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Abstract 

Fourier Transform infrared spectroscopy, in particular, infrared microspectroscopy, has 

great potential for clinical applications in the flow of cancer diagnosis. Using large focal 

plane array detectors and with advancements in computer power, infrared 

hyperspectral imaging has significant advantages in both accuracy and speed of 

diagnosis. In light of previous research on cancer diagnosis and digital histopathology 

using infrared imaging, further studies combined with machine learning algorithms 

have been conducted and are presented in this thesis. Human tissue samples including 

breast and prostate have been studied.  

Initial studies have been conducted on breast tissue on CaF2. Infrared images were 

obtained and analysed using two machine learning algorithms namely Random Forest 

and AdaBoost. This demonstrated that good classification results, classification 

accuracies of 89% and 92%, could be obtained to distinguish cancerous from normal 

associated tissue (NAT). The caveolin-1 stain was applied as a possible breast cancer 

diagnosis correlated stain. Classification accuracies on cancerous and NAT spectra were 

100% and 71.4% respectively in the independent test, which indicates the great 

potential of caveolin-1 as a biomarker correlated with breast cancer diagnosis. For 

further implementation of infrared spectroscopy into clinical field, glass substrates, 

which are cheap and robust, are selected as potential new substrate for infrared 

disease diagnosis. Studies related to the performance of cancer diagnosis and digital 

H&E staining using infrared spectra collected from glass slides were conducted on 

breast tissue. Excellent separation between cancerous and NAT spectra was obtained 

with classification accuracies of 81.3% and 83.2% on cancer and NAT classes in the 

independent test. In addition, unbalanced classes are commonly observed in breast 

tissue analysis, as the epithelium cells are often much fewer in number compared with 

the stroma cells. A study using different sampling methods and classification methods 

to solve the problem and boost the classification results was conducted on the spectra 

collected from breast tissue on CaF2. Lastly, to test whether similar performance of 

classification can be observed from other types of tissue, studies on prostate tissue 

with glass substrates were also conducted. Reasonable classification results, 

classification accuracies, 72% and 68% were obtained with threshold (85% top scored 

testing spectra) added in the independent test (10 cores).  
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Cancer is one of the most arduous challenges faced by the human race. In 2018, 

there were 18.1 million new cancer cases and 9.6 million death cases due to cancer 

all over the world [1]. Three most common cancer types for both sexes were lung 

cancer (11.6% of the total cases), breast cancer (11.5%), and prostate cancer (7.1%). 

Among them, lung cancer was the leading cause of death among males followed by 

prostate cancer while breast cancer was the most commonly diagnosed and leading 

death cause for females [1,2].  

The survival rate of cancer is largely related to early diagnosis. In the current cancer 

diagnosis flow, remained largely unchanged for over 140 years [3], in order to 

diagnose cancer, in most cases, biopsies are required. Each biopsy taken from the 

patient is manually examined by pathologists, who make decision about whether 

cancer occurred in the biopsy. The examination process involves possible 

preparation artefacts, unusual cases and subjective judgments about the disease 

severity [4,5]. In addition to that, the whole process is time-consuming and only has 

limited outputs.  

To avoid the problem and improve the reliability of cancer diagnosis, developing 

computer-based automatic cancer diagnosis approaches which limit unnecessary 

human errors is essential. Such approaches, which can reduce variance in diagnosis 

and financial burden on the public health system, can be used to provide a second 

opinion for patients or as a pre-screen tool for pathologists. Vibrational 

spectroscopic imaging techniques are competitive candidates as automatic cancer 

diagnosis approaches. Between Raman and infrared tissue imaging, infrared holds 

its advantage in large scan area and short data collection time for the same size of 

measuring area. Many research has been conducted using infrared tissue imaging 

approach to distinguish cancerous and normal samples, involving prostate [6–

8], lung [9], colon [10], breast [11–13] tissues. With the advantages in time 

spending and diagnosis accuracy, infrared imaging is a potentially powerful tool for 

clinical use.  

In addition to cancer diagnosis, with the collected spectra of sample tissues for 

cancer diagnosis, digital histopathology can be performed without extra biopsy or 
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additional measurements. Without any physical staining, based on the biological 

information collected from sample with the combination of classification or pattern 

recognition algorithms digital staining can be performed [3,5]. Unlike the traditional 

biomarker staining methods, multiple stained images of sample can be generated 

based on the same set of data. 

To achieve cancer diagnosis classification and histological pattern recognition, 

reasonable mathematical methods need to be applied. State-of-art data mining 

method, machine learning algorithms, is vital for the idea of developing computer-

based automatic cancer diagnosis and histological pattern recognition approaches. 

Multiple groups have already introduced machine learning methods into the field 

[3,8,14–16]. However, only a few machine learning approaches were applied in the 

previous research. With more algorithm introduced into the field, choosing the 

most suitable methods for each dataset, models based on infrared spectra will be 

more robust and accurate.  

Inspired by previously researches conducted on infrared tissue imaging combining 

with machine learning methods, in this thesis, breast and prostate cancer diagnosis 

and digital histopathology studies were discussed using FTIR imaging system. For 

breast cancer diagnosis, tissues cores from the same patients on different types of 

substrates were applied to further validate the possibility of introducing the FTIR 

imaging technique into the current clinical cancer diagnosis working flow using the 

slides currently used by pathologists. Combining with the popular machine learning 

algorithms, classification models on digital histology and cancer diagnosis were 

constructed based on spectra collected. In addition to that, whether using stained 

marker would improve the classification accuracy of cancer diagnosis was also 

discussed. In term of prostate cancer diagnosis, unstained prostate tissue on glass 

was applied to construct classification models using machine learning algorithms to 

validate the possibility of establishing cancer diagnosis models by directly 

measuring current used pathological slides.  
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2.1. The 1990s 

Research using the combination of tissue and FTIR has been conducted for around 

60 years. The very first attempt was performed by Blout and Mellors [1]. A paper 

was published which concluded that the sensitivity of infrared techniques was not 

enough for tissue differentiation and identification. During the next 40 years, 

scientists focused on protein secondary structural motifs and the DNA double-

helical structure using infrared [2,3]. Molecular biology and disease drew the most 

of attention [4].  

In 1995, Fabian et al. [5] first successfully applied infrared spectroscopy in finding 

differences between xenograft and human tumour cells. Infrared was applied in 

distinguishing different cell lines which can be considered as the foundation of 

infrared histology. In 1998, Chiriboga et al. published their work on detection of cell 

maturation in cervical tissue [6]. In the research, tissue architecture was correlated 

with the collected spectra through pathological analysis. Spectra of different 

epithelium layers, representing different cellular maturation stages, from cervical 

tissue, were collected. Differences among layers were observed. The authors 

concluded that cell maturation and differentiation in cervical tissue can be 

monitored through their cell life cycles. Furthermore, spectra from individual layers 

can be used as a health inspection reference for exfoliated cells. This was the first 

time, which infrared spectroscopy was proved to be a powerful tool in tissue 

investigations. In the same year, Lasch and Naumann also published their work on 

colon tissue [7]. Unstained human melanoma and colon carcinoma tissues were 

measured on an infrared microscope with an automatic stage moving in x and y 

directions. For the very first time, the obtained spectra were analysed using 

clustering methods and principal component analysis. Infrared images were 

constructed based on the results of recombining classifiers with spatial information 

of each spectrum. This method was considered to be helpful in improving 

discriminations among types of structures in the tissue. The constructed false 

colour infrared images were compared with pathological results, which showed the 

outstanding sensitivity of infrared microscopy as a diagnostic tool for variations in 

the tissue.  
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From that time, infrared imaging was considered having the potential to obtain the 

same information produced by pathologists through tissue staining. Automatically 

detect changes in chemical compositions without stains and special preparations 

were considered to be the future goal of the field.  

In terms of instrumentation, in the 1990s, FTIR spectrometers [5] and FTIR 

microscopes [6] were both used. Spectrometers with both DTGS and HgCdTe were 

both used for research [4]. For the FTIR microscope, a computerized microscope 

stage and visual capture software were added [4,6,7]. In that time, using the infrared 

mapping data collection method, general measuring size of 50x50 µm2 could be covered 

with a combination of automatic microscope stage and predetermined coordination. In 

alternative, infrared microscopes with confocal array detectors could simultaneously 

acquire thousands of spectra arrayed pixels [8].   

In 1999, a review paper was published, in which a data treatment routine was proposed 

[4]. The data processing process included water vapour correction, optional smoothing, 

background correction and removal of residual substrate spectral features. Possible data 

scaling was desired based on the following tests, as there were subtle differences in the 

concentration of cellular components. If the thickness of the samples were considered 

to be uniform, the scaling might not be necessary. A normalization based on the 

intensity of amide I was considered as a solution to the scaling problem.  

2.2. The 2000s 

Research into using infrared in tissue histology and disease diagnosis really began in the 

1990s. Although there were technical limitations, hopes and expectations had been 

raised. From 2000 to 2010, people worked in two main directions, digital histology and 

cancer diagnosis.  

Several tissues were analysed through digital histology. In 2000, Diem et al. [9] 

demonstrated the analysis of cirrhotic liver tissue spectra comparing with the normal 

liver tissue by FTIR and infrared spectral mapping. The results presented by using 

infrared spectral mapping were in good agreement with the histopathological 

information. In their research, spectra were pre-processed using water vapour 

subtraction, background correction, smoothing and the rubber band algorithm baseline 
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correction. The processed spectra were stored in a compact format suitable for 

subsequent calculations. The processed spectra were then correlated and clustered 

using similar cluster computational method to principal component analysis (PCA) 

producing a coloured infrared map and compared with histological figures of liver 

samples. The analysis methods applied were considered to be cutting-edge at that time. 

With the foundation created from previous research, Bhargava et al. published a paper 

on automated stainless histology on prostate tissue with well-defined tests of statistical 

significance in 2005 [10], which separated epithelium and stroma cells and outputted 

accurate histologic core images. The areas under curve (AUC) of individual receiver 

operating characteristic (ROC) curves were calculated for each class. AUC values for 

epithelium (0.994), stone (0.991), ganglion (0.954), nerve (0.971), lymphocytes (0.990), 

blood (0.932) and endothelium (0.983) display a high segmentation capability. Stroma 

subtypes were 0.983, 0.961 and 0.894 for fibrous stroma, mixed stroma and smooth 

muscle, respectively. AUC and ROC were first introduced to the field, in which they are 

still commonly used nowadays. This research provided ideas both in data processing of 

tissue spectra classification and stainless classification of tissue samples which could be 

a breakthrough regarding clinical application of tissue analysis and molecular stainless 

histopathology.  

In terms of cancer diagnosis, groups of researchers started their cancer diagnosis 

research in these ten years with many types of human tissue being studied 

including prostate and breast. For prostate tissue, exciting results have been 

published in diagnosis and cancer classification [11]. 

In 2003, Gazi et al. [12] separated prostate cancer cell lines derived from different 

metastatic sites using FTIR spectroscopy for the first time. The ratio of peak areas at 

1030 and 1080 cm−1 was found corresponding to the glycogen and phosphate 

vibrations, which could potentially be used to identify malignant cells. With a linear 

discriminant algorithm, classification of benign and cancerous tissue was conducted. 

In 2005, FTIR imaging of microarrays was coupled with statistical pattern 

recognition techniques in order to demonstrate histopathologic characterization of 

prostatic tissue and to differentiate benign from malignant prostatic epithelium. 
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Fernandez et al. [10] tried separation of cancerous and normal prostate epithelium 

cells from the same patients. 50 samples with both cancerous and normal matching 

sets were used for the research. 100% discrimination was observed with patient-

matched normal and malignant acini when 20% threshold was applied. Cancerous 

tissue was considered contain more variation than normal tissue. Both these 

studies showed that spectroscopic imaging has a promising future for cancer 

diagnosis and potential prognosis.  

In 2008, Baker et al. [13] published a paper on FTIR cancer diagnosis of prostate 

cancer. This paper testified the potential of using FTIR as a prostate cancer 

diagnosis tool for clinical usage. By combining with a principal component 

discriminant function analysis (PC-DFA) algorithm, overall sensitivity of 92.3% and 

specificity of 99.4% grading classification can be achieved in a three-band Gleason 

score criterion diagnosis. In addition, they also correlated FTIR spectral 

characteristics with clinically aggressive behaviour in prostate adenocarcinoma (CaP) 

manifest as local and/or distal spread for the first time. Apart from further 

validation of the possibility of using FTIR as a cancer diagnosis tool, this paper 

provided the possibility of correlating spectra to the cancer metastasis. 

Focusing on breast tissue, in 2001, Eckel et al.[14] published a paper on 

characteristic infrared spectroscopic patterns in the protein bands of human breast 

cancer tissue. They collected spectra from 96 patients who had breast hyperplasia, 

fibroadenoma and carcinoma, and compared them with normal breast tissues and 

each cancer type itself. This research provides spectral characteristics of different 

breast cancer types, which were later used as references for breast cancer features 

or FTIR biomarkers. 

FTIR imaging was applied to malignant and benign breast tumour tissue sections 

[15–17]. In 2003, Infrared microspectroscopic imaging had been applied to analysis 

breast cancer tissue by Fabian et al.[17] the functional group mapping and cluster 

analysis were applied to process data. Infrared images were produced and 

compared with the stained tissue images. This paper focused on differentiating 

different tumour types of breast cancer. The identification of fibroadenoma caused 

http://www.sciencedirect.com/science/article/pii/S0924203101001345
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a problem because of spectral averaging of all tissue components present in the 

corresponding micro-areas. In 2006, Fabian et al. [15] classified benign lesions 

fibroadenoma from 14 patients, malignant ductal carcinoma in situ from 8 patients, 

connective tissue and adipose tissue by artificial neural network analysis. A four-

class classifier was constructed. After training the classifier, an independent test 

was conducted. All spectra (a total of 386) taken from micro areas inside the 

epithelium of fibroadenomas from 4 patients were correctly classified. Out of the 

421 spectra taken from micro areas of the in situ component of invasive ductal 

carcinomas of 3 patients, 93% were correctly identified. Although the number of 

patients in this study would now be considered as being very low the works 

demonstrated the ability to classify tumour types. 

These papers revealed that breast tissue micro-heterogeneity is a particularly 

severe problem for FTIR microspectroscopy and that high-quality spectra with the 

high spatial resolution are required in order to detect subtle, cancer-related 

alterations in the biochemical and morphological composition of tissue at the 

microscopic level. These data also suggested that earlier reported spectral changes 

between malignant and normal tissues which were observed in single spectra at 

higher spatial resolution may have an alternative explanation. A significantly 

extended database of spectra of histopathologically well-defined tissues, which 

spans the natural variability of healthy and tumour breast tissues, is required in 

order to fully explore the possibilities of IR microspectroscopy. 

Reviews [18–21] were published for further summarization and education of the 

field. These reviews address instrumentation, the applicability of various systems, 

spectroscopic bases and classification algorithms for decision making, and 

controversial aspects in the backdrop of the evolution of the field. 

Protocols concerning cancer histopathology [11] and data processing [20] were 

published. In Bhargava’s paper [11], approaches to optimal data acquisition, 

classification and validation were all discussed. A systemic method was proposed with 

each component discussed quantitatively with the effects on the final classification 

results. Variation of spatial resolution, spectral resolution and signal to noise ratio were 
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all considered in the paper. Prostate tissue was used as an illustrative example in 

developing protocols for automatic cancer histopathology. From paper published by 

Diem et al. [20] a protocol dealing with data analysis was proposed after a review of 

development of the field from 1994 to 2004. In the paper, a uniform data pre-

processing protocol was used for all computational procedures. First, the data set is 

cropped in both spatial and spectral dimension (typically between 1800–800 cm−1, since 

at the time this was considered to be the main diagnostic region). Next, pixels with 

too high or too low absorbance values, or with poor signal/noise ratio, are removed 

from the data set. The remaining spectra are then smoothed or derivatized using a 

Savitsky–Golay algorithm, and baseline corrected within this region. Finally, all spectra 

were vector normalized between 1800 and 800 cm−1 [20].  

2.3. The 2010s 

More research has been conducted from 2010 to 2019 with better-developed 

procedures analysing underlain information from infrared spectra [22–24].Apart 

from focusing more on biological differences, people started focusing more on the 

analysis methods. Machine learning and artificial neural network became the main 

methods of data analysis. With more and more conferences and field networking, 

protocols [10,25–29] of research combining FTIR and biological samples were 

increasingly clear. Experimenting and analysing methods were more systematic and 

standardized.  

Despite many advances in the biological application of FTIR spectroscopy, there remain 

challenges in sample preparation, instrumentation and data handling.  

2.3.1. Review on sample preparation methods 

In terms of sample preparation, the main sample formats are fixed cells, biofluids, live 

cells and tissue. In the case of tissue samples, formalin fixed paraffin embedded (FFPE) is 

considered as one of the most common methods to preserve both the biochemical 

components and tissue architecture. Sample thickness of FFPE tissue should not 

exceed 8–12 μm to avoid total absorption. Before infrared measuring, FFPE tissue 

could be de-waxed for a minimum of 5 min in xylene with three washes 

performed [26]. Not all dewaxing is done with Xylene, some use hexane or 
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commercial agents such as cytoclaer [30]. It is noticed that using solvent to remove 

paraffin can potentially leach out lipids native to the tissue samples, which 

questions the reliability of subsequent studies on the remaining lipids. Some 

research groups claimed that using FFPE sections without dewaxing does not affect 

the discriminative potential of the technique, in terms of using FTIR imaging [31–34]. 

Extended multiplicative signal correction (EMSC) algorithm can be used to correct 

the influence caused by FFPE [31,33]. In addition, using the wax embedded sample 

results in less spectral scattering since the refractive index change between wax 

and tissue is smaller than air and tissue. Considering the advantages of directly 

using FFPR tissue sections, in the research described in this thesis, all tissue samples 

were directly measured without de-waxing. The paraffin affected ranges were 

removed in data processing steps. 

For other tissue sample types, for example, cryosectioned tissue samples, the 

sample must be thoroughly thawed before IR analysis. Once a sample is thawed, 

components may start to degrade [35]. To avoid excessive degradation, the data 

collection process should start as soon as possible after sample thawing. A dark 

environment helps to slow the effect of sample degradation for both sample 

drying and data collection. Under dry conditions, cryosections can be stored for 

months. However, the lipid in tissue starts oxidation after two weeks, which can 

be avoided by storing in an N2 atmosphere [26].  

In term of substrates, for transmission, the most commonly used substrates are 

BaF2 and CaF2. For reflection, IR-reflective substrates, which are usually 

Ag/SnO2 coated glass slides, are used. Comparing with substrates used in 

transmission, low emissivity slides are much cheaper and robust. However, studies 

[36–39] have suggested that the Electric Field Standing Wave (EFSW) effect, which 

is a spectral distortion, can be raised in transflection model of operation. In 2015, 

Pilling et al. [40] published comparison of chemical images measured in 

transmission and transflection modes and found in transflection spectra undergo a 

non-linear distortion. Significant differences in spectra measured from the same 

area of tissue depending on the mode of operation were observed. Principal 

Component Analysis (PCA) highlighted the poorer discrimination between benign 
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and cancerous tissue in transflection mode. To better implemented infrared 

microscopy in the clinical environment, other cheaper and reliable substrates 

should be introduced. 

Recently, conventional glass was tested as a new substrate for transmission by 

Bassan et al. [41] and Pilling et al. [42]. It was believed that combining with fast 

infrared measurement, using conventional glass substrates could help the 

technology fit better in the current workflow of cancer diagnosis by pre-screening 

slides already used in clinics to reduce the workload of pathologists.  

In 2014, Bassan et al.[41] published their research on infrared spectral 

histopathology of human Breast tissue with glass substrates in transmission mode. 

The glass substrate had a high-wavenumber transmission window allowing 

measurement of the C-H, N-H, and O-H stretches in the range of 2500-3800 cm-1. 

FT-IR chemical images were measured at a spectral resolution of 8 cm–1 using 32 

and 8 coadded scans for the background and sample, respectively. A breast tissue 

microarray (TMA) containing cores from 71 patients which remained embedded in 

paraffin on the glass slide was used to construct a model which classified four basic 

tissue cell types. Collected spectra were baseline corrected between 3100 and 3600 

cm-1 and then normalised to the absorbance value at 3298 cm-1. Using random 

forest classification algorithm, with a probability estimate acceptance threshold of 

0.95 (95%), the correctly classified percentage for the independent test data set 

was epithelium = 98.25%, stroma = 99.94%, blood = 100.00%, and necrosis = 

97.22%. They also used epithelial cells to discriminate normal and cancerous tissue 

and obtained a reasonable separation using PCA. 

In the light of research of Bassan et al., in 2017, Pilling et al. [42] published their 

work on Infrared spectral histopathology using haematoxylin and eosin (H&E) 

stained glass slides. In the paper, they presented a study using results obtained 

from an extended patient sample set consisting of 182 prostate tissue cores, 

including 95 cancerous tissue samples and 87 NAT samples. These cores were 

obtained from 100 patients from 18 H&E slides. The microscope utilises ×15 

Cassegrain optics with a corresponding. The hyperspectral images were obtained 
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using a pixel size of 5.5 μm at 5 cm-1 resolution with 96 and 256 for the sample and 

background scans respectively. The spectra were quality checked on the intensity 

level of amide A band (3298 cm−1). Spectra with an intensity range of 0.1-1 were kept. 

Only wavenumbers from 3125 to 3700 cm-1 were kept from further processing and 

classification. Random forest classification was followed by PCA noise reduction (15 PC 

kept), vector normalisation and first derivative using 19 point Savitzky–Golay 

smoothing. Four main classes of histology were classified and tested. A high degree 

of accuracy (>90%) was observed for each class with a probability of acceptance 

threshold of 0.6. Nine separate prostate sections with different degrees of staining 

were investigated to ensure the discrimination observed was on biomarkers, not the 

presence of stain. Finally, using four-class model discrimination among the normal 

epithelium, malignant epithelium, normal stroma and cancer-associated stroma 

was observed with classification accuracies over 95% using a probability of 

acceptance threshold of 0.5. This research pointed towards the possibility of 

implementing automated pre-screening of samples in the clinic. 

2.3.2. Review on the instrumentation of Fourier transform infrared 

spectrometry 

In terms of instrumentation, detectors have had a vast influence on the quality of 

spectra collected. Detectors can be generally divided into three groups, including 

single-element, linear array and focal plane array (FPA) detectors. In term of the 

single-detector instruments, infrared radiation impinges on a prescribed spatial 

area through a set of condensing optics passing from the rapid-scan interferometer 

after modulation. The infrared images of this area are obtained by controlling the 

size of the aperture. An optical image will also be collected through the optical path. 

Single-detector microscope works well for studies on small-sized samples. However, 

it has limited utility in collecting data from large and heterogeneous samples. To 

cope with this disadvantage, mapping spectra collecting methods and 

corresponding instruments were developed. Mapping is achieved by adding an 

automated microscope stage which is capable of precise movements to maintain 

registration between the same point through observation and collection. Larger 

aperture size and number of acquisition scans can both improve the data quality. 
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However, the spectra obtained will be in a trade-off between collecting time and 

data quality [18].  

Linear array detectors are a row of detector elements defining a rectangular spatial 

region on the sample. It can be used to measure relatively large-sized sample with 

precise and sequential movements. It is also known as push-broom mapping or 

raster scanning [18]. In term of imaging, linear array detectors have a similar 

concept with the mapping process using a single detector, but it has an advantage 

in multiple channels of detection. The characteristics of multiple detecting elements 

bring several benefits, including faster speed for data collection and better signal to 

noise ratio compared with single detector instruments. Also, a linear array of 

detectors eliminates the need for geometrical apertures. Optics in the system 

determines the nominal spatial resolution. Furthermore, how precise the 

microscope stage move is crucial to the imaging results, as the final image consists 

of steps in small increments [18].  

Nowadays, the most advanced detector in the FTIR microspectroscopic 

instrumentation is an FPA detector [43], which contains several thousand individual 

detecting elements forming a two-dimensional detecting plane. It further increases 

the advantage of multiple detecting channels compared with linear arrays. For a 

128 x 128 FPA detector, it is 16384 times better than a single detector and 1024 

times better compared with a 16-element linear array in term of the multichannel 

advantages. It enables the imaging of the whole field of view. Among the available 

infrared micro-spectroscopic methods, FPA-based global imaging represents the 

most comprehensive approach for recording spectra over large sample areas. The 

spatial resolution of an FPA based instrument is determined by both the optics 

which determines the magnification and the size of each element of the FPA. Even 

though the nominal spatial resolution is determined by detector and optics of the 

system, the actual resolution limit is still governed by the diffraction limit [26]. With 

an interferometer, the advantage of FPA is further enlarged in spectra acquiring 

time as the time cost of data collection throughout the full field of view is almost 

the same as taking one spectrum at only one point on the sample using a single 
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detector. A typical FPA detector chip is a few millimetres in size with each element 

in tens of microns [18,44].  

Detector arrays are usually made of several types of infrared-sensitive materials. 

For mid-IR imaging, MCT FPAs [45] has been the most popular. This is due to its high 

sensitivity and good spectral range. 

Light sources are also one of the most essential elements in term of the 

instrumentation of FTIR. The conventional thermal (globar) is by far the most 

common light source used for FITR instruments. This is particularly the case when 

doing FTIR microscopy using an FPA detector. For FTIR microscopy Synchrotron 

radiation can be coupled to the FTIR.  Alternate light sources including QCLs and 

filters can also be used for infrared spectroscopy but these discrete frequency 

sources are not used in combination with FTIR [26]. The most commonly used light 

source is a globar source, which contents the silicon carbide rod generating infrared 

radiation. With the correct optics it can A synchrotron radiation facility consists of a 

particle accelerator and electron storage ring [46]. Electrons are emitted from the 

electron gun and are accelerated in the particle accelerator consisting of a linear 

accelerator and ring booster. When the electrons nearly research the speed of light, 

electromagnetic radiation will be produced. Most of the radiation produced is in 

the UV and X-ray region of the spectrum (depending on the energy of the ring but 

the radiation extends into the infrared. The IR radiation produced is 100 to 1000 

times brighter compared with the conventional globar and concentrated in a small 

area. Therefore, synchrotron sources have natural spot size at the sample of 10 to 

20 microns and can generate high signal to noise spectra [47]. It enables 

researchers to obtain information at the single-cell level or even nucleus level 

[48,49].  

There are around 50 synchrotron facilities all over the world [50], and as of 2018, 

there are 28 IR beamlines most of which are currently operational [51]. In 2006 

independent research groups [52–54] firstly combined single synchrotron beam 

with FPA detector. Improved signal to noise ratios were observed in a local region 

of the FPA detector compared with a conventional globar. They suggested that due 

to the inhomogeneous illumination of the FPA, small FPAs (and sample area) should 
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be used for other studies in the future. In 2011, Nasse et al. [44] used multiple 

synchrotron beams during data collection. High spatial-resolution images of the 

interested area were obtained using a pixel size of 0.54 × 0.54 microns. They 

claimed that the results were around 100 times better compared with other 

instrumentation at that time with the lowest detection limit. After that, reviews 

published by Miller and Dumas [54] and Hirschmugl et al. [55] described the 

development, advantages in biological applications and potential future directions 

of synchrotron-based FTIR. Not only studies on cells, but also researches have been 

conducted on tissues, where each cell could be probed in subcellular resolution. For 

example, the structure of misfolded protein aggregates has been identified in the 

brain tissue of Alzheimer's disease patients [56,57], infectious prion proteins have 

been characterized in scrapie [58] and variations in bone composition have been 

observed in osteoporosis [59]. Synchrotron radiation was also adopted as a light 

source with FTIR microscope spectrometer for studying live cells [60–62] with 

different prototypes of IR compatible microfluidic devices. 

Another alternative light source for infrared spectra collection is Quantum Cascade 

Lasers (QCLs), which were a new type of semiconductor laser. Because of their 

characteristics of narrow line widths [63,64], they have been used as gas sensors. 

With the improvement in wavelength range, modern tuneable QCLs was first 

applied as a light source for mid-infrared in 2007 [65]. Images obtained by both QCL 

and globar FTIR spectrometer were compared. The advantages and limitations of 

the new laser resource were explored in the study [66]. Further application on 

biological samples was conducted in 2013 by Liakat et al. [67]. Study of glucose 

concentration in biological fluids was presented. With the combination of 

mathematical model, the concentration of glucose in the fluid was successfully 

predicted using QCL as light source in transmission mode. A following the study on 

the glucose in vitro, the level of glucose in humans was measured by QCL fibre 

probe [68]. Spectra data were collected by illuminating light on human palm and 

only 2% error rate was found after comparing the detected results with the 

commercially used glucose detector. In principal therefore infrared glucose 

monitoring could be put into use but the cost of QCLs compared with other 
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methods of blood testing at present makes this unlikely. In light of previous studies, 

Bassan et al. [69] applied QCL on human tissue. In 2014, image of a breast tissue 

array was presented by the QCL microscope system, which covered range of 900-

1800 cm-1 with a 480x480 elements un-cooled micro-bolometer detector. It was 

reported that a tissue image at a single wavenumber of a whole TMA with the size 

of 20x24 mm2 was acquired within 9 min, which was 126 times faster compared 

with a conventional FTIR instrument. This, of course, is not a like for like 

comparison since the FTIR generates a hyperspectral image but is useful if the 

wavelength of interest is known. Later, Clemens et al. [70] also published tissue 

images produced by application of QCL. Later that year, Pilling et al. utilised QCL 

imaging microscope with both prostate [71] and breast cancer [72] diagnosis, 

between 900 and 1800 cm−1 with a 480 × 480 un-cooled microbolometer FPA. In 

terms of prostate tissue digital histology, sensitivity and specificity of 93.39% and 

94.72% respectively were presented with only 25 discrete frequency collections at key 

diagnostic wavenumbers. In the independent test, 72.14% sensitivity and 80.23% 

specificity were obtained. This research showed that discrete frequency infrared 

chemical imaging has the potential to provide high-resolution, high-throughput 

chemical images on a timescale that could revolutionise spectral histopathology [71]. 

Regarding the research on breast tissue, high classification rates, sensitivity (93.56%) 

and specificity (85.64%), for cancer and NAT tissue were observed in an independent 

test with continuous spectra acquired between 912 and 1800 cm–1. Classification 

accuracy obtained had similar sensitivity and specificity using conventional FTIR 

imaging [72].  

In order to obtain the best signal to noise ratio, several optimised instrumental and 

operational settings are suggested by Baker. et al. [26] in 2014. Single-element 

detector required a larger number of scans to achieve similar signal to noise ratio 

compared with FPA detector. For FTIR single-element detector the optimal number 

of co-additions scan is 512, while for FPA detector with the same globar source, the 

suggested number of co-additions is 64 or 128 scans. For both single and FPA 

detector, the optimal spectral resolution is 4 or 8 cm-1, although it is possible to use 

numbers other than multiples of two. In much of the work in the Gardner group 5 



47 
 

cm-1 is often used [26]. For single-element detector, signal to noise ratio can be 

influenced by aperture size of the instrument during point or mapping 

measurements while interferometer mirror velocity may cause effect on signal to 

noise ratio when it comes to FPA imaging.  

In general, the square root of the number of co-additions is proportional to the 

signal to noise ratio, and therefore an increased number of scans will enhance the 

signal to noise ratio [73]. IR spectroscopy has a spatial resolution that is limited by 

the diffraction limit. Therefore, when the resolution approaches the limit, the signal 

to noise ratio is reduced to a point where there is no further gain in image quality 

[74]. The choice of the type of detector (for example, thermal detector and 

quantum detector) also effects on the signal to noise ratio. A mercury cadmium 

telluride (MCT) quantum detector usually provides a superior signal to noise ratio 

than thermal detectors (usually deuterated triglycine sulfate detectors). An 

optimized cooling system in the detector, such as thermo-electrical cooling, will 

also reduce the dark current produced by the detector, which has been shown to 

have a detrimental effect on the signal to noise ratio [75]. 

2.3.3. Review on data process methods 

In terms of data analysis methodology, there are generally four typical data 

processing goals, including pattern finding, biomarker identification, imaging and 

diagnosis. In order to achieve these objectives, techniques including quality control, 

pre-processing, feature extraction, clustering and classification have been applied 

based on the conditions of raw data in the various studies.  

Quality control is commonly the first step of data analysis, during which outliers 

were identified and removed from the spectra dataset. Going through literature, 

many quality control methods have been proposed including signal-to-noise test 

[76,77], thickness test [76–78], and maximum and minimum absorbance threshold 

[42,69,72].  

In pre-processing steps, usually, spectra will be denoised, baseline corrected, 

removing variation caused by difference in thickness or concentration, and 

removing sample contaminants (e.g., water, paraffin). Afterwards, first or 
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secondary derivate of data can be obtained additionally to further highlight 

features of spectra. Regarding denoising, PCA denoising [69,72]and Savitzky–Golay 

Smoothing [79,80] can both be applied to the dataset. PCA denoising was claimed to 

have the best effect for removing noise [81], while the Savitzky-Golay method is more 

focused on smoothing the first derivative of spectra. In term of baseline correction, 

differentiation in 1st and 2nd order [79,80,82,83] and rubber band baseline 

correction [9,22,23,84] are mostly used in field. Extended multiplicative signal 

correction [82] and resonant Mie scattering correction [85,86] are used for further 

fitting of spectra. The effect, intensity difference crossing sample, caused by 

thickness variations is usually corrected by normalisation methods. Typical methods 

involved normalisation to the Amide I peak [22,84,87] and vector normalization 

[13,23,42,69,72]. The sequence and choices of pre-processing methods should be 

picked depending on the data and purpose of studies. Some methods are 

specifically designed to solve a certain problem. Recently, studies have been 

conducted on classification-based pre-processing steps for a given dataset [88], for 

example, feature selection. In terms of feature extraction, principal component analysis 

[80,82,87,89], partial least squares [88,90], linear discriminant analysis [82] and PCA-LDA 

[13,23,82] could all be used to select features from data set.  

These methods all generate loadings (features generated by a linear operator), factors 

(features), scores (value of each factor) and scores plots (visualised presentation of 

scores). Loadings carried information about the contribution of each wavenumber to 

the feature pattern. The differences among these methods are about ways of 

obtaining the loading matrices [88].  

Clustering is an unsupervised pattern recognition methodology. K-means [9,77,91], 

Fuzzy c-means [77], and HCA [20,76,77,83,87] are commonly used clustering methods in 

the field. These methods were designed to cluster the spectra into groups, based on the 

similarity between spectra. Cluster analysis is exploratory and used to find if there are 

hidden structures in the dataset, and whether these structures (clusters) correlate with 

data classes or other physical knowledge (e.g., tissue structure) [88].  
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Classification is usually conducted by building up a mathematical model which predicts 

the class of an unknown sample based on the information previously studied from a 

similar type of data, known as training data. Several models are usually used in the 

field nowadays, including multiple linear classifiers, support vector machine (SVM), 

Artificial Neural Network (ANN) and ensemble classification models. In the case of linear 

classifiers, for example, linear discriminant analysis (LDA) and partial least squares 

discriminant analysis (PLS-DA) [92], they have simple structure and easy to construct. 

However, they are not complicated enough to accurately finding boundaries between 

classes [88]. SVM, which can be either linear or kernel-based, is a family of classifiers 

increasingly popular in bioinformatics, where non-linear decision boundary between 

classes can be found. Multiple studies using SVM as a classification method have been 

conducted. For example, Kelly et al. used SVM in classification of low-grade cervical 

cytology in 2010 [22], and Baker et al. [82] applied SVM as one of their approaches to 

finding differences among RWPE human prostate epithelial cell lines from the same 

source but differ in their mode of transformation and their mode of invasive 

phenotype. In addition, Sattlecker et al. [93] used SVM for breast cancer type 

predications in 2011, which obtained 66.7% predication accuracy with single 

classifier while 88.9% correct with ensemble system in the independent test. 

ANN is widely used as a classification method. An ANN is a computational model 

based on the structure and functions of biological neural networks [88]. The artificial 

neural network is a branch of deep learning, a division of machine learning. Machine 

learning algorithms use computational methods to teach computers learning from 

experiences like humans. Information is directly learnt from data without 

predetermined equations as models. Deep learning is sufficiently appropriate for image 

recognition, which has been used widely for facial recognition, motion detection and 

driver assistance technologies [94]. Deeping learning uses neural networks to learn the 

characteristics of features directly from data with multiple nonlinear processing layers. 

The parallel working structure was inspired by biological nervous systems.  In an 

example of applying ANN in the research, Kelly et al. classified low-grade cervical 

cytology with a classification accuracy of around 80% per spectra [22]. 
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Classifier ensembles have been increasingly used recently [42,95,96]. A combination of 

multiple single model classifiers is considered as a more accurate option when it comes 

to classification problems. Ensemble methods are learning algorithms that construct 

a set of classifiers and then classify new data points by taking a (weighted) vote of 

their predictions [77].  Aggregation strategies include Bagging [97], Boosting 

[97,98], Hierarchical Aggregation [99], and multiple two-class Classifiers [100]. There 

are studies using ensembles to successfully overcome the instability that results from 

a small dataset being available. Among these types of methods, random forests have 

been most commonly used [42,71,72,101–103]. Random forest is a classification 

method which operates by constructing decision trees to vote on the class 

membership [104,105]. Each tree gives a classification. Each decision is collected 

and the forest chooses the most popular class-based on decisions made by all trees 

in the forest [105]. This algorithm was developed by Breiman [104] in 1996 based 

on bagging predictors [106] with a random selection of features [107] to construct 

decision trees with higher accuracy of classification.  

To sum up, variable researches have been conducted since the 1990s in term of 

application of infrared spectroscopy on biological samples. Even though systemic 

steps and protocols in many aspects of the research have been published, still, 

there are gaps to fill and problem to solve in the field. To achieve the objective of 

implementation of infrared into the clinical environment, there are still barriers to 

overcome, ideas to validate and further studies to conduct.   

In the light of previous research, in this thesis, both the validation of previously 

proposed ideas and further research about new ideas in term of infrared clinical 

transition is discussed. Both standard and advanced data analysis methods in the 

field are applied to extract biological information from samples. Thanks for the 

effort of previous researchers, using their experiences and knowledge avoidable 

errors and mistakes in this thesis can be minimised, as from sample selection to 

final data analysis, steps were conducted carefully following previous protocols.  
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3.1. The electromagnetic radiation 

Molecular spectroscopy can be defined as the study of the interaction of 

electromagnetic waves and matters. The nature of electromagnetic radiation can 

be described as the perpendicular propagation of one electric field and one 

magnetic field. Both fields are made up of harmonic waves raised by the motion of 

photons [1,2]. 

Electromagnetic radiation has been divided into different segments based on their 

distinct properties, which can be described using wavelength, frequency and energy. 

A plot of the regions of the electromagnetic spectrum is shown in Figure 3.1. The 

mathematical relationships among these parameters motioned are shown in 

Equation 1. 

                                                                   
 

 
                                                        Equation 1 

Where   defines the wavelength,   defines the speed of light, and   defines the 

frequency of the electromagnetic radiation. 

 

Figure 3.1 The regions of the electromagnetic spectrum 

A more commonly used parameter to describe the wavelength of the 

electromagnetic radiation in Equation 2. 
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                                                                  Equation 2 

Where    denotes wavenumber of the electromagnetic radiation, which determines 

the number of wave cycles in unit length. 

The energy level of electromagnetic radiation can be expressed using the 

parameters mentioned above by the following equation. 

                                        
  

 
                                                            Equation 3 

Where h denotes the Plank’s constant, which is              . 

Therefore, the energy level of the electromagnetic radiation is proportional to its 

wavenumber value. The increasing value of wavenumber will lead to an increase in 

radiation energy level. 

3.1.1. The infrared radiation 

Infrared is defined as the electromagnetic wave between visible light and 

microwave regions [2]. The infrared region is divided into the far-infrared, mid-

infrared and near-infrared regions. The detailed information about wavenumber 

and wavelength are shown in Table 3.1.  Among three sub-regions, the mid-infrared 

region is used for most spectrometers, for example, the FT-IR spectrometers.   

Table 3.1 Sub-division of infrared spectra in term of wavelength and wavenumber 

Infrared Sub-divisions Wavelength /µ m Wavenumber / cm-1 

Far-infrared 25-1000 400-10 

Mid-infrared 2.5-25 4000-400 

Near-infrared 0.7-2.5 14000-4000 

 

When infrared radiation passes through substances, some radiation is absorbed by 

molecules and some are transmitted. The absorbed energy is provided by photon 

associated with the infrared. This energy is not large enough to induce direct 

electronic transitions. However, it conducts vibrational excitation of covalent bonds 
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between atoms and groups. Molecular vibrations (stretching and bending) and 

rotations will cause net changes in the dipole moment of molecules. The larger the 

dipole change, more intense bands are observed in the respective infrared 

spectrum [1,3–5].  

3.1.2. Interaction with molecules 

Molecular spectroscopy can be defined as the study of the interaction of 

electromagnetic waves and particles [1,2]. Quantum theory allows the conception 

of a bond-vibrational nature as a possible explanation of the molecular absorption 

in the infrared region. This concept evolved the current understanding of the 

infrared spectra as a result of energetic transitions between quantized vibrational 

states. This is based on three premises. Firstly, molecules are constituted of 

covalently bonded atoms with linkages caused by electronic rearrangements [2]. 

The vibration must give rise to a dipole change which magnitude is correlated with 

each individual effect of the dipole moments within the whole molecule [2]. Last 

but not the least, because of the constant movement of molecules, the dipole 

moment has a continuous oscillating pattern with a defined frequency which can 

interact with the electric field of the IR radiation. When the frequency of a photon 

is equal to the frequency linked to the dipole moment of a specific molecule, the 

molecule will absorb IR radiation.  

3.1.3. Molecular vibration 

The molecular motion of a poly-functional molecule includes rotational, 

translational and vibrational movements. This means a molecule containing n 

atoms has 3n degrees of freedom on the x, y, and z-axes of the Cartesian plane 

respectively. 6 degrees of freedom are classified into translational and rotational 

motion. Therefore, an equation for non-linear molecules can be summarized as 

follow:  

         Number of degrees of vibrational freedom = 3n – 6                               Equation 2 
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For linear molecules, there is no rotation along the bond axis. Thus, the equation 

can be expressed as follow: 

         Number of degrees of vibrational freedom = 3n – 5                               Equation 3 

Molecular vibrations are different for each molecule according to their specific 

chemical composition (except the enantiomers), structures and surroundings. 

Nevertheless, the general modes of vibration described below have been reported 

leading the vibrational motion of a molecule in most situations [2–4,6]. 

To understand molecular motion, the atoms can be assumed as individual masses, 

and the covalent bond works like a spring and undergoes simple harmonic 

oscillation. Then, the movement of a diatomic molecule can be described by Hook’s 

law under these conditions [2], which is shown in Equation 5. 

                                        
 

  
 

 

 
                                                               Equation 4 

where 

                                         
    

     
                                                                 Equation 5 

However, rather than following Hook’s law, real molecules perform a more complex 

behaviour which can be considered as anharmonic oscillators [2], as in reality the 

restoring force is not proportional to the displacement. Both elastic anharmonicity 

and damping anharmonicity can be used to describe real-world situations [7]. A 

Morse potential is used to approximate the vibrational structure in this case, as it 

accounts for the anharmonicity of real bonds. This explanation has the intrinsic 

properties of a specific molecule like the internuclear distance and the dissociation 

energy included.  
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Figure 3.2 Vibrational energy levels for a diatomic molecule, The Morse potential (blue) and harmonic 
oscillator potential (green). 

As shown in Figure 3.2, the energy levels of the harmonic oscillation are equally 

distributed, while they reduce when the energy reaches the dissociation energy for 

the anharmonic oscillation. 

3.1.4. Modes of vibration 

To describe the molecular motion, the changes of the conformational shape such as 

inter-atomic distance and bond angles for stretching and a bending motion 

respectively have to be taken into account. For the given molecular group, two 

stretching vibrations including symmetric and asymmetric stretch, and four 

deformation vibrations containing bending, wagging, twisting and rocking, are 

compared.  

In a biological context, vibrational modes of peptide bonds, which is formed when 

amino acids linked to form protein known as one of the most important reactions in 

biochemistry [8], including Amide I, Amide II, and Amide A are shown in Figure 3.3. 

The peptide group as structural unit of proteins has 9 characteristic bands, among 
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them amide I and amide II are the two most intense bands of proteins in the 

infrared spectrum [9]. The Amide I and Amide II are commonly used for protein 

structure analysis [10]. Between them, Amide I is the more widely used band to 

investigate the secondary structure of proteins [10,11], as it is the most sensitive 

amide band to differences in secondary structures.  

 

Figure 3.3 Vibrational modes for the peptide bonds 

The type of vibrational mode of each peptide bond is presented in Table 3.2. From 

that table, it can be seen that Amide A in the wavenumber range of 3230-3300 cm-1 

is 100% caused by N-H stretching, Amide I (wavenumber range: 1600-1700 cm-1) is 

mainly raised by C=O stretching and coupled with C-N stretching, and Amide II, 

between wavenumber of 1510 and 1580 cm-1, are mainly stemmed from the N-H 

bending and C-N stretching weakly coupled to the C=O stretching mode. 

Table 3.2 wavenumber and bond assignment and vibrational modes of Amide A, Amide I and Amide II 

Designation Wavenumber (cm-1) Assignment 

Amide A 3300-3230 ν(NH) 100% 

Amide I 1700-1600 
ν(CO) 70-85% 
ν(CN) 10-20% 

Amide II 1580-1510 
δ(NH) 40-60% 
ν(CN) 18-40% 
ν(C-C) ~10% 

 

3.2. FTIR spectroscopy  

Fourier Transform Infrared (FTIR) techniques have been wildly used for the no-

destructive analysis of biological specimens in recent years. Especially in the area of 

cytological and histological diagnosis by generating spectral images [4,12,13]. 
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Molecular bonds are IR active because of the presence of an electric dipole moment 

which is able to change by atomic displacement due to natural vibrations. These 

vibrational modes can be measured quantitatively by IR spectroscopy. It provides a 

unique, label-free tool for exploring molecular composition and dynamics without 

damaging the samples. For interrogating biological materials, the most significant 

spectral regions measured are typically the fingerprint region (600–1450 cm−1) and 

the amide I and amide II (amide I/II) region (1,500–1,700 cm−1). The higher 

wavenumber region (2,550–3,500 cm−1) is related to stretching vibrations such as S-

H, C-H, N-H and O-H, while the lower-wave number regions typically associated 

with bending and carbon skeleton fingerprint vibrations [13].  

FTIR spectrometry is a relatively advanced technique in the field. The first chemical 

IR spectroscopy was invented by Sir William Herschel in 1800. In the very 

beginning, most IR instrumentation was based on a prism or grating 

monochromator. In 1881, Michelson invented interferometer, which many years 

later turned out to be a revolutionary break-through in term of infrared 

spectroscopy development. In 1949, Peter Fellgett generated the first IR spectrum 

by using FTIR spectrometer and improved the quality of the spectrum collected. 

Commercial FTIR spectrometer appeared in 1960s. The first commercial FT-IR 

spectrometer has been developed in 1969 [3]. FT-IR is designed to overcome the 

limitations of dispersive instruments, which are slow-scanning time and limited 

energy throughout. The core element of an FT-IR spectrometer is interferometer, 

which enables measuring all of the infrared frequencies simultaneously. Infrared 

frequencies are encoded into this optical device [14]. The speed of infrared 

spectrometry is largely increased. The time spent to measure an element per 

sample is reduced to a matter of a few seconds rather than several minutes [3,14].  

A beam splitter is integrated with the interferometer. It splits the incoming light 

into two beams. One of the beams is reflected by a fixed flat mirror while the other 

one is reflected by a moving flat mirror. Two reflected beams will recombine, as 

one travels a fixed distance while the other one adjusts its travelling track. The 

combined beam passes through the interferometer. The interfered signal results in 
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every frequency coming from the source. FT-IR spectrometer can process extremely 

fast measurements.  

The signal from a single frequency measured at a detector as a function of time is a 

sine wave. The combination of multiple sine waves from all frequencies applied 

during measuring gives an interference pattern, interferogram. An example plot of 

individual sine wave before interference and the resultant interferogram is shown 

in Figure 3.4. The interferogram generated by the detector is in the time domain 

spectrum. It needs to be translated into the frequency domain spectrum. 

 

Figure 3.4 An example plot of A) individual sine wave before interference and B) the resultant interferogram 
functions of time 

Despite the complexity of the interferogram, the separate frequencies can be 

extracted via the mathematical process known as Fourier transformation [14]. The 

transform can be expressed in equation 7 [15]: 

                     
  

  
                                  Equation 7 

Where   stands for frequency,   represents time. 

An example plot of the transformation process is shown in Figure 3.5, where 

interferogram based on time is transferred into the wavenumber based spectrum. 



70 
 

The main advantage of Fourier transform methods is that all the frequencies are 

measured simultaneously rather than sequentially, which is also referred as the 

multiplex advantage. This calculation is performed by computers in which the users 

can choose desired sections of the overall results. 

 

Figure 3.5 Example diagram of Fourier Transform from time-domain interferogram n to wavenumber based 
spectrum 

3.2.1. FTIR microscopy 

Compare with the traditional FT-IR spectrometer, infrared microscopes are able to 

record the transmission or reflectance spectra at each spatial point of samples [17]. 

The recorded data is processed by a spectral analysis calculation to determine the 

specific chemical composition of samples. 

The combination with microscopy (micro-spectroscopy) permits the examination of 

complex tissues and heterogeneous samples. Detection by microscopy may be 

accomplished by raster-scanning a point illuminated on the sample or by using 

wide-field illumination and FPA or linear array detectors [16]. 

The FPA is an advanced infrared chemical imaging technique. It largely improved 

the quality and speed of infrared image, which provides the essential technology 

for high-quality infrared-microscopy. FPA is created by organising individual 

detecting elements in a lattice-like array [17]. Normally each pixel (one individual 

detector) has one independent contact and one-second contact sharing with other 

pixels in FPA. FPA can be made of both photon and thermal detectors, for example, 

MCT detector [18].  
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The most common detector used in the FPA and FT-IR spectrometer is MCT, which 

has a chemical formula HgCdTe. MCT detectors give a large spectral range, zero-

bias resistance and have high quantum efficiency. These advantages make MCT the 

most popular photon detector. However, it also has disadvantages. The major 

limitation of MCT detectors is that it needs low temperature (77K) to reduce the 

thermal noises caused by excited current carriers [19]. These qualities make MCT 

the most popular intrinsic photovoltaic [20]. The MCT detects electrons which are 

exited from chemical bonds to conduction bands by photon. An external readout 

integrated circuits (ROIC) gathers those electrons and transforms them into 

electrical signals [21].  
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4.1. Chapter overview 

Breast cancer is the most common cancer for females in the world. It is also the 

second most common and dangerous cancer with 2,088,849 (11.6%) new cases and 

626,679 (6.6%) cases of death for both males and females in 2018, across 20 

countries and regions[1]. In the UK, breast cancer is the most commonly diagnosed 

cancer in 2016. In total 45,960 cases including 45656 females, it accounted for 15.2% 

of all malignant cancers and 30.8% of all female malignant cancer cases[2].   

The survival rates of breast cancer generally decrease with the increase of cancer 

stages. Based on information provided by office for national statistics, 207,548 

women who were diagnosed having breast cancer in 2011 had a five-year survival 

rates of 98.8% (stage I), 90.1% (stage II), 72.2% (stage III) and 27.9% (stage IV) 

followed up in 2017 in the UK[3]. Therefore, early detection of breast cancer could 

largely increase the survival rate of patients.  

In order to reduce the mortal rate of breast cancer, reliable and efficient early 

diagnosis systems need to be established and applied for clinic uses. Currently, 

three screening methods are available for early breast cancer detection-containing 

mammography, ultrasound scan, and magnetic resonance imaging. In most cases, 

biopsies are required and taken to assess the presence of a disease and its degree 

of progression. Tissues taken from patients and sliced into thin slides are carefully 

investigated by professional pathologists using optical microscopes. This cancer 

finding and observing process is a time-consuming and expensive process. More 

importantly, this process is subjective and prone to observer error [4], as decisions 

are made by a sole pathologist or several individuals.  Comparing with traditional 

pathology, FTIR spectrometry has its advantages including time efficiency, cheaper 

and having promising classification accuracies [5].  

The research was conducted using on breast cancer diagnosis. Eckel et al.[6] first 

applied FTIR micro-spectroscopy for the analysis of breast tissues. In 2001, they 

published paper on finding characteristic infrared spectroscopic patterns in protein 

bands of human breast cancer tissues. Spectra from 96 patients were collected. This 

research provided spectral characteristics of different breast cancer types, which 
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were later used as references for breast cancer features or biomarkers in the field. 

Since numerous research has been conducted by different research groups.[7–11] 

Most groups only analyse epithelial cell spectra since breast cancer occurs in 

epithelium cells in the vast majority of all breast cancers. However, in 2016, 

Verdonck et al. [12] found that stroma located close or at a distance from cancer 

cells shows distinct spectral characteristics comparing with normal stroma. 

Classifiers could be constructed based on adjacent stroma when it came to breast 

cancer diagnosis.  

In the light of previous research, in this chapter, FTIR analysis on breast tissue is 

combined with the recently popular data analysis method, machine learning, to 

further validate the reliability of FTIR breast cancer diagnosis and to testify whether 

stroma could be used as a substitution of epithelium cells working as inputs of 

breast cancer classification models.  
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4.2. Methodology 

All data were pre-processed with MATLAB 2018a. Infrared spectra for each biopsy 

core were extracted from the mosaic as a 256 × 256 datacube. Each datacube 

consists of 65536 spectra each of which contains 416 data points.  

4.2.1. Breast Tissue preparation 

The sample used for this project is a breast TMA slide, BR20832 (US Biomax, Inc.). In 

this case, the breast tumour tissue microarray contains 190 cases of ductal 

carcinoma, 1 mixed lobular and duct carcinoma, 1 mucinous carcinoma, 13 NAT and 

3 normal breast tissue. Each core stands for one patient. In total, the BR20832 TMA 

contains information from 208 patients both healthy and having cancer. 

The TMA was prepared by Biomax according to the following protocol. Fresh 

biopsies taken from 208 patients were immersed in an aqueous formalin solution, 

which fixes the tissue. After that, the tissue is dehydrated in washes of xylene and 

ethanol. In the end, paraffin was used to embed the tissue to provide a protective 

barrier [13]. The core was cut into 5µm thickness and 1mm diameter and fixed on 

the CaF2 slide, which was designed for FTIR analysis use. The adjacent TMA was 

flowed on a glass slide and H&E stained. The H&E stained TMA would be used to 

annotate epithelium and stroma. The actual FTIR scan was performed on the 

normal non-stained CaF2 slide, as the level of stain could influence spectra 

containing subtle biological differences. Figure 4.1 shows the image of the H&E 

stained BR20832 slide. 

The normal slide used for FTIR analysis was covered in wax, which was a formalin-

FFPE breast tissue TMA slide. No dewaxing process was undertaken before the 

actual spectra collection. It has been shown by Untereiner et al. [14], that using 

FFPE sections without de-waxing does not affect the discriminative potential of the 

technique, in terms of using FTIR imaging [15]. Also, using the wax embedded 

sample could avoid spectral scattering to a large extent since the refractive index 

change between wax and tissue was smaller than air and tissue. 
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Figure 4.1 Optical image of BR20832 (breast tissue) H&E stained cores on glass slide 

The whole TMA slide was measured twice. The first experiment (experiment one) 

was conducted in 2016 while the second experiment (experiment two) was finished 

in 2017. The reason for re-measuring was explained in the later section, 4.3.1. 

For model one, 70 cores were selected from the sample set, which included 59 

cores with grade I, II or III of breast cancer and 11 normal associate breast tissue 

cores. The model was constructed based on data collected from experiment one. 

Spectra collected in experiment two were used to establish model two. For model 

two, 70 cores were selected from sample set, which included 57 cores with grade I, 

II or III of breast cancer and 13 normal associate breast tissue cores.  

4.2.2. Experiment procedure 

The transmission was used to reduce the influence of the electric field standing 

wave effect.[16] The number of background scan was set to be 256, while the 

number of sample scans was 96. The resolution used was 5 cm-1 since it provided 
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high-quality data and is significantly more time-efficient compared with 4 cm-1. In 

experiment 1, a purge time of 20 minutes was adopted to reduce the influence of 

water vapour in the spectrum before loading TMA and after changing samples. In 

experiment 2, the whole TMA was placed in the purge box overnight to further 

reduce the influence of water vapour. Every day during measuring before data 

collection, the microscope was focused. The centre burst of spectrometer was 

found. The received energy intensity level distribution of pixels was adjusted to be 

as uniform as possible. The number of out of range pixel was ensured to be zero. 

The scan range was set from 1000 to 3800 cm-1 covering the important range of 

biological information of breast tissue. The spectrum collected was then saved and 

converted for data analysis process. 

4.2.3. Instrumentation 

For this project, an Agilent 670 FTIR spectrometer was used to conduct 

measurements. The spectrometer was connected to the Varian 620 infrared 

imaging microscope. A liquid nitrogen cooled 128×128 FPA detector was coupled to 

the microscope. A retro-reflection mirror was used in this equipment to increase 

the signal to noise ratio, which improved the quality of spectra. The Varian’s 

Resolutions Pro software was used to adjust and control spectrometer and 

microscope during measurement. The system was designed for biotechnology 

applications. When ×15 optics was applied, 5.5 µm ×5.5 µm pixel sizes were 

obtained in low magnification mode of the instrument. The FTIR imaging system 

could be used to collect large chemical images across a Field of View (FOV) of 2.4 

mm × 2.4 mm, as mosaics. In high magnification mode, the pixel size could be 

further reduced to only 1.1 µm ×1.1 µm, which could give high-quality images. The 

moving mirror of the spectrometer was not perpendicular to the static mirror as the 

common FTIR spectrometer. The numerical aperture equalled to 0.62 and the 

distance between optics and samples was 21 mm. Each core from TMA could be 

imaged as a 2×2 mosaic. 



80 
 

4.2.4. Data analysis methods 

4.2.4.1. Annotation on Breast tissue Chemical Images 

Chemical images of each of the prostate tissue cores were generated and compared 

to the H&E stained sections, and regions of epithelium were identified and 

annotated on chemical images generated based on  WHO Classification of Tumours 

in the Breast[17].  

Examples of core annotation were shown in Figure 4.2 B) and Figure 4.3 B). 

Cancerous epithelium cells are annotated in red (R255 G0 B0) and stroma parts in 

purple (R165 G55 B156), while in cancer-associated tissues, epithelium cells are 

coloured in green (R103 G193 B66) and stroma in yellow (R243 G143 B53). Figure 

4.2 A) and B) are the chemical image and annotated image of core D5, which is a 

grade-2 and stage-II cancerous core from a 46-year old female. Red annotation 

represents cancerous epithelium cells while purple annotation indicates stroma 

region. M10 is shown Figure 4.3 A) and B) (chemical and annotated images 

respectively), which is a Cancer adjacent normal breast tissue from a 46-year old 

female. Green is used to annotate normal epithelium cells while yellow is used to 

annotated stroma area. 

 

Figure 4.2 A) Chemical image (generated by the absorbance distribution of amide I band of the sample) and B) 
annotated chemical image of core D5 with red and purple stood for cancerous epithelium and stroma 
respectively 
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Figure 4.3 A) Chemical image which was plotted based on the distribution of Amide I absorbance and B) 
annotated chemical image of core M10 where green indicated normal epithelium and yellow showed normal 
stroma on the core 

 

4.2.4.2. Pre-processing methods 

Two models were constructed using data from two experiments with the same 

analysis routine. Principal component based noise reduction was used to improve 

the signal-to-noise ratio of raw spectra from annotated area.[18,19] PCA noise 

correction technique is defined as a statistical procedure concerned with 

elucidating the covariance structure of a set of variables[20]. PCA reduces 

dimensions of a large set of data based on vector space transformation. It develops 

artificial variables, which are known as the principal components based on 

variances of the dataset[21]. In terms of noise correction, only first few principal 

components, which best explains the dataset, were kept. The reason for that is that 

random noises also contribute to the variance of the spectrum, which can interfere 

with the actual subtle biological differences. Because of the nature of classification, 

differences apart from biological ones should be removed to improve the accuracy 

of the classifier. In this case, the first 80 principal components were kept to reach 

the best noise reduction results with the consideration of preserving most 

biological information. 

Spectra were quality tested to remove data obtained from areas with little or no 

tissue based on the height of the amide I band. The eliminated spectra were either 
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too weak or saturated, which provided unreliable results. Spectra have absorbance 

between 0.1 and 2 were selected and retained. Spectra with Amide I band intensity 

lower than 0.1 and higher than 2 were discarded. 

Spectra ranges from 1000 to 1300 cm−1, 1500 to 1750 cm−1, and 3005 to 3550 cm−1 

were taken. Regions describing the absorption bands of wax were removed.  

Each spectrum was then vector normalized to correct for different thicknesses of 

breast tissue. In spectroscopic applications, scaling effects or differences could arise 

because of scattering effects, source and detector variations [7,22–25]. Vector 

normalisation was developed to correct all variables into the same scale, which 

gave all variables equal impact on the model. In this case, the vector normalisation 

was performed based on dividing each peak from the spectrum by the sum of the 

absolute value of the peaks from the same spectrum to scale every peak to the 

same level, which retained a vector with a unit area under the curve. 

Finally, spectra were converted to the first derivative and performed a 

Savitzky−Golay smoothing using a window size of 19 data points. The advantage of 

analysing the first derivatives of spectra was that the original baselines were 

removed. The influence of baseline distortion was reduced largely, as the original 

information was converted to the variation on spectra slopes. Savitzky-Golay 

filtering was applied to further smooth the spectra. Savitzky-Golay smoothing 

algorithm was the most common method of improving the signal-to-noise ratio 

without distorting the signal through convolution of the spectrum [26]. This fitting 

method was first published in 1964 by Savitzky and Golay [27]. They proposed using 

the local least-squares polynomial to smooth data within the approximation 

interval [27,28]. They showed that the fitting result using the established model 

was equivalent to the discrete convolution with a fixed impulse response [27,28]. In 

this case, in order to improve the smoothing results, the least-squares polynomial 

smoothing was directly applied to the first derivatives of spectra with a window size 

of 19 data points, which could show subtle changes between cancerous and non-

cancerous spectra, each data point was used to estimate the approximation interval. 
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The cancerous spectra were randomly selected to match the number of the spectra 

from the normal cores. An equal number of spectra could avoid the bias of the 

classifier caused by an unequal number of training sets. 

Dataset was separated into two groups, a training set and an independent testing 

set. For model one, the training set contained 56 cores consisting of 47 cancerous 

cores and 9 NAT, while the independent group contained 14 cores consisting of 12 

cancerous cores and two NAT. For model two, training set contained 55 cores 

consisting of 44 cancerous and 11 normal associated cores, while independent 

testing set contained 15 cores consisting of 13 cancerous and 2 normal associated 

cores. Each core was from a different patient. Cores used in the independent test 

were completely independent with the patients in the training. 
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4.2.4.3. Classification methods 

4.2.4.3.1. Random forest classification 

Random forest is a classification method operates by constructing decision trees to 

vote the class.[29][30] Each tree gives a classification. Each decision is collected and 

the forest chooses the most popular class-based on decisions made by all trees in 

the forest. This algorithm is developed by Breiman[29] in 1996 based on bagging 

predictors[31] with a random selection of features[32] to construct decision trees 

with higher accuracy of classification. Each tree is grown based on three rules. 

Firstly, if the number of cases is x in the training data set, sample x cases at random 

(can have or not have a replacement). Secondly, m features can be selected 

randomly out of the total number of features chosen for training decision trees, 

where m must smaller than the number of total features. The value of m is held 

constant during the forest growing. Lastly, pruning is not allowed during the 

training process.[29] All trees are grown to their largest possible extent. The forest 

error rate can be influenced by two aspects, including the correlation between two 

trees and the strength of individual tree in the forest.[31] An increase in the 

correlation between two trees leads to an increase of the forest error rate. In 

contrast, increasing strength of individual tree decreases the forest error rate of the 

classifier.  

A flowchart of the mechanism of random forest classification is shown in Figure 4.4. 

In plot A, every decision tree in the forest is constructed based on a random 

bootstrap sample from the original data pool containing both cancerous (red) and 

non-cancerous spectra (blue). Plot B shows how the forest makes decisions. The 

class prediction for new samples is based on a majority voting process conducted 

by all individual trees. For example, the classification of a new sample X starts from 

the initial node, which is the root. Based on the features of X, the algorithm is 

carried out traverse down the tree. Each split nodes select the next branch to 

follow. This process is repeated until a leaf node, which makes a decision on 

classification, is reached. The node size was set to be 1 in this study, as small node 

size meant the trees would be grown deeper. Although it takes more memory and 
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is slower, still it provides the best classification accuracy. After each tree has voted, 

the forest will assign the final prediction to the class has the most votes. 

For this project, random forest classification was used to build a classifier which 

decided whether a core is cancerous or not, based on training spectra provided.  

 

Figure 4.4 Random forest working plot A) feature selection working flow for each tree in the forest, where 

red and blue dots in feature pools represented different features extracted from samples while the red and 

blue filled circles in trees represented features used to train the branches. B) The voting flow of the forest 

where the red and blue coloured circles showed the class predictions of each tree. X is the input information 

to all the trees and the final decision is decided by each tree in the forest.  

4.2.4.3.2. AdaBoost 

Boosting is a machine learning approach based on the idea of creating a highly 

accurate prediction rule by ensemble many relatively weak and inaccurate rules.[33] 

The AdaBoost algorithm of Freund and Schapire [34], who won the 2003 Godel 

Prize for this work, was the first practical boosting algorithm, and the most widely 

used and studied boosting algorithm, which was applied to many different fields.   

AdaBoost is usually applied to classification problem and the initial AdaBoost M1 

works best on a binary classification problem. AdaBoost works by obtaining 
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weighted majority votes of weak hypothesis where each hypothesis is assigned 

weight and conducted by every weak learner [35].  

To be more specific, each weak learner is trained and tested on the randomly 

selected subset of training samples. Unlike random forest, AdaBoost focus on those 

features that contribute to less classification error, as evaluating every feature not 

only reduces the speed of model training process but also reduces the predictive 

power of the leaner. The misclassification errors are calculated and used to 

calculate the weight of samples in each training iteration. The misclassified samples 

are given higher weights, which increase the chosen possibility of this sample by the 

next classifier in its training subset with the aim of correctly classifying them in the 

next iteration. Weights are assigned to each trained weak classifiers according to 

their classification accuracy so that the more accurate classifiers have more impact 

in the final outcome. All learners are involved in weighted voting to allocate 

unknown samples.  

AdaBoost can be combined with any other machine learning methods and boost 

their performance. However, it works best on weak leaners. It is claimed to have 

less chance of over-fitting comparing with other classification methods [33]. 

However, AdaBoost is sensitive to noise and outliers which can be considered as a 

disadvantage of the algorithm.  
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4.2.4.4. Statistical analysis methods 

4.2.4.4.1. Confusion matrix 

A confusion matrix is a table used for describing the performance of a classification 

model, which is often used in supervised testing, where true classes of samples are 

known.  

Table 4.1 Sample diagram of confusion matrix 

 Prediction 

Actual label 
True positive False positive 

False negative True negative 

 

Where predictions are labels predicted by the classifier on samples while the actual 

labels are the true labels of testing samples. Numerical labels are usually used to 

identify the class of samples during data processing. For example, in this chapter, 

the cancerous epithelium was labelled as class one (1) while the NAT epithelium 

was labelled as class two (2) in classification process. In this case, true positive (TP) 

means the predictions and true labels are the same and both belong to the main 

class, which is class one also known as positive class. True negative (TN) means the 

predictions are correct and also negative or belong to class two. False positive (FP) 

means that the positive predictions are wrong. These samples are from the 

negative class. False negative (FN) means that negative predictions are wrong. 

These classified samples are actually from the positive class, or class one.  

Sensitivity and specificity can be calculated from the confusion matrix. The 

sensitivity (also known as the true positive rate) equals to the quotient of TP and 

the total number of actual positive samples. Sensitivity is often used to describe 

when it is actually yes, how often it predicts yes. The specificity (also known as the 

true negative rate) equals to the quotient of TN and the total number of true 

negative samples. It also equals to 1-the false positive rate. Specificity is used to 

describe when it is no, how often it predicts no. 
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4.2.4.4.2. ROC curve 

Receiver operator characteristic (ROC) curves [36] are a common way of 

representing the inherent trade-off between sensitivity and specificity, and it helps 

to visualize the performance of a classifier. A ROC curve is plotted by the true 

positive rate (TPR) again the false positive rate (FPR). It can also be plotted by 

sensitivity against 1-specificity. The ROC curve virtualizes all predicted probabilities 

of the positive class by the model, although these probabilities are not directly 

shown on the curve. Construction of ROC curves for a binary system involves 

comparing the true positive rate to the false positive rate as the discrimination 

threshold is varied.  

However, the ROC curve also has its disadvantage, which is that ROC curve is not 

sensitive to whether a full range of predicted probabilities is given. It means that 

the ROC curves of a model with the predicted probability ranges from 0.5 to 1 and 0 

to 1 can be identical if the order of observations stays the same. The ROC curve is 

more focused on ranking of samples based on their predicted probabilities. A 

sample ROC curve plot was shown in Figure 4.5. When the ROC curve hugs the 

upper left corner of the plot, the model did a great job on classification. If the curve 

is close to the black diagonal, it usually indicates that the model did not perform 

well. 
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Figure 4.5 Sample plot of the ROC curve, where the red curve is the ROC curve and the yellow area under the 
red curve is the AUC of the sample ROC curve 

 

4.2.4.4.3. AUC 

The Area under curve (AUC) of the ROC curve is also used to describe the 

performance of a model in a single number. AUC is literally the percentage of area 

under the ROC curve over the whole area of the box, which is also shown in Figure 

4.5. It quantifies the performance of a model. The range of AUC is from 0 to 1. 

Under the extreme circumstance, AUC equals to 0, the model reciprocates the 

classes. It means that the model predicts all the negative class as a positive class 

and vice versa. When AUC equals to 1, the classifier works perfectly and an ideal 

separation between two classes is obtained. Values close to 1 often indicates the 

relatively good performance of the model. If a classifier gets AUC value close to 0.5, 

it means the classifier works poorly on the test data set. As AUC is the area under 

ROC curve, it is also only sensitive to the ranking of samples based on their 

predicted probabilities. 

  

AUC 
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4.3. Results and discussion 

Models were constructed using data collected from both experiment one and two. 

Firstly, for data from experiment one, model was established on cancer diagnosis 

using epithelium spectra. In the light of model one, based on data collected from 

experiment two, models were constructed for both digital histology and cancer 

diagnosis using both epithelium and stroma spectra. Random forest and AdaBoost 

were used as main classification methods. 

4.3.1. Experiment one on Br20832 

In term of training a machine learning model, random forest, spectra subtracted 

from data cubes based on annotations were 78577 in total, which contained 59998 

cancerous epithelium spectra and 18579 NAT epithelium spectra. Under-sampling 

was conducted to balance the number of spectra in each class. 18579 cancerous 

spectra were randomly selected from 59998 spectra to match the number of 

spectra in NAT class. Each class had the same number of spectra and no bias in 

either class would be made. 570 features were used to construct models.  

In term of the independent test, 18819 spectra were pulled from data cubes, 

including 16455 cancerous epithelium spectra and 2364 NAT epithelium spectra. 

Before classification started, the out-of-bag rate plot of the model was generated 

and shown in Figure 4.6. The out of bag (OOB) rate was also called out of bag error. 

It was a method to evaluate the prediction errors for machine learning models 

using subsets of training data.  OOB was the mean prediction error on each training 

sample. It helps to select proper number of trees used for model training, which 

can largely avoid the unnecessary training time and achieve the best possible 

results.  

It was shown in Figure 4.6 that the OOB error drops rapidly from 0 to 100 trees 

from around 0.04 to below 0.005. The error rate barely decreased from 100 to 500 

trees, which indicated that the model was very close to its limits. To save training 

time, 100 trees were used to establish the model. 
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In terms of the number of features selected for each tree, the square root of the 

total number of features was applied, as it led to the best classification results [38]. 

To be more specific, the number of randomly selected features could affect the 

overall classification error rates. If too many features were picked for each tree, 

although the strength of that tree would increase, still more correlation between 

each individual tree would decrease the overall performance of the model as a 

forest. However, if too few features were selected, each individual tree would be 

weaker, but less correlation among trees would lead to a stronger model. In this 

case, the total number of features was 570. Therefore, the feature input for each 

tree was 23. 

 

Figure 4.6 Out of bag rate plot of the random forest model based on data collected in experiment one 

The model was constructed based on 100 trees with 23 feature input for each of 

them. The model was validated with 20% randomly selected spectra from the 

training dataset. To be more specific, 80% randomly selected spectra were used for 

model construction while the 20% which were not involved in the training process, 

was applied to validate the model. The confusion matrix of the training validation 

process was shown in Table 4.2. From the table, it could be seen that the true 
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positive accuracy was 99.6% and the true negative accuracy was 99.7%, which were 

both very high. General classification accuracy of 99.7% was obtained, which 

indicates that the model worked perfectly on the subset of training data.  

Table 4.2 Training validation test for model one 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 99.6 0.46 

NAT 0.3 99.7 

 

An independent test was conducted based on spectra selected from patients 

different from the training process. The confusion matrix of the classification was 

shown in Table 4.3. From the table, it was clear that the true positive classification 

accuracy for cancer was 99% while the classification accuracy for the NAT class was 

98.4%. The overall classification accuracy was 99.0%. A nearly perfect separation 

was observed.  

Table 4.3 Independent test for model one 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 99.0 1.0 

NAT 1.6 98.4 

 

The ROC curve of the model was plotted and was shown in Figure 4.7. Considering 

the similarities between malignant and non-malignant spectra, the ROC curves 

appeared surprisingly good. The resulting AUC value of 0.98 indicates that there 

was nearly perfect differentiation between malignant and non-malignant pixels. 



93 
 

 

Figure 4.7 ROC curve of the random forest model trained on data collected in experiment one 

To test whether the classification was valid, the importance of each feature was 

plotted, which was shown in Figure 4.8. The importance plot indicated the relative 

importance of each input feature for a particular model. It computed estimates of 

predictor importance by summing these estimates over all weak learners in the 

ensemble and was calculated by summing changes due to splits on every predictor 

and dividing the sum by the number of branch nodes. Figure 4.8, indicates that the 

classification was mainly caused by the variations of spectra in the range between 

1500 and 1750 cm-1. This region of the spectrum was enlarged and shown in Figure 

4.8. It could be observed that the main peaks were 1734 (C=O stretching), 1717 

(C=O stretching), 1699 (C=O guanine[39]), 1559 (Amide II), and 1507 cm-1 (Amide II). 

The main features responsible for this separation were mainly variations in the 

amide I and II. However, the number of sub-peaks in the importance plot was too 

many and the plot was too spiky. Water vapour was suspected to be involved in the 

classification. To further investigate, 10 randomly selected raw spectra from the 

training group in the range of 1500 and 1750 cm-1 were shown in Figure 4.10 and 

Figure 4.11. 

Closely observed spectra randomly selected from cancerous cores in Figure 4.10. In 

the range of 1500 to 1750 cm-1, it was clear that the Amide I peak spat into two 
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sub-peaks, at 1649 and 1657 cm-1. This observation indicated that there was 

appearance of water vapour during data collection process. From Figure 4.11, it 

could be observed that a bump appeared next to the Amide I peak around 1638 cm-

1, which also indicates the influence of water vapour on the spectra. 

 

Figure 4.8 Importance plot of the random forest model trained on the data collected in experiment one in full 
scale, where A) wavenumber range 1050 to 1300 cm−1, B) wavenumber range 1500 to 1750 cm−1, and C) 
wavenumber range 3005 to 3550 cm−1 

 

The influence of water vapour on the NAT cores was slightly smaller than the 

cancerous cores, which proves that this water vapour content differences among 

cancerous and NAT cores were obtained during measurements as cancerous cores 

were collected before NAT cores based on the sequence of core arrangement 

during mosaic collection. The duration of taking a large mosaic in this experiment 

was around 5 hours. 
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Figure 4.9 Enlarged importance plot of the random forest model trained on the spectra collected from 
experiment one in the range of 1500-1750 cm-1 

 

For each mosaic, cores were measured in columns. Cancerous cores were always 

taken first while the normal cores were in the last row of the slide therefore taken 

at the last. The large time difference between the first taken cancerous core and 

the last taken NAT core could further enhance the effect of water vapour 

appearance. Although the experiments started when the water vapour content was 

below 1%, still the long time gap between measurements caused problem. The 

perfect classification could be based on the difference between water vapour 

contents of cancerous and normal cores. 
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Figure 4.10 Ten randomly selected spectra collected in experiment one from cancerous cores in the range of 
1500-1750 cm-1 

 

Figure 4.11 Ten randomly selected spectra collected in experiment one from NAT cores in the range of 1500-
1750 cm-1 

4.3.1.1. Sectional conclusion 

It could be concluded that the raw data used for analysis has variance in water 

vapour content of each core, which caused difficulty in picking up subtle biological 

information carried by spectra. Water vapour spectra covers range from 1400 to 

1900 cm-1, where Amide I and II [39] were also covered, and 3500 to 3900 cm-1[40]. 

1649 1657 

1638 

1655 
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The original biological information carried by the sample in Amide I and II would be 

interfered and disrupted by water vapour spectra. Even through the background 

should ratio out the water vapour influence, it only applies if the water vapour 

concentration in the purge box stays at the same level. Therefore, for future 

experiments extra care should be paid on monitoring the humidity level during data 

collection process. 

Although classifiers constructed could not separate cancerous and normal cores 

based on biological differences, still construction process itself was effective. New 

data with less water vapour influence collected in the experiment two was used for 

the next section.  

 

4.3.2. Experiment two on Br20832 

4.3.2.1. Epithelium and stroma annotation check using AdaBoost model 

A quick check on the accuracy of annotation used for the research was conducted 

by constructing a classification model on stroma and epithelium spectra. The 

correctly classified results were projected back to their original position on each 

core to visualise if the classification results were consistent with the initial 

annotation. AdaBoost was used to establish the model with 500 trees and 0.1 

learning rate and trained for 500 iterations. 

Spectra after pre-processing were passed into the model, which contains 90270 

epithelium and 123104 stroma spectra. Under-sampling was applied and 90270 

stroma spectra were randomly selected to balance the number of the epithelium 

spectra. An AdaBoost model was established and 20% of the training data was left 

from training and used for the training validation test of the epithelium and stroma 

classification model. The training validation test was presented in the Table 4.4. It 

could be seen that the classification accuracy of epithelium spectra was 98.7% and 

98.5% stroma spectra in the training validation set were correctly identified. The 

overall classification accuracy was 98.6%, which was an excellent result considering 

the training validation group has a large number of spectra in it. 
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Table 4.4 Training validation test of the epithelium and stroma classifier using AdaBoost 

Training Validation 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 98.7 1.3 

Stroma 1.5 98.5 

 

An independent test was conducted to further validate the reliability of the model. 

20041 epithelium and 27141 stroma spectra were passed and classified by the 

model. The confusion matrix of results was shown in the Table 4.5. The 

classification accuracy of epithelium spectra was very high, 97.2%. The accuracy of 

separating stroma spectra was slightly lower, 90.3%. However, considering these 

spectra were from independent patients from training group this was still a good 

result. Overall classification accuracy of 93.2% indicates great separation.  

Table 4.5 Independent test of the epithelium and stroma classifier using AdaBoost 

Independent Test 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 97.2 2.8 

Stroma 9.7 90.3 

 

The ROC curve and feature importance plot were plotted in the Figure 4.12 and 

Figure 4.13 respectively. The ROC curve was smooth and hugged the top left corner 

of the plot box, which shows the model performed well. The AUC of the curve was 

0.99, which again shows the model works excellently. In Figure 4.13, the 

importance of the features used to separate epithelium and stroma spectra in the 

model was shown covering the full spectral the full range. It could be seen that 

main peaks were observed in the range of 1050 -1300 cm-1 and 3000 - 3550 cm-1. 

The enlarged plots of these two ranges were shown in Figure 4.14 and Figure 4.15. 
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Figure 4.12 ROC curve of the epithelium and stroma classifier using AdaBoost trained on the data collected in 
experiment two 

 

 

Figure 4.13 Feature importance of the classifier-full range for the epithelium and stroma classifier using 
AdaBoost trained on spectra collected in experiment two, where A) wavenumber range 1050 to 1300 cm−1, B) 
wavenumber range 1500 to 1750 cm

−1
, and C) wavenumber range 3005 to 3550 cm

−1
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In Figure 4.14, only one major peak was observed at the position of 3303 cm-1, 

which represents Amide A band. From Figure 4.13, it could be seen that peak at 

3303 cm-1 contributed mostly on the separation between epithelium and stroma. 

There was no trace of water vapour observed. Minor peaks at 1282 (Amide III band 

components of proteins) and 1236 cm-1 (Stretching PO2
- asymmetric) were 

observed, which also largely contributed to the model classification.  

The correctly classified epithelium and stroma spectra were projected back to their 

original positions in each of the independent test cores and the resultant image 

shown in the Figure 4.16. The lighter blue represented the correctly classified pixels 

while the darker blue indicated spectra that passed the quality test but were 

misclassified by the model. For better comparison, the annotated version of cores 

in the independent test was also shown in Figure 4.17. It could be seen that the 

epithelium annotations were very consistent with the classification results. Stroma 

spectra also showed good performance, however, not as good as epithelium. This 

might be due to mislabelled stroma annotations for some cores or the complexity 

of stroma tissue as it contained different types of cells. The general features of 

stroma could be harder to find comparing with the single cell typed epithelium 

spectra. 
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Figure 4.14 Feature importance of the classifier (3000 -3550 cm-1) for epithelium and stroma using AdaBoost 
based on data collected in experiment two 

 

Figure 4.15 Feature importance of the classifier (1050 -1300 cm-1) for epithelium and stroma using AdaBoost 
based on the spectra collected in the experiment two  

3303 

1282 

1236 
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Figure 4.16 Correctly classified spectra projected back to their original location in each core, where the bright blue 
indicated the correctly classified pixels while the dark blue showed the locations of misclassified spectra 

Figure 4.17 Original annotation of each core in the independent test, where red and green indicated cancerous and normal 
epithelium respectively while purple and yellow showed the cancerous and normal stromal regions of each core 
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All spectra in each core were pre-processed and passed into the epithelium and 

stroma classification model. A digital staining plot of cores in the independent test 

was generated and presented in Figure 4.18. The plot was generated by projecting 

the classification results (epithelium or stroma) of each spectrum from every pixel 

on all cores in the independent test group. Red colour represented appearance of 

epithelium cells and purple indicated stroma content for cancerous cores, while 

yellow stood for stroma and green showed the presence of epithelium cells in NAT 

cores. This digital stain could be further improved tuning the model and adding 

more cell types as input for future studies. 

 

 

 

 

 

 

 

 

 

Figure 4.18 Digital histology of cores in the independent test group, where red and green stood for cancerous 
and normal epithelium while purple and yellow showed cancerous and normal stroma in each core 

 

4.3.2.2. Cancer prediction using classification models 

After checking that the annotations were mostly reliable, models were trained on 

cancer diagnosis using both random forest and AdaBoost. Models were tuned for 

research proposes. However, considering the time cost and dependence of fine 

turned hyper-parameters of each machine learning models on the training data 

structures, a trade-off has been made between the relatively small accuracy 
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increases and considering large training time consumptions. The objective of tuning 

was to maximise the classification accuracy of models on the same independent 

test sets for each method. After comparing the performance of each model, class 

prediction of independent cores were presented in the traffic light cancer diagnosis 

system using the most effective model between two methods (both based on 

epithelium and stroma spectral information). 

4.3.2.2.1. Random forest models 

Preliminary models based on the random forest classification method were trained 

and independent tested on both epithelium and stroma spectra.  

4.3.2.2.1.1. Based on epitheliumspectra 

In term of model training, 70932 cancerous and 19338 NAT epithelium spectra 

were selected based on the annotations tested previously. Under-sampling was 

conducted and 19338 cancerous spectra were randomly selected. The total number 

of spectral input was 38676. 570 features were passed onto the model training as 

well. In order to obtain reasonable classification results, number of features input 

was set to be 23, which was the square root of total number of features [38]. To 

both save time and ensure model performance, the OOB plot of the model was 

generated and shown in the Figure 4.19. It could be seen that the classification 

error rate remains stable around 0.01 after 100 trees were used. No further error 

reduction was observed with an increase of number of trees used in training.  
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Figure 4.19 OOB rate plot of the random forest model based on epithelium spectra collected in experiment 
two 

The random forest model was constructed using 100 trees and 23 feature input for 

each of the tree. It was validated with 20% randomly selected spectra from the 

training dataset. To be more specific, 80% randomly selected spectra were used for 

model construction while the 20% which was not involved in the training process 

was applied to validate the model. The confusion matrix of the training validation 

process was shown in the Table 4.6. From the table, it could be seen that the true 

positive accuracy was 98.8% and the true negative accuracy was 99.7%, which were 

both very high. A general classification accuracy of 99.3% was obtained, which 

indicated that the model worked very well on the subset of training data.  

Table 4.6 Confusion matrix of the training validation for cancer NAT classification using random forest based 
on data collected in experiment two 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 98.8 1.2 

NAT 0.3 99.7 
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An independent test was conducted on the model constructed previously to further 

validate it. 20041 test spectra which contained 19291 cancerous spectra and 750 

normal spectra were pre-processed and tested by the model. The confusion matrix 

of classification results was shown in Table 4.7. From the table, it was clear that the 

true positive classification accuracy for cancer was 77.5% while the classification 

accuracy for the NAT class was 86.4%. The overall classification accuracy was 77.8%. 

A reasonable separation was observed between cancerous and NAT classes.  

Table 4.7 Confusion matrix of the independent test for cancer NAT classification using random forest based 
on data collected in experiment two 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 77.5 22.5 

NAT 13.6 86.4 

The ROC curve of the model was plotted and was shown in Figure 4.20. Considering 

the similarities between malignant and non-malignant spectra, the ROC curves 

appeared relatively good. The curve was seen to approach very close to the top left 

corner of the plot, which indicated good classification. In addition, the resulting 

AUC value of 0.89 further demonstrated that a reasonable separation was observed 

between malignant and non-malignant pixels. 
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Figure 4.20 ROC curve of the independent test for cancer NAT classification using random forest based on 
epithelium spectra collected in experiment two 

The importance of each feature was plotted, and was shown in Figure 4.21. Figure 

4.21, it indicates that the classification was mainly caused by the variations of 

spectra in the range between 1050-1300 cm-1 and 1500-1750 cm-1, which were 

enlarged and shown in Figure 4.22 and Figure 4.23 respectively.  

It could be seen in Figure 4.22, one main peak at 1211 cm-1 (phosphate I) and in 

Figure 4.23 the main peaks at 1658 (Amide I), 1643 (Amide I), and 1543 cm-1 (Amide 

II). The main features responsible for this separation were mainly variations in 

amide I and II, especially amide I. Overall, although the main peaks of the feature 

importance plots were based on biological information, still many minor peaks 

were observed which could indicate noise or other interferences. 
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The independent test result was not as good as expected but the overall 

classification accuracy was still over 75.4% [41] which was the pathologist cancer 

diagnosis accuracy in 2010.  

 

 

Figure 4.21 Feature importance plot (full range) of cancer NAT model based on epithelium spectra collected in experiment 
two using random forest, where A) wavenumber range 1050 to 1300 cm−1, B) wavenumber range 1500 to 1750 cm−1, and C) 
wavenumber range 3005 to 3550 cm

−1 

A) B) C) 
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Figure 4.22 Feature importance plot (1050-1300 cm-1) of cancer NAT model based on epithelium spectra 
collected in experiment two using random forest 

 

Figure 4.23 Feature importance plot (1500-1750 cm-1) of cancer NAT model based on epithelium spectra 
collected in experiment two using random forest 

1211 

1658 

1643 

1543 
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4.3.2.2.1.2. Based on stroma spectra 

Recent studies have suggested that stroma, specifically adjacent stroma, may have 

a key role to play in the initiation and progression of cancer. Because normal breast 

tissue was typically not particularly glandular, this limits the number of epithelium 

spectra which could be used for training and testing the classifier. A model was 

constructed based on stroma using random forest to investigate whether it could 

be used as a replacement of epithelium for cancer diagnosis. 

A training database was constructed from the 55 training cores which consisted of 

123104 stroma spectra (50918 normal spectra, and 72186 cancerous spectra). The 

optimal situation to prevent classifier bias was for each class to consist of equal 

numbers of spectra. Bias was minimized in the training set by selecting equal 

numbers of spectra from class with the number randomly selected being the size of 

the smallest class. A Random Forest was then constructed using 50918 spectra per 

class. There were two classes, including normal class and cancerous class. Each 

spectrum was noise reduced, quality checked, cut to the correct range and first 

derived in this sequence prior to being used for training. 

To both save time and ensure model performance, the OOB plot of the model was 

generated and shown in the Figure 4.24. It could be seen that the classification 

error rate remained stable around 0.02 after 200 trees were used. No further 

distinct error reduction was observed with an increase of number of trees used in 

training.  
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Figure 4.24 OOB plot for cancer diagnosis model based on stroma spectra using random forest 

 

The random forest model was constructed by using 200 trees and 23 features per 

tree to balance the trade-off between training time and classification accuracy.  

Confusion matrices provided a quantitative measure of performance and enable 

the correctness of classification for each class to be determined. Furthermore, the 

sources of misclassification could be easily identified from a confusion matrix, 

revealing which classes were difficult to discriminate between. The confusion 

matrix of training validation test of the model was shown in the Table 4.8. It could 

be seen that a 98.8% classification accuracy of cancerous class was observed and 

96.4% stroma spectra from training dataset were correctly classified. Considering 

the training validation dataset was a relatively large data set containing 20367 

randomly selected spectra, the training validation results were acceptable 

comparing with the classification accuracies obtained using epithelium spectra, 

shown in Table 4.6. 
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Table 4.8 Confusion Matrix of training validation test for cancer diagnosis model based on stroma using 
random forest  

Training validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 98.8 1.2 

NAT 3.6 96.4 

 

The Random Forest classifier was then tested on the independent test set which 

consisted of 27141 epithelium spectra (13157 normal spectra and 13985 cancerous 

spectra) from the 15 testing cores. Each tree in the Random Forest “voted” for the 

class which it predicted an unknown spectrum belongs to. The Random Forest then 

chose the class having the most votes over all the trees in the forest. The confusion 

matrices for independent test was generated and shown in the Table 4.9. 

 

Table 4.9 Confusion Matrix of the independent test for cancer diagnosis model based on stroma using 
random forest 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 91.2 8.8 

NAT 45.4 54.6 

 

From Table 4.9, it could be seen that the classification accuracy of the cancer class 

was very high, 91.2%, while only 54.6% NAT spectra were correctly classified. This 

was due to that the general feature of NAT was much harder to find compared with 

the general features of cancerous spectra. The constructed model could focus on 

the general similarities among training patients but not the general features of NAT 

cores. In term of cancer diagnosis, this model was very sensitive to cancerous 

spectra. 

The ROC curve of the model was plotted and presented in the Figure 4.25. 

Considering the similarities between malignant and non-malignant stromal spectra, 

the ROC curves appeared acceptable. The resulting AUC value of 0.87 indicated that 

there was good differentiation between malignant and non-malignant pixels, 
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considering the AUC obtained using epithelium spectra was 0.89, no large 

difference observed. 

 

Figure 4.25 ROC curve of cancer diagnosis random forest model based on stroma spectra using random forest 

The contribution of each feature in the classification process was plotted and 

shown in Figure 4.26. In Figure 4.26, it could be seen that the classification was 

mainly caused by the variations of spectra in the range between 1050-1300 cm-1 

and 1500-1750 cm-1, which were enlarged and shown in Figure 4.27 and Figure 4.28 

respectively.  

It could be seen in Figure 4.27, three main peaks were observed, including 1298 (N-

H band), 1232 (Composed of amide III as well as phosphate vibration of nucleic 

acids[39]), and 1207 cm-1 (phosphate I). Four main peaks were 1543 (Amide II), 

1585, 1658 (C=O) and 1732 cm-1 (C=O stretching). The main features responsible for 

this separation were mainly variations in amide II. Overall, although the main peaks 

of the feature importance plots were based on biological information, still many 

minor peaks were observed which could indicate noise or other interferences. 
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Figure 4.26 Feature importance plot (full-range) of cancer diagnosis model based on stroma using random 
forest, where A) wavenumber range 1050 to 1300 cm−1, B) wavenumber range 1500 to 1750 cm−1, and C) 
wavenumber range 3005 to 3550 cm−1 

 

Figure 4.27 Feature importance plot (1050-1300 cm-1) of cancer diagnosis model based on stroma using 
random forest 

1207 1232 

1298 

A) B) C) 
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Figure 4.28 Feature importance plot (1500-1750 cm-1) of cancer diagnosis model based on stroma using 
random forest 

4.3.2.2.1.3. Sectional conclusion 

Both classification results on the independent test group were not as good as one 

would wish for but within the acceptance range considering test spectra were from 

different patients and in large numbers, considering the cancer diagnosis accuracy 

of pathologist was 75.4%, in the research conducted by Kasraeian S, et al. [41] in 

2010. The results observed from epithelium were more balanced compared with 

those from the stroma. However, the stroma model was more sensitive to 

cancerous spectra compared with epithelium one.  

4.3.2.2.2. AdaBoost models  

AdaBoost was used to construct preliminary models using annotated epithelium 

and stroma spectra.  

4.3.2.2.2.1. Model constructed using epithelium spectra 

In terms of model training, the same spectra used to construct the random forest 

model were used here as well. 70932 cancerous and 19338 NAT epithelium spectra 

were selected based on the annotations tested previously. 19338 cancerous spectra 

1732 1658 1585 

1543 
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were randomly selected using the under-sampling method to match the number of 

spectra in NAT class. The total number of spectral input in both cancerous and NAT 

class was 38676. 570 features were used for the model training process.  

In order to obtain reasonable classification results, AdaBoost M1 was used as the 

classification method for this binary problem. 500 trees were selected and trained 

for 500 iterations with a learning rate of 0.1, which was percentage shrinkage to 

learn new information. To train an ensemble using shrinkage, the Learning rate 

needed to be set to a value  between 0 and 1, for example, 0.1 was a popular 

choice [42]. Training an ensemble classifier with shrinkage needed more learning 

iterations, but often results better accuracies in the independent tests. The tree 

template of each weak learner for the model based on epithelium spectra was 

tuned to better classification results as well. 5 Fold Cross-validation was conducted 

and the average classification accuracy was used on tuning the tree-complexity for 

each weak classifier. The number of tree split was exponentially increased for 

ensemble models from the decision stumps to trees contained 59049 splits. The 

averaged cross-validated misclassification rate was estimated for each ensemble 

model. The tree template, 81 splits, with the minimal misclassification rate was 

used for the final model construction.   

An AdaBoost model was established based on epithelium spectra from the training 

group of patients. It was validated with 20% randomly selected spectra from the 

training dataset. To be more specific, 80% randomly selected spectra were used for 

model construction while the 20% which were not involved in the training process 

was used to validate the model. The confusion matrix of the training validation 

process was shown in the Table 4.10. From the table, it could be seen that the true 

positive accuracy was 99.9% and the true negative accuracy was 99.7%, which was 

nearly complete separation between two classes. A general classification accuracy 

of 99.8% was obtained, which indicated that the model works almost perfectly on 

the subset of training data.  
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Table 4.10 Confusion matrix of the training validation for cancer NAT classification using AdaBoost based on 
epithelium spectra collected in experiment two 

Training validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 99.9 0.1 

NAT 0.3 99.7 

An independent test was conducted on the model constructed. 20041 test spectra 

which contained 19291 cancerous spectra and 750 non-cancerous spectra were 

pre-processed and tested by the model. The confusion matrix of classification 

results was shown in Table 4.11. From the table, a true cancer diagnosis accuracy of 

89.4% was observed and the classification accuracy for the NAT class was 92.8%. 

The overall classification accuracy was 89.5%, which indicates good separations 

between cancerous and NAT classes.  

Table 4.11 Confusion matrix of the independent test for cancer NAT classification using AdaBoost based on 
epithelium spectra collected in experiment two 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 89.4 10.6 

NAT 7.2 92.8 

 

The ROC curve of the model was plotted to investigate the performance of the 

constructed model and was shown in Figure 4.29. The resulting AUC value of 0.97 

further shows that a reasonable separation was observed between malignant and 

non-malignant pixels. 
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Figure 4.29 ROC curve of the model for cancer NAT classification using AdaBoost based on epithelium spectra 
collected in experiment two 

The importance of each feature was plotted, and was shown in Figure 4.30. It 

indicates that the classification was mainly caused by the variations of spectra in 

the interval of 1500-1750 cm-1, which was enlarged and shown in Figure 4.31.  

It could be seen in Figure 4.31, main peaks at 1658 (Amide I), 1643 (Amide I), and 

1545cm-1 (Amide II). The main features responsible for this separation were mainly 

variations in amide I and II, especially the amide I. Overall, although the main peaks 

of feature importance plot were based on biological information, many minor peaks 

were observed which could indicate noise or other interferences. However the 

nature of AdaBoost was such that these features were weighted lower meaning 

they contribute less to the classification.  
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Figure 4.30 Feature importance plot of the model (full range) for cancer NAT classification using AdaBoost 
based on epithelium spectra collected in experiment two, where A) wavenumber range 1050 to 1300 cm

−1
, B) 

wavenumber range 1500 to 1750 cm
−1

, and C) wavenumber range 3005 to 3550 cm
−1

 

 

Figure 4.31 Feature importance plot of the model (1500-1700cm-1) for cancer NAT classification using 
AdaBoost based on the epithelium spectra collected in experiment two 
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4.3.2.2.2.2. Model constructed using stroma spectra 

The model was constructed based on stroma using AdaBoost to investigate 

whether stroma spectra could produce similar classification results as epithelium 

spectra in cancer diagnosis tests. 

A training database was constructed from the same 55 training cores which consist 

of 123104 stroma spectra (50918 normal spectra, and 72186 cancerous spectra). 

Under-sampling was conducted to balance the number of spectra in each class.  A 

Random Forest was then constructed using 50918 spectra per class, including a 

normal class and a cancerous class. Each spectrum was noise reduced, quality 

checked, cut to the correct range and first derived prior to being used for training. 

The same configuration of the model construction for epithelium spectra using 

AdaBoost was applied. AdaBoost M1 with 500 trees which were selected and 

trained for 500 iterations. A learning rate of 0.1 was used to train the ensemble 

model. 5 Fold Cross-validation was conducted and the average classification 

accuracy was used on tuning the tree-complexity for each weak classifier. The tree 

template, 243 splits, with the minimal misclassification rate was used for the final 

model construction.   

20% training validation data was selected randomly from the training dataset and 

applied on the model to test whether it worked on data with similar structure to 

the training data. The confusion matrix of the training validation test was shown in 

Table 4.12, in which classification accuracies of 98.0% for cancerous spectra and 

95.8% for NAT spectra were observed. This could be considered as a relatively good 

training validation test result with over 20 thousands spectra tested in the 

validation group. 

Table 4.12 Confusion matrix of the training validation for cancer NAT classification using AdaBoost based on 
stroma spectra collected in experiment two 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 98.0 2.0 

NAT 4.2 95.8 
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An independent test was conducted on the model constructed. 27141 test spectra 

which contained 13157 cancerous spectra and 13985 non-cancerous spectra were 

pre-processed and tested by the model. The confusion matrix of the classification 

results was shown in and shown in Table 4.13. From the table, a classification 

accuracy of cancer diagnosis, 89.6%, and classification accuracy for the NAT class, 

85.7%, were observed. The overall classification accuracy was 87.7%, which 

indicated good separations between cancerous and NAT classes. When the training 

iteration of the model was increased to 5000, the overall classification accuracy 

increased to 89.2% (91.5% for cancerous class and 86.9% for NAT class). A 1.5% 

increase overall accuracy was obtained. However, the time spent on training was at 

least double from the previous time (more than two hours). 

Table 4.13 Confusion matrix of the independent test for cancer NAT classification using AdaBoost based on 
stroma spectra collected in experiment two 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 89.6 10.4 

NAT 14.3 85.7 

 

ROC curve of the model was plotted to investigate the performance of model and 

was shown in Figure 4.32. The resulting AUC value of 0.93 further shows that a 

good separation was observed between malignant and non-malignant pixels, 

comparing with the previous results obtained using a combination of random forest 

and stroma spectra, 0.87.  
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Figure 4.32 ROC curve of the model for cancer NAT classification using AdaBoost based on stroma spectra 
collected in experiment two 

The importance of each feature was plotted and was shown in Figure 4.33. It could 

be seen that in the plot that the classification was mainly caused by the features 

from all three spectral intervals. A standard was set to 0.0001, which meant that 

only intensity of importance of a feature was larger than 0.0001 would be 

considered as main peaks. Six main peaks were found in all the ranges, which were 

enlarged and plotted in Figure 4.34 (1050 -1300 cm-1), Figure 4.35 (1500 -1700cm-1) 

and Figure 4.36 (3000 -3550cm-1). 

Most main peaks were found in the Figure 4.35, including 1660 (Amide I band), 

1599 (Amide I), 1587 and 1545cm-1 (Amide II). Amide I and II variations were 

observed. One main peak was observed in Figure 4.34, which was 1294 cm-1 (N-H 

cytosine). It could relate to the DNA composition differences between cancer and 

NAT spectra. Another main peak was observed at 3037 cm-1 (N-H stretching) in 

Figure 4.36. These differences all showed that protein composition between two 

classes caused mainly the classification. Although many minor peaks were observed 

which could indicate noise or other interferences, AdaBoost gives them lower 

weighting and so they would contribute less to the classification.  



123 
 

 

Figure 4.33 Feature importance plot of the model (full-range) for cancer NAT classification using AdaBoost 
based on stroma spectra collected in experiment two, where A) wavenumber range 1050 to 1300 cm

−1
, B) 

wavenumber range 1500 to 1750 cm
−1

, and C) wavenumber range 3005 to 3550 cm
−1

 

 

 

Figure 4.34 Feature importance plot of the model (1050-1300 cm-1) for cancer NAT classification using 
AdaBoost based on stroma spectra collected in experiment two 
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Figure 4.35 Feature importance plot of the model (1500-1700cm-1) for cancer NAT classification using 
AdaBoost based on stroma spectra collected in experiment two 

 

 

Figure 4.36 Feature importance plot of the model (3000-3550cm
-1

) for cancer NAT classification using 
AdaBoost based on stroma spectra collected in experiment two 
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4.3.2.2.2.3. Sectional conclusion 

Both classification results on the independent test group were considering good, 

comparing with the results obtained using random forest. Large number of spectra 

was used as independent test dataset, which increased the reliability of the model, 

as larger independent dataset could potentially contain lager variety of features. 

Using AdaBoost, similar independent test results were obtained by applying both 

epithelium and stroma spectra. Still epithelium had a small advantage, as it has 

higher overall accuracy. These independent test results could be improved by 

further by increasing the number of iteration of training, but as mentioned 

previously and in literature there was an additional cost in time[34] so this had not 

been considered here. 

4.3.2.2.3. Comparisons on the results obtained using random forest and AdaBoost 

models 

Comparing both AdaBoost and random forest models based on epithelium, 

applying the same training and independent test datasets, the overall classification 

accuracy of AdaBoost on independent test was 89.5% while the separation rate of 

random forest was 77.8%. An over 10% advantage was observed. Especially on 

detection of cancerous spectra, AdaBoost had an enhancement of 12.5%. When 

models constructed by features selected from stroma spectra, an even larger gap, 

over 20% for the overall classification accuracy, was observed between AdaBoost 

and random forest in the independent test. For random forest, 54.6% NAT stroma 

spectra could be successfully classified while for AdaBoost 85.7% NAT stroma 

spectra could be separated from cancerous spectra. A nearly 30% difference was 

observed when it came to the true negative classification accuracy of models. 

However, it was interesting that the random forest model was more sensitive to the 

cancerous spectra than AdaBoost model, as the true positive classification accuracy 

for random forest model was 91.2% while for AdaBoost model the accuracy was 

89.6%. Overall, the AdaBoost models had a better performance on the independent 

test when the same test sets were provided. 
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There could be many reasons for these observations. One possible reason was that 

AdaBoost weighted features and weak classifiers favoured the classification process. 

To be more specific, for epithelium based models, four main peaks were observed 

in the feature importance plot of random forest model. Three main features among 

them were exactly the same with all three main peaks (1658, 1643, and 1543 cm-1) 

in the feature importance plot of AdaBoost with different importance intensities. 

These intensity differences could be reason behind classification performance 

differences. In addition to that, for both feature importance plots, many minor 

peaks could be observed which might be noise or other interferences in the data. 

Because of the nature of AdaBoost, these not very helpful features were weighted 

much lower comparing with these minor features in random forest model. They 

would contribute less to the final classification. This explained, to a large extent, 

why both models worked well on the cancerous class, as the main features used for 

classification for both models were very similar. One possible reason for AdaBoost 

model having a much better performance on the stroma class could be that the 

general similarities among NAT tissues were different to find even without 

interruptions, with distortions from minor peaks, the difficulty further increased. 

AdaBoost model weighted down these distortions but the random forest did not. 

Therefore the AdaBoost model worked better on the stroma class.  

Not only for epithelium spectra based models but also for stroma spectra based 

models, similar observations were observed. Features in amide I and II regions were 

both observed in the feature importance plot of both random forest and AdaBoost. 

Again, the weighting process in AdaBoost could be the main reason responsible to 

the difference in the independent test.  

In addition, AdaBoost also dug deeper into the data by focusing more on the most 

contributed elements during model training process. Not just features and input 

sample, the weak classifiers which had less contribution to the classification error 

rate were also weighted to have more control of the final classification results. 

In terms of comparing performance of epithelium and stroma based models, using 

the random forest classification method, the epithelium did have a more balanced 
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and higher accuracy than stroma based model. One possible reason for it could be 

that the epithelium spectra were spectra of a single type of cell. Although the 

common similarities among cancerous spectra were difficult to find, they were 

easier to be found among spectra of the single type of cell compared with multiple 

type of cells in stroma. Applying the AdaBoost method, the advantage of using 

epithelium spectra was reduced. The overall classification accuracy for epithelium 

spectra based model was 89.5% and for stroma spectra based model was 87.7%. 

Only a less than 2% difference was found. The classification accuracies using both 

epithelium and stroma spectra for both cancerous and NAT classes were relatively 

balanced and reasonable.  

The better performance models based on epithelium and stroma spectra were 

selected from models constructed using both classification methods. The selected 

models were used to predict the status of each independent test core without 

guidance of annotations. A traffic light colouring system was used to present the 

final result of classification, where the cancerous cores were coloured in red, the 

NAT cores were coloured in green and the cores needed further investigation were 

coloured in yellow. The traffic light colouring system was combined with both 

epithelium-stroma classifier and cancer-NAT classifier. To be more specific, all the 

spectra from each core were passed into the epithelium-stroma classifier. Only the 

10% top scored spectra which were predicted as epithelium spectra were passed 

into the cancer-NAT classifier (epithelium spectra based). Again, only the top scored 

10% spectra were kept and used for class assignment for each core. Among these 

10% top scored spectra, if the number of predicted cancerous spectra was larger 

than the number of classified NAT spectra, and the number of diagnosed cancerous 

spectra was larger than half of the total number of kept spectra, the core was 

picked as a cancerous core. If the number of diagnosed cancerous spectra was less 

than the number of diagnosed stroma spectra and the number of predicted stroma 

spectra was larger than half of the total number of kept spectra, the core was 

named as a NAT core. In any other cases, the core was coloured in yellow which 

meant not determined and further classification required. The same rules and 
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conditions were applied to the better performed model constructed based on 

stroma spectra.  

Both models trained on AdaBoost classification methods were applied. The traffic 

light colouring plot of both model based on epithelium and stroma spectra were 

shown in Figure 4.37 and Figure 4.39 respectively. For better comparison, the 

annotation of each independent test core was shown in the Figure 4.38 and Figure 

4.40. Yellow boxes on plots indicated that no spectra were annotated for the 

corresponding models, i.e. for epithelium based model, no epithelium cells were 

annotated in the core, but after epithelium-stroma classification corresponding 

spectra were still obtained. To ensure the annotation accuracy, areas which were 

difficult to annotate or having higher uncertainties were ignored. With the 

epithelium-stroma classifier, these hard-to-annotate spectra could still be selected 

and applied for further cancer diagnosis. Both models provided 100% classification 

accuracy in the unit of individual core, which further validated the success in both 

model training process. 

Overall, epithelium spectra do have advantages in cancer diagnosis. However, 

stroma also had similar function. When appropriate methods and hyperparameters 

were applied, stroma could perform as well as epithelium spectra. It could be 

considered as a replacement of epithelium spectra when resource of epithelium 

spectra was lacking. 
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Figure 4.37 Traffic light colouring plot of the better performed model based on epithelium spectra, where yellow boxes 
indicated that no epithelium cells were annotated and no epithelium spectra were selected to train the classification 
model in that core. Cores in red were predicted as cancerous cores while cores in green were predicted as normal cores. 

 

Figure 4.38 Annotation of each core in the independent test, where yellow boxes indicated that no epithelium cells 
were annotated in that core. Red and green showed cancerous and normal epithelium while purple and yellow 
indicated cancerous and normal stromal regions in each core.  
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Figure 4.40 Traffic light colouring plot of the better performed model based on stroma spectra, where yellow boxes 
indicated that no stroma cells  were annotated in that core. Red and green showed cancerous and normal epithelium 
while purple and yellow indicated cancerous and normal stromal regions in each core. 

Figure 4.39 Annotation of each core in the independent test, where yellow boxes indicated that no stroma region was 
annotated and no stroma spectra were selected to train the classification model in that core. Cores in red were predicted 
as cancerous cores while cores in green were predicted as normal cores. 
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4.4. Conclusion and future work 

To sum up, in experiment one, data was corrupted by water vapour. Although great 

care was taken with the purge and there was a bespoke purge box surrounding the 

microscope stage, the time delay between first and last measurements when 

scanning large mosaics made water vapour interference a potential problem. Note 

that this is a common interference factor for all researchers during FTIR data 

collection and has led to a number of erroneous conclusions be drawn in the 

literature [43][44]. For any other experiments in the future, better actions in water 

vapour prevention should be considered.   

In terms of comparing random and AdaBoost, surprisingly AdaBoost worked better 

than random forest in term of the independent test in this section. AdaBoost was 

good at selecting features that favoured classification. When a large number of 

iteration was applied, good classification accuracies could be obtained. The results 

obtained in this section could be further boosted by optimising models. However, 

this would be a trade-off between time and increase of classification accuracy. 

Stroma spectra can be used for cancer diagnosis when appropriate classification 

methods and parameters are applied. As in breast tissues stroma often much more 

than epithelium cells, developing classifiers on stroma can reduce the limitation of 

the shortage of training samples, which can further increase the reliability and 

accuracy of the model. Therefore comparing with epithelium cells, stroma has its 

own advantages in term of clinical translation. Further researches with lager stroma 

sample size and other more advanced data mining methods should be conducted.   
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5.1. Chapter Overview 

Recently, it has been proposed by Lisanti et al. that caveolin-1 can be used as a 

biomarker of breast cancer. It is believed that loss of Caveolin-1 (Cav-1) expression 

may be a key factor in driving the development of cancer-associated fibroblasts, 

which promote tumour growth. The idea of testifying whether caveolin-1 can be 

used as a diagnostic predictive biomarker for breast cancer progression from pre-

malignancy has been conducted by many research groups with conflict results [1–4]. 

Caveolin-1 is the structural coat protein of caveolae, which involved in vesicular 

trafficking and signal transduction [5,6]. Caveolin-1 consists of a central 33 amino 

acid, the amino and carboxyl termini [6]. A plot of the caveolin-1 structure including 

domains is shown in Figure 5.1. The central 33 amino acids, the hydrophobic 

domain, forms a hairpin structure and spans the membrane (shown in Figure 5.1 B), 

while the amino and carboxyl termini remain hydrophilic and cytoplasmic [5]. It 

behaves as a scaffold protein, which controls the multi-molecular signalling process 

[6]. The Caveolin-1 has a structure that consists of four types of domain (shown in 

Figure 5.1 A) [1]. Firstly, N- and C-terminal cytosolic domains are present. Between 

residuals 61 and 102 of caveolin-1, an oligomerization domain occurs [2–4]. The 

caveolin scaffolding domain (CSD), which is known to play a role in dimerization and 

interaction with signalling partners, belongs to the oligomerization domain [1,3]. In 

addition, a central transmembrane domain and a C-terminal membrane attachment 

domain are also present in caveolin-1 [1–4]. 
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Figure 5.1 Structure of Caveolin-1[1] A). Functional domains and sites of caveolin-1. B). The structure of 

caveolin-1 in the plasma membrane. 

In the last decade, it has been suggested that caveolin-1 plays a vital role in cancer 

progression and metastasis [1,6]. It is a candidate for a  cancer suppressor protein. 

Also, it acts as a negative regulator of the Ras-p42/44 MAP kinase cascade [7]. 

Research regarding the function of caveolin-1 as a cancer suppressor has been 

carried out in different human body tissues, including breast cancer [8] colon 

cancer [9], ovarian carcinoma [10] and soft-tissue sarcomas [11]. The tumour 

suppressor ability of caveolin-1 was strongly supported by a down-regulation of 

expression of it [6].  

Caveolin-1 is also considered as having a connection with the DNA repair processes, 

based on experiments performed by Cordes et al.[12]. Their results showed that 

silencing of caveolin-1 led to an increase of double-strand breaks of residual DNA in 

irradiated 3D cell cultures [12]. 

Caveolin-1 is also believed to increase the drug resistance of cell lines [9,13]. Many 

experiments were conducted on both colon and breast cancer cell lines [9,13]. The 
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results showed that the drug resistance was largely increased with the up-

regulation of caveolin-1 expression. 

However, many still believe that caveolin-1 is frequently overexpressed in a large 

range of tumour entities. The data used to support functions of caveolin-1 is not 

enough to confirm that it plays a critical role in carcinogenesis, tumour progression, 

metastatic spread and therapy resistance [5]. In the aspect of breast cancer, based 

on the work of Wiechen et. al., it is clear that loss of caveolin-1 present in the 

stroma of breast tissue leads to a reduction of patient survival rate in HER2-

negative breast cancers [11]. 

It seems like a new approach to study the properties of caveolin-1 needs to be 

researched, as the traditional methods have produced conflicting results. It will be 

interesting and potentially valuable to see if the possibility of using caveolin-1 as a 

clinical biomarker for breast cancer diagnosis can be testified using FTIR 

spectroscopy. This is one of the main objectives of the project, which includes two 

aspects. Firstly, it is crucial to show that caveolin-1 can be correlated with stroma in 

breast tissue using FTIR.  Secondly is important to establish if caveolin-1 can act as a 

cancer suppressor and can be considered as a biomarker regarding breast cancer 

diagnosis also using FTIR.  

Early detection of cancer has vital significance since cancer treatment is often 

simpler and more effective when diagnosed at an early stage. There is a burning 

need to develop early detection techniques requiring non-invasive or minimally 

invasive procedures. Regarding breast cancer, mammography is the first step 

performed in the process of diagnosing cancer but at times mammograms are not 

able to provide clear and true results. A biopsy is suggested to confirm the presence 

of a tumour, which is also associated with false-positive results [14] due to human 

errors as diagnosis judgements are made by pathologists. Thus a desire to develop 

a more effective and safe technique has inspired researchers to develop a range of 

optical imaging and spectroscopy diagnosis techniques to improve breast cancer 

diagnosis results and efficiency. The technical improvement will reduce the time 

and economic costs of patients. One such promising technique, Infrared chemical 



140 
 

imaging employs infrared light and has the potential to serve as an efficient 

diagnostic procedure.  

The general objective of this project is to distinguish benign lesions from malignant 

ones using FTIR and also correlate caveolin-1 in stroma with breast cancer based on 

the classification produced. This objective includes two aspects. Firstly, it is crucial 

to show that caveolin-1 can be correlated with stroma in breast tissue using FTIR. 

The other objective is to testify whether caveolin-1 can be used as a clinical 

biomarker for breast cancer using FTIR.  
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Figure 5.2 Location of stages of cancer and non-cancer cores in BR20832 

  - Malignant tumor,  - Malignant tumor (stage 0),  - Malignant tumor (stage I),    - Malignant tumor (stage II),  - Malignant tumor (stage III),  - NAT,  

 - Normal tissue 

 

5. 2. Methodology 

5. 2.1 Caveolin-1 stained sample preparation 

The sample used for this project is a breast TMA slide, BR20832. The tissue 

microarray is one of the most recent innovations regarding pathology. The 

microarray can be used to analyse multiple tissue samples at the same time since it 

consists of small representative tissue samples from different cases or patients 

assembled on a single histologic slide [15]. The coordinates of a tissue microarray 

are single recipient blocks extracted and re-embedded from donor paraffin blocks 

[15]. It is a practical and effective tool for tissue studies using FTIR and other high 

throughput analysis, helping to identify new diagnostic and prognostic markers and 

targets in human cancers [15,16]. 

 

In this case, the breast tumour tissue microarray, BR20832, contains 190 cases of 

ductal carcinoma, 1 mixed lobular and duct carcinoma, 1 mucinous carcinoma, 13 

NAT and 3 normal breast tissue. The location of different stages of cancerous cores 

is shown in Figure 5.2. Each core stands for one patient. In total, the BR20832 TMA 

contains information from 208 patients both having cancer and healthy. 

Fresh biopsies were immersed in an aqueous formalin solution, which fixed the 

tissue. The tissue was dehydrated in washes of xylene and ethanol. After that, 
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paraffin was used to embed the tissue to provide a protective barrier [17]. The core 

was cut into 5 µm thickness and 1 mm diameter and fixed on the CaF2 slide, which 

is for FTIR measurement use. There are also two adjacent TMAs on the glass which 

was H&E stained, for stroma annotation, and caveolin-1 stained, for correlation of 

caveolin-1 protein in stroma with breast cancer.  

 

 

Figure 5.3 Photo of sample slides used. Slide BR20832 D042 (centre) is the caveolin-1 stained glass slide, D043 

(top) is the paraffin-embedded CaF2 slide, and D044 (bottom) is the H&E stained glass slide 

 

The slide used for FTIR measurement was covered in wax and no dewaxing process 

was undertaken before actual spectra collection, as a number of studies have 

shown that non-dewaxed FFPE section can be used for skin and colon tissue scans 

successfully [18–23]. The influenced lipid bands [24] were removed in data 

processing steps. 
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5.2.2 Instrumentation and experiment Procedure 

 

The same instrument was used with Chapter 4.Before imaging, background scans 

were taken as a single tile with 128 co-added scans at a spectral resolution 5 cm-1. 

The area taken was selected to be clean and paraffin-free. 96 co-added sample 

scans were measured on each core from TMA. Interferograms were processed into 

absorption spectra using Happ-Genzel apodisation with a region between 900 and 

3800 cm−1. 

A purge time of 1 hour was adopted to reduce the influence of water vapour in the 

spectrum before loading TMA and after changing samples. The scan range was set 

from 900 to 3800 cm-1 covering the important range of biological information of 

breast tissue. 

 

5.2.3 Data Analysis Procedure 

5.2.3.1 Annotation  

Annotation was conducted on the chemical image generated using MatLab based 

on caveolin-1 stained images. Both epithelium cells and stroma cells were identified 

in this case. Stroma is mainly consisted of collagen and other connective tissues 

[25,26], which are mainly stained pink around epithelium cells. An example is given 

in Figure 5.4. In this case, yellow indicates stroma while orange marks locations of 

caveolin-1. All cores, selected to construct the model and conduct independent 

tests, were annotated in a similar fashion to that of Figure 5.4. Only cells that were 

ensured to be the stroma were annotated to control the accuracy of the 

classification model. 
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Figure 5.4 A) Bright field image and B) annotated chemical image (generated using the absorbance 

distribution of Amide I region) of core M6, where yellow indicates stroma, green indicates epithelium and red 

indicates caveolin-1 stain 

 

5.2.4.2 Data Pre-processing Methods 

Raw data collected was firstly run through a spectral quality test, and only spectra 

that had an intensity threshold between 0.07 and 2 were retained. The cancerous 

spectra were randomly selected to match the number of the spectra from the 

normal cores. In this case, 20 principal components were kept to reach the best 

noise reduction results with the consideration of preserving most biological 

information.After noise reduction, the only wavenumber ranges: 1000 cm-1 to 1300 

cm-1, 1500 cm-1 to 1750 cm-1 and 3005 cm-1 to 3550 cm-1 were kept, as these ranges 

contain most of the biological information related to cancer diagnosis and not 

influenced by the paraffin bands which is the material used to embedded tissue 

samples. A vector normalisation was performed. Savitzky-Golay first derivative 

filtering was applied to further smooth the spectra. A 19-data-point system was 

applied to reach the best result. The detailed information about pre-processing 

steps was mentioned in Chapter 4. 



145 
 

5.2.4.3 Classification Methods 

Both PCA and random forest were employed to separate cancerous and normal 

spectra. PCA on pre-processed datasets was conducted to visualize trends and 

patterns of data. The output of PCA contains scores, loadings and the residuals [27]. 

For spectral data, the residuals corresponding to the residual spectra provide 

important biological and chemical information, which spectral variation has not 

been explained.  Scores are readings in the same way as variables, which can be 

plotted and interpreted in many different ways. It is common to plot scores in 

scatter plots indicating the pattern of the raw data [28]. Loadings define the 

principal components. Scores and loadings are usually plotted on the same biplots, 

which both indicate the pattern and the reason behind the variance. 

Random forest is a classification method operates by constructing decision trees to 

vote the class of unknown samples [29–31]. Each tree which was previously trained 

on similar data performs a classification. Each decision is collected and the forest 

chooses the most popular class based on decisions made by all trees in the forest. 

The favoured class will be assigned as the predicted class of unknown samples. 

Random forest classification is an ensemble method based on tree classifiers. It is 

proved to give better and more stable performance compared with single tree 

classifiers. The detailed working mechanism was presented in Chapter 4 (section 

4.2.4.3.1).  

5.2.4.4 Statistical Analysis Methods 

Receiver operator characteristic (ROC) curves are used to access the performance 

of models. It presents the inherent trade-off between sensitivity and specificity. The 

Area under curve (AUC) of the ROC curve was also used to describe the 

performance of models in numbers. Together with the confusion matrix, which 

describes performance of models in tables, sensitivity, specificity, ROC curve and 

AUC of classification results will be used to access the performance of each 

classifier. 

The detailed equation and explanations of each method were presented in Chapter 

4 (section 4.2.4.4).   
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5.3. Results and discussion 

Since the focus of the research was on caveolin-1 stained stroma regions, to 

eliminate possible separation caused by differences between cancerous and non-

cancerous stroma spectra, comparisons were made as two separate groups: a 

cancerous caveolin-1 stained stroma group and a non-cancerous caveolin-1 stained 

stroma group. The cancerous group only contains spectra extracted from cancerous 

cores of different patients, and the non-cancerous group only contains spectra 

selected from sample cores of non-cancerous patients. Both principal component 

analysis and random forest were conducted for each group. PCA was a dimension 

reducing unsupervised method finding patterns in data while random forest focuses 

more on the details of data variations with supervised learning of data features. 

Combination of these two methods could produce a more comprehensive 

understanding of the spectra and their classification results. 

 

5.3.1 Results produced using principal component analysis 

5.3.1.1 PCA results produced using spectra selected from cancerous cores 

A database was constructed from the 18 training cores which consist of 17464 

spectra (17054 non-stained stroma spectra, and 410 caveolin-1 stained stroma 

spectra). PCA was applied to the database constructed after each spectrum was 

quality checked, noise reduced, vector normalized, and derivatized. A PCA score 

plot and loading plots of non-caveolin-1 stained stroma and caveolin-1 stained 

stroma selected from cancerous cores were plotted in Figure 5.5. Caveolin-1 

stained stroma was plotted in blue while unstained stroma was plotted in red. It 

could be seen that no clear separation was observed in three-dimensional score 

plot in the axes of principal component (PC) 1 which consists 55.2% variance of the 

dataset, PC 2 (26.4%), and PC 3 (9.5%).  
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Figure 5.5 Three dimensional PCA score plot between unstained and caveolin-1 stained stroma with the axes 
of PC 1 ( 55.2%), PC 2 (26.4%), and PC 3 (9.5%) in cancerous cores, where unstained stroma data was plotted 
in red diamonds while caveolin-1 stained stroma data was plotted in blue diamonds 

 

The Loadings of each principal component was plotted in Figure 5.6. PC 1 was 

mainly formed by Amide I (peaks at 1630 and 1655 cm-1), which weighs 55.2% of 

the total variance of the spectra. PC 2 was mainly composed by Amide I (peaks at 

1665 and 1675 cm-1) and Amide II (1557 cm-1), which counts 26.4% of the spectra 

variation. PC 3 was mainly made by variation of Amide II (1550 cm-1) intensity, 

which counts 9.5% of the total variance. The variance of this set of spectra was 

mainly on Amide I and II, which indicates there were possible protein content 

differences although these differences were not just between caveolin-1 stained 

stroma and surrounded unstained stroma. 
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Figure 5.6 The Loading plots of A) PC1 (55.2%) B) PC 2 (26.4%) C) PC 3 (9.5%)  in the ranges of 1000 cm
-1

 to 
1300 cm-1, 1550 cm-1 to 1750 cm-1  and 3005 cm-1  to 3550 cm-1 

 

 



149 
 

 

5.3.1.2 PCA results produced using spectra selected from normal cores 

PCA score plot and loading plots of unstained stroma and caveolin-1 stained stroma 

selected from normal cores were plotted in Figure 5.7. Caveolin-1 stained stroma 

was plotted in red while unstained stroma was plotted in blue. It could be seen that 

there was no clear separation between caveolin-1 stained stroma and unstained 

stroma from normal cores in PCA score plot as a large number of red scattering 

points overlapped with the blue dots. Spectra in the unstained stroma have more 

variations as scores points were more spread comparing with caveolin-1 stained 

stroma with clustered score points.  

 

Figure 5.7 Three dimensional PCA score plot between unstained and caveolin-1 stained stroma with the axes 
of PC 1 ( 64.0%), PC 2 (16.5%), and PC 3 (15.3%) in normal cores, where unstained stroma data was plotted in 
red diamonds while caveolin-1 stained stroma data was plotted in blue diamonds 
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Figure 5.8 The Loading plots of A) PC1 (64.0%) B) PC 2 (16.5%) C) PC 3 (15.3%)  in the ranges of 1000 cm-1 to 
1300 cm-1, 1550 cm-1 to 1750 cm-1  and 3005 cm-1  to 3550 cm-1 

The Loadings of each principal component was plotted. PC 1 was mainly formed by 

Amide I (peak at 1630 and 1670 cm-1), which weighs 64% of the total variance of 

the spectra. PC 2 was also mainly composed of suspected water vapour, which 



151 
 

counts 16.5% of the spectra variation. PC 3 was mainly made by variation of Amide I 

(1665 cm-1) intensity, Amide II (1550 cm-1) and C=O stretch peak at 1710 cm-1, 

which counts 15.3% of the total variance. Variation types of stroma could be the 

main reason of Amide I and II differences. Differences between caveolin-1 stained 

stroma and other stroma were not clear using PCA. 

5.3.1.3 PCA results produced using caveolin-1 to separate cancerous and normal 

spectra 

The Loading plots of A) PC1 (55.2%) B) PC 2 (26.4%) C) PC 3 (9.5%)  in the ranges of 

1000 cm-1 to 1300 cm-1, 1500 cm-1 to 1750 cm-1  and 3005 cm-1  to 3550 cm-1  and 

PCA score plot of caveolin-1 stained stroma from cancerous cores and caveolin-1 

stained stroma selected from normal cores were plotted in Figure 5.9 and Figure 

5.10. Caveolin-1 stained stroma from cancerous cores was plotted in red while 

normal caveolin-1 stroma was plotted in blue. It could be seen that normal 

caveolin-1 spectra were more tightly clustered while the caveolin-1 from cancerous 

patients were more spread. The widespread may because cancerous cores included 

all four stages of breast cancer and in each stage cells could have different variation 

from normal cells. A trend of separation was observed between two classes even 

through overlaps of some scattering points were observed. To validate the possible 

separation between cancerous and normal caveolin-1 stained spectra, a more 

specified classification method, random forest, would be applied later in this 

chapter. 
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Figure 5.9 Three dimensional PCA score plot between caveolin-1 stained stroma from cancerous cores  and 
caveolin-1 stained stroma from normal cores with the axes of PC 1 ( 68.6%), PC 2 (18.2%), and PC 3 (6.3%), 
where cancerous stained  stroma data was plotted in red diamonds while normal caveolin-1 stained stroma 
data was plotted in blue diamonds 

 

It could be seen in Figure 5.10, PC 1 was mainly formed by Amide II (peaks at 1550 

and 1580 cm-1), which weighs 68.6% of the total variance of the spectra. PC 2 

counts 18.2% of the total variance which was caused by mainly Amide I (1630 cm-1 

and 1680 cm-1) variations. PC 3, 6.3% of the total variance, was observed peaked at 

1620, 1657 and 1707 cm-1, which was mainly caused by Amide I. Difference 

between cancerous caveolin-1 stained stroma and unstained was tiny and difficult 

to be found using PCA. Random forest should be conducted to further classify 

cancerous and normal spectra.    
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Figure 5.10 The Loading plots of A) PC1 (68.6%) B) PC 2 (18.2%) C) PC 3 (6.3%)  in the ranges of 1000 cm-1 to 
1300 cm-1, 1500 cm-1 to 1750 cm-1  and 3005 cm-1  to 3550 cm-1 
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5.3.2 Results produced using Random Forest 

5.3.2.1 Random forest results produced using spectra selected from cancerous 

cores 

A training database was constructed from the 18 training cores which consisted of 

17464 spectra (17054 non-stained stroma spectra, and 410 caveolin-1 stained 

stroma spectra). The optimal situation to prevent classifier bias was for each class 

to consist of equal numbers of spectra. Bias was minimized in the training set by 

selecting equal numbers of spectra from the class with the number randomly 

selected being the size of the smallest class. 

A Random Forest was then constructed using 410 spectra per class. There were two 

classes, including non-stained and caveolin-1 stained stroma. Each spectrum was 

quality checked, noise reduced, vector normalized, and derivatized prior to being 

used for training. 500 trees were used. The node size parameter, which limits how 

large each decision tree could grow, was set to 1.  

Confusion matrices provide a quantitative measure of performance and enable the 

correctness of classification for each class to be determined. Furthermore, the 

sources of misclassification could be easily identified from a confusion matrix, 

revealing which classes were difficult to discriminate between. In Table 5.1, a 

random forest model validation training confusion matrix was shown, which tests 

the model constructed using the training database on other yet presented spectra 

taken from the same patient group. The validation test results were 69.2% and 84.9% 

for unstained and Cav-1 stained stroma respectively. These results were hot as high 

as expected possibly due to lack of training spectra. The ROC curve was plotted in 

Figure 5.11  and an AUC of 0.85 was found. It was noted that the AUC curves were 

not smooth, which also indicates a lack of training spectra. 
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Table 5.1 Confusion matrix of model validation for caveolin-1 stained and non-stained stroma from cancerous 
cores 

Training Validation 

Cancer Group 

 

Predicted / % 

Unstained Stroma Cav-1 Stained 

 True / % 
Unstained Stroma 69.2 30.8 

Cav-1 Stained 15.1 84.9 

 

 

Figure 5.11 Training validation ROC curve for caveolin-1 stained and non-stained stroma from cancerous 
cores 

 

The Random Forest classifier was then tested on the independent test set which 

consisted of 11842 spectra (11611 non-stained stroma spectra and 231 caveolin-1 

stained stroma spectra) from the 10 testing cores. 231 spectra were selected 

randomly for each class. Each tree in the Random Forest decides the class of the 

unknown spectrum. The Random Forest then chooses the class having the most 

votes over all the trees in the forest. Confusion matrices and AUC curves for the 

independent test were plotted in Table 5.2 and Figure 5.12 respectively. The model 

was better at recognising caveolin-1 stained stroma than unstained stroma. The 
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resulting AUC value of 0.79 indicates that there was a relatively good differentiation 

between stained and non-stained stroma. This result could be further improved by 

applying more spectra for model construction. 

Table 5.2 Confusion matrix of independent test for caveolin-1 stained and non-stained stroma from 
cancerous cores 

Independent Test 

Cancer Group 

 

Predicted / % 

Unstained Stroma Cav-1 Stained 

 True / % 
Unstained Stroma 64.5 35.5 

Cav-1 Stained 16.0 84.0 

 

 

Figure 5.12 Independent test ROC curve for caveolin-1 stained and non-stained stroma from cancerous cores 

 

5.3.2.2 Random forest results produced using spectra selected from normal cores 

A training database was constructed from the 7 training cores which consisted of 

13541 spectra (13368 non-stained stroma spectra, and 173 caveolin-1 stained 

stroma spectra). Equal numbers of spectra were selected from each class with the 

number randomly selected being the size of the smallest class. A Random Forest 
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was then constructed using 173 spectra per class. Each spectrum was quality 

checked, noise reduced, vector normalized, and derivatized prior to being used for 

training. The same training configuration of 500 trees and 1 node size was applied.  

In Table 5.3, a random forest model validation training confusion matrix was shown, 

which tests the model constructed using the training database on other spectra 

taken from the same patient group. The validation test results were 85% and 74%. 

The ROC curve was shown in Figure 5.13, and an AUC of 0.88 was found. Again the 

AUC curves were not smooth, which indicates lack of training spectra. 

Table 5.3 Confusion matrix of model validation for caveolin-1 stained and non-stained stroma from normal 
cores 

Training Validation 

Normal Group 

 

Predicted / % 

Unstained Stroma Cav-1 Stained 

 True / % 
Unstained Stroma 85.29 14.71 

Cav-1 Stained 25.71 74.29 

 

 

Figure 5.13 Training validation ROC curve for caveolin-1 stained and non-stained stroma from normal cores 
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The Random Forest classifier was then tested on the independent test set which 

consisted of 4288 spectra (4206 non-stained stroma spectra and 82 caveolin-1 

stained stroma spectra) from the 10 testing cores. 82 spectra were selected 

randomly for each class.  

The confusion matrices and AUC curves for the independent test were plotted in 

Table 5.4 and Figure 5.14 respectively. The model was better at recognising 

unstained stroma than caveolin-1 stained stroma. The resulting AUC value of 0.86 

indicates that there was a relatively good differentiation between stained and non-

stained stroma. This result could be further improved by applying more spectra for 

model construction. 

Table 5.4 Confusion matrix of independent test for caveolin-1 stained and non-stained stroma from normal 
cores 

Independent Test 

Normal Group 

 

Predicted / % 

Unstained Stroma Cav-1 Stained 

 True / % 
Unstained Stroma 89.9 10.1 

Cav-1 Stained 50.0 50.0 

 

 

Figure 5.14 Independent test ROC curve for caveolin-1 stained and non-stained stroma from normal cores 



159 
 

 

5.3.2.3 Random forest results produced using caveolin-1 to separate cancerous 

and normal spectra 

A training database was constructed of 550 caveolin-1 stained stroma spectra (410 

from cancerous cores and 140 from normal cores). Equal numbers of spectra were 

selected from each class with the number randomly selected being the size of the 

smallest class. A Random Forest was then constructed using 140 spectra per class. 

The random forest model was constructed by 500 decision trees with node size 

equal to 1. 

In Table 5.5, a random forest model validation training confusion matrix was shown, 

which tests the model constructed using the training database on other spectra 

taken from the same patient group. Validation test results, 96% and 88% were 

relatively good. The ROC curve was plotted in Figure 5.15, and an AUC of 0.96 was 

found. AUC curves could be further smoothed by adding more training spectra. 

Table 5.5 Confusion matrix of model validation for caveolin-1 stained from cancerous and normal cancerous 
cores 

Training Validation 

Cancer VS. Normal 

 

Predicted / % 

Cav-1 Stained 

Cancerous Spectra 
Cav-1 Stained Normal 

Spectra 

 True / % 

Cav-1 Stained 

Cancerous Spectra 
95.7 4.3 

Cav-1 Stained 

Normal Spectra 
12.1 87.9 
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Figure 5.15 Training validation ROC curve for caveolin-1 stained stroma from cancerous and normal cores 

The Random Forest classifier was then tested on the independent test set which 

consisted of 231 caveolin-1 stained cancerous spectra and 35 caveolin-1 stained 

normal spectra. 35 spectra were selected randomly for each class.  

Confusion matrices and AUC curves for the independent test were plotted in Table 

5.6 and Figure 5.16 respectively. The model was better at recognising unstained 

stroma than caveolin-1 stained stroma. The resulting AUC value of 0.96 indicates 

that there was a very good differentiation between stained cancerous and normal 

stroma. Considering the similarities between malignant and non-malignant spectra, 

the ROC curves appear surprisingly good.  

Table 5.6 Confusion matrix of independent test for caveolin-1 stained stroma from cancerous and normal 
cores 

Independent Test 

Cancer VS. Normal 

 

Predicted / % 

Cav-1 Stained 

Cancerous Spectra 

Cav-1 Stained 

Normal Spectra 

 True / % 

Cav-1 Stained 

Cancerous Spectra 
100 0 

Cav-1 Stained 

Normal Spectra 
28.6 71.4 
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Figure 5.16 Independent test ROC curve for caveolin-1 stained stroma from cancerous and normal cores 

 

5.3.2.3.1 Importance study on the results produced using random forest 

classifier 

To further investigate whether the separation observed in the independent test of 

cancerous and normal caveolin-1 stained stroma spectra was caused by biological 

differences between cancerous and normal cores, an importance study of all 

wavenumbers was conducted. The importance plots show the importance of each 

spectral feature. Each variable contributes to the homogeneity of the nodes and 

leaves in the resulting random forest, shown in Figure 5.17. The main peaks were 

observed at 1188, 1192, 1209, 1559, 3237 and 3493 cm-1. Contribution peaks at 

1188, 1192 and 1209 cm-1 could be related to changes in nucleic acid (PO2
-
 stretch) 

between cancerous and normal stroma tissue. 1559 cm-1 was in the range of Amide 

II. 3237 and 3493 cm-1 were due mainly to the N-H stretch. Therefore this 
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separation was mainly based on biological differences between cancerous and 

normal tissue.  

 

 

Figure 5.17 Importance of each wavenumber in the model, where in the ranges of A) 1000 cm-1 to 1300 cm-1, 
B) 1500 cm-1 to 1750 cm-1  and C) 3005 cm-1  to 3550 cm-1 

  

A) B) C) 
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5.4. Conclusion and future works 

For both cancerous and normal cores, caveolin-1 could not be separated from the 

surrounding stroma. There were two possible reasons for this. The first one was the 

quantity of caveolin-1 spectra sample was too low for analysis. A low number of 

samples reduce the accuracy of separation between stroma and caveolin-1. The 

second cause could be the doubtful accuracy of annotation due to the nature of 

caveoline-1 stain. The stain was not particularly strong. 

Caveolin-1 staining could be used for cancer classification, as it produced high 

accuracy (100% and 71.4%). The classification accuracy for cancerous spectra was 

even higher than the classification result obtained in Chapter 4 (89.6% for 

cancerous class). However, only a very small number of spectra from stained 

stroma were available in this study. Further experiments should be continued to 

ensure its reproducibility. 

More information should be collected to ratify the results obtained from 

experiments, as a small sample size could not reflect actual correlations between 

stroma and caveolin-1 spectra. More sample cores should be provided for further 

research.  Clearer caveolin-1 stained sample could improve the accuracy of 

classifiers. It could be seen that it was difficult to locate caveolin-1 on the chemical 

image because both of the sharpness of images and the colour of stains. Caveolin-1 

stain was in light brown. It was hard to locate the correct area of it on its 

corresponding chemical image. This nature of caveolin-1 stain increased the 

difficulty of using it as an indicator of breast cancer since nature reduced the 

accuracy of annotations.  
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6.1. Chapter overview 

Nowadays, cancer diagnosis always involves biopsy which is removed from patients. 

Using biopsies to diagnosis cancer started from the 1930s [1] and developed 

together with pathologic diagnosis as a gold standard for cancer diagnosis [2].  

Traditionally, after slicing into thin layers and floating onto slides, the biopsy 

samples are examined under an optical microscope. Trained pathologists will make 

decisions considering the deviations in the cell structures and/or the variations in 

the distribution of the cells across samples based on their personal experience. 

Even though a pathologist require over 12 years of training (5-year degree in 

medicine, 2-year general training and 5 or 6-year specialist training programme in 

pathology [3], the judgment is still subjective, and often leads to considerable 

variability in diagnosis[4]. The whole laboratory process is both time consuming and 

a huge workload for pathologists. With an increasingly gaining population and 

increase of cancer incidence world widely the situation is getting worse [5].  

To alleviate the problem and improve the reliability of cancer diagnosis, the 

development of automated cancer diagnosis tools, which can eliminate human 

errors, is curial. Such automated tools can be used to provide a second opinion for 

patients or as a pre-screening tool for pathologists. Infrared spectroscopy has 

received particular attention recently, as it can interrogate tissue samples based on 

their chemical information in a label-free manner. Research has shown that infrared 

spectroscopy can be used to distinguish cancerous and normal samples in different 

tissue types including, prostate [6–8], lung [9], colon [10], breast [11–13].  

Currently infrared imaging normally requires the tissue sections to be mounted on 

transmission slides most commonly calcium fluoride (CaF2) or barium fluoride (BaF2). 

Unfortunately, these are both expensive and particularly frangible. The high price 

and nature of substrates increase the difficulty of adopting infrared imaging into 

the current clinic cancer diagnosis flow. In an attempt to solve this issue, Pilling et al. 

proposed and subsequently tested applying infrared imaging directly to the H&E 

stained tissue on glass slides as used by the pathologists [8]. In light of this previous 

research, in this chapter, breast tissue was used to further investigate the feasibility 
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of cancer diagnosis by combining H&E stained tissue on glass slides and infrared 

imaging.  
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6.2. Methodology 

6.2.1 H&E stained breast tissue preparation 

The sample used for this project is a breast TMA H&E slide, BR20832 (prepared by 

US BioMax.Inc). The breast tumour tissue microarray contains 192 cases of breast 

carcinoma, 13 NATs and 3 normal breast tissue cores. Each core is from one patient, 

so in total 208 patients. The paraffin embed slide was mounted onto a glass slide 

and H&E stained after de-waxing. A cover glass slide was applied to the TMA after 

H&E stain.    

6.2.2 Instrumentation 

The instrument and microscope used in the work reported here were those that 

have previously detailed in chapter 4. 

6.2.3 Experiment Procedure 

For data collection, transmission was used with 128 background scans and 96 

sample scans. The spectral resolution used was 5 cm-1 as it has both time and 

spectral quality advantages. The H&E stained slide was loaded in the purge box 

overnight to minimize the effect of water vapour. Every day before data collection, 

the focus of instrument was calibrated. The received energy intensity level 

distribution of the pixels on the detector was adjusted to be as even as possible. 

The number of out of range pixels was ensured to be zero. The range was set from 

2800 to 3800 cm-1 as the lower wavenumber range was saturated with glass slides. 

The spectrum collected was then saved and converted into mat files for data 

analysis process. 

6.2.4 Data Analysis methods 

All data were pre-processed with MATLAB 2018a. Infrared spectra for each biopsy 

core were extracted from the mosaic as a 256 × 256 data-cube. Each data-cube 

consists of 65536 spectra which contain 364 data points.  

6.2.4.1 Annotation method 

Chemical images of each of the breast tissue cores were generated and overlapped 

with the microscope image of H&E stained slide. Epithelium and stroma areas were 
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identified and annotated on chemical images generated based on the WHO 

Classification of Tumours in the Breast [14]. The colour codes used are red (255, 0, 

0), green (103,193, 66), purple (166, 55, 156) and yellow (244, 143, 53), which 

indicates cancerous epithelium, NAT epithelium, cancerous stroma and NAT stroma 

respectively. The example plot of annotated chemical images is shown in Figure 6.1. 

6.2.4.2 Data Pre-processing Methods 

Principal component based noise reduction was applied with 50 principal 

components kept. Spectra were quality tested based on the height of the amide A 

band. Spectra that have absorbance between 0.07 and 1.2 were retained. Spectral 

ranges from 3000 to 3700 cm−1 were used. Each spectrum was vector normalized 

and converted to first derivative with a Savitzky−Golay smoothing. The window size 

of smoothing was 19 data points, a conventional parameter for tissue analysis [8]. 

The detailed pre-processing information was presented in the Chapter 4.  

The dataset was separated into two groups, a training set and an independent test 

set. Patients in the independent test group were independent of those in the 

training group for better validation.70 cores were separated into the training set, 

containing 55 cores (11 NAT and 44 cancerous cores), and an independent test 

group, containing 15 cores (2 NAT and 13 cancerous cores). The cores used for this 

chapter were matched with the cores used for model construction in chapter 4, 

where these cores were placed on CaF2.  
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Figure 6.1 Examples of annotation on chemical images, where red indicated cancerous epithelium, purple 
indicated cancerous stroma, green indicated NAT epithelium and yellow indicated NAT stroma 
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6.2.4.3 Classification Methods 

Both Random forest and AdaBoost were applied in order to separate cancerous and 

NAT breast tissues. In terms of random forest, a random forest grows many 

classification trees as required. All trees in the forest are involved in voting the most 

popular class as the final result from the forest [15]. For AdaBoost, all trees are 

involved in weighted voting to allocate unknown samples [16]. Detailed information 

regarding the operation of these algorithms is mentioned in Chapter 4.  

6.2.4.4 Statistical Analysis Methods 

Receiver operator characteristic (ROC) curves are a common way of representing the 

inherent trade-off between sensitivity and specificity. Sensitivity equals the true 

positive over the positive predictions while the specificity was the quotient of true 

negative and all negative predictions.  The detailed equation and explanations are 

presented in Chapter 4.  

Sensitivity, specificity, confusion matrix, ROC curve and AUC of classification results 

were used to present the performance of each classifier. 

A threshold was also applied after the actual classification. It was applied based on the 

score of each test spectrum after classification. The higher the score the model was 

more confident. In this chapter, 50% and 10% of the top-scored test spectra were kept 

as confident predictions. These thresholds were used to exam the model performance 

at different angels as well.  
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6.3. Results and discussion 

6.3.1. Histological classification results 

A histological model was established using AdaBoost with 500 iterations and a 

learning rate of 0.1. The training dataset consisted of 104252 cancerous epithelium 

spectra and 22844 NAT epithelium spectra, 130384 cancerous stroma spectra and 

112443 NAT stroma spectra. Two classes were balanced by randomly selecting 

127096 spectra from the stroma class to match the number of spectra in the 

epithelium class.  

An independent test set was extracted from independent cores, which contains 

22360 cancerous and 1611 NAT epithelium spectra, and 17872 cancerous and 

23112 NAT stroma spectra.  

A training validation test was performed using a subset randomly selected from the 

training dataset which consisted of 20% of the whole training spectra. The 

confusion matrix of the validation test was shown in Table 6.1, where the 

classification accuracies on epithelium and stroma spectra were 79.6% and 53.2% 

respectively. Comparing with the training validation accuracies obtained from the 

previous chapter (Chapter 4), where exactly the same cores were used to construct 

a histological model, the classification accuracies on epithelium and stroma were 

98.7% and 98.5% respectively (in Table 4.4). Over 20% difference in classification 

accuracies indicates poor performance of this model using spectra collected in glass 

from H&E stained tissue. 

Table 6.1 Confusion matrix of training validation of the histological model constructed using AdaBoost 
classification method with both cancerous and NAT epithelium and stroma spectra 

Training Validation 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium  79.6 20.4 

Stroma 46.8 53.2 

 

An independent test was conducted to further test the model. 23971 epithelium 

and 40984 stroma spectra were passed into the model. The confusion matrix 
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obtained from the independent test was shown in Table 6.2. It could be seen that 

the model classified most of the spectra from the independent test as stroma 

spectra. For epithelium spectra, only 1.9% of them were correctly classified. The 

model completely fails on the independent test.  

Table 6.2 Confusion matrix of an independent test of the histological model constructed using AdaBoost 
classification method with both cancerous and NAT epithelium and stroma spectra 

Independent Test 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium  1.9 98.1 

Stroma 1.4 98.6 
 

 

The ROC curve also proves the poor performance of the model, which was shown in 

Figure 6.2. The curve was very close to the diagonal line of the plot box. The AUC 

value was 0.53 which further indicates poor classification. 

 

Figure 6.2 ROC of the histological model constructed using AdaBoost classification method with both 
cancerous and NAT epithelium and stroma spectra 

The importance of features used for model training was plotted and presented in 

Figure 6.3. The main contribution was observed at the peak at 3317 (Amide A) cm-1. 
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Comparing with the main features found in the same range on CaF2, 3303 cm-1 

(Figure 4.5), which represents Amide A band. One possible reason for this 

observation could be that even though both models focus on Amide A peak to 

separate epithelium and stroma spectra, without the influence of lower-

wavenumber range the model completely fails. These lower-wavenumber features 

do not carry much weight but cannot be ignored. Another reason could be that the 

new annotations on these H&E stained cores on the glass were not accurate 

enough. Too many miss-labelled spectra ruin the model construction, therefore 

resulting in failure of the independent test. Alternatively the poor classification may 

be caused by inappropriate data processing steps. A different input data selection 

method was proposed in the later section to further investigate the problem. 

 

Figure 6.3 Feature importance of the histological model constructed using AdaBoost classification method 
with both cancerous and NAT epithelium and stroma spectra 

  

3317 
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6.3.2. Cancer predication classification results 

Cancer diagnosis models were established based on both annotated epithelium and 

stroma spectra using either AdaBoost or random forest.  

6.3.2.1. Classification results produced using spectra selected from 

epithelium areas 

Epithelium spectra were extracted from 70 cores, which were consisted of training 

and independent test datasets. For training spectra, 104252 cancerous and 22844 

NAT spectra were selected. To balance both classes, only 22844 cancerous 

epithelium spectra were randomly selected from the cancerous epithelium group. 

For independent test spectra, 22360 cancerous and 1611 NAT epithelium spectra 

were picked from the 15 independent test cores.  

6.3.2.1.1. Classification results produced using AdaBoost classification method 

A cancer diagnosis model was constructed with the AdaBoost classification method 

(500 iterations and learning rate 0.1). 20% of the balanced training spectra were 

randomly selected as the training validation dataset for the model. The confusion 

matrix of the model was generated and presented in Table 6.3. The classification 

accuracies on both cancerous and NAT spectra were 70.0% and 62.7% respectively, 

which were very poor compared with the classification accuracies obtained using 

the model constructed by epithelium spectra on CaF2 (Table 4.10). 

Table 6.3 Confusion matrix of training validation test of the cancer diagnosis model constructed using 
AdaBoost classification method with epithelium spectra 

Training Validation 

Predicted / % 

Cancer NAT 

True / % 
Cancer 70.0 30.0 

NAT 37.3 62.7 
 

Independent test spectra were tested by the constructed model. The confusion 

matrix of the independent test was generated and presented in Table 6.4. The 

classification accuracies on cancerous and NAT spectra were 57.0% and 60.3% 

respectively. Comparing with the independent classification accuracies obtained on 
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CaF2, 89.4% and 92.8% (Table 4.11), the results were not great but it still could 

detect some differences between cancerous and NAT epithelium spectra.  

Table 6.4 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with epithelium spectra 

Independent Test 

Predicted / % 

Cancer NAT 

True / % 
Cancer 57.0 43.0 

NAT 39.7 60.3 

 

 

The ROC curve and AUC of it were plotted and calculated. The curve was very close 

to the diagonal of the plot box, which indicates the poor performance of the model. 

In addition to that, the AUC value, 0.58, also further proves that the constructed 

model was not a great choice for cancer diagnosis. 

 

Figure 6.4 ROC curve of the cancer diagnosis model constructed using AdaBoost classification method with 
epithelium spectra 

The importance of features used in the cancer diagnosis model was plotted and 

shown in Figure 6.5. Two main feature peaks were observed in the plot, 3296 

(Amide A) and 3124 cm-1. The main contribution to spectra separation was the 
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Amide A band, which was not the main feature for cancer diagnosis of samples on 

CaF2. The main features for cancer diagnosis based on results obtained in CaF2 were 

mainly focused on the range of 1500 to 1750 cm-1 (Figure 4.30). The poor 

performance could be raised by missing key cancer diagnosis features.  

 

Figure 6.5 The importance of features of the cancer diagnosis model constructed using AdaBoost 
classification method with epithelium spectra 

If a threshold was applied to the classification results of the constructed cancer 

diagnosis model, by only keeping half of the top-rated spectra (11986), the 

confusion matrix of these top-rated spectra was generated and shown in Table 6.5. 

The classification accuracy on cancerous spectra was slightly improved from 57.0% 

to 58.5% (by 1.5%), while the classification accuracy decreases by adding a 

threshold to the result. This observation shows that the model was not certain 

about the classification. The constructed model cannot find the real difference 

between cancer and NAT epithelium cells. The similarities found in two classes 

could be other similarities among patients. 

 

3298 

3124 
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Table 6.5 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with 50% of the top-scored epithelium spectra 

Independent Test (50%) 
Predicted / % 

Cancer NAT 

True / % 
Cancer 58.5 41.5 

NAT 44.7 55.3 
 

 

A higher threshold was applied to the results. Only the top-scored 10% spectra 

were kept, where 21574 spectra were defined as poorly classified and only 2397 

spectra were kept. The confusion matrix after adding threshold was shown in Table 

6.6. It could be seen that the model started to favour the cancerous class, where 

62.2% of cancerous spectra were correctly classified while only 44.5% of NAT 

spectra were correctly classified. This observation further proves the previous 

assumption about the constructed model cannot find the real difference between 

cancer and NAT epithelium cells. 

Table 6.6 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with 10% of the top-scored epithelium spectra 

Independent Test (10%) 
Predicted / % 

Cancer NAT 

True / % 
Cancer 62.2 37.8 

NAT 55.5 44.5 

 

6.3.2.1.2. Classification results produced using Random Forest classification 

method 

A random forest model was constructed based on the epithelium spectra selected 

from the training cores, where 100 trees were applied (same with the study on 

CaF2). 

A subgroup of spectra was randomly selected from the training dataset, which 

consists of 20% of the total number of spectra. This subgroup was used for training 

validation test of the model. The obtained confusion matrix was calculated and 
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presented in Table 6.7. The classification accuracies on cancerous and NAT class 

were 70.8% and 66.7% respectively. Comparing with the training validation test 

results of the previous model using AdaBoost, similar outputs were obtained. 

However, the model constructed using random forest worked slightly better on 

cancerous class, while the model constructed using AdaBoost focused more on the 

NAT class.  

Table 6.7 Confusion matrix of training validation test of the cancer diagnosis model constructed using 
random forest classification method with epithelium spectra 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 70.8 29.2 

NAT 33.3 66.7 
 

Independent test data was applied to the model. The obtained confusion matrix 

was shown in Table 6.8, where the classification accuracies on cancerous and NAT 

spectra were 66.9% and 43.3%. The model failed on the independent test as the 

classification accuracy on NAT was smaller than 50%.  

Table 6.8 Confusion matrix of the independent test of the cancer diagnosis model constructed using random 
forest classification method with epithelium spectra 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 66.9 33.1 

NAT 56.7 43.3 

 

The ROC curve and AUC were plotted and calculated. Figure 6.6 indicates the ROC 

curve, which was close to the diagonal of the plotting box. This shows poor model 

performance. The AUC equals 0.53, which further indicates the poor performance 

of model as it was close to 0.5.  

The feature importance plot of the random forest model was plotted and shown in 

Figure 6.7. The peaks mainly contributed to the spectra separation were 3298 

(Amide A) and 3124 cm-1, which were also found in the main feature in the 

importance plot of AdaBoost. Unlike the plot on AdaBoost, the feature importance 
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plot using the random forest as classification method has many other minor peaks 

and fluctuations, which could be a possible reason for the failure in the 

independent test. 

 

Figure 6.6 ROC curve of the cancer diagnosis model constructed using random forest classification method 
with epithelium spectra 
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Figure 6.7 Feature importance plot of the cancer diagnosis model constructed using random forest 
classification method with epithelium spectra 

A threshold of only keeping 50% top-scored spectra was applied to the results 

obtained in the independent test. 11074 spectra were defined as poorly classified 

and 12897 spectra were used to generate the confusion matrix shown in Table 6.9. 

The model favours the cancerous class even more after applying threshold, which 

means that even the confident predictions made by the model cannot tell the 

differences between cancerous and NAT spectra in the independent test.  

Table 6.9 Confusion matrix of the independent test of the cancer diagnosis model constructed using random 
forest classification method with 50% top-scored epithelium spectra 

Independent Test (50%) 
Predicted / % 

Cancer NAT 

True / % 
Cancer 76.6 23.4 

NAT 61.0 39.0 

 

An even higher threshold was applied, where only the top 10% of the spectra were 

kept. 20914 spectra were thrown as poorly classified samples. Only 3057 spectra 

were kept and a confusion matrix was calculated and showed in Table 6.10. The 

3298 

3124 
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same trend observed previously was found, which further indicates that the model 

was not good enough for cancer diagnosis as it completely failed the independent 

test. 

Table 6.10 Confusion matrix of the independent test of the cancer diagnosis model constructed using random 
forest classification method with 10% top-scored epithelium spectra 

Independent Test (10%) 
Predicted / % 

Cancer NAT 

True / % 
Cancer 86.3 13.7 

NAT 65.5 34.5 

 

6.3.2.2. Classification results produced using spectra selected from stromal 

areas 

Stroma spectra were selected from samples based on annotation and separated 

into two groups, training group and independent test group. The training group 

contained 130384 cancerous and 112443 NAT stroma spectra. Cancer and NAT 

classes were balanced by randomly selecting 112443 cancerous spectra to match 

the number of spectra in NAT class. The independent test dataset contains 17872 

cancerous and 23112 NAT stroma spectra, which were exacted from the patient 

cores not related to the training cores. 

6.3.2.2.1. Classification results produced using AdaBoost classification method 

A cancer diagnosis model was constructed with the AdaBoost classification method. 

500 trees were involved in the model training and the learning rate was set to 0.1, 

which was consistent with the model constructed using epithelium spectra.   

A training validation test was performed using 20% randomly selected spectra from 

the training dataset. The training validation results were calculated and presented 

in the confusion matrix in Table 6.11. 78.0% cancerous and 61.9% NAT spectra were 

correctly classified by the constructed model using stroma spectra. Comparing with 

the training validation results obtained through the cancer diagnosis model 

constructed based on epithelium spectra, surprisingly higher classification accuracy 

on cancer class was observed, 8% lager. The difference in NAT class was less than 
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1%. Overall, similar performance was observed, which also was not great 

considering the results obtained in Chapter 4 on the training cores.  

Table 6.11 Confusion matrix of training validation test of the cancer diagnosis model constructed using 
AdaBoost classification method with stroma spectra 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 78.0 22.0 

NAT 38.1 61.9 

 

An independent test was conducted on the model, which predicts the labels of 

spectra exacted from the annotated area of the cores in the independent group. 

The predicted labels were compared with the actual label to calculate the 

classification accuracies for each class. The produced results were recorded and 

showed in Table 6.12, where the correct classification accuracy was only 2.3% for 

cancerous spectra. The model favours NAT class, as it tends to classify every 

spectrum as NAT spectrum.  

Table 6.12 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with stroma spectra 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 2.3 97.7 

NAT 2.5 97.5 

 

The ROC curve was plotted in Figure 6.8, where the curve fluctuated around the 

diagonal of the plotting box. The AUC value of the ROC curve was 0.52. Both the 

shape of the ROC curve and the value of AUC indicate the model acts poorly on the 

independent test set, which was consistent with the confusion matrix. 
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Figure 6.8 ROC curve of the cancer diagnosis model constructed using AdaBoost classification method with 
stroma spectra 

Feature importance of the model was plotted in Figure 6.9. The major peaks were 

observed at 3020 cm-1. In addition to that, some minor peaks with importance over 

0.0001 were also found at 3041, 3066, 3321 (N-H band), and 3681cm-1.  Applying 

the same cores to train the model on CaF2, 3037, 3087, and 3327 cm-1 (Figure 4.35) 

were observed as important features in the range of 3000 to 3550 cm-1. These 

peaks were in similar positions with the obtained features in this case. However, 

the previous features found in the model on CaF2 were not the main features 

responsible for the separation, which was mainly caused by major features in the 

lower wavenumber range, Amide I and II variations. Without features found from 

1500 to 1750 cm-1, with current level of data mining, classification cannot be 

successful with stroma spectra. 
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Figure 6.9 Feature importance plot of the cancer diagnosis model constructed using AdaBoost classification 
method with stroma spectra 

A threshold was applied to the results of independent test spectra, where 20542 

spectra were kept for prediction and 20442 spectra were thrown as poorly 

classified samples. With the threshold, the model predicts every left spectrum as 

NAT stroma spectrum. Even with confident predictions, the model cannot tell the 

differences between cancerous and NAT class in the independent test.  

Table 6.13 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with top 50% scored stroma spectra 

Independent Test 

Predicted / % 

Cancer NAT 

True / % 
Cancer 0 100 

NAT 0 100 

 

Another even larger threshold was applied by only keeping 4099 spectra and 

defining the rest 36885 stroma spectra as poorly classified spectra. Both correct 

classification accuracies on cancer and NAT classes stays at 100%, which further 

indicates the complete failure of the model on the independent test.  

3020 

3041 
3066 

3321 
3681 
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Table 6.14 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with top 10% scored stroma spectra 

Independent Test 

Predicted / % 

Cancer NAT 

True / % 
Cancer 0 100 

NAT 0 100 

 

6.3.2.2.2. Classification results produced using Random Forest classification 

method 

A random forest model was constructed with 100 trees which was consistent with 

the parameters used for model construction based on epithelium spectra. 

A training validation test was performed and the confusion matrix of the 

classification was shown in Table 6.15, where 20% randomly selected stroma 

spectra from the training dataset was applied. The obtained classification 

accuracies were compared with the model constructed using epithelium spectra 

using random forest. Higher accuracies were observed in both classes, especially 

NAT class (increased by around 7%). 

 

Table 6.15 Confusion matrix of training validation test of the cancer diagnosis model constructed using 
random forest classification method with stroma spectra 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 74.4 25.6 

NAT 26.6 73.4 

 

An independent test was followed. The model favours the NAT class, as the correct 

classification accuracy on cancer class was only 25.0% while the false negative 

prediction of cancerous spectra was 75%. The same model preference was found in 

using AdaBoost and stroma spectra to establish cancer diagnosis model.  
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Table 6.16 Confusion matrix of the independent test of the cancer diagnosis model constructed using random 
forest classification method with stroma spectra 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 25.0 75.0 

NAT 23.5 76.5 

 

The ROC curve was plotted and shown in Figure 6.10, where the curve was very 

close to the diagonal of the box. The AUC value was 0.51. Both observations 

demonstrate the poor performance of the model.  

 

Figure 6.10 ROC curve of the cancer diagnosis model constructed using random forest classification method 
with stroma spectra 

Feature importance of the model was plotted in Figure 6.11, where main peaks 

(importance over 2x10-7) were found at 3018, 3041, 3070, 3120, and 3321 (N-H 

band) cm-1. Among them two peaks, 3041and 3321 cm-1 were also found as 

important features in the model using AdaBoost. Other main peaks, for example 

3018 and 3070 cm-1, were also found in the model using AdaBoost however slightly 

shifted in positions.  
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Figure 6.11 Feature importance plot of the cancer diagnosis model constructed using random forest 
classification method with stroma spectra 

A threshold of only keeping 50% top-scored stroma spectra was applied to the 

results obtained in the independent test. 20442 spectra were defined as poorly 

classified and 20542 spectra were used as predictions to generate the confusion 

matrix shown in Table 6.17. The model favours the NAT class even more after 

applying the threshold.  

Table 6.17 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with top 50% scored stroma spectra 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 11.5 88.5 

NAT 11.2 88.8 

 

Another threshold of only keeping the top 10% stroma spectra in the independent 

test group was applied, where 36177 spectra were considered as poorly classified 

top-scored and only 4807 spectra were used to show the new confusion matrix, 

3018 

3120 

3321 
3041 

3070

1 
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Table 6.18. Almost every spectrum was classified as NAT spectrum. The model 

completely failed on the independent test. 

Table 6.18 Confusion matrix of the independent test of the cancer diagnosis model constructed using 
AdaBoost classification method with top 10% scored stroma spectra 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 5.4 94.6 

NAT 5.3 94.7 

 

6.3.2.3. Sectional conclusion  

Apart from the model constructed using epithelium spectra and the AdaBoost 

classification method, other models all fail in the independent test. The only model 

that survives the independent test barely identifies differences between cancerous 

and NAT epithelium spectra. Compared with the previously obtained classification 

accuracies on CaF2, the performance of even the best models using H&E on glass 

needs to improve significantly. In terms of the features obtained during model 

construction, for epithelium spectra, in the range of 3000 to 3700 cm-1, two main 

features, 3296 (Amide A) and 3124 cm-1, were noticed in both models. Many minor 

fluctuations in terms of peak intensities were found in the importance plot of 

random forest, which could lead to failure in the independent test comparing with 

AdaBoost. Similar situations were observed in models based on stroma spectra, 

where main features in AdaBoost model were more defined and significant 

comparing with minor variations while the random forest model involves more 

voting depended on minor features. For models built on stroma spectra, major 

features were also occurred in similar wavenumbers with the features from 

previously constructed models using spectra on CaF2. However, the previous 

separation in Chapter 4 was mainly caused by features in the lower wavenumber 

range, which could be the reason for the complete failure with both classification 

methods using spectra collected on glass slide.  
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6.3.3. Classification results produced using a different sampling method 

To further investigate whether the previous failures were caused by inappropriate 

data processing and selection methods, a different data selection protocol and 

slight changes to the pre-processing configurations were applied. 

In previous training data selection, equal numbers of spectra for both classes were 

randomly selected from 55 cores. In that case, each core could have a different 

contribution to the model construction as the size of the annotated area on each 

core was not the same. Some cores which have a larger annotated area could have 

a greater contribution. Their patient’s similarities could be enhanced and 

considered as cancer-related features. To avoid this effect, a new sampling method 

of selecting the same number of spectra from each core was adopted. Thus there 

was equal opportunity for each patient to contribute to the model. To further 

simplify the question of cancer prediction, only grade II breast cancer patients were 

used. The difference between cancer and normal class would, therefore, be more 

focused on just difference between breast cancer and NAT tissue but not the 

biological information involved grade differences. The model in this section was 

constructed using AdaBoost trained on epithelium spectra, as this combination 

provides the best classification results in the independent test in the previous 

section. 

The minimal number of pixel among all cores was selected to be the standard. 

Annotated pixels were randomly selected to match the number of the standard, 

which in this case were 82 pixels (each pixel stand for one spectrum, 82 spectra) per 

core. The total number of spectra used for training the model was 2706, including 

2050 cancerous spectra and 656 NAT spectra. These spectra were picked from 25 

cancerous cores and 8 NAT cores. For the independent test dataset, 77 pixels were 

randomly selected from the annotated areas of the cores. The total number of 

spectra used for the independent test were 456, including 342 cancerous spectra 

and 114 NAT spectra. 

Principal component based noise reduction was applied with 80 principal 

components being retained. Spectra were quality tested based on the height of the 
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amide A band. Spectra that had an absorbance between 0.07 and 1.2 were retained. 

The spectral range 3100 to 3600 cm−1 was used. Each spectrum was then vector 

normalized and converted to the first derivative using Savitzky−Golay smoothing 

with 19 points window size. 

For machine learning algorithms, a training validation dataset was separated from 

the actual training dataset to test the established model. To make sure each core 

was actually involved in the model construction, 80% spectra were randomly 

selected from the training dataset provided by each core, and the rest of the 

spectra contributed by each core were used for training validation. The 

classification results of training validation test were presented in Table 6.19. 

Table 6.19 Training validation confusion matrix of AdaBoost using a new sampling method to select 
epithelium spectra 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 99.5 0.5 

NAT 0 100 
 

 

It could be seen that both classification rates boost from 70.0% and 62.7% (in Table 

6.3) to 99.5% and 100% for cancerous and NAT class respectively. It means that the 

model had a nearly perfect performance on the validation data which contains 

similar biological information with the data used to construct the model. 

Table 6.20 Independent test confusion matrix of AdaBoost using a new sampling method to select epithelium 
spectra 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 81.9 18.1 

NAT 15.8 84.2 

 

Further performance test of the model using the independent test dataset was 

performed and was shown in Table 6.20. 81.9% cancerous spectra and 84.2% NAT 

spectra were correctly classified. Comparing with the performance of previous 
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epithelium cancer diagnosis model using AdaBoost nearly 25% increases were 

observed in both cancerous and NAT classes. Considering that using fine-needle 

biopsy to determine malignancy had an overall classification accuracy of 75.4% [17] 

based on the research conducted in 2010 by Kasraeian et al. . The classification 

accuracies in the independent test were considered excellent.  

The ROC curve of the model was presented in Figure 6.12. The curve was close to 

the top left corner of the plotting box. The ROC curve was not smooth, which could 

be improved by adding more independent test spectra. To quantify the model 

performance in AUC value, 0.9 was obtained, which indicates good performance.  

 

Figure 6.12 ROC curve of the model constructed based on AdaBoost using a new sampling method to select 
epithelium spectra 

To find the key biological information used for cancer diagnosis, the feature 

importance plot of the model was constructed and shown in Figure 6.13. Three 

main peaks having intensity larger than 0.001 were labelled, which were 3118, 3300 

(N-H stretching), and 3571 (O-H stretching) cm-1. Comparing with the AdaBoost 

cancer diagnosis model constructed in the previous section, apart from 3571 cm-1 

other major peaks were also found however with a different ratio. In the previous 



195 
 

model, 3296 (Amide A) cm-1 has the highest intensity which was almost twice the 

intensity of importance at 3124 cm-1. In this model, the highest peak was at 3118 

cm-1 with importance intensity equals 0.0045, tripled the intensity of peak 3300 cm-

1. All these differences could lead to difference in the classification performance of 

the constructed model. 

 

Figure 6.13 Feature importance plot of the model constructed based on AdaBoost using a new sampling 
method to select epithelium spectra 

As pixels used for both model construction and independent test were randomly 

selected among a large number of spectra, the whole process, including model 

construction and independent test, was repeated five times. The independent test 

results were generated and were presented in Table 6.21. It could be seen that 

results on five corresponding models were stable, and the averaged classification 

accuracy on cancerous spectra was 81.3% and 83.2%.  

 

 

 

3571 

3300 

3118 
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Table 6.21 Independent test confusion matrix on the corresponding models with AdaBoost classification 
method  using the new sampling method to select epithelium spectra and the averaged classification 
accuracy of independent test 

Independent Test (Run one) 

 

Predicted / % 

Cancer NAT 

True / % 
Cancer 81.9 18.1 

NAT 15.8 84.2 

Independent Test (Run Two) 
Predicted / % 

Cancer NAT 

True / % 
Cancer 85.4 14.6 

NAT 18.4 81.6 

Independent Test (Run 

Three) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 67.8 32.2 

NAT 22.8 77.2 

Independent Test (Run 

Four) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 87.7 12.3 

NAT 13.2 86.8 

Independent Test (Run Five) 
Predicted / % 

Cancer NAT 

True / % 
Cancer 83.6 16.4 

NAT 14.0 86.0 

Average 
Predicted / % 

Cancer NAT 

True / % 
Cancer 81.3 18.7 

NAT 16.8 83.2 
 

To perform a traffic light colouring system on each independent core, a new 

histological model was established with the manner of extracting the same number 

of pixel from each core. To ensure the input accuracy of the cancer diagnosis model, 

only the top 10% scored epithelium spectra from each independent test core was 
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passed to the next classification model. The classification accuracy of the new 

histological model was tested on the annotated pixels from the independent test 

with a threshold of only keeping the top 10% scored spectra, the classification 

accuracies were 100% for both cancerous and NAT class. The confusion matrix 

contained this information was shown in Table 6.22. 

Table 6.22 Confusion matrix of the independent test with the top 10% scored spectra on the histological 
model between epithelium and stroma using AdaBoost classification method and epithelium spectra 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 100 0 

NAT 0 100 
 

 

After selecting epithelium spectra using the histological model, these chosen 

spectra were passed to the cancer-NAT model. The top 10% scored spectra were 

used for a class assignment. If the number of spectra predicted as cancer was more 

than the number of spectra being diagnosed as NAT, the core would be predicted 

as cancerous core and coloured in red. If majority of spectra were predicted as NAT, 

then vice versa and coloured in green. The coloured core images of each core in the 

independent test set were presented in Figure 6.14. There was one exception, F6, 

which had only one epithelium spectrum scored in the top 10%. Although there was 

only one spectrum input, the cancer diagnosis model still predicts the core correctly. 

The overall classification accuracy in the unit of core was 100%. If F6 was removed 

as it does not fully complete the class assignment rules, the classification accuracy 

would be 87.5%, slightly higher than the averaged overall classification accuracy, 

81.7%, in the unit of spectrum. 
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Figure 6.14 Traffic light coloured core images of the independent test set (red means cancerous core while 
green presents NAT core). The yellow box indicated F6 which only had 1 epithleium spectra used in 
classification 
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6.4. Conclusion and Future work 

With careful pre-processing process and data selecting method, H&E stained breast 

tissue on glass could be used for cancer prediction, especially using epithelium 

spectra. However, this new model using a different sampling method did not 

consider all grades of breast cancer, as it only focused on finding the differences 

between the grade II breast cancer and NAT breast tissues. The main reason for 

only applying grade II breast cancer tissue was that the epithelium cells in these 

cores were easier to annotate and the number of annotated pixels was more 

consistent. For future studies, more annotated cores including all three grades of 

breast cancer (same number of cores in each grade) could be used to establish a 

more robust breast cancer prediction model.  
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7. 1. Chapter Overview 

Machine learning is known as a branch of artificial intelligence. It allows a computer 

to learn from data and improve with experience. It refines a model that can be used 

to predict outcomes of inquiry-based on previous learning. There are two types of 

machine learning, which can be categorised as either supervised or unsupervised 

learning. For supervised learning, a labelled set of input-output pairs is given up to 

learning mapping from inputs to outputs. The second type is unsupervised learning, 

which is more data mining than actual learning. Its objective is to find hidden 

patterns in data, which is also called knowledge discovery [1]. There are no defined 

answers, as there is no specific existing pattern to find [1,2].  

Machine learning has become increasingly popular and more matured in the last 

decade. It has grown into a powerful tool in many different fields. Research has 

been done combining both FTIR and random forest, which is a supervised machine 

learning technique based on ensemble decision trees. A random forest grows many 

classification trees as required. Once an input data is put into the forest, each tree 

has its classification result. All trees in the forest are involved in voting the most 

popular class as the final result from the forest [3]. Random forest is considered to 

be an effective approach when it comes to spectral analysis. Pilling et al. showed 

that random forest can give high accuracy on a glass substrate with classification 

accuracies over 95% [4]. 

Unlike random forest, not many people have tried to combine another excellent 

decision tree ensemble method, boosting, with spectral analysis. Boosting can 

improve the performance of weak learners regardless of whether training data is 

balanced or imbalanced [5]. The most famous and commonly used boosting 

method is Adaptive Boosting (AdaBoost) [6]. The AdaBoost algorithm of Freund and 

Schapire [7] was published in 1997. It is the first practical boosting algorithm, and 

remains one of the most widely used and studied, with applications in numerous 

fields [8]. AdaBoost works by obtaining weighted majority votes of the weak 

hypothesis where each hypothesis is assigned weight and conducted by every weak 

learner [8]. To be more specific, during each iteration, weights of incorrectly 

classified samples are modified with the aim of correctly classifying them in the 
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next iteration. All trees are involved in weighted voting to allocate unknown 

samples. It is considered more effective at handling imbalanced datasets than 

random forest, as the minority class which is much easier to be miss-classified can 

be given higher weights in subsequent iterations [5].  

Conventional statistical approaches are compared with machine learning technique 

on the imbalanced datasets. Principal component analysis (PCA) is one of the most 

commonly and widely used in exploratory data analysis and predictive modelling. It 

is defined as a statistical procedure concerned with explicating the covariance 

structure of datasets [9]. PCA develops artificial variables, the principal components, 

which are variables explained variances of datasets [10]. PCA can be related to 

canonical variate analysis (CVA), which studies linear relationships between two 

vector variates [11]. One multivariate discrimination approach using principal 

components analysis to reduce the dimensionality and then performing canonical 

variates analysis is known as principal component canonical variates analysis (PC-

CVA) [12]. PC-CVA is recommended rather than merely PCA, as this two-stage 

approach is considered to bring improvements on model stability compared with 

than just PCA and canonical variates extracting more detailed information than just 

principal components [13].  

Another popular conventional approach for pattern recognition and classification is 

partial least squares discriminant analysis (PLS-DA), which can be regarded as a 

linear classifier with the objective of using a straight line dividing data into two or 

more regions. For a two-class problem, PLS1 is adopted. Samples are assigned into 

two classes labelled +1 or −1. Unclassified samples are allocated into different 

classes based on estimated numerical labels [14]. PLS-DA has several advantages, 

including widespread availability and insights of variables through weights and 

loadings, comparing with traditional statistical methods (linear discriminant analysis 

(LDA) and quadratic discriminant analysis (QDA)) [15].  

Both PC-CVA and PLS-DA are excellent tools when analyzing balanced datasets, but 

when applied to imbalanced data sets, conventional methods are not always a good 

choice, as imbalanced classes are not taken into account [15,16]. Unfortunately, 
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medically related datasets are often unbalanced due to the nature of diseases. 

Normal or high-risk samples are usually less likely to be obtained, while samples of 

intermediate disease stages consist the majority of the overall dataset. Creating an 

effective classification model can be challenging, as imbalanced training data can 

cause bias [16]. When number of samples in one class largely exceeded number of 

samples in the other class, traditional data mining algorithms tend to favour 

majority class by allocating samples to it. The minority class, which is frequently the 

positive class (generally the class of interest), can have poor classification accuracy 

due to the biased model. Therefore, techniques are required to ensure that a model 

can efficiently identify these both important and rarely occurring samples. Different 

methods can be conducted to solve this, including different sampling methods [17]. 

There are two commonly used sampling methods, including under-sampling and 

over-sampling. Class distribution can be balanced by either duplicating selected 

members of the minority class (over-sampling) or removing selected examples from 

the majority class (under-sampling) [16]. Under-sampling and over-sampling can be 

performed in different ways [5]. The easiest method is randomly resampling 

datasets. Random under-sampling balances two classes by randomly removing 

extra data from the majority class to match the number of samples in minority class, 

while random over-sampling replicate samples in minority class until the number of 

samples match the desired amount. These are methods applied in this chapter. 

In this chapter, the possibility of applying machine learning techniques (random 

forest and AdaBoost) into infrared data analysis on human breast cancer will be 

discussed. Classical statistical approaches will be compared with random forest and 

AdaBoost. Also, the application of different classification methods combining with 

class-balancing sampling methods will be mentioned as well.   
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7.2. Methodology 

7.2.1. Breast tissue preparation  

A formalin-fixed paraffin embedded breast TMA slide, ID BR20832, was used for 

this study. It was purchased from US Biomax, Rockville, MD. The TMA contains 15 

pathological indicated non-malignant and 192 malignant cores, in total 207 breast 

tissue biopsy cores. Each core is from a different patient. A 5 μm thickness and 1 

mm diameter section was floated onto a standard histology glass slide and H&E 

stained. An adjacent section was floated onto a BaF2 slide without dewaxing, which 

reduces the possibility of having chemical changes of samples during de-

paraffinization and decreases spectral scattering as matching refractive index 

between paraffin and sample. [18]  

To construct high variance models 70 cores were selected from the sample set, 

which included 57 cores with grade I, II or III of breast cancer and 13 normal 

associate breast tissue cores.  

7.2.2. Infrared Chemical Imaging instrumentation and experimental 

method 

The instrument and microscope used in the work reported here were those that 

have previously detailed in chapter 4. 

Before imaging, background scans were taken as a single tile with 128 co-added 

scans at a spectral resolution 5 cm-1. The area taken was selected to be clean and 

paraffin free. 96 co-added sample scans were measured on each core from TMA. 

Interferograms were processed into absorption spectra using Happ-Genzel 

apodisation with a region between 900 and 3800 cm−1. 

7.2.3. Data preprocessing procedures 

All data were pre-processed with MATLAB 2017a. Infrared spectra for each biopsy 

core were extracted from the mosaic as a 256 × 256 × 1478 datacube. Each 

datacube consists of 65536 spectra which contain 1478 data points.  

Chemical images of each of the breast tissue cores were generated and compared 

to the H&E stained sections, and regions of epithelium were identified and 
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annotated on chemical images generated based on  WHO Classification of Tumours 

in the Breast[19]. Principal component based noise reduction was used to improve 

the signal-to-noise ratio of raw spectra from annotated area. The first 80 principal 

components were kept. Spectra were quality tested to remove data obtained from 

areas with little or no tissue based on the height of the amide I band. Spectra have 

absorbance between 0.1 and 2 were retained. Spectra ranges 1000 to 1300 cm−1, 

1500 to 1750 cm−1, and 3005 to 3550 cm−1 were taken. Region describing the 

absorption bands of wax was removed. Each spectrum was then vector normalized 

to correct for different thicknesses of breast tissue. Finally spectra were converted 

to first derivative and performed a Savitzky−Golay smoothing using a window size 

of 19 data points. The dataset was separated into two groups, a training set and 

independent test set. The training set contained 44 cancerous and 11 normal 

associated cores giving in total 55 cores, while independent test set contained 13 

cancerous and 2 normal associated cores giving in total 15 cores. Each core was 

from a different patient. Information from 55 patients was involved in training 

process and spectra from 15 different patients were used for independent test. 

7.2.3.1. Spectra sampling methods 

Both under-sampling and over-sampling were applied to subgroups of the dataset, 

which contained a total number of 10000 spectra with different cancer-to-normal 

ratios from a data pool containing 70932 cancerous spectra and 19338 non-

cancerous spectra extracted from annotated epithelium area of 55 cores. Ratios 

between cancerous and normal spectra of 9:1, 8:2, 7:3, 6:4 and 5:5, with a fixed 

total number of spectra, were generated based on a randomly selected index 

number list. Firstly, a 5:5 cancer-to-normal ratio was randomly generated, that 

contains 5000 cancerous and 5000 normal spectra. Subgroups with other 

proportions were generated based on it. A 6:4 subgroup contains 6000 cancerous 

spectra, which contained the first selected 5000 cancerous spectra from the 

previous group and another randomly selected 1000 cancerous spectra from data 

pool, and 4000 normal spectra which randomly choose from previous selected 5000 

spectra. This method was applied to all 4 unbalanced subgroups, as it minimised 

the performance differences of unbalanced classes with different ratios caused by 
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spectral information of randomly selected groups. Keeping as many as possible the 

same selected spectra in each subgroup minimised the effects of biological 

information differences causing variations of classification performance. 

To balance training sets of cancerous and non-cancerous classes, two sampling 

methods were conducted, under-sampling and over-sampling. In terms of under-

sampling, for each subgroup, spectra from the cancerous class were randomly 

selected and removed to match the number of spectra in the normal class. To over-

sample each subgroup, spectra from normal class were randomly duplicated to 

match the number of spectra in cancerous class. 

7.2.3.2. Classification methods 

Four classification methods were used to show if there were differences among 

unbalanced classes with different cancer-to-normal ratios. Commonly used 

parameters were applied with each classification method, as the main focus of this 

chapter is to show the influences of unbalanced dataset on each method. All 

methods were trained on either balanced or unbalanced training datasets and 

tested on the same independent test dataset. 

7.2.3.2.1. Random forest 

A random forest algorithm (available from 

http://code.google.com/p/randomforest-matlab/) was used. 500 trees were used 

to train the classifier.  The number of variables to split on at each node was the 

square root of number of features from variables, which was the number of 

wavenumber intervals, 570, after wavenumber range selection. The minimum node 

size to split was default to one. 

7.2.3.2.2. AdaBoost 

An AdaBoost model was constructed using MatLab 2017 built-in Statistical and 

Machine Learning Toolbox. AdaBoost M1 was used as an only two-class problem 

was studied. 500 iterations were applied with learning rate (to train an ensemble 

using shrinkage) equalled to 0.1. 
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7.2.3.2.3. PCCVA 

A PCCVA model was constructed using MatLab 2017 (available from 

https://bitbucket.org/AlexHenderson/chitoolbox/src/master/ChiToolbox/). 

Principal components explained 95% of the dataset were used for analysis. PCA was 

conducted first and CVA was performed based on PC scores obtained previously. 

Independent dataset was projected to the model constructed based on a training 

dataset. A Mahalanobis distance was applied to measure the distance from 

projected independent test sample to training CV score distribution of both classes. 

7.2.3.2.4. PLSDA 

The PLDSA model was developed using cluster toolbox V2.0 (available from 

https://github.com/Biospec/cluster-toolbox-v2.0). There are numerical PLSDA and 

its enhanced algorithms. The algorithm used followed the paper published by 

Brereton et al [15], where PLS1 was used, which designed for two-class problems. 

In addition to that, 10-fold cross-validation was conducted to avoid over-fitting and 

the optimum principal component was used for model construction. As unbalanced 

training data sets were applied, according to Brereton et al [15], data centre was 

modified by subtracting the average of the means of the two unbalanced groups. It 

helped adopt unbalanced training sets better, as the new data centre considered 

the boundary was shifted towards the larger group which caused misclassification. 

Independent dataset was projected to the model constructed based on training 

dataset.  
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7.3. Results and discussion 

7.3.1. Classification results produced using unbalanced training data 

Applying unbalanced training data sets to construct classification models can lead 

to misclassification of the minor class as the classification model usually favours the 

dominant class. It is interesting to see if unbalance training data will cause a large 

influence on the classification results. To show the extent of problem unbalanced 

training data sets because when applying classification, several questions are 

proposed and addressed in this section. Namely (i) Will all four chosen classification 

methods be influenced by unbalanced training data? (ii) Will the same unbalanced 

data set lead to the same effects on all classification methods? (iii) Are there any 

methods significantly influenced to a greater or lesser degree influenced by 

unbalanced training data compared with than others? (iv) Will different unbalanced 

ratios have the same effect on classification results? (v) Is there a trend of influence 

with different unbalanced ratios? 

To answer these questions, experiments were conducted using four classification 

methods which were applied to the same groups of unbalanced training data. Two 

of them were statistical methods, which were commonly used in the field. Two of 

them were machine learning methods which were less commonly used. Four 

unbalanced ratios were used in this case, including 6:4 (6000 cancerous spectra vs. 

4000 non-cancerous spectra), 7:3 (7000 cancerous spectra vs. 3000 non-cancerous 

spectra), 8:2 (8000 cancerous spectra vs. 2000 non-cancerous spectra) and 9:1 

(9000 cancerous spectra vs. 1000 non-cancerous spectra). The 5:5 (5000 cancerous 

spectra vs. 5000 non-cancerous spectra) subgroup was used as a perfect-world 

standard to access the extent of bias of each unbalanced model with different 

condition combinations. 

7.3.1.1. Statistical approaches 

Starting with statistical classification methods, PLS-DA and PCCVA, the same 

independent test dataset was applied to both models using different unbalanced 

training ratios. For reproducibility of results, each model construction process was 

repeated three times with randomly selected groups of training data and every 
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time followed by an independent test consisting of the same group of spectra. All 

independent test results were plotted in Figure 7.1. 

Classification accuracy of cancerous class for both methods was plotted in red 

colour while the NAT class was shown in green. All three attempts of the 

independent test were indicated as scatters and the averaged correctly 

classification accuracies were presented in lines. The averaged independent test 

classification accuracy of correctly separate cancerous spectra was plotted in 

dotted lines while for non-cancerous spectra was plotted in solid lines. Results of 

three independent test attempts were plotted in scattering points. 

It could be seen that both methods were largely influenced by unbalanced ratios. 

With the increase of cancerous spectra, for PLSDA, the classification accuracy grew 

dramatically. From an average of 59% at ratio 6:4, the classification accuracy 

increased to 82% at ratio 9:1. With the decrease of non-cancerous spectra, the 

classification accuracy reduced largely as well. From average accuracy 95% at ratio 

6:4, the classification accuracy decreased to 39%. It could be seen that although 

unbalanced data had been mean centred based on subtracting the average of the 

means of the two groups, still classification accuracy was influenced. If unbalanced 

datasets were applied to original PLSDA method without the new mean centring 

method, applying the same independent test data, the averaged classification 

accuracy of cancerous spectra was pulled from 70% (6:4) to 98% (9:1) while the 

averaged classification accuracy for non-cancerous spectra dropped from 78% (6:4) 

to 13% (9:1). The mean centring method proposed by Brereton et al [15] reduces to 

the influences of unbalanced ratios to PLSDA model. However, even after mean 

centring correction, with large unbalanced ratio, the model was still largely 

influenced. 



212 
 

 

Figure 7.1 Classification accuracies using A) PLSDA B) PCCVA with unbalanced training datasets with different 
ratios, where spectra ratio stands for the ratio between the number of spectra in cancer class and NAT class. 
Average classification accuracies of NAT class was plotted in blue solid line while cancer class was plotted in 
dotted red line. Classification results conducted using both PLSDA and PCCVA were highly influenced by the 
unbalanced ratios between cancer and non-cancer classes. With PLSDA, more spectra led to higher 
classification rates and fewer spectra led to lower rates. With PCCVA, increase number of cancerous spectra 
did not lead to increase of classification accuracy which showed the model did not benefit from big data, but 
decease of the number of sample did lead to the reduction of classification accuracies. 

For PCCVA, with the increase of cancerous spectra, the classification accuracy 

remained at approximately the same the level, from 56% (6000 cancerous spectra) 

to 54% (9000 cancerous spectra). For non-cancerous class, with the decrease of 

non-cancerous spectra, the classification accuracy reduces, dropping from 86% 

(with 4000 non-cancerous spectra) to 68% (with 1000 non-cancerous spectra). 

Comparing these two methods, although they both largely biased by the major 

class, PCCVA was slightly more stable than PLSDA, as it had fluctuations during 

changing training datasets with different unbalanced ratios. One possible reason 

could be that the nature of PLSDA relies more on data centre and not every 

centroid was of equal significance [15]. 
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7.3.1.2. Machine Learning 

The same independent test dataset was applied to both AdaBoost and random 

forest using different unbalanced training ratios. For reproducibility of results, 

independent tests were repeated three times, and all independent test results were 

plotted in Figure 7.2. Classification accuracies for cancerous class with all ratios 

were plotted in red colour, while for the NAT class were plotted in green colour. 

The averaged independent test classification accuracy of correctly separate 

cancerous spectra was plotted in dotted lines while for non-cancerous spectra was 

plotted in solid lines. Results of three independent test attempts were plotted in 

scatters. 

It could be seen that both methods were influenced by unbalanced ratios. With the 

increase of cancerous spectra, for AdaBoost, the classification accuracy of 

cancerous spectra increased but not too aggressively, compared with two statistical 

classification methods. From an average of 83% at ratio 6:4, the classification 

accuracy increased to 92% at ratio 9:1. With the decrease of non-cancerous spectra, 

the classification accuracy decreased. From average accuracy 96% at ratio 6:4, the 

classification accuracy decreased to 86%. For both classes the influences of 

unbalanced ratios had remained within the range of 10%.  

For random forest, with the increase of cancerous spectra, the classification 

accuracy increased as well, from 81% (with 6000 cancerous spectra) to 94% (with 

9000 cancerous spectra). For non-cancerous class, with the decrease of non-

cancerous spectra, the classification accuracy decreased largely, dropping from 93% 

(with 4000 non-cancerous spectra) to 50% (with 1000 non-cancerous spectra). 

Comparing two machine learning methods’ performance on unbalanced datasets, 

they both adopted unbalanced training data better than statistical approaches. 

Both methods had similar fluctuations in cancerous class with the increase of ratios. 

However, random forest still failed to separate non-cancerous class, while 

AdaBoost still performed relatively well when 9:1 unbalanced ratio was applied. 

This could be raised by the nature of AdaBoost algorithm, which could give minority 

class higher weights in the next iteration [5]. 
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It was clear that unbalanced training datasets caused an increase of classification 

accuracy of majority class and decrease of classification accuracy of minority class. 

The extent of increase and decrease was influenced by unbalanced ratios. The 

larger the ratio, the larger the difference would be made. From results mentioned 

previously, all four classification methods were influenced by unbalanced training 

data with different extent. Comparing four methods, AdaBoost was considered to 

have the best performance on unbalanced training datasets. It gave the smallest 

fluctuation when different unbalanced ratios were applied. It could because of the 

mechanism of AdaBoost. The minority class, non-cancer class, which was much 

easier to be miss-classified could be given higher weights in each iteration, as it 

corrected weights for miss-classified samples [5].  

 

Figure 7.2 Classification accuracies using A) AdaBoost B) Random Forest with different unbalanced training 
datasets, where spectra ratio stands for the ratio between the number of spectra in cancer class and NAT 
class. Average classification accuracies of NAT class was plotted in blue solid line while cancer class was 
plotted in dotted red line 
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7.3.2. Classification results produced using balancing classes 

To solve the unbalanced training data problem, one straight forward method was 

applied, namely sampling. There were two sampling types, under-sampling and 

over-sampling. To balance training sets of cancerous and non-cancerous classes, 

both sampling methods were conducted. They were both applied to groups of 

unbalanced training data with different unbalanced ratios. After sampling, balanced 

training groups were applied to four classification methods (PLS-DA, PCCVA, 

AdaBoost and random forest) to investigate performances of two sampling 

methods pairing with different classifiers. The same independent test data set was 

applied to all models to investigate responses of different classification methods to 

both sampling methods. 

7.3.2.1. Statistical approaches 

Starting with statistical classification methods, PLS-DA and PCCVA were used. Three 

attempts were applied to each unbalanced ratio and plotted as scatter points to 

show the possible fluctuations caused by random selection of spectra. The average 

classification accuracy of both cancer and non-cancer classes were plotted as trend 

guidance in Figure 7.3 (PLS-DA) and Figure 7.4 (PCCVA), where A) showed 

classification accuracy after under-sampling and B) showed after over-sampling 

with different unbalanced ratios respectively.  
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Figure 7.3 PLSDA classification accuracy with different unbalanced ratios A) under-sampling method was 
applied B) over-sampling method was applied, where spectra ratio stands for the initially unbalanced ratio 
between the number of spectra in cancer class and NAT class applied in training process. Average 
classification accuracies of NAT class was plotted in blue solid line while cancer class was plotted in dotted 
red line 

For PLS-DA, surprisingly both sampling methods had similar performance with all 

unbalanced ratios. For under-sampling, the averaged cancerous spectra separation 

accuracy remained in the range of 53% (at 8:2 ratio, 2000 spectra per class) and 55% 

(at 7:3 ratio, 3000 spectra per class), while the non-cancerous spectra classification 

rates were between 98% (at 7:3 ratio, 3000 spectra per class) and 99% (at 9:1 ratio, 

1000 spectra per class). For over-sampling, the averaged cancerous spectra 

separation accuracy remained between 55% (at 9:1 ratio, 9000 spectra per class) 

and 59% (at 7:3 ratio, 7000 spectra per class), while the non-cancerous spectra 

classification accuracies were remained in the range of 97% (at 9:1 ratio, 9000 

spectra per class) and 99% (at 7:3 ratio, 7000 spectra per class). Both methods had 

only small fluctuations in term of averaged classification accuracy. Not much 

difference was observed when different unbalanced ratios were applied using both 

methods.  
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In general, it could see that PLSDA did not benefit from increasing or decreasing the 

number of spectra in the training dataset in this case. For all unbalanced ratios, the 

averaged results remained within a five percent range for both sampling methods. 

PLSDA kept its performance when only a small number of spectra were used, which 

could be considered as an advantage of PLSDA classification.  

Unlike averaged classification accuracy, the scatter of three attempts of 

classification on independent test data was large for both under-sampling and over-

sampling when the 9:1 unbalanced ratio was applied. For under-sampling, the 

spread of classification accuracy of cancerous spectra increased. One possible 

reason could be that with the decrease in the number of training spectra, the linear 

separator calculated did not bring as good separation as before. For over-sampling, 

the classification results were influenced by the purity of training data, since for the 

non-cancerous class only 1000 unique spectra were available in a total number of 

9000 spectra. These observations could be considered as a decrease in reliability in 

the classification result.  

To explain the obtained results, as cancerous spectra including different stages and 

grades of breast cancer, it was possible that the spread of spectra after data 

projection in cancer class was more spread or even surround the non-malignant 

class. Clear separation cannot be achieved by applying linear separator as it was 

different to draw a straight line between these two classes. This assumption would 

be validated in later of this section. 

For PCCVA, shown in Figure 7.4, both sampling methods had similar averaged 

classification accuracies when the unbalanced ratios 6:4, 7:3 and 8:2 were applied. 

For under-sampling, the averaged cancerous spectra separation accuracy remained 

in the range of 57% (at ratio 6:4, 4000 spectra per class) and 59% (at 8:2 ratio, 2000 

spectra per class), while the non-cancerous spectra classification rates were 

between 88% (at 7:3 ratio, 3000 spectra per class) and 89% (at 6:4 ratio, 4000 

spectra per class). For over-sampling, the averaged cancerous spectra separation 

accuracy remained between 57% (at 6:4 ratio, 6000 spectra per class) and 58% (at 

8:2 ratio, 8000 spectra per class), while the non-cancerous spectra classification 
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accuracies remained in the range of 88% (at 8:2 ratio, 8000 spectra per class) and 

90% (at 7:3 ratio, 7000 spectra per class). Both methods had only small fluctuations 

in terms of averaged classification accuracy. When the ratio 9:1 was applied, the 

non-cancerous classification accuracy of over-sampling remained 86% while 

classification accuracy after applying under-sampling dropped rapidly from average 

from 89% to 69%. Classification accuracy of the cancerous class after under-

sampling was reduced from average 59% to 52%, while the averaged accuracy of 

over-sampling remained at a similar level. 

 

Figure 7.4 PCCVA classification accuracy with different unbalanced ratios A) under-sampling method was 
applied B) over-sampling method was applied, where spectra ratio stands for the initially unbalanced ratio 
between number of spectra in cancer class and NAT class applied in training process. Average classification 
accuracies of NAT class was plotted in blue solid line while cancer class was plotted in dotted red line 

 It could be observed that, for the non-cancer class, the increase in the number of 

spectra by over-sampling did not cause large increase in its classification accuracy 

but when number of spectra was reduced to certain level, (in this case, 1000 

spectra), its classification accuracy was be largely reduced. It was possible that 

when the number of spectra was reduced to certain point, the model started to 

lose some information which was curial for linear separation. To test if this was the 

case CV loadings were plotted in Figure 7.6. A comparison of the loadings between 
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the unbalanced ratios 6:4 and 9:1, showed that differences were observed in the 

ranges of 1134 and 1176 cm-1, 1593 and 1604 cm-1, and peak 1641 cm-1. The shape 

of loading curve with fewer training spectra did not vary much from the curve with 

more spectra, which in a way explained the stable performance of PCCVA, as the 

linear separator changed only very little in terms of peak intensity. Most previously 

separated independent spectra would still be separated even through less 

information was provided. Looking at the distribution patterns of PCCVA scores of 

both 6:4 and 9:1 ratios in Figure 7.5, both A) and B) had a similar distribution 

pattern with different scales, where scores were more spread with 6:4 ratio while 

scores were more gathered when it came to 9:1 ratio, as more information was 

given during model construction. It could be seen that there was difference 

between medians of cancerous and non-cancerous scores. 

 

Figure 7.5 PCCVA scores of under-sampled independent test dataset. A) with unbalanced ratio of 6:4 B) with 
unbalanced ratio 9:1 
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Figure 7.6 CV loadings of under-sampled independent test dataset, where unbalanced ratio of 6:4 was 
plotted in black and 9:1 was in red in the wavenumber range A) 1050 to 1300 cm−1, B) wavenumber range 
1500 to 1750 cm

−1
, and C) wavenumber range 3005 to 3550 cm

−1
 

For the cancer class separation, it could be seen that PCCVA does not benefit from 

increasing the number of spectra in the training dataset. Going from 2000 spectra 

to 4000 spectra (under-sampling) and 6000 to 9000 spectra (over-sampling), the 

cancerous class classification accuracy stayed between average of 57% and 58%. In 

terms of scatter points representing repeating experiments, three attempts of 

classification on independent test data resulted in a large spread of ranges for both 

under-sampling and over-sampling when 9:1 unbalanced ratio was applied. For 

over-sampling, the spread of the scatter points showed that classification results 

were influenced by the purity of training data, as for non-cancerous class only 1000 

unique spectra were available in total number of 9000 spectra. This observation 

could be considered as a decrease of reliability of the classification result, which 

could be seen in Figure 7.7, where although the information provided for model 

construction increases, the distance between median of CV scores decreases. More 

information was therefore not always good for classification. 

A) B) C) 
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Figure 7.7 PCCVA scores of over-sampled independent test dataset. A) with unbalanced ratio of 6:4 B) with 

unbalanced ratio 9:1 

PCCVA and PLSDA had poor classification of cancerous spectra but high accuracy to 

separate non-cancerous spectra. One possible reason could be that non-cancerous 

epithelium cells were more uniform than cancerous ones. Cancer cells exhibit more 

variability in terms of cell size and shapes compared to normal cells [20]. Non-

cancerous spectra were more gathered as a group while cancerous spectra were 

more spread. In addition to that, individual differences among patients having 

different stages and grades of breast cancer could contribute to disjoint distribution 

of the cancerous class, which could not be separated by linear separators. Why do 

linear separators seem to fail? To answer this question, projected PCA score of an 

independent dataset was plotted and shown in Figure 7.8. It could be seen that 

there were two clusters of cancerous spectra, which could be considered as disjoint 

data distribution, and non-cancerous spectra was located in the middle of these 

two groups. If a disjoint data distribution was observed in one class, linear 

separators were not recommended, as it was difficult to separate data using one 

line. This explains why nearly half of the cancerous spectra were incorrectly 

classified while non-cancerous spectra were separated with high accuracy. 
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Figure 7.8 projected PCA score of independent dataset on PC 1 and 3, where data in cancer class was plotted 
in blue while the NAT class was plotted in red 

 

7.3.2.2. Machine learning 

Both under-sampling and over-sampling were conducted combining with both 

AdaBoost and random forest to balance data with different unbalancing ratios. 

Three attempts were applied to each unbalanced ratio. The average classification 

accuracy of both cancer and non-cancer classes were also plotted as this helps to 

identify possible trends. 

7.3.2.2.1. Applying AdaBoost 

Using AdaBoost it could be seen in Figure 7.9 that with small unbalanced ratios (6:4 

and 7:3), the non-cancer classification accuracies were similar to those obtained 

using under-sampling, 98% and 95%, and over-sampling 95% and 96% respectively. 

With large ratios (8:2 and 9:1), under-sampling remained its performance to a 
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similar level (98% at 8:2 and 97% at 9:1) while the accuracy of over-sampling 

dropped from 96% (at ratio 7:3) to 87% (reduced by nearly ten percent). One 

possible reason for the accuracy decrease with the number of spectra increase was 

that the purity of non-cancerous spectra was reduced, as the number of unique 

spectra in the group was reduced while the number of replicates increased. The 

model could pick up repeated features, which were similarities among these 

patients but not cancer diagnosis related, as key features and weighted. This could 

reduce the performance of model as separation favoured features would not be as 

outstanding as applying less repeated spectra to train the model. Traces could be 

found in Figure 7.10, where in B) peaks had more intensity in terms of importance 

of each feature with 9:1 ratio. If importance of a feature was larger than 0.0002 was 

considered as key features of the model, in plot A) 3 key features were found while 

in plot B) 5 features were spotted. In plots A) and B), both bands at 1543 and 1658 

cm−1, which were in amide II and amide I regions respectively, had the biggest 

contribution in terms of classification. In plot A), the amide I region had the 

dominant position while in plot B) amide II had the highest intensity.  

Another possible reason for decreasing classification accuracy of non-malignant 

class with increasing unbalanced classes could be that although there was no lost of 

information, over-sampling still sometimes led to over-fitting [21]. By duplicating 

existing spectra, repeated common but not cancer versus NAT spectra classification 

related features among the training spectra were weighted more, which made the 

model perfect to the training set but performs poorly to other datasets. For the 

cancerous class, when the ratio increased to 9:1, over-sampling had 9000 unique 

cancerous spectra as training input, while after under-sampling only 1000 

cancerous spectra were kept as training input. Large differences in number of 

spectra led to accuracy differences. 
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Figure 7.9 AdaBoost classification accuracy with different unbalanced ratios A) under-sampling method was 
applied B) over-sampling method was applied, where spectra ratio stands for the initially unbalanced ratio 
between number of spectra in cancer class and NAT class applied in training process. Average classification 
accuracies of NAT class was plotted in blue solid line while cancer class was plotted in dotted red line 

 

Figure 7.10 Importance Plot of over-sampled training data using AdaBoost. A) with 6:4 unbalanced ratio B) 

with 9:1 unbalanced ratio 

For the cancerous class, which was the major class in this case, under-sampling 

decreased the averaged accuracy of classification while over-sampling increased 

the averaged classification accuracy. The reason was very straight forwards. Under-

sampling reduced the number of spectra input with the increase of unbalanced 

ratio, which meant the training information had been reduced by deleting examples 
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from the training data. Large differences in number of spectra led to accuracy 

differences, which could be observed from Figure 7.11. In Figure 7.11 B), fewer 

features were considered important in term of separation comparing with 6:4 

unbalanced ratio (Figure 7.11, section A). 

 

Figure 7.11 Importance Plot of under-sampled training data using AdaBoost. A) with 6:4 unbalanced ratio B) 

with 9:1 unbalanced ratio 

To closely exam the impact of number of spectra in training on the classification 

accuracy of AdaBoost, groups of balanced classes with different number of spectra 

were applied to investigate how many spectra was enough to construct a relatively 

good machine learning model. From 5000 spectra per class, spectra in every smaller 

class were randomly selected from the previous class to maximally eliminate 

differences caused by random selection of spectra. Three attempts were applied to 

each group. The average classification accuracy of both cancer and non-cancer 

classes were plotted in Figure 7.12, where blue lines showed independent test 

accuracies of cancer separation while the red lines showed the accuracy of non-

cancer classification. All results of three attempts were plotted as scatter points 

(blue for the cancer class and red for the non-cancer class) to show the possible 

fluctuations caused by random selection of spectra. 

It could be seen that the non-cancerous spectra classification accuracy decreased 

gradually before completely dropping to zero, while cancer classification accuracy 

gradually decreased before increasing again to one hundred percent, where the 
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model completely failed. At 240 spectra (120 per each class), AdaBoost started to 

fail, while at 260 spectra (130 per class), it could still give average of 62% (cancer) 

and 81% (non-cancer) classification accuracy. 

 

Figure 7.12 Classification accuracy of AdaBoost with different number of spectra, where average classification 

accuracies of NAT class was plotted in blue solid line while cancer class was plotted in solid  red line 

7.3.2.2.2. Applying Random forest 

When random forest was applied to the data sets, shown in Figure 7.13, a similar, 

but more pronounced trend to that seen for the Application of AdaBoost (Figure 7.9) 

was observed. With small unbalanced ratios (6:4 and 7:3), non-cancer classification 

accuracies were close between under-sampling, 97% and 96%, and over-sampling, 

95% and 93% respectively. With large ratios (8:2 and 9:1), under-sampling keep its 

performance (96% and 92% respectively) to a similar level. Large differences in 

number of spectra led to accuracy differences. The accuracy of over-sampling 

dropped from 93% (at ratio 7:3) to 72% (reduced by nearly twenty percent, over 

twice that seen when of applying AdaBoost).  The reason for the trend was 

mentioned in the previous section. 
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For the cancerous class, again the same trend was spotted. With the increase of 

unbalanced ratios, the averaged classification accuracy decreased from 73% at ratio 

6:4 to 70% at ratio 9:1 when applying under-sampling, while it increased from 78% 

at ratio 6:4 to 89% at ratio 9:1 when over-sampling was applied. Differences in the 

number of training spectra were still the main reason for the differences in 

classification as mentioned in the previous section and similar observations on the 

importance plots were shown in Figure 7.14. 

 

Figure 7.13 AdaBoost classification accuracy with different unbalanced ratios A) under-sampling method was 
applied B) over-sampling method was applied, where spectra ratio stands for the initially unbalanced ratio 
between number of spectra in cancer class and NAT class applied in training process. Average classification 
accuracies of NAT class was plotted in blue solid line while cancer class was plotted in dotted red line 
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Figure 7.14 Importance Plot of over-sampled training data using random forest. A) with 6:4 unbalanced ratio 

B) with 9:1 unbalanced ratio 

To closely exam the impact of the number of spectra in the training set on the 

classification accuracy of random forest, groups of balanced classes with different 

number of spectra were applied to investigate how many spectra was enough to 

construct a relatively good machine learning model. From 5000 spectra per class, 

spectra in every smaller class were randomly selected from the previous class to 

maximally eliminate differences caused by random selection of spectra. Three 

attempts were applied to each group. The average classification accuracy of both 

cancer and non-cancer classes were plotted in Figure 7.15, where blue lines showed 

independent test accuracies of cancer separation while the red lines showed the 

accuracy of non-cancer classification. All results of three attempts were plotted as 

scatter points (blue for the cancer class and red for the non-cancer class) to show 

the possible fluctuations caused by random selection of spectra. 

Both cancer and non-cancer classification accuracies decreased but there was no 

complete failure, as there was no zero classification accuracy. However the 

accuracy ranges of three attempts were much more spread with the decrease of 

number of spectra. For non-cancerous spectra, from 400 spectra (200 per class) the 

largest difference between two of three attempts was over twenty percent. All 

attempts of cancerous class were more gathered before 40 spectra (20 per class). 

Although random forest was more consistent than AdaBoost as there was no 

complete failure, its stability reduced after a total number of 400 spectra.  
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If only a very small number of spectra could be used to construct models, random 

forest was more suitable than AdaBoost. However, many attempts should be 

conducted to ensure the reliability of the final classification accuracy obtained. 

 

Figure 7.15 Classification accuracy of Random Forest with different number of spectra, where average 
classification accuracies of NAT class was plotted in blue solid line while cancer class was plotted in solid  red 
line 

To sum up, considering the classification accuracy of minority class, under-sampling 

had better performance in both machine learning models. For small unbalanced 

ratios, both sampling methods could be applied to balance the classification 

accuracies of two classes. However, when large unbalanced ratios were applied, 

under-sampling was more appropriate as over-sampling could over-fit and easier to 

be influenced by noise. 

For unbalanced training data, considering the classification accuracy of minority 

class, under-sampling had better performance classification models. If unbalanced 

ratios were small, for example 6:4 or 7:3, both over-sampling and under-sampling 

could be adopted in term of balancing two classes, as both methods led to similar 

results. However, when large unbalanced ratios were applied, in this case, over 8:2, 

under-sampling was more appropriate than over-sampling. With the increase of 
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replicates, purity of spectra in minority class would be reduced, which led to larger 

possibility of over-fit and classification would be more influenced by noise. 

A flowchart can be generated as guidance when it comes to spectra classification in 

Figure 7.16. The recommended path will be using under-sampling to balance classes 

first, followed by machine learning classification methods. In this study it is shown 

that Random forest can be performed if there are more than 200 spectra in each 

class. AdaBoost can be used if there are more than 130 spectra in each class. The 

actual number of spectra, however, may differ for different data sets. 

 

Figure 7.16 Guidance flowchart of spectra classification 
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7.4 Conclusion and future work 

In term of picking the most appropriate classification method, data structure should 

be observed first. If disjoint data distribution is observed in one class, linear 

separators are not recommended, as it is difficult to separate data using one line. 

As showed previously, machine learning approaches are less influenced by data 

distribution than linear separators. However, there is no one method which is the 

best for everything.  Exploring more methods is always better in order to find the 

best method which solves one particular problem. The flow chart is plotted as a 

little help guide when it comes to classification of human spectra. 
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8.1. Chapter Overview 

In the UK, nearly 250 thousand people are diagnosed with cancer every year. Breast, 

lung, bowel, and prostate, which are the most common types of cancer, account for 

over half of all these cases. In 2015, around 47,200 men were diagnosed with 

prostate cancer in the UK [1].  Prostate cancer is strongly correlated with age and 

indeed is endemic in the older population. With incidence rates increasing at 3.7% 

annually in the period between 2010 and 2015 [2], prostate cancer occurrences in 

the community aged over 60 have caused substantial tension on the health care 

systems and has also lead to enormous health care costs. 

In most cases of cancer diagnosis, biopsies are required and taken to assess the 

presence of a disease and its degree of progression. For most examples, these thin 

slices of tissue are carefully investigated by professional pathologists under the help 

of optical microscopes. This process is a time-consuming laboratory process. More 

importantly, this process is subjective and prone to observer error [3]. Comparing 

with the traditional diagnosis method, infrared micro-spectroscopy has the 

potential to be a faster, cheaper and more reliable method of human tissue analysis. 

In the past ten years, research on using infrared micro-spectroscopy to study cancer 

and its diagnosis have increased significantly [4–6]. Although infrared micro-

spectroscopy brought attractive positive results in terms of cancer diagnosis 

accuracy, the infrared technique requires biopsy samples with different standards 

from those currently used for pathologists. Not only do the samples need to be cut 

into different sizes and thickness, but the slices of tissue also have to be placed on 

mid-infrared transparent substrates (for example, calcium fluoride (CaF2) or barium 

fluoride (BaF2) ) for spectra collection. These substrates used for transmission mode, 

which has less distortion from EFSW effect and provides less influenced biological 

information [7,8], are both expensive (typically greater than $40 per slide) and 

particularly fragile and frangible. Due to their extreme brittleness, they are not 

suitable for automatic tissue sample preparation instruments. All the sample 

preparation process has to be manually conducted [9]. Both the price and nature of 

substrates increase the difficulty of popularising the whole infrared cancer 

diagnosis technology into the clinical field.  
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In order to get the technology adopted by the clinical field, similar or even the same 

samples together with substrates used by pathologists, namely tissue on glass slides, 

could be considered as a possibility for infrared measurements. Glass has its 

advantage in both price and robustness. Most importantly it is already commonly 

used in the clinical field by pathologists. It will introduce the least interruption of 

the original clinical workflow and will make the new technology much easier to be 

accepted by the field. In this chapter, the possibility of using conventional glass as a 

transmission substrate combining with fast measuring (using high spectral 

resolution) is discussed. The wavenumber range chosen for the research was the 

only narrow transmission window from 3125 to 3600 cm–1 (referred as the high 

wavenumber range), which covers containing the N–H, and O–H stretching regions. 

Currently, most research on cancer diagnosis focuses on the fingerprint region 

(below 1800 cm–1) and considers the high wavenumber range to contain very little 

diagnostic information  However in the light of the previous work conducted by 

Bassan et al.[2] and Pilling et al.[10], it is believed that with sufficient data mining 

and large patient cohort it is possible to solve the problem. In order to achieve this 

goal, a high spectral resolution was used to rapidly analyze 17 prostate tissue 

microarrays (TMAs) on glass substrates. Machine learning models were constructed 

in order to discriminate cancerous and normal associate prostate tissue. 
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8. 2. Methodology 

8. 2.1 Prostate tissue preparation 

For this study 17 formalin-fixed paraffin embedded prostate TMA slides were used. 

They are borrowed through the Christie NHS Foundation Trust from UK BioBank. 

TMAs contain 1288 cores from 294 patients. Each core in the TMA was cut to 5 μm 

thickness and 1 mm diameter. The whole TMA section was floated onto a standard 

histology glass slide.  

To construct high variance models 100 cores were selected from the sample set as 

a training group, which included 50 cores with different grades of prostate cancer 

and 50 normal associate prostate tissue cores from 60 patients. Another 10 cores 

from 10 independent patients were selected as independent test set.  

Additional 21 cores, including 11 other cores from the previously selected patients 

in the training group and 10 cores from another independent 10 patients from the 

training group, were chosen as a larger test set for the study of cancer classification.  

In total, 131 cores from 80 patients were picked and measured. Cores were 

selected based on both the condition and completeness of cores, and the stages 

and grades of prostate cancer of cores. 

8.2.2 Instrumentation and experimental procedures 

The instrument and microscope used in the work reported here were those that 

have previously detailed in chapter 4. 

Before imaging, background scans were taken as a single tile with 32 co-added 

scans at a spectral resolution 9.3 cm-1 which gave nearly the same resolution as that 

commonly used i.e. 8 cm-1 but with an acquisition speed of similar to using 16 cm-1. 

Interferograms were processed into absorption spectra using Happ-Genzel 

apodisation resulting in spectra with a region between 1000 and 3800 cm−1. 

A purge time of 60 minutes was adopted to reduce the influence of water vapour in 

the spectrum after loading the TMA on to the microscope stage and after changing 

samples. The microscope was focused before the spectrometer calibration, which 
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was performed on the clear part of the slide. The absorbance level of each detector 

element was checked and adjusted to be relatively uniform before every mosaic 

measurement throughout the whole project to minimise the possible systemic 

error caused by the equipment.  

8.2.3 Data analysis methods 

All data were pre-processed with MATLAB 2018a. Infrared spectra for each biopsy 

core were extracted from the mosaic as a 256 × 256 datacube. Each datacube 

consists of 65536 spectra each of which contains 416 data points.  

8.2.3.1 Annotation method 

Chemical images of each of the prostate tissue cores were generated and compared 

to the H&E stained sections, and regions of epithelium were identified and 

annotated on chemical images generated based on  WHO Classification of Tumours 

in the Prostate [11].  

An example of 50 annotated cores is shown in Figure 8.1. Cancerous epithelium 

cells were annotated in red (R255 G0 B0) and the stroma parts in purple (R162 G77 

B255), while in the cancer associated tissues, epithelium cells were coloured in 

green (R0 G255 B0) and stroma in yellow (R243 G254 B68).  

8.2.3.2 Data Pre-processing Methods 

Principal component based noise reduction was applied to improve the signal-to-

noise ratio of raw spectra from the annotated area. The first 50 principal 

components were kept. Spectra were quality tested to remove data obtained from 

areas with little or no tissue based on the height of the amide A band. Spectra have 

absorbance between 0.07 and 1.2 were retained. Spectra ranges 3125 to 3600 cm−1 

were taken. Each spectrum was then vector normalized to correct for different 

thicknesses of prostate tissue. Finally spectra were converted to first derivative and 

a Savitzky−Golay smoothing using a window size of 19 data points performed, 

which is considered to be a conventional parameter for tissue analysis [10]. The 
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dataset was separated into two groups, a training set and independent testing set 

as previously described.  

 

Figure 8.1 Examples of annotation on Infrared based chemical images of 49 prostate biopsy cores with red 
Cancerous epithelium, purple cancerous stroma, green non-cancerous epithelium, yellow noncancerous 
stroma 
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8.2.3.3 Classification Methods 

Both Random forest and AdaBoost were applied in order to separate cancerous and 

NAT prostate tissues.  

In terms of random forest, a random forest grows many classification trees as 

required. Once input data is put into the forest, each tree has its classification result. 

All trees in the forest are involved in voting the most popular class as the final result 

from the forest [12].  

AdaBoost, however,  works by obtaining weighted majority votes of the weak 

hypothesis where each hypothesis is assigned weight and conducted by every weak 

learner [13]. To be more specific, during each iteration, weights of incorrectly 

classified samples are modified with the aim of correctly classifying them in the 

next iteration. All trees are involved in weighted voting to allocate unknown 

samples. It is considered more effective at handling imbalanced datasets than 

random forest, as the minority class, which is much easier to be miss-classified, can 

be given higher weights in subsequent iterations [14].  

Detailed explanation of both classification methods are in Chapter 4 (4.2.4.3). 

8.2.3.4 Statistical Analysis Methods 

Receiver operator characteristic (ROC) curves are a common way of representing the 

inherent trade-off between sensitivity and specificity. Sensitivity equalled the true 

positive over the positive predictions while the specificity was the quotient of true 

negative and all negative predictions.  The detailed equation and explanations were 

presented in Chapter 4 (4.2.4.4).  

Sensitivity, specificity, confusion matrix, ROC curve and AUC of classification results 

will be used to present the performance of each classifier. 
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8.3. Results and discussion 

The results of classification between epithelium and the results of classification 

between cancerous and NAT prostrate spectra stroma using both random forest 

and AdaBoost were presented in this section. 

8.3.1. Histology classification results 

To test the quality of annotation and the possibility of conducting classifications on 

high spectral resolution data on glass, a histology classification was performed 

before the actual cancer diagnosis on the glass.  

In terms of training both machine learning models, a total number of 26686 spectra 

subtracted from data cubes based on annotations. These consists of 14241 

epithelium spectra (containing 5364 cancerous and 8877 NAT spectra) and 12445 

stroma spectra (containing 3732 cancerous and 8713 NAT spectra). Under-sampling 

was conducted to balance the number of spectra in each class. 12445 epithelium 

spectra were randomly selected from 14241 spectra to match the number of 

spectra in stroma class. Each class therefore has the same number of spectra to 

ensure that there was no bias for either class. 124 features were used to construct 

classification models. 90% randomly selected spectra were used for model 

construction while 10% randomly selected spectra were adopted for a model 

validation test. 

An independent test dataset consisted of 6647 spectra was extracted from data 

cubes, including 3430 epithelium spectra (1510 cancerous and 1920 non-cancerous 

spectra) and 3217 stroma spectra (1567 cancerous and 1650 NAT spectra). 

8.3.1.1. Using AdaBoost classification method 

In the case of separating epithelium and stroma, when AdaBoost was applied (500 

iterations with 500 trees), 97% epithelium cells were correctly classified while 97% 

stroma cells were correctly classified in the model validation test, in which 10% 

randomly selected spectra from the training data set was used as test set to test the 

model performance on the training data. The confusion matrix was shown in Table 
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8.1. The overall classification accuracy was 97.1%, which was considered to be 

excellent for a model such as this. 

Table 8.1 Confusion matrix of model validation test on the classification of epithelium and stroma cells using 
AdaBoost 

Training Validation 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 97 3 

Stroma 3 97 

 

When the independent test spectra were applied, without applying any threshold, 

epithelium cells were 90% correctly classified while 85% of stroma cells were 

correctly classified. The lower classification accuracy for stroma could be due to the 

variety of cells types in stroma. The general features of all types of cells in stroma 

were difficult to find compared with the specific features of epithelium cells. The 

confusion matrix of independent test was shown in Table 8.2. 

Table 8.2 Confusion matrix of independent test on the classification of epithelium and stroma cells using 
AdaBoost 

Independent Test 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 90 10 

Stroma 15 85 

 

The ROC curve was plotted based on scores of each prediction (spectrum), shown in 

Figure 8.2. The AUC of each class was 0.92, which shows that the model works well 

on the independent test data set. To test whether the classification was valid, the 

importance of each feature was plotted, and was shown in Figure 8.3. Figure 8.3 , 

indicates that the classification was mainly caused by the variations in the spectra 

mainly associated with the peak at 3353 cm-1, N-H stretching, which means that the 

classification between epithelium and stroma spectra was based on chemical 

differences other than water vapour or other physical conditions.  
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Figure 8.2 ROC curve of independent test on the classification of epithelium and stroma cells using AdaBoost 

 

Figure 8.3 The feature importance of independent test on the classification of epithelium and stroma cells 
using AdaBoost 

3353 
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The performance of the model could be further boosted by adding a threshold after 

conducting classification. Only if the score of each spectrum was higher than a 

certain value, would it be considered to be an accurate prediction, as lower scores 

in most cases show that the model was not sure about the classification results. As 

long as, there were highly confident predictions, even though they might be fewer 

in number, the final decisions would still be more significant than those decisions 

made by keeping poor predictions, which could weight down the accuracy of final 

decision. Removing low scored predictions could help the model produce better 

results under the same configurations. If only half of the predictions were kept, 98% 

of epithelium spectra and 95% stroma spectra could be correctly classified, as 

shown in Table 8.3. In that case, 3287 spectra were considered as poorly classified.  

If only the top 85% scored independent test spectra were kept, meaning that 1141 

spectra are thrown away, 93% epithelium and 92% stroma spectra were correctly 

classified. The confusion matrix table was shown in Table 8.4. These results show 

that firstly, stroma spectra were more difficult to classify than epithelium spectra. 

Secondly, the model was very confident about its decision when only half of the 

spectra were kept. Even without any threshold, the model performed excellently in 

the independent test.  

Table 8.3 Confusion matrix of independent test on the classification of epithelium and stroma cells keeping 
half of the spectra based on score ranking using AdaBoost 

Independent Test  

(Threshold Applied) 

Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 98 2 

Stroma 5 95 

 

Table 8.4 Confusion matrix of independent test on the classification of epithelium and stroma cells keeping 
85% of the spectra based on score ranking using AdaBoost 

Independent Test  

(Threshold Applied) 

Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 93 7 

Stroma 8 92 
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For better visualisation, the predictions of all the spectra in 10 independent test 

cores were projected back to their original pixel locations. A projection plot of the 

epithelium and stroma classification results using AdaBoost was shown in Figure 8.4, 

where epithelium predictions were in red and green (cancerous and NAT epithelium 

respectively) and stroma predictions were in purple and yellow (cancerous and NAT 

stroma respectively). 

 

Figure 8.4 Projection plot of the epithelium and stroma classification results of 10 independent test cores 
using AdaBoost, where red represents cancerous epithelium, purple stands for cancerous stroma, green 
represents NAT epithelium and yellow shows NAT stroma. 

 

8.3.1.2. Using Random forest classification method 

The random forest classification method, with 500 trees, was also applied to 

separate epithelium and stroma cells. The confusion matrix of the training 

validation test of the model was shown in Table 8.5, where 98% epithelium cells 

were correctly classified while 97% stroma cells were correctly classified in the 

model validation test. The overall classification accuracy was 97.4%.  

Table 8.5 Confusion matrix of model validation test on the classification of epithelium and stroma cells using 
random forest 

Training Validation 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 98 2 

Stroma 3 97 
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When the model was applied to the independent test spectra, epithelium cells were 

90% correctly classified while 85% of stroma cells were correctly classified. The 

same reason mentioned in the previous section, multiple types of cells, was found 

as the cause of the slightly lower classification accuracy of stroma comparing with 

the epithelium spectra in the independent test. The confusion matrix of 

independent test was shown in Table 8.6. 

Table 8.6 Confusion matrix of independent test on the classification of epithelium and stroma cells using 
random forest 

Independent Test 
Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 90 2 

Stroma 15 85 

 

The ROC curve was plotted based on scores of each prediction, shown in Figure 8.5. 

The AUC of each class was 0.92, which shows that the model works well on the 

independent test data set. To test whether the classification was valid, the 

importance of each feature was plotted, and shown in Figure 8.6, which indicates 

that the classification was mainly caused by the variations of spectra at the peak 

3353 and 3360 cm-1 were N-H stretching, and the peak 3252 and 3272 cm-1 were O-

H stretching. Comparing with AdaBoost, three extra main peaks were observed, at 

3252, 3272 and 3360 cm-1. These may be caused by different rules for feature 

processing of two models, as in random forest there was no extra weight added to 

each feature while in AdaBoost the weights of each feature would be re-evaluated 

based on training results. After 500 iterations, only 3353 cm-1 contributes the least 

error, in this case. Therefore, AdaBoost keeps it which favours the classification as 

an important feature and weights down other features [14].  
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Figure 8.5 ROC curve of independent test on the classification of epithelium and stroma cells using random 
forest 

 

Figure 8.6 The feature importance plot of independent test on the classification of epithelium and stroma 
cells using random forest 

3353 

3360 

3272 
3252 
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The performance of the model could be further boosted by adding a threshold after 

conducting classification. Removing low scored spectra could increase the 

performance of model. If only half of the spectra which were top-rated were kept, 

96% epithelium spectra and 94% stroma spectra could be correctly classified, as 

shown in Table 8.7. In that case, 3568 spectra were considered as poorly classified.  

If only top the 85% scored independent test spectra were kept, 93% epithelium and 

90% stroma spectra were correctly classified. The confusion matrix table was shown 

in Table 8.8. The random forest model also shows that stroma spectra had slightly 

lower classification accuracy than epithelium spectra, which was still due to the 

nature of stroma regions.  

Table 8.7 Confusion matrix of independent test on the classification of epithelium and stroma cells keeping 
half of the spectra based on score ranking using Random forest 

Independent Test 

(Threshold applied) 

Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 96 4 

Stroma 6 94 

 

Table 8.8 Confusion matrix of independent test on the classification of epithelium and stroma cells keeping 
85%of the spectra based on score ranking using Random forest 

Independent Test 

(Threshold applied) 

Predicted / % 

Epithelium Stroma 

True / % 
Epithelium 93 7 

Stroma 10 90 

 

Comparing the performance of AdaBoost and random forest classification approach, 

AdaBoost seems to have slightly better accuracy when it came to independent test 

in this case. However, only conventional hyperparameters of each model were 

applied for this research. The main difference causing the slight advantage in 

classification accuracy of AdaBoost could be that only 3353 cm-1, N-H stretching, 

was considered to be the key feature of separation, while for random forest both N-

H stretching (3353 and 3360 cm-1) and O-H stretching (3252 and 3272 cm-1 ) were 

considered as key classification features. AdaBoost requires less number of key 

features to achieve similar or even better classification results. If only discrete 
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wavenumber and limited number of measurements could be taken, AdaBoost holds 

its advantage as it needs less number of key feature measurements to produce 

good classification with this dataset.  

Predictions of spectra in the independent test group were projected back to their 

original pixel locations. A projection plot of the epithelium and stroma classification 

results using random forest was shown in Figure 8.4, where epithelium predictions 

were in red and green (cancerous and NAT epithelium respectively) and stroma 

predictions were in purple and yellow (cancerous and NAT stroma respectively). No 

large differences were observed between the histological predictions made by two 

classification methods, shown in Figure 8.4 (AdaBoost) and Figure 8.7 (random 

forest). It supports the observations found from the classification accuracies 

presented in confusion matrixes.  

 

Figure 8.7 Projection plot of the epithelium and stroma classification results of 10 independent test cores 
using random forest, where red represents cancerous epithelium, purple stands for cancerous stroma, green 
represents NAT epithelium and yellow shows NAT stroma. 

 

8.3.1.3. Section conclusion 

Similar classification results, 98.25% (for epithelium) and 99.94 % (for stroma) when 

random forest, with a threshold, was applied, were obtained by Bassan et al. on 

breast tissue[2]. Previously, on prostate tissue classification accuracy of  97.27% (for 

epithelium) and 94.20% (for stroma) on using random forest models with threshold 

applied were also obtained by Pilling et al. [10]. The work presented here shows 
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that using AdaBoost could deliver classification of epithelium and stroma on glass, 

as well as random forest or even better in the independent test. 

Considering the results obtained by previous groups and the results obtained in this 

research, the histological classification on glass using infrared was completely 

possible and highly accurate classification rates could be obtained.  

 

8.3.2. Cancer prediction classification results 

Attempt to construct classifiers built by combined features of both epithelium and 

stroma spectra were conducted in this section. Currently in the field, in order to 

perform cancer diagnosis on prostate tissue, firstly a model needs to be built on 

separating epithelium and stroma. The spectra predicted as epithelium spectra 

were then passed to cancer diagnosis model [15]. This two-step process increases 

the processing time of cancer diagnosis and the classification errors produced by 

both models. In the clinical field, pathologists often draw the entire area contained 

cancer instead of individual cells specifically. Inspired by that, models in this section 

were constructed using spectra from annotated epithelium cells and the adjacent 

stroma. These models were not restricted by cell types of spectra, which reduce the 

errors and only require one-step classification, straight forward to use.   

For training machine learning models (AdaBoost and random forest), a total of 

26686 spectra, which contains 14241 epithelium spectra (containing 5364 

cancerous and 8877 NAT spectra) and 12445 stroma spectra (containing 3732 

cancerous and 8713 NAT spectra) were extracted from data cubes. In total, in the 

training spectra set, there were 9096 cancerous spectra and 17590 NAT spectra. 

Under-sampling was conducted to balance the number of spectra in each class. 

9096 NAT spectra were randomly selected from 17590 spectra to match the 

number of spectra in cancerous class. Each class has the same number of spectra 

and no bias in either class would be made. 124 features were used to construct 

models.  
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For further investigation, to test the influences of human individual differences on 

cancer diagnosis, another 21 cores were chosen to perform further testing. From 

the previously selected patients, 11 different cores from the cores used in the 

model were chosen, and another 10 cores (in total, 20 cores, together with the 

previously selected independent test cores) from the different patients in the 

training of models were also picked.  

8.3.2.1. Applying AdaBoost 

Cancer and NAT prostate spectra classification model was constructed using the 

training dataset extracted from 90 cores. 500 trees were trained in 500 iterations. 

The learning rate of the model was set to 0.1, which was a commonly used value in 

the machine learning model construction [16].  

The confusion matrix of the model validation test, in which 10% randomly selected 

spectra from the training data set was used as test set to validate the model 

performance, was shown in Table 8.9. 78% cancerous spectra were correctly 

classified while 85% NAT spectra were correctly classified in model validation test. 

The overall classification accuracy was 80.9%.  

Table 8.9 Confusion matrix of model validation test on the classification of cancerous and NAT spectra using 
AdaBoost 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 78 22 

NAT 15 85 

 

8.3.2.1.1 Different Cores from previously selected patients 

11 sample cores selected from patients previously appeared in the training process 

but different from the cores used in the process were selected as a test group. 4321 

spectra were included, which contains 2151 cancerous spectra (1267 epithelium 

and 884 stroma spectra) and 2170 NAT spectra (825 epithelium and 1345 stroma 

spectra).  
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When AdaBoost was applied, without any threshold, the classification accuracy on 

cancerous spectra was 72% while the accuracy on NAT spectra was 57%. The 

confusion matrix of this test was shown in Table 8.10. 

Table 8.10 Confusion matrix of test on the classification of epithelium and stroma cells using AdaBoost with 
additional 11 different cores from same patients with training group 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 72 28 

NAT 43 57 

 

The ROC curve was plotted based on scores of each prediction, shown in Figure 8.8. 

The AUC of each class was 0.72. The importance of each feature was plotted in 

Figure 8.9. with peaks at 3333 cm-1, N-H stretching, 3401 cm-1, O-H & N-H stretching 

vibrations, and 3418, 3453 and 3461 cm-1, O-H stretching.  

 

Figure 8.8 ROC curve of test on the classification of cancerous and NAT spectra using AdaBoost with 
additional 11 different cores from same patients with training group 
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Figure 8.9 The feature importance plot of independent test on the classification of cancerous and NAT spectra 
using AdaBoost 

Keeping half of the spectra which were top-rated, 77% cancerous spectra and 89% 

NAT spectra could be correctly classified, shown in Table 8.11. In that case, 2527 

spectra were considered as poorly classified.  If only top 85% scored independent 

test spectra were kept, 78% cancerous and 66% NAT spectra were correctly 

classified. The confusion matrix table was shown in Table 8.12.  

With the increase of the number of poorly classified spectra, the classification 

accuracy of cancerous spectra remains the same while the accuracy of NAT spectra 

increases over 20%. With help from thresholds, the test results of 11 cores became 

very close to the training validation results which were shown in Table 8.9. This 

means the hidden patterns of prostate cancer found during training process by the 

model could also be identified from other cores of these patients. The test set 

extracted from different cores with previously appeared patients has similar data 

features and structures with the training data. 

3453 3461 
3418 

3401 

3333 



254 
 

Table 8.11 Confusion matrix of test on the classification of cancerous and NAT spectra keeping half of the 
spectra based on score ranking using AdaBoost with additional 11 different cores from same patients with 
training group 

Independent Test 

(threshold applied) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 78 22 

NAT 11 89 
 

Table 8.12 Confusion matrix of test on the classification of cancerous and NAT spectra keeping 85% of the 
spectra based on score ranking using AdaBoost with additional 11 different cores from same patients with 
training group 

Independent Test 

(threshold applied) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 78 22 

NAT 34 66 

 

8.3.2.1.2 Independent Test with 10 cores 

For the independent test with 10 cores, 6647 spectra were pulled from data cubes, 

including 3077 cancerous spectra (1510 epithelium and 1567 stroma spectra) and 

3570 NAT spectra (1920 epithelium and 1650 stroma spectra).  

When independent test spectra exacted from independent test cores were applied, 

without applying any threshold, cancerous spectra were 71% correctly classified 

while 62% NAT spectra were correctly classified. NAT spectra were more difficult to 

classify, which could because that the general features among patients with 

different physical conditions (i.e. health conditions, age and other factors) could be 

more difficult to find compared with finding the general features of prostate cancer. 

The human individual difference could be a potential barrier for cancer diagnosis. 

The confusion matrix of independent test was shown in Table 8.13. 
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Table 8.13 Confusion matrix independent test on the classification of cancerous and NAT spectra using 
AdaBoost 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 71 29 

NAT 38 62 

 

The ROC curve of the independent test of the trained model was plotted in Figure 

8.10. The AUC of each class was 0.67. The importance of each feature was plotted 

in Figure 8.9. Figure 8.9, it indicates that the classification was mainly caused by the 

variations of spectra at the peak 3333 cm-1, N-H stretching, 3401 cm-1, O-H & N-H 

stretching vibrations (hydrogen bonding network may vary in the malignant tissue) 

[17], and 3418, 3453 and 3461 cm-1, O-H stretching.  

 

Figure 8.10 ROC curve of independent test on the classification of cancerous and NAT spectra using AdaBoost 

The performance of the model could be further boosted by adding a threshold after 

conducting classification. Half of the spectra which were top-rated were kept, 72% 

cancerous spectra and 68% NAT spectra could be correctly classified, shown in 

Table 8.14. In that case, 3230 spectra were considered as poor classified.  If only top 
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85% scored independent test spectra were kept, 76% cancerous and 62% NAT 

spectra were correctly classified. The confusion matrix table was shown in Table 

8.15. With the increase of number of poorly classified spectra, the classification 

accuracy of cancerous spectra decreased while the accuracy of NAT spectra 

increases, which means that the model was not sure about its classifications. Most 

of the scores for spectra were relatively low. Another possible reason could be that 

the model captured features only occurred in the training group (noise or 

similarities not related to cancer diagnosis) and weighted these feature, which 

causes negative effect in the independent test group. It was considered as the main 

disadvantage of AdaBoost classification method [13].   

Table 8.14 Confusion matrix of independent test on the classification of cancerous and NAT spectra keeping 
half of the spectra based on score ranking using AdaBoost 

Independent Test 

(Threshold applied) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 72 28 

NAT 32 68 

 

Table 8.15 Confusion matrix of independent test on the classification of cancerous and NAT spectra keeping 
85% of the spectra based on score ranking using AdaBoost 

Independent Test 

(Threshold applied) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 76 24 

NAT 38 62 

 

8.3.2.1.3 Independent Test with 20 cores 

20 patients different from the previous training process were selected including the 

previously 10 cores in the independent test. The size of an additional independent 

test was doubled to test with increasing human individual differences involved 

would the independent test results remain at a similar level. Additional 5892 

spectra were added to the previous independent test dataset, which contained 

2568 cancerous spectra (1285 epithelium and 1283 stroma spectra) and 3324 NAT 

spectra (1821 epithelium and 1503 stroma spectra).  
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When AdaBoost was applied, without any threshold, the classification accuracy on 

cancerous spectra was 40% while the accuracy on NAT spectra was 58%. The 

confusion matrix of this test was shown in Table 8.16. The model was in favoured of 

classifying spectra as NAT spectra and fails to identify cancerous spectra. The 

cancerous class identification accuracy was largely reduced compared with the 

independent test conducted on 10 cores (shown in Table 8.13). One possible reason 

for this observation could be that the smaller group of patients have more 

similarities with the training group compared with the larger independent patient 

group. The classification accuracy observed previously could be based on the 

similarities other than prostate cancer properties between training and 

independent test groups. With another independent group, these similarities were 

not detected or reduced, which leads to the poor classification on the cancerous 

class. 

Table 8.16 Confusion matrix of independent test on the classification of epithelium and stroma cells using 
AdaBoost with additional 20 cores from different patients with training group 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 40 60 

NAT 42 58 

 

The ROC curve was plotted based on scores of each prediction, shown in Figure 

8.11. The AUC of each class was 0.47. The ROC curve supports the results observed 

in the independent test. Most of the parts of the ROC curves were below the 50% 

classification line (the diagonal line from bottom left corner to the top right corner), 

which indicates that the model acts poorly on the independent test group. 
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Figure 8.11 ROC curve of independent test on the classification of cancerous and NAT spectra using AdaBoost 
with additional 20 cores from different patients with training group 

The threshold of keeping half of the spectra based on score ranking was applied to 

the classification results and shown in Table 8.17. Only 32% cancerous spectra and 

67% NAT spectra could be correctly classified. In that case, 6274 spectra were 

considered as poor classified. The classification failure becomes even worse after 

applying the threshold, which meant that the model could not identify the 

cancerous spectra in the independent test group. It was confidently making wrong 

decisions. The main features found by the classifier were not sufficient to separate 

two classes when it came to the independent test group.  There were many 

possible reasons for the poor performance. One of them was that the main features 

selected from the training group were not or fully related with prostate cancer. 

Some general features in each class could be caused by other common individual 

conditions, for example, age and other physical conditions. Another one could be 

that the number of feature input was too less. The information contained was not 

enough to separate cancerous from normal prostate spectra as only high 

wavenumber range was applied. Lack of data input could not be compensated by 

data mining at this level. 
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Table 8.17 Confusion matrix of independent test on the classification of cancerous and NAT spectra keeping 
half of the spectra based on score ranking using AdaBoost with additional 20 cores from different patients 
with training group 

Independent Test 

(Threshold applied) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 32 68 

NAT 33 67 

 

8.3.3.1.4 Classification per core 

Classification results conducted using AdaBoost method were further integrated 

and presented in terms of individual cores, which could provide better 

understandings of the results in terms of visualising spectral locations.  

Classified spectra were traced back into their pixel positions in each core, which 

were shown in Figure 8.12. Inside the marked box were 20 cores from different 

patients, while the cores, not in the box, were other cores from the same patients 

with the training group. The dark blue area of each core was made of pixels 

contained spectra passed quality checked and were used in the independent test. 

The pale blue area was made of pixel contained spectra were correctly classified in 

the independent test. It could be seen that there were some cores and certain 

regions on the cores were poorly classified. This may be raised by inaccurate 

annotation or strong individual differences between training data and test data. 

When only half of the spectra were kept based on score ranking from high to low, 

the pale blue areas indicate the corrected classified pixels while the dark blue 

regions show the spectra passed threshold conditions. This was plotted in Figure 

8.13.  Again cores in the box were the different patient group while the others were 

from the same patients in the training group. Other colours (red, purple, green and 

yellow) were annotation colours for both epithelium and stroma from cancerous 

and NAT cores. For better comparison, the original annotations of these cores were 

shown in Figure 8.14. When standards were raised, the model was very confident 

on some cores where pale blue colour was shown concentrated in certain areas, 

which may contain more similar spectral patterns found in the training group. 
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These confident classification areas would increase the classification accuracy of 

individual cores. 

After applying a threshold, it seems like the classification accuracy was boosted. 

However, the usage of core information was actually reduced as not every core had 

highly scored spectra during classification. With a high level of threshold, the model 

focused more on the cores which were easier to identify while giving up on the 

cores which were harder to separate. These difficult cores were actually the most 

challenging part of the research as these cores could be potentially difficult to 

identify for pathologist as well, which would thus make a good classification model 

useful to the current cancer diagnosis flow. Therefore, when a threshold was 

applied, the user should be cautious about how much information could be 

discarded from the data.  
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Figure 8.12 classification results of 31 cores without any threshold using AdaBoost, where the dark blue area 
of each core was made of pixels contained spectra pre-processed before classification and the pale blue area 
was made of pixel contained spectra were correctly classified in the independent test. 
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Figure 8.13 classification results of 31 cores without any threshold using AdaBoost, where dark blue area of 
each core was made of pixels contained spectra pre-processed before classification, the pale blue area was 
made of pixel contained spectra were correct, red represents cancerous epithelium annotation, purple stands 
for cancerous stroma annotation, green shows NAT epithelium annotation and the yellow indicates NAT 
stroma annotation 
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Figure 8.14 Annotations all 31 cores used for the test, where red represents cancerous epithelium annotation, 
purple stands for cancerous stroma annotation, green shows NAT epithelium annotation and the yellow 
indicates NAT stroma annotation 

When an individual core was considered as a whole, a cancer diagnosis could be 

simplified by applying a traffic light system, which indicates any cancer core as red 

cores, any NAT cores as green and any not determined cores as yellow cores. The 

advantage of this system would be that it reduces the workload for pathologist as 

only yellow cores needed further investigation if the classification model could 

provide classification accuracy higher than human cancer diagnosis accuracy. 

According to recent research using fine-needle aspiration and core biopsy had an 

overall accuracy of 75.4% according to research conducted in 2010 by Kasraeian S, 
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et al. [18] and the grading accuracy of pathologist was 76% according to research 

conducted in 2011 by Barqawi et al. [19]. 

Two result counting methods were applied after classification. The first one using 

spectra from the annotated area of independent test cores. Only the top-scored 10% 

spectra were kept for each core and among these spectra if one or more than one 

spectrum was classified as cancerous spectrum, this core would be classified as a 

cancerous core and coloured in red. If no spectrum was classified as cancerous ones 

and the number of diagnosed NAT spectra was larger than half of the total number 

of selected spectra, the tested core would be classified as NAT core and coloured in 

green. In any other cases, the cores would be coloured in yellow. The coloured 

cores of both other cores from the same patients and cores from different patients 

in the training group were shown in Figure 8.15 . In this plot, cores in the box were 

cores from different patients while the rest of cores were other cores from the 

same patients in the training process. The classification accuracy for cores from the 

same patients was 7 out of 11, which was 64%, while the accuracy for different 

patients was 10 out of 20, which was 50%. These accuracies were similar to the 

previously calculated classification accuracies in the unit of spectrum other than 

individual core.  

The second method uses the previously constructed epithelium-stroma 

classification model as a filter, which only keeps the top 50% scored spectra after 

classification for both types of spectra. All these spectra, both epithelium and 

stroma, were then sent to the cancer NAT classification model, and only the top 10% 

scored spectra and their scores were used for class assignments.  If the number of 

diagnosed cancerous spectra was larger than the number of classified NAT spectra, 

with the condition that the number of cancerous spectra was larger than half of the 

total number of kept spectra, the core was picked as a cancerous core. If the 

number of diagnosed cancerous spectra was less than the number of diagnosed 

NAT spectra and the number of NAT spectra was larger than half of the total 

number of kept spectra, the core was named as a NAT core. In any other cases, the 

core was coloured in yellow which means not determined and requires further 

investigations. For AdaBoost, the classification accuracy for cores from the same 
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patients was 7 out of 11, which was 64%, while the accuracy for different patients 

was 9 out of 20, which was 45%. The detailed plot was shown in Figure 8.16. Similar 

accuracies were observed with the previous classification results in term of the 

spectrum. 

The first method focused on finding cancerous spectra. As long as there was one 

top-scored spectrum was considered as cancerous spectrum, the entire core would 

be diagnosed as cancerous core. Although this method maximised the possibility of 

obtaining true positive cancer diagnosis, still it reduces the chance of a core being 

classified as NAT and could potentially increase the number false-positive 

classification of cancerous cores. This method was reasonable if the research was 

aimed at finding all the cancerous cores without any missing any one even if there 

might be NAT cores wrongly classified as cancerous ones.  

The second method was a standard way of counting votes, in which the majority 

wins. It was a more balanced method for both true positive and true negative for 

cancer diagnosis. Apart from the counting methods, the sources of tested spectra 

were different. For the first method, spectra were collected from the annotated 

regions of cores, which were considered having a better chance to provide cancer 

diagnosis information. In addition, the second method shows the disadvantage of 

using multiple classification models one after one, as the error rates accumulate in 

each classification step.  

Overall, these two methods obtain similar classification results. Considering 

individual core as a unit increases the classification accuracy, though into a small 

extent in a small number of samples. The research focus should be still on the 

classification model itself rather than result counting since classification model was 

the foundation of the whole research. 

Comparing results obtained from other cores from the same patients as used for 

training and cores from different patients the classification accuracy from the same 

patients was 15% to 20% higher than classification accuracy from different patients. 

This indicates that either the classification considered common features of the 

training patients as the features of prostate cancer or the individual differences 
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among people were difficult to overcome with limited number of patients. In order 

to obtain better classification accuracy, a larger training data set was required. 

 

 

 

Figure 8.15 classification results presented in the traffic light system with the integration method 
one using AdaBoost, where red stands for cancer prediction and green indicates non-cancer 
prediction 
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8.3.2.2. Applying Random Forest 

Applying random forest to the problem of separating cancerous and NAT spectra, 

using 500 decision trees, the confusion matrix of the training validation test, in 

which 10% randomly selected spectra from training data set was used as the test 

set to validate the model performance on training data, was shown in Table 8.18. 

92% cancerous spectra were correctly classified while 93% of NAT spectra were 

correctly classified in the model validation test. The overall classification accuracy 

was 92.1%. This training validation test has higher classification rates compared 

with AdaBoost, as for each true positive rate it was 15% higher.  

Figure 8.16 classification results presented in the traffic light system with the integration method 
two using AdaBoost, where red stands for cancer prediction and green indicates non-cancer 
prediction 
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Table 8.18 Confusion matrix of model validation test on the classification of cancerous and NAT spectra using 
random forest 

Training Validation 
Predicted / % 

Cancer NAT 

True / % 
Cancer 92 8 

NAT 7 93 

 

8.3.2.2.1 Different Cores from previously selected patients 

When the random forest was applied, without any threshold, the classification 

accuracy on cancerous spectra was 64% while the accuracy on NAT spectra was 

59%. The confusion matrix of this test was shown in Table 8.19. Comparing the 

previous independent test results, the classification accuracy increases, especially 

for cancerous class (nearly 10%). It meant that some general features collected by 

the model were the non-cancer related similarities among training patients. As the 

test group carried the same or part of these similarities, the classification results 

were higher than the previous independent test. 

Table 8.19 Confusion matrix of test on the classification of epithelium and stroma cells using random forest 
with additional 11 different cores from same patients with training group 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 64 36 

NAT 41 59 

 

The ROC curve was plotted based on scores of each prediction, shown in Figure 

8.17. The AUC of each class was 0.65. The importance of each feature was plotted 

in Figure 8.18 with peaks at 3418 and 3453 cm-1, which were both O-H stretching.  
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Figure 8.17 ROC curve of test on the classification of cancerous and NAT spectra using random forest with 
additional 11 different cores from same patients with training group 

 

Figure 8.18 feature importance plot of independent test on the classification of cancerous and NAT spectra 
using random forest 

3455 

3424 
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A threshold was applied by removing half of the spectra with low scores. 68% 

cancerous spectra and 68% NAT spectra could be correctly classified, shown in 

Table 8.20. In that case, 2290 spectra were considered as poor classified. If only the 

top 85% scored test spectra were kept, 64% cancerous and 59% NAT spectra were 

correctly classified. The confusion matrix table was shown in Table 8.21. With the 

increase of number of poorly classified spectra, the classification accuracy of 

cancerous spectra decreases while the accuracy of NAT spectra slightly increases. 

Table 8.20 Confusion matrix of test on the classification of cancerous and NAT spectra keeping half of the 
spectra based on score ranking using random forest with additional 11 different cores from same patients 
with training group 

Independent Test 

(Threshold applied) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 68 32 

NAT 32 68 
 

Table 8.21 Confusion matrix of test on the classification of cancerous and NAT spectra keeping 85% of the 
spectra based on score ranking using random forest with additional 11 different cores from same patients 
with training group 

Independent Test 

(Threshold applied) 

Predicted / % 

Cancer NAT 

True / % 
Cancer 64 36 

NAT 41 59 

 

8.3.2.2.2 Independent Test with 10 cores 

When independent test spectra were applied, without any threshold, cancerous 

spectra were 53% correctly classified while 63% NAT spectra were correctly 

classified. The model finds general features among patients slightly better than 

finding the features for prostate cancer. However, the overall classification 

accuracies were not satisfactory enough. The model struggles to cope with the 

independent test. Combining with the great result obtained in the training 

validation test, one possible conclusion could be that model was over-fitting itself. 

The confusion matrix of independent test was shown in Table 8.22. 
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Table 8.22 Confusion matrix of independent test on the classification of cancerous and NAT spectra using 
random forest 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 53 47 

NAT 37 63 

 

The ROC curve was plotted based on scores of each prediction, shown in Figure 

8.19. The AUC of each class was 0.62. The importance of each feature was plotted, 

and shown in Figure 8.18. In Figure 8.18, it was shown that the classification was 

mainly caused by the variations of spectra at the peak 3424 and 3455 cm-1, O-H 

stretching. Comparing the main features selected by the random forest model and 

the AdaBoost model, AdaBoost model seems to have more complex feature 

importance plot than random forest, which could possibly explain the slightly better 

performance of AdaBoost in the independent test.  

 

Figure 8.19 ROC curve of independent test on classification of cancerous and NAT spectra using random 
forest 
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The performance of the model could be further boosted by adding a threshold after 

conducting classification. Half of the spectra which were top-rated, in this case, 

were kept, 53% cancerous spectra and 70% NAT spectra could be correctly 

classified, shown in Table 8.23. In that case, 3230 spectra were considered as poor 

classified. If only top 85% scored independent test spectra were kept, 54% 

cancerous and 65% NAT spectra were correctly classified. The confusion matrix 

table was shown in Table 8.24. With the increase of number of rejected spectra, the 

classification accuracy of both cancerous and NAT spectra increases slightly, this 

means that it was close to the limits of this model. There was no classification 

determining features observed and most of the scores for spectra were relatively 

low. 

Table 8.23 Confusion matrix of independent test on the classification of cancerous and NAT spectra keeping 
half of the spectra based on score ranking using Random forest 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 53 47 

NAT 30 70 

 

Table 8.24 Confusion matrix of independent test on the classification of cancerous and NAT spectra keeping 
half of the spectra based on score ranking using Random forest 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 54 46 

NAT 35 65 

 

8.3.2.2.3 Independent Test with 20 cores 

When the random forest was applied, without any threshold, the classification 

accuracy on cancerous spectra was 35% while the accuracy on NAT spectra was 

63%. The confusion matrix of this test was shown in Table 8.25. 

The random forest model favoured classifying spectra as NAT spectra and failed to 

identify cancerous spectra. Similar results were observed with AdaBoost when it 

came to doubled sized independent test (shown in Table 8.16). The cancerous class 



273 
 

identification accuracy was also reduced compared with the independent test 

conducted on 10 cores (shown in Table 8.22). The same reason for the failure of the 

AdaBoost model could behind the failure of using random forest as well. The 

smaller group of patients had more similarities with the training group compared 

with the larger independent patient group. The classification accuracy observed 

previously could be based on the non-cancer related similarities between training 

and independent test groups. With a different group, these similarities were not 

detected or reduced, which leads to the poor classification on the cancerous class. 

Table 8.25 Confusion matrix of independent test on the classification of cancerous and NAT spectra using 
random forest with additional 20 cores from different patients with training group 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 35 65 

NAT 37 63 

 

The ROC curve was plotted based on scores of each prediction, shown in Figure 

8.20. The AUC of each class was 0.47. The ROC curve supports the results observed 

in the independent test. Most of the parts of the ROC curves were below the 50% 

classification line, which indicates that the model acts poorly on the independent 

test group. 
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Figure 8.20 ROC of independent test on the classification of cancerous and NAT spectra using random forest 
with additional 20 cores from different patients with training group 

Removing low scored spectra by applying threshold and keeping half of the spectra 

which was top rated. 35% cancerous spectra and 63% NAT spectra could be 

correctly classified, shown in Table 8.26. In that case, 6274 spectra were considered 

as poor classified. The classification does not change after applying the threshold, 

which the model already reaches its limits. Its performance cannot be boosted 

anymore. 

Table 8.26 Confusion matrix of independent test on the classification of cancerous and NAT spectra keeping 
half of the spectra based on score ranking using random forest with additional 20 cores from different 
patients with training group 

Independent Test 
Predicted / % 

Cancer NAT 

True / % 
Cancer 35 65 

NAT 37 63 
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8.3.3.2.4 Classification per core 

Classification results conducted using random forest method were further 

integrated and presented in the unit of single core, which visualises the 

classification results.  

Tested spectra were traced back into their original pixel positions in each core, 

which were shown in Figure 8.21. The dark blue area of each core was made of 

pixels contained spectra that passed the quality check and were used in the 

independent test. The pale blue area was made of pixels that contained spectra 

that were correctly classified in the independent test. It could be seen that there 

were some cores and certain regions on the cores which were poorly classified. This 

may be raised by inaccurate annotation. 

After applying the 50% threshold (only keeping half of the spectra based on score 

ranking from top to bottom), the pale blue areas indicate the correctly classified 

pixels while the dark blue regions show the spectra which were wrongly classified, 

Figure 8.22. Other colours (red, purple, green and yellow) were annotation colours 

for both epithelium and stroma from cancerous and NAT cores. For better 

comparison, the original annotations of these cores were shown in Figure 8.23. 

When highly scored spectra were considered, the model was confident on some 

cores where pale blue colour was shown concentrated in certain areas.  

After applying the threshold, similar observations were obtained with AdaBoost, 

increase of classification accuracies. However, the usage of core information was 

actually reduced as not every core has many highly scored spectra present. With 

high level of threshold, the model focuses more on some cores which were easier 

to identify while giving up on the cores which were harder to separate. These cores 

which were difficult to be identified were actually the core part of the research as 

these cores could be potentially difficult to identify for pathologist as well. 

Therefore, when a threshold was applied, the user should be cautious about how 

much information could be discarded.  
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Figure 8.21 Classification results of 31 cores without any threshold using random forest, where the dark blue 
area of each core was made of pixels contained spectra pre-processed before classification and the pale blue 
area was made of pixel contained spectra were correctly classified in the independent test. 



277 
 

  

Figure 8.22 Classification results of 31 cores without any threshold using random forest, where dark blue area 
of each core was made of pixels contained spectra pre-processed before classification and the pale blue area 
was made of pixel contained spectra were correct, red represents cancerous epithelium annotation, purple 
stands for cancerous stroma annotation, green shows NAT epithelium annotation and the yellow indicates 
NAT stroma annotation 
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Figure 8.23 Annotations all 31 cores used for the test, where red represents cancerous epithelium annotation, 
purple stands for cancerous stroma annotation, green shows NAT epithelium annotation and the yellow 
indicates NAT stroma annotation 

The traffic light classification result presenting system was combined with the 

random forest classification model to further visualise the classification results 

using the unit of core rather than individual spectrum, which meant, when counting 

votes and finding the majority party between cancerous and normal classes, the 

previously obtained classification results of the spectra selected from each core 

would be considered as new voting elements. For example, in a core, without using 

any result counting method (mentioned in the next two paragraphs), there were 

150 spectra already classified as cancerous and 15 spectra classified as normal. This 
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core would be classified as a cancerous core and coloured in red using the traffic 

light system. 

Again, two result counting methods were applied after classification. The first one 

using spectra from the annotated area of independent test cores. Only the top-

scored 10% spectra were kept for each core and among these spectra if one or 

more than one spectrum was classified as cancerous spectrum and coloured in red. 

If no spectrum was classified as cancerous ones and the number of diagnosed NAT 

spectra was larger than half of the total number of selected spectra and coloured in 

green. In any other cases, the cores would be coloured in yellow. The coloured 

cores of both other cores from the same patients and cores from different patients 

in the training group were shown in Figure 8.24. In this plot, cores in the box were 

cores from different patients while the rest of cores were other cores from the 

same patients in the training process. The classification accuracy for cores from the 

same patients was 7 out of 11, which was 64%, while the accuracy for different 

patients was 9 out of 20, which was 45%. These accuracies were similar to the 

previously calculated classification accuracies in the unit of spectrum. 

The second method, shown in Figure 8.25, using all the spectra from each 

independent test core, which were first applied to the epithelium and stroma 

separating model, and only the top 50% scored spectra were kept. These spectra 

were then sent to the cancer NAT classification model, and only the top 10% scored 

spectra and their scores were used for class assignments.  If the number of 

diagnosed cancerous spectra was larger than the number of classified NAT spectra, 

with the condition that the number of cancerous spectra was larger than half of the 

total number of kept spectra, the core was picked as a cancerous core. If the 

number of diagnosed cancerous spectra was less than the number of diagnosed 

stroma spectra and the number of stroma spectra was larger than the total number 

of kept spectra, the core was named as a NAT core. In any other cases, the core was 

coloured in yellow which means not determined and needs further classification. 

For the Random forest classification method, 5 cores were diagnosed as further 

investigation was required, which means that the model struggles to determine 

which class these spectra belong. There was no major lead in the classification 
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process. The classification accuracy for other cores from the same patients was 5 

out of 11, which was 45%, while the accuracy for cores from different patients was 

8 out of 20, which was 40%. These classification accuracies were not ideal but 

similar to the previous results from individual spectrum classification.  

Comparing two traffic light result counting methods, although both methods obtain 

similar classification results to previous independent tests in the unit of spectra, the 

first method works slightly better than the second. One possible explanation was 

that the model could only produce low scores when it comes to the independent 

test. Although the top-rated spectra were selected, these spectra still had relatively 

low scores, which mean the classification model was not sure about which class 

these spectra belonged and possible over-fitting has occurred during model training. 

Comparing results obtained from other cores from the same patients as those used 

in training and cores from different patients, classification accuracy from the same 

patients was 15% to 20% higher than classification accuracy from different patients, 

which indicates that either the classification considered common features of the 

training patients as the features of prostate cancer or the individual differences 

among people were difficult to overcome with limited number of patients. In order 

to obtain better classification accuracy, larger training data set and better models 

were required. 
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Figure 8.24 classification results presented in the traffic light system with the integration method one 
using random forest, where red stands for cancer prediction and green shows NAT prediction 
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Figure 8.25 classification results presented in the traffic light system with the integration method two 
using random forest, where red stands for cancer prediction, yellow indicates uncertain case,  and 
green shows NAT prediction 
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8.3.2.3. Section conclusion 

Classification results in terms of separating cancerous and NAT spectra were poor 

and certainly would not be considered good enough for clinical application. 

AdaBoost has both relatively low classification accuracy on both the training 

validation and the independent test, while random forest succeeds in the training 

validation but fails badly in the independent test due to possible over-fitting. 

Although thresholds were applied and only half top-scored spectra were kept, still 

the classification accuracies were poor and do not improve very much. It means 

that the features found by the models could just be similarities among patients in 

the training but not the general features of prostate cancer. It could be that the 

differences between patients were larger than the differences between cancer and 

non-cancerous tissue making the prostate cancer features harder to identify. 

Despite the classification results, AdaBoost seems to have more stability in the 

training and independent test. 

Comparing the classification results obtained on glass with the work conducted 

previously by other groups, with infrared transparent substrates, not only the 

infrared spectral information could be used for cancer diagnosis, but also correlated 

with Gleason grade and tumour stage. Using three-band Gleason criteria, a 

sensitivity over 70% and specificity over 81% were reported in 2006 [20], and 

overall sensitivities and specificities of 92.3 and 98.9% were presented in 2008 [6]. 

Using glass as substrate still has large potentials, as the classification results have 

large improvement space comparing with works on CaF2 and BaF2. 

In term of human individual differences, it has large influences on classification 

results. Regardless of which classification methods were applied, tests on the cores 

from the same patients with the training group did work 10-20% better than those 

20 cores from completely different patients. It means a part of the spectral patterns 

obtained by models used as classification features were actually not prostate 

cancer-related information. It could be some biological similarities among the 

training patients group.  
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Another observation was that the double-sized independent patient group worked 

much poorer than the smaller independent group.  One possible reason for it could 

be that the smaller group of patients has more similarities with the training group 

compared with the larger independent patient group. The classification accuracy 

observed previously could be based on the similarities between training and the 

smaller independent test group. With another group, these similarities were not 

detected or reduced, which lead to the poor classifications as observed. 

Comparing performances of these two classification methods taking core as 

classification unit, AdaBoost seems to have a slightly higher classification accuracy 

regardless which result counting methods were adopted.  One possible reason was 

that AdaBoost weights frequently appeared features, which was considered to be 

more helpful, while random forest treats each feature equally regardless its 

importance.  

However, for both classification methods, the independent test results presented 

previously was not good. This could be caused by a small number of feature input 

(determined by the nature of glass substrates) and other interruption information 

from spectra, which could be the mounting material used to fix coverslip on the 

slide.  
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8.4. Conclusion and future works 

To sum up, spectral data analysis, using glass as a substrate for infrared 

measurements still has great potential for pre-screening in for cancer diagnosis. The 

digital histology is promising as both AdaBoost and random forest have very high 

accuracy in for separating epithelium and stroma cells. Using glass substrates 

combined with FTIR technology can augment and potentially replace some 

pathological staining processes to save the number of piece of precious biopsy 

tissue required from patients for multiple stains and time of the pathologists. More 

cell type classification can be focused in the future to further validate the 

advantages of technology. 

In terms of cancer diagnosis, neither AdaBoost nor random forest gives satisfying 

results in the unit of individual spectrum and core. Classification result presentation 

methods and further results processing can provide different angle to further 

understand the classification outputs. One of the possible causes for the relatively 

low classification accuracy of both machine learning models, in this case, can be 

lack of data, since comparing with other infrared transparent substrates the nature 

of glass slides limited the wavenumber ranges measured. Lost information from 

2800 to 1000 cm-1 could contain important biological features which will help with 

cancer diagnosis. Another reason could be that the training patient group size is too 

small, so both models can not deal with human individual differences well. Cancer 

in each patient can have slight differences based on individual body conditions. The 

general cancer features are hidden patterns which are different to find. However, 

similarities, which are not cancer related, among training patients are easier to find 

when a small group of training patients are applied. These similarities are selected 

as classification feature patterns for cancerous and NAT spectra, which can directly 

lead to failure in independent tests. With a large increase in the number of patients 

involved in model training, the non-cancer related features will have less influence 

on the classification results, as they will be more and more difficult to find. The size 

of independent test is also important. A larger group size provides more reliable 

validation for models. 
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For future researches on glass with unstained tissue, further research should be 

conducted on the mounting material of glass slides. Since these materials were not 

designed for infrared measurements, it can cause a potential problem on the 

spectra. 

Other more advanced classification methods can be conducted to further dig the 

subtle correlation between prostate cancer and spectra collected with a limited 

range of wavenumber. Deeping learning algorithm, for example, artificial neural 

network, can be applied, which provides additional angle to the data collected. 

Instead of numerical spectral data, chemical images can be applied to build the 

graphical neural network. Combination of images and spectra, the new approach 

has great potential to improve the current classification accuracies and move the 

clinical transition of infrared technology forward. 

  



287 
 

8.5. Reference 

[1] About prostate cancer | Prostate cancer | Cancer Research UK, Cancer Res. 
UK. (2018). https://www.cancerresearchuk.org/about-cancer/prostate-
cancer/about (accessed May 3, 2019). 

[2] P. Bassan, J. Mellor, J. Shapiro, K.J. Williams, M.P. Lisanti, P. Gardner, 
Transmission FT-IR chemical imaging on glass substrates: Applications in 
infrared spectral histopathology, Anal. Chem. (2014). doi:10.1021/ac403412n. 

[3] J.B. Lattouf, F. Saad, Gleason score on biopsy: Is it reliable for predicting the 
final grade on pathology?, BJU Int. (2002). doi:10.1046/j.1464-
410X.2002.02990.x. 

[4] M.J. Baker, E. Gazi, M.D. Brown, J.H. Shanks, N.W. Clarke, P. Gardner, 
Investigating FTIR based histopathology for the diagnosis of prostate cancer, 
J. Biophotonics. (2009). doi:10.1002/jbio.200810062. 

[5] L.F.S. Siqueira, K.M.G. Lima, A decade (2004 - 2014) of FTIR prostate cancer 
spectroscopy studies: An overview of recent advancements, TrAC - Trends 
Anal. Chem. (2016). doi:10.1016/j.trac.2016.05.028. 

[6] M.J. Baker, E. Gazi, M.D. Brown, J.H. Shanks, P. Gardner, N.W. Clarke, FTIR-
based spectroscopic analysis in the identification of clinically aggressive 
prostate cancer, Br. J. Cancer. (2008). doi:10.1038/sj.bjc.6604753. 

[7] P. Bassan, J. Lee, A. Sachdeva, J. Pissardini, K.M. Dorling, J.S. Fletcher, A. 
Henderson, P. Gardner, The inherent problem of transflection-mode infrared 
spectroscopic microscopy and the ramifications for biomedical single point 
and imaging applications, Analyst. 138 (2013) 144–157. 
doi:10.1039/C2AN36090J. 

[8] M.J. Pilling, P. Bassan, P. Gardner, Comparison of transmission and 
transflectance mode FTIR imaging of biological tissue, Analyst. (2015). 
doi:10.1039/c4an01975j. 

[9] C. Hughes, J. Iqbal-Wahid, M. Brown, J.H. Shanks, A. Eustace, H. Denley, P.J. 
Hoskin, C. West, N.W. Clarke, P. Gardner, FTIR microspectroscopy of selected 
rare diverse sub-variants of carcinoma of the urinary bladder, J. Biophotonics. 
(2013). doi:10.1002/jbio.201200126. 

[10] M.J. Pilling, A. Henderson, J.H. Shanks, M.D. Brown, N.W. Clarke, P. Gardner, 
Infrared spectral histopathology using haematoxylin and eosin (H&E) stained 
glass slides: a major step forward towards clinical translation, Analyst. 142 
(2017) 1258–1268. doi:10.1039/c6an02224c. 

[11] Sunil R. Lakhani; Ian O. Ellis;, S.J.P.H.T. Schnitt, V.M.J. van De, WHO 
Classification of Tumours of the breast, 2012. 
doi:10.1017/CBO9781107415324.004. 

[12] A. Cutler, D.R. Cutler, J.R. Stevens, Random Forests, (2012). doi:10.1007/978-



288 
 

1-4419-9326-7. 

[13] B. Schölkopf, Z. Luo, V. Vovk, Empirical inference: Festschrift in honor of 
Vladimir N. Vapnik, Empir. Inference Festschrift Honor Vladimir N. Vapnik. 
(2013) 1–287. doi:10.1007/978-3-642-41136-6. 

[14] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost : A 
Hybrid Approach to Alleviating Class Imbalance, 40 (2010) 185–197. 

[15] F.N. Pounder, K. Reddy, R. Bhargava, Development of a practical spatial-
spectral analysis protocol for breast histopathology using Fourier transform 
infrared spectroscopic imaging, Faraday Discuss. 187 (2016) 43–68. 
doi:10.1039/C5FD00199D. 

[16] MathWorks, Fitcensemble, MathWorks Doc. (2019). 
https://uk.mathworks.com/help/stats/fitcensemble.html (accessed July 27, 
2019). 

[17] A.C.S. Talari, M.A.G. Martinez, Z. Movasaghi, S. Rehman, I.U. Rehman, 
Advances in Fourier transform infrared (FTIR) spectroscopy of biological 
tissues, Appl. Spectrosc. Rev. 52 (2017) 456–506. 
doi:10.1080/05704928.2016.1230863. 

[18] S. Kasraeian, D.C. Allison, E.R. Ahlmann, A.N. Fedenko, L.R. Menendez, A 
comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the 
diagnosis of extremity soft tissue masses, in: Clin. Orthop. Relat. Res., 2010. 
doi:10.1007/s11999-010-1401-x. 

[19] A.B. Barqawi, R. Turcanu, E.J. Gamito, M.S. Lucia, C.I. O’Donnell, E.D. 
Crawford, D.D. La Rosa, F.G. La Rosa, The value of second-opinion pathology 
diagnoses on prostate biopsies from patients referred for management of 
prostate cancer, Int. J. Clin. Exp. Pathol. (2011). 

[20] E. Gazi, M. Baker, J. Dwyer, N.P. Lockyer, P. Gardner, J.H. Shanks, R.S. Reeve, 
C.A. Hart, N.W. Clarke, M.D. Brown, A Correlation of FTIR Spectra Derived 
from Prostate Cancer Biopsies with Gleason Grade and Tumour Stage, Eur. 
Urol. (2006). doi:10.1016/j.eururo.2006.03.031. 

 

  



289 
 

Chapter 9 Conclusion and Future Work 

 

 

 

 

 

 

 

Chapter 9 

 

 

Conclusion and Future Works 

 

 

 

 

  



290 
 

To sum up, this thesis is mainly focused on two types of tissues, breast and prostate 

tissues.  

For breast tissue cores, digital histology and cancer diagnosis, for tissue on both 

CaF2 and glass substrates were discussed. Generally, for both digital histology 

prediction and cancer diagnosis, the classification accuracies were higher on the 

CaF2 slides compared with the glass slides.  

For breast tissues on CaF2 slides, not only were spectra of epithelium cells involved 

in model training and construction process but also the stroma region of tissues 

was used as training inputs for classification models. Although the stroma spectra 

did not provide predictions with higher classification accuracies than epithelium 

cells, the advantage is that it is available when epithelial spectra were lacking in the 

best tissue biopsy. Using stroma spectra as training samples could avoid the 

problem of lack of model training information. With larger training data, the model 

can potentially provide reliable and robust predictions on unknown samples. In 

terms of classification methods, two machine learning algorithms, random forest 

and AdaBoost were applied to the same datasets. In the training validation tests, 

both methods worked approximately equally well on the same samples. However, 

in the independent tests, AdaBoost worked better than the random forest. The 

differences could be caused by the nature of AdaBoost algorithm, weighting 

features which favour the classification.  

For breast tissue on glass, with reasonable training data sampling, pre-processing 

steps and classification methods, epithelium spectra obtained an averaged 81.3% 

and 83.2% classification accuracies for cancer and NAT classes respectively. This is 

higher than the cancer diagnosis rates of the pathologist in 2010, 75.4%[1]. This 

further supports, together with the literature[2], the idea that the H&E stained 

tissue on glass slides could be used for tissue cancer diagnosis. This is a significant 

step forward for the translation of FTIR cancer diagnosis to clinical adoption. There 

was also a limitation of this study, in that only grade II breast cancer and NAT cores 

were used for model construction. In order to construct a more robust breast 
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cancer diagnosis model on glass slides, the training set should include all type of 

breast cancer in the future. 

In addition, the question of whether caveolin-1 staining can be used as diagnostic 

markers for breast cancer was also addressed in this thesis. Even though the 

random forest models could not find clear differences between caveolin-1 stained 

stroma and the unstained stroma, using spectra extracted from caveolin-1 stained 

stroma tissue as training inputs, the constructed model could successfully separate 

cancerous and normal cores in the independent test. This showed that caveolin-1 

did have potential as a cancer diagnosis stain marker. However, with the limitation 

of caveolin-1 stain, only a very small number of spectra were used in the analysis. 

For more reliable reflection of the correlation between caveolin-1 and cancer 

prediction, more stained sample should be used in the future.  

In terms of studies on prostate tissue, analysis has been conducted on the 

possibility of applying digital histology and cancer diagnosis on unstained prostate 

tissues. For digital histology, two machine learning methods were applied to classify 

epithelium and stroma spectra. The classification accuracies were 90% and 85% 

using both methods. This showed the potential of application of digital histology 

using unstained tissue on glass slides, which will have the potential to significantly 

benefit patients as multiple stains can be conducted using data from a single tissue 

slide.  

In term of cancer diagnosis, neither classification method gave satisfying results. 

Two possible reasons could be found to explain the failure. Firstly, the low 

accuracies on independent test dataset were due to lack of training features in 

model construction. Comparing with other infrared transparent substrates the 

nature of glass slides limited the wavenumber ranges of measuring, which caused 

the limitation of feature selection. The second one was that unknown glue was 

found in the sample spectra, which interfered with the tissue spectra and 

influenced the classification results. Two digital glue removal methods, least-square 

fitting and EMSC were applied to remove the influence of glue. However, both 

methods failed to completely removal glue from the spectra of mixture. Two 
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possible reasons could be raised. The first one was that the assumed used glue was 

similar but not the same with the glue on the slides. Secondly, the content of glue 

could be unevenly distributed, which caused variations in the spectra. In order to 

conduct more research using unstained tissues on glass slides, further studies 

concerning the glue used on the slides are important.  

For future research on cancer diagnosis of human tissue on glass, other more 

complicated and advanced classification algorithms can be applied, for example, 

deep learning based on the artificial neural network. Artificial neural network based 

on digital stained chemical images of individual cores is potentially great 

classification tool in term of cancer diagnosis, as it combines the chemical 

information of samples extracted by infrared spectra, which can be presented by 

different chemical stains of cancer biomarkers on generated chemical images of 

samples, and the appearance of cells in the sample tissue, which is used by 

pathologists as standard to make diagnosis decisions. 
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