on blood pressure treatment 6.8 (1.9) 3.8 5.6 6.7 8.2 9.9 

% patients with migraines 6.4 (2.1) 3.2 4.8 6.4 7.8 9.6 

% patients with rheumatoid arthritis 0.6 (0.2) 0.3 0.5 0.6 0.7 1.0 

% patients with severe mental illness (this includes 
schizophrenia, bipolar disorder and moderate/severe 
depression) 

7.8 (4.5) 1.9 4.2 7.2 10.8 16.4 

% patients with Systemic Lupus Erythematosus 0.1 (0.0) 0.0 0.0 0.1 0.1 0.1 

SBP 

Average SBP within practice 126.8 (2.8) 122.3 125.1 126.8 128.8 131.0 

% patients with missing SBP 25.5 (7.3) 13.9 20.7 25.3 30.0 38.5 

Average SBP standard deviation within practice 9.9 (0.7) 8.9 9.5 9.9 10.3 11.0 

% patients with missing SBP standard deviation 52.7 (7.7) 39.0 48.3 53.1 57.3 64.7 

BMI 

Average BMI when recorded 26.4 (0.7) 25.0 25.9 26.4 26.9 27.5 

% patients with missing BMI 39.2 (11.8) 18.7 31.2 39.1 46.6 60.1 
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Table 2.1 (continued) 
 

 
Distribution of characteristics across 

practices: Percentiles 

 
Mean 
(SD) 5th 25th 50th 75th 95th 

Cholesterol/HDL ratio 

Average Cholesterol/HDL ratio 4.0 (0.2) 3.6 3.8 4.0 4.1 4.4 

% patients with missing Cholesterol/HDL ratio 64.4 (10.0) 48.2 57.6 63.9 70.4 81.6 

Smoking 

% patients who never smoked 47.8 (7.6) 36.0 43.3 47.9 52.7 59.4 

% ex-smokers 22.3 (5.2) 13.8 19.0 22.5 25.5 30.9 

% current-smokers 29.8 (7.0) 19.9 25.1 29.2 33.8 42.7 

% patients with missing smoking status 24.2 (8.6) 10.3 18.6 23.8 29.5 39.4 

Diabetes 

% patients with type 1 diabetes 0.2 (0.1) 0.1 0.2 0.2 0.3 0.4 

% patients with type 2 diabetes 1.3 (0.4) 0.6 1.0 1.3 1.6 2.0 

Ethnicity 

% other Asian patients 1.9 (3.2) 0.0 0.3 0.9 1.9 7.6 

% Bangladeshi patients 0.4 (1.3) 0.0 0.0 0.2 0.4 1.4 

% Black patients 3.5 (5.9) 0.1 0.5 1.3 3.4 15.3 

% Chinese patients 0.7 (0.7) 0.0 0.2 0.5 1.0 2.0 

% Indian patients 2.7 (5.3) 0.0 0.3 1.1 2.9 10.6 

% patients with other ethnicity 2.9 (3.0) 0.3 0.9 2.0 3.6 9.1 

% Pakistani patients 1.2 (3.6) 0.0 0.1 0.3 0.9 4.7 

% White patients 86.7 (15.5) 48.2 83.4 92.3 96.8 98.8 

% patients with missing ethnicity 58.5 (23.7) 19.6 38.5 62.5 77.5 93.9 

Townsend score (Socioeconomic Status) 

% patients with Townsend score 1 (the least deprived) 20.3 (19.2) 0.1 4.1 14.7 31.1 59.7 

% patients with Townsend score 2 (less deprived) 21.3 (16.4) 0.6 8.8 18.6 30.3 51.8 

% patients with Townsend score 3 (deprived) 21.2 (13.1) 2.4 12.1 18.5 29.4 44.8 

% patients with Townsend score 4 (more deprived) 21.1 (15.5) 0.3 8.6 19.9 29.5 52.9 

% patients with Townsend score 5 (the most deprived) 16.1 (21.8) 0.0 0.4 7.6 22.3 66.3 

% patients with Townsend score missing 0.1 (0.6) 0.0 0.0 0.1 0.1 0.3 
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        Figure 2.1 shows the variation of CVD incidence rate among practices by 

plotting CVD incidence rate per 100 person years against the total follow-up time. A 

large amount of variation of CVD incidence rate were found between practices.  

 
Figure 2.1: Variation of CVD incidence rate (per 100 person years) across practice 
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        Figure 2.2 shows that the random effects model has less variation of differences 

between observed and predicted risk on practice level than QRISK3.  

 
Figure 2.2: Comparison of differences between observed and QRISK3 (random effects) mode 
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        Random effects model’s Brier score (0.067 (95% CI: 0. 0667, 0. 0682)) was 

close to QRISK3’s brier score (0.067 (95% CI: 0. 0666, 0. 0680)). The difference of 

Brier score between random effects model and QRISK3 was 0.002 (95% CI: 0.00008, 

0.0023). Random effects model’s C-statistic (0.852 (95% CI: 0.850, 0.854)) was also 

close to QRISK3’s C-statistic (0.850 (95% CI: 0.848, 0.852)). The difference of C-

statistic between the two models was 0.0017 (95% CI: 0.0015, 0.0020). The net 

benefit analysis 25 shows that both of models could predict three true CVD events 

without adding a false negative CVD events in every 100 patients with a given 

threshold of 10% (visualised in eFigure 2.11.2 in the Supplement). Standard deviation 

of random effects of CPRD practice between females (0.174) and males (0.177) were 

close to each other. 

       Table 2.2 shows the inconsistencies between the risks predicted for the same 

group of individual patients by QRISK3 and the random effects model (visualised in 

eFigure 2.11.1 in the Supplement). Patients with a predicted QRISK3 risk between 

9.5% ~ 10.5% were found to have a much larger range of risks in the random effects 

model (between about 7.6% ~ 13.3%). Table 2.2 also shows the level of 

reclassification to below or above the treatment risk threshold of 10% when using the 

random effect model instead of the QRISK3 predicted risk. It was found that 19.7% 

patients with QRISK3 predicted risk between 8.5-9.5% had a risk above the treatment 

threshold when using the random effects model. For patients with QRISK3 predicted 

score between 10.5-11.5%, 24.4% of patients were reclassified to below the treatment 

threshold when using the different model.  
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Table 2.2: Inconsistencies between individual CVD risks as predicted by QRISK3 or by random effects model that incorporated practice 
variability 

 

 
Predicted risk according to random effects 

model incorporating practice variability  

QRISK3 predicted CVD risk 
(over 10 years)  Percentile 

% below /above 
treatment threshold of 10 

year CVD risk (10%) 
Total number 

of patients 

 2.5th~97.5th 5th 25th 75th 95th ≤ 10 > 10  

<6.5 0.1~6.0 0.1 0.4 2.6 5.4 100.0 0.0 2561602 

6.5~7.5 5.3~9.4 5.5 6.3 7.6 8.9 99.0 1.0 96981 

7.5~8.5 6.0~10.7 6.3 7.2 8.7 10.2 94.0 6.0 82768 

8.5~9.5 6.8~12.0 7.1 8.2 9.7 11.4 80.3 19.7 72098 

9.5~10.5 7.6~13.3 7.9 9.1 10.8 12.6 54.0 46.0 64477 

10.5~11.5 8.4~14.6 8.8 10.0 11.9 13.9 24.4 75.6 56550 

11.5~12.5 9.2~15.8 9.6 11.0 13.0 15.1 9.1 90.9 50278 

12.5~13.5 10.0~17.1 10.4 11.9 14.0 16.3 2.4 97.6 45126 

≥13.5 12.7~55.4 13.5 17.8 34.7 50.2 0.1 99.9 600938 
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        Figure 2.3 plots the distribution of risks predicted with the random effect model 

for those with a QRISK3 predicted risk of 10%. The effects of random variability 

(measured by simulation analysis) in the random effect model is also presented in this 

figure. It was found that the effect of practice variability on predicted risks for 

patients cannot be fully explained by random variability, as the overall distribution 

(blue area) with a random effects’ standard deviation of about 0.17 was much larger 

than the distribution due to random variability (green area) with a standard deviation 

for random effects of about 0.01. 

 

 

Figure 2.3: Distribution of predicted risks in the random effects model for patients with a 

QRISK3 predicted risk of 10% (using simulations in order to estimate the extent of random 

variability) 
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2.5 Discussion 
2.5.1 Key results 

        This study found that incorporating practice variability in a risk prediction model 

substantially affected the predicted CVD risks of individual patients. The random 

effect model was similar to QRISK3 in terms of calibration and discrimination. 

Patients with a QRISK3 predicted risk of 10% had a much larger range of predicted 

risks after incorporating practice variability. Treatment classifications were found to 

be different for a substantive number of patients after considering the heterogeneity in 

CVD incidence between practices. 

 

2.5.2 Limitation 

        There are several limitations of this study. Firstly, the observed risks had to be 

extrapolated for the practices with less than 10 years of follow-up to compare with 

QRISK3 (or random effects model) on practice level. The QRISK3 developers did not 

share the life table pattern of CVD risks over follow-up in QResearch. Although the 

validation showed that the result of extrapolation was not statistically significantly 

different from those practices with 10 years follow-up, the use of the actual changes 

in CVD risk over 10 years would have been preferable. Also, the definitions and 

classification of the risk factors could have been different from QRISK3 as the 

underlying EHR software systems vary between CPRD and QResearch (Vision and 

EMIS, respectively). However, the calibration and discrimination of QRISK3 in 

CPRD were consistent with those reported for QResearch, which suggest that the 

effects of differences in definitions was minimal.  

 

2.5.3 Interpretation 

        Risk prediction models need to provide accurate and generalisable predictions in 

order to be used clinically for individual patient decision making27. Current guidelines 

for the development of risk prediction models do not include the evaluation of extent 

of heterogeneity in the underlying population (unaccounted for by the model) and its 

impact on the generalisability of the model. Conventional metrics in the evaluation of 

risk prediction models only include population level averages such as calibration and 

discrimination28. However, literature suggests that the risks at the population and 

individual levels may be determined differently29,30. An example of a tool with an 
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acceptable average measurement but unacceptable generalisability due to 

heterogeneity would be a blood pressure measurement that has systematic 

measurement errors at different times of a day. The historic treatise by Rose 

emphasised that the ability to predict an average risk on a population level does not 

always equate to the prediction of the individuals who are going to have the event 

soon31. A previous study highlighted that the Framingham and QRISK2 risk 

prediction models showed considerable variability in predicting high CVD risk 

despite comparable population-level calibration and discrimination19. As Briggs 

emphasised, risk prediction models that provide non-extreme probabilities can never 

empirically be proven wrong. It was also suggested, as done in the present study, to 

compare the impact on predictions and decision-making with different models that are 

statistically comparable32. Our study found that, the predicted CVD risks for 

individuals were very different after incorporating previously unmeasured variability 

between practices and that decisions based on the QRISK3 or random effect model 

could be quite different.  

        There may be several reasons for our finding of heterogeneity between general 

practices unaccounted for by QRISK3. One reason may be that the data quality of 

EHRs varies between general practices. A study on the EHR recording of 

osteoporosis reported that there was variability in inter-practice data quality with 

clinically important codes and with multiple ways that the same clinical concept was 

represented33. Also, different practice computer systems have different versions of 

clinical coding33. Damen et al. in their recent literature review of all CVD prediction 

models, pointed out that consistent codes such as ICD-9 or ICD-10 should be used in 

models’ development and validation, as different definitions of CVD outcome lead to 

variation of model performance5. Another reason may be unmeasured heterogeneity 

in CVD risks in the populations of the different practices. There is substantive 

evidence that risks of disease are not uniformly distributed. A nation-wide study 

reported that there are severe inequalities in all-cause mortality between the North and 

South of England from 1965 to 200834. A study by Langford et al. reported that region 

accounted for four times more variation in mortality than that explained by the 

classification of residential neighbourhoods by household type including 

socioeconomic status35. In order to use a risk prediction model for individual decision 

making, it should be established whether or not to allow these models to miss 

important causal predictors. If they do, this can then lead to a substantial 
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misclassification on an individual level. 

        Riley et al have proposed a statistical way to measure heterogeneity between 

sites by evaluating the C-statistics across practices in funnel plots with approximate 

95% confidence interval based on the observed standard error observed36. We 

replicated Riley’s funnel plot of QRISK2 and found similar variation of the C-statistic 

among practices in CPRD with QRISK3 (eFigure 2.11.4 in the Appendices). But this 

approach of funnel plots is limited as it does not assess the impact of heterogeneity on 

individual risk predictions. Random effects models are the standard approach to 

assess the effects of practice heterogeneity21. Our results highlight that it is not 

enough to only consider calibration and discrimination on the population level when 

assessing a prediction model’s clinical utility on individual patients. The extent of 

heterogeneity in risk prediction unaccounted for by the model will need to be 

evaluated in addition to calibration and discrimination.   

 

2.5.4 Implications for Research and Practice 

        This study found that QRISK3 has limited generalisability and accuracy in 

predicting individual risks in heterogeneous settings. The predictions of CVD risks of 

individual patients substantially changed after incorporating practice variability which 

could impact the clinical decisions for many patients. In order to improve the clinical 

utility of these risk prediction models, the level of unexplained heterogeneity in 

populations, disease incidence and data quality must be assessed before implementing 

such models for individual clinical decision making. Given the uncertainty with risk 

prediction models that use routinely collected EHR data, it is questionable whether 

these tools should be used without additional clinical interpretation and without 

incorporating causal risk factors that better capture the unmeasured heterogeneity 

between different general practices. Recently an online calculator was launched by 

Public Health England which allows members of the public to estimate their heart age 

based on a QRISK model 37.  Our study indicates that these estimates could be quite 

different when incorporating unmeasured heterogeneity and that the level of 

uncertainty with these predictions is considerable. 
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eAppendix. Interpretation of appendix tables and figures.  
 
eTable 2.11.1. Distribution across practices of the number of CVD cases, number of patients 
at risk and survival rate over 10 years 
 
eFigure 2.11.1. Comparison of random effects model’s score and QRISK3 score  
in the same group of patients (grouped by certain range (red lines) of QRISK3 score) 
 
eFigure 2.11.2. Comparison of net benefit between QRISK3 and random effects model 
 
eFigure 2.11.3.1. Calibration plot of QRISK3 
 
eFigure 2.11.3.2. Calibration plot of random effects model 
 
eFigure 2.11.4. Variation of QRISK3’s C-statistic among practices—a replication of Riley’s 
funnel plot 



50 
 

eTable 2.11.1 shows the distribution of number of CVD events, number of patients at risk and 
survival rate among practices at 10 years. The number of CVD events, number of patients at 
risk and survival rate of practices are generally decreasing along the 10 years. The number of 
CVD events and the number of patients at risk varied between 5~95% percentile practices. 
The survival rate of 5~95% practices has less variation. Practices which do not have survival 
rate in 10 years are because their longest follow-ups are less than 10 years. 
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eTable 2.11.1 Distribution across practices of the number of CVD cases, number of patients at risk and survival rate over 10 years 
 

 
Number of patients with CVD events 

in practices (Percentile) 
Number of patients at riska 

in practices (Percentile) 
Life table estimate of proportion of 
patients without CVD (Percentile) 

Year 5th 25th 75th 95th 5th 25th 75th 95th 5th 25th 75th 95th 

1 5.0 31.0 83.5 134.0 1789.0 4358.0 10247.5 14843.0 1.00 1.00 1.00 1.00 

2 2.0 21.0 60.0 93.0 575.0 3019.3 7352.0 10560.0 0.99 0.99 0.99 1.00 

3 0.0 14.0 49.0 76.0 85.5 2324.8 5763.3 8329.0 0.97 0.98 0.99 0.99 

4 0.0 12.0 41.0 64.0 0.0 1821.3 4671.0 6707.5 0.95 0.97 0.98 0.99 

5 0.0 10.5 34.0 54.0 0.0 1456.0 3893.0 5530.5 NAb 0.96 0.98 0.98 

6 0.0 9.0 29.5 48.0 0.0 1128.8 3225.0 4713.5 NA 0.95 0.97 0.98 

7 0.0 7.0 26.0 42.0 0.0 839.0 2688.5 3995.5 NA 0.94 0.96 0.97 

8 0.0 5.0 22.0 39.0 0.0 601.3 2208.0 3345.0 NA 0.93 0.95 0.97 

9 0.0 4.0 18.0 32.0 0.0 420.0 1803.8 2788.0 NA 0.92 0.94 0.96 

10 0.0 2.0 15.0 26.0 0.0 263.8 1426.8 2297.5 NA 0.91 0.93 0.95 

 
a. Number of patients in the middle point of each year was used 
 
b. NA is because practices have less than 10 years follow-up data 
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eFigure 2.11.1 visualises the inconsistencies between the risks predicted for the same group of 
individual patients by QRISK3 and the random effects model. Patients with a predicted 
QRISK3 risk between 9.5% ~ 10.5% were found to have a much larger range of risks in the 
random effects model (between about 6% ~15%) 
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eFigure 2.11.1 Comparison of random effects model’s score and QRISK3 score  
in the same group of patients (grouped by certain range (red lines) of QRISK3 score) 
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eFigure 2.11.2 shows two models’ net benefit is about 3.1% at the threshold 10%, which 
means both of models predict about 3 true positive CVD events without adding new false 
positive CVD patients. 

 
eFigure 2.11.2 Net benefit analysis on QRISK3 and random effects model 
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eFigure 2.11.3.1 and 2.11.3.2 show two models have similar calibration.  
 

 
eFigure 2.11.3.1 Calibration plot of QRISK3 

 

 
 

eFigure 2.11.3.2 Calibration plot of random effects model 
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eFigure 2.11.4 is a replication of Riley’s 1 funnel plot. The left panel shows that QRISK3 has 
variation of C-statistic among practices, and the right panel performed a formal meta-analysis 
to identify outlier practices (those red dots outside the 95% prediction interval). The figure 
shows that QRISK3 performs differently on different practices, which is consistent to Riley’s1 
finding on QRISK2. 
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eFigure 2.11.4. Variation of QRISK3’s C-statistic among practices— 
a replication of Riley’s1 funnel plot  
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3.1 Abstract 

Objective 

To assess the extent of variation of data quality and completeness of electronic health 

records and impact on the robustness of risk predictions of incident cardiovascular 

disease (CVD) using a risk prediction tool that is based on routinely collected data 

(QRISK3).  

Methods 

Design: Longitudinal cohort study.  

Setting: 392 general practices (including 3.6 million patients) linked to hospital 

admission data. 

Methods: Variation in data quality was assessed using Sáez’s stability metrics 

quantifying outlyingness of each practice. Statistical frailty models evaluated whether 

accuracy of QRISK3 predictions on individual predictions and effects of overall risk 

factors (linear predictor) varied between practices.  

Results 

There was substantial heterogeneity between practices in CVD incidence unaccounted 

for by QRISK3. In the lowest quintile of statistical frailty, a QRISK3 predicted risk of 

10% for female was in a range between 7.1% and 9.0% when incorporating practice 

variability into the statistical frailty models; for the highest quintile, this was 10.9%-

16.4%. Data quality (using Saez’s metrics) and completeness were comparable across 

different levels of statistical frailty. For example, recording of missing information on 

ethnicity was 55.7%, 62.7%, 57.8%, 64.8% and 62.1% for practices from lowest to 

highest quintiles of statistical frailty respectively. The effects of risk factors did not 

vary between practices with little statistical variation of beta coefficients. 

Conclusions 

The considerable unmeasured heterogeneity in CVD incidence between practices was 

not explained by variations in data quality or effects of risk factors. QRISK3 risk 

prediction should be supplemented with clinical judgement and evidence of additional 

risk factors. 

 

Key words 

Electronic health records; QRISK; practice variability; statistical frailty model; CVD 

risk prediction; random slope model
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3.2 Introduction 

        Cardiovascular disease (CVD) has been the most common cause of death around 

the world for decades1. The prevention of CVD through targeting treatment to high 

risk patients is recommended in many international guidelines1-4. Risk prediction 

models are now an important part of CVD prevention strategies5. Many CVD risk 

prediction models have been developed around the world6, including the Framingham 

risk score (FRS)7 in the  USA, QRISK38 in the  UK and ESC HeartScore in Europe9. 

These models were developed by fitting statistical survival models (e.g. Cox model10) 

incorporating CVD risk factors on longitudinal patient cohorts. Specifically, QRISK 

was first developed in 2008 using routinely collected electronic health records (EHRs) 

from 355 general practices included in the QResearch database8. It considered age, 

sex and CVD risk factors such as body mass index (BMI) and smoking status. A 

recent update, QRISK3, incorporated more risk factors, such as variation in systolic 

blood pressure8.  

        A previous study has found that QRISK3 scores that are derived from EHRs can 

have limited generalisability and accuracy, as they do not account for the substantive 

heterogeneity between different general practices11. Considerable changes in the 

individual risk estimates occurred when taking into account the heterogeneity between 

different general practices. Additionally, this study found that a CVD risk of 10% over 

10 years as predicted by QRISK3 could change by over absolute 13% in a model that 

also incorporated variability between sites. Heterogeneity between sites may be 

related to either data quality (mainly including variation of missingness and coding12) 

or unadjusted underlying practice heterogeneities (variation of patient case mix and 

association between outcome and predictors13). However, it is unknown which of 

these influences contribute to the observed effects of practice variability on individual 

risk prediction. Therefore, the objective of this study was to assess the extent of 

variation of data quality and completeness of electronic health records and impact on 

the robustness of risk predictions of cardiovascular disease (CVD) using QRISK3. 

The QRISK3 model is recommended to be used in UK general practice and is now 

also accessible for members of the public14, 15. 
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3.3 Methods 

        The study used data from approximately 3.6 million anonymised patient records 

derived from 392 general practices from the Clinical Practice Research Datalink 

(CPRD GOLD), which had been linked to Hospital Episode Statistics (HES), Office 

for National Statistics (ONS) mortality records and Townsend deprivation scores8. 

CPRD GOLD is a representative demographic sample of the UK population in terms 

of age, gender and ethnicity16. Overall, CPRD includes data on about 6.9% of the UK 

population. The linkages to other datasets such as HES or ONS provide additional 

patient information about secondary care, specific disease and cause-specific 

mortality16. CPRD includes patients’ electronic health records from general practice 

capturing detailed information such as demographics, symptoms, tests, diagnoses, 

prescribed treatments, health-related behaviours and referrals to secondary care16. 

CPRD data has been widely used for public health research17, including an external 

validation of the QRISK2 model18.  

        The study used the same patient population as described in a previous study11, 

and used similar selection criteria and risk factors to QRISK38. The follow-up of 

patients started at the date of the patient’s registration with the practice, 25th birthday, 

or January 1 1998 (whichever latest), and ended at the date of death or CVD outcome, 

the date of leaving the practice, end of study window or last date of data collection 

(whichever earliest). The index date for measurement of CVD risk was randomly 

chosen from the total period of follow-up19. This study used a random index date, as it 

captures time-relevant practice variability with a better spread of calendar time and 

age11. The use of a random index date was the only difference with the original 

QRISK3 studies8. The main inclusion criteria for the study population were aged 

between 25 and 84 years, with no CVD history or any statin prescription prior to the 

index date. Patients were censored at the date of the statin prescription if received 

during follow-up. 

       There were four analysis parts in this study. The first measured data quality and 

completeness in each of the different practices. Second, we evaluated the 

heterogeneity between practices in CVD incidence that was not taken into account in 

the development of QRISK3. This analysis addressed the miscalibration of QRISK3 

at practice level which can be described as the closeness (accuracy) of the QRISK3 

prediction to the observed CVD incidence in each practice. Unmeasured 
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heterogeneity between groups is also known as statistical frailty, which can be 

modelled in regression analyses20. The level of unmeasured heterogeneity in CVD 

incidence (statistical frailty) for each practice was used to stratify practices into 

quintiles. Third, we evaluated whether the effects of the QRISK3 risk factors (i.e., the 

overall linear predictor) varied between practices (i.e., whether the beta coefficients 

varied). This variation in the linear predictor between practices could occur in case of 

unmeasured effect moderators for CVD incidence or differences in data 

recording/misclassification of risk factors. Finally, we compared data quality across 

different levels of statistical frailty.  

        Several indicators of data quality were used in this study to measure the variation 

in coding between general practices. First, the percentages of missing records were 

measured for the variables ethnicity, systolic blood pressure (SBP), body mass index 

(BMI), cholesterol, high-density lipoprotein (HDL), ratio of cholesterol and HDL, 

smoking status and Townsend score for deprivation. Second, two metrics as proposed 

by Sáez21 were used to measure the multidimensional variability (stability) in data 

quality across practices. The proposed metrics quantified the variability in the 

probability distribution functions of practices. Variation of coding was measured by 

the distribution-dissimilarity (quantified by Sáez’s metrics) of CVD risk factors and 

their missingness among practices. Sáez’s metric21, which was based on Jensen–

Shannon divergence22 measured the distribution-dissimilarity of variables across 

practices. Specifically, source probabilistic outlyingness (SPO) can be thought of as a 

measure of how different a practice is from the average practice in terms of 

distribution of variables. SPO ranges from 0 to 1 measuring the extent of outlyingness 

of the variables’ distribution. A variable with a SPO close to 1 means that the 

distribution of the variable in the practice is more different from the overall average 

indicating the outlyingness of coding. Further technical details about the Sáez’s metric 

are provided in the eAppendix 3.9.2.  

        The unmeasured heterogeneity between practices in CVD incidence was 

evaluated by fitting a Cox proportional hazards model that included a statistical frailty 

term on its intercept (this type of model is also known a random intercept Cox model). 

The outcome of interest was the time to CVD onset. The linear predictor of QRISK3 

(sum of the multiplication of beta coefficients and predictors) was used as an offset 

(i.e. coefficient fixed at one) to calculate the statistical frailty for each practice20. 
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        The variation between practices in the effects of the QRISK3 risk factors was 

evaluated by also adding a single frailty term to the beta coefficients of the QRISK3 

linear predictor (known as a mixed effects Cox model23). This model calculated a 

random slope for the QRISK3 risk factors in each practice (assuming fixed effects and 

independent random effects of the QRISK3 linear predictor) in addition to the random 

intercept (assuming unmeasured heterogeneity in CVD incidence between practices). 

The random slopes and intercepts were calculated separately for each gender as 

QRISK3 has separate model formula for each gender24.  

        The effects of practices’ random slopes on individual risk prediction were 

visualised by estimating the difference of individual CVD risk predictions in the 

random slope model to that of the random intercept model. The range of individual 

risk predictions were calculated from the random slope model. Using a QRISK3 risk 

of 10%, a random slope and a random intercept were randomly drawn from a 

Gaussian distribution based on the variation of the random slope and random intercept 

calculated from this study’s original cohort and the predicted risk was estimated (this 

was repeated one million times). The difference of the predicted CVD risk when the 

same patient was from practices with the same random intercept but different random 

slope was visualised. Two hypothetical variations in random slopes (0.03 and 0.1) 

were used as reference lines. The variation in random slopes of 0 indicates that there 

was no variation in the effects of CVD risk factors between practices. The variation of 

0.03 was chosen as reference because a previous study found that this variation in the 

random effects of the intercept11 resulted in large differences in individual risk 

predictions (a QRISK3 predicted risk of 10% would change in the random effects 

model to a range from 7.2% to 13.7%).  

        Finally, practices were grouped by quintiles of statistical frailty and data quality 

metrics were estimated for each quality indicator. The random intercept Cox models 

estimated the level of statistical frailty for a QRISK3 predicted CVD risk of 10% 

(over 10 years). The mean and standard deviation of each CVD risk factors were 

summarised. Sáez’s metric for the CVD risk factors and their missingness were 

plotted against the percentile of practice frailty to show possible correlations and the 

Pearson correlation coefficients were calculated25. Practice statistical frailty was also 

plotted against the percentile of the mean (for continuous variables) or percentage (for 

categorical variable) of CVD risk factors at practice level and their corresponding 
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Sáez’s metric using a Beeswarm plot26 to identify any correlation between them, and 

practice statistical frailty as 1 was plotted as a reference line (red line). Beeswarm 

plots visualise the distribution by plotting practices as separate dots in each bin, so it 

has benefit to highlight individual points in distribution comparing to classical 

distribution-visualisation such as histograms.  

        The statistical software R version 3.4.227 with package “coxme”28 was used to 

model the data; SAS 9.4 was used in data preparation, missing value imputation and 

visualisation. Multiple imputation using Markov chain Monte Carlo (MCMC) method 

with monotone style29 was used to impute missing values before model fitting. Ten 

imputed datasets were created with pooling of the results based on the averages. 

 

 

3.4 Results  

       There were 3,630,818 patients included in the study cohort, 103,350 of which had 

a CVD event in the 10 years after the index date. Table 3.1 shows the differences 

between the predictions by the QRISK3 and random intercept models (statistical 

frailty) for patients with a QRISK3 prediction of 10%. The practices were classified 

into quintiles of practice statistical frailty. Practices in the lowest quintile had 

predicted CVD risks at 10 years between 7.1% and 9.0% in the random intercept 

model for females compared to a predicted risk of 10% with QRISK3. For males, this 

was 6.1% and 9.0%. For practices in the highest quintile, QRISK3 predictions 

underestimated CVD risks compared to the random intercept model with predicted 

risks between 10.9% and 16.4% (for males, this was 10.9% and 15.5%). As shown in 

Table 1, a practice statistical frailty below 1 indicated that QRISK3 overestimated 

CVD risk and above 1 underestimated CVD risk compared with the random intercept 

models.  
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Table 3.1 Predicted CVD risks in random intercept models (for patients with QRISK3 predicted 
risk of 10%) stratified into quintiles based on the level of differences between these predictions 

 

Quintile of practice frailty Number of practices Frailty 

Predicted CVD risk 
with random intercept model 

(%) 

Female 

0~20% 78 0.7~ 0.9 7.1~ 9.0 

20~40% 78 0.9~ 1.0 9.0~ 10.0 

40~60% 79 1.0~ 1.0 10.0~ 10.0 

60~80% 78 1.0~ 1.1 10.0~ 10.9 

80~100% 79 1.1~ 1.7 10.9~ 16.4 

 

Male 

0~20% 78 0.6~ 0.9 6.1~ 9.0 

20~40% 78 0.9~ 1.0 9.0~ 10.0 

40~60% 79 1.0~ 1.0 10.0~ 10.0 

60~80% 78 1.0~ 1.1 10.0~ 10.9 

80~100% 79 1.1~ 1.6 10.9~ 15.5 
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       Table 3.2 compares the baseline characteristics between practices with different 

levels of statistical frailty (i.e., mean difference between individual risk predictions by 

QRISK3 and random intercept models). For example, practices in the second quintile 

(20%~40%) of practice statistical frailty have on average 62.7% (standard deviation: 

20.0%) patients with missing values on ethnicity and practices in the  fourth quintile 

(60%~80%) of practice statistical frailty also have similar average 64.8% (standard 

deviation: 23.0%) of patients with missing values on ethnicity. There were no major 

differences in CVD risk factors and missing levels between practices with high and 

low statistical frailty. Practices with high/low statistical frailty had comparable means 

and standard deviations for these characteristics. 
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Table 3.2 Characteristics of the practices stratified by different quintiles of statistical frailty 
 

 Male  Female 

 mean (SD))  (mean (SD)) 

 

Frailty 
(0~20%) 

( 0.7 ~  0.9) 

Frailty 
(20~40%) 

( 0.9 ~  1.0) 

Frailty 
(40~60%) 

( 1.0 ~  1.0) 

Frailty 
(60~80%) 

( 1.0 ~  1.1) 

Frailty 
(80~100%) 
( 1.1 ~  1.7)  

Frailty 
(0~20%) 

( 0.6 ~  0.9) 

Frailty 
(20~40%) 

( 0.9 ~  1.0) 

Frailty 
(40~60%) 

( 1.0 ~  1.0) 

Frailty 
(60~80%) 

( 1.0 ~  1.1) 

Frailty 
(80~100%) 
( 1.1 ~  1.6) 

General characteristics of practices 

Average number of CVD events in 10 years within practice strata 
by gender 

84.5 (58.5) 133.1 (89.3) 142.0 (92.1) 181.2 
(101.7) 

182.4 (87.0)  89.0 (57.6) 104.0 (86.3) 122.7 (91.5) 143.4 (80.3) 159.5 (75.8) 

Average age within practice 43.6 (2.9) 44.5 (3.0) 44.2 (3.1) 44.7 (2.4) 44.2 (2.0)  44.9 (4.0) 46.0 (3.8) 45.0 (3.6) 46.2 (2.7) 45.6 (2.6) 

Average number of patients within practice strata by gender at 
index date 

4528.0 
(2543.6) 

4680.9 
(2737.6) 

4330.1 
(2392.9) 

4930.5 
(2723.2) 

4112.1 
(1825.2) 

 5415.8 
(2805.9) 

4590.3 
(2951.9) 

4578.5 
(2767.0) 

4819.0 
(2375.8) 

4341.2 
(2012.4) 

Number of practices 78 78 79 78 79  78 78 79 78 79 

 

CVD risk factors 

% patients with alcohol abuse 1.5 (0.8) 1.6 (1.0) 1.8 (1.7) 2.0 (2.0) 2.4 (1.3)  0.7 (0.4) 1.0 (1.7) 0.9 (0.7) 0.8 (0.4) 1.1 (0.7) 

% patients with anxiety 8.9 (3.5) 8.9 (3.0) 9.7 (3.7) 10.9 (3.4) 12.0 (5.2)  15.5 (5.9) 15.9 (5.9) 17.2 (6.7) 17.4 (6.3) 20.1 (7.6) 

% patients with HIV 0.1 (0.2) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1)  0.1 (0.1) 0.1 (0.1) 0.1 (0.2) 0.1 (0.1) 0.0 (0.1) 

% patients with left ventricular hypertrophy 0.2 (0.1) 0.2 (0.1) 0.3 (0.2) 0.3 (0.1) 0.3 (0.2)  0.2 (0.1) 0.2 (0.1) 0.2 (0.2) 0.2 (0.1) 0.2 (0.2) 

% patients with atrial fibrillation 0.8 (0.4) 0.9 (0.4) 0.8 (0.4) 0.9 (0.3) 0.7 (0.3)  0.6 (0.3) 0.7 (0.3) 0.6 (0.3) 0.7 (0.3) 0.6 (0.3) 

% patients on atypical antipsychotic medication 0.4 (0.3) 0.4 (0.3) 0.4 (0.3) 0.4 (0.2) 0.5 (0.2)  0.4 (0.2) 0.4 (0.2) 0.4 (0.3) 0.4 (0.2) 0.5 (0.2) 

% patients with chronic kidney disease (stage 3, 4 or 5) 0.8 (0.4) 0.8 (1.0) 0.8 (0.5) 0.7 (0.4) 0.6 (0.3)  1.3 (0.9) 1.5 (1.0) 1.5 (2.2) 1.3 (0.8) 1.1 (0.6) 

% patients on regular steroid tablets 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1)  0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 

% patients with angina or heart attack in a 1st degree relative < 60 3.5 (2.5) 3.5 (3.1) 3.2 (2.2) 2.9 (2.8) 2.8 (2.2)  4.5 (3.8) 4.3 (3.5) 4.0 (2.7) 4.0 (4.1) 3.2 (2.4) 

% patients on blood pressure treatment 5.5 (2.0) 5.9 (1.6) 6.0 (1.7) 6.0 (1.5) 5.6 (1.5)  7.4 (2.7) 8.2 (2.6) 7.6 (2.0) 8.2 (1.8) 7.8 (2.2) 

% patients with migraines 3.3 (1.3) 3.3 (1.2) 3.6 (1.3) 3.7 (1.2) 3.6 (1.5)  8.7 (3.0) 8.5 (2.7) 9.6 (2.9) 9.3 (2.8) 9.7 (3.6) 

% patients with rheumatoid arthritis 0.3 (0.2) 0.3 (0.2) 0.3 (0.1) 0.4 (0.1) 0.4 (0.2)  0.8 (0.3) 0.9 (0.3) 0.9 (0.4) 0.9 (0.3) 0.9 (0.3) 
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 Male  Female 

 mean (SD))  (mean (SD)) 

 

Frailty 
(0~20%) 

( 0.7 ~  0.9) 

Frailty 
(20~40%) 

( 0.9 ~  1.0) 

Frailty 
(40~60%) 

( 1.0 ~  1.0) 

Frailty 
(60~80%) 

( 1.0 ~  1.1) 

Frailty 
(80~100%) 
( 1.1 ~  1.7)  

Frailty 
(0~20%) 

( 0.6 ~  0.9) 

Frailty 
(20~40%) 

( 0.9 ~  1.0) 

Frailty 
(40~60%) 

( 1.0 ~  1.0) 

Frailty 
(60~80%) 

( 1.0 ~  1.1) 

Frailty 
(80~100%) 
( 1.1 ~  1.6) 

% patients with severe mental illness 4.5 (2.7) 5.3 (3.0) 4.8 (2.7) 6.2 (3.0) 6.4 (3.3)  8.1 (5.2) 8.8 (4.9) 10.4 (7.0) 11.1 (6.1) 12.0 (6.5) 

% patients with Systemic Lupus Erythematosus 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)  0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 

SBP 

Average SBP within practice 130.1 (2.6) 130.4 (2.8) 130.6 (3.2) 130.8 (2.6) 130.6 (2.5)  123.4 (3.2) 124.4 (3.2) 123.8 (3.2) 124.8 (2.7) 125.0 (2.5) 

% patients with missing SBP 36.2 (9.8) 34.9 (8.4) 36.7 (8.9) 37.5 (8.4) 38.3 (9.4)  14.7 (5.8) 13.7 (5.8) 13.9 (5.3) 14.6 (6.6) 16.5 (6.5) 

BMI 

Average BMI when recorded 26.5 (0.7) 26.5 (0.6) 26.7 (0.5) 26.7 (0.6) 26.7 (0.5)  25.7 (1.1) 26.1 (1.0) 26.2 (0.9) 26.3 (0.6) 26.6 (0.7) 

% patients with missing BMI 45.6 (12.5) 47.3 (11.2) 47.2 (13.3) 50.2 (10.7) 50.0 (12.1)  30.4 (11.7) 29.1 (13.6) 28.9 (11.8) 31.3 (11.7) 33.6 (12.9) 

Cholesterol/HDL ratio 

Average Cholesterol/HDL ratio within practice 4.3 (0.2) 4.4 (0.2) 4.4 (0.3) 4.4 (0.2) 4.4 (0.2)  3.6 (0.2) 3.6 (0.2) 3.6 (0.3) 3.7 (0.2) 3.8 (0.2) 

% patients with missing Cholesterol/HDL ratio 65.6 (10.4) 66.3 (8.8) 64.8 (8.9) 69.0 (9.4) 65.5 (8.1)  63.3 (10.4) 60.1 (11.2) 61.8 (10.7) 64.9 (11.0) 62.7 (11.4) 

Smoking 

% current-smokers 32.3 (8.0) 32.9 (6.1) 33.5 (6.1) 36.4 (6.9) 38.8 (6.7)  22.1 (5.5) 24.3 (6.5) 24.4 (7.4) 26.5 (5.4) 31.0 (6.7) 

% patients with missing smoking status 26.2 (9.4) 28.6 (8.2) 27.7 (9.7) 31.7 (8.8) 33.1 (8.1)  17.4 (7.5) 17.8 (8.4) 16.9 (8.4) 21.0 (8.3) 22.9 (8.8) 

Diabetes 

% patients with type 1 diabetes 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.3 (0.1)  0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 

% patients with type 2 diabetes 1.2 (0.5) 1.3 (0.4) 1.5 (0.5) 1.6 (0.4) 1.6 (0.4)  1.0 (0.4) 1.1 (0.4) 1.1 (0.4) 1.3 (0.4) 1.3 (0.5) 

Ethnicity 

% white patients 83.0 (16.3) 87.4 (15.5) 83.2 (20.0) 89.7 (11.0) 90.1 (12.9)  84.6 (15.9) 86.4 (16.9) 83.9 (18.1) 88.9 (12.1) 90.3 (11.8) 

% patients with missing ethnicity 55.7 (21.7) 62.7 (20.0) 57.8 (26.6) 64.8 (23.0) 62.1 (22.4)  54.2 (23.0) 54.9 (26.3) 53.2 (25.1) 61.4 (23.1) 58.9 (24.7) 

Townsend (Socioeconomic Status) 

% patients with Townsend score 5 (the most deprived) 16.2 (25.8) 11.9 (21.0) 15.1 (21.9) 14.0 (19.1) 24.5 (20.1)  10.0 (19.5) 14.9 (22.4) 17.2 (24.0) 11.2 (16.4) 25.9 (21.6) 
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 Male  Female 

 mean (SD))  (mean (SD)) 

 

Frailty 
(0~20%) 

( 0.7 ~  0.9) 

Frailty 
(20~40%) 

( 0.9 ~  1.0) 

Frailty 
(40~60%) 

( 1.0 ~  1.0) 

Frailty 
(60~80%) 

( 1.0 ~  1.1) 

Frailty 
(80~100%) 
( 1.1 ~  1.7)  

Frailty 
(0~20%) 

( 0.6 ~  0.9) 

Frailty 
(20~40%) 

( 0.9 ~  1.0) 

Frailty 
(40~60%) 

( 1.0 ~  1.0) 

Frailty 
(60~80%) 

( 1.0 ~  1.1) 

Frailty 
(80~100%) 
( 1.1 ~  1.6) 

% patients with Townsend score missing 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.2 (1.4)  0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.2 (1.4) 
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        Figure 3.1 shows the relationship between risk factors’ dissimilarity between 

practices (measured by Sáez’s metric) and practice statistical frailly. Sáez’s metrics 

for the CVD variables and for their missingness were not related to the statistical 

frailty of practices (blue lines), indicating that practices with high or low statistical 

frailty had similar distribution of these risk factors. Only a few variables (including 

Townsend score) were distributed differently between practices with high or low 

statistical frailty, but there were differences in the patterns between females and 

males. 
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Figure 3.1 Relationship between quintiles of statistical frailty in practices and the stability metrics for QRISK3 CVD predictors and level of 
missingness  
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        Figure 3.2 (Beeswarm plot) also confirms that there was no visual relationship 

between practice statistical frailty and most CVD risk factors and their stability 

metrics (only variables with non-flat trend in Figure 3.1 are shown). Practices were 

grouped by percentile of CVD predictors or their stability metrics. The Pearson 

correlation coefficients between practice frailty and practice characteristics were low. 

The percentage of smokers had the highest correlations of 0.46 (95% CI: 0.38, 0.54) 

for females and 0.35 (95%CI: 0.26, 0.44) for males. 
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Figure 3.2 Relationship between quintiles of statistical frailty in practices and CVD risk 

predictors and their stability metrics (SPO) - Beeswarm plot
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        Figure 3.3 shows that there was no variation across practices in the effects of the 

risk factors on the risk of CVD outcomes, as the fixed effects of QRISK3 linear 

predictor was near 1 and the variation of random effects on slope among practices was 

near 0 (0.000111 for females and 0.000302 for males) in the random slope model. 

Comparing two reference variations of random slope (0.03 and 0.1), Figure 3.3 shows 

that there was almost no random slope, indicating similar associations between 

predictors and CVD outcome among practices. 
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Figure 3.3 Effects of the variability between practices of the QRISK3 linear predictor (random slope)
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        As shown in Figure 3.4, the incorporation of random slopes into the models (i.e., 

varying effects of the risk factors on CVD between practices) did not increase the 

accuracy in individual risk prediction. The distributions of the individual risk 

predictions for patients with a QRISK3 of 10% were comparable between the random 

slope and the random intercept model. For patients with a QRISK3 predicted 10% 

risk, the random slope alone would only change the patients’ risk by an absolute 0.6% 

between practices on 97.5% and 2.5% random slope percentile (eFigure3.9.3). The 

effects of variation of random slope on individual patients’ risk was small compared 

with the effects of the random intercept, which could change patient’s risk from 10% 

to a range of 5% and 17%.
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Figure 3.4 Comparison of the CVD risk predictions between the random intercept and slope models for patients with a QRISK3 risk of 10% (in a 
cohort of one million patients with 50% males and 50% females)
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3.5 Discussion 

3.5.1 Key results 

        This study found that the observed variation in data quality between general 

practices did not explain the unmeasured heterogeneity in QRISK3 risk prediction 

across practices (miscalibration at practice level). Specifically, practices with higher 

or lower statistical frailty had comparable indicators of data quality, including those 

based on more innovative techniques (Sáez metric). In addition, the effects of the 

QRISK3 predictors on CVD risk were comparable across practices despite these 

differences in data quality, since the random slope models found little variation of the 

beta coefficients across practices.  

 

 

3.5.2 Strength and limitation 

        This study was based on a very large patient cohort It also used the innovative 

Sáez’s metric, which could quantify the distribution-dissimilarity comparing to a test 

result from classical methods30. There are several limitations in this study. We 

considered several aspects of practice variability that covered important areas 

identified in literature6, 13, but there may be other aspects of data quality. However, 

the other aspects of data quality might not have major effects, otherwise it would be 

reflected in the distribution-dissimilarity of CVD variables and then being captured by 

Sáez’s metric. Sáez’s metric, which measured the CVD risk factors’ distribution-

dissimilarity among practices, has information loss as it suffers the “curse of 

dimensionality”31.  With more practices, there are more dimensions but this needs to 

be reduced to estimate summarised statistics resulting in loss of information. Another 

limitation concerned the estimation of the variation of the random slopes. One 

thousand bootstrap samples of 40% of the practices were used to estimate this rather 

than the whole dataset because the current random slope model algorithm28 has 

computational difficulty to reach the converge criteria when there is only a small 

effect on the slopes with greater number of practices. The sensitivity analysis (eFigure 

2) shows consistent results of variation of random slope among samples of 20%, 40%, 

50% and 60% of total practices suggesting that the variation estimate is accurate.  
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3.5.3 Interpretation 

        Data quality is an important aspect of practice variability as it influences the 

performance and generalisability of a model. Damen et al.6 discussed that data quality 

limits a model’s generalisability and models developed from poor data would 

generally have poor performance. However, this study shows that although there was 

a large variation in data quality among practices, it did not affect the accuracy of the 

risk prediction on individual patients. This indicates data quality among practices 

were well handled by the data cleaning methods (including multiple imputation for 

missing values).  

        Wynants et al.13 suggested that patient case mix or true variation of association 

between outcome and predictors might be related to the variation of a model’s 

performance in a heterogeneous setting. Patient case mix was already adjusted in 

QRISK38, and the present study found no random slopes for beta coefficients across 

practices. This indicates that the effects of QRISK3 predictors on CVD risk were 

comparable across practices. The comparison between the random slope and random 

intercept models found that the effects of practice variability on individual patients 

was fully explained by the random intercept, i.e. the unmeasured heterogeneity in 

CVD incidence between practices and deviation from the baseline hazard. 

        A recent study32 found that the addition of another risk factor (standard deviation 

of blood pressure) to QRISK3 did not improve model performance despite it being 

significantly related to CVD. Previous studies11 discovered models with similar 

discrimination and calibration could predict the same patient differently using the 

current model’s predictors. Therneau33 demonstrated an example that the effects of 

random intercept could come from unknown covariates missed by a model. This study 

found that unexplained heterogeneity at practice level cannot be resolved using 

current measured risk factors. Therefore, this study supports the conclusion from 

Damen et al.6 that current CVD models lack information on other important CVD risk 

factors, e.g. those that better measure the heterogeneity in incidence between different 

areas.  

 

3.5.4 Implications for Research and Practice 

        This study found that variation between practices in data quality and effects of 

CVD predictors were not associated with the considerable heterogeneity in CVD 

incidence. This suggests that a further study might focus on determining whether the 
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CVD risk prediction models can be extended with new risk factors from patient level 

CVD risk factors (e.g. biomarkers) or practice level, which could reduce the 

unmeasured heterogeneity in CVD incidence across practices. Further research could 

consider more individual level based methods, such as a Bayesian clinical reasoning 

model34 and machine learning models35, as this study and other findings11, 36, 37 show 

that Cox models with similar conventional model performance metrics (C-stat38 and 

calibration) could predict inconsistent risk to the same patients. Alternatively, new 

statistics might be required to measure a population based model’s performance on an 

individual level.  

        In conclusion, the considerable unmeasured heterogeneity in CVD incidence 

between practices was not explained by variations in data quality or effects of risk 

factors. QRISK3 risk prediction should be supplemented with clinical judgement and 

evidence of additional risk factors. 
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3.8 Summary points 

What was already known 

Risk prediction tools based on routinely collected data are used by clinicians to 

predict a 10-year CVD risk for individual patients. 

A previous study (accepted by scientific reports) found that there was considerable 

variability between clinical sites in the robustness of individual risk predictions. This 

heterogeneity in incidence between sites is not incorporated into current risk 

prediction approaches. 

What this study has added 

There was substantial heterogeneity between practices in the incidence of 

cardiovascular disease (CVD) which was not explained by a commonly used risk 

prediction model (QRISK3). 

Data quality, as measured by probabilistic indicators based on information theory and 

geometry, varied substantially between clinical sites. 

This study adds that this unmeasured heterogeneity in CVD incidence was not 

explained by variations in data quality or effects of risk factors between clinical sites. 
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eAppendix 3.9.1. Interpretation of appendix tables and figures. 

 

eTable 3.9.1 summarises the distribution-dissimilarity of all CVD risk factors and their 

missingness using Sáez’s proposed metrics global probabilistic deviation (GPD) and source 

probabilistic outlyingness (SPO). GPD measures risk factors’ overall outlyingness of 

practices, which ranges from 0 to 1 and the closer to 1 means there is more variation of 

practices. SPO measures the latent distance of risk factors’ distribution between one practice 

to the average of overall practice, which also ranges from 0 to 1 and closer to 1 means the 

practice is more far away from the average. The table shows part of CVD risk factors (e.g. 

Rheumatoid arthritis) among practices are very stable, which means they have similar 

distribution among practices.  Other variables, such as ethnicity, Townsend and missing level 

of ethnicity, were unstable among practices, which means the distribution of these variables 

has substantial variation among practices. 
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eTable 3.9.1. Stability metrics of all QRISK3 CVD predictors and their missing level on practice level 
 

 Male  Female 

 GPD 5th 25th 50th 75th 95th  GPD 5th 25th 50th 75th 95th 

CVD risk factors (distribution dissimilarity to the overall practice average) 

Atrial fibrillation 0.02 0.00 0.01 0.01 0.02 0.04  0.02 0.00 0.01 0.01 0.02 0.03 

Whether patients on atypical antipsychotic medication 0.02 0.00 0.01 0.01 0.02 0.03  0.02 0.00 0.00 0.01 0.02 0.03 

Chronic kidney disease (stage 3, 4 or 5) 0.02 0.00 0.01 0.01 0.02 0.04  0.03 0.00 0.01 0.02 0.03 0.05 

CVD censors 0.08 0.02 0.02 0.03 0.05 0.11  0.08 0.02 0.02 0.03 0.05 0.10 

Time to CVD event 0.19 0.05 0.07 0.10 0.14 0.40  0.20 0.05 0.08 0.11 0.15 0.42 

Cholesterol 0.08 0.02 0.03 0.05 0.07 0.11  0.10 0.02 0.04 0.06 0.09 0.17 

Regular steroid tablets 0.01 0.00 0.00 0.01 0.01 0.02  0.01 0.00 0.00 0.01 0.01 0.02 

Erectile dysfunction 0.03 0.00 0.01 0.02 0.03 0.06  0.01 0.00 0.00 0.01 0.01 0.02 

Angina or heart attack in a 1st degree relative < 60 0.06 0.01 0.02 0.03 0.06 0.10  0.07 0.01 0.02 0.04 0.06 0.11 

HDL 0.11 0.03 0.06 0.07 0.10 0.15  0.12 0.03 0.05 0.08 0.11 0.17 

Blood pressure treatment 0.03 0.00 0.01 0.02 0.03 0.06  0.04 0.00 0.01 0.02 0.04 0.07 

Migraines 0.03 0.00 0.01 0.02 0.03 0.06  0.05 0.00 0.02 0.03 0.05 0.10 

Nelson-Aalen estimator 0.18 0.05 0.07 0.10 0.14 0.36  0.19 0.05 0.08 0.11 0.14 0.36 

Rheumatoid arthritis 0.01 0.00 0.00 0.01 0.01 0.02  0.02 0.00 0.00 0.01 0.01 0.03 

Systemic Lupus Erythematosus 0.01 0.00 0.00 0.00 0.01 0.01  0.01 0.00 0.00 0.01 0.01 0.02 

Severe mental illness (this includes schizophrenia, bipolar 
disorder and moderate/severe depression) 

0.07 0.01 0.02 0.04 0.07 0.10  0.10 0.01 0.04 0.07 0.10 0.15 

Type 1 diabetes 0.01 0.00 0.00 0.01 0.01 0.02  0.01 0.00 0.00 0.01 0.01 0.02 

Type 2 diabetes 0.02 0.00 0.01 0.01 0.02 0.03  0.02 0.00 0.01 0.01 0.02 0.04 
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 Male  Female 

 GPD 5th 25th 50th 75th 95th  GPD 5th 25th 50th 75th 95th 

Age 0.11 0.02 0.04 0.07 0.10 0.17  0.12 0.03 0.05 0.07 0.12 0.20 

BMI 0.09 0.02 0.04 0.06 0.08 0.12  0.09 0.02 0.04 0.06 0.08 0.14 

Cholesterol and HDL 0.11 0.03 0.05 0.07 0.09 0.15  0.12 0.03 0.05 0.07 0.11 0.17 

Ethnicity 0.57 0.27 0.32 0.38 0.47 0.63  0.61 0.29 0.34 0.40 0.50 0.63 

SBP 0.13 0.03 0.06 0.08 0.11 0.18  0.12 0.03 0.05 0.08 0.10 0.17 

Standard deviation of SBP 0.09 0.02 0.04 0.06 0.08 0.13  0.08 0.02 0.04 0.05 0.07 0.12 

Smoking 0.10 0.02 0.04 0.06 0.09 0.16  0.11 0.02 0.04 0.06 0.10 0.19 

Townsend 0.48 0.17 0.24 0.32 0.43 0.58  0.48 0.17 0.24 0.31 0.43 0.56 

 

Missing level (distribution dissimilarity to the overall practice average) 

Missing level of Cholesterol 0.07 0.01 0.02 0.04 0.08 0.14  0.09 0.01 0.03 0.05 0.09 0.16 

Missing level of HDL 0.09 0.01 0.03 0.05 0.09 0.18  0.11 0.01 0.03 0.06 0.11 0.21 

Missing level of Nelson-Aalen estimator 0.04 0.00 0.01 0.02 0.03 0.06  0.03 0.00 0.01 0.02 0.03 0.06 

Missing level of BMI 0.12 0.01 0.03 0.07 0.12 0.22  0.13 0.01 0.04 0.08 0.13 0.24 

Missing level of ratio of Cholesterol and HDL 0.09 0.01 0.03 0.05 0.09 0.18  0.11 0.01 0.03 0.06 0.11 0.21 

Missing level of ethnicity 0.26 0.04 0.10 0.16 0.24 0.43  0.28 0.05 0.11 0.18 0.25 0.44 

Missing level of SBP 0.09 0.01 0.02 0.05 0.09 0.17  0.08 0.01 0.02 0.05 0.08 0.14 

Missing level of standard deviation of SBP 0.07 0.00 0.02 0.04 0.07 0.14  0.08 0.01 0.02 0.05 0.08 0.15 

Missing level of smoking 0.10 0.01 0.03 0.06 0.10 0.18  0.11 0.01 0.03 0.06 0.11 0.19 

Missing level of townsend 0.02 0.00 0.00 0.01 0.02 0.02  0.01 0.00 0.00 0.01 0.02 0.02 
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eFigure 3.9.1 visualises the distribution-dissimilarity of all CVD risk factors and their 

missingness using percentile of Sáez’s proposed metrics SPO strata by gender. The result is 

consistent with eTable 3.9.1, as part of risk factors are very stable among practices (blue 

lines), and other variables such as Townsend and ethnicity has substantial variation among 

practices.  
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eFigure 3.9.1 Stability metrics of all QRISK3 CVD predictors and their missing level on practice level
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Preliminary analysis showed that the variation of random slopes of full CPRD practices was 

too small and current statistical package would take very long to calculate results for full 

practices, so the study estimated practices’ variation of random slope by averaging practices’ 

variation of random slope of 1000 random samples (each sample contained 40% practices of 

all CPRD practices). Sensitive analysis (eFigure 3.9.2) shows that there is no difference of 

the average variation of random slope among different sample size of practice (20%, 40%, 

50% and 60% percent of full CPRD practices). All of them shows that there is no variation of 

random slope among practices, which suggests all practices have similar association between 

predictors and outcome. This also suggests all of samples are a representative sample of 

CPRD practices, just as CPRD is a representative sample of the whole UK practices.  
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eFigure 3.9.2.1 Effects of practice variability on QRISK3 linear predictor (random slope) (20% of overall CPRD practices) 
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eFigure 3.9.2.2 Effects of practice variability on QRISK3 linear predictor (random slope) (50% of overall CPRD practices) 
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eFigure 3.9.2.3 Effects of practice variability on QRISK3 linear predictor (random slope) (60% of overall CPRD practices) 
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eFigure 3.9.3 shows that for patients with a QRISK3 predicted 10% risk, random slope alone 

would only change the patients’ risk by absolute 0.6% between practices on 97.5% and 2.5% 

random slope percentile. The effects of variation of random slope on individual patients’ risk 

is small comparing to that random intercept could change patient’s risk from 10% a range of 

5% and 17%.The effects of random slope on individual patients however increases with the 

increase of patients predicted risk by QRISK3, but it would not affect patients' classification 

at most of the time. For example, although patients' risk could change about 2% when they 

have 25%, but the patients would still be prescribed statin after change. Also, the larger 

patients’ predicted risk by QRISK3 means the larger linear predictor which then enlarges the 

effects of random slope through exponential function from Cox model. Consider following 

empirical example which compares exp (10*1.05) - exp (10*1.01) = 11972.49 to exp 

(20*1.05) – exp (20*1.01) = 726233627. We think 20 is a linear predictor for patients with a 

very high risk, and 10 is for a patient with low risk. Ignoring random intercept here and think 

1.01 is a sum of fixed and random slope. Say the fix slope is 1, and 97.5 random slope is 0.05 

and 2.5% random slope is 0.01. We can see the larger linear predictor enlarges the differences 

because of exponential function here.
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eFigure 3.9.3. Difference of individual patients’ prediction between practice with 2.5% random slope and 97.5% slope  

and a random selected fixed random intercept
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eAppendix 3.9.2. Technical details of Sáez’s metric of distribution-dissimilarity 
 

        Sáez proposed non-parametric information theory metrics to quantify the distribution-

dissimilarity of single or multiple variables among different practice (sites) 1. Saez quantified 

the distribution-dissimilarity of variables using Jensen–Shannon divergence (JSD) 2. JSD 

(ranges from 0 to 1) calculates an information distance (divergence) of the variable’s 

probability distribution in different practices (sites), which measures the distribution-

dissimilarity of a variable among different practices (sites). Once the information distance of 

a variable between all pair of practices were acquired, Euclidean embedding 3 and simplex 4 

theory could be used to construct a coordinate for each practice based on the information 

distance among them. Based on the geometry theory, the coordinate of a latent center 

(centroid 4) could be calculated by averaging all practices’ coordinates. The centroid 

represents a latent average distribution of the variable among all practices, so the information 

distance between one practice to the centroid quantifies the dissimilarity of variable’s 

distribution of one practice to the overall average. By normalising this distance (so the 

information distance of different variables is comparable), Sáez proposed source probabilistic 

outlyingness (SPO) metric, which ranges from 0 to 1 and the higher means the site is more far 

away from centroid, to quantify the distribution-dissimilarity of variable from one practice to 

the overall average. Sáez also proposed global probabilistic deviation (GPD), also ranges 

from 0 to 1 and the higher means the more variation of the variable among practices, to 

quantify variable’s the overall distribution stability among practices 1. For multiple variables, 

dimension reduction method such as principle component analysis (PCA) 3 and factor analysis 
3, could be used to construct three or four independent principle components to represent the 

overall variation of multiple variables. Joint probabilities could be calculated using these 

principle components’ distribution, and then JSD of joint probabilities could be calculated to 

represent the combined distribution-dissimilarity of multiple variables among practices. Take 

an example to calculate SPO of age for 392 practices. JSD was first calculated between each 

pair of practices to quantify the distribution dissimilarity of age. Once divergences (distances) 

of distribution of age (i.e. JSD of age) were acquired, coordinates of each practice could be 

acquired by Euclidean embedding with simplex theory. With the geometry theory, the 

coordinate of a latent centre (centroid) of age distribution could be calculated by averaging all 

practices’ coordinates. The distance of each practice to the centroid quantifies the 

dissimilarity of age distribution of each practice to the average age distribution. SPO of age 

for each practice was then calculated by normalising this distance (so SPO of different 

predictors can be compared).  
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4.1 Abstract 

Objective: To assess the consistency of machine learning and statistical techniques in 

predicting individual- and population-level cardiovascular disease (CVD) risks and 

the effects of censoring on risk predictions. 

Design: Longitudinal cohort study from 1st Jan 1998 to 31st December 2018. 

Setting: 3.6 million patients from the Clinical Practice Research Datalink registered 

at 391 general practices in England with linked hospital admission and mortality 

records. 

Main outcome measures: Model performance including discrimination, calibration 

and consistency of individual risk prediction for the same patients among models with 

comparable model performance.  

Methods: 19 different prediction techniques were applied including 12 families of 

machine learning models (grid searched for best models), three Cox proportional 

hazards models (local fitted, QRISK3 and Framingham), three parametric survival 

models and a logistic model.  

Results: We found that the various models had similar population-level model 

performance (C-statistics of about 0.87 and similar calibration). However, the 

predictions for individual CVD risks varied widely between and within different types 

of machine learning and statistical models, especially in patients with higher risks. A 

patient with a risk of 9%~10% predicted by QRISK3 had a risk of 2.8%~9.0% in a 

random forest and 2.3%~6.9% in a neural network. Models that ignored censoring 

(i.e., censored patients assumed to be event free) substantially underestimated CVD 

risk. Of the 223,815 patients with a CVD risk >7.5% with QRISK3, 57.8% would be 

reclassified below 7.5% when using another model. 

Conclusions: A variety of models predicted risks for the same patients very 

differently despite similar model performances. The logistic model and commonly 

used machine learning models should not be directly applied for the prediction of 

long-term risks without considering censoring; Cox models such as QRISK3 are 

preferable. The level of consistency within and between models should be routinely 

assessed prior to clinical usage to help inform treatment decisions.   
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4.2 Summary boxes 

What is already known on this topic 

Risk prediction models are widely used in clinical practice (such as QRISK or 

Framingham for cardiovascular disease [CVD]). Multiple techniques can be used for 

these predictions and recent studies claim that machine learning models can 

outperform models such as QRISK. 

 

What this study adds 

Nineteen different prediction techniques (including 12 machine learning and 7 

statistical models) yielded similar population-level performance but CVD predictions 

for the same patients varied substantially between models. Models that ignored 

censoring (including commonly used machine learning models) yielded biased risk 

predictions. The level of consistency within and between models should be routinely 

assessed prior to clinical usage and ‘black box’ approaches may be less preferable in 

some settings such as CVD long-term risk prediction. 
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4.3 Introduction 

Risk prediction models are used routinely in healthcare practice to identify high risk 

patients and make treatment decisions, so that appropriate healthcare resources can be 

allocated to those patients who most need care 1. These risk prediction models are 

usually built using statistical regression techniques. Examples include the 

Framingham risk score (developed from a US cohort with prospectively collected 

data) 2 and QRISK3 (developed from a large UK cohort using retrospective electronic 

health records (EHR)).3 Recently, machine learning models have gained considerable 

popularity. The English National Health Service has invested £250 million to further 

embed machine learning in health care 4. A recent viewpoint article suggested that 

machine learning technology is about to start a revolution with the potential to 

transform the whole health care system 5. Several studies argued that machine 

learning models could outperform statistical models in terms of calibration and 

discrimination 6 7 8 9. However, another viewpoint expressed concern that these 

approaches cannot provide explainable reasons behind their predictions potentially 

leading to inappropriate actions 10, while a recent review found no evidence that 

machine learning models improved model performance compared with logistic 

models 11. However, the interpretation is difficult as this review included models from 

mostly small sample sizes and with different outcomes and predictors. Machine 

learning has established strengths in image recognition which could help diagnose 

diseases in healthcare 12 13 14 15, but censoring (patients lost to follow-up), which is a 

common issue in risk prediction, does not exist in image recognition. Many 

commonly used machine learning models do not take into account censoring by 

default 16. The objective of this study was to assess the robustness and consistency of 

a variety of machine learning and statistical models on individual risk prediction and 

the effects of censoring on risk predictions. Cardiovascular disease (CVD) was used 

as an exemplar. Robustness of individual risk prediction in this study was defined as 

the level of consistency in the prediction of risks for individual patients with models 

that have comparable population-level performance metrics 17 18 19.  
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4.4 Methods 

4.4.1 Data source  

The study cohort was derived from Clinical Practice Research Datalink (CPRD 

GOLD). The database includes data from about 6.9% of the population in England 20. 

It also has been linked to Hospital Episode Statistics, Office for National Statistics 

mortality records and Townsend deprivation scores 3 to provide additional patient 

information about hospital admissions (including date and discharge diagnoses) and 

cause-specific mortality 20. CPRD includes patient EHRs from general practice 

capturing detailed information such as demographics (age, sex and ethnicity), 

symptoms, tests, diagnoses, prescribed treatments, health-related behaviours and 

referrals to secondary care 20. CPRD is a well-established representative cohort of UK 

population and thousands of studies have used CPRD 21 22 23, including a validation of 

the QRISK2 model 24 and an analysis of machine learning 8.  

 

4.4.2 Study population 

This study used the same selection criteria for the study population, risk factors and 

CVD outcomes as used for QRISK3 3 18. Follow-up of patients started at the date of 

the patient’s registration with the practice, 25th birthday, or January 1 1998 (whichever 

latest) and ended at the date of death, incident CVD, date of leaving the practice or 

last date of data collection (whichever earliest). The index date for measurement of 

CVD risk was randomly chosen from the follow-up period in order to capture time-

relevant practice variability with a better spread of calendar time and age 25. This was 

different from QRISK3 which mostly used a single calendar time date 18. The main 

inclusion criteria were age between 25 and 84, no CVD history or any statin 

prescription prior to the index date. The outcome of interest was the 10-year risk of 

developing CVD. The primary clinical outcome (CVD) was defined the same as 

QRISK3 3, i.e. coronary heart disease, ischaemic stroke or transient ischaemic attack. 

Two main cohorts were extracted from the study population, one overall cohort 

including all patients with at least one day of follow-up and the other removing 

censored patients. The cohort without censoring excluded patients who were lost to 

follow-up before developing CVD by year 10. The analysis of the cohort without 

censoring aimed to investigate the effects of ignoring censoring on patients’ individual 
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risk prediction. This cohort mimics the methods used by some machine learning 

studies, i.e. only selected patients or practices with full 10 years follow-up 8.  

 

4.4.3 CVD risk factors  

The CVD risk factors at the index date included sex, age, body mass index (BMI), 

smoking history, cholesterol/HDL ratio, systolic blood pressure (SBP) and its standard 

deviation, history of prescribing of atypical antipsychotic medication, blood pressure 

treatment or regular oral glucocorticoids, clinical history of systemic lupus 

erythematosus, atrial fibrillation, chronic kidney disease (stage 3, 4 or 5), erectile 

dysfunction, migraine, rheumatoid arthritis, severe mental illness or type 1 or 2 

diabetes mellitus, family history of angina or heart attack in a 1st degree relative aged 

< 60 years, ethnicity and Townsend deprivation score 3. The same predictors from 

QRISK3 3 were used for all model fitting except for Framingham 26 which used fewer 

and different predictors.  

 

4.4.4 Machine learning and Cox models  

The study considered 19 models including 12 families of machine learning, three Cox 

proportional hazards models (local fitted, QRISK3 and Framingham), three 

parametric survival models (assuming Weibull, Gaussian and logistic distribution) and 

a statistical logistic model (fitted in a statistical causal-inference framework). 

Machine learning models included a logistic model 27 (fitted in an automated machine 

learning framework), random forest 28 and neural network 29 from R package “Caret” 
30; logistic model, random forest, neural network, extra-tree model 31 and gradient 

boosting classifier 31 from Python package “Sklearn” 32; logistic model, random 

forest, neural network and autoML 33 from Python package “h2o” 34. The package 

autoML selects a best model from a broader spectrum of candidate models 33. Details 

of these models are summarised in eTable 1. The study used the machine learning 

algorithms from different software packages with a grid search process on hyper-

parameters and cross validation to acquire a series of high-performing machine 

learning models; this mimics the reality that different packages may subjectively be 

selected by practitioners for model fitting and end up with a different best model. The 

study treated the models from the same machine learning algorithm from different 
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software packages as different model families as the settings (hyper-parameters) of 

these packages to control the model fitting are often different, which might result in a 

different best performing model through the grid search process.  

 

4.4.5 Statistical analysis 

The Markov chain Monte Carlo (MCMC) method with monotone style was used to 

impute missing values 10 times for ethnicity (% missing in overall cohort was 

54.3%), BMI (40.3%), Townsend score (0.1%), SBP (26.9%), standard deviation of 

SBP (53.9%), ratio of cholesterol and High-Density Lipoprotein (HDL) (65.0%) and 

smoking status (25.2%) 18 (only these variables have missing values). The overall 

cohort (which contained 10 imputations) was randomly split to an overall derivation 

(75%) and an overall testing (25%) cohort. A total of 1200 machine learning models 

with highest discrimination (C-statistic) were grid searched on hyper-parameters with 

two-fold cross validation estimating calibration and discrimination. They were 

derived from 12 model families of 100 samples with similar sample size to another 

machine learning study 8. The individual CVD risk predictions (averaged for missing 

value imputations) and model performance of all models were then estimated using 

the overall testing cohort. The sample splitting and model fitting process is shown in 

eFigure 1.  

Model performance such as sensitivity and positive predictive value (PPV) were 

calculated using a threshold of 7.5% for all models. The threshold was selected 

according to ACC/AHA Guideline on the Assessment of Cardiovascular Risk 35 and 

used in other machine learning studies 7 8. Distributions of risk predictions for the 

same group of individuals among models were compared. The individual risk 

predictions of the same patients for the other models were plotted against the 

reference model (QRISK3) in a scatter plot with Fieller’s 95% confidence interval 36. 

The differences of individual CVD risk predictions between models were plotted 

against the 10 deciles of CVD risk predictions for QRISK3. The differences of 

individual CVD risk predictions were calculated by individual risk prediction of each 

model minus the individual risk prediction of the reference model (QRISK3).  R 30 

was used to fit the models from “Caret”, and Python 31 was used to fit models from 

“Sklearn” and “h2o”. SAS procedures 37 were used to extract the raw data, create 
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analysis data sets and generate tables and graphs. The protocol for this work was 

approved by the Independent Scientific Advisory Committee for Clinical Practice 

Research Datalink research (protocol no 19_054R). 

 

4.4.6 Patient and Public Involvement 

No patients were involved in setting the research question or the outcome measures, 

nor were they involved in developing plans or implementation of the study. No 

patients were asked to advise on interpretation or writing up of results.  

 

4.5 Results 

The overall study population included 3.6 million patients from 391 general practices. 

The cohort without censoring was considerably smaller (0.4 million) than the overall 

cohort. Table 4.1 shows the baseline characteristics of the two study populations 

which were split into derivation and validation cohorts. The average age was higher in 

the cohort without censoring (due to younger patients leaving the practice as shown in 

eFigure 4.12.8). 
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Table 4.1: Baseline characteristics of the two study populations (patients aged 25-84 years 
without history of CVD or prior statin use) 

 
 Overall cohort Cohort without censoring 

 
Derivation 

cohort 
Validation 

cohort Derivation cohort 
Validation 

cohort 

Number of patients 2746453 915479 335632 111868 

CVD cases (N (%)) 86769 (3.2) 28828 (3.1) 78826 (23.5) 26168 (23.4) 

Censored patients within 10 years (N (%)) 2410516 (87.8) 803916 (87.8) NA NA 

CVD risk factors 

Females (N (%)) 1406796 (51.2) 469098 (51.2) 173691 (51.8) 58169 (52.0) 

Age (Mean (SD)) 44.7 (15.6) 44.7 (15.7) 53.3 (16.2) 53.4 (16.2) 

BMI (Mean (SD)) 26.7 (5.0) 26.7 (5.0) 27.1 (4.8) 27.1 (4.8) 

Cholesterol/HDL ratio (Mean (SD)) 3.9 (1.3) 3.9 (1.3) 4.1 (1.3) 4.1 (1.3) 

On atypical antipsychotic medication (N (%)) 123060 (0.4) 40300 (0.4) 9320 (0.3) 3160 (0.3) 

On blood pressure treatment (N (%)) 1839640 (6.7) 619620 (6.8) 427040 (12.7) 142450 (12.7) 

On regular steroid tablets (N (%)) 20590 (0.1) 6940 (0.1) 2890 (0.1) 1000 (0.1) 

History of Systemic Lupus Erythematosus (N (%)) 18400 (0.1) 6060 (0.1) 2570 (0.1) 740 (0.1) 

History of angina or heart attack in a 1st degree relative < 
60 (N (%)) 

984550 (3.6) 326190 (3.6) 79500 (2.4) 26690 (2.4) 

History of atrial fibrillation (N (%)) 207780 (0.8) 69650 (0.8) 52130 (1.6) 17570 (1.6) 

History of chronic kidney disease (stage 3, 4 or 5) (N (%)) 301330 (1.1) 102400 (1.1) 43640 (1.3) 15140 (1.4) 

History of erectile dysfunction (N (%)) 396510 (1.4) 131100 (1.4) 38670 (1.2) 12870 (1.2) 

History of migraines (N (%)) 1774390 (6.5) 591060 (6.5) 196290 (5.8) 65930 (5.9) 

History of rheumatoid arthritis (N (%)) 161670 (0.6) 54590 (0.6) 30430 (0.9) 10300 (0.9) 

History of severe mental illness (N (%)) 2198610 (8.0) 728320 (8.0) 321900 (9.6) 106730 (9.5) 

History of type 1 diabetes (N (%)) 58990 (0.2) 20970 (0.2) 8200 (0.2) 2510 (0.2) 

History of type 2 diabetes (N (%)) 355690 (1.3) 118260 (1.3) 81340 (2.4) 26410 (2.4) 

SBP (Mean (SD)) 126.9 (16.7) 126.9 (16.7) 133.1 (18.3) 133.1 (18.3) 

Standard deviation of each individual patients' SBP (Mean 
(SD)) 

9.9 (5.6) 9.9 (5.6) 10.7 (5.9) 10.7 (5.9) 

Ethnicity 

Other ethnicity (N (%)) 372240 (1.4) 125370 (1.4) 13660 (0.4) 4490 (0.4) 

White or not recorded (N (%)) 25731820 (93.7) 8573550 (93.7) 3287320 (97.9) 1095950 (98.0) 

Smoking 

Ex-smoker (N (%)) 6300299 (22.9) 2095026 (22.9) 761755 (22.7) 255109 (22.8) 

Current smoker (N (%)) 8066066 (29.4) 2696146 (29.5) 940730 (28.0) 312258 (27.9) 

Never smoker (N (%)) 13098165 (47.7) 4363618 (47.7) 1653835 (49.3) 551313 (49.3) 

Townsend deprivation 

Score 1 – Least deprived (N (%)) 6004107 (21.9) 1999488 (21.8) 866048 (25.8) 291496 (26.1) 

Score 2 (N (%)) 5947510 (21.7) 1976893 (21.6) 822072 (24.5) 272627 (24.4) 

Score 3 (N (%)) 5728916 (20.9) 1910200 (20.9) 698985 (20.8) 233291 (20.9) 

Score 4 (N (%)) 5680051 (20.7) 1895230 (20.7) 604246 (18.0) 201443 (18.0) 

Score 5 – Most deprived (N (%)) 4103946 (14.9) 1372979 (15.0) 364969 (10.9) 119823 (10.7) 
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Table 4.2 shows the model performance of the machine learning and statistical 

models. All models had very similar discrimination (C-statistics of about 0.87) and 

calibration (Brier scores of about 0.03). Details on model performances are shown in 

eTable 4.12.3.1-4.12.3.2 and eFigure 4.12.2.1-4.12.2.2 and 4.12.3.1-4.12.3.6). 
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Table 4.2: Performance indicators of machine learning and statistical models in the overall cohort 
 

 Model performance* (95% range #) 
Average absolute change of 

model performance (95% range) 

 
C-statistic 

(2.5% ~ 97.5%) # 
Brier score 

(2.5% ~ 97.5%) # 

Recall 
(Sensitivity) 

(2.5% ~ 97.5%) # 

Precision 
(PPV) 

(2.5% ~ 97.5%) # 
C-statistic 

(2.5% ~ 97.5%) # 

Logistic (Caret) 0.879 (0.879, 0.879) 0.028 (0.028, 0.028) 0.615 (0.609, 0.620) 0.163 (0.162, 0.164) +0.00% (-0.03%, 0.04%) 

Random forest (Caret) 0.869 (0.867, 0.869) 0.028 (0.028, 0.028) 0.656 (0.620, 0.675) 0.144 (0.139, 0.153) -1.20% (-1.33%, -1.10%) 

Neural network (Caret) 0.878 (0.867, 0.880) 0.028 (0.027, 0.028) 0.670 (0.642, 0.687) 0.148 (0.141, 0.153) -0.15% (-1.35%, 0.06%) 

Statistic logistic model 0.879 (0.879, 0.879) 0.028 (0.028, 0.028) 0.614 (0.607, 0.620) 0.163 (0.162, 0.164) +0.01% (-0.02%, 0.04%) 

QRISK3 0.879 0.031 0.834 0.107 Reference model 

Framingham 0.865 0.031 0.892 0.085 -1.66% (-1.66%, -1.66%) 

Local Cox model 0.877 (0.877, 0.878) 0.032 (0.031, 0.032) 0.810 (0.804, 0.816) 0.112 (0.110, 0.113) -0.22% (-0.28%, -0.17%) 

Parametric survival model (Weibull) 0.877 (0.876, 0.877) 0.031 (0.031, 0.032) 0.810 (0.804, 0.815) 0.111 (0.110, 0.113) -0.29% (-0.35%, -0.24%) 

Parametric survival model (Gaussian) 0.876 (0.876, 0.877) 0.031 (0.030, 0.031) 0.834 (0.830, 0.839) 0.104 (0.103, 0.105) -0.33% (-0.39%, -0.29%) 

Parametric survival model (Logistic) 0.876 (0.875, 0.876) 0.031 (0.031, 0.032) 0.796 (0.791, 0.802) 0.114 (0.113, 0.115) -0.36% (-0.43%, -0.31%) 

Logistic (Sklearn) 0.879 (0.879, 0.879) 0.028 (0.028, 0.028) 0.615 (0.609, 0.620) 0.163 (0.161, 0.164) 0.00% (-0.05%, 0.03%) 

Random forest (Sklearn) 0.872 (0.871, 0.873) 0.028 (0.028, 0.028) 0.670 (0.661, 0.679) 0.142 (0.140, 0.144) -0.80% (-0.89%, -0.71%) 

Neural network (Sklearn) 0.872 (0.832, 0.879) 0.028 (0.028, 0.029) 0.556 (0.174, 0.692) 0.163 (0.137, 0.224) -0.85% (-5.39%, -0.03%) 

Gradient boosting classifier (Sklearn) 0.878 (0.877, 0.878) 0.028 (0.028, 0.028) 0.642 (0.623, 0.657) 0.154 (0.150, 0.157) -0.17% (-0.29%, -0.08%) 

extra-trees (Sklearn) 0.863 (0.861, 0.864) 0.028 (0.028, 0.029) 0.639 (0.628, 0.650) 0.139 (0.136, 0.141) -1.89% (-2.05%, -1.76%) 

Logistic (h2o) 0.879 (0.878, 0.879) 0.028 (0.028, 0.028) 0.615 (0.608, 0.621) 0.162 (0.161, 0.164) -0.06% (-0.10%, -0.02%) 

Random forest (h2o) 0.877 (0.877, 0.878) 0.028 (0.028, 0.028) 0.646 (0.631, 0.659) 0.152 (0.149, 0.154) -0.22% (-0.29%, -0.17%) 

Neural network (h2o) 0.875 (0.870, 0.879) 0.028 (0.028, 0.031) 0.552 (0.163, 0.780) 0.169 (0.118, 0.238) -0.45% (-1.09%, -0.04%) 

autoML (h2o) 0.879 (0.879, 0.880) 0.028 (0.028, 0.028) 0.616 (0.605, 0.642) 0.162 (0.157, 0.164) -0.01% (-0.07%, 0.06%) 
               * Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models 

               # 95% range (2.5% ~ 97.5%) of model performances was derived from 100 random samples 
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Figure 4.1a shows that models which ignored censoring substantially underestimated 

patients’ CVD risks in the overall cohort. Patients with a predicted CVD risk between 

9.5%~10.5% with QRISK3 had a median prediction of 4.1% with logistic Caret 

model, 5.1% with Caret neural network and 5.0% with Sklearn random forest. As 

shown in Figure 4.2a, multiple models fitted from the cohort without censoring 

substantially overestimated patients’ risk compared to QRISK3. The removal of 

censored patients changed the magnitude but not the variability of individual CVD 

risk predictions (Figure 4.2b and Figure 4.1b). 
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Figure 4.1: Distribution of individual risk predictions with machine learning and statistical models in overall cohort 

a. For patients with predicted CVD risks of 9.5%~10.5% in QRISK3 
b. For patients with predicted CVD risks of 7%~8% in the logistic Caret model  

X axis: predicted CVD risk 

Y axis: relative frequency (estimated density value) 
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Figure 4.1a                                                                                                     Figure 4.1b     
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Figure 4.2: Distribution of individual risk predictions with machine learning and statistical models in cohort without censoring 

a. For patients with predicted CVD risks of 9.5%~10.5% in QRISK3 
b. For patients with predicted CVD risks of 7%~8% in the logistic Caret model  

X axis: predicted CVD risk 

Y axis: relative frequency (estimated density value) 
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Figure 4.2a                                                                                                 Figure 4.2b      
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Table 4.3 shows the range of individual CVD risk predictions across the different 

models. It was found that patients with a QRISK3 predicted risk of 7%~8% had 

predicted CVD risks between 2.0% and 7.3% in a Caret random forest, 1.7% and 

5.2% in Caret neural network and 1.4% and 5.6% in Sklearn neural network (eTable 

4.12.5.1). Figure 4.3 shows the variation of individual risk predictions between 

QRISK3 and to those generated by the other models with Fieller’s confidence 

interval. Similar to the findings presented in Table 4.3, predictions for these same 

patients varied substantially between models.
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Table 4.3: Comparison of individual risk predictions of machine learning and statistical models in the overall cohort and cohort without censoring 
 

 Range of individual risk predictions (2.5th~97.5th) with other models compared to those of reference model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Overall cohort 

QRISK3 as reference model 

Soft voting * 0.3~3.5 2.7~5.2 3.1~6.0 3.5~6.8 3.9~7.5 4.3~8.3 4.6~9.0 5.1~9.8 7.2~36.4 

All models 0.1~4.9 1.5~10.5 1.8~11.6 2.0~12.7 2.4~13.6 2.6~14.7 2.9~15.7 3.2~16.7 5.0~44.8 

Logistic model (Caret) as reference model 

Soft voting 0.3~7.8 8.2~12.3 9.4~13.9 10.5~15.4 11.7~16.8 12.8~18.2 14.0~19.3 15.0~20.5 17.1~41.6 

All models 0.1~9.7 5.4~20.1 6.2~22.1 7.0~24.0 7.8~26.1 8.5~28.1 9.2~29.9 9.9~31.7 12.6~53.7 

 

Cohort without censoring 

QRISK3 as reference model 

Soft voting 1.4~16.4 12.5~25.2 14.3~28.5 15.9~30.7 17.1~33.7 18.8~36.6 20.4~38.9 21.8~41.2 28.4~80.7 

All models 0.6~18.1 8.4~29.5 9.5~33.4 10.5~36.0 11.4~39.4 12.3~42.4 13.2~45.2 13.9~47.4 19.3~85.9 

Logistic model (Caret) as reference model 

Soft voting 1.2~5.3 4.7~7.7 5.4~8.9 6.2~9.8 7.1~10.9 7.8~11.9 8.5~13.5 9.4~14.3 11.9~76.2 

All models 0.2~6.3 1.6~9.2 2.0~10.9 2.3~12.2 2.7~14.1 3.1~15.3 3.4~17.0 3.8~18.2 8.4~82.0 
 
            *Soft voting involved averaging of predictions of all models except the reference model 
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Figure 4.3: Inconsistency of individual risk predictions with machine learning and statistical models with Fieller's 95% confidence 

interval (each dot corresponds to an individual prediction; a random sample of these is displayed with red line enclosing 95% of the 

observations) 

a. Overall cohort 

b. Cohort without censoring  

X axis: QRISK3 predicted CVD risk 

Y axis: predicted CVD risk by other models 
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Figure 4.3a                                                                                                     Figure 4.3b     

 



122 
 

Substantial reclassification using a threshold was found when changing between 

different models. Of 691,664 patients with a CVD risk ≤7.5% as predicted by 

QRISK3, 13.6% would be reclassified above 7.5% when using another model (Table 

4.4). Of the 223,815 patients with a CVD risk >7.5%, 57.8% would be reclassified 

below 7.5% when using another model. High levels of reclassification were also 

found with a different reference model (as shown in Table 4.4) or a different threshold 

(eTable 4.12.7).
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Table 4.4: Reclassification of individual risk predictions with machine learning and statistical models 
 

 Reclassification in overall testing cohort* 

 Reclassified* Not reclassified 

Overall cohort 

QRISK3 10year risk prediction (reference model) 

Below or equal to 7.5% threshold 94186 (13.6%) 597478 (86.4%) 

Above 7.5% threshold 129348 (57.8%) 94467 (42.2%) 

 

Logistic model (Caret) 10 year risk prediction (reference model) 

Below or equal to 7.5% threshold 209221 (25.9%) 597478 (74.1%) 

Above 7.5% threshold 14313 (13.2%) 94467 (86.8%) 

 

Cohort without censoring 

QRISK3 10 year risk prediction (reference model) 

Below or equal to 7.5% threshold 34607 (54.6%) 28779 (45.4%) 

Above 7.5% threshold 1248 (2.6%) 47234 (97.4%) 

 

Logistic model (Caret) 10 year risk prediction (reference model) 

Below or equal to 7.5% threshold 6004 (17.3%) 28779 (82.7%) 

Above 7.5% threshold 29851 (38.7%) 47234 (61.3%) 
 

               *Patient are re-classified if they have a risk prediction in any model which crosses the threshold compared to the prediction of the reference model 
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Figure 4.4 plots the differences of individual CVD risk predictions with the different 

models stratified by deciles of CVD risk predictions of QRISK3. The largest range of 

inconsistencies in risk predictions was found in patients with highest predicted CVD 

risks. Low CVD risk was generally predicted consistently between and within models. 

Similar trends were observed using a different reference model (eFigure 4.12.4). 

 



125 
 

Figure 4.4: 95% range of individual risk predictions with machine learning and statistical models stratified by deciles of predicted CVD 

risks with QRISK3 

a. Overall cohort 

b. Cohort without censoring 

X axis: 10 deciles of QRISK3 predicted CVD risk (displayed by median value within decile) 

Y axis: 95% range of differences in predicted CVD risks with all other models
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Figure 4.4a                                                                                                  Figure 4.4b 
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Several sensitivity analyses were conducted with consistent findings of high levels of 

inconsistencies in individual risk predictions between and within models. The same 

machine learning algorithm with the selection of different settings (hyper parameters) 

from different software packages yielded different individual CVD risk predictions 

(e.g. Caret neural network, Sklearn neural network and h2o neural network; eTable 

4.12.8 and eFigure 4.12.5). The evaluation of the effects of generalisability by 

developing and testing models in different regions of England showed similarly high 

levels of inconsistencies in CVD risk predictions (eTable 4.12.10 and eFigure 4.12.6). 

Changing the number of predictors did not result in lower levels of inconsistencies in 

CVD risk predictions with more predictors included in the models (eTable 4.12.11 

and eFigure 4.12.7), 

 

4.6 Discussion 

We found that the predictions of CVD risks for individual patients varied widely 

between and within different types of machine learning and statistical models, 

especially in patients with higher risks (when using similar predictors). A statistical 

logistic model and the machine learning models that ignored censoring substantially 

underestimated CVD risk.  

Despite claims that machine learning models can revolutionise risk prediction and 

potentially replace traditional statistical regression models in other areas 5 38 39, this 

study of CVD prediction in primary care found that they have similar model 

performance to traditional statistical methods and share similar uncertainty in 

individual risk predictions. Strengths of machine learning models may include their 

ability to automatically model non-linear associations and interactions between 

different risk factors 40 41. They may also find new data patterns 31. They have the 

acknowledged strength to automate model building with a better performance in 

specific classification tasks (e.g. image recognition) 31. However, a critical question is 

whether risk prediction models provide accurate and consistent risk predictions for 

individual patients. Previous research has found that a traditional risk prediction 

model such as QRISK3 has considerable uncertainty on individual risk prediction 

though it has very good model performance at the population level 18 19. This 

uncertainty was found to be related to unmeasured heterogeneity between clinical 
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sites and modelling choices such as the inclusion of secular trends 18 19. The present 

study has found that machine learning models share this uncertainty as models with 

comparable population-level performance yielded very different individual risk 

predictions; consequently, different treatment decisions could be made by arbitrarily 

selecting another technique.  

Censoring of patients is an unavoidable problem in the development and validation of 

prediction models for long-term risks as patients frequently move away or die. 

However, many popular machine learning models ignore censoring as the default 

framework is the analysis of a binary outcome rather than time-to-event survival 

outcome. A UK Biobank study of CVD risk prediction did not report how censoring 

was dealt with 7, like several other studies 41 42 43. Another machine learning study 

incorrectly excluded censored patients 8. Random survival forest is a machine learning 

model that takes into account of censoring 44. There are also innovative techniques 

being developed that incorporate statistical censoring approaches into the machine 

learning framework 16 45. However, to our knowledge currently there are no software 

packages can handle large datasets for these methods. This study shows that directly 

applying popular machine learning models to survival analysis without considering 

censoring substantially biased risk predictions. The miscalibration was large 

compared to observed life-table predictions. This is consistent with a recent study that 

reported information loss due to lack of considering censoring with random forest 

method 6. 

The present study considered a total of 22 predictors which had been selected by the 

developers of QRISK on the basis on their likely causal effect on CVD 3. Other 

machine learning studies have used considerably more predictors. As an example, a 

study using the UK Biobank included 473 predictors in the machine learning models 
7. A potentially unresolved issue in risk prediction is what type and how many 

variables should be included in models, as currently there is a lack of consensus and 

guidelines for choosing variables for risk prediction model 46. More information 

incorporated into a model may increase the population model performance of risk 

prediction. For example, the C-statistic is related to both the effects of predictors and 

the variation of predictors among patients with and without events 47. Including more 

predictors in a model may increase the C-statistic merely due to higher variation of 

predictors. On the other hand, inclusion of non-causal predictors may lower the 
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accuracy of the risk prediction by adding noise, increase the risk of over-fitting and 

suffer more data quality challenges 48. Also, a very large number of predictors may 

limit the clinical utility of these machine learning models, as more predictors need to 

be measured before making a prediction. Further research is needed to establish 

whether the focus of risk prediction should be on consistently measured causal risk 

factors or variables that may be recorded inconsistently between clinicians or EHR 

systems. 

Current guidelines for the development and validation of risk prediction models 

(called TRIPOD) focus on the assessment of population-level performance but do not 

consider consistencies in individual risk predictions by prediction models with 

comparable population-level performance 49. Arguably, the clinical utility of risk 

prediction models should be based, as done with blood pressure devices for instance, 

on the consistent risk prediction (reliability) for a particular patient rather than broad 

population-level performance 50. If models with comparable performance provide 

different predictions for a patient with certain risk factors, there is a need of an 

explanation for these discrepant predictions 51. Explainable artificial intelligence has 

been described as methods and techniques in the application of artificial intelligence 

such that the results of the solution can be understood by human experts 52. It 

contrasts with the concept of the "black box" in machine learning where predictions 

cannot be explained. Arguably, a prediction model which is explainable (such as 

QRISK3 which is based on established causal predictors) may be preferable over 

“black box” models that are high-dimensional (including many predictors) but that 

provide inconsistent results for individual patients. Better standards are needed on 

how to develop and test machine learning algorithms 14 

The major strength of this study was that a large number of different machine learning 

models with varying hyper-parameters using different packages from different 

programming languages were fitted to a large population-based primary care cohort. 

However, there are several study limitations. We only considered predictors from 

QRISK3 in order to compare models based on equal information, but sensitivity 

analyses showed similar findings of inconsistencies in CVD risk prediction 

independent of the number of predictors. Furthermore, more hyper-parameters in the 

machine learning models could have been considered in the grid search process. 

However, the fitted models already achieved reasonable high model performance 
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which indicates that the main hyper-parameters had been covered in the grid search 

process. There are several machine learning algorithms that were not included in this 

study such as support vector machine or survival random forest. The reason is due to 

the difficulty that software packages handling large datasets 53 54 55 56. Another 

limitation is that this study concerned CVD risk prediction in primary care and 

findings may not be generalisable to other outcomes or settings. However, the 

robustness of individual risk predictions within and between models with comparable 

population-level performance is rarely, if ever, evaluated. Our findings do indicate the 

importance of assessing this. 

In conclusion, a variety of models predicted CVD risks for the same patients very 

differently despite similar model performances. Using the logistic model and 

commonly used machine learning models without considering censoring in survival 

analysis results substantially biased risk prediction and have limited usefulness in the 

prediction of long-term risks. The level of consistency within and between models 

should be assessed prior to clinical usage for treatment decisions and considered in 

TRIPOD guidelines. 
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4.12 Supplementary Online Content 

eTable 4.12.1. Description of the machine learning and statistical models included in this 
study and the key parameters 
 
eTable 4.12.2. Performance indicators of machine learning and statistical models in overall 
cohort with logistic caret model as reference model 
 
eTable 4.12.3.1. Performance indicators of machine learning and statistical models in cohort 
without censoring with QRISK3 model as reference model 
 
eTable 4.12.3.2. Performance indicators of machine learning and statistical models in cohort 
without censoring with logistic caret model as reference model 
 
eTable 4.12.4.1. More performance indicators of machine learning and statistical models 
 
eTable 4.12.4.2. More performance indicators of machine learning and statistical models in 
cohort without censoring 
 
eTable 4.12.5.1. Comparison of individual risk predictions of machine learning and statistical 
models in overall cohort (with as reference the risk predictions of the QRISK3) 
 
eTable 4.12.5.2. Comparison of individual risk predictions of machine learning and statistical 
models in overall cohort (with as reference the risk predictions of the logistic Caret model) 
 
eTable 4.12.5.3. Comparison of the individual risk predictions of machine learning and 
statistical models in cohort without censoring (with as reference the risk predictions of the 
QRISK3 model) 
 
eTable 4.12.5.4: Comparison of the individual risk predictions of machine learning and 
statistical models in cohort without censoring (with as reference the risk predictions of the 
Logistic Caret model) 
 
eTable 4.12.6. Spearman correlations of machine learning models and statistical models in 
risk groups (logistic Caret predicted risk between 7%~8%) 
 
eTable 4.12.7. Reclassification of individual risk predictions of machine learning and 
statistical models with 10% as threshold 
 
eTable 4.12.8. Reclassification of individual risk predictions of Caret neural network models 
with different hyperparameters  
 
eTable 4.12.9. Inconsistency of individual risk prediction between machine learning models 
derived from overall cohort and cohort without censoring 
 
eTable 4.12.10. Performance indicators of machine learning and statistical models developed 
in South and validated in North England 
 
eTable 4.12.11. Performance indicators of machine learning and statistical models with lower 
number of predictors 
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eFigure 4.12.1. Flow chart of sample splitting and model fitting process 
 
eFigure 4.12.2.1. Calibration slope of machine learning models and statistical models in 
overall cohort 

c. Survival framework (Observed events consider censoring) 
d. Binary framework (Observed events did not consider censoring) 

eFigure 4.12.2.2. Calibration slope of machine learning models and statistical models in 
cohort without censoring 

a. Survival framework  
b. Binary framework 

eFigure 4.12.3.1. Calibration plots in machine learning models of Caret in overall cohort and 
cohort without censoring 
 
eFigure 4.12.3.2. Calibration plots in statistical logistic models in overall cohort and cohort 
without censoring 
 
eFigure 4.12.3.3. Calibration plots in Cox proportional hazard models in overall cohort and 
cohort without censoring 
 
eFigure 4.12.3.4. Calibration plots in parametric survival models in overall cohort and cohort 
without censoring 
 
eFigure 4.12.3.5. Calibration plots in machine learning models of Sklearn in overall cohort 
and cohort without censoring 
 
eFigure 4.12.3.6. Calibration plots in machine learning models of h2o in overall cohort and 
cohort without censoring 
 
eFigure 4.12.4. 95% range of individual risk predictions with machine learning and statistical 
models stratified by deciles of predicted risks with Caret logistic model 

a. Overall cohort 
b. Cohort without censoring 

 
eFigure 4.12.5. 95% range of individual risk predictions with Caret neural network models 
with different grid searched best hyperparameters stratified by deciles of predicted risks with 
models with the most frequent selected hyperparameters 
 
eFigure 4.12.6. Distribution of individual risk predictions with machine learning and 
statistical models developed in practices from South and tested in practices from North 
England 

eFigure 4.12.7. Distribution of individual risk predictions with machine learning and 
statistical models developed with predictors of age and sex plus 1/3, 1/2, 2/3 of all predictors 

eFigure 4.12.8. Distribution of age among removed patients due to censoring (death patients 
excluded)  
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eTable 4.12.1 describes the 19 model families used in main study and selected 
hyperparameters in grid search process. 

 

eTable 4.12.2 shows the model performance among all models with logistic model 
Caret as reference. Like the main study, most models had similar model performance.  

 

eTable 4.12.3.1-4.12.3.2 shows the model performance of machine learning and 
statistical models in the cohort without censoring. Though all models generally had a 
lower C-statistic than the models from the cohort with censoring (Table 4.2 in the 
main manuscript), the performance of these models was comparable.  

 

eTable 4.12.4.1-4.12.4.2 shows more model performance measures including F1 
score, balanced accuracy, negative predictive value (NPV) and specificity with 
threshold as 7.5% in binary framework in overall cohort and cohort without 
censoring. In general, all models had a few slightly better measures than others but 
also had a few slightly worse measures than other models. This was because these 
measures are a trade-off and being influenced by the selected threshold (i.e. a 
different threshold say 10% rather than 7.5% would change values of these measures).  

 

eTable 4.12.5.1-4.12.5.4 shows the inconsistencies of range of individual CVD risk 
predictions for different strata of predictions with the QRISK3 and logistic Caret 
model as reference in the overall cohort and cohort without censoring. Logistic 
models and machine learning models which ignore censoring substantially 
underestimated patient risks (eTable 4.12.5.1), predictions for same individual 
patients varied substantially (eTable 4.12.5.2). Removing patients with censoring 
makes models overestimated patients risk compared to QRISK3 (eTable 4.12.5.3) 
and it did not change the magnitude of inconsistency of individual risk prediction 
(eTable 4.12.5.4).  

 

eTable 4.12.6 shows the low correlation between individual risk prediction among 
different machine learning models. The results were consistent with the Figure 4.1b: 
machine learning models with similar model performance predicted the same patients 
differently.  

 

eTable 4.12.7 is a similar reclassification table as Table 4.4 except using 10% rather 
than 7.5% threshold. Similar reclassification was found as in the main study. Of the 
735,474 patients with a CVD risk ≤10%, 10% were reclassified when using another 
model. Of the 180,005 patients with a CVD risk >10%, 62.9% were reclassified when 
using another model. 
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eTable 4.12.8 shows the reclassification effects of choosing different 
hyperparameters for the same machine learning model family on individual risk 
prediction. Neural network Caret with hyperparameters of size (number of neurons) 
and decay (parameter to control the overfitting) was used as an exemplar. From 100 
best models grid searched from random samples, there were 17 groups of best 
selected hyperparameters. Using the average risk predictions from the most frequent 
group as reference (in this case the biggest model group has 17 neural network models 
with size=3 and decay=3.5 from grid search process), risk predictions of the same 
patients from the same model with different best hyperparameters were compared in 
eFigure 4.12.5. The reclassification eTable 4.12.8 shows that among 129,991 patients 
over threshold 7.5%, 11% of them would be reclassified if a different best 
hyperparameter was chosen. However, in the main study, the variation of individual 
risk predictions within the same model family was eliminated by model ensembling 
with soft voting (averaging). This additional analysis shows the inconsistency of 
individual risk prediction among machine learning models could be worse considering 
variation of individual risk prediction among the same model family, and current 
approach to find the best hyperparameters is data-driven and in lack of a principal 
way to determine what hyperparameters were more proper before fitting the model. 

 

eTable 4.12.9 used the machine learning models from the cohort without censoring to 
calculate risk for the full cohort (the cohort with censoring), and then the risk 
prediction of the same model of the same risk group of patients was compared. Even 
within the same model, the risk predictions for the same patients did not agree to each 
other. Machine learning models derived from a cohort without censoring predicted 
larger range of risk than the same machine learning models derived from a cohort 
with censoring on the same patients. The same applied to the fitted statistical models, 
as both models were fitted on a biased cohort, i.e. patients censoring were artificially 
removed. This indicates that models developed from a censored removed cohort (this 
has been done in several machine learning papers) should not be used in a cohort with 
censoring, as ignoring censoring introduces bias (mis-calibration) to individual risk 
prediction.  

 

eTable 4.12.10 shows the model performance of models developed from practices 
from South England and validated in practices from North England. It also shows 
similar inconsistency of individual risk prediction was found as in main manuscript 
(eFigure 4.12.6). As expected, models have similar model performance in the North 
and South England, which is consistent to the main study. However, models 
developed from practices from South generally have lower model performance in 
practices from North English practices compared to practices from South England in 
either machine learning models or statistical models. Previous study using the random 
effects model showed that there was practice variability among UK practices with an 
effect on individual risk prediction 1. In this study, this sensitive analysis showed that 
machine learning models did not automatically capture this variability in coding.  
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eTable 4.12.11 compares the model performance of models with age and sex plus 1/3, 
1/2 and 2/3 randomly sampled predictors. Except random forest caret, all models have 
similar model performance among each other as in the main study and similar 
inconsistency of individual risk prediction was found as in main manuscript (eFigure 
4.12.7). Random forest Caret model was underfitted with 1/3 predictors as the final 
model grid searched the best parameter mtry (number of predictors used to grow 
branches) as the same number of available predictors. As expected, model 
performance of random forest Caret improved with the increase of number of 
predictors. Random forest Caret model has the similar model performance as other 
models with full predictors indicate enough predictors were considered in the study.  

 

eFigure 4.12.1 visualises the workflow of sample splitting and model fitting process. 
 

eFigure 4.12.2.1 -4.12.2.2 shows the calibration slopes of all machine learning 
models and statistical models in overall cohort and cohort without censoring. It shows 
that both models were well calibrated in their own framework (i.e. Cox models in 
survival framework and logistic models and machine learning models in binary 
framework). However, Logistic models and machine learning models ignoring 
censoring were mis-calibrated (eFigure 4.12.2.1a) in survival framework (i.e. cohorts 
with censoring). It appears that models were well calibrated in both framework in 
cohort without censoring, as survival framework and binary framework were similar 
once patients with censoring were removed. However, artificially removing patients 
with censoring makes the cohort non-representative as censoring often occurs over 
time. Figure 4.2a in main manuscript has shown that logistic models and machine 
learning models developed from cohort without censoring over-estimated patient risks 
in overall cohort compared to QRISK3.   

 

eFigure 4.12.3.1 – 4.12.3.6 shows the calibration plots (same information as 
eFigure4.12.2.1-4.12.2.2 but with different visualisation) of all machine learning 
models and statistical models. Machine learning models had good calibration in a 
binary framework (i.e. treating the patients with censoring as non-events) irrespective 
of the cohort with censoring or cohort without censoring. However, the calibration 
figures of the cohort with censoring showed that machine learning models had poor 
calibration in the survival framework (i.e. considering the effects of censoring). Once 
censoring was removed, the calibration of machine learning models improved (shown 
in calibration plot from cohort without out censoring). This suggests that although 
machine learning models which ignore patient-censoring can have good calibration in 
a binary framework, it was poor calibrated in survival framework. Cox models 
including QRISK3 and Framingham have very good calibration in a survival 
framework but very poor calibration in a binary framework as they considered 
censoring with time-to-events outcome. However censoring is very common with 
long-term risks and should not be ignored.  
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eFigure 4.12.4a-4.12.4b is a similar plot as Figure 4.4a-4.4b in main manuscript 
except it used logistic Caret model as reference rather than QRISK3. It shows similar 
finding that inconsistency of individual risk prediction among models were mainly in 
higher risk group patients.  

 

eFigure 4.12.8 shows that among patients who were censored (death excluded), 
younger patients were the majority. This indicates the reason that average age in the 
cohort without censoring is higher than the cohort with censoring is the effects of 
younger patients transferred out from practices that compensated the effects of older 
patients who died during the follow-up. 
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eTable 4.12.1: Description of the machine learning and statistical models included in this study 
and the key parameters 

 

 Package description Model description 
Key parameters selected by 

analyst for grid search 

Caret 

Logistic Classification And REgression 
Training (Caret) is a R package which 
has a series of functions to create 
predictive models in a structural and 
organized way. It contains functions 
which can be used to split data, pre-
process data, select predictors, tune 
model and resample 2 

Logistic model is a type of generalised 
linear model with a binary variable as 
outcome 3 

None 

Random forest Random forest is an ensemble machine 
learning model which combines the 
predictions from multiple decision-
trees where each tree grows from an 
independent sample of predictors 4 

mtry: number of randomly 
selected predictors as candidates at 
each split 
ntree: number of trees 

Neural network Neural network is a machine learning 
model whose model-structure mimics 
the structure of animal brain using 
hidden layers and neurons in those 
hidden layer 5 

size: number of units in hidden 
layer (neural network in Caret only 
fits one hidden layer) 
decay: a regularization parameter 
to control over-fitting (higher 
decay means less chance of over-
fitting) 

Statistical logistic model 

Logistic model Standard statistical way to fit logistic 
model with glm() function from basic 
R library 6 

Logistic model fitted with standard 
statistical approach  

None 

Cox proportional hazards model 

QRISK3 Effects of predictors on hazard ratio 
are assumed to be multiplicative. Cox 
models take into account censoring 7 

QRISK3 was derived from a UK 
cohort 8 

None 

Framingham Framingham model was derived from 
a US cohort 9 

None 

Local Cox model Re-fitted Cox model using the same 
training cohorts and validation cohorts 
as machine learning models.  

None 

Parametric survival model 

Weibull distribution Parametric survival models are 
alternatives of Cox model in survival 
analysis. It assumes survival time 
follows a known parametric 
distribution (e.g. Weibull 
distribution). Parametric survival 
models also take into account 
censoring naturally 10.  

Assume survival time follows Weibull 
distribution 

None 

Gaussian distribution Assume survival time follows 
Gaussian distribution  

None 

Logistic distribution Assume survival time follows Logistic 
distribution  

None 

Sklearn 

Logistic Scikit-learn (Sklearn) is a free 
machine learning library written in 
Python. It supports different machine 
learning algorithms including 
classification, regression and 
clustering tasks 11 

Using the same mathematical 
algorithm as Caret but written by 
different computer language (Python 
rather than R) 

penalty: L1 Lasso regression or L2 
Ridge regression (penalty term 
adds to loss function to increase 
model-generalizability) 
C: Inverse of regularization 
strength to control over-fitting 
(smaller value means stronger 
regularization and more-
generalizability) 

Random forest Using the same mathematical 
algorithm as Caret but memory-
optimisation and language advantage 
allow python version to fit more trees 
than Caret version. 

n_estimators: number of trees 
max_features: number of 
predictors to consider when 
searching for the best split 



144 
 

 Package description Model description 
Key parameters selected by 

analyst for grid search 

Neural network  Using the same mathematical 
algorithm as Caret but additional 
options provided by Sklearn to further 
control the structure and fitting process 
of neural network 

hidden_layer_sizes: control 
number of hidden layers and 
number of neurons in each hidden 
layer 
activation: activation function for 
the hidden layer calculation. 
solver: different methods to 
optimise weights (beta) estimation 

Gradient boosting classifier Gradient boosting is a machine 
learning boosting method to train 
model by adding new predictor to the 
residual error of previous predictor 
rather than using all predictors at once 
12 

n_estimators: the number of 
boosting stages to perform (larger 
means better performance but 
higher risk of overfitting) 
learning_rate: shrinks the 
contribution of each tree (a trade-
off to n_estimators to control 
overfitting) 
max_features: number of 
predictors to consider when 
searching for the best split 

extra-trees  Extra-trees model is similar to random 
forest except that random forest grows 
decision-trees by searching for the best 
splitting while Extra-trees uses random 
split for each decision-tree 12 

n_estimators: number of trees 
max_features: number of 
predictors to consider when 
searching for the best split 

h2o 

Logistic h2o is a Java-based machine learning 
library which has been implanted to 
both of R and python. Its main 
strength consists of memory allocation 
and the ability to distributed and 
paralleled machine learning process 
(which accelerates the model creating 
process) 13    

Using the same mathematical 
algorithm as Caret and Sklearn but 
being optimised for better memory 
allocation and parallelizing   

None 

Random forest Using the same mathematical 
algorithm as Caret and Sklearn, but 
further memory-optimization and 
parallelizing allow to fit even more 
trees than Sklearn.  

max_depth: maximum tree depth 
mtries: number of randomly 
selected predictors as candidates at 
each split 
ntrees: number of trees 

Neural network Using the same mathematical 
algorithm as Caret and Sklearn, but 
parallelising makes it possible to fit 
neural networks with large number of 
hidden layers with a more complex 
structure (deep learning) 

hidden: control number of hidden 
layers and number of neurons in 
each hidden layer 

autoML AutoML is an automatic machine 
learning model training algorithm 
provided by h2o, which choose a best 
model among several candidate 
machine learning models such as 
gradient boosting machine, deep neural 
net and extremely randomised forest 14 

None 
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eTable 4.12.2: Performance indicators of machine learning and statistical models in overall cohort with logistic caret model as reference model 
 

 Model performance* (95% range #) 
Average absolute change of 

model performance (95% range) 

 
C-statistic 

(2.5% ~ 97.5%) # 
Brier score 

(2.5% ~ 97.5%) # 

Recall 
(Sensitivity) 

(2.5% ~ 97.5%) # 

Precision 
(PPV) 

(2.5% ~ 97.5%) # 
C-statistic 

(2.5% ~ 97.5%) # 

Logistic (Caret) 0.879 (0.879, 0.879) 0.028 (0.028, 0.028) 0.615 (0.609, 0.620) 0.163 (0.162, 0.164) Reference model 

Random forest (Caret) 0.869 (0.867, 0.869) 0.028 (0.028, 0.028) 0.656 (0.620, 0.675) 0.144 (0.139, 0.153) -1.21% (-1.35%, -1.10%) 

Neural network (Caret) 0.878 (0.867, 0.880) 0.028 (0.027, 0.028) 0.670 (0.642, 0.687) 0.148 (0.141, 0.153) -0.16% (-1.34%, 0.05%) 

Statistical logistic model 0.879 (0.879, 0.879) 0.028 (0.028, 0.028) 0.614 (0.607, 0.620) 0.163 (0.162, 0.164) +0.00% (0.00%, 0.00%) 

QRISK3 0.879 0.031 0.834 0.107 0.00% (-0.04%, 0.03%) 

Framingham 0.865 0.031 0.892 0.085 -1.66% (-1.69%, -1.63%) 

Local Cox model 0.877 (0.877, 0.878) 0.032 (0.031, 0.032) 0.810 (0.804, 0.816) 0.112 (0.110, 0.113) -0.22% (-0.26%, -0.18%) 

Parametric survival model (Weibull) 0.877 (0.876, 0.877) 0.031 (0.031, 0.032) 0.810 (0.804, 0.815) 0.111 (0.110, 0.113) -0.30% (-0.34%, -0.26%) 

Parametric survival model (Gaussian) 0.876 (0.876, 0.877) 0.031 (0.030, 0.031) 0.834 (0.830, 0.839) 0.104 (0.103, 0.105) -0.34% (-0.38%, -0.30%) 

Parametric survival model (Logistic) 0.876 (0.875, 0.876) 0.031 (0.031, 0.032) 0.796 (0.791, 0.802) 0.114 (0.113, 0.115) -0.37% (-0.41%, -0.33%) 

Logistic (Sklearn) 0.879 (0.879, 0.879) 0.028 (0.028, 0.028) 0.615 (0.609, 0.620) 0.163 (0.161, 0.164) -0.01% (-0.04%, 0.00%) 

Random forest (Sklearn) 0.872 (0.871, 0.873) 0.028 (0.028, 0.028) 0.670 (0.661, 0.679) 0.142 (0.140, 0.144) -0.81% (-0.91%, -0.71%) 

Neural network (Sklearn) 0.872 (0.832, 0.879) 0.028 (0.028, 0.029) 0.556 (0.174, 0.692) 0.163 (0.137, 0.224) -0.85% (-5.41%, -0.06%) 

Gradient boosting classifier (Sklearn) 0.878 (0.877, 0.878) 0.028 (0.028, 0.028) 0.642 (0.623, 0.657) 0.154 (0.150, 0.157) -0.17% (-0.28%, -0.09%) 

extra-trees (Sklearn) 0.863 (0.861, 0.864) 0.028 (0.028, 0.029) 0.639 (0.628, 0.650) 0.139 (0.136, 0.141) -1.89% (-2.05%, -1.77%) 

Logistic (h2o) 0.879 (0.878, 0.879) 0.028 (0.028, 0.028) 0.615 (0.608, 0.621) 0.162 (0.161, 0.164) -0.06% (-0.09%, -0.04%) 

Random forest (h2o) 0.877 (0.877, 0.878) 0.028 (0.028, 0.028) 0.646 (0.631, 0.659) 0.152 (0.149, 0.154) -0.23% (-0.29%, -0.16%) 

Neural network (h2o) 0.875 (0.870, 0.879) 0.028 (0.028, 0.031) 0.552 (0.163, 0.780) 0.169 (0.118, 0.238) -0.45% (-1.10%, -0.05%) 

autoML (h2o) 0.879 (0.879, 0.880) 0.028 (0.028, 0.028) 0.616 (0.605, 0.642) 0.162 (0.157, 0.164) -0.02% (-0.05%, 0.03%) 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
 
# 95% range (2.5% ~ 97.5%) of model performance was derived from 100 random samples. 
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eTable 4.12.3.1: Performance indicators of machine learning and statistical models in cohort without censoring with QRISK3 as reference model 
 

 Model performance* 
Average absolute change of 

model performance 

 C-statistic Brier score 
Recall 

(Sensitivity) 
Precision 

(PPV) C-statistic 

Logistic (Caret) 0.851 0.125 0.957 0.346 +0.49% 

Random forest (Caret) 0.849 0.126 0.926 0.384 +0.34% 

Neural network (Caret) 0.849 0.126 0.953 0.354 +0.25% 

Statistical logistic model 0.851 0.125 0.957 0.346 +0.49% 

QRISK3 0.847 0.150 0.844 0.455 Reference 

Framingham 0.815 0.161 0.899 0.385 -3.74% 

Local Cox model 0.850 0.126 0.968 0.330 +0.39% 

Parametric survival model (Weibull) 0.849 0.128 0.955 0.347 +0.25% 

Parametric survival model (Gaussian) 0.848 0.130 0.932 0.379 +0.23% 

Parametric survival model (Logistic) 0.848 0.129 0.925 0.386 +0.20% 

Logistic (Sklearn) 0.851 0.125 0.957 0.346 +0.49% 

Random forest (Sklearn) 0.849 0.126 0.957 0.346 +0.30% 

Neural network (Sklearn) 0.852 0.125 0.965 0.336 +0.63% 

Gradient boosting classifier (Sklearn) 0.853 0.124 0.953 0.354 +0.74% 

extra-trees (Sklearn) 0.845 0.127 0.954 0.345 -0.17% 

Logistic (h2o) 0.849 0.126 0.957 0.343 +0.28% 

Random forest (h2o) 0.851 0.125 0.960 0.344 +0.52% 

Neural network (h2o) 0.852 0.126 0.927 0.386 +0.65% 

autoML (h2o) 0.853 0.125 0.952 0.356 +0.71% 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
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eTable 4.12.3.2: Performance indicators of machine learning and statistical models in cohort without censoring with logistic caret model as reference model 
 

 Model performance* 
Average absolute change of 

model performance 

 C-statistic Brier score 
Recall 

(Sensitivity) 
Precision 

(PPV) C-statistic 

Logistic (Caret) 0.851 0.125 0.957 0.346 Reference 

Random forest (Caret) 0.849 0.126 0.926 0.384 -0.15% 

Neural network (Caret) 0.849 0.126 0.953 0.354 -0.24% 

Statistical logistic model 0.851 0.125 0.957 0.346 0.00% 

QRISK3 0.847 0.150 0.844 0.455 -0.48% 

Framingham 0.815 0.161 0.899 0.385 -4.21% 

Local Cox model 0.850 0.126 0.968 0.330 -0.10% 

Parametric survival model (Weibull) 0.849 0.128 0.955 0.347 -0.24% 

Parametric survival model (Gaussian) 0.848 0.130 0.932 0.379 -0.25% 

Parametric survival model (Logistic) 0.848 0.129 0.925 0.386 -0.28% 

Logistic (Sklearn) 0.851 0.125 0.957 0.346 +0.00% 

Random forest (Sklearn) 0.849 0.126 0.957 0.346 -0.18% 

Neural network (Sklearn) 0.852 0.125 0.965 0.336 +0.15% 

Gradient boosting classifier (Sklearn) 0.853 0.124 0.953 0.354 +0.25% 

extra-trees (Sklearn) 0.845 0.127 0.954 0.345 -0.66% 

Logistic (h2o) 0.849 0.126 0.957 0.343 -0.21% 

Random forest (h2o) 0.851 0.125 0.960 0.344 +0.03% 

Neural network (h2o) 0.852 0.126 0.927 0.386 +0.16% 

autoML (h2o) 0.853 0.125 0.952 0.356 +0.22% 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
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eTable 4.12.4.1: More performance indicators of machine learning and statistical models 
 

 Model performance* (95% range #) 

 
F1 score 

(2.5% ~ 97.5%) # 
Balanced accuracy 
(2.5% ~ 97.5%) # 

NPV 
(2.5% ~ 97.5%) # 

Specificity 
(2.5% ~ 97.5%) # 

Logistic (Caret) 0.258 (0.256, 0.259) 0.756 (0.754, 0.758) 0.986 (0.986, 0.986) 0.897 (0.895, 0.899) 

Random forest (Caret) 0.236 (0.230, 0.245) 0.765 (0.754, 0.770) 0.987 (0.986, 0.988) 0.873 (0.864, 0.888) 

Neural network (Caret) 0.242 (0.234, 0.248) 0.772 (0.752, 0.777) 0.988 (0.987, 0.988) 0.874 (0.864, 0.885) 

Statistical logistic model 0.258 (0.256, 0.259) 0.756 (0.754, 0.758) 0.986 (0.986, 0.986) 0.898 (0.896, 0.900) 

QRISK3 0.190 0.804 0.993 0.775 

Framingham 0.155 0.790 0.995 0.688 

Local Cox model 0.197 (0.194, 0.199) 0.800 (0.799, 0.801) 0.992 (0.992, 0.992) 0.791 (0.786, 0.796) 

Parametric survival model (Weibull) 0.196 (0.194, 0.198) 0.800 (0.799, 0.800) 0.992 (0.992, 0.992) 0.789 (0.785, 0.794) 

Parametric survival model (Gaussian) 0.185 (0.183, 0.187) 0.800 (0.800, 0.801) 0.993 (0.993, 0.993) 0.766 (0.762, 0.771) 

Parametric survival model (Logistic) 0.199 (0.197, 0.201) 0.797 (0.796, 0.798) 0.992 (0.992, 0.992) 0.798 (0.795, 0.802) 

Logistic (Sklearn) 0.258 (0.256, 0.259) 0.756 (0.754, 0.758) 0.986 (0.986, 0.986) 0.897 (0.895, 0.899) 

Random forest (Sklearn) 0.235 (0.232, 0.237) 0.769 (0.766, 0.772) 0.988 (0.988, 0.988) 0.869 (0.864, 0.872) 

Neural network (Sklearn) 0.240 (0.191, 0.272) 0.728 (0.576, 0.777) 0.984 (0.973, 0.988) 0.901 (0.858, 0.979) 

Gradient boosting classifier (Sklearn) 0.248 (0.244, 0.251) 0.763 (0.757, 0.768) 0.987 (0.986, 0.987) 0.885 (0.880, 0.890) 

extra-trees (Sklearn) 0.228 (0.225, 0.231) 0.755 (0.752, 0.758) 0.987 (0.986, 0.987) 0.871 (0.867, 0.875) 

Logistic (h2o) 0.257 (0.255, 0.258) 0.756 (0.753, 0.758) 0.986 (0.986, 0.986) 0.897 (0.895, 0.899) 

Random forest (h2o) 0.246 (0.243, 0.248) 0.764 (0.760, 0.768) 0.987 (0.987, 0.988) 0.883 (0.878, 0.887) 

Neural network (h2o) 0.246 (0.172, 0.273) 0.728 (0.573, 0.795) 0.984 (0.973, 0.991) 0.904 (0.811, 0.983) 

autoML (h2o) 0.257 (0.252, 0.259) 0.756 (0.753, 0.765) 0.986 (0.986, 0.987) 0.897 (0.888, 0.900) 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
 
# 95% range (2.5% ~ 97.5%) of model performance was derived from 100 random samples. 
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eTable 4.12.4.2: More performance indicators of machine learning and statistical models in cohort without censoring 
 

 Model performance* (95% range #) 

 
F1 score 

(2.5% ~ 97.5%) # 
Balanced accuracy 
(2.5% ~ 97.5%) # 

NPV 
(2.5% ~ 97.5%) # 

Specificity 
(2.5% ~ 97.5%) # 

Logistic (Caret) 0.508 0.702 0.972 0.447 

Random forest (Caret) 0.543 0.736 0.960 0.547 

Neural network (Caret) 0.516 0.711 0.970 0.470 

Statistical logistic model 0.509 0.703 0.971 0.449 

QRISK3 0.592 0.768 0.936 0.692 

Framingham 0.539 0.730 0.948 0.561 

Local Cox model 0.492 0.683 0.976 0.399 

Parametric survival model (Weibull) 0.510 0.704 0.971 0.452 

Parametric survival model (Gaussian) 0.539 0.733 0.962 0.534 

Parametric survival model (Logistic) 0.545 0.738 0.960 0.552 

Logistic (Sklearn) 0.508 0.702 0.972 0.447 

Random forest (Sklearn) 0.508 0.702 0.971 0.448 

Neural network (Sklearn) 0.498 0.691 0.975 0.417 

Gradient boosting classifier (Sklearn) 0.516 0.711 0.971 0.468 

extra-trees (Sklearn) 0.507 0.701 0.969 0.447 

Logistic (h2o) 0.505 0.698 0.971 0.439 

Random forest (h2o) 0.506 0.700 0.973 0.441 

Neural network (h2o) 0.545 0.739 0.961 0.551 

autoML (h2o) 0.518 0.713 0.970 0.475 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
 
# 95% range (2.5% ~ 97.5%) of model performance was derived from 100 random samples. 
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eTable 4.12.5.1: Comparison of individual risk predictions of machine learning and statistical models in overall cohort (with as reference the risk predictions of the 

QRISK3) 
 

 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from QRISK3 model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Caret 

Logistic 0.1~2.3 1.4~3.7 1.6~4.3 1.8~4.9 2.1~5.5 2.3~6.1 2.5~6.7 2.7~7.4 4.2~35.7 

Random forest 0.0~2.9 1.7~6.3 2.0~7.3 2.4~8.1 2.8~9.0 3.1~9.9 3.5~10.9 3.9~11.5 5.5~30.4 

Neural network 0.1~2.5 1.4~4.4 1.7~5.2 1.9~6.1 2.3~6.9 2.5~7.6 2.8~8.4 3.2~9.2 5.3~24.6 

Statistical logistic model 

Statistical logistic model 0.1~2.3 1.4~3.7 1.6~4.3 1.8~4.9 2.1~5.5 2.3~6.1 2.5~6.6 2.7~7.3 4.2~35.5 

Cox model 

QRISK3 Reference Reference Reference Reference Reference Reference Reference Reference Reference 

Framingham 0.0~10.0 4.5~15.3 5.0~16.7 5.3~18.1 5.9~19.4 6.2~20.8 6.2~22.2 6.7~23.2 8.2~49.7 

Local Cox model 0.4~5.4 4.1~8.2 4.7~9.2 5.2~10.4 5.7~11.3 6.2~12.4 6.7~13.7 7.2~14.7 10.3~61.1 

Parametric survival model 

Parametric survival model (Weibull) 1.0~5.5 4.2~8.3 4.7~9.4 5.2~10.7 5.7~11.7 6.2~12.8 6.7~14.0 7.2~15.1 10.1~59.2 

Parametric survival model (Gaussian) 1.0~6.2 4.7~9.7 5.3~11.1 6.0~12.4 6.6~13.6 7.2~14.9 7.7~16.1 8.3~17.3 11.4~49.4 

Parametric survival model (Logistic) 1.0~5.1 3.8~8.2 4.3~9.5 4.8~10.8 5.3~12.0 5.9~13.3 6.3~14.7 6.9~15.9 9.8~57.5 

Sklearn 

Logistic 0.1~2.3 1.4~3.7 1.6~4.3 1.8~4.9 2.1~5.5 2.3~6.1 2.5~6.7 2.7~7.3 4.3~35.5 

Random forest 0.0~3.1 1.8~6.4 2.1~7.4 2.5~8.2 2.9~9.0 3.4~9.9 3.6~11.0 4.1~11.6 5.8~30.6 

Neural network 0.1~2.4 1.2~4.8 1.4~5.6 1.6~6.4 1.9~7.1 2.1~7.6 2.3~8.3 2.5~8.9 4.1~23.9 

Gradient boosting classifier 0.1~2.5 1.4~4.4 1.7~5.2 2.0~5.8 2.3~6.7 2.7~7.3 2.9~8.3 3.3~9.2 5.2~30.5 

extra-trees 0.0~3.2 1.6~6.2 2.0~7.1 2.3~7.9 2.6~8.7 3.0~9.5 3.2~10.5 3.7~11.2 5.6~29.4 

h2o 
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 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from QRISK3 model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Logistic 0.1~2.4 1.4~3.8 1.6~4.4 1.8~5.0 2.0~5.6 2.3~6.1 2.4~6.7 2.7~7.4 4.3~35.0 

Random forest 0.1~2.8 1.8~5.1 2.0~6.0 2.4~6.7 2.7~7.3 3.1~8.2 3.4~9.1 3.8~9.6 5.4~28.9 

Neural network 0.1~2.2 1.2~4.0 1.4~4.7 1.6~5.4 1.9~6.1 2.1~6.7 2.2~7.5 2.4~8.2 4.0~29.2 

autoML 0.1~2.3 1.4~3.8 1.6~4.3 1.8~4.9 2.1~5.5 2.3~6.1 2.5~6.7 2.8~7.4 4.3~35.0 

Overall 

Soft voting * 0.3~3.5 2.7~5.2 3.1~6.0 3.5~6.8 3.9~7.5 4.3~8.3 4.6~9.0 5.1~9.8 7.2~36.4 

All models # 0.1~4.9 1.5~10.5 1.8~11.6 2.0~12.7 2.4~13.6 2.6~14.7 2.9~15.7 3.2~16.7 5.0~44.8 

 
* 95% range of individual risk prediction from soft voting (averaging) of all models except the reference model 
 
# 95% range of individual risk prediction from all models except the reference model 

 
 



152 
 

eTable 4.12.5.2: Comparison of individual risk predictions of machine learning and statistical models in overall cohort (with as reference the risk predictions of the 
logistic Caret model) 

 
 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from logistic Caret model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Caret 

Logistic Reference Reference Reference Reference Reference Reference Reference Reference Reference 

Random forest 0.0~6.7 4.9~14.5 5.8~16.1 6.6~17.7 7.4~19.1 8.2~20.0 9.1~20.9 10.0~21.8 12.5~33.6 

Neural network 0.1~6.3 6.7~9.9 7.8~11.4 8.8~12.6 9.8~13.9 10.6~14.9 11.5~15.7 12.2~16.6 13.8~26.2 

Statistical logistic model 

Statistical logistic model 0.1~5.0 6.0~6.9 7.0~7.9 8.0~8.9 9.0~9.9 10.0~10.9 11.0~11.9 12.0~12.9 13.2~40.9 

Cox model 

QRISK3 0.1~12.5 10.9~23.4 12.4~26.2 13.9~28.6 15.4~31.3 16.7~33.5 18.2~35.2 19.5~36.6 23.7~59.6 

Framingham 0.1~17.1 7.1~28.3 7.3~30.3 7.6~32.0 7.6~34.5 8.1~35.7 7.9~36.6 8.5~38.5 10.5~57.7 

Local Cox model 0.4~11.0 10.5~19.0 11.9~21.7 13.4~24.0 14.8~26.9 16.1~29.5 17.5~31.5 18.9~33.3 23.1~69.0 

Parametric survival model 

Parametric survival model (Weibull) 1.0~11.1 10.3~19.0 11.7~21.8 13.1~24.6 14.3~27.6 15.5~30.0 16.8~32.5 18.2~34.4 22.2~66.6 

Parametric survival model (Gaussian) 1.0~12.6 11.3~21.2 12.8~23.8 14.1~26.0 15.4~28.4 16.7~30.4 17.9~32.4 19.0~33.6 22.6~54.0 

Parametric survival model (Logistic) 1.0~11.0 9.7~20.8 11.2~23.9 12.6~27.0 13.9~30.3 15.2~33.0 16.5~35.4 17.9~37.1 22.3~63.1 

Sklearn 

Logistic 0.1~5.1 6.0~7.0 7.0~8.0 8.0~9.0 9.0~10.0 10.0~11.0 11.0~12.0 12.0~13.0 13.2~40.9 

Random forest 0.0~6.9 5.2~14.4 6.1~15.9 7.0~17.7 7.8~19.1 8.6~19.8 9.5~20.7 10.5~21.8 13.0~33.6 

Neural network 0.1~5.3 4.5~9.4 5.1~10.5 5.8~11.4 6.4~12.3 7.1~13.1 7.7~13.9 8.3~14.7 10.2~26.6 

Gradient boosting classifier 0.1~6.0 5.3~10.7 6.2~12.2 7.1~13.5 8.0~14.9 8.8~16.3 9.5~17.4 10.4~18.8 12.5~34.3 

extra-trees 0.0~6.9 5.0~13.5 5.8~14.8 6.6~16.2 7.4~17.5 8.1~18.5 9.1~19.6 9.8~20.4 12.5~32.4 

h2o 

Logistic 0.1~5.1 5.9~7.2 6.8~8.4 7.7~9.5 8.7~10.6 9.6~11.6 10.5~12.8 11.5~13.9 13.2~40.0 
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 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from logistic Caret model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Random forest 0.1~5.9 5.5~12.2 6.3~13.7 7.0~15.4 7.8~16.7 8.6~17.5 9.4~18.6 10.4~19.6 12.8~32.1 

Neural network 0.1~5.0 4.7~8.6 5.4~9.8 6.3~10.9 7.0~12.0 7.8~13.0 8.6~14.0 9.4~14.9 11.6~33.0 

autoML 0.1~5.1 6.0~7.1 7.0~8.1 8.0~9.1 9.0~10.2 10.0~11.2 11.0~12.2 11.9~13.2 13.3~40.1 

Overall 

Soft voting * 0.3~7.8 8.2~12.3 9.4~13.9 10.5~15.4 11.7~16.8 12.8~18.2 14.0~19.3 15.0~20.5 17.1~41.6 

All models # 0.1~9.7 5.4~20.1 6.2~22.1 7.0~24.0 7.8~26.1 8.5~28.1 9.2~29.9 9.9~31.7 12.6~53.7 

 
* 95% range of individual risk prediction from soft voting (averaging) of all models except the reference model 
 
# 95% range of individual risk prediction from all models except the reference model 
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eTable 4.12.5.3: Comparison of the individual risk predictions of machine learning and statistical models in cohort without censoring (with as reference the risk 
predictions of the QRISK3 model) 

 
 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from QRISK3 model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Caret 

Logistic 1.2~17.8 12.4~26.3 14.4~30.5 15.6~32.7 17.3~35.7 18.9~38.8 20.3~42.3 21.7~44.8 30.1~88.6 

Random forest 0.2~17.9 6.5~31.4 7.9~35.8 9.5~37.9 10.7~40.4 12.6~44.7 13.5~46.9 14.9~48.9 24.1~85.8 

Neural network 2.8~18.0 11.3~29.5 13.4~34.8 15.4~37.9 16.9~41.7 19.0~43.8 21.6~48.0 23.0~50.5 31.8~75.1 

Statistical logistic model 

Statistical logistic model 1.2~17.7 12.3~26.2 14.3~30.4 15.5~32.5 17.2~35.6 18.7~38.7 20.2~42.2 21.6~44.7 30.0~88.6 

Cox model 

QRISK3 Reference Reference Reference Reference Reference Reference Reference Reference Reference 

Framingham 0.1~11.1 4.8~15.7 5.4~16.9 5.9~18.8 5.9~19.9 6.6~21.4 7.2~22.1 7.2~23.9 9.0~53.6 

Local Cox model 1.8~15.6 10.7~22.1 12.2~25.2 13.1~27.1 14.3~29.8 15.6~32.5 16.4~35.1 17.3~37.4 24.2~90.2 

Parametric survival model 

Parametric survival model (Weibull) 1.6~15.5 10.6~22.1 11.9~25.3 12.7~27.0 13.7~29.7 14.4~32.1 15.6~34.4 16.3~37.3 22.5~87.8 

Parametric survival model (Gaussian) 1.0~13.8 8.1~21.4 9.5~24.3 10.3~26.2 11.3~28.9 12.5~30.8 13.6~33.2 14.4~36.4 20.4~76.5 

Parametric survival model (Logistic) 1.0~12.7 7.6~20.1 9.0~23.4 9.6~25.1 10.6~28.1 11.7~30.1 12.6~32.8 13.5~36.5 19.4~80.3 

Sklearn 

Logistic 1.2~17.8 12.4~26.3 14.4~30.5 15.6~32.7 17.3~35.7 18.8~38.8 20.3~42.3 21.7~44.8 30.1~88.6 

Random forest 0.4~22.9 10.5~35.8 12.3~41.0 14.2~42.4 15.4~45.3 17.2~48.0 19.0~49.8 21.0~51.7 29.7~83.4 

Neural network 0.3~18.8 12.5~30.1 14.5~34.4 16.1~36.8 17.6~41.0 19.6~43.9 21.6~47.1 22.5~50.1 30.8~84.1 

Gradient boosting classifier 1.0~19.2 12.4~31.6 14.4~35.7 15.9~38.3 17.5~42.2 19.0~47.2 21.0~48.2 22.6~53.1 30.1~87.2 

extra-trees 0.3~24.0 9.1~38.0 10.8~42.4 12.7~45.8 13.6~48.7 15.0~51.2 16.5~53.6 17.7~55.5 26.8~86.3 

h2o 

Logistic 1.3~17.9 12.2~25.6 14.3~29.1 15.6~31.5 16.9~34.6 18.0~37.6 20.3~40.4 21.3~42.8 30.2~87.2 
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 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from QRISK3 model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Random forest 1.6~19.5 13.4~30.6 15.1~33.8 16.8~35.8 18.1~39.3 19.5~42.0 21.5~45.0 22.7~46.7 30.7~83.1 

Neural network 0.5~20.4 13.4~32.3 15.9~37.2 17.4~39.6 19.1~44.3 21.1~47.4 23.3~48.8 24.6~52.2 33.7~87.2 

autoML 5.3~13.6 10.2~23.0 11.4~27.6 12.3~30.0 13.6~34.4 14.8~36.5 16.0~40.0 17.3~43.8 23.8~87.7 

Overall 

Soft voting * 1.4~16.4 12.5~25.2 14.3~28.5 15.9~30.7 17.1~33.7 18.8~36.6 20.4~38.9 21.8~41.2 28.4~80.7 

All models # 0.6~18.1 8.4~29.5 9.5~33.4 10.5~36.0 11.4~39.4 12.3~42.4 13.2~45.2 13.9~47.4 19.3~85.9 

 
* 95% range of individual risk prediction from soft voting (averaging) of all models except the reference model 
 
# 95% range of individual risk prediction from all models except the reference model 
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eTable 4.12.5.4: Comparison of the individual risk predictions of machine learning and statistical models in cohort without censoring (with as reference the risk 
predictions of the Caret Logistic model) 

 
 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from Caret Logistic model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Caret 

Logistic Reference Reference Reference Reference Reference Reference Reference Reference Reference 

Random forest 0.0~7.1 1.2~12.0 1.6~14.4 2.1~15.1 2.4~17.4 2.7~18.6 3.2~20.9 3.9~21.8 7.7~83.6 

Neural network 2.8~6.0 4.7~7.8 5.2~9.1 5.8~10.4 6.4~11.9 7.1~13.1 7.8~14.9 8.5~16.1 11.9~74.2 

Statistical logistic model 

Statistical logistic model 1.0~5.8 6.0~6.9 7.0~7.9 8.0~8.9 9.0~9.9 10.0~10.9 11.0~11.9 12.0~12.9 13.7~85.7 

Cox model 

QRISK3 0.1~1.8 0.9~2.8 1.2~3.5 1.4~4.1 1.5~4.6 1.9~5.2 2.1~5.9 2.4~6.4 4.2~52.5 

Framingham 0.1~5.1 1.1~8.0 1.5~9.2 1.7~10.4 2.0~11.3 2.2~12.6 2.6~13.6 2.7~14.3 5.1~47.8 

Local Cox model 1.5~6.2 6.0~7.3 6.8~8.2 7.6~9.0 8.3~9.9 9.0~10.7 9.7~11.5 10.4~12.3 12.4~86.3 

Parametric survival model 

Parametric survival model (Weibull) 1.3~6.2 5.8~7.4 6.5~8.2 7.3~9.2 7.9~10.1 8.6~11.0 9.2~12.0 9.8~12.8 11.8~83.0 

Parametric survival model (Gaussian) 1.0~3.8 3.5~5.2 4.1~6.1 4.8~7.1 5.4~8.0 6.1~9.1 6.8~10.1 7.3~11.0 9.3~72.2 

Parametric survival model (Logistic) 1.0~3.9 3.6~5.0 4.2~5.8 4.8~6.7 5.3~7.5 5.9~8.4 6.5~9.3 7.0~10.1 8.7~76.4 

Sklearn 

Logistic 1.0~5.8 6.0~7.0 7.0~8.0 8.0~9.0 9.0~10.0 10.0~11.0 11.0~12.0 12.0~13.0 13.7~85.7 

Random forest 0.3~9.4 2.4~15.5 3.0~18.5 3.7~19.1 4.3~21.8 4.9~22.5 5.6~24.9 6.3~26.3 11.8~80.8 

Neural network 0.3~4.8 4.0~7.1 5.0~8.6 6.0~9.8 7.1~11.6 8.2~12.6 9.2~14.4 10.4~15.5 13.4~81.3 

Gradient boosting classifier 0.9~5.8 3.6~9.5 4.5~10.7 5.3~12.8 6.1~14.9 7.0~15.5 7.8~18.4 8.7~19.6 12.7~84.1 

extra-trees 0.2~10.2 2.1~16.5 2.6~18.6 3.1~20.1 3.8~22.6 4.4~23.6 4.9~27.2 5.5~28.2 11.2~82.9 

h2o 

Logistic 1.1~6.1 5.5~7.4 6.4~8.4 7.4~9.5 8.3~10.6 8.2~11.6 10.0~12.6 10.8~13.7 13.9~84.4 
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 Range of individual risk predictions (2.5th~97.5th) with other models compared to those from Caret Logistic model 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Random forest 1.5~7.1 4.7~11.9 5.5~13.7 6.3~14.1 7.2~16.8 7.7~17.5 8.5~20.1 9.2~21.4 13.1~79.7 

Neural network 0.4~6.1 4.6~8.8 5.9~10.6 7.0~11.7 8.2~13.4 9.2~14.5 10.4~16.1 11.3~17.6 14.6~84.0 

autoML 5.3~6.8 6.2~8.0 6.5~9.3 6.8~10.1 7.2~11.3 7.5~12.1 7.8~13.7 8.3~14.5 10.3~85.3 

Overall 

Soft voting * 1.2~5.3 4.7~7.7 5.4~8.9 6.2~9.8 7.1~10.9 7.8~11.9 8.5~13.5 9.4~14.3 11.9~76.2 

All models # 0.2~6.3 1.6~9.2 2.0~10.9 2.3~12.2 2.7~14.1 3.1~15.3 3.4~17.0 3.8~18.2 8.4~82.0 

 
* 95% range of individual risk prediction from soft voting (averaging) of all models except the reference model 
 
# 95% range of individual risk prediction from all models except the reference model 
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eTable 4.12.6: SPEARMAN correlations of Machine learning models and statistical models in risk groups with logistic (Caret) predicted 7%~8% 
 

 SPEARMAN Correlation 

 Caret Statistical model Sklearn H2o 

 
Logit

* RF NN Logit QRISK3 Framingham Cox 
Parametric 

Weibull 
Parametric 
Gaussian 

Parametric 
Logistic Logit RF NN GBC 

extra-
trees Logit RF NN 

auto
ML 

Caret 

Logistic 1.00 0.11 0.37 1.00 0.15 0.05 0.21 0.19 0.17 0.16 0.98 0.11 0.18 0.20 0.12 0.60 0.15 0.26 0.85 

Random forest 0.11 1.00 0.16 0.11 0.44 -0.06 0.35 0.38 0.38 0.38 0.13 0.99 0.15 0.48 0.65 0.16 0.90 0.02 0.26 

Neural network 0.37 0.16 1.00 0.38 0.30 0.09 0.32 0.15 0.17 0.13 0.42 0.15 0.67 0.38 0.38 0.14 0.21 0.71 0.36 

Statistical logistic model 

Statistical logistic 
model 

1.00 0.11 0.38 1.00 0.15 0.06 0.21 0.19 0.17 0.16 0.98 0.11 0.18 0.20 0.12 0.60 0.14 0.26 0.85 

Cox model 

QRISK3 0.15 0.44 0.30 0.15 1.00 0.32 0.60 0.50 0.48 0.49 0.17 0.43 0.14 0.37 0.35 0.20 0.43 0.11 0.23 

Framingham 0.05 -0.06 0.09 0.06 0.32 1.00 -0.04 -0.32 -0.34 -0.36 0.01 -0.05 -0.30 0.21 -0.02 0.03 -0.23 -0.06 0.06 

Local Cox model 0.21 0.35 0.32 0.21 0.60 -0.04 1.00 0.85 0.79 0.80 0.28 0.33 0.32 0.13 0.25 0.30 0.33 0.15 0.25 

Parametric survival model 

Parametric survival 
model (Weibull) 

0.19 0.38 0.15 0.19 0.50 -0.32 0.85 1.00 0.97 0.99 0.26 0.36 0.23 0.04 0.22 0.32 0.44 0.03 0.26 

Parametric survival 
model (Gaussian) 

0.17 0.38 0.17 0.17 0.48 -0.34 0.79 0.97 1.00 0.99 0.23 0.36 0.27 0.03 0.24 0.24 0.44 0.10 0.23 

Parametric survival 
model (Logistic) 

0.16 0.38 0.13 0.16 0.49 -0.36 0.80 0.99 0.99 1.00 0.23 0.36 0.25 0.03 0.22 0.28 0.45 0.06 0.24 

Sklearn 

Logistic 0.98 0.13 0.42 0.98 0.17 0.01 0.28 0.26 0.23 0.23 1.00 0.13 0.27 0.21 0.14 0.67 0.18 0.29 0.88 

Random forest 0.11 0.99 0.15 0.11 0.43 -0.05 0.33 0.36 0.36 0.36 0.13 1.00 0.12 0.50 0.68 0.17 0.89 -0.00 0.27 

Neural network 0.18 0.15 0.67 0.18 0.14 -0.30 0.32 0.23 0.27 0.25 0.27 0.12 1.00 0.19 0.24 0.17 0.21 0.68 0.22 
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 SPEARMAN Correlation 

 Caret Statistical model Sklearn H2o 

 
Logit

* RF NN Logit QRISK3 Framingham Cox 
Parametric 

Weibull 
Parametric 
Gaussian 

Parametric 
Logistic Logit RF NN GBC 

extra-
trees Logit RF NN 

auto
ML 

Gradient boosting 
classifier 

0.20 0.48 0.38 0.20 0.37 0.21 0.13 0.04 0.03 0.03 0.21 0.50 0.19 1.00 0.45 0.14 0.52 0.26 0.36 

extra-trees 0.12 0.65 0.38 0.12 0.35 -0.02 0.25 0.22 0.24 0.22 0.14 0.68 0.24 0.45 1.00 0.05 0.65 0.27 0.21 

h2o 

Logistic 0.60 0.16 0.14 0.60 0.20 0.03 0.30 0.32 0.24 0.28 0.67 0.17 0.17 0.14 0.05 1.00 0.23 0.12 0.86 

Random forest 0.15 0.90 0.21 0.14 0.43 -0.23 0.33 0.44 0.44 0.45 0.18 0.89 0.21 0.52 0.65 0.23 1.00 0.12 0.34 

Neural network 0.26 0.02 0.71 0.26 0.11 -0.06 0.15 0.03 0.10 0.06 0.29 -0.00 0.68 0.26 0.27 0.12 0.12 1.00 0.28 

autoML 0.85 0.26 0.36 0.85 0.23 0.06 0.25 0.26 0.23 0.24 0.88 0.27 0.22 0.36 0.21 0.86 0.34 0.28 1.00 

 
* Abbreviation: Logit - Logistic model, RF - Random forest, NN - Neural network, Cox - Cox proportional hazard model, GBC - Gradient boosting classifier 
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eTable 4.12.7: Reclassification of individual risk predictions of machine learning and statistical models with 10% as threshold 
 

 Reclassification in overall testing cohort 

 Reclassified* Not reclassified 

Overall cohort 

QRISK3 as reference model 

Below or equal to the threshold (≤10%) 73871 (10.0%) 661603 (90.0%) 

Above the threshold (>10%) 113260 (62.9%) 66745 (37.1%) 

 

Logistic model (Caret) as reference model 

Below or equal to the threshold (≤10%) 170983 (20.5%) 661603 (79.5%) 

Above the threshold (>10%) 16148 (19.5%) 66745 (80.5%) 

 

Cohort without censoring 

QRISK3 as reference model 

Below or equal to the threshold (≤10%) 34691 (49.1%) 35891 (50.9%) 

Above the threshold (>10%) 2269 (5.5%) 39017 (94.5%) 

 

Logistic model (Caret) as reference model 

Below or equal to the threshold (≤10%) 6872 (16.1%) 35891 (83.9%) 

Above the threshold (>10%) 30088 (43.5%) 39017 (56.5%) 

 

 
* For patients who are below or equal to the threshold, they are re-classified if they have prediction above the threshold in any model. 
For patients who are above the threshold, they are re-classified if they have prediction below or equalt to the threshold in any model. 
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eTable 4.12.8: Reclassification of individual risk predictions of Caret neural network models with different hyperparameters 
 

 Reclassification in overall testing cohort 

 Reclassified* Not reclassified 

Overall cohort 

Models with the most frequent selected hyperparameters as reference model 

Below or equal to the threshold (<=7.5%) 12016 (1.5%) 773472 (98.5%) 

Above the threshold (>7.5%) 14987 (11.5%) 115004 (88.5%) 

 

 
* For patients who are below or equal to the threshold, they are re-classified if they have prediction above the threshold in any model. 
For patients who are above the threshold, they are re-classified if they have prediction below or equalt to the threshold in any model. 
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eTable 4.12.9: Inconsistency of individual risk prediction between machine learning models derived from overall cohort and cohort without censoring 
 

 Range of individual risk predictions (2.5th~97.5th) for the same group of patients * 

 <6% 6~7% 7~8% 8~9% 9~10% 10~11% 11~12% 12~13% ≥ 13% 

Caret 

Logistic 0.8~31.9 21.6~61.2 24.2~65.5 27.2~69.4 29.5~73.7 31.8~75.4 34.1~77.4 36.2~79.6 44.2~90.2 

Random forest 0.2~26.8 10.5~52.5 11.6~57.9 13.5~61.7 15.3~65.3 16.8~69.5 18.8~73.7 19.4~76.8 29.1~87.9 

Neural network 0.8~29.7 19.7~54.4 22.7~57.5 25.3~60.7 28.0~64.3 31.0~68.0 33.3~70.2 35.7~72.8 42.2~76.2 

Cox model 

QRISK3 0.1~5.4 6.0~7.0 7.0~8.0 8.0~9.0 9.0~10.0 10.0~11.0 11.0~12.0 12.0~13.0 13.3~54.0 

Framingham 0.0~5.7 6.0~7.0 7.0~8.0 8.0~9.0 9.0~10.0 10.0~11.0 11.0~12.0 12.0~13.0 13.2~48.2 

Local Cox model 2.5~28.0 24.1~42.9 27.1~47.7 29.9~52.2 32.7~56.2 35.4~59.7 37.8~62.9 40.4~66.3 48.4~99.2 

Sklearn 

Logistic 0.8~31.8 21.6~61.1 24.3~65.0 27.3~69.9 29.6~73.2 32.0~75.3 34.1~77.5 36.3~79.1 44.3~90.2 

Random forest 0.4~32.1 12.7~56.8 13.7~60.4 15.1~64.8 16.1~68.8 18.4~72.1 19.0~74.7 19.5~77.5 27.1~87.2 

Neural network 1.0~35.5 20.9~59.8 23.7~63.5 26.8~67.4 30.3~70.5 33.9~73.5 37.4~75.0 40.8~76.3 49.1~83.0 

Gradient boosting classifier 0.8~33.2 17.7~62.1 19.8~65.9 22.0~71.5 23.4~76.9 25.2~81.0 27.9~83.3 29.7~85.2 38.1~89.2 

extra-trees 0.1~33.0 6.8~64.9 7.6~71.2 6.0~74.2 6.5~80.1 5.1~85.1 10.1~86.6 11.2~88.5 15.0~97.1 

h2o 

Logistic 0.8~30.9 21.9~55.3 24.6~59.8 27.4~63.4 29.8~66.7 32.0~70.9 34.2~72.4 36.4~74.2 44.4~88.4 

Random forest 1.4~30.5 18.2~51.0 20.1~54.8 22.3~57.8 24.4~61.1 26.4~65.4 28.6~67.9 31.1~71.4 39.2~84.9 

Neural network 0.1~31.8 19.6~69.9 22.5~75.2 25.4~80.0 28.1~82.5 31.1~84.7 33.2~86.8 36.4~88.0 48.4~93.5 

autoML 5.0~29.2 17.5~63.5 19.9~69.1 22.6~76.3 24.9~80.7 27.2~81.8 29.9~83.9 31.3~85.7 40.4~91.3 

 
* 95% range of individual risk prediction of the same risk-group patients predicted by model derived from cohort without censoring comparing to the same model dervived from 
overall cohort ( risk-group displayed in the second line of the table title) 
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eTable 4.12.10: Performance indicators of machine learning and Cox models developed in South and validated in North 
 

 Model performance* 
Average absolute change of 

model performance 

 C-statistic Brier score 
Recall 

(Sensitivity) 
Precision 

(PPV) C-statistic 

North# 

Logistic (Caret) 0.871 0.032 0.575 0.179 Reference 

Neural network (Caret) 0.871 0.032 0.631 0.167 -0.02% 

Local Cox model 0.869 0.036 0.798 0.124 -0.21% 

 

South$ 

Logistic (Caret) 0.877 0.028 0.607 0.164 Reference 

Neural network (Caret) 0.877 0.028 0.659 0.151 +0.01% 

Local Cox model 0.875 0.031 0.803 0.112 -0.21% 

 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
# Testing cohort only including practices from North of UK which was different from development cohort (i.e. practices from south) 
$ Testing cohort only including practices from South of UK which was similar to development cohort 
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eTable 4.12.11: Performance indicators of machine learning and Cox models with lower number of predictors 
 

 Model performance* 
Average absolute change of 

model performance 

 C-statistic Brier score 
Recall 

(Sensitivity) 
Precision 

(PPV) C-statistic 

Using the same 1/3 random predictors # 

Logistic (Caret) 0.870 0.028 0.591 0.157 Reference 

Random forest (Caret) 0.705 0.036 0.302 0.125 -18.95% 

Neural network (Caret) 0.870 0.028 0.655 0.142 +0.01% 

Local Cox model 0.869 0.032 0.801 0.108 -0.08% 

 

Using the same 1/2 random predictors 

Logistic (Caret) 0.875 0.028 0.602 0.160 Reference 

Random forest (Caret) 0.832 0.029 0.594 0.132 -4.96% 

Neural network (Caret) 0.876 0.028 0.669 0.145 +0.03% 

Local Cox model 0.875 0.031 0.809 0.110 -0.07% 

 

Using the same 2/3 random predictors 

Logistic (Caret) 0.878 0.028 0.610 0.162 Reference 

Random forest (Caret) 0.858 0.028 0.621 0.143 -2.27% 

Neural network (Caret) 0.878 0.028 0.665 0.149 +0.02% 

Local Cox model 0.876 0.031 0.810 0.111 -0.22% 

 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
# Age and gender were always included as predictors in all scenarios. 
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eFigure 4.12.1. Workflow of sample splitting and model fitting process
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eFigure 4.12.2.1a                                                  eFigure 4.12.2.1b 

eFigure 4.12.2.1. Calibration slope of machine learning models and statistical models in overall cohort 

 



167 
 

     

eFigure 4.12.2.2a                                                  eFigure 4.12.2.2b 

eFigure 4.12.2.2. Calibration slope of machine learning models and statistical models in cohort without censoring 
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eFigure 4.12.3.1. Calibration plots in machine learning models of Caret in overall 
cohort and cohort without censoring 
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eFigure 4.12.3.2. Calibration plots in statistical logistic models in overall cohort 
and cohort without censoring 
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eFigure 4.12.3.3. Calibration plots in Cox proportional hazard models in overall 
cohort and cohort without censoring 
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eFigure 4.12.3.4. Calibration plots in parametric survival models in overall 
cohort and cohort without censoring 

 



172 
 

 

eFigure 4.12.3.5. Calibration plots in machine learning models of Sklearn in 
overall cohort and cohort without censoring 
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eFigure 4.12.3.6. Calibration plots in machine learning models of h2o in overall 
cohort and cohort without censoring
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eFigure 4.12.4a                                                  eFigure 4.12.4b 

eFigure 4.12.4. 95% range of individual risk predictions with machine learning and statistical models stratified by deciles of predicted risks with 
Caret logistic model
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eFigure 4.12.5. 95% range of individual risk predictions with Caret neural network 

models with different grid searched best hyperparameters stratified by deciles of 
predicted risks with models with the most frequent selected hyperparameters
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eFigure 4.12.6. Distribution of individual risk predictions with machine learning and statistical models developed in practices from South and tested 
in practices from North
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eFigure 4.12.7. Distribution of individual risk predictions with machine learning and statistical models developed with predictors of age and sex plus 
1/3, 1/2, 2/3 of all predictors 
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eFigure 4.12.8 Distribution of age among removed patients due to censoring 
(death patients excluded) 
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5.1 Abstract 

Cardiovascular disease has been the leading cause of death for decades. Risk 

prediction models are used to identify high risk patients; the most common model 

used in the UK is ClinRisk’s QRISK3. In this paper we describe the implementation 

of the QRISK3 algorithm into an R package. The package was successfully validated 

by the open sourced QRISK3 algorithm and QRISK3 SAS program. We provide 

detailed examples of the use of the package, including assigning QRISK3 scores for a 

large cohort of patients. This R package could help the research community to better 

understand risk prediction scores and improve future risk prediction models. The 

package is available from CRAN: https://cran.r-

project.org/web/packages/QRISK3/index.html. 

 

  

https://cran.r-project.org/web/packages/QRISK3/index.html
https://cran.r-project.org/web/packages/QRISK3/index.html
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5.2 Introduction 

Cardiovascular disease (CVD) was responsible for 17.9 million deaths in 2016, which 

represents 31% of overall global deaths, and over 75% of these deaths happened in 

low/middle-income countries 1. People who are at high risk of CVD need to be 

identified and treated early 1. Risk prediction models that use risk factors to calculate 

the probability of patients developing diseases are often used to identify high risk 

patients 2. QRISK3 is the most popular risk prediction model for CVD developed in 

the UK. It calculates risk of patients developing CVD in the next 10 years and has 

been incorporated into the electronic health records (EHRs) system in the UK in order 

to detect high risk CVD patients and help clinicians make treatment decisions 3 4. 

NICE guidelines recommend clinicians to consider prescribing statins to patients with 

a risk over 10% identified from QRISK3 5. QRISK3 was developed from historical 

patients’ EHR data using Cox proportional hazard model 6 and has been well 

validated at population level corresponding to discrimination and calibration 3 4 7.  

The implementation of QRISK3 into R would not only benefit researchers to improve 

future risk prediction but also enable them to use QRISK3 scores to identify patients 

at certain risk levels, e.g. for clinical trial recruitment. There is also scope to improve 

these risk predictions; it has been found that QRISK3 has uncertainty on individual 

risk prediction 7 8 due to unmeasured heterogeneity between practices, which was not 

captured. A follow-up study suggests that QRISK3 may need to include additional 

causal risk factors as this uncertainty on individual risk prediction was not related to 

data quality and variation of association between disease and outcome 9. The current 

QRISK3 can only be accessed through an online web calculator or specialised 

commercial software 10 and its original algorithm was written by C, which is a low 

level programming language appealing to software engineering rather than data 

science 11. R is the most popular statistical programming language in the data science 

field due to its great advantage as free and open-source, with fast computing and a 

well-supported community 12. This paper explains the incorporation of the QRISK3 

algorithm into R for ease of research concerning QRISK3 and how the package was 

developed and validated. The package aims to help researchers to improve risk 

prediction models and better detect high risk CVD patients.  
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5.3 Methods 

5.3.1 Extraction of the QRISK3 algorithm 

The original QRISK3 algorithm was written in C by ClinRisk under a GNU Lesser 

General Public License 11. Their previously published QRISK3 paper was used to 

understand the original algorithm and the associations between variables used in the 

original algorithm and risk factors of QRISK3 3.  

5.3.2 Development and validation of the QRISK3 R package 

The QRISK3 algorithm was written in both R (3.4.2) and SAS (9.4) 13 independently, 

in order to mimic double programming, with a plan to use the SAS implementation to 

validate the R package. An additional C program, which could directly call the 

original QRISK3 algorithm to calculate risk, was written for validation. Two 

validation datasets (QRISK3_2017_test and QRISK3_2019_test) were then created 

and included in the R package. Dataset QRISK3_2017_test was created by manually 

recording the calculated QRISK3 risk score from the original QRISK3 algorithm for a 

group of simulated patients. The simulated patient groups were generated by changing 

each risk factor sequentially covering the changes of all QRISK3 risk factors. For 

example, patient 1 in QRISK3_2017_test does not have any positive CVD risk 

factors, patient 2 is similar to patient 1 expect he has atrial fibrillation, patient ID 3 is 

similar to patient 2 except he is on atypical antipsychotic medication rather than atrial 

fibrillation and so on until all the change of CVD predictors are covered. Therefore, 

each patient is similar to the previous patient except change of one CVD predictor. 

QRISK3_2019_test was the version recorded using the original QRISK3 algorithm 

with different value changes for each risk factor. Risk scores of the same simulated 

patient groups (QRISK3_2017_test and QRISK3_2019_test) was compared among 

different versions of QRISK3, including QRISK3 R package, QRISK3 SAS macro 

and QRISK3 C function for validation. The R package was created using R CMD tool 
14 with several useful online tutorials 15 16 17 18.  

 

5.4 Results 

5.4.1 Implementation 
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The QRISK3 package can be directly installed from CRAN 19 using 

“install(QRISK3)” or GitHub respiratory 20 with 

“install_github("YanLiUK/QRISK3") ”. The package contains one function 

(QRISK3_2017) to calculate the risk of patients developing CVD in the next 10 years 

using the QRISK3 algorithm 11 and the two datasets for testing.   

Variables used by the QRISK3 package were summarised and compared to the 

original algorithm in Table 5.1. All variables have the same definition as the QRISK3 

paper 3, most of variables were coded into numeric variables similar to the original 

algorithm. The coding of ethnicity and smoking was different from the original 

algorithm (written in C), as the C index starts from 0 but R’s index starts from 1. 
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Table 5.1: Description of QRISK3 variables. 

Parameters in 
QRISK3 R package Meaning of variables 

Variables in original 
algorithm 

age Specify the age of the patient in year 
(e.g. 64 years-old) 

age 

atrial_fibrillation Atrial fibrillation? (0: No, 1: Yes) b_AF 

atypical_antipsy On atypical antipsychotic medication? 
(0: No, 1: Yes) 

b_atypicalantipsy 

regular_steroid_tablet
s 

On regular steroid tablets? (0: No, 1: 
Yes) 

b_corticosteroids 

erectile_disfunction A diagnosis of or treatment for erectile 
disfunction? (0: No, 1: Yes) 

b_impotence2 (only 
for men) 

migraine Do patients have migraines? (0: No, 1: 
Yes) 

b_migraine 

rheumatoid_arthritis Rheumatoid arthritis? (0: No, 1: Yes) b_ra 

chronic_kidney_disea
se 

Chronic kidney disease (stage 3, 4 or 5)? 
(0: No, 1: Yes) 

b_renal 

severe_mental_illness Severe mental illness? (0: No, 1: Yes) b_semi 

systemic_lupus_eryth
ematosis 

Systemic lupus erythematosis (SLE)? (0: 
No, 1: Yes) 

b_sle 

blood_pressure_treat
ment 

On blood pressure treatment? (0: No, 1: 
Yes) 

b_treatedhyp 

diabetes1 Diabetes status: type 1? (0: No, 1: Yes) b_type1 

diabetes2 Diabetes status: type 2? (0: No, 1: Yes) b_type2 

weight (kg) Weight Not available 

height (cm) Height Not available 

weight (m) / (height 
(cm) /100)2 

Body mass index (BMI) bmi 
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Parameters in 
QRISK3 R package Meaning of variables 

Variables in original 
algorithm 

ethnicity 1 White or not stated 

2 Indian 
3 Pakistani 

4 Bangladeshi 
5 Other Asian 

6 Black Caribbean 
7 Black African 

8 Chinese 
9 Other ethnic group 

ethrisk:   

0, --not stated  
1, --white   

2, --inidan   
3, --Pakistani   

4,--Bangladeshi   
5,--Other Asian   

6,--Black Caribbean   
7,--Black African   

8,--Chinese   
9--Other ethnic group 

heart_attack_relative Angina or heart attack in a 1st degree 
relative < 60? (0: No, 1: Yes) 

fh_cvd 

cholesterol_HDL_rati
o 

Cholesterol/HDL ratio? (range from 1 to 
11, e.g. 4) 

rati 

systolic_blood_press
ure 

Systolic blood pressure (mmHg, e.g. 180 
mmHg) 

sbp 

std_systolic_blood_pr
essure 

Standard deviation of at least two most 
recent systolic blood pressure 
readings(mmHg) 

sbps5 

smoke 1 non-smoker 

2 ex-smoker 
3 light smoker (less than 10) 

4 moderate smoker (10 to 19) 
5 heavy smoker (20 or over) 

smoke_cat: 

0 non-smoker 
1 ex-smoker 
2 light smoker (less 
than 10) 
3 moderate smoker 
(10 to 19) 
4 heavy smoker (20 
or over) 

townsend Townsend deprivation scores town 
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5.4.2 Validation 

The two datasets QRISK3_2017_test and QRISK3_2019_test were used for 

validation. Risk scores calculated from this QRISK3 package, the original algorithm 

and the SAS version on the same group of patients were exactly the same. The 

external validation of this QRISK3 package in a big CPRD cohorts with 3.6 million 

patients shows a good and similar discrimination (C statistic: 0.85) and calibration to 

a previous study 7 compared to the original QRISK3 paper 3.  

5.4.3 Usage and features 

A patient cohort with anonymous patient identifiers and CVD risk factors should first 

extracted and coded similarly to QRISK3 by the user. Missing values in the dataset 

should be handled (e.g. multiple imputation) before using this package. Column 

names of CVD risk factors (e.g. “age”) should then be specified correctly to the 

QRISK3_2017 function. The function returns calculated risk scores through a dataset 

with three columns, including patient identifier, calculated QRISK3 score and 

calculated QRISK3 score with one digit. It also reminds users to double check 

whether the definition of their variables was the same as the definition of QRISK3. 

The package also automatically detects whether all variables were coded as numeric 

and whether age of patients was ranged between 25 and 84, if not an error message 

returns (explained in Table 5.2). 
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Table 5.2: Description of error message in the QRISK3 R package. 

Error message Conditions Explanation 

"Variables including XXX, XXX must be coded as 
numeric (0/1) variable." 

When at least one of variables in 
dataset are not numeric 

QRISK3 algorithm needs numeric 
variable (0/1) to calculate risk 

"Age of patients must be between 25 and 84." When at least one patient in the dataset 
has age below 25 or above 84 

QRISK3 algorithm was developed from 
a population with age between 25 and 
84 

"Variables including XXX, XXX has missing 
values." 

When at least one of variables in 
dataset has missing value 

Missing values must be handled before 
using this QRISK3 algorithm 
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5.5 Workflow 

5.5.1. Set path and read data from CSV file 

dataPath <- "yourPath" 
dataName <- "yourDataName.csv" 
 
setwd(dataPath) 
myData <- read.csv(dataName, check.names=FALSE) 

5.5.2. See the data structure and other information 

#See data structure 

str(myData) 

## 'data.frame':    48 obs. of  26 variables: 
##  $ QRISK_C_algorithm_score  : num  17.2 36 21.6 24.1 17.2 19.1 20.9 22.3 19.3 23.5 ... 
##  $ age              : int  64 64 64 64 64 64 64 64 64 64 ... 
##  $ gender           : num  1 1 1 1 1 1 1 1 1 1 ... 
##  $ b_AF             : int  0 1 0 0 0 0 0 0 0 0 ... 
##  $ b_atypicalantipsy: int  0 0 1 0 0 0 0 0 0 0 ... 
##  $ b_corticosteroids: int  0 0 0 1 0 0 0 0 0 0 ... 
##  $ b_impotence2     : int  0 0 0 0 1 0 0 0 0 0 ... 
##  $ b_migraine       : int  0 0 0 0 0 1 0 0 0 0 ... 
##  $ b_ra             : int  0 0 0 0 0 0 1 0 0 0 ... 
##  $ b_renal          : int  0 0 0 0 0 0 0 1 0 0 ... 
##  $ b_semi           : int  0 0 0 0 0 0 0 0 1 0 ... 
##  $ b_sle            : int  0 0 0 0 0 0 0 0 0 1 ... 
##  $ b_treatedhyp     : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ b_type1          : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ b_type2          : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ weight           : int  70 70 70 70 70 70 70 70 70 70 ... 
##  $ height           : int  180 180 180 180 180 180 180 180 180 180 ... 
##  $ ethrisk          : int  2 2 2 2 2 2 2 2 2 2 ... 
##  $ fh_cvd           : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ rati             : int  4 4 4 4 4 4 4 4 4 4 ... 
##  $ sbp              : int  180 180 180 180 180 180 180 180 180 180 ... 
##  $ sbps5            : int  20 20 20 20 20 20 20 20 20 20 ... 
##  $ smoke_cat        : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ surv             : int  10 10 10 10 10 10 10 10 10 10 ... 
##  $ town             : int  0 0 0 0 0 0 0 0 0 0 ... 
##  $ ID               : int  1 2 3 4 5 6 7 8 9 10 ... 
 

#See missing value 
# summary(myData) 
 
#If there is any missing value 
#please use methods (e.g. multiple imputation) to impute missing value 
 
#Once there is no missing value 
#Get all variable names in your data 
# colnames(myData) 
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#Use help of this package to map your variable to QRISK3 variables 
# ?QRISK3_2017 

5.5.3. Call the QRISK3 function to calculate risk score 

test_all_rst <- QRISK3_2017(data= myData, patid="ID", gender="gender",age="age", 
atrial_fibrillation="b_AF", atypical_antipsy="b_atypicalantipsy", 
regular_steroid_tablets="b_corticosteroids", erectile_disfunction="b_impotence2", 
migraine="b_migraine", rheumatoid_arthritis="b_ra",  
chronic_kidney_disease="b_renal", severe_mental_illness="b_semi", 
systemic_lupus_erythematosis="b_sle", 
blood_pressure_treatment="b_treatedhyp", diabetes1="b_type1", 
diabetes2="b_type2", weight="weight", height="height", 
ethiniciy="ethrisk", heart_attack_relative="fh_cvd",  
cholesterol_HDL_ratio="rati", systolic_blood_pressure="sbp", 
std_systolic_blood_pressure="sbps5", smoke="smoke_cat", townsend="town") 

##  
## This R package was based on open-sourced original QRISK3-2017 algorithm. 

## <https://qrisk.org/three/src.php> Copyright 2017 ClinRisk Ltd. 

##  
## The risk score calculated from this R package can only be used for  research purpose. 

##  
## Please refer to QRISK3 website for more information 

## <https://qrisk.org/three/index.php> 

##  
## Important: Please double check whether your variables are coded the same as the 
QRISK3 calculator 

##  
## Height should have unit as (cm) 

## Weight should have unit as (kg) 

##  
## Ethnicity should be coded as: 

##    Ethnicity_category Ethnicity 
## 1 White or not stated          1 
## 2              Indian          2 
## 3           Pakistani          3 
## 4         Bangladeshi          4 
## 5         Other Asian          5 
## 6     Black Caribbean          6 

##  
## Smoke should be coded as: 

##                Smoke_category Smoke 
## 1                  non-smoker     1 
## 2                   ex-smoker     2 
## 3 light smoker (less than 10)     3 
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## 4  moderate smoker (10 to 19)     4 
## 5   heavy smoker (20 or over)     5 

##  
## The head of result in all patients is: 

##   ID QRISK3_2017 QRISK3_2017_1digit 
## 1  1    17.22985               17.2 
## 2  2    17.89260               17.9 
## 3  3    36.02081               36.0 
## 4  4    21.60346               21.6 
## 5  5    24.06195               24.1 
## 6  6    17.22985               17.2 

 

5.6 Use Case 

Users first need to create a statistical analysis dataset similar to the provided test 

dataset (e.g. QRISK3_2019_test) which contains information of patients’ identifier 

and QRISK3 risk factors and mimic QRISK3’s training cohort 3. The structure of this 

statistical analysis dataset would be each row (observation) represents one individual 

patient and each column represents one of QRISK3 predictors. The exact definition of 

all QRISK3 predictors could be found from Box 1 of original QRISK3 paper 3. 

Variables used by QRISK3 can be extracted from EHR databases, such as CPRD 21 or 

QResearch 22. Code lists (Read code) for the outcome variable (CVD) can be obtained 

from the supplementary materials of QRISK3 paper 3. Code lists for variables 

included in QRISK2 can be extracted from a previous study 23. Code lists for other 

variables including anxiety, alcohol abuse, atypical anti-psychotic medication, erectile 

dysfunction, HIV/AIDS, left ventricular hypertrophy, migraine and systemic lupus 

erythematosus could be found from CPRD 24 or clinical codes website 25. All CVD 

risk factors should be coded as numeric, binary variables should be coded as 0 or 1, 

categorical variables such as smoking status should be coded as the same as this 

package. Any differences between users’ variables and QRISK3 predictors (e.g. 

different criteria to define smoking status) should be mentioned in users’ final report. 

Once the analysis dataset was extracted, it is recommended to compare the 

distribution of users’ analysis dataset to Qresearch’s cohort using their baseline table 

(Table 1) 3 26. Missing value should be imputed with multiple imputation 27. Finally, 

users follow the above workflow and carefully match their variable names to pre-

defined QRISK3 predictors to calculate risk score, the function would return a dataset 

with patient identifier, calculated score and calculated score with 1 digit.  
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5.7 Discussion 

This R package successfully implements the QRISK3 algorithm into R, which allows 

researchers to calculate CVD risk of patients in the next 10 years. The R package was 

validated by the original algorithm and a SAS version. This is also the first R 

implementation of the QRISK3 algorithm at the date of writing.  

Though QRISK3 was already published and released from the online website, it is 

time consuming for researchers to calculate QRISK3 risk score, as the online 

calculator cannot be used as a service to obtain QRISK3 scores for a large cohort, and 

the original algorithm is written in C rather than a well-established data science 

language such as R. This package bridges this gap. It allows researchers to obtain 

QRISK3 scores for large cohorts, which could help to improve model accuracy of 

QRISK3 and help with any more applied tasks that require knowing CVD risk at a 

patient level.   

Although it is easy to use this R function to calculate a risk score, researchers should 

carefully check whether their variables are coded the same as the original QRISK3 

cohort, otherwise the calculated score might not be the correct risk of the patient in 

the cohort. For example, a patient who is a smoker is coded as “1” in the variable 

“smoking” would be in conflict with the definition of the QRISK3 algorithm 

(“smoking” equals 1 in this R package means non-smoker). Since QRISK is updated 

annually every spring, researchers who are interested in the latest work should refer to 

their website 10.   

In conclusion, we developed this R package to allow researchers to obtain QRISK3 

scores for large cohorts. It allows the research community to better understand and 

apply a currently used risk prediction model for CVD risk. 

 

5.8 Software availability 

Package available from CRAN: https://cran.r-

project.org/web/packages/QRISK3/index.html  

Source code available from: https://github.com/YanLiUK/QRISK3  

https://cran.r-project.org/web/packages/QRISK3/index.html
https://cran.r-project.org/web/packages/QRISK3/index.html
https://github.com/YanLiUK/QRISK3
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Archived source code as at time of publication: 

https://doi.org/10.5281/zenodo.3570682  

 

Source code of validation available from:  

https://github.com/YanLiUK/QRISK3_valid  

C code and SAS version for validation at time of publication: 

https://doi.org/10.5281/zenodo.3571304  

License: GPL-3 

Data availability 

Underlying data 

Original QRISK3 algorithm: https://qrisk.org/three/src.php 

https://doi.org/10.5281/zenodo.3570682
https://github.com/YanLiUK/QRISK3_valid
https://doi.org/10.5281/zenodo.3571304
https://qrisk.org/three/src.php
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6.1 Abstract 

Objective: Previous work found that different machine learning models and statistical 

models can give inconsistent absolute risk predictions for patients even with similar 

model performances. This study aims to evaluate whether ranking of individual risk 

predictions may improve consistency between different prediction models. 

Design: Longitudinal cohort study from 1st Jan 1998 to Jan 2019. 

Setting: 3.6 million patients from the Clinical Practice Research Datalink in primary 

care. 

Main outcome measures: Consistency of individual rank and absolute risk prediction 

for the same patients among models with comparable model performance.  

Methods: 15 different prediction techniques including 12 families of machine 

learning model and 3 families of Cox model from previous study were considered. 

Model performance of ensembled machine learning models and Cox models were 

compared in the same test cohort. Individual rank was derived by ranking individual 

risk and percentage of rank was derived by individual rank over number of patients. 

Distribution of individual rank and individual patients were compared among 

different models for the same patients.   

Results: All ensembled machine learning models and Cox models had similar 

population-level model performance (C statistics and calibration). The study found 

that ranking of risk predictions improved the consistency between different machine 

learning and statistical prediction models compared to absolute risks, For patients in 

the highest risk group, the 25% percentile (Q1) to 75% percentile (Q3) of differences 

of absolute predicted risk between models was -18.8% ~ -9.0%.  The Q1 to Q3 when 

ranking risks was -0.6% ~ 1.0%. There was larger variability between models in 

ranking for patients in the medium risk group. 

Conclusions: The clinical utility of risk prediction model could be improved by 

supplying percentage of patient ranks with their individual risk prediction from 
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multiple models in clinical practice. Treatment decision based on risk prediction 

model for patients especially for medium risk groups should be made in conjunction 

with additional clinical testing and clinical judgment.  
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6.2 Introduction  

Risk prediction models aim to assist clinicians in screening for high risk patients and 

making evidence-based clinical decision quickly 1. Traditionally, they were developed 

from statistical models such as Cox proportional hazard model with time to patients’ 

disease or status of disease as outcome variable and risk factors of disease as 

predictors. Recently, with the increase of computing power and breakthrough of deep 

learning 2, machine learning models have started to show their strength in image 

recognition 3 and are also being used to develop model to predict individual patient 

risks of clinical outcomes. However, literatures have shown that though these models 

are well validated on population level in terms of good discrimination (ability to 

discriminate high/low risk patients) and calibration (agreement between predicted risk 

and observed risk), they have great uncertainty on individual risk prediction 4 5 6. 

Models with similar population level model performance but developed from a 

heterogeneous setting 4, with different model choices 5 or using different model 

algorithms 6 predict risks inconsistently for same patients. A patient treatment 

decision could thus be strongly influenced by the arbitrary choice of a modelling 

technique or arbitrary design choice. A previous study found that the inconsistency of 

individual risk predictions among models with similar model performance was larger 

in high risk patients, which may strongly limit the clinical utility of risk prediction 

model in identifying high risk patients 6. The ability of models to discriminate 

high/low risk patients is often measured by C-statistic 7 8, which is a proportion of 

pairs of patients whose risks were correctly ranked (i.e. a true high risk patient would 

be ranked as higher risk than a true low risk patient) by the model among all random 

pairs of patients in the cohort. This study aims to evaluate whether ranking of 

predicted patient risks, rather than estimating their absolute predicted risks, improves 

consistency between different machine learning and statistical prediction models thus 

improving their clinical utility and reducing dependency on arbitrary model choices. 

The prediction of incident cardiovascular disease (CVD) was used as exemplar. 

Various statistical CVD risk prediction models are being recommended for use in 
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treatment guidelines such as Framingham for US 9, QRISK for UK 10 and ESC score 

for Europe 11 and machine learning models have been proposed to considerably 

improve the performance in CVD risk prediction 12 13 14 15 .  

 

 

 

6.3 Method  

6.3.1 Data source 

Clinical Practice Research Datalink (CPRD GOLD) was used to derive the study cohort. 

CPRD database includes patients’ electronic health records (EHR) of about 6.9% of the 

population in England 16. Patients’ EHRs were extracted from general practices which include 

detailed information such as demographics (age, gender and ethnicity), symptoms, tests, 

diagnoses, prescribed treatments, health-related behaviours and referrals to secondary care 16. 

CPRD has also been linked to Hospital Episode Statistics, Office for National Statistics 

mortality records and Townsend deprivation scores to acquire additional patient information 

about hospital admissions (e.g. date and discharge diagnoses), cause-specific mortality and 

deprivation 16. CPRD is a well-recognised representative cohort of UK population and has 

been used to develop and validate clinical risk prediction models, thousands of studies 17 have 

used CPRD including a validation of a popular UK risk prediction model (QRISK2) 18 and 

several analysis of machine learning 19 20.  

 

6.3.2 Study population 

The same selection criteria as QRISK3 10 was used in this study to derive study population, 

risk factors and CVD outcome 21 22. The main inclusion criteria of patients including age 

between 25 and 84, no CVD history or any statin prescription to the index date. The index 

date was randomly selected from the patients’ follow-up period. Follow-up was defined as 



202 
 

started at the date of the patient’s registration with the practice, 25th birthday, or January 1 

1998 (whichever latest) and ended at the date of death, incident CVD, the date of leaving the 

practice or last date of data collection (whichever earliest) 6. Random index date was used 

rather than a single calendar time date (as in QRISK3) aims to capture time-relevant practice 

variability and CVD risk factors with a better spread of calendar time and age 23. The primary 

clinical outcome of interest of CVD (including coronary heart disease, ischaemic stroke, and 

transient ischaemic attack) was defined similarly to QRISK3 10.  

 

6.3.3 CVD risk factors 

This study considered the same predictors selected for QRISK3, including gender, age, body 

mass index (BMI), smoking history, cholesterol/HDL ratio, systolic blood pressure (SBP) and 

its standard deviation, history of prescribing of atypical antipsychotic medication, blood 

pressure treatment or regular oral glucocorticoids, clinical history of systemic lupus 

erythematosus, atrial fibrillation, chronic kidney disease (stage 3, 4 or 5), erectile dysfunction, 

migraine, rheumatoid arthritis, severe mental illness or type 1 or 2 diabetes mellitus, family 

history of angina or heart attack in a 1st degree relative aged < 60 years, ethnicity and 

Townsend socioeconomic score 10. All models except Framingham in this study considered 

all these predictors, Framingham used fewer and different predictors 6 24.  

 

6.3.4 Risk prediction models, model development and validation 

The study used the same risk prediction models as developed in a previous study 6, including 

12 machine learning models (ensembled from 1200 machine learning models from 12 

families of machine learning models) and three Cox models.  The 12 families of machine 

learning models included logistic model 25, random forest 26 and neural network 27 from R 

package “Caret” 28; logistic model, random forest, neural network, extra-tree model 29 and 

gradient boosting classifier 29 from Python package “Sklearn” 30; logistic model, random 

forest, neural network and autoML 31 from Python package “h2o” 32. Models of the same 
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machine learning algorithm but different software were treated as different model family in 

the study. This is because the differences in the settings (hyper-parameters) to control model 

fitting might result a different best performed model through model fitting process. The Cox 

models in this study included QRISK3 10, Framingham 33 and a local fitted Cox model.  

 

The detailed model fitting process is described in the previous study 6. The variables with 

missing values including ethnicity (% missing in overall cohort was 54.3%), BMI (40.3%), 

Townsend score (0.1%), SBP (26.9%), standard deviation of SBP (53.9%), ratio of 

cholesterol and High-Density Lipoprotein (HDL) (65.0%) and smoking status (25.2%) were 

imputed 10 times with Markov chain Monte Carlo method with monotone style. The missing 

value imputed overall cohort were randomly split into overall training set (75%) and overall 

testing set (25%).  100 random samples of the overall training set were used to train machine 

learning models with grid searched on selected hyper-parameters and two-fold cross 

validation estimating calibration and discrimination 6. A total of 1200 machine learning 

models were first fitted and validated in its own testing cohort with high discrimination and 

calibration, then model performance and individual risk predictions of these models on the 

overall testing cohort were calculated. Individual risk predictions of 12 ensemble machine 

learning models were averaged from individual risk predictions of machine learning models 

from each model family (model ensemble with soft voting). The model performance of 12 

ensemble machine learning models were calculated and presented in this study. Threshold of 

7.5% (according to ACC/AHA Guideline on the Assessment of Cardiovascular Risk 34) was 

used to calculate sensitivity and positive predictive value (PPV). The refitted local Cox model 

followed the same process as machine learning in terms of derivation and validation except 

that there was no tuning hyper-parameters process. This study considered QRISK3 10 35  and 

Framingham 33 by their published model formula, as they were both internal and external 

validated 10 21 36. The individual risk predictions among 12 ensembled machine learning 

models and three Cox models were calculated and compared in the same overall testing 

cohort 6.  
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6.3.5 Main Statistical analysis 

Fifteen individual ranks for the same patients were derived from 12 ensembled machine 

learning models and three Cox models. Ranking of individual risk predictions was defined by 

the descending order of model predictions. The percentage of rank was derived by rank over 

total number of ranks (total number of patients). The distribution of patient percentages of 

rank with machine learning and Cox models was plotted and compared for the same group of 

patients with a predicted risk between 7% and 8% from two different reference models 

(logistic Caret model or local Cox model). This investigated whether different models rank 

patients similarly. The logistic Caret model was used as reference model as it is a neutral 

model between machine learning and traditional statistic models (can be fitted in both ways) 

and being used as reference in the previous study 6. The local Cox model was selected as 

reference model as previous study showed that both Cox and machine learning models have 

comparable model performance while Cox models additionally consider patient censoring 

(i.e., the effects of patients drop out early).  Boxplots of differences of individual ranks among 

models were plotted against deciles of predicted absolute risks of the local Cox model. This 

investigated whether the differences of individual ranks came from lower or higher risk 

groups.   

 

6.4 Results  

There were 3.6 million patients from 391 general practices in the study population. Table 6.1 

summarises the baseline characteristics of the study population showing that the derivation 

and validation cohort had similar characteristics.
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Table 6.1: Baseline characteristics of the study population (patients aged 25-84 years without 
history of CVD or prior statin use at study entry 

 
 Derivation cohort Validation cohort 

General characteristics 

Number of patients 2746453 915479 

Number of CVD cases (%) 86769 (3.2) 28828 (3.1) 

Number of female patients (%) 1406796 (51.2) 469098 (51.2) 

 

CVD risk factors 

Age (Mean (SD)) 44.7 (15.6) 44.7 (15.7) 

BMI (Mean (SD)) 26.7 (5.0) 26.7 (5.0) 

Cholesterol/HDL ratio (Mean (SD)) 3.9 (1.3) 3.9 (1.3) 

Number of patients on atypical antipsychotic medication (%) 123060 (0.4) 40300 (0.4) 

Number of patients on blood pressure treatment (%) 1839640 (6.7) 619620 (6.8) 

Number of patients on regular steroid tablets (%) 20590 (0.1) 6940 (0.1) 

Number of patients with Systemic Lupus Erythematosus (%) 18400 (0.1) 6060 (0.1) 

Number of patients with angina or heart attack in a 1st degree 
relative < 60 (%) 

984550 (3.6) 326190 (3.6) 

Number of patients with atrial fibrillation (%) 207780 (0.8) 69650 (0.8) 

Number of patients with chronic kidney disease (stage 3, 4 or 
5) (%) 

301330 (1.1) 102400 (1.1) 

Number of patients with erectile dysfunction (%) 396510 (1.4) 131100 (1.4) 

Number of patients with migraines (%) 1774390 (6.5) 591060 (6.5) 

Number of patients with rheumatoid arthritis (%) 161670 (0.6) 54590 (0.6) 

Number of patients with severe mental illness (this includes 
schizophrenia, bipolar disorder and moderate/severe 
depression) (%) 

2198610 (8.0) 728320 (8.0) 

Number of patients with type 1 diabetes (%) 58990 (0.2) 20970 (0.2) 

Number of patients with type 2 diabetes (%) 355690 (1.3) 118260 (1.3) 

SBP (Mean (SD)) 126.9 (16.7) 126.9 (16.7) 

Standard deviation of each individual patients' SBP (Mean 
(SD)) 

9.9 (5.6) 9.9 (5.6) 

 

Ethnicity 

Number of patients with other ethnicity (%) 372240 (1.4) 125370 (1.4) 

White or not recorded (%) 25731820 (93.7) 8573550 (93.7) 

 

Smoking 

Number ex-smokers (%) 6300299 (22.9) 2095026 (22.9) 

Number of current-smokers (%) 8066066 (29.4) 2696146 (29.5) 

Number of patients who never smoked (%) 13098165 (47.7) 4363618 (47.7) 
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 Derivation cohort Validation cohort 

Townsend 

Number of patients with Townsend - 1.the least deprived (%) 6004107 (21.9) 1999488 (21.8) 

Number of patients with Townsend - 2.less deprived (%) 5947510 (21.7) 1976893 (21.6) 

Number of patients with Townsend - 3.deprived (%) 5728916 (20.9) 1910200 (20.9) 

Number of patients with Townsend - 4.more deprived (%) 5680051 (20.7) 1895230 (20.7) 

Number of patients with Townsend - 5.the most deprived (%) 4103946 (14.9) 1372979 (15.0) 
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All models had similar model performance in terms of high discrimination (C statistic about 

0.88) and calibration (similar low brier score and good calibration plots in their own 

framework 6). Similar model performance of the 12 ensembled machine learning models and 

three Cox models were also showed in eTable 6.9.1. 

Figure 6.1a (using logistic Caret model as reference model) and Figure 6.1b (using local Cox 

model as reference model) plotted the distribution of ranking of predicted CVD risks with 

different models for the same group of patients. Figure 6.1a shows that patients with absolute 

risk of 7%~8% from logistic Caret model had 25% percentile (Q1) to 75% percentile (Q3) of 

percentage of rank of 11.6%~12.3% in the logistic Caret model, 10.9%~14.3% in a random 

forest model, 11.4%~12.6% in a neural network, 11.2%~13.6% in QRISK3 and 

11.1%~13.2% in Local Cox model. However, previous study 6 showed that patients with an 

absolute risk of 7%~8% from logistic model had a risk of 5.8%~16.1% in a random forest and 

4.5%~9.4% in a neural network. It shows that there was variation (inconsistency) of ranking 

for the same patients among different models, but that this inconsistency was smaller than the 

inconsistency of magnitude of individual risk predictions. This statement holds when 

changing reference model to the local Cox model. Figure 6.1b shows that patients with risk of 

7%~8% from Local Cox model had percentage of rank of 22.3%~23.5% in Local Cox model, 

21.2%~24.3% in a logistic model, 21.0%~26.6% in a random forest model, 21.4%~24.0 in a 

neural network and 21.5%~24.8% in QRISK3. 
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Legends to figures 

Figure 6.1: Distribution of percentage of individual patients’ rank (rank was defined by decreasing order of individual risk predictions and 

percentage of rank was derived by dividing rank by number of patients) with machine learning and Cox models for patients with predicted risks of 

7~8% in reference model 

a. Use logistic Caret model as the reference model 

b. Use local Cox model as the reference model 

X axis: percentage of patients’ rank  

Y axis: relative frequency (estimated density value) 
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Figure 6.1a (Legends)                                                                                  Figure 6.1b (Legends) 

X axis: percentage of patients’ rank  

Y axis: relative frequency (estimated density value) 
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Figure 6.2a and 6.2b plotted the differences in individual risk and risk prediction ranking 

between the different models stratified by decile of absolute risk as estimated by the local Cox 

model. For patients in the highest risk group, the Q1 to Q3 of differences of predicted risk 

among models was (-18.8% ~ -9.0%). This was (-1.5% ~ -1.1%) for patients with medium 

predicted risk, and (-0.4% ~ -0.3%) for patients with lower predicted risk. However, for 

percentage of rank among models, patients in the highest risk group has an Q1 to Q3 of 

differences of percentage of rank as (-0.6% ~ 1.0%). This was (-2.7% ~ 3.4%) for patients in 

the medium risk group and (-2.9% ~ -0.6%) for patients in lower risk group. It shows that the 

differences in patient ranking had lower variation in higher risk groups but larger in medium 

risk group.  
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Figure 6.2: : Boxplot of differences of individual risk prediction ranks with machine 
learning and Cox models stratified by deciles of absolute predicted risks with local Cox 
model (reference model) 

a. Boxplot of differences of individual absolute risk predictions 
b. Boxplot of differences of individual risk prediction ranks  

X axis: decile of absolute predicted risk with local Cox model  

Y axis: differences with other models  
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Figure 6.2a                                                                                                                       Figure 6.2b 
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Figure 6.3a plots the boxplot of differences in magnitude of patient risks against the decile of 

risk of local Cox model grouped by each model. Figure 6.3b was plotted similarly to Figure 

6.3a except that it used differences of percentage of patient ranks rather than predicted risk. 

Figure 6.3a shows that for individual risk prediction, higher risk group patients have less 

consistency of risk among different models, while Figure 6.3b shows that for individual 

ranking, higher risk group patients had more consistency of ranking among different models.  
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Figure 6.3: Boxplot of differences of percentage of individual patients’ rank or 

individual risk predictions with machine learning and Cox models stratified by deciles 

of predicted risks with local Cox model 

a. Boxplot of differences of individual risk predictions 

b. Boxplot of differences of percentage of individual patients’ rank   

X axis: decile of predicted risk displayed as the actual value of each decile with local Cox 

model  

Y axis: differences in percentage of patients’ rank (Figure 3a) or predicted risks with other 

models (Figure 3b) 
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Figure 6.3a (Legends) 
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Figure 6.3b (Legends) 
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Figure 6.4 is a smoothed plot showing the variation of differences of percentage of patients’ 

ranking (including Q1 to Q3, mean and median) among models of the same group of patients 

who have a predicted risk above different treatment thresholds in X-axis. It shows that 

different models rank the patients more consistently in higher risk group, which is consistent 

to the Figure 6.2b and Figure 6.3b. The Q1 to Q3 of percentage of differences of patients’ 

ranking could narrow down from (-0.8%, 1.2%) to (-0.6%, 1.0%) if treatment threshold 

changed from 10% predicted risk to a higher 18.3% of local Cox model.  
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Figure 6.4: Smoothed 95% range of differences of percentage of individual patients’ rank with machine learning and Cox models (Local Cox model 
as reference model) in patients who have the predicted risk above the selected threshold of probability (X-axis) 

X axis: potential threshold of probability (with Local Cox model as reference model)  

Y axis: differences of percentage of individual patients’ rank with other models 
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Figure 6.4 (Legends) 
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Figure 6.5 plotted differences of percentage of patient ranking stratified by different 

predictors. Smokers or patients who have ethnicity as white or unknown had less variation of 

ranking than patients with other characteristics, although the magnitudes of the differences 

comparing to patients with other predictors were relatively small.  
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Figure 6.5: Boxplot of differences of percentage of individual patients’ rank with machine learning and Cox models (Local Cox model as reference 
model) for patients with different characteristics 

X axis: patients with different CVD predictors (only select patients’ CVD predictors with at least 1000 patients in their group)  

Y axis: differences in percentage of patients’ rank with other models 
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Figure 6.5 (Legends) 

X axis: patients with different predictor (only select patients’ predictors with at least 1000 
patients in its group)  

Y axis: differences of percentage of patients rank with other models 
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6.5 Discussion  

This study found that machine learning and Cox models with comparable model performance 

rank higher risk group patients more consistently than medium/lower risk group for CVD risk 

prediction. Although patients from higher risk group had large inconsistency of individual 

absolute risk predictions, they were more likely ranked similarly among different models.  

 

Previous studies used CVD risk prediction as an exemplar shows that individual risk would 

change much (potentially affecting treatment decisions) if considering heterogeneity between 

sites 21, model design of choice 37 and different types of model 6. In this case, Absolute risk 

(probability) alone might not be enough for clinical usage on individual level giving the 

inconsistencies in prediction between models and dependency on modelling choices 6 21 37. 

However, this study found that ranking of risks had less uncertainty on individual level 

among different models, compared to absolute risks, as there are finite possibilities of rank for 

a fixed cohort, the validity of individual rank was considered by model’s discrimination 

ability and it could be derived from directly comparing linear predictor (a sum of 

multiplication of beta coefficients and predictors) of model alone. This study shows that 

though models have great uncertainty especially on higher risk patients, they rank higher risk 

patients more consistently and thus individual ranking of patients could be used in clinical 

practice to help identify patients who are a true high-risk patient. To our knowledge, this is 

the first study to consider using individual rank rather than individual risk to improve clinical 

usage of risk prediction model.  

 

Our results show that the current threshold including 7.5% from ACC/AHA Guideline or 10% 

from NICE guidelines were not evidenced enough for using risk predictions on individual 

level, as there was large uncertainty on both of individual risk and rank for patients around 

these risks which could affect their treatment decisions. The results of this study support the 

concern from clinicians that using the new lower risk threshold 10% from NICE guideline for 

prescribing statin would over-treat healthy patients 38, as models have large inconsistency of 

risk prediction and ranking for patients above this threshold. This study also adds that the 

higher the threshold means the more certainty of high-risk patients on individual as different 

model would rank these high-risk patients more consistently than patients in lower risk group.     

 

Future model development will need to focus on discriminating patients with medium risk on 

individual level due to uncertainty of both individual risk and rank for these patients. 
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Practically, a patient with very high or very low risk might be easily identified by clinicians 

through clinical judgment without the need of risk prediction model. A new statistic may be 

required measuring consistency of models in predicting individual risks and lack of effect of 

arbitrary modelling choices. Current model performance measurements including calibration 

and discrimination merely measure population level characteristics. A previous study 21 37 22 

compared distribution of individual predictions for the same group of patients and this study 

compared distribution of individual rank for patients, a new statistic might be proposed to 

quantify uncertainty of individual patients’ risk or rank. Individual rank seems to have better 

property than individual risk given its consistency on high risk patients, new type of model 

might focus on estimating patients’ individual rank or linear predictor. Though individual 

rank does not directly reflect calibration of model, supplying with individual risk might 

resolve this. A future statistical and clinical useful model should predict accurate and robust 

individual risk prediction on both of population and individual level.  

 

There are several limitations of this study. Models in this study considered 22 predictors as 

provided by QRISK3 developer 10. A limitation was that more predictors could have been 

considered. However, the models with the 22 predictors already achieved a high 

discrimination and good calibration and more predictors could limit model’s clinical utility as 

one needs to measure more predictors to make predictions with a higher chance of data 

quality issue (e.g. missingness of predictor). Another limitation in the analysis of specific 

CVD predictors was that not all specific predictors could be considered due to small sample 

sizes. 

 

In conclusion, the clinical utility of risk prediction models could be improved by supplying 

ranking of individual risk predictions from multiple models in clinical practice. Consistency 

in ranking of risks between different models could give more confidence that a higher rank 

individual patient is a true high-risk patient who needs care. This may be preferable on 

arbitrarily picking one prediction model out of series of possible models. For patients who 

have uncertainty on both risk and rank (for the patients with medium risk), additional clinical 

testing and clinical judgement is needed to make treatment decisions.  

 

 

6.6 Funding 



225 
 

This study was funded by China Scholarship Council (PhD studentship of Yan Li).  

 

6.7 Acknowledgements 

This study is based on data from the Clinical Practice Research Datalink obtained 

under license from the UK Medicines and Healthcare products Regulatory Agency. 

The protocol for this work was approved by the independent scientific advisory 

committee for Clinical Practice Research Datalink research (No 19_054R). The data 

are provided by patients and collected by the NHS as part of their care and support. 

The Office for National Statistics (ONS) is the provider of the ONS Data contained 

within the CPRD Data. Hospital Episode Data and the ONS Data Copyright © (2014), 

are re-used with the permission of The Health & Social Care Information Centre. All 

rights reserved. The interpretation and conclusions contained in this study are those of 

the authors alone. There are no conflicts of interest among the authors. 

 

 



226 
 

6.8 References  

1.  NICE recommends wider use of statins for prevention of CVD | News and features | 
News | NICE. https://www.nice.org.uk/news/article/nice-recommends-wider-use-of-
statins-for-prevention-of-cvd. Accessed April 30, 2018. 

2.  Glorot X, Bengio Y. Understanding the Difficulty of Training Deep Feedforward 
Neural Networks. http://www.iro.umontreal. Accessed January 19, 2020. 

3.  FDA permits marketing of artificial intelligence-based device to detect certain 
diabetes-related eye problems | FDA. https://www.fda.gov/news-events/press-
announcements/fda-permits-marketing-artificial-intelligence-based-device-detect-
certain-diabetes-related-eye. Accessed January 19, 2020. 

4.  Yan Li, Matthew Sperrin, Miguel Belmonte, Alexander Pate, Darren M Ashcroft TP 
van S. Do population-level risk prediction models that use routinely collected health 
data reliably predict individual risks? Submitted(TBD). 2019. 

5.  Pate A, Emsley R, Ashcroft DM, Brown B, van Staa T. The uncertainty with using 
risk prediction models for individual decision making: an exemplar cohort study 
examining the prediction of cardiovascular disease in English primary care. BMC 
Med. 2019;17(1):134. doi:10.1186/s12916-019-1368-8 

6.  Yan Li, Matthew Sperrin, Darren M Ashcroft TP van S. Does machine learning 
improve the accuracy of clinical risk predictions? An exemplar examining risk of 
cardiovascular disease. 

7.  Pencina MJ, D’Agostino RB, Song L. Quantifying discrimination of Framingham risk 
functions with different survival C statistics. Stat Med. 2012;31(15):1543-1553. 
doi:10.1002/sim.4508 

8.  Steyerberg EW. Clinical Prediction Models : A Practical Approach to Development, 
Validation, and Updating. Springer; 2009. 

9.  Bitton A, Gaziano TA. The Framingham Heart Study’s impact on global risk 
assessment. Prog Cardiovasc Dis. 2010;53(1):68-78. doi:10.1016/j.pcad.2010.04.001 

10.  Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk 
prediction algorithms to estimate future risk of cardiovascular disease: prospective 
cohort study. Bmj. 2017;2099(May):j2099. doi:10.1136/bmj.j2099 

11.  Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular 
disease prevention in clinical practice. Eur Heart J. 2016;37(29):2315-2381. 
doi:10.1093/eurheartj/ehw106 

12.  Steele AJ, Denaxas SC, Shah AD, Hemingway H, Luscombe NM. Machine learning 
models in electronic health records can outperform conventional survival models for 
predicting patient mortality in coronary artery disease. 2018. 
doi:10.1371/journal.pone.0202344 

13.  Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, van der Schaar M. Cardiovascular 
disease risk prediction using automated machine learning: A prospective study of 
423,604 UK Biobank participants. Aalto-Setala K, ed. PLoS One. 
2019;14(5):e0213653. doi:10.1371/journal.pone.0213653 

14.  Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve 
cardiovascular risk prediction using routine clinical data? Liu B, ed. PLoS One. 
2017;12(4):e0174944. doi:10.1371/journal.pone.0174944 

15.  Al’Aref SJ, Anchouche K, Singh G, et al. Clinical applications of machine learning in 



227 
 

cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 
2019;40(24):1975-1986. doi:10.1093/eurheartj/ehy404 

16.  Herrett E, Gallagher AM, Bhaskaran K, et al. Data Resource Profile: Clinical Practice 
Research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827-836. 
doi:10.1093/ije/dyv098 

17.  Clinical Practice Research Datalink | CPRD. https://www.cprd.com/. Accessed 
November 28, 2019. 

18.  Hippisley-Cox J, Coupland C, Brindle P. The performance of seven QPrediction risk 
scores in an independent external sample of patients from general practice: a 
validation study. BMJ Open. 2014;4(8):e005809. doi:10.1136/bmjopen-2014-005809 

19.  Hill NR, Ayoubkhani D, McEwan P, et al. Predicting atrial fibrillation in primary care 
using machine learning. PLoS One. 2019;14(11):e0224582. 
doi:10.1371/JOURNAL.PONE.0224582 

20.  Ford E, Rooney P, Oliver S, et al. Identifying undetected dementia in UK primary care 
patients: A retrospective case-control study comparing machine-learning and standard 
epidemiological approaches. BMC Med Inform Decis Mak. 2019;19(1). 
doi:10.1186/s12911-019-0991-9 

21.  Li Y, Sperrin M, Belmonte M, Pate A, Ashcroft DM, van Staa TP. Do population-
level risk prediction models that use routinely collected health data reliably predict 
individual risks? Sci Rep. 2019;9(1):11222. doi:10.1038/s41598-019-47712-5 

22.  Li Y, Sperrin M, Martin GP, Ashcroft DM, van Staa TP. Examining the impact of data 
quality and completeness of electronic health records on predictions of patients’ risks 
of cardiovascular disease. Int J Med Inform. November 2019:104033. 
doi:10.1016/j.ijmedinf.2019.104033 

23.  van Staa T-P, Gulliford M, Ng ES-W, Goldacre B, Smeeth L. Prediction of 
cardiovascular risk using Framingham, ASSIGN and QRISK2: how well do they 
predict individual rather than population risk? PLoS One. 2014;9(10):e106455. 
doi:10.1371/journal.pone.0106455 

24.  Anderson KM, Wilson PW, Odell PM, Kannel WB. An updated coronary risk profile. 
A statement for health professionals. Circulation. 1991;83(1):356-362. 
doi:10.1161/01.CIR.83.1.356 

25.  Nelder JA, Wedderburn RWM. Generalized Linear Models. J R Stat Soc Ser A. 
1972;135(3):370. doi:10.2307/2344614 

26.  Breiman L. RANDOM FORESTS.; 2001. 
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf. Accessed August 22, 
2019. 

27.  Demuth H, De Jesús B. Neural Network Design 2nd Edition. 
https://hagan.okstate.edu/NNDesign.pdf. Accessed August 22, 2019. 

28.  Max Kuhn. The caret Package. http://topepo.github.io/caret/index.html. Accessed 
September 10, 2019. 

29.  Géron A. Hands-on Machine Learning with Scikit-Learn and TensorFlow : Concepts, 
Tools, and Techniques to Build Intelligent Systems. 

30.  About us — scikit-learn 0.21.3 documentation. https://scikit-
learn.org/stable/about.html. Accessed September 10, 2019. 

31.  h2o. AutoML: Automatic Machine Learning — H2O 3.26.0.3 documentation. 



228 
 

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html?highlight=automl. Accessed 
September 7, 2019. 

32.  The H2O Python Module — H2O documentation. http://docs.h2o.ai/h2o/latest-
stable/h2o-py/docs/intro.html#what-is-h2o. Accessed September 10, 2019. 

33.  Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the 
epidemiology of cardiovascular disease: a historical perspective. Lancet (London, 
England). 2014;383(9921):999-1008. doi:10.1016/S0140-6736(13)61752-3 

34.  Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the 
assessment of cardiovascular risk: A report of the American college of 
cardiology/American heart association task force on practice guidelines. J Am Coll 
Cardiol. 2014;63(25 PART B):2935-2959. doi:10.1016/j.jacc.2013.11.005 

35.  Li Y, Sperrin M, van Staa T. R package “QRISK3”: an unofficial research purposed 
implementation of ClinRisk’s QRISK3 algorithm into R. F1000Research. 
2019;8:2139. doi:10.12688/f1000research.21679.1 

36.  Collins GS, Altman DG. An independent and external validation of QRISK2 
cardiovascular disease risk score: a prospective open cohort study. BMJ. 
2010;340(July):c2442. doi:10.1136/bmj.c2442 

37.  Pate A, Emsley R, Ashcroft DM, Brown B, van Staa T. The uncertainty with using 
risk prediction models for individual decision making: an exemplar cohort study 
examining the prediction of cardiovascular disease in English primary care. BMC 
Med. 2019;17(1):134. doi:10.1186/s12916-019-1368-8 

38.  Concerns about the Latest NICE Draft Guidance on Statins Introduction.; 2014. 

 



229 
 

6.9 Supplementary Online Content 

The instability of machine learning and statistical models in predicting individual patient 
risks: an approach to improve the clinical utility of these models 
 
Published online XXX 
Doi: XXXX 
 
 
eTable 6.9.1: Performance indicators of ensembled machine learning and Cox models 
 
eFigure 6.9.1. Boxplot of differences of individual risk prediction ranks and absolute 
risk with machine learning and Cox models stratified by 5 percentiles of predicted risks 
with local Cox model 
 

e. Boxplot of differences of individual risk predictions 
f. Boxplot of differences of percentage of individual patients’ rank   

 
X axis: decile of absolute predicted risk with local Cox model  

Y axis: differences with other models 

 
eFigure 6.9.2. Boxplot of differences of individual risk prediction ranks and absolute 
risk with machine learning and Cox models stratified by 20 percentiles of predicted 
risks with local Cox model 
 

a. Boxplot of differences of individual risk predictions 
b. Boxplot of differences of percentage of individual patients’ rank   

X axis: decile of absolute predicted risk with local Cox model  

Y axis: differences with other models 

 

eFigure 6.9.3. Boxplot of differences of individual risk prediction ranks and absolute 
risk with machine learning and Cox models stratified by 25 percentiles of predicted 
risks with local Cox model 
 

a. Boxplot of differences of individual risk predictions 
b. Boxplot of differences of percentage of individual patients’ rank  

X axis: decile of absolute predicted risk with local Cox model  

Y axis: differences with other models 
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eTable 6.9.1 shows the model performance of the 12 ensembled machine learning models 

and three Cox models. All models had similar model performance in terms of high 

discrimination (C statistic about 0.88) and calibration (similar low brier score and good 

calibration plots in their own framework 6).  

 

eFigure 6.9.1-6.9.3 plots similar boxplot as Figure3 in the main manuscript. eFigure 6.9.1-

6.9.3a plot the boxplot of differences in magnitude of patients risks against the 5 percentiles, 

20 percentiles and 25 percentiles of risk of local Cox model grouped by each model. 

Similarly, eFigure 6.9.1-6.9.3b plot the boxplot of differences of percentage of patient ranks 

against percentiles of risk of local Cox model. These plots show the similar results as in 

Figure 6.3, i.e. the predicted risk has larger variation or inconsistency in the higher risk 

group, but the predicted rank has smaller inconsistency in the higher risk group. The result of 

this trend was not influenced by whether we group patients by decile or percentiles of 

predicted risk.  
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eTable 6.9.1: Performance indicators of machine learning and Cox models 
 

 Model performance* (95% range #) 

 
C-statistic 

(2.5% ~ 97.5%) # 
Brier score 

(2.5% ~ 97.5%) # 

Sensitivity 
(Recall) 

(2.5% ~ 97.5%) # 

PPV 
(Precision) 

(2.5% ~ 97.5%) # 

Caret 

Logistic 0.879 (0.878, 0.881) 0.028 0.615 0.163 

Random forest 0.879 (0.877, 0.880) 0.028 0.672 0.147 

Neural network 0.880 (0.878, 0.881) 0.028 0.673 0.148 

Cox model 

QRISK3 0.879 (0.878, 0.881) 0.032 0.858 0.101 

Framingham 0.865 (0.863, 0.866) 0.031 0.892 0.085 

Local Cox model 0.877 (0.876, 0.879) 0.032 0.810 0.112 

Sklearn 

Logistic 0.879 (0.878, 0.881) 0.028 0.616 0.163 

Random forest 0.879 (0.877, 0.881) 0.028 0.683 0.145 

Neural network 0.877 (0.875, 0.878) 0.028 0.600 0.161 

Gradient boosting classifier 0.881 (0.880, 0.883) 0.027 0.659 0.154 

extra-trees 0.879 (0.877, 0.881) 0.028 0.679 0.146 

h2o 

Logistic 0.879 (0.877, 0.880) 0.028 0.616 0.163 

Random forest 0.879 (0.878, 0.881) 0.027 0.652 0.152 

Neural network 0.879 (0.877, 0.880) 0.028 0.605 0.163 

autoML 0.879 (0.878, 0.881) 0.028 0.617 0.163 

 
* Model performance was calculated in binaray framework. Threshold 7.5% was used to calculate precision and recall for all models. 
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Appendix Figures 

 

eFigure 6.9.1a 
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eFigure 6.9.1b 
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eFigure 6.9.2a 
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eFigure 6.9.2b 
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eFigure 6.9.3a 
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eFigure 6.9.3b
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eAppendix 6.9.4 Statistical interpretation of uncertainty of individual risk 

Current individual risk (probability) estimated by risk prediction model is pre-defined 

and conditioning on the predictors considered in the model, model assumptions and 

how model defines similarity of patients based on all selected predictors, i.e. 

P(outcome | considered conditions) 1. However, a clinical robust individual risk 

should be defined as a risk based on all conditions including considered conditions 

and unknown conditions, i.e. P(outcome | All conditions) or P(outcome | considered 

conditions + unknown conditions). All of individual risk prediction of current risk 

prediction models use P(outcome | considered conditions) to approximate P(outcome | 

all conditions) for clinical usage. Ideally, the statistical estimated risk should be close 

to the risk which are robust enough for clinical usage on individual. This means the 

considered conditions already capture the main variation of disease outcome and 

unknown conditions would have small effects on estimated probability (i.e. adding 

new conditions would not change probability much and would not affect clinical 

decision of patients 1). Previous studies have shown that CVD risk prediction could be 

changed completely (affects clinical decision of patients) if additional unknown 

conditions are considered including practice heterogeneity 2, model design of choice 3 

and different types of model 4. This indicates that the P(CVD | considered conditions) 

is not close to P(CVD | All conditions), and using different P(CVD | considered 

specific conditions) as P(CVD | All conditions) would result great uncertainty of 

individual risk of patients. This then suggests new individual level measurement 

might be needed addition to individual risk.  
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7.1 Key message 

        Risk prediction models that may have good statistical performance on population 

level (such as C statistics) can have limited generalisability and clinical utility in 

predicting individual patient risks. The reason is that prediction models based on 

different techniques or modelling decisions can yield inconsistent individual results. 

Risk prediction models should be used in conjunction with additional clinical tests 

and clinical judgement. 

 

7.2 Brief history of risk prediction models 

        Risk prediction models are mathematical formulas that use predictors such as 

risk factors of disease to calculate the risk (probability) of individual patients 

developing a disease in the future 1. Historically, they were developed from large 

prospective cohorts with pre-defined inclusion criterion, outcomes and predictors (e.g. 

Framingham study 2). More recently, risk prediction models are also being developed 

from routinely collected electronic health records (EHR) due to their advantage in 

large sample size, more available predictors, multiple time points, frequently updated 

data and better representativeness due to inclusion of patients from daily practice 

rather than volunteers in prospective cohort studies 3. Examples of risk prediction 

models are the UK QRISK models 3 predicting cardiovascular disease (CVD) 4, 

diabetes mellitus 5 and fracture 6, US Framingham model 2 predicting CVD, European 

ESC score predicting CVD and Michael et al.’s model 7 predicting acute kidney 

injury. These models are now recommended by clinical guidelines for disease 

prevention 8 and implemented into healthcare system to assist clinicians to make 

treatment decision for individual patients. For example, NICE guideline recommends 

to prescribe a statin to patients if they have QRISK predicted CVD risk of over 10% 9, 

ESC score is used in European guidelines on CVD prevention in clinical practice 10 

and Framingham model is recommended by PBS guideline 11. These models were 

transparently reported following the model development guideline of TRIPOD 1. 

Recently, machine learning models have started to show their strength in image 
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recognition 12 due to increase of computing power and breakthrough in deep learning 
13. Multiple studies reported that machine learning models also provided promising 

predictions comparing to traditional statistical models thus should be considered for 

clinical practices 14 15. This paper aims to analyse whether risk prediction models as 

developed from EHR or prospective cohort studies are robust enough for clinical 

decision making for individual patients.  

 

7.3 User case   

        Mr. Jonathan walked into Doctor Nice’s practice. “With the information such as 

your age, gender, whether you smoke or any relatives have heart attack before, we 

could predict your risk having CVD in next 10 years”. Says Doctor Nice. “Look, your 

risk was 7.5% predicted by a logistic model, 17% according to QRISK3, 12% 

according to Framingham model, 9.5% according to Cambridge’s Autoprognosis, 

6.5% according to a neural network model and 9% according to another neural 

network model...” “Wait what? Which one should I believe?”, Mr. Jonathan was 

confused…  

 

 

7.4 Current model fitting process 

        Several steps are required to develop a statistically validated model 16 (Figure 

7.1). The first step to consider is the prediction problem, i.e. how to define the 

outcome of interest, potential predictors and how to deal with any missing values. The 

next step to consider is how to code predictors (including categorical variables and 

continuous variables) to best capture predictive information for model. Then one 

needs to consider how to specify a model, i.e. select predictors with main effects 

(causal predictors) and check model assumptions. With specified model formula, one 

could estimate model parameters (e.g. beta coefficients or intercept). Once obtained 

the fitted model, one needs to measure its model performance (i.e. discrimination and 

calibration) and clinical usefulness (net benefit analysis) internally (within the model 
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development setting) and ideally externally (external setting outside the model 

development sitting). The final step is to present the model results of individual risk 

predictions 16. Machine learning models are generally similar to statistical model in 

the model fitting process except that machine learning models have more complex 

model structure with a higher focus on recognising data pattern, tuning model with 

hyperparameters (control model structure and model fitting criteria) and automation 

(automate model developing, validating and updating process) 17.  

 

        The performance of risk prediction models is assessed with discrimination 

measures (i.e., the ability to discriminate between high/low risk patients) and 

calibration measures (i.e., agreement between average predicted events and observed 

events). There are internationally accepted guidelines for the development and 

validation of risk prediction models (TRIPOD 1). These guidelines include determine 

whether the study develop and/or validate model, identify target population, clarify 

the outcome of interest, definition of outcome and any blind procedure to measure 

outcome, provide drivers of developing a new model, references to existing model, 

describe source of data and study design, specify key dates of start, end and follow-up 

of the study, specify study setting such as primary or secondary care and number and 

location of centres, describe inclusion criteria of patients, define considered predictors 

and any blind procedure when collecting predictors and how predictors were used in 

analysis, report how the sample size was derived, how missing data was handled, 

explain what type of model was used and process of model fitting and internal 

validation process, select measures to assess model performance and compare to 

multiple models if possible, report any model updating procedure, describe whether 

and how risk groups were created if relevant, describe general differences of data such 

as setting or criteria between development and validation, report baseline information, 

show a distribution comparison between development and validation for important 

variables, present model to predict individual patients risk and explain how to use the 

model, discuss the limitation, discuss the differences of model performance between 
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development cohort and validation, give an overall interpretation of model, discuss 

the clinical usage of model, provide supplementary resources for model and provide 

funder of the study.  

   
 

*: Discrimination measures the ability of model to discriminate high/low risk patients  
**: Calibration measures the agreement between average predicted events and 
observed events 

 
Figure 7.1 model fitting and validating process 16 
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7.5 Challenges of current risk prediction approach  

        Table 7.1 identifies key challenges with developing risk prediction models that 

are currently ether not or minimally included in the TRIPOD guidelines. These 

include unmeasured heterogeneity between different clinical sites (i.e., predicted risks 

were affected by heterogeneity between clinical sites), variation of the associations 

between predictors and outcome, data quality, causal factors not included in the 

model, choice of model technique, design choices and settings within the model.  



247 
 

Table 7.1: Challenges in developing risk prediction models 

Challenges Examples 

Some causal factors not included in 
the model  

A study found that CVD risk prediction models incorporating different 
predictors such as secular trend have similar model performance but 
predicted risks for same patients differently 21. Another study found 
that adding a new predictor (C-Reactive Protein) to CVD models did 
not improve model performance but the change of individual risk 
prediction improved the risk classification in women 22. A recent study 
reported that machine learning model outperformed traditional statistic 
model incorporating all the possible predictors (causal and non-causal) 
from database into model 23.  

Unmeasured heterogeneity 
between clinical sites 

A study found that QRISK3 has considerable uncertainty in predicting 
individual CVD risks. A patient with a predicted 10-year risk of 10% 
could have predicted risks ranging from 7.2% to 13.7% when 
incorporating random effects of each site into the model. This random 
effects model (of intercepts) found considerable unmeasured site 
heterogeneity in CVD risk leading to over- and under-treatment 
depending on the site 18.  

Data quality Models developed from data with poor data quality generally have 
poor generalisability 16. However, a study found data quality did not 
explain the effects of unmeasured practice heterogeneity on individual 
risk prediction 19. In the study, data quality was measured by stability 
metrics of predictors and missingness for each practice which 
quantifies the distance/diversity of distribution of predictors of each 
practice to a latent average. Study found practices with high/low 
random effects have comparable stability metrics and missing 
percentages, vice versa. This indicates data quality was not related to 
effects of practice heterogeneity on individual risk prediction. 

Variation of association between 
predictors and outcome 

A study pointed out that the heterogeneity of model performance in 
different practices could reflect true variations between predictors and 
outcome 20. A recent study, using a random effect model, found that 
variation of association between predictors and outcome did not 
explain the effects of unmeasured practice heterogeneity on individual 
risk prediction 19. This random effect model (of slopes) tested whether 
the relative rates of outcomes with predictors statistically varied 
between sites 19.  

Choice of model type and structure 
and underlying model assumptions 

Studies have shown that different model choices 21 and types 24 can 
yield models with comparable statistical population-level performance 
but inconsistent prediction of individual risks. This includes machine 
learning models that predicted individual risks differently (even for 
models developed from the same algorithms and structure) 24.   
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        Risk prediction models typically use data collected from different clinical sites 

but the variability in the accuracy of predictions between sites is often not considered. 

As an example, QRISK3 was developed based on data from 1309 general practices. A 

recent study found that this site variability substantially affected the estimates of risks 

for individual patients and potential treatment decisions. A model that incorporated 

site variability by estimating random effects of each site using random effects model 

found that a QRISK3 predicted risk of 10% of developing CVD over 10 years 

changed to predicted risks ranging between 7.2% and 13.7% in the random effects 

model 18.  

        Data quality, which is a particular challenge for EHRs as data are routinely being 

collected as part of clinical care rather than research, is an important aspect needs to 

be considered by risk prediction modelling. Models developed from poor quality data 

generally have limited generalisability 16. There are few studies that have 

systematically assessed the effects of data quality on risk predictions; data quality is 

rarely considered in the development of risk prediction models (most studies only 

handled missing value). However, a recent study found that data quality did not 

explain the effects of unmeasured practice heterogeneity when missing values were 

imputed and distribution of predictors were similarly among different settings 19.  

The associations between predictors and outcome could also vary between clinical 

sites (for example, the effects of diabetes mellitus on CVD risk could be different 

between sites). One study reported that this was responsible for the heterogeneity of 

model performance between clinical sites 20. Another study found that the association 

between predictors and outcome did not explain the effects of unmeasured practice 

heterogeneity (using a random effect with random slope model) 19.  

Whether models captured all the main predictors, what are the effects of unmeasured 

predictors and what predictors should/should not include in model is another 

challenge for risk prediction modelling. One study found that incorporating different 

predictors such as secular trend end up with models with similar model performance 

but completely different individual risk prediction 21. Another study added a new 
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predictor (C-Reactive Protein) to the model and found that model performance was 

similar after adding the predictor but that the risk classification in women improved 

due to the change of individual risk prediction 22. A recent study claimed that machine 

learning model outperformed traditional statistic model with almost all the possible 

predictors from dataset 23, but this “all in” approach strongly limits clinical utility 

(needs more predictors to make predictions) and interpretability (no clue how 

predictions were made) of models and makes model more prone to issues such as data 

quality issue and overfitting.  

        Type of both statistical models and machine learning models was related to 

prediction task and whether model could achieve a good model performance, but 

there is only empirical way (no general principle) to decide which model, what model 

structure was the most suitable for specific prediction task and whether all model 

assumptions were met. Recent research mimicked the practical model developing 

process by comparing 12 family of machine learning models to 3 family of Cox 

models considering different representative samples, different model fitting software, 

model types, hyper-parameters to control model structures. The study found all 

models have similar model performance but predicts the same patients differently 

even for models developed from the same algorithm, thus the treatment decision of 

patients was decided by what model was used in clinical practice 24.  

        Inconsistency of predicted risks from statistical comparable models for the same 

patients directly limits clinical utility of risk prediction models, as the above story 

goes that patients and clinicians would have no clue which predicted risk should be 

used. Studies have shown that models with similar model performance but differ in 

whether consider practice heterogeneity 18, model choices 21 and model types 24 

predict inconsistent risks for the same patients. 

 

7.6 Solutions  

        The ultimate goal is to improve the generalisability and clinical utility of current 

risk prediction models. Table 7.2 summarises potential specific solutions including 
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assessing effects of practice heterogeneity with random effects model, developing 

new metrics to measure effects of unconsidered predictors from application 

environment, dealing with missing value using multiple imputation and assessing data 

quality by comparing distribution of predictors, assessing variation of association 

between predictors and outcome with random slope model, continuing exploring more 

predictors and developing standard to incorporate predictors into model, improving 

current guideline to standardise model fitting process, developing new statistic model 

performance measurements to measure model performance on individual level and 

new individual level measurement for patients and use current model with a 

combination of clinical testing and clinical judgement. 
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Table 7.2: Possible solutions in overcoming challenges in risk prediction models 

Challenges Solutions 

Some causal factors not included in 
the model  

Unmeasured effects of predictors could be partially assessed by 
random effects model.  

 

New systematic statistical approach incorporating current available 
statistics such as R-square was needed to assess whether models 
captured all the main predictors and effects of unmeasured predictors 
on risk prediction.  

 

Predictors used in the current implemented risk prediction model were 
mainly selected by experts due to their likely causal relationship to 
outcome and large improvement of model performance 16. Though 
incorporating large number of non-casual predictors into model 
provides more predictive information, it limits clinical utility (needs 
more predictors to make predictions) and interpretability (no clue how 
predictions were made) of model and makes model more prone to 
issues such as data quality issue and overfitting. What predictors to 
include/not include in risk prediction model should be carefully 
discussed by experts and systematically studied. New principle should 
be added in the current risk prediction model guideline about what 
predictors could add considering causal relationship, model 
performance, generalisability and clinical utility. 

 

Unmeasured heterogeneity 
between clinical sites 

Assess effects of practice heterogeneity with random effects model. 
Alternatively using fixed effects approach with linear predictor of 
model as offset and practices as categorical variable to compare the 
fixed effects of each practice 16.  

 

Develop new metrics to measure clinical utility of models for 
environment of clinical application 29. 

Data quality Deal with missing value using multiple imputation 25.  

 

Indirectly measure effects of data quality by comparing distribution of 
predictors with traditional statistical approach such as N-way ANOVA 
or innovative stability metric 26 in different settings (e.g. in 
development setting or validation setting or in different practices). 

Variation of association between 
predictors and outcome 

Assess variation of association between predictors and outcome with 
random slope model. 
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Challenges Solutions 

Choice of model type and structure 
and underlying model assumptions 

Statistical model field should refer to machine learning model field to 
create open access model collections (model encyclopaedia) 31 about 
what model was used for specific diseases with transparent records of 
model type, structures, model assumptions, predictors, outcomes and 
test data, so the consensus of risk prediction modelling could be 
established for each specific prediction task.     

 

Machine learning field should refer to current statistical model 
guideline focusing on reaching consensus of choosing model type and 
how hyper-parameters and model structure should be considered in a 
principal way rather than the current ad-hoc approach. 

Inconsistency of predicted risk 
estimated by statistical comparable 
models 

New statistic is needed to measure model performance on individual 
level. 

 

Additional individual level measurement such as percentage of rank 30 
and other individual level metrics could be considered to improve 
clinical utility of risk prediction model.  

 

Treatment decisions for patients should be recommended by risk 
predictions in conjunction with clinical tests and clinical judgement. 
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        As done previously 18, models developed from homogenous setting may not be 

generalisable to heterogeneity setting (i.e. treatment decision of patients would be 

influenced), so the effects of practice heterogeneity should first be assessed with 

random effects model approach. Afterwards, model should be updated with model 

updating approaches for multiple settings (practices) 16. Besides of practice 

heterogeneity, future study should continue exploring effects of unmeasured 

predictors from clinical application environment and new metrics were needed to 

assess clinical utility of models in these application environments.   

        Data quality is always an issue of any task using data. Missing value could be 

dealt with multiple imputations 25. Other effects of data quality could be assessed by 

comparing distribution of predictors using statistical appoches such as stability metric 
26 among different settings, as the effects of data quality would reflect on distribution 

of predictors.  

        Variation of association between predictors and outcome may exist in 

development, validation and application setting. Random slope model and model 

updating approach (i.e. re-calibrate in new setting) 16 could be used to assess and deal 

with the miss-calibration problem.  

        Risk predictors are usually acquired by consulting the expert of the disease and 

decided by their possible causal relationship to the disease 16. Currently, there is no 

general principal or consensus of how many and what predictors should be included. 

Including too many predictors could enrich much information that model could use 

and increase its model performance but limit its clinical utility as more predictors 

needs to be measured before making prediction and more predictors means higher 

probability of missing value. Also, the improvement of model performance might be 

merely due to higher variation of predictors rather than their predictive effects. New 

predictors need to be assessed carefully whether they have potential causal 

relationship with disease of outcome before adding them into model, otherwise noise 

predictors like missingness of BMI could be found predictive to the model 27. What 

predictors to include/not include in risk prediction model should be carefully 
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discussed by experts and systematically studied.   

        For a given prediction task, different approaches including statistical model and 

machine learning model could be considered for model fitting. However, there is a 

lack of consensus which model was most suitable for a specific scenario. As stated in 

study, treatment decision of patients was depend on which model was used 18. An 

open access model collection (model encyclopaedia) with transparent records of 

model type, structures, model assumptions, predictors, outcomes and test data should 

be created to establish consensus for each specific prediction task. Machine learning 

model field should develop similar guideline as statistical model guideline focusing 

on control model type and structure with a principal way rather than ad-hoc.   

Currently, it is hard to distinguish which model is better if only use discrimination and 

calibration alone as model performance measurements. New statistics should be 

proposed to measure performance of model on individual level including effects of 

unmeasured predictors on individual risk prediction. One example is random effects 28 

could measure unconsidered effects from practice heterogeneity, as if there is no 

practice heterogeneity (all practices were similar to each other) there would be no 

random effects. This proposal supports the suggestion that performance metrics of 

risk prediction model should reflect the clinical application 29, as the applied clinical 

setting could have conditions that model did not consider in development such as 

practice heterogeneity. If such new statistic was proposed and could distinguish 

performance of model on individual level, then models with best individual 

performance should be used.  

        Individual risk prediction (probability) was limited as it was defined on 

population level, so alternative individual level measurement could be considered. A 

recent study found that though higher risk patients have larger inconsistency among 

statistical comparable models than lower risk patients, they were ranked more 

similarly comparing to lower risk group 30. Therefore, individual risk prediction 

supplying with individual rank could improve clinical utility of risk prediction model 

as patients with higher risk in one model could be ranked similar high in other models 
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which provide more confidence this was a truly high-risk patient. Other individual 

level measurement such as prediction score 16 may be further studied.   

        Though current risk prediction models could have more certainty on higher risk 

patients with individual risk and rank, they still have uncertainty on patients with 

medium risk (those who were near the threshold). Rather than use risk predictions 

alone to make treatment decision for patients, integrate multiple statistical validated 

risk prediction models into a large clinical decision system in combination with lab 

testing and clinical judgment might be preferred. Clinical decision of individual 

patients should be made on in a conjunction with individual risk prediction, additional 

lab tests and clinical judgment.  

        Overall, risk prediction models based on current guideline could have good 

performance on population level but with limited generalisability and clinical utility 

especially on individual level. Future guideline should consider reporting whether 

model captured all the main causal predictors, the effects of unmeasured causal 

predictors, consistency of estimated probability from statistical comparable models on 

the same individual patients and reasons of these inconsistencies. Future research 

could consider new statistic to measure model performance on individual level, new 

individual level measurement, adding more causal predictors and using model in 

conjunction with additional lab test and clinical judgement.  

 

7.7 Use case ending 

7.7.1 Ending1. 

        “Well, though these models have inconsistency in your risk prediction, it appears 

that all of them rank you as the top 2% high risk patients among the overall patients, 

so now we have confidence that you need a statin.” Says Dr. Nice. “Now I 

understand”. Mr. Jonathan seems to be relieved.  

 

7.7.2 Ending2. 

        “You made your point, Mr. Jonathan, these models also rank you differently 
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among all patients. In this case we need to run more clinical tests.” Says Dr. Nice. 

After a while, “According to results from tests, your healthy conditions and my 

experience on patients with similar condition as you, it would be better if you take a 

statin.” Says Dr. Nice. Mr. “Now I understand” Jonathan replies.
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Chapter 8 Overall discussion  

8.1 Summary of each chapter 

Chapter 1 points out this PhD aims to assess the generalisability and clinical utility of 

risk prediction models in different settings especially on accurately predicting high 

risk patients who are missed by the model, with CVD risk prediction as exemplar. 

 

Chapter 2 found that incorporating practice variability in a risk prediction model 

substantially affected the predicted CVD risks of individual patients. Clinicians and 

patients need to understand that risk prediction models based on routinely collected 

health data perform well for populations but with great uncertainty for individuals. 

 

Chapter 3 found that variations in data quality or effects of risk factors cannot explain 

the considerable unmeasured heterogeneity in CVD incidence between practices. 

QRISK3 risk prediction should be supplemented with clinical judgement and 

evidence of additional risk factors. 

 

Chapter 4 found a variety of models predicted risks for the same patients very 

differently despite similar model performances. The logistic model and machine 

learning models should not be directly applied for the prediction of long-term risk 

without considering censoring. The level of consistency within and between models 

should be routinely assessed prior to clinical usage to help inform treatment decisions. 

 

Chapter 5 implemented QRISK3 into R package to help research community to 

improve future risk prediction modelling based on a used risk prediction model.  

 

Chapter 6 found supplying percentage of patient ranks with their individual risk 

prediction from multiple models in clinical practice could help improve clinical utility 

of models. Treatment decision based on risk prediction model for patients especially 
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for medium risk groups should be made in conjunction with additional clinical testing 

and clinical judgment.  

 

Chapter 7 discussed all the identified challenges and possible solutions for the current 

risk prediction model. Future guideline should consider reporting whether model 

captured all the main causal predictors, the effects of unmeasured causal predictors, 

consistency of estimated probability from statistical comparable models on the same 

individual patients and reasons of these inconsistencies. 

 

8.2 Overall implications of the thesis – for clinical practice and research 

        An example is provided to demonstrate how to implicate finding of this research, 

i.e. what specific generalisability and clinical issues could be considered if trying to 

generalise current UK QRISK3 model to Chinese population. The first issue would be 

the heterogeneity of sites in China would be larger than the heterogeneity in UK, as 

larger variations of deprivations were expected in provinces of China, so random 

effects model should be used to measure these effects on individual patients. Since 

China did not establish large EHR cohort as UK, the data quality must be assessed 

with outlier assessment analysis and distribution of predictors should be compared to 

UK population. Missing value should be dealt with. The association between 

predictors and outcome is expected different between UK population and Chinese 

population due to the heterogeneity of nationality. Model updating approach such as 

re-calibration should be used to re-calibrate UK model to Chinese population. 

Random slope model could be used to assess whether association between predictors 

and outcome varied in different provinces of China. Larger population of China than 

UK indicates that more predictors could be considered without the fear of losing 

degree of freedom (the more degree of freedom means higher generalisability of 

model). However, these predictors might be collected differently from UK since 

China only has secondary care (hospitals). Whether similar UK predictors could be 

collected, what differences these predictors might have comparing to UK and what 

additional predictors are available should be considered. Due to the inconsistency of 

individual risk prediction among statistical comparable models, whether developing 

one model for the whole China or re-calibrated models for each province should be 
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studied. Distribution of individual risk prediction and rank should be compared 

among statistical comparable models to assess the robustness of decision making for 

individual patients. Decision making for individual patients based on risk prediction 

should be done with clinical testing and clinical judgement especially for patients with 

medium risk. 

        Clinicians and patients should be aware of this uncertainty issue of individual 

risk prediction of current population-level validated risk prediction models. Risk 

prediction models such as QRISK3 should be supplemented with clinical judgement 

and evidence of additional risk factors for clinical use. 

 

8.3 Planned future research 

        Overall, current risk prediction models developed from routinely collected 

electronic health records or longitudinal cohorts could have very good performance 

on population level but with limited generalisability and clinical utility especially on 

individual level. Generalisability of model on population level in new clinical setting 

could be improved by model updating approach such as model shrinkage and re-

calibration, and current guideline should require reporting the generalisability of 

model. To increase generalisability and clinical utility on individual level, planned 

future research would focus on developing new metrics to measure model 

performance on individual level, new individual level measurement for patients and 

effects of unmeasured predictors should be considered in future model development. 

Current model is useful in “no model” scenario (model versus nothing), future model 

development would move on solving the challenges from “model versus model” (e.g. 

inconsistency of individual risk prediction among statistical comparable model in 

table 7.1). 

 

8.4 Strengths and weaknesses of the overall approach 

The main strength in this PhD is that substantial quantitative analysis using 

representative UK cohorts with large sample size along with different statistic models, 

different statistical methods including those innovative ones and multiple machine 

learning models were conducted to assess the generalisability and clinical utility of 
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risk prediction model. To our knowledge, this is also the first PhD work starts to 

consider performance of model on both population level and individual level. There 

are spaces for improvement. Large cohorts from different databases such as biobank 

with a different disease of outcome rather than CVD could be used to further assess 

the generalisability and clinical utility of risk prediction model. Though CPRD is 

already known as a representative cohort for UK population and CVD is a regular 

disease of outcome for risk prediction, analysis in different settings with different 

outcome might be helpful to generalise the finding of this PhD. There are more 

statistical models and machine learning models could be considered, but most 

common models were covered in this PhD. Overall, future research could consider 

assess generalisability and clinical utility of risk prediction model with different 

cohorts, disease of outcome and other models.  
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Chapter 9 Appendices  

9.1 Literature review on statistical methods to compare sites, identify outliers 

and quantify practice variability 

9.1.1 Abstract 

        Generalisability reflects the ability of model to be transferred in new clinical 

settings. There are different aspects of generalisability. Literatures identified that 

model performance of QRISK3 has heterogeneity among practices. In order to 

investigate on the effects of practice variability on both of population level and 

individual level for risk prediction model like QRISK3. One needs statistical methods 

to identify outlier practices which QRISK3 predicts poorly and quantify the effects of 

practice variability. The aim of this literature review was to review existing methods 

which statistically compare sites and identify outliers (outlier assessment). 

 

9.1.2 Introduction 

        Generalisability (Transferability/Transportability/reproducibility) of a clinical 

prediction model reflects the ability (availability/applicability) of model to be applied 

in a different setting. Models with good generalisability would have good 

performance on population level and accurate risk prediction on individual patients 

level in new setting 1. There are different aspects of generalisability, and external 

validation was the most common way to consider the generalisability of model during 

current model development 1234. Different aspects of generalisability were different 

definitions of risk and outcome variables, different predictor effects due to location 

and time, strict inclusion and exclusion criteria, overfitting of the model, lack of 

internal validation, unreasonable to generalise due to the big differences between two 

populations, small sample size, different ways to handle missing data, between-

practice heterogeneity (site variability), differences of CVD incidence between two 

populations, between-country heterogeneity 1. Research 4 points out that external 

validation of CVD prediction models can only at the best evaluate the generalisability 

of the model in one new setting, population and time. It appears that in order to 

measure the whole generalisability of risk prediction models, one needs to conduct 

external validation on all the different setting, population and time for the model, 

which seems implausible practically.  
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        This PhD first considered generalisability in the context of site variability, 

measuring the effects of developing a model in one set of sites and then using it in a 

different set of sites. The effects of site heterogeneity on risk prediction of model 

were tested. Site variability means the differences between sites, and sites or 

institutions could be GP practices, hospitals, regions of countries. Heterogeneity is a 

common term often used in meta-analysis study to describe true inherent differences 

between studies not due to chance 5. Between-sites heterogeneity means the true 

differences between sites not due to chance; the differences could be different means 

or distributions of risk factors, different percentage of missing values (data quality). 

QRISK3 has different model performance (discrimination) among practices 6. This 

indicates part of practices might have higher or lower predicted CVD risk than others. 

To investigate on this research question, one needs statistical methods to identify 

outlier practices which QRISK3 predicts poorly. The aim of this literature was to 

review existing methods which statistically compare sites and identify outliers (outlier 

assessment).  

 

9.1.2 Methods 

        The first method used in the literature review was “snowballing”, which was a 

method to find more papers based on the references from key sources. The key source 

was identified based on a small literature research around outlier assessment and 

discussion with professionals. The first key paper identified was the HQIP report 

which included guidelines and suggestions for clinical audits to detect and manage 

outliers. HQIP report introduced statistical methods, performance indicators chosen 

and real cases about how to compare sites and identify outliers according to data 

collected from sites 7. More related papers were then identified from the reference of 

HQIP report and papers which cite the HQIP report in Google. Papers which involved 

sites comparison and outlier assessment were included. Similar sites comparison 

methods used in different papers were synthesised. The second method used was a 

literature search based on several key words; one paper using information theory to 

identify outliers was found. It used different methods from HQIP report. One paper 

including specific details of the information theory method was identified from the 

reference of the new paper.  
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        Quality of literatures was reviewed based on literatures’ data collection, method, 

setting, research design, funding and interpretation 8. The quality of these methods 

was examined into mathematic equation level. Contexts, guidelines, challenges, 

advantages and disadvantages of sites comparison methods were summarised. Critical 

appraisal of literatures was based on the principal of the synthesised literature review 

results and the objective of my PhD. Specifically, reliability, accuracy, computational 

ability, visualise ability, popularity, advantages, limitations and how much fit to the 

scope of this PhD of these methods were evaluated.  

 

9.1.3 Results 

    Table 9.1.1 shows the key statistical challenges in comparing sites. These included 

the choice of an acceptable threshold, the test for homogeneity, methods for 

identifying potential outliers and dealing with over-dispersion, choice of performance 

indicator, approach to dealing with multiple testing and how to use JSD information 

distance to compare risk factors’ distributions. 
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Table 9.1.1 Key statistical challenges in outlier assessment, possible methods and examples 

Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

Limits or 
threshold of 
acceptable 
performance 

Choosing 
separate 
thresholds for 
“safe” and 
“danger” 
Safety plots 

Safety plots 
were plotted to 
identify “safe” 
and “danger” 
hospital in terms 
of the AAA 
mortality rate 9. 

Two safety charts were plotted 
using different thresholds. One 
was using the national average 
and the other one was using the 
twice of the national average. 
Hospitals with the significant 
evidence (p<0.05) that the death 
rate above threshold were 
outliers of danger, and the 
controversy (below the 
threshold) were outliers of safety 
9.   

Hospitals which were 
identified as statistical 
outliers might not be clinical 
outlier. Using two separate 
thresholds: one for safety 
and one for danger, is a 
suggestion to deal with this 
scenario 7.  

Safety plot was not adjusted 
for age or sex due to the 
statistical limitation, so the 
result might be biased. The 
results of safety plot would 
be meaningful on the 
condition that the two 
thresholds were well defined. 
It was suggested not to 
interpret the result of safety 
plot alone, but using it with 
other measures such as other 
risk and statistical analyses at 
the same time 9.  

Testing 
homogeneity 
between 
sites to 
decide 
whether do 
case-mix 
(risk) 
adjustment 
afterward 

overall χ2 test 
and 
individual χ2 test 
adjusting for 
multiple testing 
(Bonferroni 
correction) 
χ2 statistics 
and Cramer’s V 
test 
 

Holt et al. 9 
tested the 
homogeneity of 
AAA mortality 
rate across 
hospitals 

They first calculated overall χ2 
test by generating the actual 
counts and expected counts, and 
deriving χ2 statistics and degree 
of freedom, and then comparing 
to the χ2 distribution. They also 
ran individual χ2 test on the three 
top outliers comparing to other 
hospitals multiple times. After 
adjusting for multiple testing 
(Bonferroni correction), the p-

χ2 test was a powerful 
statistic to test the 
assumptions of 
homogeneous and equal 
variance. As a non-
parametric test, χ2 test can 
provide reliable results that t-
test and ANOVA cannot. It is 
a convenient way to test 
homogeneity without need 
of complex statistic 

χ2 test requires 80% of the 
cells have expected values of 
5, violating this makes p-
value unreliable 9 10. The 
other similar tests as χ2 test 
are fisher’s exact test and 
maximum likelihood ratio 
Chi-square (χ2) test. Fisher’s 
exact test is only worked for 
2x2 table, and maximum 
likelihood ratio chi-square 
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Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

value was significant. Overall, 
they made conclusion that no 
evidence supported the 
hypothesis of homogeneity 9. 

programming 10. In the 
context of true difference 
provided by treatment, 
clinical significance in χ2 test 
can be tested by Cramer’s V 
test 10.  

test was used when sample 
size was small.  

Compare 
sites and 
identify 
potential 
outliers 

League table 
(Visualized by 
"Caterpillar 
plot") 
Caterpillar plot 

Spiegelhalter 12 
demonstrated 
using league 
table and 
“Caterpillar plot” 
to compare 
mortality rate 
after treatment 
for fractured hip 
in 51 hospitals.  

League table was generated 
when people using one 
measurement (say mortality rate) 
to rank institutions (hospitals or 
practices). Considering the 
confidence interval, "outliers" 
were identified by whether the CI 
across the target line or whether 
the result was far away from 
more than three standard 
deviations to the target. 
Caterpillar plot is one way to 
visualise the league table 12. 

One of the most commonly 
useful method to identify 
outliers of institutions after 
choosing the proper 
measurement 12.  

Misleading readers to focus 
on ranking institutions by the 
specific selected 
measurements, though the 
measurement cannot 
measure the quality or 
performance of institutions 
12. 

 Funnel plot Spiegelhalter 12  
wanted to 
identify hospitals 
and surgeons 
which have 
higher mortality 
than others 
using data from 

Funnel plot was formed by four 
components, including indicator 
Y, target, precision parameter p 
and control limits. The plot 
showed the observed value 
against their precision and the 
target value 12. 

1. It is possible to manually 
add observations to the 
graph because the axis is 
interpretable.    
2. People’s eyes were 
naturally attracted by outliers 
and it avoided the problem of 
ranking institutions.   

1. For multiple comparison, 
ways to adjust are Bonferroni 
or the False Discovery Rate. It 
was recommended to 
compare sites separately to 
avoid multiple comparison.  
2. Irwig et al. 14 pointed out 
the fact that funnel plots 
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Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

New York State 
Coronary 
Artery Bypass 
Graft (CABG) 
programme 

3. The relationship between 
list size and outcome can be 
assessed in formal or 
informal way. 
4. Can deal with over-
dispersion. 
5. Easy to generate from R 
package 12. 

would be biased when the 
effects estimated were highly 
correlated to the standard 
error. It was highlighted that 
all asymmetry in funnel plots 
were due to this bias.  

Dealing with 
over-
dispersion in 
Funnel plots 

Multiple options 
including: Do not 
use the 
indicator, 
improve risk 
stratification, 
analysis by 
clustering, using 
an interval as a 
target, 
estimating an 
over-dispersion 
factor and using 
random effects 
model 

Spiegelhalter 15 
demonstrated 
how to 
statistically deal 
with over-
dispersion in 
Funnel plot. 
 
 

1. Do not use the indicator.  
Over-dispersion suggests there 
are heterogeneity between sites, 
people might want to change 
indicator of sites.   
2. Improve risk stratification 
Stratify the indicator by factors 
(such as age or gender) which 
might be related to the heavy 
variation. 
3. Analysis by clustering 
Cluster similar sites together and 
let them compare to their similar 
ones. The idea was to use cluster 
to compare sites in a more 
homogeneous way.  
4. Using an interval as a target 
Setting the target to range rather 
than a precise single value. The 

Do not use the indicator: 
Naive and easy to perform 
once allowed. 
Improve risk stratification: 
Easy to perform especially 
know which factors were 
related to variance.  
Analysis by clustering: Could 
be considered as a special 
case of risk stratification, it 
enables us to stratify risk 
without knowing what 
exactly confounders are. In 
this case, the sites were 
clustered by five types of 
NHS trusts. They way to 
cluster needs to discuss early.  
Using an interval as a target: 
Naive and easy to perform. 

Do not use the indicator: Not 
work for all scenarios 
especially when there was no 
alternative outcome variable.  
Improve risk stratification: 
cannot work successfully in 
all contexts.  
Analysis by clustering: Not 
much reduction in over-
dispersion.  
Using an interval as a target: 
It made results arbitrary, 
most of hospitals were either 
safe or dangerous.  
Estimating an over-
dispersion factor: Require a 
robust statistical method 
(such as "Winsorised") to 
estimate the factor used to 
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Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

range could be determined either 
from internal (empirical estimate 
the acceptable range) or external 
(based on the normal range from 
previous year).  
5. Estimating an over-dispersion 
factor 
"quasi-likelihood" approach to 
statistic model by adding a fixed 
factor to each observation to 
account for more variance. 
6. Assuming a random effects 
model 
Adding random effects to 
estimate the between-sites 
heterogeneity. The random 
effects here were considered to 
follow the normal distribution. 
Random effects models were 
preferred as they best mimic the 
idea that there were unmeasured 
heterogeneity between sites 
which caused over-dispersion 15. 

Estimating an over-
dispersion factor: Generally 
better controlled results than 
previous methods. 
Assuming a random effects 
model: Best mimic and 
quantify the unmeasured 
between sites heterogeneity 
15. 

control the effect of outliers, 
especially when it is 
impossible to select a group 
of "in-control" sites. 
Assuming a random effects 
model: Need a robust 
statistical method to 
estimate the standard 
deviation of random effects 
distribution 15. 

Choice of 
performance 
indicator 

Risk-
standardized 
rate: (O / E) * 
Target 

Hospital profile 
means to 
compare sites' 
structure, 

Calculated average rate of event 
(death) for a hospital or site (E) 
and compared to observed 
number of events (O). Ratio: O/E 

One of the most common 
indicator used in hospital 
profile 11.  

1. Inaccurate when sample 
size was small. 
2. Ignore the sampling 
variability due to large 
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Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

process of care 
or outcomes to a 
target. 

multiply by the overall 
unadjusted mortality for a state 
or region or country, and the 
result was the risk-standardised 
adjusted rate 11. 

differences of list size. If we 
assume a target mortality 
rate (say 2.19%), it would be 
expected new hospital has 
almost 0 mortality. The fact is 
that patients were not 
selected randomly to these 
hospitals, there were heavy 
heterogeneity in patient 
population 11. (Hierarchical 
models were proposed to 
overcome this.) 

 Alternative Risk-
standardized 
rate: 
(O – E) / variance 
(O – E) 

In HCFA report, 
people want to 
identify hospital 
outliers which 
have higher 
mortality rate 
than others 11. 

Similar to the Risk-standardized 
rate, after modelling data using 
logistical model, the difference 
between expected and actual was 
calculated as O-E. variance of O-E 
was calculated using 
approximated value from Taylor 
series expansion. The statistic Z 
was then calculated as Z=(O-E) / 
Var (O-E) for each practice. 
Practice with Z over 1.645 (90% 
significant Z value) would be 
identified as outlier. 

The indicator was used in the 
first HCFA report and it was 
still a favour for hospital 
report cards 11. 

Have not done enough risk- 
adjust for case-mix difference 
in that time point 11.  
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Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

Dealing with 
multiple 
testing in 
comparison 
of sites 

Bonferroni 
correction 

Jones, Ohlssen 
and 
Spiegelhalter 13 
mentioned how 
to use 
Bonferroni 
correction when 
comparing 
multiple health 
care providers. 

Multiple testing increases the 
possibility to falsely identify too 
many true positives. Bonferroni 
proposed a simple method to 
account for multiple testing 
based on the number of testing. 
As Jones, Ohlssen and 
Spiegelhalter (2008) stated, it 
simply decided where to draw 
the “significant line”.  By doing 
so, Bonferroni proposed to use 
the adjusted p value (p*) as 
unadjusted p value multiply the 
numbers of testing (m) 13.   

It is the common method 
used to solve multiple testing 
in hospital profile 13.  

It is too strict for outlier 
assessment, as Jones, 
Ohlssen and Spiegelhalter 13 
argued, they found that there 
were not many outliers after 
adjustment. They then 
criticised this method cost 
statistical power.  

 False discovery 
rate (FDR) 

Jones, Ohlssen 
and 
Spiegelhalter 13 
demonstrated 
how to use the 
false discovery 
rate when 
comparing 
multiple health 
care providers. 

After arguing Bonferroni 
correction was too strict for 
multiple comparison in outlier 
assessment, Jones, Ohlssen and 
Spiegelhalter 13 wanted to use an 
alternative way to control the 
false discovery rate but not too 
strict. They proposed the false 
discovery rate (FDR). Instead of 
adjusting all p-values in 
Bonferroni way, they proposed to 
adjust p value based on its 
significant rank. The most 

A good balance of losing 
statistic power and 
controlling the false 
discovery rate 13.  

It provides additional 
allowance for false discovery, 
so in the scenario people 
want to make sure their 
findings are true positive, 
Bonferroni adjustment 
(stricter) is more suitable. In 
the context of “evaluation” of 
outlier, Jones, Ohlssen and 
Spiegelhalter 13 argued that 
the FDR could be used first, 
and then people could then 
use hierarchical model to 
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Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

extreme p value (the smallest) 
would be adjusted as p multiply 
m, and the second extreme p 
value would be adjusted as (p * 
m) / 2, and the k-th extreme p 
value would be adjusted as (p*m) 
/ k.  

identify these identified 
outliers. 

Comparing 
different 
data sources 
by assessing 
variability of 
variables’ 
distributions 

Information-
theoretic 
distances 
Using Jensen-
Shannon 
distance 
(JSD) visualised 
by Information 
geometric 
temporal (IGT) 
plot. 
 

Sáez et al. 16 
used JSD to 
measure the 
distribution of 
risk factors in 
different data 
sources.  

Using JSD to calculate the 
“information-theoretic 
probabilistic distances” of risk 
factors (or the combination of 
risk factors) from one data source 
to the other 16.  JSD (0 to 1) 
equals 1 means the two 
distributions are not joined. They 
use principal component analysis 
to calculate probability 
distribution functions (PDF) for 
each data source. They only use 
two dimensions from 
multidimensional 
Scaling (MDS) to represent each 
group of data. MDS is a way to 
construct coordinates in 
Euclidean space for points which 
were known the JSD distance. 
Principal component analysis 

1. Not affected by large 
sample size 28.  
2. Useful in comparing data 
when data has continuous 
variables and categorical 
variables at the same time28.  

1. Due to a lot of 
combination of groups of 
data, a powerful graphic card 
of computer is required to 
improve the efficiency 28. 
Otherwise, it would take too 
long to plot the IGT.  
2. Instead of PCA, other 
model might also be suitable 
to multi-type data 28. 
3. Visualisation of JSD 
distance can only be 
maximum in three 
dimensions, but the JSD is 
calculated in multiple 
dimensions 16.    
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Statistical 
Challenges 

Statistic 
technology 

Examples How to use the statistical 
methods to identify outliers or 
comparing sites? 

Strength Limitation 

would convert and extract 
information from different risk 
factors into limited dimensions 
(components) 29. To identify 
outliers, they use simplex and 
treat each data source as a 
vertex.  
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Table 9.1.2 provides three methods to adjust for case-mix. Methods, such as 

propensity score and hierarchical (multilevel) models, were listed. Hierarchical 

models could be divided into hierarchical models using frequentist theory and 

hierarchical model using Bayesian theory. 
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Table 9.1.2 Methods for case-mix adjustment in outlier assessment 

Statistical 
methods for 
case-mix 

Examples Details of methods Strength Limitation 

Hierarchical 
model using 
frequentist 
theory to deal 
with patient 
case-mix 

Han et al. 17 derived 
hierarchical logistic model 
via  SAS Glimmx macro to 
calculate the within 30 day 
mortality rate of hospital 
for patients who have 
acute myocardial 
infarction 

Pseudo-likelihood estimates 
were used to estimate 
coefficients and random 
effects in multilevel model 30. 
The main difference between 
hierarchical model using 
frequentist theory and 
hierarchical model using 
Bayesian theory is that they 
use different statistic theory 
(e.g. frequentists used 
likelihood, but Bayesian used 
MCMC chain) to estimate the 
random effects of hierarchical 
model. Except this, the 
definitions of hierarchical 
model were the same within 
these two approaches.  

When the sample size was large 
enough, frequentist theory would 
have similar result to Bayesian 20.  

As Normand et all 11 mentioned 
the estimate of standard 
deviation of random effects 
might mask outliers by taking 
into account too much between-
sites variance. There was a 
statistical way to detect this 31. 

Hierarchical 
model using 
Bayesian theory 
to deal with 
patient case-mix 

Normand et all 11 wanted 
to identify hospital outliers 
in a more sensible way, 
they  used Bayesian theory 
to adjust "O" and "E" by 
estimating or specifying 
the hyper-parameters 

Using Markov chain Monte 
Carlo methods (MCMC) to 
estimate hyper-parameters 
then calculate the risk 
standardized rate. Or pre-
specify an acceptable value for 
hyper-parameters. Or do cross-

1. Offer a nature way to combine 
prior information of data to 
posterior info of data. 
2. Inference in small sample was 
processed similarly in the large 
sample. 

1. Do not know how to choose 
prior probability.  
2. Posterior distribution can be 
heavily influenced by prior 
distribution. 
3. High computational cost, 
especially the method MCMC 20. 
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Statistical 
methods for 
case-mix 

Examples Details of methods Strength Limitation 

(standard deviation of 
random effects). 

validation (exclude selected 
sites and use the left sites to 
estimate the selected site using 
the way of estimating or 
specifying hyper-parameters.) 
Here, "O" is not observed 
numbers of events but an 
estimate which shrinks to the 
average adjusting for case-mix. 

3. It is not conflicted to likelihood 
principle. 
4. The results of Bayesian is 
interpretable. 20. 
 
 

4. Still, it may mask outliers as 
stated above 11. 

Propensity score 
(1. matching, 2. 
regression, 3. 
propensity score 
weighting {or 
inverse 
probability 
weighting [IPW]}, 
4. stratification) 
to deal with 
patient case-mix 

Huang et al., 24 compares 
hierarchical model to 
propensity score in case-
mix adjustment. 

Risk factors, such as age and 
health status, were imbalanced 
between groups. After 
adjusting by propensity score, 
groups were more balanced. In 
practical, Huang et al., 24 
recommended that using 
general regression-based 
method to select risk factors 
first and then apply the 
propensity score to balance 
groups.  

1. Improve balance of covariates 
among groups, and remained 
imbalance would also be 
expected in randomised trails 24.  
2. When doing case-mix 
adjustment, linearity assumption 
between outcome and risk factors 
were not required 24.  
3. Since risk factors such as age 
could be more skewed for some 
groups than others, propensity 
score would be more robust than 
regression models in terms of 
model misspecification 24.  

1. The distribution of risk factors 
across groups might not be 
perfectly matched due to the 
random error and shortage of 
algorithm 24.  
2. Although propensity matching 
was popular, there were bias 
from matching algorithms, 
because the matching results 
were sensitive to the selected 
algorithms.  
3. Bias was also found in 
propensity regression.  
4. Propensity score weighting 
has not been used hospital 
profiling before 2012, but it has 
been used in economic field 24.  
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Table 9.1.3 presents possible confounders and its relevant outcome of interest and 

interventions. For instance, length of hospitalised time of patients was a confounder of 

new intervention of hospital of interest when comparing hospital mortality rate. 
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Table 9.1.3 Confounders when comparing sites or identifying outliers 

Confounders Exposure or 
intervention of 

interest 

Outcome Descriptions Solutions 

The role of external factors 
such as healthcare economics 
and the financial resources 
within the NHS 

Risk factors of 
hospital 

Hospital mortality 
rate 

Natural variation in death rate of surgery 
may be due to the confounders such as 
healthcare economics and the financial 
resources within the NHS 9. 

The technology they used had 
no way to adjust for 
confounders, so they repeated 
the investigations twice at two 
threshold values, and they 
mentioned confounders can 
barely explain 15 per cent 
mortality rate. Therefore, the 
confounders still had effect, but 
confounders cannot explain all 
change. 
 
  

Length of time patients were 
hospitalized 

Measurement (risk 
factors) of hospital  

Hospital mortality 
rate 

Schreiner, Han and Rapp 25 pointed out 
that length of hospital-time of patients 
might bias the measurement of hospital, 
because hospitals with more patients 
transferred out early results shorter time 
of patients staying in hospital which 
could lower mortality rate.  

Measures of hospital have to 
use a fixed length of follow-up 
such as 30 days 25.  

Provider selection bias Measurement (risk 
factors) of hospital 

Hospital quality Unmeasured risk factors from provider 
selection bias might influence the case-
mix adjustment 11. 

Normand and Shahian 11 did 
not focus on this confounder.  
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Table 9.1.4 shows results of other data quality issues and heterogeneities. 

Heterogeneity of data included coding accuracy, interpretation of observations, data 

completeness, accuracy of critical data and case ascertainment. 
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Table 9.1.4 Heterogeneity in data and data quality issues 

Heterogeneity of data Type Effect Possible solutions 
Coding accuracy Coding Coding accuracy had significant 

impact on risk-adjusted outcome 
results 

Choosing trustworthy database 

Interpretation of observations might 
be different 16. 

Definition and interpretation Contribute to unexpected variability 
of datasets 

Interpret observations considering 
its context. 

Data completeness (missing value) 
especially in performance indicator 
and variables used in case-mix 
adjustment 7.  

Missing value Contribute to unexpected variability 
of datasets 

Missing value imputation 

Accuracy of critical data 7. Data accuracy Inaccurate data might have wrong 
data.  

Internally check range of variables 
and consistency, or externally 
compare to other data7.  

Case ascertainment 7. Representative of sample Case ascertainment is a percentage 
calculated by number of included 
cases over number of eligible cases. 
This relates to statistic power 7.  

Need related to external data 
sources 7.  
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        Choosing acceptable threshold is a challenge, because sometimes statistical 

significant is not necessarily clinical significant 7. This implies hospitals which were 

identified as outliers might not necessarily be in danger or in safe, safety plots with 

two separate thresholds were proposed to solve this 9. Two thresholds were chosen in 

safety plots to identify safe or danger “hospitals” separately to deal with this threshold 

challenge. In order to identify hospitals which have higher mortality rate of after 

abdominal aortic aneurysm (AAA) repair than others, Holt et al. 9 developed “Safety 

charts” to show outliers of hospitals. Two safety charts were built using two different 

thresholds to identify outliers of safety and danger separately, one was the national 

average mortality rate and the other one was the twice of the average mortality rate. 

Hospitals with significant evidence that the mortality rate were below the threshold 

would be identified as outliers of safety, and the contrary ones (above the threshold) 

would be identified as outliers of danger. RR of each hospital was calculated by 

comparing the death rate of one hospital to the overall average (or twice the average) 

death rate of other hospitals exclude the hospital. They applied bivariate binomial 

analysis between mortality rate of one hospital and average mortality rate of other left 

hospitals to plot the safety charts. The main drawback is that the safety plots were not 

adjusted for risk factors such as age and sex, which means outliers might be because 

they have more high BMI patients or smokers. The strength is using separate 

thresholds to identify outliers of safety and danger, because sometimes significance in 

statistic was not equal to significance in clinical 7.  

        Testing homogeneity between sites is to see whether there is heterogeneity 

between sites, and it is often recommended as a first step before adjusting for case-

mix 9. If sites are homogeneous, then the differences between sites would be all due to 

chance. An overall χ2 test was performed to test the homogeneity of death rates of 

after AAA repair in hospitals 9. χ2 test provides p value by comparing observed 

events to expected events. Specifically, p value was generated from the χ2 distribution 

using χ2 statistics and degree of freedom. However, they found that 55% of hospitals 

had cell counts below 5, which means the significant p value is not reliable. They also 

performed individual χ2 test by comparing the three outliers to all the other hospitals. 

P values were adjusted using Bonferroni correction due to multiple testing. The 

significant p values suggested no evidence for the hypothesis of homogeneity, but 

most of hospitals had cell counts less than 5. The strength of the test is it is a non-
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parametric test, and provide reliable results that t-test and ANOVA cannot 10. The 

main drawback is that the cell counts less than 5 would make the p value unreliable 9.  

        Identifying potential outliers is a challenge to visualise and statistically prove 

part of sites are significantly different from others 11. “League table” was a common 

method to identify outliers when people using one measurement (say mortality rate) to 

rank institutions (hospitals or practices). Considering the confidence interval, 

"outliers" were identified by whether the CI across the target line or whether the value 

of hospital was far away from more than three standard deviations to the target 12. 

Caterpillar plot is one way to visualise the league table. The strength of league table is 

easy to generate and used to identify outliers, and it is the most common way to 

identify outliers 13. The main drawback is it may mislead people to rank institutions 

using an incorrect measurement 12. Usually, the league table would be standardised by 

age and sex, but there were other confounders. When there were too many 

institutions, the caterpillar plot would be unreadable, but outliers could still be 

identified by filtering in league table. 

        “Funnel plots” is an alternative way of “League table” to identify outliers. Using 

data of recorded 3-year moving totals of all operations plus outcomes of hospitals and 

surgeons from New York State Coronary Artery Bypass Graft (CABG) program, 

Spiegelhalter 12 used “Funnel plots” to demonstrate how to identify outliers of 

hospitals and surgeons. By fitting a logistic model using the event (such as death) as 

the outcome variable, he calculated the expected number of events (E) in each 

hospitals or surgeons, and then calculated the actual number of events (O). He then 

derived risk-adjusted death rate by multiplying standardised mortality ratio (O/E) by 

the overall state-wide mortality rate (2.2% in 1997 -1999). A funnel plot was plotted 

using the overall mortality rate (2.2%) as the expectation rate (target), risk-adjusted 

mortality rate of each hospital or surgeon as Y-axis and volume (list size) of hospital 

or surgeon as X-axis. The plot clearly identified one hospital with high-mortality but 

with low-volume and one hospital with low-mortality but with high-volume. The 

drawback is that the funnel plot would be biased (plot would be asymmetry) when 

estimates and their standard error are correlated 14. Also, when there is heavy 

heterogeneity between hospitals, a large amount of hospitals might not lie within the 

funnel (Over-dispersion). Statistical adjustments, such as “Winsorised” estimate and 

random effects, were proposed to adjust for over-dispersion, but the advice of 
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investing on the reason of heterogeneity were highly recommended. False discovery 

rate (FDR) adjusted p-value were proposed to re-calculate the confidence interval line 

in funnel plot, because comparing hospitals multiple times would increase false 

discovery rate 13. The strength of funnel plot is that it does not mislead readers to rank 

hospitals or surgeons by inappropriate quantities like “League table”. Also, it enables 

people to investigate formally or informally on the relationship between list size and 

the outcome 12. The funnel plot was recommended as an initial analysis to identify 

outliers.  

        Over-dispersion means the measurement of most of sites are far away from the 

mean, which would then identify most of sites as outliers 15. Multiple suggestions 

were made to deal with over-dispersion and random effects model were preferred. 

After drawing “Funnel plot” for emergency re-admission rates of 140 NHS acute 

trusts in 2002-2003, Spiegelhalter 15 found that the most of NHS acute trusts were 

identified as outliers (Over-dispersing). In order to deal with over-dispersion, methods 

such as change the indicator, “improve risk stratification, analysis by clustering”, 

change the single value of target to an interval, “estimate an over-dispersion factor” 

and adding random effects were proposed 15. Because the over-dispersion might be 

due to the between-sites heterogeneity, change the indicator would be the first 

thought. However, it cannot work for all scenarios. Risk stratification suggests 

stratifying on factors which might contribute to “over-control”, but it cannot work 

successfully for all context and sometimes it is unclear whether it is worthy to do so 

especially when indicators were already stratified due to other reasons. Analysis by 

clustering suggests to group sites in a more homogeneous way and compare sites to 

those similar ones, but the effect of clustering on over-dispersion might be low. Using 

an interval means replacing target to an interval range, but often it makes the results 

arbitrary (Whether safe or danger). Adding an over-dispersion factor or random 

effects means to consider the source of over-dispersion as a factor or random effects, 

but both require robust statistical methods. Random effect models were preferred 

because they best mimic the idea that the over-dispersion was due to unmeasured 

between-sites heterogeneity 12.  

        Performance indicators measure one or two aspects of sites, choosing 

inappropriate performance indicator might cause the over-dispersion 11. Risk-

standardised rate was a common performance indicator used in hospital profile. 
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Hospital profile means to compare sites’ structure, process of care or outcomes to a 

reasonable target 11. The probability of event (death or CVD) was usually calculated 

by a statistic model (logistic model or Cox model) adjusting for possible confounders. 

The average rate of event in a site were used to calculate the expected incidence (E) of 

events in a site. With the aid of the actual events (O) in sties, an event ratio could be 

calculated by O/E. The risk-standardised adjusted rate was then calculated by 

multiplying the event ratio (O/E) by the overall unadjusted event rate of a state or 

region or country. The risk-standardised adjusted rate could be visualized to compare 

sites and identify outliers. The drawback of the risk-standardised adjusted rate is 

inaccurate when sample size is small, patients are not independent to sites and 

multiple comparison increases false discovery rates. The advantage is that it enables 

people easily to identify the correlation between outcome and risk factors, and it is the 

most common indicator in hospital profiling 11.  

        Alternative risk-standardised rate as a performance indicator would be using 

minus between O and E (O-E) instead of division (O / E). Similar to the process 

above, after deriving O and E for each site, then alternative risk-standardized rate was 

calculated as Z = (O – E) / var (O – E), and var (O - E) was estimated using Taylor 

series expansion. Practices with Z over 1.645 (90% significant Z value) would be 

identified as outlier. For example, in HCFA report people used the indicator to 

identify hospitals which had higher mortality rate than others 11. The advantage of this 

indicator is that it was the first indicator used in HCFA report and it is still a favour in 

hospital profile. The disadvantage is that the indicator was not adjusted for case-mix 

at that time point 11. 

        Multiple testing would increase the false positive discovery rate when comparing 

sites repeatedly 13. Bonferroni correction and False discovery rate (FDR) were 

methods to deal with multiple testing in sites outlier assessment. Bonferroni controls 

the familywise error rate – P[at least one incorrect H0 rejection], while FDR controls  

P[incorrect H0 rejection | H0 rejected]. For example, if people want to confirm 

whether their finding are completely positive, they need to use Bonferroni correction 

(stricter). If people only want to control the percentage of false finding in low level, 

then FDR could be used. Bonferroni correction is a simple method to account for 

multiple testing based on number of tests, and it often uses adjusted significant level 
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(e.g. normal significant level 0.05 / number of tests) 13. The advantage of this 

correction is that it is simple to apply, and it is the most common method used in 

hospital profile. Disadvantage of the method is that it is too strict so there would be 

not many outliers identified (cost of statistic power) 13. 

        Based on the specific requirement, false discovery rate (FDR) could also be 

considered. Rather than adjust significant level using number of tests for every test, 

FDR adjusts significant level according to the test’s significant rank 13. The way to 

adjust for multiple testing is either increase p-value or decrease significant level. In 

terms of increasing p-value, FDR would adjust the most extreme p value as p *m (m 

is the number of tests), and this is the same adjusting way as the Bonferroni 

correction. If k represents the k-th (1≤k≤m) test where ranked by p-value, then the k-

th p value would be adjusted as (p*m) / k. In Bonferroni correction, every p value 

would be adjusted as p*m. One can see that (p*m) / k ≤ p*m, which means that every 

adjusted p value by FDR would be smaller than p value adjusted by Bonferroni 

correction. Therefore, FDR adjust is more relaxed than Bonferroni correction. The 

strength of FDR is that it offers a good balance between losing statistic power and 

controlling the false discover rate. The weakness of FDR is that it allows more finding 

due to false discovery rate 13. In the scenario that people want to be definitely sure 

their finding is true; Bonferroni correction would be preferred. In context of outlier 

assessment, Jones, Ohlssen and Spiegelhalter (23) advised that the FDR could be used 

first.  

        Based on information-theoretic distance, Sáez et al. 16 proposed using Jensen-

Shannon distance (JSD) to compare distributions of different data sources. 

Information geometric temporal (IGT) plot was the visualisation to identify data 

sources which were not clustered with other data sources. This is a new method to 

identify outliers from sites or data sources, because it uses information distance and 

distribution to identify outliers rather than statistic models and thresholds. Basically, 

they calculated JSD distances according to risk factors from data source, and if there 

were multi-dimensions, principal component analysis (PCA) was used to decrease 

dimensions. Information geometric temporal (IGT) plot was constructed by 

multidimensional Scaling (MDS) method, the MDS is a way to construct coordinates 

in Euclidean space for data sources which are known of the JSD distances 16. 

Specifically, each data source represents one point and their JSD distances of each 
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other were calculated, then the IGT plot was produced by projecting the Euclidean 

space from MDS to two or three dimensions. The advantage of information-theoretic 

distance is that 1. It is generally not affected by the sample size, unless the sample 

size is too small and accurate estimate of distribution cannot be acquired 2. It is useful 

when data has categorical variables and continuous variables at the same time. The 

drawback including 1. Since the coordinates of points in IGT plot is constructed by 

MDS method, a powerful graphic card would be needed to efficiently visualise the 

result. 2. PCA is not the only way to decrease dimensions, other methods might be 

more suitable in different scenarios. 3. Visualisation of JSD distances could be only 

visualised maximum in three dimensions, but JSD distance may be calculated in more 

than three dimension 16.  

        Case-mix was often adjusted when sites had huge heterogeneity (i.e. it was 

“unfair” to compare the indicator without adjustment) 17. Hierarchical model using 

frequentist theory, hierarchical model using Bayesian theory and propensity score 

were methods to adjust for case-mix in sites comparison. Case-mix adjustment 

represents a process to adjust for differences from patients or sites, so sites can be 

compared “fairly” 18. Hierarchical model (multilevel model) is a kind of model which 

involves random effects of between-sites 19. Frequentist and Bayesian are two 

different theories in statistic, and they have their own definitions. The key difference 

is that Bayesians consider everything unobserved to be random – while Frequentists 

only allow randomness to enter through hypothetical repeated sampling. Both 

approaches use likelihood. When the sample size was large enough, frequentist theory 

would have similar result to Bayesian 20. Propensity matching is a way to balance 

differences between sites, and it uses propensity score - a conditional probability of 

assignment to a measurement\treatment given other covariates in sites 21.  

        Hierarchical logistic model - frequentist was used to calculate the within 30-day 

mortality rate of hospital for patients who have acute myocardial infraction, and they 

used Pseudo-likelihood to estimate coefficients and random effects in multilevel 

model 17. One drawback of hierarchical model in sites comparison is that it may mask 

outliers by taking into account too much between-sites variance, but there is a 

statistical approach, which uses replication to measure the differences between model 

and data, to detect this problem 22.  
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        Normand et al. 23 used Bayesian theory to adjust O and E by estimating or 

specifying the standard deviation of random effects from hierarchical logistic model – 

Bayesian. Specifically, they used Markov chain Monte Carlo methods (MCMC) to 

estimate hyper-parameters and then calculated the standardised risk rate. The 

advantages of hierarchical logistic model – Bayesian include 1. It offers a natural way 

to combine prior information of data to posterior information, 2. The inference in 

small sample was dealt similarly to the large sample, 3. It is not conflicted to 

likelihood principle (frequentist) and 4. The result is interpretable 20. The 

disadvantages are 1. It is hard to choose prior probability, 2. Posterior distribution can 

be heavily influenced by prior distribution, 3. High computational cost especially in 

the method of MCMC 20.  

        Propensity score matching algorithms include matching, regression, propensity 

score weighting (or inverse probability weighting) and stratification 24.  Huang et al., 
24 compared hierarchical model to propensity score in case-mix adjustment, and it was 

found that age and health status were more balanced after propensity score matching. 

Advantages of propensity score include 1. Improving balance of covariates among 

groups, 2. Do not need assumption of linearity between outcome and risk factors as 

required in linear model and 3. Propensity score is more robust than regression 

models for those skewed variables 24. Disadvantages include 1. The match cannot be 

perfect due to the shortage of algorithm and there is still unbalance between groups, 2. 

The match results were sensitive to the selected algorithms, 3. Bias was found in one 

of algorithms – propensity regression, and 4. One of algorithms – propensity score 

weighting has not been publicly used in hospital profiling before 2012, thought it was 

used in economic field beforehand 24.  

        Confounders are defined as factors which have influence on both exposure or 

intervention and the outcome of interest. In terms of sites comparison and sites outlier 

assessment, confounders are factors which influence risk factors of sites of interest 

and performance indicator at the same time. It was noticed that no matter what case-

mix adjustment or model adjustment used, there were still unknown or unmeasured 

confounders existed 7. Several confounders were mentioned in literature. Holt et al. 9 

pointed out healthcare economics and the financial resources within the NHS might 

be a confounder of natural variation in death rate of surgery, but they mentioned the 

confounder effect cannot explain all the variation. Schreiner, Han and Rapp 25 pointed 
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out that length of time of patients might bias the measurement of hospital, because 

hospitals with more patients transfer out early end up with shorter time of patients 

stay in hospital which lower the mortality rate. Normand and Shahian 11 mentioned 

unmeasured risk factors from provider selection bias might confound the case-mix 

adjustment.  

        Data quality issues are important, because the outliers identified or sites 

comparison would not be reliable with poor data 7. Other heterogeneity between data 

of sites would also influence the sites comparison. Heterogeneity of data recording 

including coding accuracy, interpretation of observation, data completeness, accuracy 

and case ascertainment were found from literatures. Coding accuracy directly reflects 

the data quality of data, and it has significant impact on risk-adjusted outcome results 
26.  Sáez, Robles and García-Gómez 16 pointed out that different interpretation of 

observations of datasets might result more unexpected variability of datasets. Data 

completeness (missing value) especially in performance indicator and variables used 

in case-mix adjustment influences much on case-mix adjustment 7. Accuracy of data 

means whether the value of variables is correct and sensible, this can be checked 

“internally” and “externally” 7. Case ascertainment is a percentage calculated by 

number of included cases over number of eligible cases 7. One can deduce that if 

different sites have different case ascertainment, the outliers identified might be just 

because data of that site is not representative.  

 

9.1.4 Discussion 

        They key finding of this literature review was the methods found to deal with the 

key statistical challenges in sites comparison. Specifically, acceptable threshold could 

be chosen separately according to “safe” and “danger”. χ2 test is one option to test the 

homogeneity between different sites. Identifying potential outliers could be done via 

methods of “League table”, “Funnel plot’ or JSD information distance. Over-

dispersion could be dealt with “Funnel plot” using hierarchical model (the highly 

recommended one) or other six methods (table 9.1.1). Risk-standardised rate ((O / E) 

* target) and the alternative one ((O-E) / var(O-E)) are the most two common 

indicators used as performance indicators in hospital mortality rate comparison 11. 

Multiple testing could be handled by Bonferroni correction or False discovery rate 

(FDR). The methods to adjust for case-mix (confounders) include propensity score 
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and Hierarchical models using statistical theory of frequentist or Bayesian. Other 

findings include potential confounders and possible data quality issues identified from 

literatures, though they (often hospital mortality rate) might not directly connect to 

our specific research scenario (CVD prediction).  

        Overall, the literature review result shows there are multiple methods to identify 

outliers in sites comparison, and the challenges from sites comparison could be dealt 

with statistical methods. With identified statistical methods, we can investigate on the 

performance and accuracy of QRISK3 in different sites and then evaluate its 

generalisability to other population (e.g. Chinese datasets).  
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9.2 Comparison of incidence rate between CPRD and Qresearch 
    As part of quality control, we compared the incidence rate of CPRD data to Qresearch 

database by replicating the procedure which were done by QRISK3 developers in table 9.2.1. 

The table below shows that generally there are no big differences between CPRD data and 

Qresearch database in terms of CVD incidence rate. Although CPRD only contains about 

40% practices of Qresearch, it contains enough information to represent UK population. Also, 

the average observed risk calculated by life table was about 7.8 (std: 2.6), which was closer to 

the average QRISK3 predict risk score 6.9 (std: 1.7). This supports the correctness of our 

localised QRISK3 program and the correctness of extrapolation in life table calculation.  
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Table 9.2.1 Comparison of incidence rate between CPRD and Qresearch              

Women Men

Incident cases Person years
Rate per 1000 person years

(95%CI) Incident cases Person years
Rate per 1000 person years

(95%CI)

Age 
group
(years) CPRD QResearch* CPRD QResearch CPRD QResearch CPRD QResearch CPRD QResearch CPRD QResearch

25-29 135 832 626840.89 3455662 0.22 (0.18, 0.25) 0.24 (0.22, 0.26) 186 1351 654744.46 3379716 0.28 (0.24, 0.32) 0.40 (0.38, 0.42)

30-34 245 1878 593983.49 3802577 0.41 (0.36, 0.46) 0.49 (0.47, 0.52) 419 3823 595991.6 3880890 0.70 (0.64, 0.77) 0.99 (0.95, 1.02)

35-39 511 3636 648320.64 3551460 0.79 (0.72, 0.86) 1.02 (0.99, 1.06) 1113 7963 656688.65 3748285 1.69 (1.60, 1.79) 2.12 (2.08, 2.17)

40-44 1004 5651 641431.12 2971995 1.57 (1.47, 1.66) 1.90 (1.85, 1.95) 2214 12750 654637.28 3192048 3.38 (3.24, 3.52) 3.99 (3.92, 4.06)

45-49 1477 8272 573915.85 2581104 2.57 (2.44, 2.70) 3.20 (3.14, 3.27) 3295 17763 571825.61 2672642 5.76 (5.57, 5.96) 6.65 (6.55, 6.74)

50-54 2023 12022 515582.21 2490263 3.92 (3.75, 4.09) 4.83 (4.74, 4.91) 4470 24040 499274.29 2437106 8.95 (8.69, 9.22) 9.86 (9.74, 9.99)

55-59 2717 14524 455592.8 1944140 5.96 (5.74, 6.19) 7.47 (7.35, 7.59) 5616 25464 423954.18 1796342 13.25 (12.90, 13.59) 14.18 (14.00, 14.35)

60-64 3349 18471 368655.4 1625795 9.08 (8.78, 9.39) 11.36 (11.20, 11.53) 5695 27021 315462.19 1372104 18.05 (17.58, 18.52) 19.69 (19.46, 19.93)

65-69 4240 22510 285178.29 1314303 14.87 (14.42, 15.32) 17.13 (16.90, 17.35) 5809 26903 224919.51 1013291 25.83 (25.16, 26.49) 26.55 (26.23, 26.87)

70-74 5589 25462 231372.62 1015263 24.16 (23.52, 24.79) 25.08 (24.77, 25.39) 5911 24549 161544.92 691866 36.59 (35.66, 37.52) 35.48 (35.04, 35.93)

75-79 7340 26883 210338.58 765681 34.90 (34.10, 35.69) 35.11 (34.69, 35.53) 6090 19820 127356.06 438861 47.82 (46.62, 49.02) 45.16 (44.53, 45.79)

80-84 10365 20408 227658.19 424994 45.53 (44.65, 46.41) 48.02 (47.36, 48.68) 6288 11569 112501.96 198481 55.89 (54.51, 57.27) 58.29 (57.23, 59.35)

Total 
(25-84)

47272 160549 6609359.6 25943236 7.15 (7.09, 7.22) 6.19 (6.16, 6.22) 58125 203016 6149098.9 24821632 9.45 (9.38, 9.53) 8.18 (8.14, 8.21)

* QResearch statistical data was from Hippisley-Cox et al. [3]
Average 10 years observed CVD risk in practices calculated by life table, mean (SD): 7.8 (2.6)
Average 10 years CVD risk in practices predicted by QRISK3, mean (SD): 6.9 (1.7)

 


	5.5.1. Set path and read data from CSV file
	5.5.2. See the data structure and other information #See data structure str(myData)
	5.5.3. Call the QRISK3 function to calculate risk score

