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Abstract 

THE UNIVERSITY OF MANCHESTER 

Abstract of thesis submitted by Estelle Yau for the degree of Doctor of Philosophy, 

entitled: “A systematic framework to integrate preclinical data within PBPK models: 

from global sensitivity analysis to middle-out approaches”. 

Month and year of submission: June 2021 

Whole-body physiologically-based pharmacokinetic (PBPK) models have many applications in 

academic and pharmaceutical research and drug development. However, optimization of 

parameters in such complex models by fitting models to observed data is a challenging and time-

consuming process. The models are often unidentifiable/over-parameterized given the large 

number of parameters and availability of data which are mostly limited to plasma observations. 

It is common practice to fix some parameters and estimate others. However, the decision on which 

parameters to fix and which to estimate is subjective and therefore the final model and parameters 

may vary significantly between different investigators. This was a concern highlighted by 

regulatory agencies in their guidance documents for PBPK modelling. Hence, the overall aim of 

this thesis was to develop a systematic approach for integrating preclinical data within PBPK 

models to address this issue. 

The first part of this thesis was focused on identifying key drug-dependent and physiological 

parameters that influence predictions of tissue-to-unbound plasma partition coefficients (Kpus) 

and thus drug distribution in PBPK models. The impact of these parameters was evaluated on the 

Kpus predicted by the Rodgers and Rowland model using sensitivity and uncertainty analyses. 

For most drug classes, LogP and fraction unbound in plasma (fup) were generally the most 

influential parameters for Kpu predictions. Uncertainty in tissue composition parameters 

especially acidic phospholipid concentrations and extracellular protein tissue:plasma ratios, could 

have a large impact on Kpu predictions for all classes. For parameter estimation involving PBPK 

models and dimensionality reduction purposes, less influential parameters might be assigned 

fixed values depending on the parameter space, while influential parameters could be subject to 

parameter estimation. 

Secondly, several model reduction approaches were investigated to simplify PBPK model 

structure or dimensionality and thus facilitate the estimation process during PBPK model 

development. Tissues were clustered according to physiological information reducing the number 

of unknown parameters without changing the overall PBPK model structure. The investigated 

mechanistic models in conjunction with preclinical in vivo data were able to provide suitable 

estimates of Kpus using the nonlinear mixed effect method. To that end, diazepam was used as a 

case example. This analysis provided a basic framework for PBPK model development and 

estimation of distribution parameters and subsequent applications of PBPK modelling, especially 

translation of drug distribution from animals to humans. 

Subsequently, the use of the investigated mechanistic models for interspecies extrapolation was 

evaluated. The models that could best fit data in rats and monkeys were applied for translation of 

drug distribution to humans. The performance of these best models was assessed for three 

compounds (diazepam, midazolam and basmisanil) and compared to the whole-body PBPK 

model with Kpu predictions from the Rodgers and Rowland model. Using the approach of 

simplified PBPK models with common scalars and the best models, PK profiles could be well 

described in preclinical species and plasma profiles were successfully predicted in human for 

diazepam and midazolam. This proof of concept was shown for lipophilic weakly basic 

compounds. For an exhaustive evaluation, the work and models proposed herein may be extended 

to different drug classes and more compounds. The PBPK modelling framework presented in this 

work for drug distribution and prediction of human PK could also be applied to translation within 

species e.g., from an adult to a paediatric population. 
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1.1. Introduction 

During the development of a new drug, it is important to characterise the absorption, 

distribution, metabolism, and excretion (ADME), to understand drug exposure especially 

after oral dosing and to link drug dose to efficacy and safety, and thus to predict a relevant 

dose in clinics. Absorption describes the rate and extent at which drugs enter the body. 

Once the drug is absorbed from the absorption site, it is distributed throughout the body, 

mostly via the blood circulation. The drug can be biotransformed into metabolites by 

organs or tissues (primarily the liver, the gastrointestinal tract, and kidneys). The drug 

can be transformed into more water-soluble metabolites to facilitate its excretion from the 

body via faeces or urine. Key enzymes to consider for drug metabolism are hydroxylation 

enzymes such as cytochrome P450 (CYPs) and conjugation enzymes such as UDP-

glucuronosyltransferases (UGTs). The study of the ADME processes and the quantitative 

description of how these processes affect the concentration-time course of the drug in 

plasma, serum, or whole blood, tissue target and target organs is defined as 

pharmacokinetics (PK) [1]. 

Small molecule drug discovery and development is a long, challenging, and expensive 

process [2, 3]. It involves thousands of compounds being screened and tested in order to 

identify a novel drug that is useful and safe for the treatment of a disease or a condition. 

This process can be divided into different stages: discovery, pre-clinical, clinical Phases 

I to III and post-marketing. Each stage has its own aims and requirements and is designed 

to gather evidence and information about the PK, the safety and efficacy of the drug. 

Various PK data are generated from preclinical- to late-stage clinical development. 

Before the clinical phases, diverse animal, in vitro and in silico data are available. All the 

information available from those studies can be integrated through modelling and 

simulation (M&S) for supporting the design of human studies [4]. Thanks to the 

advancement in computer sciences in the last decades, M&S tools have become widely 

used in drug development and have helped to improve drug development and decision 

making [5, 6]. Various models can be used to predict PK parameters and subsequently to 

estimate human PK and clinical dose. These models vary from simple allometric scaling 

and in vitro-in vivo extrapolation (IVIVE) to more complex physiologically based 

pharmacokinetic (PBPK) modelling. The increased consideration for understanding the 

ADME properties has led to a reduction of attrition rate in drug research and development 
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due to PK reasons [7]. Additionally, confidence in the prediction of human PK allows 

assessment of potential drug-drug interactions (DDI) and mitigation of safety risks [8]. 

Regardless of the mechanism of drug action, the unbound concentration of drug 

attained at its site of action is the one driving therapeutic effect. Establishing and 

maintaining the optimal exposure help to determine the required dose and dosing interval 

for a compound. However, the unbound concentration of drug at these sites of action are 

generally unknown, especially if they are in tissues. The general assumption is to estimate 

the unbound concentration in tissues (Cut) based on the unbound concentration of drug in 

blood plasma (Cup), which are defined as follow (Eq. 1.1-Eq. 1.2): 

𝐶𝑢𝑡 = 𝐶𝑡𝑜𝑡𝑎𝑙,𝑡  ×  𝑓𝑢𝑡 Eq. 1.1 

𝐶𝑢𝑝 = 𝐶𝑡𝑜𝑡𝑎𝑙,𝑝  ×  𝑓𝑢𝑝 Eq. 1.2 

where Ctotal,t and Ctotal,p are total concentration in the tissue and in plasma, respectively; 

fut and fup are the fraction of drug unbound in the tissue and in plasma, respectively. 

At equilibrium, unbound plasma concentration and unbound tissue concentration 

would be equal for drugs distributed only by passive diffusion without efflux or influx by 

transporters, consequently (Eq. 1.3-Eq. 1.4): 

𝐶𝑡𝑜𝑡𝑎𝑙,𝑡  ×  𝑓𝑢𝑡  =  𝐶𝑡𝑜𝑡𝑎𝑙,𝑝  ×  𝑓𝑢𝑝 Eq. 1.3 

𝐶𝑡𝑜𝑡𝑎𝑙,𝑡

𝐶𝑡𝑜𝑡𝑎𝑙,𝑝
 =  

𝑓𝑢𝑝

𝑓𝑢𝑡  
= 𝐾𝑝 Eq. 1.4 

The ratio of the total drug concentration in a tissue to plasma concentration at steady state 

is defined as the tissue-to-plasma partition coefficient (Kp). Kps are a measure of the 

steady-state distribution of the total drug concentration in tissue and will be described 

later in this chapter.  

Together with clearance, the volume of distribution (Vd) are key PK parameters 

which determine the drug half-life and dosing regimen. The extent of drug distribution 

within the body is described by the volume of distribution [1]. Vd does not represent a 

physiological space, it is the apparent volume of fluid needed to contain the total amount 

of drug, assuming the drug is evenly distributed throughout the body, to produce the 

observed concentrations in plasma. Vd (Eq. 1.5) is the proportionality constant that relates 

the plasma concentration of drug (Cp) to its total amount in the body (A): 

𝑉𝑑 =
𝐴

𝐶𝑝
  Eq. 1.5 



25 

 

As a measure of the extent of distribution into tissues, Vd can also be related to the protein 

binding and the physiological volumes of plasma (Vplasma) and tissues (Vtissue) and can be 

calculated as follows (Eq. 1.6) [9]: 

𝑉𝑑 = 𝑉𝑝𝑙𝑎𝑠𝑚𝑎 + ∑ 𝑉𝑡𝑖𝑠𝑠𝑢𝑒,𝑖 ∗
𝑓𝑢𝑝

𝑓𝑢𝑡
 Eq. 1.6 

where fup and fut are the fraction unbound in plasma and body tissues, respectively, Vtissue,i 

is the volume of the ith-tissue. 

The volume of distribution values can vary widely between individuals as it can be 

influenced by age, gender, disease state, and body composition [10, 11]. Consequently, 

this may affect the dose and dosing interval needed to maintain therapeutic concentrations 

e.g., when considering interactions in comorbidity and making translation between 

ethnicities, extrapolation to children. Factors explaining differences in drug distribution 

are factors that can influence the rate and/or extent of distribution of xenobiotics into 

tissues and which are detailed in the next section. 

 

1.2. Factors influencing small molecule drug distribution 

The distribution of a drug within the body refers to a generally reversible partitioning 

of drug from one compartment (systemic circulation) into another (extravascular tissues). 

This is mainly governed by blood flow rates and the ability of the drug to cross tissue and 

cellular membranes. Thus, tissue-to-plasma-levels of drug at steady state depend on 

compound properties and the physiological composition of different tissues. The rate of 

tissue distribution can be influenced by tissue blood perfusions, transporter-mediated 

uptake rate, and the membrane permeability (Table 1.1). The extent of tissue distribution 

is dependent upon tissue partitioning coefficients as well as binding to constituents within 

blood and tissues (Table 1.1). Therefore, both physiological and physicochemical factors 

can influence tissue distribution of a drug. The factors are summarized in Table 1.1 and 

further detailed below. 
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Table 1.1. Drug- and physiology- specific factors affecting the rate and extent of drug distribution 

into tissues. Adapted from [12] 

Determinants of 

tissue distribution 

Physiological properties Drug characteristics 

Blood perfusion 

rate 

Regional blood flow, organ size  

Membrane 

permeability 

Tight junctions in capillary wall (for 

large molecules) 

Molecular size, lipophilicity, 

pKa 

Transporter-

mediated 

distribution 

Distribution of influx/ efflux 

transporters in various tissues 

Functional groups 

Binding to blood 

components 

Albumin, α1-acid glycoprotein, 

lipoproteins, globulins, 

haemoglobin, red blood cells 

Lipophilicity, 

acid/base/neutral character 

Tissue binding Extracellular albumin or 

lipoproteins, acidic phospholipid or 

lysosomal binding 

Lipophilicity, 

acid/base/neutral character 

Tissue partitioning Tissue composition and volume, 

regional pH 

Ionization and lipophilicity 

Perfusion rate is defined as the volume of blood per unit time (blood flow) per unit tissue volume 

(or mass). 

 

1.2.1. Tissue perfusion rate:  

When drugs are highly lipophilic or the membrane is highly permeable, drug 

distribution becomes perfusion rate-limited. It is thus intrinsically dependent on the blood 

flow rate from the heart to the organs. Drug distribution thus occurs rapidly in highly 

perfused tissues such as heart, liver, kidney, spleen, or intestine, while it is generally 

slower in lowly-perfused tissues such as adipose tissues.  

 

1.2.2. Membrane permeability 

A small molecule drug can get across cell membranes by mainly two mechanisms: 

transcellular diffusion through the lipid membrane due to concentration gradients or 

active transport via carrier-mediated mechanisms [13]. Drug-related factors such as size, 

lipophilicity, ionisation, and functional groups (e.g., acidic or basic centres) influence the 

passive diffusion mechanism of molecules through the lipid membrane. When drugs are 

ionized at physiological pH, polar or water-soluble, drug distribution is permeability rate-

limited, and the membrane and transporters are the rate-limiting step. Drugs can also be 

limited in their ability to penetrate into tissues depending on their ability to cross 

endothelial and cellular barriers, which can be highly selective (e.g., blood-brain barrier 

or placental barrier). Cell membranes are made up of lipid bilayers to which small 
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lipophilic drugs are highly permeable. Compared to acids and neutrals, basic compounds 

can enter more easily into cell membranes as lipid bilayers have negatively charged polar 

heads. Weak acids and bases contain at least one functional group that can reversibly 

disassociate or associate with a proton to form a negatively charged anion or a positively 

charged cation. Depending on the pH of the compartment media and the acid dissociation 

constant (pKa), the balance of the equilibrium can be shifted between ionised and 

unionised fractions (Figure 1.1). The extent of drug ionisation is determined by the pKa 

of the ionisable compound and the pH of the compartment fluid (tissues, plasma, and 

extracellular water). When a pH difference exists between physiological body 

compartments, then the extent of drug ionisation would influence its ability to distribute 

and cross cell membranes within the various body tissues. For large molecules, the rate 

of distribution into tissues is limited by their membrane permeability (tissue fenestration, 

and receptor mediated extravasation). 

 

Figure 1.1: Binding of moderate to strong bases (B) to intracellular neutral lipids (NL), neutral 

phospholipids (NP) and acidic phospholipids (AP) and acids, weak bases and neutrals (A) to NL, 

NP and protein adapted from [14, 15]. 

 

Unionised fractions of moderate to strong bases (B) cross membranes and bind to intracellular 

NL, NP, while ionised fractions (BH+) bind to AP. Unionised fractions (A) of acids, weak bases 

and neutrals cross membranes and bind to intracellular NL, NP, while ionised fractions (A-) bind 

to extracellular proteins.  

 

1.2.3. Transporters 

Drugs distributed across cellular membranes via transporter proteins lead to 

accumulation in specific tissues or excretion from specific tissues. Because binding to 

drug transporters is a concentration-dependent and saturable process, it may introduce 

nonlinear distribution. Drug transporters are expressed at various levels in different 
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organs such as liver [16], kidney [17], intestine [18], and brain [19]. Efflux drug 

transporters, most importantly P-glycoprotein (P-gp), breast cancer resistance protein 

(BCRP), multidrug resistance protein (MRP), play an important role in drug transport 

across membranes and drug disposition [20]. Uptake transporters like organic anion 

transporting polypeptides (OATPs) and organic anion transporters (OATs) also play a 

significant role in drug absorption, distribution, and elimination [21]. Several in vitro and 

in vivo systems are commonly used to assess uptake and efflux transport kinetics [22]. 

Subsequent IVIVE of transporter-mediated processes use static and PBPK modelling 

approaches to predict transporter-mediated PK and DDIs. 

 

1.2.4. Binding to blood components 

Nonspecific drug binding to plasma proteins and binding of the drug to its target 

can also influence the extent of distribution as it is assumed that only the unbound drug 

material in blood distributes from systemic circulation into tissues [23]. Acidic drugs such 

as warfarin and acetylsalicylic acid mainly bind to albumin, the most abundant protein in 

plasma [24]. Neutral compounds can also bind to serum albumin [25]. Basic drugs such 

as lidocaine or propranolol usually bind to α1-acid glycoprotein (AAG), lipoproteins or 

globulins [26]. Additionally, various lipophilic compounds can bind to the membrane or 

the cellular components of the red blood cells (RBC) [27-29]. 

 

1.2.5. Binding to tissue components 

Basic drugs generally more extensively distribute in tissues and thus have an 

apparent volume of distribution larger than the volume of acidic drugs. Many basic drugs 

are indeed ionized at physiological pH allowing them to bind to tissue constituents and 

also to accumulate in lysosomes which are able to trap lipophilic basic drugs, in particular 

cationic amphiphilic drugs (CADs) such as chlorpromazine, imipramine due to the low 

pH associated with them [30, 31]. Specific binding of drugs to tissues components (e.g., 

membrane phospholipids, DNA, proteins) can increase drug distribution by several fold 

in those tissues [32, 33]). And if the binding is irreversible, drugs tend to concentrate 

inside the tissue, leading to drug accumulation (e.g., tetracycline can distribute and 

accumulate in bone and teeth [34]). 
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1.2.6. Tissue partitioning 

The unbound tissue partition coefficients reflect the extent of drug distribution into 

tissue and are dependent on both drug characteristics and tissue composition. Tissue 

compositions influence tissue partitioning and therefore the extent of drug distribution; 

hydrophilic drugs tend to distribute into water-rich tissues (e.g., muscle) or stay in the 

blood or interstitial spaces. On the other hand, lipophilic drugs may concentrate in fat-

rich tissues (e.g., adipose, liver, brain, and kidney) which may increase the Vd and drug 

half-life, with a possible slow drug accumulation and delayed washout during and after 

chronic dosing. However, as plasma drug concentration decreases, tissues will release the 

accumulated drug back into the vascular space. Therefore, lipid contents of tissues (i.e., 

neutral lipids and phospholipids, acidic phospholipids) and physical tissue volumes 

appear as key physiological determinants of distribution. 

 

1.3. Prediction of drug distribution 

1.3.1. Volume of distribution at steady state (Vss)  

Estimation of the volume of distribution at steady state (Vss) is a key parameter 

to predict the required dosing interval for a compound. Vss is the volume of distribution 

at equilibrium, i.e., when all the drug is distributed into the different tissues and is not 

influenced by the elimination (if elimination does not occur in any of the peripheral 

tissues).  

Several methods can be used to estimate distribution volume based on 

experimental data [35]. Following an IV bolus dose, Vss can first be estimated by 

noncompartmental analysis using the following expression (Eq. 1.7): 

𝑉𝑠𝑠 =
𝐷𝑜𝑠𝑒

𝐶0
 Eq. 1.7 

Where C0 is the initial concentration in plasma determined by plotting the log 

concentrations versus (linear) time and extrapolating back to time zero, before clearance 

began. This Eq. 1.7 assumes that the drug does not distribute into tissues and elimination 

half-life is very short, which may not be true. Assuming a mono-compartmental model, 

Vss can be estimated using the volume to link the elimination clearance (CL) to 

elimination half-life (t1/2): 
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𝑡1/2 = 𝑉𝑠𝑠 ∙
0.693

𝐶𝐿
 Eq. 1.8 

However, the Vss in Eq. 1.8 is likely over-estimated due to the assumption of mono-

exponential PK and no consideration of the contribution of multi-exponential elimination 

to the terminal half-life. 

 

1.3.2. Prediction of human Vss 

Various methods have been proposed to predict Vss (especially in human) based 

on preclinical data in early drug development (before any clinical data is obtained). Most 

common methods can be classified into empirical, semi-mechanistic and mechanistic 

methods. Although many studies have compared the Vss prediction accuracy of different 

methods [36-46], there is no clear agreement on which method is the most accurate as 

they reported varying results. This could be due to different sizes of datasets used and 

different types of compounds included in the comparison studies. 

 

Empirical methods 

The first empirical method is a single species allometric scaling where human Vss 

is simply derived from the Vss of preclinical species [38]. It is assumed that the unbound 

Vss (Vuss) normalised by body weight is the same between species (Eq. 1.9): 

𝑉𝑢𝑠𝑠ℎ𝑢𝑚𝑎𝑛 = 𝑉𝑢𝑠𝑠𝑎𝑛𝑖𝑚𝑎𝑙 Eq. 1.9 

where Vuss=Vss/fup. This method is based on the assumptions of similarity in tissue 

composition across species, species-independence of drug partitioning into tissue lipids, 

and species difference in plasma protein binding. 

Another empirical approach is allometric scaling where the physiological or 

pharmacokinetic parameter (here, Vss) is related to the power of body weight (Eq. 1.10) 

[47]: 

𝑉𝑠𝑠 = 𝑎 ∙ 𝐵𝑊𝑏 Eq. 1.10 

where BW is the body weight, a and b are the allometric coefficient and exponent, 

respectively. The coefficient and exponent are determined by fitting the allometric 

function to preclinical information (e.g., PK parameters) of various animal species of 

differing body weights. The fitted function is then used to extrapolate Vss from chosen 
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preclinical species to human. For multiple species, the exponents of volume of 

distribution for a drug generally tend to be close to 1, implying that Vss normalised by 

body weight is constant across species [48]. However, this is not observed for all drugs. 

One reason is that because of its empirical nature, allometry does not consider species 

differences in protein expression, enzymes, transporters, and plasma protein binding, 

amongst others. Alternatively, several studies have attempted to improve allometric 

predictions by correcting for plasma and/or tissue protein binding [45, 49]. 

Alternatively, Wajima et al. suggested to scale human Vss from two species: rat 

and dog using multivariate regression analysis (Eq. 1.11) [50]: 

𝐿𝑜𝑔(𝑉𝑠𝑠ℎ𝑢𝑚𝑎𝑛)

=  0.07714 ∙ 𝐿𝑜𝑔 (𝑉𝑠𝑠𝑟𝑎𝑡) ∙  𝐿𝑜𝑔( 𝑉𝑠𝑠𝑑𝑜𝑔)  +  0.5147

∙  𝐿𝑜𝑔( 𝑉𝑠𝑠𝑑𝑜𝑔) + 0.586 

Eq. 1.11 

 

Semi-mechanistic methods 

The semi-mechanistic models also require preclinical in vivo data, but they 

consider species differences in physiology. Based on the relationship reported by Gillette 

et al [9], the Øie-Tozer method was one of the first physiological models for predicting 

human Vss [51]. In this model, it is assumed that the unbound drug distributes into extra- 

and intra-cellular space where it can interact with extracellular proteins and tissue 

components, as described in the following equation (Eq. 1.12): 

𝑉𝑠𝑠ℎ𝑢𝑚𝑎𝑛 = 𝑉𝑝𝑙𝑎𝑠𝑚𝑎 + (fup,human ∙ 𝑉𝑒)

+ [(1 − fup,human) ∙  𝑅𝑒/𝑖 ∙ 𝑉𝑝𝑙𝑎𝑠𝑚𝑎] + 𝑉𝑟 ∙
𝑓𝑢𝑝,ℎ𝑢𝑚𝑎𝑛 

𝑓𝑢𝑡,𝑎𝑛𝑖𝑚𝑎𝑙
 

Eq. 1.12 

where Re/i is the ratio of total binding sites in extracellular fluids outside the plasma to 

that in plasma, Ve is the extracellular fluid volume, and Vr is the remaining fluid volume 

into which drug distributes. This approach assumes fut to be the same between species. 

Two different equations can be used to calculate fut and both need in vivo Vss, fup and 

some physiological data. A value of fut in preclinical species of less than or equal to zero 

would indicate no binding to tissue components. Recently, the Øie-Tozer model has been 

modified to consider other tissue components such as lysosomes that can influence the 

volume of distribution [52]. 
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Wajima and Oie-Tozer approaches are commonly used in practice in the 

pharmaceutical industry to predict human Vss. In a study comparing 24 approaches using 

in vitro and in vivo data to predict Vss in human, Jones et al. reported that the Wajima 

model was the second most accurate model (94% of human Vss predicted within 3-fold 

of observed Vss) and the Øie-Tozer method being the first (78% of predicted Vss within 

2-fold of observed Vss) [38]. However, these models generally require in vivo animal 

data which are not always available in drug discovery due to resource, time, and cost 

limitations as well as ethical issues (3Rs principles). Therefore, many efforts have been 

put into developing in vitro and in silico methods for predicting Vss early. Lombardo et 

al. rearranged the Øie-Tozer model to estimate fut based on physicochemical properties 

without requiring in vivo preclinical data for neutral and basic drugs (Eq. 1.13) [53, 54]. 

𝐿𝑜𝑔(𝑓𝑢𝑡) = 0.0080 − 0.2294 ∙ 𝐿𝑜𝑔 (𝐷𝑜:𝑤) − 0.9311 ∙ 𝑓𝑖7.4

+  0.8885 𝐿𝑜𝑔 (𝑓𝑢𝑝) 
Eq. 1.13 

where fi7.4 is the fraction of drug ionized at pH 7.4. 

Additional quantitative structure-activity relationship (QSAR) models have been 

proposed to predict human Vss in early drug discovery when limited animal data are 

available [41, 46, 55-57]. These models are generally built using data mining (or machine 

learning) methods and predict Vss using physicochemical or molecular descriptors. 

Several studies suggested that these methodologies can predict Vss reasonably well 

within 2-fold difference of the actual value [55-57]. These in silico models are high-

throughput approaches which can be used to assess compounds’ PK even before their 

synthesis. One general limitation of these QSAR approaches could be the inability to 

predict the Vss of a compound in a new unknown chemical class, which was not included 

in the large dataset used for training and validation. Nevertheless, Lombardo et al. 

recently published a large dataset of human Vss values for 1352 structurally diverse 

compounds [58], presenting the opportunity to assess new QSAR models [41, 46, 59]. 

 

Mechanistic methods 

Human Vss can also be estimated from tissue-to-plasma partition coefficients 

(Kp). Assuming tissue distribution is only driven by passive diffusion, the Vss can be 

related to physiological volumes of the body and a measure of the distribution at steady-

state of the total drug concentration and tissues is reflected by Kp (Eq. 1.14) [60]: 
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𝑉𝑠𝑠 = 𝑉𝑝𝑙𝑎𝑠𝑚𝑎 +  𝐾𝑝𝑅𝐵𝐶 ∙ 𝑉𝑅𝐵𝐶 + ∑ 𝐾𝑝𝑖

𝑛

𝑖

∙ 𝑉𝑡𝑖𝑠𝑠𝑢𝑒,𝑖 ∙ (1 − 𝐸𝑖) Eq. 1.14 

where Vplasma and Vtissue,i are the physiological volume of plasma and the tissue i, VRBC is 

the volume occupied by red blood cells (Vblood-Vplasma). E is the extraction ratio of an 

eliminating tissue such as the liver. For non-eliminating tissues, E=0. KpRBC is the red 

blood cell-to-plasma ratio and can be determined from fup, blood:plasma ratio (BP) and 

the haematocrit (Hte) as in Eq. 1.15: 

𝐾𝑝𝑅𝐵𝐶 =
𝐻𝑡𝑒 − 1 + 𝐵𝑃

𝐻𝑡𝑒
 Eq. 1.15 

 

In the plasma, the drug is assumed to be in rapid equilibrium with plasma proteins 

and only the unbound and unionised fraction of drug can distribute into tissue. The tissue-

to-plasma water partition coefficients (Kpu) reflect the steady state total concentration of 

drug in the tissues (Ctotal,t) to the unbound concentration in plasma (Cu,p) following a 

constant rate drug infusion (Eq. 1.16): 

𝐾𝑝𝑢 =
𝐶𝑡𝑜𝑡𝑎𝑙,𝑡

𝐶𝑢,𝑝
 Eq. 1.16 

The unbound tissue partition coefficients (Kpu,u) illustrate the extent of steady-state 

distribution between the unbound fractions in tissues and in plasma (Eq. 1.17): 

𝐾𝑝𝑢, 𝑢 = 𝐾𝑝 ∗
𝑓𝑢𝑡

𝑓𝑢𝑝
 Eq. 1.17 

(Kpu,u=1 for passive diffusion, Kpu,u<1 for efflux and Kpu,u>1 for influx). 

 

1.3.3. Prediction of human tissue partition coefficients 

Kp values need to be known in each tissue in order to predict the human Vss for 

a compound. These Kp data can be determined experimentally from preclinical species, 

but it is however time consuming and costly. Consequently, many in vitro and in silico 

methods have been developed to estimate Kp values in order to predict Vss. The different 

methods for estimating Kp are described in greater details in the fourth section of this 

chapter. One of the methods is to use mechanistic tissue composition-based prediction 

models to predict tissue Kps. They have the advantage that they can be used in early drug 

discovery without requiring an in vivo study as they can rely on in vitro measured or 
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computed physicochemical properties of lipophilicity, ionisation, plasma protein binding, 

and blood-to-plasma concentration ratio.  

Some of the tissue composition models use human physiological data [61] for prediction 

of human Kps and human Vss [36, 62]. However, experimental human tissue-to-plasma 

partition coefficients are rarely available and subsequently the reliability of the in silico 

partition coefficient estimates cannot easily be assessed. Nevertheless, a recent study 

showed that this approach is comparably accurate or superior to empirical allometric 

approaches based on the extrapolation of in vivo animal Vss data to predict Vss in human. 

It was also reported that prediction of human Vss is more accurate when the Vss in 

preclinical species is well predicted [36]. 

Alternatively, human Vss can be extrapolated from tissue-to-plasma partition coefficients 

in preclinical species (generally rodents) [44, 63]. Kpu values are commonly assumed to 

be directly translated between species by considering that tissue binding is conserved 

across species (Eq. 1.18) [1, 47, 49]: 

𝐾𝑝𝑢ℎ𝑢𝑚𝑎𝑛 = 𝐾𝑝𝑢𝑎𝑛𝑖𝑚𝑎𝑙 Eq. 1.18 

 

1.3.4. Prediction of PK profiles 

The Kpu predictions can then be inputted into whole-body PBPK models. PBPK 

modelling provides a powerful tool for integrating preclinical data into human PK 

predictions of PK parameters and concentration-time profiles. The concept of PBPK 

modelling is based on an approach that integrates broad information on species 

physiology and a wide understanding of the mechanisms affecting the pharmacokinetic 

profile of a drug. PBPK model structure and how Kpus are integrated into the model are 

detailed in the section 5 of this chapter.  

Other approaches for predicting human PK profiles based on preclinical data include 

Dedrick plots and Wajima's method [64-67]. The concept of the Dedrick plot or ‘species-

invariant time method’ is based on allometic scaling and assumes that differences across 

species are based on body weight [64]. It assumes that after normalizing concentrations 

by body weights and transforming the chronological time to the equivalent time 

(kallynochrons and apolysichrons), the plasma concentration-time curves should be 

superimposable for all species [68]. A similar idea was later proposed by Wajima et al 

where the assumption is that after normalizing concentrations by steady-state plasma drug 
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concentration (Css=Dose/Vdss) and normalizing the time by mean residence time 

(MRT=Vss/CL), the plasma concentration–time curves should be superimposable across 

species [65]. These two empirical approaches can give good predictions [64, 65, 69] but 

inaccurate results are common especially if biliary clearance, renal secretion, or high 

metabolism exist and interspecies differences in these mechanisms are not well 

understood [70-73]. Application of correction factors can improve predictions in certain 

cases [68, 74, 75] but the assumption of linearity still has to be made and large interspecies 

differences in active processes are not addressed using these empirical approaches. 

Therefore, the use of PBPK modelling for predicting human PK profiles is preferred and 

several studies showed PBPK modelling performed better in comparison to empirical and 

allometric approaches [76-79]. 

 

1.4. Determination of tissue-plasma partition coefficients 

Both physicochemical characteristics and tissue compositions are important 

determinants of the extent of drug distribution. Most of these factors are accounted for in 

a PBPK model by the tissue-to-plasma partition coefficients. The Kp values are key 

components for the characterization of the extent of drug distribution into different tissues 

in the body and reflect the degree of tissue distribution attributed to processes such as 

protein binding, lysosomal trapping, and lipid interaction. Kp values are defined as the 

ratio of total concentration of drug in the tissue to total concentration of drug in the plasma 

at equilibrium/steady-state. There are several methods employed to investigate drug 

distribution; the most general are in vivo animal and human PK studies. However, with 

the development of new in vitro and in silico predictive tools, it is now common to predict 

drug distribution in the early drug development stages. 

 

1.4.1. In vivo methods 

The most common way is to derive Kp values in vivo from blood and tissue 

concentrations after administration of the drug to the designed species (usually rat or 

mouse). One established approach is to calculate Kp values from steady-state plasma and 

tissue concentrations following a constant rate infusion of drug until steady state is 

obtained [80-82]. After sacrificing the animal at one time point, sampling is performed 

from the tissues and plasma. Kp is calculated as the ratio of concentration in the tissue to 
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the concentration in plasma at that time point. It is important to bear in mind that if the 

animal is sacrificed before the steady-state is reached in all tissues, the Kp values is likely 

to be under-estimated. To ensure that the drug has reached steady-state, the experiment is 

often repeated at several different time points and similar measured values would indicate 

that steady state has been reached. Alternatively, Kp can be calculated following an i.v 

bolus injection of drug and sampling of tissues and plasma at different time points [83-

85]. Kps are then calculated as the ratio of areas under concentration time (AUC) profiles 

between tissues and plasma. For this approach, it is important to ensure that each tissue 

reaches one common terminal (elimination) phase after initial distribution (if tissues’ 

terminal phases differ among one another, pseudo-steady state is not reached). 

Additionally, this method may not be suited for compounds that are rapidly eliminated 

from the body if the plasma and tissue AUC are not well estimated [86]. Additionally, the 

sampling site can also have an impact on measured drug concentrations with different 

concentrations being observed between arterial and venous sampling, and correction for 

eliminating tissues need to be consider [87-89]. It was also shown that venous and arterial 

concentrations are the same when lung distribution is negligible and distribution 

equilibrium is instantaneous. 

All the in vivo techniques require at least one animal per sampling time. At each 

time point, the removed tissues are homogenized, and the total tissue concentrations can 

be determined by liquid chromatography/mass spectrometry [90] or by liquid scintillation 

counting [91, 92]. The extraction method should be adequately chosen depending on 

tissues to accurately measure the drug concentration within each tissue as some solvents 

may interact or alter the drug and some tissues need to be pre-treated [93, 94]. 

Other methods have also been used including imaging techniques such as 

quantitative whole-body autoradiography (QWBA) or positron emission tomography 

(PET) microdosing [91, 95-97]. In the QWBA, animals are dosed with radiolabelled 

compounds and then sacrificed in order to determine the tissue distribution of the 

radioactivity. No extraction step is necessary in this method and the radioactivity can be 

measured in the whole animal or in the individual tissues. However, one limitation may 

be its lack of specificity since by measuring the total radioactivity it does not distinguish 

parent compounds from metabolites. Another method is PET, a non-invasive method 

which makes it possible for use in human and where the drug is labelled with a positron-

emitting radionuclide. Although the in vivo distribution of the labelled drug can be 
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detected externally and visualised as tomographic images, it is also difficult to distinguish 

radio-metabolites from the parent tracer. One of the main drawbacks of PET studies is its 

high cost and thus they are more carried out in drug development rather than in drug 

discovery. 

 

1.4.2. In vitro methods 

In order to reduce animal use in preclinical experiments, a number of in vitro 

methods have been developed to estimate Kp values. For volatile compounds, tissue:air 

partition coefficients can be measured using the vial equilibration method: the compound 

is allowed to equilibrate between the air and the blood (or tissue) at body temperature in 

a sealed vial after shaking [98, 99]. The sampling of compound in the vial headspace is 

performed by gas chromatography and tissue-to-plasma partition coefficients can be 

calculated simply as the ratio of tissue:air and plasma:air partition coefficients. The in 

vitro distribution or binding of drugs to tissues may be determined using tissue 

homogenates [84, 100], slices [101] and isolated tissue components [102]. For non-

volatile compounds, tissue partitioning can be measured by equilibrium dialysis or 

ultrafiltration: the compound can distribute between blood (or plasma) and tissue 

homogenates through a membrane in a multi-chamber system [100, 103]. Tissue 

homogenates are the most extensively used although it has been argued that the compared 

to tissue slices homogenization may alter the cellular integrity of tissue (e.g., brain) 

without differentiating between intra- and extracellular drug distribution and thus tissue 

concentrations obtained may not be relevant [104]. This may lead to a measured in vitro 

Kp overestimating the actual in vivo distribution for drugs for which distribution is mainly 

restricted to the extracellular space in vivo since the total aqueous phase and intracellular 

binding sites have become available. Another method is to study in situ perfused organs 

(e.g., brain, liver) but their use is limited as it is low throughput [105, 106]. 

 

1.4.3. In silico methods 

Various in silico models have been developed to predict tissue partition coefficient 

values for drugs (Table 1.2). Rather than requiring in vivo data, these mechanistic 

methodologies estimate the extent of tissue distribution from parameters already available 

in the literature or quickly and easily obtainable with simple experiments, such as 
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physicochemical and in vitro binding characteristics to lipids and proteins of the drug, 

and this allows the routine application of PBPK methods in early drug discovery. 

Lipophilicity (logP), ionisation (pKa), plasma and/or blood protein binding (fup or fub) 

are drug-parameters routinely measured during drug development. Several methods for 

the calculation of Kps are widely used and have been reviewed in the literature. More 

details can be found in the following publications [39, 107] and a summary can be found 

in Table 1.2.  

 

Table 1.2: Summary of in silico Kp prediction models and their main inputs 

Models Approach Main inputs 

Arundel [108] Correlation-based Vss, logD 

Bjorkman [109] Correlation-based Muscle Kp 

Poulin [60, 110] 
Tissue-composition-

based 
logP, logKvo:w, fup 

Berezhkovskiy [111] 
Tissue-composition-

based 
logP, logKvo:w, fup 

Rodgers [14, 15] 
Tissue-composition-

based 
logP, pKa, fup, B:P 

Richter [112] Correlation-based muscle Kp 

Lukacova [113] 
Tissue-composition-

based 
logP, pKa, fup, B:P 

Schmitt [114] 
Tissue-composition-

based 

logP, logD, logKvo:w, logMA, 

pKa, fup 

Jansson [115] Correlation-based 
Vss, muscle Kp, logP, logD, 

logKvo:w 

Poulin and Theil [61] Correlation-based Muscle Kp, skin Kpu or KpuRBC 

Peyret [116] 
Tissue-composition-

based 

logP, logKvo:w, pKa, fup, B:P, 

Kp:w, Kprwp 

Poulin and Haddad 

[117] 
Tissue-composition-

based 
logP, logKvo:w, B:P, pKa, fup, 

Yun and Edginton 

[118] 
Correlation-based Vss, logP, pKa, fup 

Assmus [31] 
Tissue-composition-

based 
logP, pKa, fup, B:P 

Korzekwa and Nagar 

[52] 
Tissue-composition-

based 
logP, B:P, pKa, fup, fum 

Mayumi [119] Correlation-based Muscle Kp, logP, pKa, fup, B:P 

Kp : Tissue-to-plasma partition coefficient ; Kpu :Tissue-to-unbound plasma partition coefficient; 

KpuRBC : Red blood cell to plasma partition coefficient data for unbound drugs ; B:P :Blood-to-

plasma ratio ; logKvo:w: Logarithmic value of vegetable oil–water partitioning adjusted for 

ionization at pH 7.4; LogP : Logarithmic value of N-octanol–water partition coefficient; logD: 

logP adjusted for ionisation at pH 7.4; logMA: Logarithmic value of the phosphatidylcholine-

water partition coefficient at pH 7.4; Kp:w : protein:water partition coefficient ; Kprwp : plasma 

and interstitial fluid protein:water partition coefficient ; fup : Unbound fraction in plasma; fum : 

Unbound fraction in microsome; Vss : Volume of distribution at steady state  
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Overall, the equations of in silico models for predicting Kps are mostly based on 

physicochemical drug properties and physiological tissue composition information. 

However, they generally do not incorporate active transport (influx/efflux transporters) 

of drugs. Poulin et al. first suggested the development of a mechanistic model to estimate 

Kps by assuming that compounds dissolve into water content of tissues and partition into 

the lipids and phospholipids within tissue cells [60, 110]. Berezhkovskiy later modified 

the model by Poulin et al. and considered that only the unbound drug fraction in water 

bind to tissues [111]. Subsequently, Rodgers et al. developed two equations - one for 

strong bases with pKa>7 and one for neutrals, acids and weak bases) to take into account 

the impact of drug ionization on partitioning [14, 15]. To avoid the cut-off at a pKa of 7 

in the Rodgers et al. model, Lukacova et al. suggested to transform the two equations into 

a single continuous equation [113]. A recent study found that the performances of 

Rodgers et al. and Lukacova model are very similar, with the exception for compounds 

having pKa around 7 [46]. Alternatively, Schmitt examined electrostatic interactions 

between charged molecules and acidic phospholipids and also considered distribution in 

cells and interstitial fluids in their unified algorithm [114]. On the other hand, Peyret et 

al. integrated previous mechanistic algorithms into a unified algorithm to predict tissue 

partition coefficients for drugs and environmental chemicals [116], whereas Poulin and 

Haddad developed a model for highly lipophilic compounds where Kp and Vss do not 

increase exponentially when LogP is above 6 [117]. Recently, Assmus et al. extended the 

Rodgers et al. model to include ion partitioning into acidic or basic intracellular 

compartments (lysosomes and mitochondria) which improved predictions especially for 

basic compounds [31]. Additionally, a recent study suggested the use of partitioning into 

microsomes (unsorted phospholipid membranes) to determine interactions with all 

phospholipids for the Kp prediction of both charged and uncharged compounds [52, 120]. 

An alternative to tissue composition-based models are correlation-based Kp 

prediction models which are empirical in nature and require more experimentally derived 

data. These correlation-based models use both physicochemical properties of a drug [115, 

118, 119] and experimental data, such as muscle Kp [61, 109, 112, 115, 119, 121] or 

volume at steady-state Vss [108, 115, 118] and red blood cell partitioning (RBCu) data 

[61] as surrogate variables (Table 1.2).  

Although many in silico models have been proposed, no general rules have 

emerged to determine which Kp prediction model is the best as one model cannot predict 
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the Kp of all model compounds accurately. A few studies have compared several Kp 

prediction methods [39, 62, 122]. Graham et al. performed a comparative study on the 

predictive performance of three mechanistic models [14, 15, 60, 111] and three empirical 

models [61, 108, 115] to predict the most accurate Kps for rat tissues [39]. They reported 

that the model proposed by Rodgers et. al. [14, 15] showed the most accurate Kp 

predictions with 77% of predicted values within threefold although transporter systems 

still need to be incorporated into these equations. More recently, Utsey et al. assessed the 

performance of five models for Kp predictions using a standardized tissue composition 

for humans [62]. However, their analysis found that no single Kp model consistently 

perform more accurately for Kp predictions than the other models. Nevertheless, the 

Rodgers et al. model generally showed good performance and is currently the most used 

model for predicting tissue Kp values in PBPK modelling. Therefore, the work of this 

thesis focussed on the Rodgers et al. model and further details of the model are provided 

below. 

Rodgers et al. proposed two mechanistic equations: one for predicting Kpu for 

moderate-to-strong bases and group 1 zwitterions (at least one basic pKa>7) [14], and 

another for acids, very weak bases, neutrals and group 2 zwitterions (no basic pKa >7) 

[15]. The Rodgers et al. model integrated the electrostatic interactions between a drug and 

the tissue components. Acidic drugs and lipophilic neutrals bind to albumin and 

lipoproteins respectively, which are both present in the extracellular fluids in a tissue. 

Strong or moderate bases preferentially bind to acidic tissue phospholipids and to acidic 

components such as AAG present in plasma. The equations include drug partitioning into 

neutral lipids (NL) and phospholipids (PL), drug dissolution into the tissue intracellular 

(IW) and extracellular (EW) water, and also associations with extracellular proteins such 

as albumin or lipoprotein [14, 15, 94, 123] and are as follow: 

Moderate to strong bases (Eq. 1.19): 

𝐾𝑝𝑢 = (
𝑋 ∙ 𝑓𝐼𝑊

𝑌
) + 𝑓𝐸𝑊 + (

𝑃 ∙ 𝑓𝑁𝐿 + (0.3𝑃 + 0.7) ∙ 𝑓𝐼𝑊

𝑌
) + (

𝐾𝑎 ∙ [𝐴𝑃−]𝑇 ∙ 𝑋

𝑌
) Eq. 1.19 

 

Weak bases, acids and neutrals (Eq. 1.20): 
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𝐾𝑝𝑢 =
𝑋 ∙ 𝑓𝐼𝑊

𝑌
+ 𝑓𝐸𝑊 + (

𝑃 ∙ 𝑓𝑁𝐿 + (0.3𝑃 + 0.7) ∙ 𝑓𝑁𝑃

𝑌
)

+ [(
1

𝑓𝑢𝑝
− 1 − (

𝑃 ∙ 𝑓𝑁𝐿𝑝
+ (0.3𝑃 + 0.7) ∙ 𝑓𝑁𝑃𝑝

𝑌
))

∙
[𝑃𝑅]𝑇

[𝑃𝑅]𝑝
] 

Eq. 1.20 

 

where P refers to the partition coefficient of the unionized drug. fEW, fIW, fNL, fNP, and fAP, 

represents fractions of extracellular water, intracellular water, neutral lipid, neutral 

phospholipids, and acid phospholipids respectively, with Σf=1, so that the fraction of 

residual tissue constituents fREM =1 –fIW –fEW –fNL –fNP. P is the octanol:water partition 

coefficient for all tissues except adipose, for which P represents the vegetable oil:water 

partition coefficient. Ka is the association constant of strong basic compounds for acidic 

phospholipids. [AP-] is the tissue concentration of acidic phospholipids. [PR]T and [PR]p 

are the concentrations of albumin (for acids and weak bases) or lipoproteins (for neutrals) 

in the tissue and in plasma respectively. In Eq. 1.19 and Eq. 1.20, X and Y represent the 

degrees of ionization, as described by the Henderson-Hasselbalch equation, and are as 

follows:  

Monoprotic 

bases: 

𝑋 = 1 + 10𝑝𝐾𝑎−𝑝𝐻𝐼𝑊 𝑌 = 1 + 10𝑝𝐾𝑎−𝑝𝐻𝑝 

Monoprotic 

acids: 

𝑋 = 1 + 10𝑝𝐻𝐼𝑊−𝑝𝐾𝑎 𝑌 = 1 + 10𝑝𝐻𝑝−𝑝𝐾𝑎 

Neutrals: 𝑋 = 1 (no ionization) 𝑌 = 1 (no ionization) 

Zwitterions: 𝑋 = 1 + 10𝑝𝐾𝑎𝑏𝑎𝑠𝑒−𝑝𝐻𝑖𝑤

− 10𝑝𝐻𝑖𝑤−𝑝𝐾𝑎𝑎𝑐𝑖𝑑 

𝑌 = 1 + 10𝑝𝐾𝑎𝑏𝑎𝑠𝑒−𝑝𝐻𝑝

− 10𝑝𝐻𝑝−𝑝𝐾𝑎𝑎𝑐𝑖𝑑 

where pHIW and pHp refer to the pH of the intracellular water and plasma respectively. 

 

Ka can be calculated from the red blood cell-to-plasma water partition coefficient 

i.e., unbound drug concentration in blood cells (KpuRBC), based on the concentration of 

acidic phospholipids (AP) in red blood cells (Eq. 1.21) [15]: 

𝐾𝑎 = [𝐾𝑝𝑢𝑅𝐵𝐶 − (
1 + 10𝑝𝐾𝑎 − 10𝑝𝐻𝑅𝐵𝐶

1 + 10𝑝𝐾𝑎−𝑝𝐻𝑝
∙ 𝑓𝐼𝑊,𝑅𝐵𝐶 )

− (
𝑃 ∙ 𝑓𝑁𝐿,𝑅𝐵𝐶 + (0.3𝑃 + 0.7) ∙ 𝑓𝑁𝑃,𝑅𝐵𝐶

1 + 10𝑝𝐾𝑎−𝑝𝐻𝑝
)] ∙ (

1 + 10𝑝𝐾𝑎 − 10𝑝𝐻𝑝

[𝐴𝑃−] ∙ 10𝑝𝐾𝑎−𝑝𝐻𝑝
) 

Eq. 1.21 
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In Rodgers et al. [14], KpuRBC is estimated using the standard equation (Eq. 1.22) 

𝐾𝑝𝑢𝑅𝐵𝐶 =
𝐵𝑃 − (1 − 𝐻𝑎𝑒𝑚𝑎𝑡𝑜𝑐𝑟𝑖𝑡)

𝑓𝑢𝑝 ∙ 𝐻𝑎𝑒𝑚𝑎𝑡𝑜𝑐𝑟𝑖𝑡
 Eq. 1.22 

where BP is the blood: plasma-ratio and haematocrit value is 0.45. 

 

1.5. PBPK modelling 

PBPK models are a mathematical representation of physiological and drug-specific 

processes that govern drug ADME. Such models allow simulations of the concentration-

time profiles or pharmacokinetic (PK) profiles of a drug in various body compartments 

specified within the PBPK model which aids drug discovery and development and 

regulatory decision-making processes regarding optimal first in human (FIH) dose 

prediction and trial design, prediction of drug-drug interactions (DDIs), extrapolations of 

PK in special population and development of oral formulations, amongst others [78, 124-

130]. The development and implementation of PBPK models have become more 

accessible with the availability of user-friendly PBPK software packages such as 

GastroPlus® (Simulations Plus, Lancaster, CA, USA), PK-Sim® (Bayer Technology 

Services, Leverkusen, Germany) and SimCYP® (Certara,Sheffield, UK), amongst others 

[76, 128, 131-134]. 

 

1.5.1. Model structure 

The full (whole-body) PBPK modelling is particularly suited to integration of 

broad knowledge of different origins (e.g., in silico, in vitro, and in vivo) in an 

anatomically and physiologically relevant framework for each species (“bottom-up” 

approach). For small molecules, the structure of this model consists of compartments 

representing individual organs or tissues of the body, interlinked via the systemic blood 

circulation (Figure 1.2). For large molecules, PBPK models also include lymph flow and 

target-mediated drug disposition (TMDD). Each organ is defined as a homogenous 

compartment limited by perfusion rate or permeability rate [1, 135].  
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Figure 1.2: Schematic representation of a whole body PBPK model adapted from [127] 

 

Q refers to blood flow: to the lungs (Qlu), the heart (Qhe), the kidneys (Qki), the bones (Qbo), the 

muscles (Qmu), the spleen (Qsp), the liver (Qha), the hepatic vein (Qhv), the gut (Qgu), the adipose 

(Qad), the skin (Qsk), the brain (Qbr) and the rest of body (Qro). 
 

Assuming tissues are perfusion-limited (well-stirred) compartments, each non-

eliminating tissue can be described by the following equations (Eq. 1.23-Eq. 1.24): 

Lung 
𝑉𝑙𝑢𝑛𝑔 ∙

𝑑𝐶𝑙𝑢𝑛𝑔

𝑑𝑡
= 𝑄𝑙𝑢𝑛𝑔 ∙ (Cvenous −

𝐶𝑙𝑢𝑛𝑔

𝐾𝑏𝑙𝑢𝑛𝑔
) Eq. 1.23 

Other 

tissues 
𝑉𝑖 ∙

𝑑𝐶𝑖

𝑑𝑡
= 𝑄𝑖 ∙ (Carterial −

𝐶𝑖

𝐾𝑏𝑖
) Eq. 1.24 

where Clung, Ci , Cvenous and Carterial are the total drug blood concentrations in the lung, the 

ith-tissue, the influent venous blood and arterial blood, respectively. Vlung, Qlung, Vi and Qi 

are the volumes and blood flows for the lung and each ith-tissue, respectively. Kblung and 

Kbi are the tissue-to-blood partition coefficient in the lung and in the ith tissue and 

represent the tissue to venous blood concentration ratio at steady state. Kb values are 

determined from Kpu, the tissue-to-unbound plasma partition coefficients (Eq. 1.25). 

𝐾b = 𝐾𝑝u ∙
𝑓𝑢𝑝

𝐵𝑃
 Eq. 1.25 

where fup and BP are the fraction unbound in plasma and the blood-to-plasma ratio, 

respectively.  
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When renal elimination (CLR) is part of the venous compartment, the rate 

equations for the arterial blood and venous blood compartments are defined as follows 

(Eq. 1.26- Eq. 1.27): 

𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 ∙
𝑑𝐶𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑡
= 𝑄𝑙𝑢𝑛𝑔 ∙ (

𝐶𝑙𝑢𝑛𝑔

𝐾𝑏𝑙𝑢𝑛𝑔
− Carterial) Eq. 1.26 

𝑉𝑣𝑒𝑛𝑜𝑢𝑠 ∙
𝑑𝐶𝑣𝑒𝑛𝑜𝑢𝑠

𝑑𝑡
= ∑ 𝑄𝑖 ∙

𝐶𝑖

𝐾𝑏𝑖
− 𝑄𝑙𝑢𝑛𝑔 ∙ 𝐶𝑣𝑒𝑛𝑜𝑢𝑠 − CLR ∙ 𝐶𝑣𝑒𝑛𝑜𝑢𝑠 Eq. 1.27 

where ∑ 𝑄𝑖 ∙
𝐶𝑖

𝐾𝑏𝑖
 includes all the ith tissues except the stomach, gut, pancreas, and spleen; 

Varterial and Vvenous are the volume of arterial and venous blood, respectively. 

For the liver, the rate equation is defined as (Eq. 1.28):  

𝑉𝑙𝑖𝑣𝑒𝑟 ∙
𝑑𝐶𝑙𝑖𝑣𝑒𝑟

𝑑𝑡
= 𝑄ℎ𝑎 ∙ Carterial + ∑ 𝑄𝑠𝑝𝑙𝑎𝑛,𝑖 ∙

𝐶𝑠𝑝𝑙𝑎𝑛,𝑖

𝐾𝑏𝑠𝑝𝑙𝑎𝑛,𝑖
− 𝑄𝑙𝑖𝑣𝑒𝑟 ∙

𝐶𝑙𝑖𝑣𝑒𝑟

𝐾𝑏𝑙𝑖𝑣𝑒𝑟

− 𝐶𝐿𝑖𝑛𝑡𝑙𝑖𝑣𝑒𝑟 ∙ 𝑓𝑢𝑏 ∙
𝐶𝑙𝑖𝑣𝑒𝑟

𝐾𝑏𝑙𝑖𝑣𝑒𝑟
 

Eq. 1.28 

where the Qsplan,i, Csplan,i and Kbsplan,i are the concentration, the blood flow, the volume 

and the blood partition coefficient of the iith splanchnic organs (stomach, gut, pancreas 

and spleen); Qha is the blood flow from the hepatic artery; Cliver, Qliver, Vliver, Kbliver are 

the concentration, the blood flow, the volume and the blood partition coefficient of the 

liver; CLint is the hepatic intrinsic clearance and fub is the fraction unbound in blood. 

The PBPK model parameters can be generally classified into system-specific and 

drug-specific parameters. System-specific parameters characterise physiological and 

species-related properties (e.g., blood flow rate, organ volume, tissue composition, 

enzyme or transporter abundance [incl. genetic polymorphisms], plasma protein 

concentrations, haematocrit, etc.). Most of the values for these physiological parameters 

for humans and other species (commonly mouse, rats, and non-human primates (NHP)) 

are available in the literature [136-138]. However, these values usually refer to a 

“reference individual” while each of the biological parameters (physiological, anatomical, 

enzymatic, and transporters) may significantly vary between individuals and within 

populations.  

In contrast, drug-specific parameters are the compound’s physicochemical, 

biochemical and biopharmaceutical properties and other parameters that are relevant to 

the ADME processes of the drug (e.g., binding to blood, tissue-to-plasma distribution 
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coefficient, permeability, metabolic rate, etc.) and which generally differ between drugs. 

These parameters are generally incorporated into PBPK models by extrapolating them 

from in vitro systems to in vivo with the use of physiologically based scaling factors in 

the so-called in vitro– in vivo extrapolation (IVIVE) approach [139]. However, 

uncertainty in model parameters may exist due to the uncertainty associated with the in 

vitro measurements, the prediction errors of inadequate scaling factors or even the 

inability to capture the processes in vitro. 

 

1.5.2. Refinement of PBPK models and parameter optimisation 

The large number of biochemical and physiological parameters and the associated 

variability and uncertainty may be limiting the prediction accuracy of such models [140, 

141]. The lack of proper input parameters and misspecifications of the model structure 

can result in poor predictions from PBPK models. There should be a balance between 

model complexity and available information; it is possible to have a very detailed model, 

but the limiting factor is the lack of all relevant parameters to populate it, therefore the 

model is structurally adequate but lack of understanding of parameters limits its use. On 

the other hand, with simpler models such as compartmental models the system is reduced 

into a one- or two- compartment model which lack mechanism and extrapolative power. 

Recent regulatory guidance regarding PBPK modelling [142, 143] indicated the need for 

addressing the uncertainty of model predictions and required a more systematic approach 

for reporting variability and uncertainty in parameter estimates. Indeed, many in silico 

methods, in vitro experiments, in vivo and clinical studies often report only point 

estimates of physiological and drug parameters without quantification of variability or 

uncertainty [144]. Variability refers to diversity of data attributed to environmental or 

genetic factors. Variability of the data cannot be reduced, but it can be better characterised. 

On the other hand, uncertainty is a variation that is due to errors in the experiment, 

measurements, modelling and assumptions of the studied system. Uncertainty can be 

reduced through optimization of the experiment with more or better data.  

Simulation and prediction using a PBPK modelling approach can begin at a very 

early stage of drug development when the plasma concentration data are not yet available 

in humans or even in animals. When new data are generated during the development of a 

new drug, they could be used to revise the uncertainty and improve the predictive 
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performance of the model. Comparison of simulated data to in vivo data is needed to 

verify the model assumptions and information about parameters, to refine the PBPK 

model and to assess its ability for adequate prediction. If a mismatch exists between the 

model predictions and the observed data, additional studies may be performed to enable 

a more mechanistic understanding of the reasons for such a difference (Figure 1.3) [145]. 

If such differences cannot be explained from a mechanistic viewpoint or due to 

uncertainties in the initial parameters, it is a common practice to adjust some of these 

parameters and fit the model to experimental data in order to improve the PBPK model 

performance and optimise uncertain model parameters (“middle-out” approach). The 

initial parameters values of the PBPK model (e.g., those based on simple in silico 

descriptors or in vitro experiments) can be updated based on the PK data in the preclinical 

species; and the new values can be further updated when PK data in humans are available. 

 

Figure 1.3: PBPK modelling strategy in drug discovery and development adapted from [145] 

 

 

1.5.3. Parameter identifiability, uncertainty, and sensitivity analysis 

In the case of parameter estimation, it is important to test if the model is said to be 

structurally identifiable or globally identifiable in that there is sufficient information 

contained in the data available and there is a unique correspondence between parameter 

values and the observed data [146-149]. As a result, all the parameters to be estimated for 

a given model are uniquely identifiable given perfect data. In contrast, if a limited set of 

parameter combinations can lead to the same input/output relationship the model is said 

to be locally identifiable. Another issue is numerical identifiability, which refers to an 
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increase uncertainty in the parameters of the structurally identifiable model given the 

observed data. 

In early drug development, PK studies are carried out on a small number of 

animals exposed to a few administered dose levels and observation periods, range 

typically from several hours to several weeks. As a result, observed data is from a small 

number of repeated measurements on the same animal or time-course data from animals 

sacrificed at different sampling points. Additionally, for a PBPK model to be identifiable, 

data from the tissues should be available, but such data are generally not available or 

limited to samples at termination of the study. To overcome these issues, generation of 

additional data by sampling from additional tissue compartments can be proposed, as well 

as improvement of the collected data by considering an optimal design approach to 

optimise sample collection [150]. 

Because PBPK models are parametrised by a large number of physiological and 

biochemical parameters, simultaneous estimation of these parameters is rarely performed, 

and the fitting process does not usually follow a systematic and formal approach. In order 

to stabilise parameter estimation, many parameters are fixed to values that are generally 

not completely certain and then only a few parameters are therefore selected and 

estimated through mathematical computations, which could result in biased estimates. In 

addition, the decision on which parameters to fix and which to estimate is generally 

subjective and therefore the final model and model parameters may vary significantly 

between different modellers [144, 151]. 

Before trying to estimate an unknown parameter, it is recommended to perform a 

sensitivity analysis in order to determine the influence of the unknown model parameters 

on the output [152, 153]. The extent to which a change in the unknown model parameter 

affects quantitatively or qualitatively the chosen output depends on how sensitive it is to 

the parameter. If improvements in the measurement of the sensitive parameter values are 

not possible, the quantitative impact of the error in the input needs to be at least 

incorporated into the PBPK predictions. If the PBPK model is too complex with various 

compartments and parameters, the system may be over-parametrised and turn out to be 

structurally and numerically unidentifiable from the available data. A comprehensive 

review of sensitivity analysis can be found in [152, 154] and examples of application in 

PBPK modelling can be found in [155-160]. 
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1.5.4. Lumping of PBPK models 

To reduce the high-dimensionality of PBPK models for parameter estimation, 

model order reduction techniques can be used [161]. Proper lumping of tissue 

compartments is one of the techniques used to derive reduced PBPK models with a fewer 

number of parameters [162-165] that retains the kinetic behaviour of the more complex 

models. A minimal PBPK model further reduces the number of compartments to just one 

or a few compartments with comparable blood flow rates (Jones et al. 2013; Sager et al. 

2015). Proper lumping involves lumping together kinetically similar tissue compartments, 

each state of the original model can be included in only one of the states of the reduced 

model, and therefore parameters can be directly related between original and lumped 

models [166]. In the context of PBPK models, a Bayesian lumping method can be of 

particular interest; it uses prior knowledge on the original model to construct a prior 

distribution for the reduced model parameters and accounts for parameter uncertainty 

during the lumping process [165, 167, 168]. Furthermore, physiological parameters that 

may be highly correlated with each other should be mechanistically considered when 

estimating parameters in a PBPK model, otherwise this may result in biased, imprecise 

or biologically implausible parameter estimates [169]. The recommendation would be to 

use a physiologically plausible value extracted from the literature for one of them, or to 

reparametrize the model in terms of a composite variable. 

 

1.5.5. Parameter estimation approaches 

Once the different previously described limitations and methodological issues 

related to the fitting of PBPK model are addressed, population modelling can be used to 

estimate the PBPK model parameters even when only sparse data are available. In 

addition to establishing correlations between parameters and covariates in order to 

explain parameter variability, population PK analysis also considers intra- and/or inter-

individual variability in observed concentrations when estimating the parameters [170-

172].  

In order to fit PBPK models to observed data, global optimisation methods have 

been proposed such as Monte Carlo optimisation and the simplex method [173]. However, 

these approaches may lead to unrealistic parameter values for well-established 
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physiological parameters (e.g., flows and volumes) due to parameter identifiability issues. 

Therefore, using constraints for these bounded parameters is recommended. New 

techniques such as genetic algorithms have been developed to optimise many parameters 

simultaneously in complex models based on a natural selection process that mimics 

biological evolution [174]. Nonetheless, the most frequently used approach is to fix most 

of the model parameters to values from literature or experiment, and to only estimate a 

small number of unknown/uncertain parameters. These parameters are usually optimised 

against PK data by a trial-and-error visual calibration or by more systematic methods 

which can quantify uncertainties and variations in the parameters through their interval 

estimates. Many methods have been proposed to fit population PK parameters to observed 

data.  

Nonlinear mixed-effects (NLME) models are more frequently used for the 

analysis of PK data and repeated measures over time. Maximum likelihood estimation 

(MLE) approaches constitute a large category of methods commonly used in NLME 

model analyses. The marginal likelihood density function is proportional to the 

probability of observing the data when the model and its parameters are assumed to be 

correct [175]. The principle of maximum likelihood is to estimate the model parameter 

values which maximise the likelihood of observed data given a specific set of parameters 

or effectively minimise the negative logarithm of the marginal likelihood density. 

However, for the models that are nonlinear with respect to the parameters, the integral in 

the likelihood function does not have a closed form expression and is difficult to compute 

exactly [176]. Different algorithms have been developed to apply the MLE approach. 

Classical estimation methods such as the first-order (FO), the first-order conditional 

estimation with interaction (FOCE) and Laplace, approximate the likelihood [176]. These 

linearization methods generally perform well for simple and low dimension models but 

may fail to converge and estimated parameters may be very approximate when model are 

complex. Other methods have also been proposed such as important sampling EM (IMP), 

stochastic approximation expectation maximization (SAEM), and Markov chain Monte 

Carlo Bayesian (BAYES). These expectation maximization (EM)-based estimation 

methods are more precise in computing the likelihood as they can use a variable step size 

to control the error of the approximation. The EM iterative algorithm was first developed 

for problems with missing data [177] and each iteration alternates two steps : the E-step 

involves computing the conditional expectation of the complete data likelihood given the 
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observed data, and the M-step only involves likelihood maximization of the complete 

data. This two-step algorithm was applied to nonlinear mixed-effects models considering 

the random effects as the missing data [178]. The most commonly used software for 

NLME modelling are Nonmem (ICON Development Solutions, Hanover, MD, USA) 

[179] and Monolix (Lixoft SAS, Antony, France) [180]. 

However, caution should be taken when using these approaches for extrapolating 

from the estimated parameters and for refining PBPK models because these parameter 

estimates are conditional on the values that have been assumed for the fixed parameters 

[173, 181]. Additionally, the fitted estimates present a certain level of uncertainty coming 

from physiological and drug-specific data or the model assumptions. Consequently, any 

extrapolations, conclusions or predictions performed based on these parameters may not 

be very reliable especially if only single values are reported for the estimated parameters. 

Thus, using these methods is challenging for the refinement of PBPK models because of 

their multidimensional nature limiting the estimation of the model parameters 

simultaneously. Therefore, the fit of PBPK models to data and estimation of relevant 

model parameters will be investigated in this thesis. 

 

1.6. Thesis aims and objectives 

The overall aim of this thesis was to develop a systematic framework for integrating 

observed preclinical PK data in PBPK model development; for refining model predictions 

in animal and to improve the prediction of human drug disposition during drug discovery 

and development programme. In order to refine predictions, the intention is to estimate 

model parameters when observed PK data are available. The current project proposes a 

formal framework for parameter estimation within PBPK modelling, with the specific 

focus on drug distribution. It critically examines the sensitivity of model predictions to 

key model parameters and highlights the importance of qualitative and quantitative data 

for drug-dependant and physiological parameters. It also provides different PBPK models 

that could be used for model fitting, parameter estimation and translation. In addition, 

several case examples illustrate the application of the systematic framework to estimate 

parameters in PBPK models and to perform translation, especially to drive predictions in 

human and support the design of first in human studies. This thesis has three result 

chapters, each with its own aim and objectives. 
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In the first result chapter, Chapter 2, the aim was to identify key drug-dependent and 

physiological parameters that influence predictions of Kpu and thus drug distribution in 

PBPK models. This study investigated the variability and uncertainty of drug and 

physiological values, and their impact on model predictions. The sensitivity analysis work 

also aimed at potentially reducing PBPK model dimensionality by excluding non-

influential parameters. This published analysis is presented in Chapter 2 entitled “Global 

sensitivity analysis of the Rodgers and Rowland model for prediction of tissue: plasma 

partitioning coefficients: Assessment of the key physiological and physicochemical 

factors that determine small-molecule tissue distribution”. 

Subsequently, different model reduction approaches were investigated in order to 

simplify WBPBPK model structure or dimensionality. The aim was to obtain mechanistic 

models that have a reduced number of model parameters to estimate and thus facilitate 

the estimation process during PBPK model development. This study evaluated the ability 

of these investigated models to fit PK data and estimate meaningful Kpu parameters using 

the nonlinear mixed effect method. The performance of the investigated models for 

estimating Kpu parameters and fitting PK data was assessed using diazepam as an 

example. This analysis is presented in Chapter 3 entitled “Investigation of simplified 

physiologically based pharmacokinetic (PBPK) models in rat and human”. 

Finally, the investigated models were used to fit PK data in preclinical species (rat, 

monkey) for three compounds (diazepam, midazolam, basmisanil). The best models were 

selected according to criteria which then allow the use of these models for translation to 

human. The performance of these models for prediction of human drug disposition was 

verified against observed clinical data. The work presented here therefore provides a 

framework for prediction of human Kpus and volume of distribution and concentration 

time profiles from preclinical data. This study is presented in Chapter 4 entitled 

“Prediction of human drug disposition from preclinical data using a ‘middle-out approach’ 

to physiologically based pharmacokinetic (PBPK) modelling”. 
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2.1. Abstract 

In physiologically based pharmacokinetic (PBPK) modelling, the large number of 

input parameters, limited amount of available data and the structural model complexity 

generally hinder simultaneous estimation of uncertain and/or unknown parameters. These 

parameters are generally subject to estimation. However, the approaches taken for 

parameter estimation vary widely. Global sensitivity analyses are proposed as a method 

to systematically determine the most influential parameters that can be subject to 

estimation. Herein, a global sensitivity analysis was conducted to identify the key drug 

and physiological parameters influencing drug disposition in PBPK models and to 

potentially reduce the PBPK model dimensionality. The impact of these parameters was 

evaluated on the tissue-to-unbound plasma partition coefficients (Kpus) predicted by the 

Rodgers and Rowland model using Latin hypercube sampling combined to partial rank 

correlation coefficients (PRCC). For most drug classes, PRCC showed that LogP and 

fraction unbound in plasma (fup) were generally the most influential parameters for Kpu 

predictions. For strong bases, blood:plasma partitioning was one of the most influential 

parameters. Uncertainty in tissue composition parameters had a large impact on Kpu and 

Vss predictions for all classes. Among tissue composition parameters, changes in Kpu 

outputs were especially attributed to changes in tissue acidic phospholipid concentrations 

and extracellular protein tissue:plasma ratio values. In conclusion, this work demonstrates 

that for parameter estimation involving PBPK models and dimensionality reduction 

purposes, less influential parameters might be assigned fixed values depending on the 

parameter space, while influential parameters could be subject to parameters estimation. 
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2.2. Introduction 

Physiologically based pharmacokinetic (PBPK) models are complex mechanistic 

models which are used during all stages of drug development for various analyses (e.g., 

in vitro-in vivo extrapolation (IVIVE), interspecies extrapolation and predictions of drug 

exposure [1-3]). Key parameters in PBPK models are tissue:unbound plasma partition 

coefficients (Kpus). They describe the extent of drug distribution in each organ/tissue and 

are defined as the ratio of the tissue drug concentration to the unbound plasma 

concentration at steady state. In drug discovery and early development stages, Kpus can 

also be used to predict the volume of distribution at steady state (Vss), a key 

pharmacokinetic parameter describing the overall drug distribution within the body 

relevant for selecting the first dose in human and dosing frequency. As in vivo Kpu 

measurements require excessive resources in terms of animals’ numbers and bioanalytics 

for the large number of compounds considered during drug discovery, these experiments 

are not usually performed at this stage. Instead, several approaches have been proposed 

to predict Kpu from in vitro and in silico data [4-7].  

The models proposed by Rodgers and Rowland [5, 8, 9] are one of the most commonly 

used method. In an analysis comparing models to predict tissue:plasma partition 

coefficients (Kp), Graham et al. reported that the Rodgers and Rowland (R&R) model 

was the most accurate for rat Kp predictions with 77% within three-fold of experimental 

values and the second most accurate for rat Vss prediction with 80% within three-fold 

[10]. Similarly, for human Vss, the PhRMA consortium reported that the R&R model had 

the best prediction accuracy with 78% of compounds within three-fold compared to five 

other mechanistic methods [11]. The main assumptions of the R&R model are that drugs 

partition into neutral lipids and neutral phospholipids of tissue cells, and also partition 

within intra- and extra- cellular tissue water. Additionally, the electrostatic interactions 

that form between basic drugs and tissue acidic phospholipids (AP) are incorporated for 

compounds with pKa≥7, while acids interact with extracellular proteins (PR) and weakly 

basic compounds bind predominately to albumin and neutral drugs to lipoproteins [5, 8]. 

The R&R model has many input parameters: drug specific input parameters are 

experimentally measured or calculated in silico from empirical models; and tissue 

composition parameters are set values reported in the literature for an individual or 

average subject of the target species. And although sometimes overlooked, variability and 

uncertainty do exist regarding the true value of each input parameter for a particular 

chemical/bioanalytical assay or a particular group of animals or human population: 
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uncertainty in the measured values, lack of information, inter/within species variability, 

etc.  

During PBPK model development, the Kpus predicted by the R&R model, or similar 

models, are usually considered as point estimates to simulate drug distribution into tissues. 

Simulations are then typically validated against observed in vivo plasma pharmacokinetic 

data from pre-clinical species (namely mice, rat, dog and non-human primates) and 

humans. If a mismatch exists additional studies may be performed to enable a mechanistic 

understanding of the reasons for the difference. However, if differences cannot be 

explained then it is common practice to adjust parameter estimates to fit the experimental 

data. The complexity of the PBPK model structure, the large number of input parameters 

and the limited data available generally hinder estimation of uncertain or unknown model 

parameters. Heterogeneous and subjective approaches for parameter estimation using 

PBPK models exist in the literature [12-17]. For instance, modellers generally fit a few 

specific Kpus as pharmacokinetic data become available while fixing others subjectively. 

This may lead to inaccurate parameter estimates or underestimation of uncertainty, and 

overall poor extrapolation. Bayesian methods could be a powerful approach for aiding 

parameter estimation of PBPK models [18]. The current work is a first step to reduce 

PBPK model dimensionality by assessing the sensitivities and excluding non-influential 

parameters (Kpus) and model states (tissue compartments) as recommended by recent 

regulatory guidelines [19, 20]. The comprehensive sensitivity analysis (SA) was also 

conducted to identify key parameters responsible for variability/uncertainty in predicted 

drug distribution (Kpus and Vss). 

 

2.3. Methods 

2.3.1. Rodgers and Rowland model 

The current work is focussed exclusively on the R&R equations as previous work 

had shown that it gave the highest degree of prediction accuracy for Kpu values [21]. 

More details of these equations can be found in the original articles [5, 8, 9]. The R&R 

model includes one equation for the prediction of Kpu for moderate-to-strong bases with 

one pKa≥7 (Eq. 2.1) and a second equation for other drug classes (Eq. 2.2): 

𝐾𝑝𝑢 = (
𝑋 ∙ 𝑓𝐼𝑊

𝑌
) + 𝑓𝐸𝑊 + (

𝑃 ∙ 𝑓𝑁𝐿 + (0.3𝑃 + 0.7) ∙ 𝑓𝑁𝑃

𝑌
)

+ (
𝐾𝑎𝐴𝑃 ∙ [𝐴𝑃−]𝑇 ∙ (𝑋 − 1)

𝑌
) 

Eq. 2.1 
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𝐾𝑝𝑢 = (
𝑋 ∙ 𝑓𝐼𝑊

𝑌
) + 𝑓𝐸𝑊 + (

𝑃 ∙ 𝑓𝑁𝐿 + (0.3𝑃 + 0.7) ∙ 𝑓𝑁𝑃

𝑌
) + (𝐾𝑎𝑃𝑅 ∙ [𝑃𝑅]𝑇) Eq. 2.2 

where P is the octanol:water partition coefficient for all tissues except adipose (vegetable 

oil:water). The vegetable oil:water partition coefficient, LogPvo:w, is calculated as: 

𝐿𝑜𝑔𝑃𝑣𝑜:𝑤 = 1.115 ∙ 𝑙𝑜𝑔𝑃𝑜:𝑤 − 1.35. 

f is the fractional tissue volume and subscripts EW and IW refer to extra- and intra-

cellular tissue water, NL and NP refer to neutral lipids and neutral phospholipids, 

respectively ; [AP-]T and [PR]T are the tissue concentrations of acidic phospholipids (AP) 

and extracellular albumin (for acids and weak bases) or lipoprotein (for neutrals), 

respectively; KaAP and KaPR are the association constants of the drug compound with AP 

and either extracellular albumin or lipoprotein, respectively; and X and Y are terms 

accounting for the drug ionisation in intracellular water and in plasma defined as follows: 

For monoprotic bases: = 1 + 10𝑝𝐾𝑎−𝑝𝐻𝐼𝑊 , 𝑌 = 1 + 10𝑝𝐾𝑎−𝑝𝐻𝑝 

For monoprotic acids: = 1 + 10𝑝𝐻𝐼𝑊−𝑝𝐾𝑎 , 𝑌 = 1 + 10𝑝𝐻𝑝−𝑝𝐾𝑎 

For neutrals: 𝑋 = 𝑌 = 1 (no ionization).  

pHIW : pH of the intracellular water (7), pHp : pH of plasma (7.4) [5] 

 

KaAP represents an overall affinity constant for various AP. The model makes the 

assumption that KaAP in red blood cells (RBCs) is representative of the KaAP in all tissues. 

Furthermore, the model assumes that KaPR determined from the plasma data is 

representative of the KaPR in all tissues, where KaPR represents the affinity constant to 

extracellular binding proteins. The affinity constants to bind to KaAP and KaPR were 

determined from KpuRBC or fup data/information using Eq. 2.3 and Eq. 2.4, respectively. 

𝐾𝑎𝐴𝑃 = [𝐾𝑝𝑢𝑅𝐵𝐶 − (
1 + 10𝑝𝐾𝑎−𝑝𝐻𝑅𝐵𝐶

𝑌
∙ 𝑓𝐼𝑊,𝑅𝐵𝐶)

− (
𝑃 ∙ 𝑓𝑁𝐿,𝑅𝐵𝐶 + (0.3𝑃 + 0.7) ∙ 𝑓𝑁𝑃,𝑅𝐵𝐶

𝑌
)]

∙ (
𝑌

[𝐴𝑃−]𝑅𝐵𝐶 ∙ 10𝑝𝐾𝑎−𝑝𝐻𝑅𝐵𝐶
) 

Eq. 2.3 

𝐾𝑎𝑃𝑅 = [
1

𝑓𝑢𝑝
− 1 − (

𝑃 ∙ 𝑓𝑁𝐿𝑝
+ (0.3𝑃 + 0.7) ∙ 𝑓𝑁𝑃𝑝

𝑌
)] ∙

1

[𝑃𝑅]𝑝
 Eq. 2.4 

where subscripts RBC and P indicate red blood cells and plasma, respectively; pHRBC is 

the intracellular pH of red blood cells (7.22) [5]; fup is the unbound fraction of drug in 

plasma; and KpuRBC is the red blood cell:plasma water concentration ratio. 
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KpuRBC can be determined in vitro or calculated from fup, blood:plasma ratio (BP) and 

the haematocrit using Eq. 2.5 [22, 23]: 

𝐾𝑝𝑢𝑅𝐵𝐶 =
𝐻𝑎𝑒𝑚𝑎𝑡𝑜𝑐𝑟𝑖𝑡 − 1 + 𝐵𝑃

𝑓𝑢𝑝 ∙ 𝐻𝑎𝑒𝑚𝑎𝑡𝑜𝑐𝑟𝑖𝑡
 Eq. 2.5 

Using these equations, negative values can be obtained for KaAP and KaPR, in such a case 

the affinity constants are set to zero [9].  

 

By decomposing the R&R model (Eq. 2.1 and Eq. 2.2), three terms can actually be 

distinguished and each can dominate the Kpu outputs under certain circumstances: 

- Term 1 ((
X∙fIW

Y
) + fEW), related to fractional tissue water volumes (fIW, fEW) and is 

only pKa-dependent: it has the greatest relevance if terms 2 and 3 are negligible (e.g., 

high fup - low LogP compound). Under such conditions, the distribution space is the 

total water. 

- Term 2 (
P∙fNL+(0.3P+0.7)∙fNP

Y
), related to tissue lipid partitioning (neutral lipids (fNL), 

and neutral phospholipids (fNP)) and is LogP- and pKa-dependent: it might be the 

most relevant term when KaAP or KaPR are zero. 

- Term 3 (
KaAP∙[AP−]T∙(X−1)

Y
 or KaPR ∙ [PR]T ), related to interactions with tissue AP 

(KaAP·[AP-]T) or nonspecific protein binding (KaPR·[PR]T), is dependent on LogP, 

pKa, fup (and BP for strong bases). It has relevance if partitioning into RBCs lipids or 

into plasma lipids is greater than binding to RBCs or to plasma proteins (e.g., low fup 

relative to LogP), i.e. : (
1+10pKa−pHRBC

Y
∙ fIW,RBC) + (

P∙fNL,RBC+(0.3P+0.7)∙fNP,RBC

Y
) ≥

Haematocrit−1+BP

fup∙Haematocrit
 from equations Eq. 2.3 and Eq. 2.5, or 1 + (

P∙fNLp+(0.3P+0.7)∙fNPp

Y
) ≥

1

fup
 from equation Eq. 2.4. KaAP and KaPR in term 3, are deconvolved from expressions 

for partitioning into RBCs or plasma lipids (fNL,RBC and fNP,RBC, or fNL,p and fNP,p) and 

interactions with RBCs acid phospholipids or plasma proteins [5, 8]. Therefore, KaAP 

and KaPR might be negligible or even become zero when partitioning into RBCs or 

plasma lipids determine fup and BP regardless of LogP: KpuRBC and subsequently 

KaAP = 0 if BP = 1-Haematocrit; and KaPR = 0 if fup = 1. 

 

Finally, the plasma Vss can be calculated using the predicted Kpu values as follows (Eq. 

2.6): 
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𝑉𝑠𝑠 =  ∑((𝐾𝑝𝑢𝑖 ∙  𝑓𝑢𝑝) ∙ 𝑉𝑡𝑖𝑠𝑠𝑢𝑒,𝑖 ∙ (1 − 𝐸𝑖)) + 𝐾𝑝𝑢𝑅𝐵𝐶 ∙ 𝑓𝑢𝑝 ∙ 𝑉𝑅𝐵𝐶 + 𝑉𝑝𝑙𝑎𝑠𝑚𝑎  Eq. 2.6 

where Ei and Vtissue,i represents respectively the extraction ratio and the volume of ith tissue 

(values used are given in Table S1). VRBC is the volume of red blood cells. Vplasma is the 

plasma volume, and Vplasma = 3.15L for a reference man of 70 kg [9]. The tissue volume 

Vtissue was calculated as a fraction of body weight (BW) corrected by the tissue density 

(kg/L): Vtissue = fBW × BW/density.  

 

2.3.2. Global sensitivity analysis on drug parameters: PRCC 

Global sensitivity analyses (GSA) use a set of samples representative of the 

parameter space of inputs to explore the design space which are simulated according to 

their distribution functions and possible correlations [24]. Monte Carlo sampling of input 

parameters generates output variable distributions to be used in assessing model 

uncertainty [25]. Based on Monte Carlo simulations, scatterplots of the tissue Kpus 

predicted from the R&R model and each drug parameter were generated in order to 

identify visually the relationships between the inputs and outputs (tissue Kpus) which 

were all monotonic and mostly nonlinear (Figure A1.2-Figure A1.5).  

Partial rank correlation coefficient (PRCC) is a method for GSA based on rank-

transformed linear regression analysis. It is a powerful method to evaluate the statistical 

input-output relationships after eliminating the linear influence of other input variables 

and when there is a nonlinear monotonic trend between input parameters and output 

variables as it requires a non-parametric test of ranked data [25]. It has been demonstrated 

that for nonlinear non-monotonic trends, PRCC does not perform as well as variance-

based methods, such as extended Fourier amplitude sensitivity test (eFAST). 

Nevertheless, when applied to monotonic trends, combining Latin hypercube sampling 

(LHS) [26, 27] with PRCC this methods is robust, reliable and less computationally costly 

([28]). Additionally, PRCC can also consider interactions between parameters [29]. 

Calculated PRCC is a standardised similar sensitivity measure between -1 and 1 that can 

be compared among different parameters, with a value of |PRCC| close to 1 indicating the 

parameter has a strong impact on the model output. Sensitivity of Kpu predictions to the 

physicochemical input parameters, i.e. LogP, pKa, fup and BP, was investigated for 

hypothetical but relevant neutral, acid, weak basic and moderate-to-strong basic 

compounds in R v.3.4.2 with Rstudio v.1.0.153 [30]. Zwitterions and multiple charged 

compounds were not explicitly considered in this work as in the R&R model they are 
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expected to behave like strong bases or acids/weak bases depending primarily on their 

most basic/acidic pKa value. For each drug class, a total of 10,000 compounds with 

different properties were generated by LHS with the R package “lhs” [31]. Each simulated 

set of compounds per drug class was uniformly sampled by selecting values for each 

physicochemical drug input parameter from the ranges specified in Table 2.1. The ranges 

represent realistic intervals for the drug-dependent parameters [32, 33]. For each 

simulated compound, tissue Kpu values were then calculated using the Eq. 2.1 and Eq. 

2.2. The input parameter (drug physicochemical properties) and output parameter (tissue 

Kpu) values were transformed into their ranks and PRCCs were calculated following the 

procedure described previously [28]. The significance of a non-zero PRCC value was 

tested using a two-sided Student’s t test [28] as the number of tests performed is large, a 

Bonferroni multiple test correction was used [34]. Details of the PRCC analysis are 

provided in Appendix A1.1. 

 

Table 2.1: Constrained bounds of drug parameters 

Input 

parameters 

 Neutral Acid Weak Base Strong Base 

pKa  - from 2 to 8 from 3 to 7 from 7 to 11 

LogP  from -3 to 6 from -3 to 6 from -3 to 6 from -3 to 6 

fup  from 0.001 to 1 from 0.001 to 1 from 0.001 to 1 from 0.001 to 1 

BP  from 0.55 to 2.4 from 0.55 to 2.4 from 0.55 to 2.4 from 0.55 to 2.4 

 

2.3.3. Relationship between LogP and fup 

Model input variables are typically assumed to be independent for practical reasons, 

as non-independent inputs samples are more complex to generate and may need a very 

large sample size to compute accurate sensitivity measures. However, the assumption of 

independence among input variables may not be appropriate given the nature of the 

relationship between, for instance, lipophilicity and plasma protein binding [35-37]. 

Consequently, several degrees of dependency between LogP and fup were considered 

when sampling the LogP and fup values:  

1) Independence of LogP and fup: LogP and fup was each sampled independently 

from its defined uniform distribution with the LHS method. 

2) A linear relationship between LogP and fup while investigating different 

correlation coefficient ρ=-0.3, -0.5 and -0.9 following Iman and Conover’s 

procedure [38]. 
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3) A nonlinear empirical relationship between LogP/LogD and fup (ρ =-0.8 for 

neutral basic drugs, ρ =0.5 for acids) with added noise [35, 39].  

The sample size of the GSA for the different degrees of dependency evaluated was chosen 

to be the same (N=10,000). Further details regarding the setup of the dependency between 

LogP and fup are provided in Appendix A1.2. 

 

2.3.4. Local sensitivity analysis of drug parameters with Vss output 

Preliminary analyses based on Monte Carlo sampling of input parameters revealed 

that the relationship between the drug input parameters and Kp and Vss was not strictly 

monotonic (data not shown), a key prerequisite for the use of PRCC. Consequently, this 

type of analysis is inappropriate for investigating the influence of drug input parameters 

on Vss output. Alternatively, local sensitivity analyses (SA) were performed investigating 

how small changes in one parameter value at a time affect the model output. The 

sensitivity coefficient (Sij) for a definite independent variable X was calculated (Eq. 2.7) 

based on the partial differentiation of each output of interest with respect to each model 

input parameter [40] and normalised by both the output and input parameter to remove 

the influence of units [25]. Sij quantifies the relative change of the model output at a 

relative change of the input parameter (Eq. 2.7). It should be noted that each input 

parameter is perturbed to a small extent while holding all other parameters fixed. 

𝑆𝑖𝑗 =
𝜕𝑌𝑖

𝜕𝑋𝑗
×

𝑋𝑗

𝑌𝑖
 Eq. 2.7 

where Yi is the model output i, Xj is the input parameter j.  

As drug input parameters influence Kpu and subsequently Vss predictions, a local 

SA of the R&R model was carried out with the most and least influential drug input 

parameters found from the GSA for each drug class to assess their impact on Vss. Indeed, 

some tissues have a small physical volume and therefore may become negligible 

contributors to Vss sensitivity despite having sensitive Kpu values. On the other hand, 

other tissues can have a large volume and not sensitive Kpu values but be very influential 

on Vss. Additionally, tissues with a high drug extraction ratio (close to 1) may have a low 

influence on Vss. The sensitivity coefficients depend on the specific set of parameter 

values used and the ranges of the input variable were selected to be the same as the ones 

used in the GSA (Table 2.1). This analysis was not meant to be exhaustive and to 

investigate all possible scenarios. As such, cases of a high lipophilicity-high protein 

bound compound (LogP=3, fup=0.01) and a low lipophilicity-low protein bound 
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compound (LogP=-0.3, fup=0.9) were investigated to illustrate the impact on drug types 

frequently encountered during drug discovery and development that can influence 

significantly drug distribution. 

 

2.3.5. Incorporation of uncertainties in physiological parameters 

Tissue composition data originates from a very limited number of studies. This 

section investigated how uncertainties in tissue composition data may propagate into Kpu 

and Vss predictions. The term uncertainty includes both biological variability (different 

sources/animals used to generate the data) and analytical uncertainty. Physiological input 

parameters for PBPK models especially tissue composition data are generally fixed to 

average values obtained from the literature (Tables S2 and S3) [5, 8, 41, 42]. However, 

most studies that focused on collection of human and rat tissue composition data (i.e., 

interstitial, intracellular, and vascular volumes, albumin and lipoprotein concentrations) 

reported uncertainties in those measurements [43-48]. The reported coefficients of 

variation (CV) varied widely from 2 to 66% depending on the fractional tissue volume 

but measurements were often very sparse, with only one individual measurement reported 

in certain cases. Measurements could also be inaccurate due to experimental limitations. 

Tissue composition data uncertainty can also be due to data arising from subjects of 

differing ages, races/strains, weights and sex. Additionally, all physiological parameters 

are associated with inherent biological variability in a population (animal or human). 

Uncertainties are generally not explicitly incorporated in Kpu predictions. Therefore, 

parameter uncertainty and variability in tissue compositions values could have an 

influence on the accuracy of Kpu and therefore the accuracy of Vss predictions. The 

sensitivity of physiological parameters on drug distribution was explored by 

incorporating 30% uncertainty on the following set of input parameters in Eq. 2.1 and Eq. 

2.2 (fNL, fNP, fIW, fEW, [AP-]T, [AP-]RBC, [PR]T/[PR]p). Three scenarios were investigated 

which included 30% uncertainty on different terms of the equation: (i) all tissue fractions 

(fNL, fNP, fIW, fEW), acidic phospholipids ([AP-]T, [AP-]RBC) and protein ratios 

([PR]T/[PR]p); (ii) all tissue fractions only and (iii) acidic phospholipids and protein ratios 

only. This analysis served to identify the most influential physiological parameter(s). 

Distributions of fractional tissue volumes had mean values matching the typical average 

values used for tissue composition-based models [42] and a CV of 30 % were generated. 
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The tissue fractions were assumed to follow logistic-normal distributions to 

constrain the values between 0 and 1 [49]. For this, the j normalised fractional tissue 

volumes per tissue were assumed to follow a (j+1)-dimensional logistic-normal 

distribution which is derived after the transformation of a standard (j+1)-multivariate 

normal distribution with mean vector M and variance-covariance matrix Σ. Examples of 

how to generate samples from a logistic-normal distribution were previously reported [49, 

50]. It was assumed that F = [f1, f2, ..., fj]
T ~ Nj(M, Σ ), where F is a j-dimensional vector 

that follows a standard multivariate normal distribution with mean vector M defined as a 

null-vector of length j, and variance-covariance matrix Σ defined as a j-diagonal matrix 

of 0.0862 (=0.302 in order to have 30 % CV). For plasma, the two normalised fractional 

parameters (fNP and fNL) were assumed to follow a two-dimensional logistic normal 

distribution, whereas for adipose, bone, brain, gut, heart, kidney, liver, lung muscle, skin, 

and spleen, four normalised fractional parameters (fNP, fNL, fEW and fIW) were assumed to 

follow a four-dimensional logistic normal distribution. For blood cells, the three 

normalised fractional parameters (fNP, fNL, and fIW) were assumed to follow a three-

dimensional logistic normal distribution. Here, M and Σ parameters were fixed to generate 

population distributions of fractional tissue volumes that have means matching the 

average physiological parameter values [42] and a CV of 30% in the logistic domain. On 

the other hand, [AP-]T, [AP-]RBC, [PR]T/[PR]p were sampled from a normal distribution 

(N(μ, σ)) where μ is the average value given and σ is the variance of the associated normal 

in order to generate distributions of these physiological parameters with mean matching 

the average values and a CV of 30%. Additional details of the incorporation of 

uncertainties are provided in Appendix A1.3. 

Finally, Kpu values were estimated based on R&R equations (Eq. 2.1 and Eq. 2.2) 

for a hypothetical compound of each class (neutral, acid, weak base, strong base) under 

the three different correlation assumptions outlined above. Additionally, the analysis was 

done according to four case scenarios of LogP and fup which corresponded to: a 

hydrophilic, a lipophilic, a highly bound and a lowly bound compound. These cases 

represented examples frequently encountered during drug development (Table 2.2). 

Simulations of fractional tissue volumes, [AP-]T, [AP-]RBC and [PR]T/[PR]p ratios 

(N=1000 each) and calculation of Kpu and Vss values for each set of simulated tissue 

composition values (Eq. 2.1, Eq. 2.2, and Eq. 2.6) were implemented in R. We defined 

the effect of uncertainties in input on output as very influential if the CV% on the output 

was greater than 10% for a 30 CV% of the input. 
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Table 2.2: Simulation case scenarios investigated using sampled fractional tissue volumes and 

extracellular proteins levels 

Drug 

characteristics 

 
CASE A CASE B CASE C CASE D 

Neutral 

BP:1 

 

LogP: -0.3  

fup: from 0.001 

to 1 

LogP:3  

fup: from 0.001 

to 1 

LogP: from -0.3 

to 3 

fup:0.01 

LogP: from -

0.3 to 3 

fup:0.9 

Acid 

pKa:3 

BP:0.55 

 

Weak Base 

pKa:6.5 

BP:1 

 

Strong Base 

pKa:9 

BP:1 

 

 

2.4. Results 

2.4.1. Global sensitivity analysis of drug-specific parameters: PRCC 

The drug-specific input parameters used for the Kpu predictions were pKa, LogP, 

fup and BP, depending on drug class (Eq. 2.1 and Eq. 2.2). The results of GSA combining 

LHS and PRCC with the different relationships between LogP and fup investigated are 

summarised in Table 2.3. The interpretation of the results depended on the sampled input 

space and on the correlation between LogP and fup parameters. However, all parameters 

were influential and showed statistically significant PRCC values (p-value<0.001 after 

Bonferroni correction) except for pKa for adipose and skin Kpus for weak bases ( Figure 

A1.7). 

When all input parameters were sampled independently, the PRCCs assessment 

showed that LogP played a major role in the Kpu predictions for all drug classes, 

indicating generally the highest sensitivity of all input parameters (Figure 2.1). The 

second most influential parameter overall was fup. For acidic drugs, it was even the most 

influential parameter for a few of the tissue Kpus (heart, kidney, lung and skin) which 

represented tissues with a high fractional volume of extracellular water and albumin ratio 

(Figure 2.1). For strong bases, fup was actually the most influential input parameter for 

most Kpus except for the tissues that displayed the smallest tissue concentration of AP, 

namely adipose, bone and brain, where LogP was the most influential input parameter. 

For strong bases, BP was found to have a strong impact on the tissue Kpu outputs (Figure 

2.1). In general, among the investigated parameters, pKa tended to be the least influential 

parameter with absolute PRCC values between 0.18 and 0.72 for acids and strong bases 
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during independent sampling of LogP and fup. In general, LogP, pKa and BP were 

generally positively correlated with the Kpu outputs across all classes except for the 

strong bases where pKa was negatively correlated with the outputs (Figure A1.7). On the 

other hand, fup was strongly negatively correlated with the outputs across all drug classes 

(Figure A1.6 and Figure A1.7). 

 

Figure 2.1: Parameter ranking determined by the PRCC of tissue Kpus for each drug class with 

different relationships between LogP and fraction unbound in plasma (fup) for neutral and acidic 

compounds 

 

rob: rest of body; RBC: Red blood cell 

Parameter sensitivity ranking from most to less: blue (1), green (2), yellow (3) 

 

When considering a low to moderate correlation of = -0.3 or -0.5 between LogP 

and fup, the results were similar to the ones obtained where LogP and fup were 

independent, where the sensitivity of Kpu to LogP was the highest followed by fup and 

pKa (Figure 2.1-Figure 2.2). However, for acids, fup became a more influential parameter 

for some of the tissue Kpus although the difference between the PRCC values of LogP 

and fup of these tissues was actually slight (PRCC < 0.1) (Figure A1.6). For strong bases, 

BP became a more influential parameter than fup for a majority of the tissue Kpus 

(maximal PRCC of |0.79|, Figure 2.1).  

https://link.springer.com/article/10.1208/s12248-020-0418-7/figures/1
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Figure 2.2 : Parameter ranking determined by the PRCC of tissue Kpus for weak and strong bases 

with different relationship between LogP and fraction unbound in plasma (fup) for weak and 

strong bases 

 
rob: rest of body; RBC: Red blood cell 

Parameter sensitivity ranking from most to less: blue (1), green (2), yellow (3), red (4) 

 

When considering a strong correlation of = -0.9, a minimal change was observed 

for neutral and weak basic compounds where LogP remained the most sensitive parameter 

(Figure 2.1-Figure 2.2). For acidic compounds, LogP now had the smallest PRCCs 

(between 0.49 and 0.69, Figure 2.1). For strong bases, BP was now the most sensitive 

parameter (PRCC between 0.74 and 0.84), followed by fup (PRCC between -0.56 and -

0.72), LogP (PRCC between 0.02 and 0.34) and pKa (PRCC between -0.04 and -0.31) 

(Figure 2.2). When considering a nonlinear relationship where fup was considered 

dependent on LogP, sensitivity ranking was similar to when considering a strong 

correlation of -0.9 between LogP and fup. The exception was for acids where fup was the 

most influential parameter (PRCC between -0.76 and -0.92, Figure 2.1). It appeared that 

a nonlinear relationship where fup depended on LogP, the distribution of fup was mostly 

concentrated around its lower range (more than 60% of simulated compounds had an 

https://link.springer.com/article/10.1208/s12248-020-0418-7/figures/2
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fup<0.1) while with a correlation of -0.9 fup stayed uniformly distributed within the whole 

defined range. 

 

2.4.2. Local sensitivity analysis with Vss output 

Drug input parameters influenced Kpu and subsequently Vss predictions. Figure 

2.3A and Figure 2.3B illustrated the influence of these least and most influential 

parameters, respectively, on a normalized score of the Vss. For this assessment, two 

prototypical compounds, one high lipophilicity-high protein bound (LogP = 3, fup = 0.01) 

and one low lipophilicity-low protein bound (LogP = − 0.3, fup = 0.9) compound, were 

investigated. Although pKa for acids, strong and weak bases and fup for neutrals were 

identified as the least relevant, these parameters still had an important influence on the 

Vss predictions, especially between pKa of 5 and 9 where acids, strong and weak bases 

can be ionised at physiological pH and when plasma protein binding was high (fup <0.1) 

as it has an inverse influence on tissue Kpu (Figure 2.3). For neutrals, an increase in 

sensitivity of Vss was observed when fup approached 1 ; when considering a lipophilic 

compound with LogP=3, the most apparent change was seen between fup 0.001 and 0.1 

while for a hydrophilic compound with LogP=-0.3, it was between 0.9 and 1. In this latter 

case of high fup, KaPR was set to zero as negative values were obtained [9], term 2 became 

zero in Eq. 2.2, and term 3 (function of LogP and pKa) was dominant in Kpu predictions 

resulting in a sudden change in Vss and a sharp profile. For acidic compounds, a positive 

change in the Vss was observed from pKa values ranging from 2 to 7.2 approximately, 

and negative change for pKa values between 7.2 and 8 for compounds with high and low 

lipophilicity although the normalized sensitivity coefficient at pKa 7.2 was around 6 for 

lipophilic acidic compound and only 2.2 for hydrophilic acidic compound. No change in 

Vss was observed for weak bases with pKa values between 3 and 5 where compounds are 

mainly unionised (78% with < 5% ionisation in plasma) and a positive change was 

observed from a pKa of 5 to 6.9 for an unbound hydrophilic weakly basic compound, 

while a negative change was observed for a bound lipophilic weak basic compound. In 

this latter case, lipid partitioning was greater than nonspecific protein binding (e.g., low 

fup relative to LogP), the terms 1 and 3 became negligible in Eq. 2.2 and the term 2 

(dependent on a mixture of LogP, pKa, fup) was predominant and decreased as pKa 

increased. For strong basic compounds, negative change in the Vss was observed from 

pKa 7 to 7.5, a positive change was observed from pKa 7.5 to 10, and no change from 

pKa 10 to 11 (fully ionized from pKa > 9.5); the normalized sensitivity coefficient at pKa 
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7.5 was -1.5 for free hydrophilic strongly basic compounds and only -0.3 for bound 

lipophilic strongly basic compound. In this latter case, the affinity constant KaAP varied 

greatly as KpuRBC was very high (Eq. 2.1) causing a higher change in Vss. 

 

Figure 2.3. Normalised local SA values (Sij) of Vss with respect to ‘a’ the least influential drug 

parameter (fup or pKa) or ‘b’ the most influential drug parameter (LogP or BP).  

 

fup: fraction of unbound drug; BP: blood-to-plasma ratio 

Red line: Compound with high lipophilicity/low binding; Blue line: Compound with low 

lipophilicity/high binding. fup was varied in increments of 0.001 from 0.001 to 1; pKa values 

were varied in increments of 0.01; LogP was varied in increments of 0.1; BP was varied in 

increments of 0.01 from 0.6 to 2.5 for an acid (pKa = 3), a weak base (pKa = 6) and a strong base 

(pKa = 8) 

 

Compared to Figure 2.3A, the normalized local sensitivity values of Vss to the 

most influential drug parameters axis in Figure 2.3B were indeed larger corroborating 

that the parameters LogP and BP were considerably more influential. For a strongly basic 

compound with pKa=8, LogP=-0.3 and fup=0.9 (high fup), KaAP was set to zero as 

negative values were obtained when BP<fup; consequently term 2 became null in Eq. 2.1, 

and term 3 (function of LogP and pKa which were fixed) was dominant in Kpu predictions 

resulting in no change in Vss and then a sharp profile when BP>fup. 

  

https://link.springer.com/article/10.1208/s12248-020-0418-7/figures/3
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2.4.3. Incorporation of uncertainties in tissue composition 

parameters 

The impact of uncertainties in tissue composition input data on Vss predictions is 

illustrated in Figure 2.4 and the individual results of all tissue Kpu outputs can be found 

in Figure A1.8. For all compound classes, the effect of tissue composition data on model 

output (Kpu and Vss) was influential as the CV varied up to 43% in Kpu outputs and up 

to 32% in Vss outputs when considering a CV of 30% in tissue composition. In order to 

identify which parameter was primarily responsible for the observed changes and 

sensitivities, three scenarios were investigated. 

Firstly, uncertainties of 30% in all tissue composition parameters resulted in the 

highest output variability for highly bound strong bases (fup<0.01) with output CVs 

between 25 and 45% and between 25 and 32%, respectively, for Kpu and Vss (solid lines, 

Figure 2.4C). The CV values in output parameters greater than 30% resulted from the 

variability of AP being included at the level of the tissue [AP-]T and of the red blood cell 

values [AP-]RBC in Eq. 2.1 and Eq. 2.3 leading to a ratio of [AP-]T/[AP-]RBC with CV%>30 

for Kpu outputs (e.g., 41%CV for Kpu lung, 48%CV for Kpu skin). For unbound strong 

bases in plasma (fup>0.9, Figure 2.4D) and other compound classes, the influence of 

uncertainties in tissue compositions on Kpu and Vss outputs was smaller but still 

influential with CVs between 10 and 30%, and 9 and 21% for Kpu and Vss, respectively 

(solid lines, Figure 2.4D).  

Secondly, uncertainties of 30% in fractional tissue volumes only resulted in 

limited output variability with CV of 0 to 30 % for both Kpu and Vss parameters (dashed 

lines, Figure 2.4). For the tissue volumes to be influential, the specific and nonspecific 

binding of drug needed to be negligible (i.e., high fup and low LogP). As specific and 

nonspecific binding increased, the relevance of the fractional volume terms diminished 

(Eq. 2.1 and Eq. 2.2) since they represented only a small proportion of the total tissue 

volumes. It should be noted that the adipose Kpu stood out in its behaviour compared to 

the other tissues, probably because of the high fractional volume of neutral lipids 

compared to other tissues (Figure A1.8A and B).When varying LogP for strong bases at 

an fup of 0.9, adding uncertainties in fractional tissue volumes had an impact on tissue 

Kpus with CVs between 5 and 28% (dashed lines, Figure 2.4) but resulting in a CV of 

16% in Vss predictions possibly due to the errors cancelling each other out (Figure 2.4D).  

Finally, uncertainties of 30% in only [AP]T, [AP]RBC and extracellular [PR]T/[PR]p 

resulted in similar output variability of 30% in all tissue composition parameters, 
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especially when fup was low (fup<0.1) (solid and dotted lines were blended, Figure 2.4B), 

suggesting that uncertainties in tissue AP and extracellular PR levels data dominated the 

changes in Kpu and Vss outputs in this fup parameter space (an average 43%CV in tissue 

Kpu and a CV close to 30% in Vss output). Indeed, the term related to AP and KaAP in 

Eq. 2.1 was set to zero and plasma binding was exclusively driven by nonspecific binding 

which explained the observed sharp profiles in Figure A1.8B. 

 

Figure 2.4: Effect of inputting CV30% simultaneously or individually on fractional tissue 

volumes and/or all tissue acidic phospholipids (cAP)/ extracellular protein ratios (PR) when 

varying fup or LogP on Vss for a hypothetical neutral (red), acidic (green), weakly basic (blue) 

and strongly basic (purple) basic compound 

 

 

https://link.springer.com/article/10.1208/s12248-020-0418-7/figures/4
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2.5. Discussion 

In this paper, global and local SA were conducted to identify the key drug and 

physiological parameters of tissue distribution based on the mechanistic Kpu equations 

of R&R [5, 8]. These equations were selected as they represent an accurate prediction 

tool for Kpu values [10] and mechanistically integrate many of the underlying distribution 

mechanisms along with physiological information. However, a similar analysis is of 

course applicable to other Kpu mechanistic equations for Kpu predictions as well [4, 7, 

51-54]. The decomposition of equations Eq. 2.1 and Eq. 2.2 into three terms in the 

Methods section allowed a better understanding of the equations and how uncertainty 

propagates into Kpu and Vss when varying drug and tissue composition parameters. 

However, several key distribution processes are not considered in the R&R model such 

as tissues being divided into interstitial and intracellular spaces with differing pH values 

[7], lysosomal trapping [55], microsomal partitioning [56] and active transport across 

membranes (e.g., for poorly permeable molecules) and could contribute to the Vss 

misprediction.  

The GSA combining LHS and PRCC was performed on input parameter ranges 

covering a wide parameter space (Table 2.1) [28] and with several degrees of dependency 

between LogP and fup. Contradicting reports exist in the literature regarding the 

relationship [35, 57-61] or lack of relationship [62-64] between fup and LogP (or LogD). 

Degrees of correlation were selected based on a few nonlinear negative relationships 

reported in the literature with correlation values ranging from -0.91 to -0.36 depending 

on the investigated dataset of compounds and classes and also the measured or calculated 

LogP/LogD term considered [35, 57, 65, 66]. Ultimately, the correlation can slightly 

change the sensitivity ranking of the input parameters especially for acids and strong 

bases and additional information on correlations between LogP and fup within the specific 

chemotype could be useful as input for the parameter estimation process for these classes.  

In the current analysis, different correlations between fup and LogP were 

investigated and overall, two patterns could be distinguished: (1) a case with no-to-

moderate extent of correlation and (2) a case with high correlation (Table 2.3). When all 

input parameters were assumed to be independent, LogP was generally the most 

influential parameter for neutral drugs and weak bases which were predominantly 

unionised at physiological pH; while fup was the most influential input parameter for most 

Kpus for strong bases. Given its considerable importance, any errors in computational or 

experimental LogP determination can significantly influence Kpu predictions (Figure 2.1). 
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A recent study showed that among different LogP methods investigated, the LogP 

prediction of the best model against a compound dataset representing pharmaceutical 

space was within one log unit approximately 70% of the time [67]. Introducing a 

correlation between LogP and fup constrained the sampling space and made it less likely 

that term 2 of Eq. 2.1 and Eq. 2.2 became zero; therefore, term 3 became the only relevant 

mechanism of tissue partitioning. This attenuated the importance of LogP especially for 

acids and strong bases. A correlated sample may be a more plausible combination of drug 

input parameters and possibly a better representation of the behaviour of drug compounds 

when correlations are known [68, 69]. However, when LogP was uniformly sampled and 

fup was calculated using Yamazaki et al.’s relationship [35], the main limitation was that 

many of the simulated compounds had a very small fup value (<0.05). This may be an 

artefact caused by the large experimental errors of the drugs as the data were compiled 

from many different sources [70]. Free fraction can be accurately measured up to 0.1% 

(0.001) for highly bound compounds and becomes more uncertain below this value [71]. 

As fup was identified as a highly influential parameter, uncertainty in its determination is 

likely going to contribute significantly to the variability of Kpu and Vss outputs. 

 

Table 2.3: Summary of drug parameter sensitivity and ranking based on the performed GSA 

 Independently (or low correlation) 

sampled LogP and fup 

Correlation of -0.9 or nonlinear 

relationship between LogP and fup 

 High sensitivity 

parameter 

(overall 

PRCC >0.5) 

Low 

sensitivity 

parameter 

(overall 

PRCC <0.5) 

High sensitivity 

parameter (overall 

PRCC >0.5) 

Low 

sensitivity 

parameter 

(overall 

PRCC <0.5) 

Neutrals LogP>fup  LogP>fup  

Acids LogP>fup>pKa  pKa~fup >LogP  

Weak bases LogP>fup pKa LogP pKa~fup 

Strong bases fup> BP~LogP pKa BP>fup LogP>pKa 

>: greater sensitivity ranking; ~: similar sensitivity ranking 

 

PRCC analyses only gave ranking of parameter relevance for Kpu values but did 

not evaluate the contribution of each input to the output uncertainty. Other GSA methods 

including screening methods, variances could be applied although they are more 

computationally intensive and the interpretation is difficult in the presence of statistical 

dependence between inputs [72, 73]. In contrast to GSA, the local SA assesses the impact 

of single parametric perturbations on the model output (Kpus, Vss). Although the GSA 

ranking differed from the local SA ranking in certain parameter spaces, this should not be 

considered inconsistent as they arise from different design and purposes. The local SA on 
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Vss predictions showed that even the least influential drug parameters (based on PRCC) 

on Kpu were found to have a relevant influence on the Vss predictions. Particularly when 

pKa was around physiological pH where acid, weak and strong bases are unionised and 

when plasma protein binding was high (fup <0.1) [9]. On the other hand, the high 

sensitivity of Kpu and subsequently Vss to BP illustrates how important it is to measure 

this value for strong basic compounds as BP serves as surrogate for drug interaction with 

AP in the body (Eq. 2.3). Therefore, when BP is frequently assumed to be one for strong 

bases due to unavailable measurements, it can actually lead to errors in AP drug affinity 

calculations and subsequent Kpu and Vss predictions. 

Due to the lack of tissue composition data in human especially regarding 

concentrations of AP, albumin and lipoprotein ratios, rat data are used instead [9, 42]. 

However, prediction success of human Vss might be affected by the assumption that rat 

and human tissue compositions are the same. Our uncertainty analysis illustrated the 

influence of uncertainties in tissue composition data (i.e., tissue fractions, phospholipids 

and protein ratios) on Kpu and Vss predictions when a CV of 30% was considered for the 

tissue composition values. The choice of CV 30% was a realistic average value as a 5 or 

15 CV % had been reported for several fractional tissue volumes and up to 60% for other 

fractional volumes in rat and human [43-46, 74]. However, this may inadequately 

represent the variability in tissue composition in the general population as a large 

interspecies variation can exist in these measured parameters. For example, a fractional 

AP content of 0.0004 was found in rat brain, whereas a content of 0.02 was found in 

human brain [75]. Moreover, lipid composition of neutral lipids and acidic phospholipids 

was shown to differ between species, especially compositions of fatty acids [74, 76], 

which may lead to variable interactions with drugs from one species to another. 

Alternatively, modelling and simulations in conjunction with imaging techniques (e.g., 

MRI, PET, PET-CT scan) can be used to help characterise tissue distribution in the body 

and different tissues [77-79]. 

Uncertainties in tissue composition are likely going to have a considerable impact 

on the success of Vss predictions for all classes and especially for strong bases with low 

fup mostly due to the uncertainty in data on tissue specific acidic phospholipid and protein 

levels. Further examination by separation of fractional tissue volumes from [AP-] or 

extracellular PR revealed that fractional tissue volumes had less impact than AP and 

extracellular PR exception for a compound with high LogP and fup (Figure 2.4). Overall, 

this uncertainty analysis indicates that additional research and a better characterisation of 
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AP and extracellular PR (albumin and lipoprotein) levels in tissues and plasma would 

improve the confidence in Kpu and Vss prediction accuracies across species. However, it 

should be noted that this assessment is based on the R&R model, which assumes that 

ionised bases interact predominately with AP and uncharged with neutral phospholipids 

and neutral lipids. This assumption has been questioned recently [80, 81]. In addition to 

model refinements, additional data particularly AP and extracellular PR in the different 

tissues will help to reduce uncertainty and obtain more reliable Kpu predictions in the 

future. 

Finally, for the parameter estimation process, less influential parameters for Kpu 

predictions in each drug class might be assigned fixed values depending on the sensitivity 

of the parameter space, while influential parameters could be fitted using priors and 

uncertainty associated with experimental methods and data. In this work, we found that 

the sensitivity ranking depends on the degree of dependence between LogP and fup for 

acids and strong bases, therefore this needs to be taken into account when fixing certain 

parameters.  

 

2.6. Conclusions  

Based on the GSA using a wide range of drug input parameters, the most influential 

parameters on Kpu predictions in the R&R model were generally LogP and fup for the 

drug-specific parameters. 

Uncertainties in tissue composition have a considerable influence on Kpu and Vss 

predictions for all classes and especially for strong bases with low fup mostly due to the 

uncertainty in data on tissue specific acidic phospholipid and protein levels. 

In the context of parameter estimation for PBPK models and dimensionality reduction, 

less influential parameters for Kpu predictions in each drug class might be assigned fixed 

values depending on the sensitivity of the parameter space, while influential parameters 

could be fitted, for instance using a Bayesian approach, where priors and uncertainty 

associated with experimental methods and data are accounted for.  
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3.1. Abstract 

3.1.1. Background 

Whole-body physiologically based pharmacokinetic (PBPK) models have many 

applications in academic and pharmaceutical research and drug development. It is often 

necessary to adjust these models with emerging animal or clinical data, improving model 

parameters and making the model more predictive for future applications. This provides 

an opportunity as well as a challenge given the large number of parameters in such models. 

The aim of this work was to propose new mechanistic models of drug distribution that 

reduce the complexity of the PBPK model structure and/or the number of parameters for 

optimization. These models are then evaluated for the ability to estimate physiologically 

relevant values for unbound tissue to plasma partition coefficients (Kpu) and to simulate 

observed pharmacokinetic (PK) data. 

3.1.2. Methods 

Two approaches are being proposed for this purpose. Firstly, using established 

kinetic lumping methods based on tissue time constants and secondly, using clustering 

analysis on Kpus to identify tissues sharing common Kpu values or Kpu scalars (i.e., 

scaling factors) based on similarities of tissue composition parameters while maintaining 

the PBPK model structure. PBPK models derived from these approaches were assessed 

using rat and human PK data of diazepam. Model performance was compared based on 

physiological plausibility, visual and numerical predictive checks. 

3.1.3. Results 

Several models using either of the two approaches were found to have highly 

similar abilities to describe IV data compared to empirical models (reasonable fits, good 

precision). These included a model with 3 kinetically lumped compartments and several 

PBPK models with 3 or 4 common Kpus or scalars (different tissue groupings possible). 

Although the clustering analyses produced minor differences in grouping of tissues 

depending on the clustering method, kidney and liver were generally grouped together 

whereas bone, brain, muscle, pancreas were found more similar. Clustering into 4 tissue 

groups appeared more physiologically relevant in terms of tissue composition, with 

adipose as a separate group due to its particular composition. For diazepam, these models 

described the rat concentration-time profiles well and allowed estimation of 

physiologically relevant partitioning coefficients. Additionally, these mechanistic models 

produced Kpu estimates that were comparable to experimental Kpu values for diazepam. 
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While the kinetically lumped model is useful for compounds with low tissue to plasma 

partitioning and when data are available in the species of interest, the PBPK models with 

common scalars show more promise for data-driven PK studies for a wider set of drugs 

and for interspecies translation.  

3.1.4. Conclusions 

A new method of combining tissues (a priori lumping), based on their constituents 

has been proposed and assessed. For diazepam, the best model (generally, the model with 

scalars using k-means clustering) captured the plasma PK profile well and the predictions 

of tissue concentrations were consistent with available measurements in rat, suggesting 

the potential use of these models for inferring tissue distribution based on plasma 

concentration-time data alone. These methods enable PBPK translation from preclinical 

species to human (see Chapter 4). 
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3.2. Introduction 

Pharmacokinetic (PK) models describe the drug concentration within the body as 

a function of time. They cover models with various degree of complexity, from simple 

empirical models such as non-compartmental and parsimonious compartmental models, 

to semi-mechanistic and more complex whole-body physiologically based 

pharmacokinetic (PBPK) models [1]. Empirical models are frequently built based only 

on the observed PK data without the need for prior knowledge of the system. These 

models can describe available data well but may have limited utility due to a lack of 

physiological mechanisms and consequently lack extrapolative power. On the other hand, 

whole-body PBPK models are particularly suited to integrate knowledge of different 

origins (e.g., in silico, in vitro, and in vivo) in an anatomically and physiologically 

relevant framework. PBPK modelling provides a powerful tool for integrating preclinical 

data into human PK predictions [2, 3]. Although PBPK models become more and more 

informed as knowledge about the drug and the system increases, numerous and often 

untested assumptions are inherent to these models. When observed PK data become 

available certain PBPK model parameters can be optimized by combining the bottom-up 

and top-down approaches [4]. Yet, the high dimensionality and the complexity of PBPK 

models, as well as the limited amount of data available (e.g., plasma or blood observations 

only and relatively sparse sampling) may limit the simultaneous estimation of the large 

number of parameters due to computational and numerical issues, as well as kinetic 

processes being missed as they unfold too rapidly. In order to stabilise PBPK parameter 

estimation, many parameters are fixed to typical values and then only a few selected 

parameters are estimated through mathematical computations, which could result in 

biased estimates. In addition, the decision on which parameters to fix and which to 

estimate is often subjective and therefore the final model and model parameters may vary 

significantly between different modellers [4, 5]. Indeed, each modeller visualises a model 

from a different perspective, each one of these models may be valid to describe the data, 

and equally none of them may be correct. Consequently, PBPK models are not often used 

for data-driven PK analysis compared to empirical compartmental models. 

Several lumping approaches have been proposed to reduce the dimensionality and 

complexity of whole body PBPK models by aggregating model states (here, tissue 

compartments) or parameters. Formal or proper lumping is a method of model reduction, 

where each state of the original model contributes to only one state of the reduced system. 

Nestorov et al. were the first to incorporate lumping principles in PBPK modelling, 
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consisting on lumping tissues with identical structural positions (serial or parallel 

connection) and similar kinetic properties (time-constants), and applied them for 

barbiturates in rats [6]. The reduced model with lumped compartments retains the kinetic 

behaviour of the original model, and the associated parameters maintain their meaning. 

An algorithm for proper lumping was proposed by Dokoumetzidis and Aarons, which is 

automatic and can be applied to PBPK models [7, 8]. Similarly, Pilari and Huisinga 

proposed an algorithm for lumping tissues with similar kinetics (normalized 

concentration-time profiles) to obtain simplified perfusion and permeability rate limited 

PBPK models, which was applied to 25 small molecules [9]. Other examples of lumping 

compartments to simplify PBPK models exist in the literature [10-12]. Additional model 

reduction approaches, such as global sensitivity analysis and balanced truncation, have 

been suggested for reducing PBPK models [13, 14]. However, kinetic lumping 

approaches have to typically be tailor-made for each new compound as they are generally 

only valid locally for a specific set of parameter values [15].  

The limitation of drug-dependence in model reduction might be overcome by 

using a general simplified PBPK model. A few generalized minimal PBPK models have 

been proposed as simplification of whole-body PBPK for estimation of physiologically 

relevant PK parameters without tissue concentration data available and for interspecies 

extrapolation but showed some limitations and did not include mixed effects [16-18]. 

Using lumping principles, Arundel proposed a multi-compartmental approach with 2-

blood compartments and 6-tissue groups which are each characterised by its time constant 

defined as the disappearance rate from a tissue [17]. It was found that for each lumped 

tissue group, the product of tissue time constant and volume of distribution at steady state 

(Vss) was relatively constant except for adipose tissue for a range of 10 structurally 

diverse compounds. Therefore, based on the Vss obtained from plasma concentrations, 

tissue time constants and consequently tissue partition coefficients (Kp) can be estimated. 

This approach, however, cannot be applied for the adipose Kp. Cao and Jusko proposed 

minimal-PBPK models with two- or three tissue compartments and applied them for 

capturing the blood (or plasma) profiles of 27 drugs from four different therapeutic classes 

[16]. In these hybrid models with properties in between whole-body PBPK and 

compartmental PK models, venous and arterial blood compartments are separated, and 

tissues are lumped separately. Physiological restrictions are integrated on blood and tissue 

volumes and on fractions of cardiac output. However, the lumped tissues remain 
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empirical tissue compartments and independent Kps cannot always be identified for each 

tissue. 

The purpose of this work was to investigate generalised approaches for the 

simplification of PBPK models that can be easily used for PK studies, translation of PK 

properties from animals to humans and even population PK analysis. The proposed 

models should be mechanistic allowing separation of system- and drug-specific 

parameters and the model parameters can be estimated without tissue concentration data. 

This approach could thus allow the optimisation of a PBPK model when Vss is not well 

predicted from a bottom-up approach with Rodgers and Rowland (R&R) model. An 

evaluation of these simplified PBPK models will be shown for diazepam. These models 

could be applied for the prediction of human PK from preclinical data. The approach with 

these models retains physiological interpretability and can be performed a priori, e.g., in 

the absence of data in human. 

 

3.3. Methods 

In this section, PBPK models are classified into 3 categories, as shown in Figure 

3.1: (1) Whole-body PBPK model, (2) kinetically lumped model with 3 compartments, 

(3) kinetically lumped model with 14 compartment and common physiology. (2) and (3) 

are simplified PBPK models proposed in order to limit the number of parameters for 

estimation and yet maintaining physiological aspects of the whole-body PBPK model. 

They are two clearly distinct approaches: kinetically lumping reduces the complexity of 

the model from a mathematical point of view; whereas in contrast, steady-state 

commonality in drug partitioning, reduces the number of parameters needed in the 

complex model. 
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Figure 3.1: Approaches investigated for simplifying a whole-PBPK model 

 

 

3.3.1. Whole-body PBPK model 

A typical whole-body PBPK model for small molecules used for animals to 

human PK predictions is shown in Figure 3.1 [6, 19, 20]. In this model, compartments 

represent individual organs or tissues of the body, connected via the systemic blood 

circulation. Commonly, there are two blood compartments (arterial and venous) and 14 

tissue compartments (lungs, heart, kidneys, bone, muscle, brain, adipose, skin, spleen, 

pancreas, liver, stomach, gut, bones and rest of body), which makes 16 states in total. 

Assuming tissues are perfusion-limited (well-stirred) compartments, each non-

eliminating tissue can be described by the following equations (Eq. 3.1-Eq. 3.2): 

Lung 𝑉𝑙𝑢𝑛𝑔 ∙
𝑑𝐶𝑙𝑢𝑛𝑔

𝑑𝑡
= 𝑄𝑙𝑢𝑛𝑔 ∙ (Cvenous −

𝐶𝑙𝑢𝑛𝑔

𝐾𝑏𝑙𝑢𝑛𝑔
) Eq. 3.1 

Other 

tissues 
𝑉𝑖 ∙

𝑑𝐶𝑖

𝑑𝑡
= 𝑄𝑖 ∙ (Carterial −

𝐶𝑖

𝐾𝑏𝑖
) Eq. 3.2 

where Clung, Ci , Cvenous and Carterial are the total drug blood concentrations (mg/L) in the 

lung, the ith-tissue, the influent venous blood and arterial blood, respectively. Vlung, Qlung, 

Vi and Qi are the volumes (L) and blood flows (L/min) for the lung and each ith-tissue, 

respectively. Kblung and Kbi are the tissue-to-blood partition coefficient in the lung and in 

the ith tissue, and represent the tissue to venous blood concentration ratio at steady state. 
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When renal elimination (CLR) is part of the venous compartment, the rate equations for 

the arterial blood and venous blood compartments are defined as follows (Eq. 3.3-Eq. 

3.4): 

𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 ∙
𝑑𝐶𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑡
= 𝑄𝑙𝑢𝑛𝑔 ∙ (

𝐶𝑙𝑢𝑛𝑔

𝐾𝑏𝑙𝑢𝑛𝑔
− Carterial) Eq. 3.3 

𝑉𝑣𝑒𝑛𝑜𝑢𝑠 ∙
𝑑𝐶𝑣𝑒𝑛𝑜𝑢𝑠

𝑑𝑡
= ∑ 𝑄𝑖 ∙

𝐶𝑖

𝐾𝑏𝑖
− 𝑄𝑙𝑢𝑛𝑔 ∙ 𝐶𝑣𝑒𝑛𝑜𝑢𝑠 − CLR ∙ 𝐶𝑣𝑒𝑛𝑜𝑢𝑠 

Eq. 3.4 

where ∑ 𝑄𝑖 ∙
𝐶𝑖

𝐾𝑏𝑖
 includes all the ith tissues except the stomach, gut, pancreas and spleen; 

Varterial and Vvenous are the volume of arterial and venous blood, respectively; CLR is 

calculated as the fraction excreted (fe) of the total blood clearance (L/min) and values of 

fe are reported in Table 3.2. Plasma concentrations can be derived by dividing Cvenous by 

the blood-to-plasma ratio, BP. 

For the liver, the rate equation is defined as (Eq. 3.5):  

𝑉𝑙𝑖𝑣𝑒𝑟 ∙
𝑑𝐶𝑙𝑖𝑣𝑒𝑟

𝑑𝑡
= 𝑄ℎ𝑎 ∙ Carterial + ∑ 𝑄𝑠𝑝𝑙𝑎𝑛,𝑖 ∙

𝐶𝑠𝑝𝑙𝑎𝑛,𝑖

𝐾𝑏𝑠𝑝𝑙𝑎𝑛,𝑖
− 𝑄𝑙𝑖𝑣𝑒𝑟 ∙

𝐶𝑙𝑖𝑣𝑒𝑟

𝐾𝑏𝑙𝑖𝑣𝑒𝑟

− 𝐶𝐿𝑖𝑛𝑡𝑙𝑖𝑣𝑒𝑟 ∙ 𝑓𝑢𝑏 ∙
𝐶𝑙𝑖𝑣𝑒𝑟

𝐾𝑏𝑙𝑖𝑣𝑒𝑟
 

Eq. 3.5 

where the Qsplan,i, Csplan,i and Kbsplan,i are the concentration, the blood flow, the volume 

and the blood partition coefficient of the ith splanchnic organs (stomach, gut, pancreas 

and spleen); Qha is the blood flow from the hepatic artery; Cliver, Qliver, Vliver, Kbliver are 

the concentration, the blood flow, the volume and the blood partition coefficient of the 

liver; CLint is the hepatic intrinsic clearance (L/min) and fub is the fraction unbound in 

blood. In addition, assuming the liver is represented by a well-stirred model, the blood 

hepatic clearance (CLH) can be related to its intrinsic clearance and extraction ratio (ERH) 

[21]: 

𝐶𝐿𝐻 =
𝑄𝑙𝑖𝑣𝑒𝑟 ∙ 𝑓𝑢𝑏 ∙ 𝐶𝐿𝑖𝑛𝑡𝑙𝑖𝑣𝑒𝑟

𝑄𝑙𝑖𝑣𝑒𝑟 + 𝑓𝑢𝑏 ∙ 𝐶𝐿𝑖𝑛𝑡𝑙𝑖𝑣𝑒𝑟
= 𝑄𝑙𝑖𝑣𝑒𝑟 ∙ 𝐸𝑅𝐻 Eq. 3.6 

 

Kb values are a function of drug and species-specific parameters. Kb is determined from 

Kpu, the tissue-to-unbound plasma partition coefficient (Eq. 3.7). Kpu values are key 

components for the characterization of the rate and extent of drug distribution into 

different tissues in the body and reflect the degree of tissue distribution attributed to 

processes such as protein binding, lipid interaction, lysosomal trapping, etc. [22-27]. 
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𝐾b = 𝐾𝑝u ∙
𝑓𝑢𝑝

𝐵𝑃
 Eq. 3.7 

where fup and BP are the fraction unbound in plasma and the blood-to-plasma ratio, 

respectively.  

The Rodgers and Rowland (R&R) model was selected as it was demonstrated to 

be the most accurate in a study comparing multiple tissue:plasma partition coefficient 

prediction methods [28]. Rodgers et al. proposed two mechanistic equations for 

predicting Kpus: one for moderate-to-strong bases and group 1 zwitterions (at least one 

basic pKa>7) [23], and another for acids, very weak bases, neutrals and group 2 

zwitterions (no basic pKa >7) [24].  

Tissue blood flows and volumes are species-specific parameters. Blood flows and 

tissue volumes were calculated for a standard 70-kg man and for a standard 250-g-rat 

(Table A2.1). The volume of distribution at steady state based on whole blood (L) can be 

calculated as (Eq. 3.8): 

𝑉𝑠𝑠, 𝑏 = 𝑉𝑣𝑒𝑛𝑜𝑢𝑠 + 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 + ∑ 𝐾𝑏𝑖 ∙ 𝑉𝑖 ∙ (1 − 𝐸𝑅𝑖) Eq. 3.8 

where Vi is the volume of the ith-tissue, and Kbi and ERi are respectively its tissue-to-

blood partitioning coefficient and extraction ratio. 

 

3.3.2. Lumped PBPK model with 3 compartments 

For an extensive description of lumping principles adopted in this section, the 

reader is referred to a previous publication [6]. The main rule is that only tissues with 

identical model specifications (i.e., connected in parallel or in series) and with similar 

time constants, can be grouped together. Time constants (T) are defined as follows [6] 

(Eq. 3.9-Eq. 3.11): 

Eliminating tissue (i.e., 

liver) 
𝑇𝑖 =

𝑉𝑖 ∙ 𝐾𝑏𝑖

𝑄𝑖 + 𝑓𝑢𝑏 ∙ 𝐶𝐿𝑖𝑛𝑡,𝑖
 Eq. 3.9 

Non-eliminating tissue 𝑇𝑖 =
𝑉𝑖 ∙ 𝐾𝑏𝑖

𝑄𝑖
 Eq. 3.10 

Arterial and venous 

blood 
𝑇𝑖 =

𝑉𝑖

𝑄𝑖
 Eq. 3.11 

 

To lump serial tissues (splanchnic and liver), they should have low time constants, 

i.e., equilibrate very rapidly with each other (rapid equilibration condition). For example, 

the lungs, venous and arterial compartments could be lumped as one ‘central’ 
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compartment since they are connected serially and have similar low time constants (Table 

3.1). This assumption holds in many cases except if lungs depict a deep compartment for 

a particular compound (i.e., high Kblung value) or if sampling in very early time events 

are of interest [6]. Therefore, this transformation illustrated in Eq. 3.12 was applied for 

all the models proposed in this work.  

 

Table 3.1: Tissue time constants for a reference man (70kg) and rat (250g)[29-33] 
Tissues Human  Rat 

Time constant * 

(min) 

Rank 

** 

Compar-

tment 

 Time constant * 

(min) 

Rank 

** 

Compar-

tment 

Adipose 53.5*Kbadipose 16 3  3.40*Kbadipose  2 
Bone 17.8*Kbbone 14 2  0.53*Kbbone 7 1 
Brain 1.92*Kbbrain 10 2  0.83*Kbbrain 11 2 
Gut 1.92*Kbgut 9 2  0.59*Kbgut 9 1 

Heart 1.35*Kbheart 7 2  0.20*Kbheart 5 2 
Kidney 0.296*Kbkidney/(1.11+fub*Clintki

dney) 
3 2  1.76*Kbkidney/(11.72+fub*Clintki

dney) 
3 2 

Liver 1.67*Kbliver/(1.49+fub*Clintliver) 6 2  8.47*Kbliver/(12.55+fub*Clintliver

) 
10 2 

Lung 0.088*Kblung 1 1  0.014*Kblung 1 1 
Muscle 27.1*Kbmuscle 15 2  4.21*Kbmuscle 14 2 
Pancrea

s 

1.61*Kbpancreas 8 2  0.51*Kbpancreas 6 2 

Skin 8.55*Kbskin 13 2  9.49*Kbskin 16 3 
Spleen 1.00*Kbspleen  5 2  0.58*Kbspleen 8 2 

Stomach 2.42 *Kbstomach 11 2  1.02*Kbstomach 12 2 
RoB 3.99*KbRoB 12 2  3.87*KbRoB 13 2 

Arterial 0.228 2 1  0.079 2 1 
Venous 0.683 4 1  0.157 4 1 

* The term time constant is defined in Eq. 3.9-Eq. 3.11 

** Ranking of time constant from lowest to highest value and assuming Kb=1 and Clint=0 

 

To lump parallel tissues, they should have similar time constants (similarity 

conditions). As a rule of thumb, larger tissues with time constants not differing by more 

than 50-60% from each other may be considered as kinetically equivalent and can be 

lumped together, while lumping of smaller tissues can be extended to an order of 

magnitude [6]. A three-compartment model was chosen for the structure of the lumped 

model in order to be simply adapted and reduce computation times in PK modelling 

software. This model specification implies a rapidly equilibrating (central), a moderately 

equilibrating (peripheral 1), and a slowly equilibrating (peripheral 2) compartment. 

Tissues were attributed to one of the latter two compartments (rapidly-to-moderately or 

slowly equilibrating) depending on the percentage difference and magnitude of the tissue 

time constants (Table 3.1). A closed form solution can be derived (see Appendix A2.2) 

facilitating and expanding the use of this model with computationally intensive method 

such as Bayesian estimation methods. This model was implemented with the ADVAN11 
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subroutine and TRANS1 parameterization in NONMEM 7.3 (ICON Development 

Solutions, Hanover, MD, USA) [34]. 

In the situation where elimination is considered part of the central compartment 

(arterial, venous blood and lungs), the rate equation is defined as (Eq. 3.12):  

𝑉𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑑𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑑𝑡

=
𝑄𝑝1 ∙ Cp1

𝐾𝑏𝑝1
+

𝑄𝑝2 ∙ Cp2

𝐾𝑏𝑝2
− 𝑄𝑐𝑒𝑛𝑡𝑟𝑎𝑙 ∙

𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙
− 𝐶𝐿𝑏𝑙𝑜𝑜𝑑

∙
𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙
 

Eq. 3.12 

Where Ccentral, Cp1, Cp2 are the venous blood total drug concentration in the central, the 

peripheral 1 and peripheral 2 compartments, respectively. The blood flow Qcentral and the 

volume Vcentral of the central compartment are defined as Qcentral=cardiac output and 

Vcentral= Varterial+Vvenous+ Vlung ; Kbcentral is defined as the blood tissue-to-plasma 

partitioning coefficient of the central compartment and corresponding to 

(Varterial+Vvenous+Vlung Kblung)/(Vlung+Varterial+Vvenous); Qp1 and Kbp1 are the blood flow and 

blood tissue-to-plasma partitioning coefficient of all tissues in the lumped peripheral 1 

compartment; Kbp1 is weighted by the following volume (ΣVi-Vliver-Vkidney) + Vliver (1-

CLH/Qliver) + Vkidney (1-CLR/Qrenal))/ΣVi where i includes tissue lumped in the peripheral 

1 compartment; Qp2 and Kbp2 are the blood flow and blood tissue-to-plasma partitioning 

coefficient of all the tissues in the lumped peripheral 2 compartment; CLblood is the total 

blood clearance and corresponds here to the sum of the hepatic and renal clearance (CLH 

and CLR, respectively). It should be noted that the clearance is from the central 

compartment although it does not contain an eliminating organ, however this renders the 

lumped model similar to a model with 3 compartments where elimination is central. 

Additionally, individual concentrations profiles (venous, arterial and lung) can be derived 

as follows (Eq. 3.13-Eq. 3.14): 

𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 ∙
𝑑𝐶𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙

𝑑𝑡
= 𝑉𝑣𝑒𝑛𝑜𝑢𝑠 ∙

𝑑𝐶𝑣𝑒𝑛𝑜𝑢𝑠

𝑑𝑡

=
𝑑𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑑𝑡
∙

1

𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑉𝑣𝑒𝑛𝑜𝑢𝑠 + (𝑉𝑙𝑢𝑛𝑔 ∙ 𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙)
 

Eq. 3.13 

𝑉𝑙𝑢𝑛𝑔 ∙
𝑑𝐶𝑙𝑢𝑛𝑔

𝑑𝑡
=

𝑑𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑑𝑡
∙

1

(𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑉𝑣𝑒𝑛𝑜𝑢𝑠)
𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙

+ 𝑉𝑙𝑢𝑛𝑔

 
Eq. 3.14 
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And for each of the lumped peripheral compartments 1 and 2, the rate equation is defined 

as (Eq. 3.15-Eq. 3.16): 

𝑉𝑝1 ∙
𝑑𝐶𝑝1

𝑑𝑡
= 𝑄𝑝1 ∙ (

𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙
−

C𝑝1

𝐾𝑏𝑝1
) Eq. 3.15 

𝑉𝑝2 ∙
𝑑𝐶𝑝2

𝑑𝑡
= 𝑄𝑝2 ∙ (

𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙
−

C𝑝2

𝐾𝑏𝑝2
) Eq. 3.16 

Where Qp1= ΣQi and Vp1= ΣVi. Qi and Vi are the blood flow and volume of the ith-tissue 

lumped in the peripheral 1 compartment; Qp2= ΣQj and Vp2= ΣVj. Qj and Vj are the blood 

flow and volume of the jth-tissue lumped in the peripheral 2 compartment. 

The volume of distribution at steady state based on whole blood (Vss,b) can be calculated 

as (Eq. 3.17): 

𝑉𝑠𝑠, 𝑏 = 𝑉𝑐𝑒𝑛𝑡𝑟𝑎𝑙 + 𝑉𝑝1 + 𝑉𝑝2 Eq. 3.17 

 

3.3.3. PBPK model with common Kpus or common scalars 

Compared to the previous lumped-PBPK model, the 14 compartmental PBPK 

model with common Kpus or scalars only makes the kinetic assumption that the lung, 

venous and arterial blood equilibrate quasi instantly which is valid in many cases unless 

the Kblung value of the particular drug is high or its very early time events are used [6]. 

The term ‘PBPK model’ will be used from now on to refer to the 14-compartmental PBPK 

model (model 2 in Figure 3.1). Derivation of this model into differential equations is 

provided in Appendix A2.2. This PBPK model is primarily based on steady state 

similarity in drug partitioning into tissues while individual tissue blood-flows and 

volumes are preserved. In the PBPK model with common Kpus (model 2.1 in Figure 3.1), 

similar tissues are assumed to share a similar value of Kpu. While in the PBPK model 

with common scalars (model 2.2 in Figure 3.1), tissues are assumed to have their Kpu 

values (e.g., predicted from R&R model) and share a similar tissue-scaling factor 

(referred to scalar) which is a drug-specific scaling factor (Eq. 3.18):  

𝐾𝑝𝑢𝑖 = 𝐾𝑝𝑢𝑝𝑟𝑒𝑑𝑅𝑅,𝑖 ∙ 𝑆𝐹 Eq. 3.18 

Where Kpui is the true value of Kpu for tissue i whereas KpupredRR,i is the Kpu predicted 

using the R&R model and SF is the scaling factor for the tissue i. 

 

A global sensitivity analysis showed that tissues could behave similarly in terms 

of Kpu across different compounds with different properties, suggesting grouping of 
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correlated tissues [35]. For identifying groups of tissues that share commonality in steady-

state drug partitioning, clustering analyses were performed. A clustering analysis aims to 

group observations of a given dataset into mutually exclusive groups (clusters). Therefore, 

observations within the same group are as similar as possible while observations from 

different clusters are as dissimilar as possible. Many clustering algorithms have been 

proposed and fully described in the literature [36, 37]. Among them, the k-means 

clustering and hierarchical clustering are the most widely used. Given the utility and 

limitations of each method (detailed in Appendix A2.3), both clustering methods were 

ultimately explored in the current analysis. Briefly, both methods cluster elements by 

minimizing the distance between elements and a centroid measure for the former [37-39], 

and by analysing the dissimilarity (or similarity) between each observation for the latter 

[40]. The tissue similarities were assessed using two different datasets (Figure 3.1): (a) 

tissue composition data (rat and human) or (b) normalised in vivo Kp values (rat data 

only). More details about the clustering analysis can be found in Appendix A2.3. 

 

Clustering based on tissue composition data 

Species tissue composition data were first standardized (z-score standardization) 

to identify clusters of observations with the same overall profiles regardless of their 

magnitude. Based on previous work [35], acid phospholipids and extracellular protein 

levels were found to be more influential on Kpu outputs predicted using the R&R model 

and consequently should be assigned a higher weight, so that it would influence the cluster 

formation more than other tissue component variables. To include this effect, each 

standardized variable was multiplied by a higher weight for acid phospholipids and tissue 

proteins (i.e., albumin and lipoproteins) than for other variables (a weighting factor of 2 

and 1 was respectively considered after investigating several scenarios of weighting in 

tissue composition). The k-means and hierarchical clustering methods were applied to 

classify the tissues clusters using the R package ‘stats’ [41]. For the k-means clustering, 

the tissue Kpu were preferentially grouped into 3 or 4 clusters and the algorithm was 

executed 50 times with different initial centres for better stability and to avoid local 

solutions, and 10 iterations were typically sufficient for convergence. The hierarchical 

clustering was applied with Euclidean distance as the distance metric and Ward’s method 

as the linkage method, and 3 or 4 clusters were determined subsequently. 
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Clustering based on normalised rat steady-state Kp data 

Similarly, a hierarchical clustering analysis was performed using available 

experimental Kp data for identifying groups of tissues that share similar Kp outcomes 

because of physiological similarities in tissues or as a consequence of multiple processes 

leading to similar results. However, this approach using experimental Kp data is not using 

the R&R model by including all mechanisms of tissue partitioning and binding (known 

and unknown) and not only the known mechanisms included in the R&R model. In vivo 

Kp values have been previously determined experimentally in rat and collected for 

various compounds [23, 24, 42, 43]. The dataset of rat Kps collected from the literature 

was composed of 107 compounds (71 strong bases, 9 weak bases, 21 acids and 6 neutrals), 

48% of the Kp values are missing (Table A2.6). The missing Kp data in the different 

tissues ranged from 17% (muscle) to 85% (pancreas). Much research has been performed 

on the issue of missing data, but it is not in the scope of this work. To address the problem 

of clustering data with missing values, the method of multiple imputation combined with 

clustering was used [44, 45]. 100 imputed datasets were created, and each data set was 

then analysed by hierarchical clustering as described in the previous section (with 3 or 4 

clusters). After adjusting for the labelling of cluster assignments, the tissues were 

assigned to clusters based on the most frequent cluster assignment per tissue among the 

100 datasets. Multiple imputation was performed using the R package ‘mice’ [46]. 

Predictive mean matching is the default modelling method in the mice package and was 

used for imputation [47]. The choice of m=100 iterations was adopted [45]. Imputed Kp 

values were normalised by Vss to avoid compound bias in the analysis which was tested, 

and no clear trend existed between normalised Kps and compound specific properties 

(pKa, BP, fup, LogP). Alternatively, hierarchical clustering could have been used directly 

as it has the ability to cluster even when missing values are present by still obtaining a 

full distance matrix. However, this can lead to some information bias as one distance 

between two observations is calculated based on many variables while another distance 

between two other observations may be based on only a few variables. Additionally, it 

was found that the classification by hierarchical clustering with missing values was not 

accurate with 48% of values missing for this type of multivariate data even when full 

information is given [44] and consequently, this method was not used.  
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3.3.4. Diazepam data 

The models were fitted to diazepam PK data in rat and human. Individual and 

average PK profiles following intravenous administration were available in humans 

(N=35 profiles) and in rat (N=6 profiles). Concentration-time data in plasma, blood or 

serum were digitized using WebPlotDigitizer (version 4.2, 

https://automeris.io/WebPlotDigitizer). The majority of the PK profiles represent mean 

profiles except for a few studies which reported individual profiles (details can be found 

in Table A2.4 and Table A2.5). Physicochemical and in vitro PK data for diazepam are 

summarized in Table 3.2.  

 

Table 3.2: Physicochemical properties and in vitro PK data of diazepam 

LogP pKa 
Human Rat 

fup BP fe fup BP fe 

2.82a  3.4a 
0.009e 

(0.014-0.032)d 

0.559e  

(0.65)d 
0.0005b  

0.1e 

(0.03-0.15)d 

0.836e 

(1-1.19)d 
0.009c  

pKa: acid dissociation constant; LogP: n-octanol/water partition coefficient; fup: fraction 

unbound in plasma; BP: blood-plasma ratio; fe: urinary excretion 
a From [30]; b From [31]; c From [32]; d From literature [48-53] 
e fup and BP were measured internally (details can be found in Appendix A2.4). 

 

3.3.5. Data analysis  

The suitability of the proposed models was explored: (1) to be able to fit data, (2) 

to produce meaningful Kpu values (which can be compared in rat as experimental data 

are available) and (3) to provide a suitable model structure for translation as a potential 

application. 

The investigated models were fitted to the human and rat PK data and their model 

parameter values were estimated using the first order conditional estimation with 

interaction (FOCE-I) method as implemented in NONMEM v7.3. The FOCE-I method 

allows for interaction between inter-individual variability (IIV) and residual variability, 

and it is fast to converge for simple structured models [54, 55]. The following general 

model was fitted to the data (Eq. 3.19): 

𝑌𝑖𝑗 = 𝑓(𝜃𝑖 , 𝑡𝑖𝑗) ∙ (1 +  𝜀𝑖𝑗) Eq. 3.19 

where Yij is the observed data for study i at time tij, f is the structural model, which is 

identical for all the individual studies, θi is the vector of p individual PK parameters for 

the individual i, and εij is the residual error. An exponential model was used to account 

for IIV. Inter-study variability (ISV) is confounded with IIV due to the pooling of studies 

and may over-estimate IIV if ISV is high [56]. For the kth parameter : 𝜃𝑖𝑘 = 𝜇 ∙ exp (𝜂𝑖𝑘) 
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where μ is a vector of fixed effects parameters representing the typical population 

parameter values and ηi is a vector of random effects for individual study i. The random 

effects are assumed to follow a multinormal distribution with mean 0 and variance  , 

N(0, ).  is the p × p variance-covariance matrix of the inter- individual variability. The 

residual variability was modelled using a proportional error model and εij is assumed to 

follow a normal distribution with mean 0 and variance σ2, N(0, σ2). 

Models were evaluated using standard goodness-of-fit (GOF) diagnostics, numerical 

evaluation and decrease in objective function value (OFV, approximated by −2*Log 

Likelihood) [57]. Model comparison was made using the Bayesian information criterion 

(BIC) due to changes in the structural model. Biological plausibility of parameter 

estimates was also evaluated and checked with consistency to existing data, in particular 

rat Kpu values of diazepam available from the literature (Table 3.3). Following an 

analysis based on the large dataset of rat Kp where distributions of Kpu prediction success 

using R&R model were characterized (not shown), it was found that 95% R&R Kpu 

predictions would be within approximately 21-fold error. As a result, a 25-fold under/over 

predictions can be considered unlikely given the available data.  

 

Table 3.3: Rat Kpu values of diazepam 

Tissue In vivo Kpu* Kpu predicted by RR 

Lung 29.93 28.17 

Splanchnic 22.67 53.77 

Stomach 31.93 53.77 

Pancreas NA 35.88 

Liver 57.27 38.32 

Bone NA 60.69 

Brain 13.53 51.06 

Heart 35.87 29.17 

Kidney 31.07 32.14 

Skin 19.67 52.5 

Muscle 24.47 23.81 

Adipose 140 55.99 

RoB 24.47 23.81 

*Kpu values were calculated after adjusting the Kps by the fup and BP reported in the study [58] 

Rob: rest of body 

 

A common study design was simulated using the R package ‘RxODE’ [59] 

allowing the comparison of the performance of the different models since reported studies 
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have different designs. Observations in human and in rat were simulated from a reference 

model (structure, parameter estimates, and associated uncertainty) which was the 

compartmental model (two compartments in human and three compartments in rat) fitted 

to describe the diazepam data. For each species, 1,000 drug concentration-time courses 

were simulated for a single IV dose of diazepam and infusion rate to achieve a steady 

state plasma concentration determined by the drug elimination rate. A 16.1h infusion of 

10 mg in man and a 4.3h infusion of 1mg in rat were chosen to best illustrate the different 

kinetic phases. The predictions using the different investigated models (structure, 

parameter estimates, and associated uncertainty but the clearance value was fixed to the 

one from the fitted empirical model) were superimposed onto the simulated observations 

to obtain a visual display of the investigated models’ ability to describe the data. The 

median Vss,b predicted from the investigated models (Eq. 3.8 and Eq. 3.17) were 

compared against the median Vss,b simulated ‘observed’ from the fitted empirical model, 

and median concentration profiles were compared by calculating the root-mean-square 

error (RMSE, Eq. 3.20) to assess the precision of the predictions, with lower RMSE value 

representing greater precision of the model: 

𝑅𝑀𝑆𝐸 = √
∑(𝑃𝑅𝐸𝐷𝑡 − 𝑂𝐵𝑆𝑡)2

𝑛
 Eq. 3.20 

Where OBSt is the median ‘observed’ concentration value at time t and PREDt is the 

median simulated concentration at time t, and n is the sample size. 

 

3.4. Results 

3.4.1. Lumped PBPK model with 3 compartments 

The first approach for simplifying PBPK models was mainly to lump tissue 

compartments with similar kinetics. The time constants of the tissue compartments and 

their ranking (with Kb=1 and CLint=0) are shown in Table 3.1. In rat, rest of body, muscle 

and adipose were considered large tissues (>10% body volume) whereas only muscle and 

adipose were in human. In general, the tissue time constant is low when the volume is 

large or when the blood flow is small. The tissues were classified into three classes, 

according to the values of their time constants:  

(i) the quasi-instantaneously or very rapidly equilibrating tissues with a time constant 

virtually equal to zero – lung in human and rat and arterial and venous blood (arterial 

blood and lung will behave similarly for IV injections);  
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(ii) the rapidly-moderately equilibrating tissues with very small to medium time constants – 

kidney, splanchnic organs, liver, brain, rest of body, skin, bone and muscle in man, or 

kidney, heart, splanchnic organs, bone, liver, brain, adipose, rest of body and muscle in 

rat; 

(iii) the slowly equilibrating tissues with large time constants –adipose in human or skin in 

rat. This could be due to the physiological difference in the volume of adipose in rat which 

is considerably smaller than in human. 

The lumped PBPK models in human and rat with one central and two peripheral 

compartments are illustrated in Figure 3.2. 

 

Figure 3.2 : Schematic representation of the lumped 3compartment-model in human (A) and in 

rat (B) 

A 

 

B 

 

 

 

3.4.2. PBPK model with common Kpu values or common scalars 

The second approach for simplifying PBPK models was to have a 14-

compartmental model with tissue compartments sharing common Kpu values or common 

Kpu scalars (Figure 3.1). In order to identify tissue with common Kpu values or scalars, 

a clustering analysis was performed using different clustering methods on (a) tissue 

composition data in human and rat and (b) imputed in vivo rat Kp data. Results of this 

clustering analysis in man and in rat are summarised in Figure 3.3-Figure 3.5.  
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Figure 3.3: Principal component plots for k-means clustering with 3 and 4 groups in man and rat 
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The dots represent a two-dimensional matrix of tissues generated by principal component 

analysis of the tissue composition data. Horizontal axis, factor score of the first component 

extracted from the composition of each tissue; vertical axis, factor score of the second component. 

Distinct clusters are shown in different colours.  
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Figure 3.4: Dendrograms obtained from hierarchically clustering of the human and rat tissue 

composition data with Euclidian distance and Ward’s method, cut into three or four distinct 

clusters 
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Distinct clusters are shown in different colours. 
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Figure 3.5: Frequencies of cluster assignment and missing values per tissue for 3 and 4 clusters 

after multiple imputation (n=100) and normalisation of rat steady state Kpus combined with 

hierarchical clustering 

 

The proportion of missing value per tissue is represented by the intensity of the colour (darker 

colour relating to more missing data), whereas the radius of the circles represents the frequency 

of cluster assignment (bigger size relating to more frequent cluster assignment). 

 

Using hierarchical clustering, the same 3 or 4 tissue groups were found for man 

and rat, whereas slightly different tissue groups were found for rat using k-means 

clustering (Figure 3.3 and Figure 3.4). For human, skin tissue composition (very high 

fraction of extracellular water, high albumin and low lipoprotein concentrations) is 

different from other tissue groups (Table A2.2). The group 2 (kidney, gut, lung, heart, 

liver, spleen) includes tissues with high acid phospholipid and lipoprotein contents, 

whereas group 1 (adipose, bone, brain, pancreas, muscle) contains tissues with low tissue 

water, low acid phospholipid and lipoprotein contents but very high neutral lipid and 

phospholipids. Adipose has a very particular composition (low water, very high neutral 

lipids) compared to the other tissues of group 1, and thus having 4 groups may be more 

appropriate (Table A2.2). Likewise in the rat, the adipose tissue composition stands out 

compared to other tissues of group 1 and thus it is more relevant to again consider 4 

groups with adipose as a separate tissue group (Table A2.3). On the other hand, when 

using k-means clustering, skin in rat was not considered to be different to the tissues of 

group 3 (gut, heart, lung, stomach) which are also tissues with higher fractional 

extracellular water, higher albumin than other tissues (Table A2.3). 
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Alternatively, for clustering based on rat Kp values, tissue grouping was based on 

frequencies of tissue assignments to a cluster as some tissues have the probability of 

arising from different clusters (Figure 3.5). The tissue groups obtained based on the 

dataset of Kps were surprisingly different from the previous clustering analysis based on 

tissue composition data. Here, all the tissues were grouped together except the lung, 

which was separate from the other tissues, as well as the two eliminating tissues (kidney 

and liver), which could be further differentiated into two different tissue groups on their 

own. This tissue grouping seemed to be similar to the range of tissue blood flows. 

In general, the results showed that clustering into 4 tissue groups should be 

favoured as it appeared more physiologically relevant in terms of tissue composition, in 

particular adipose having a different tissue composition. 

 

3.4.3. Estimation of Kpu values for diazepam using the simplified 

PBPK models 

After defining and identifying all the models and their structures, these models 

were investigated further for parameter estimation using diazepam data in human and rat. 

A summary of the various models is presented in Table 3.4.  

Initial exploration of structural models revealed that a linear two-compartment 

model best described the concentration-time profiles of diazepam in human while a linear 

three-compartment model best described the rat data of diazepam. A clearance value of 

3.71 L/h and a total volume of distribution of 145 L (Ca. 2 L/kg) were estimated in man. 

In rat, the clearance and total volumes were estimated to be 0.920 L/h and 0.914 L (Ca. 4 

L/kg). These values were considered as the reference values in the current study and were 

overall in good agreement with values reported in published studies (Table A2.4 and 

Table A2.5).  
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Table 3.4: Summary of models and tissue grouping 
Model Model description Tissue grouping (by lumping or clustering) 

1 Lumped 3 compartment model 

Kpu1: blood, lungs, kidneys, heart, spleen, liver, pancreas, 

gut, stomach, bone, brain 

Kpu2: adipose, muscle, rest of body 

Kpu3: skin 

2A 
14-compartment PBPK model 

with 3 common Kpus (H) 

Kpu1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body 

Kpu2: lung, gut, stomach, kidney, heart, spleen, liver 

Kpu3: skin 

2B 
14-compartment PBPK model 

with 4 common Kpus (H) 

Kpu1:bone, brain, muscle, pancreas, muscle, rest of body 

Kpu2: lung, gut, stomach, kidney, heart, spleen, liver 

Kpu3: skin 

Kpu4: adipose 

2C 
14-compartment PBPK model 

with 3 common Kpus (Km) 

Kpu1: adipose, bone, brain, muscle, pancreas, rest of body 

Kpu2: kidney, spleen, liver 

Kpu3: skin, lung, gut, stomach, heart 

2D 
14-compartment PBPK model 

with 4 common Kpus (Km) 

Kpu1: bone, brain, muscle, pancreas, rest of body 

Kpu2: kidney, spleen, liver 

Kpu3: skin, lung, gut, stomach, heart 

Kpu4: adipose 

2E 
14-compartment PBPK model 

with 3 common Kpus (ss) 

Kpu1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

Kpu2: kidney, liver 

Kpu3: lung 

2F 
14-compartment PBPK model 

with 4 common Kpus (ss) 

Kpu1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

Kpu2: kidney 

Kpu3: liver 

Kpu4: lung 

3A 
14-compartment PBPK model 

with 3 scalars (H) 

SF1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body 

SF2: lung, gut, stomach, kidney, heart, spleen, liver 

SF3: skin 

3B 
14-compartment PBPK model 

with 4 scalars (H) 

SF1: bone, brain, muscle, pancreas, muscle, rest of body 

SF2: lung, gut, stomach, kidney, heart, spleen, liver 

SF3: skin 

SF4: adipose 

3C 
14-compartment PBPK model 

with 3 scalars (Km) 

SF1: adipose, bone, brain, muscle, pancreas, rest of body 

SF2: kidney, spleen, liver 

SF3: skin, lung, gut, stomach, heart 

3D 
14-compartment PBPK model 

with 4 scalars (Km) 

SF1: bone, brain, muscle, pancreas, rest of body 

SF2: kidney, spleen, liver 

SF3: skin, lung, gut, stomach, heart 

SF4: adipose 

3E 
14-compartment PBPK model 

with 3 scalars (ss) 

SF1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

SF2: kidney, liver 

SF3: lung 

3F 
14-compartment PBPK model 

with 4 scalars (ss) 

SF1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

SF2: kidney 

SF3: liver 

SF4: lung 

H: hierarchical clustering on rat tissue composition data; Km: k-means clustering on rat tissue 

composition data; ss: clustering on in vivo rat Kps data; SF: scaling factor 
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Estimation in human 

In total five different PBPK model variants (models 1, 2A, 2B, 3A and 3B) were 

fitted to the concentration-time data of diazepam in humans. Table 3.5 shows the final 

estimates of the parameters and the corresponding precision together with the BIC values 

and lists the number of parameters in the models differentiating between fixed and 

random (IIV and residual) effects: 

 

Table 3.5: Parameter estimates of the different investigated mechanistic models for diazepam in 

man and comparison of median Vss,b and RMSE of simulated concentration profiles 

Model 1 
WBPBPK models 

2A 2B 3A 3B 

Number of parameters 

(structural/IIV/residual) 
4/1/1 4/1/1 5/1/1 4/1/1 5/1/1 

Median plasma concentration 

RMSE  
2.56 2.11 1.92 6.60 2.02 

BIC -2632.71 -2662.18 -2597.66 -2344.21 -2596.42 

CLb (L/h) 3.63 (4%) 3.67 (4%) 3.67 (4%) 3.71 (4%) 3.56 (5%) 

IIVCLb 
33.1% 

(17%) 

34.3% 

(18%) 

32.1% 

(19%) 

26% 

(16%) 

35.2% 

(20%) 

Kpu1 or SF1 
1153 

(5%) 
29.1 (5%) 32.4 (6%) 3.35 (7%) 

0.206 

(42%) 

Kpu2 or SF2 
24.3 

(10%) 

72.2 

(11%) 

89.1 

(10%) 

1.66 

(41%) 

5.70 

(11%) 

Kpu3 or SF3 483 (2%) 
3429 

(2%) 

323.8 

(5%) 

0.26 

(10%) 

6.42 

(14%) 

Kpu4 or SF4   483 (8%)  8.67 (6%) 

Residual error 
39.3% 

(8%) 

38.7% 

(8%) 

38.6% 

(8%) 

53.9% 

(15%) 

38.6% 

(8%) 

Vss,b median (L) 154.02 158.45 159.45 114.58 159.46 

WBPBPK: whole-body physiologically-based pharmacokinetic; IIV: intra-individual variability; 

CLb: blood clearance; SF, scaling factor; Vss,b: volume of distribution in blood at steady-state 

Parameter estimates are listed together with the coefficient of variation [CV (%)] in parentheses. 

Abbreviations for model are defined in Table 3.4. 

The RMSE is calculated relative to the median concentration simulated from the reference model 

(2 compartment) during the simulation time interval (0-240 h). 

 

As data came from different individuals (and studies), IIV in clearance was 

estimated. The values estimated for clearance were similar to the one from the empirical 

model (3.71L/h) and to that reported previously in literature (Table A2.4). Additionnaly, 

the value estimated for IIV on clearance was similar between the models (Table 3.5). IIV 

on Kpu parameters were not estimated for better comparison between the different models. 

All kinetically lumped and simplified PBPK models could be fitted to diazepam 

data in man. They could also all recapture an estimated Vss,b close to the Vss,b observed 

(146.4 L) in man within 20-25% error. Estimated Kpu values from the investigated 

models were generally in the same range except for the model 1 for which very high 
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values were obtained for Kpu1 (1153) and may not be physiologically plausible to 

represent the lung Kpu (Table 3.5). Similarly, Kpu3 in the model 2A has a very high value 

(3429) and may not be physiologically plausible to represent the skin Kpu (Table 3.5). 

The value estimated for adipose Kpu is very close for the models 1, 2B and 3B 

(respectively 483, 483, 485 after multiplying adipose Kpu predicted by the estimated 

scalar). Additionally, the concentration-time profiles and the Vss,b of all investigated 

models, except model 3A, were similar to the ones of the empirical two-compartment 

model (low RMSE, Table 3.5). Figure 3.6 shows the model-predicted population profiles 

following a single IV infusion of diazepam for each of the simplified PBPK models 

investigated. All models except model 3A could adequately describe the median of the 

observed data (simulations using the empirical model), whereas the 10th and the 90th 

percentiles were not always well captured (Figure 3.6). The shaded area incorporates 

inter-individual variability on clearance and other unexplained variability (proportional 

residual error). 

The model 2A had the lowest BIC, followed by the models 1 and 2B. The lowest 

residual error was obtained with the models 2A, 2B and 3B (Table 3.5). Based on the BIC, 

plausibility of estimated values and the model performance, the models 2B and 3B 

seemed to be the best models to describe diazepam data in human (Table 3.6). The model 

1 performed better in terms of numerical predictive checks and could also be considered 

although the value of Kpu1 may be high. On the contrary, due to poor physiological 

plausibility of skin Kpu and poor model performance (BIC), the models 2A and 3A would 

not be selected here. 

 

Table 3.6: Comparison of model performance for estimating diazepam data in human according 

to evaluation criteria 

Models Criteria 

BIC 

ranking 

Goodness of fits 

and 

convergence 

plots 

Precision of 

estimates 

(CV≤0.4) 

Plausibility 

of Kpus 

Vss within 

20% (YYY), 

25% (YY), 

30% (Y) 

1 2 OK Yes ? YYY 

2A 1 OK Yes ? YYY 

2B 3 OK Yes Yes YYY 

3A 5 OK Yes Yes YY 

3B 4 OK Yes Yes YYY 
Abbreviations for model are defined in Table 3.4. 

BIC: Bayesian information criterion ranking from lowest to highest value 

Plausibility of Kpus: (?) one Kpu may not be plausible 
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Figure 3.6: Simulated time profiles of diazepam following an infusion dose (10 mg during 16.1h) 

in human for the different investigated mechanistic models vs the reference model 

A 

 
B 

 

C 

 
D 

 

E 

 
The solid red line represents the median concentrations and the semi-transparent red field 

represents a simulation based 90% confidence interval for the median using the reference model 

(empirical two-compartmental model). The other solid line represents the median concentrations 

and the other semi-transparent field represents a simulation based 90% confidence interval for 

the median using the model 1 (A), the models 2A and 2B (B, C) and the models 3A and 3B (D,E). 
Abbreviations for model are defined in Table 3.4. 
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Estimation in rat 

Compared to the human, the rat PK (plasma concentration) data for diazepam 

were more limited which rendered the analysis less stable and precise. However, rat Kpu 

data were available from the literature (Table 3.3) allowing a direct comparison of the 

models’ estimates to the in vivo data. Table 3.7 shows the final estimates of the parameters 

and the corresponding precision together with the BIC values, and lists the number of 

parameters in the models differentiating between fixed and random (IIV and residual) 

effects. 

Similar to the analysis of human data, rat data (average) originated from different 

studies and an IIV (confounded with ISV) in clearance was estimated. The clearance 

estimates are similar between the mechanistic models (Table 3.7) and within the range 

reported previously (Table A2.5) but slightly different to the one from the empirical 

model (0.92L/h). Because of sparse data, IIV on Kpu parameters were not estimated in 

order to compare the different models. Additionally, a high correlation (>0.95) between 

estimates of distribution parameters (Kpu2 and Kpu4 in model 2D; Kpu2 and Kpu3 in 

model 3D; Kpu1 and Kpu2 in models 2E and 2F) was sometimes observed but this may 

be an artefact due to the small size of the dataset. 
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The kinetically lumped model (model 1) performed well (the second lowest BIC 

and the estimated Vss,b within 25% error of the Vss,b observed) whereas the performance 

of simplified PBPK models is more heterogeneous (Table 3.8). The Vss,b in rat estimated 

from  model 3C and 3E were within 25% error of the Vss,b observed in rat (0.91 L) while 

none of the Vss,b estimated by models 2A-2F showed a similar performance. Moreover, 

the models 2E and 2F had the highest residual error compared to the other models (Table 

3.7). Contrary to the models 3B, 3D, 3F, the models 3C and 3E showed better 

performance with Vss,b estimated within 25% error of the Vss,b observed in rat. (Table 

3.7 and Table 3.8). Additionally, compared to experimental rat Kpu values reported in 

the literature (Table 3.3), the Kpu values estimated with the mechanistic models were 

generally in the same range or order of magnitude. Interestingly, very high values of Kpu3 

were estimated in the models 2F and 3F whereas a very small value of Kpu3 or Kpu4 

were estimated respectively in the models 3E and 3F (Table 3.7). In the former case, it 

would be unexpected to have such high values of kidney and liver Kpus (6374 or more 

than 700000 after multiplying by the estimated scalar) whereas in the latter case, lung 

Kpu is unlikely to be so low (0.50 or 0.33 after multiplying the predicted Kpu by the 

estimated scalar, respectively). It was found that 95% of Kpus predictions using R&R 

model would be successfully predicted within around 21-fold error according to the 

analysis of a dataset of compiled rat experimental tissue partitioning coefficients from the 

literature (not shown). The concentration-time profiles and the volumes of distribution of 

models 1, 2D, 3C, 3D and 3E were the closest to the ones of the empirical two-

compartment model (Table 3.7).  

Figure 3.7 shows the model-predicted population profiles following a single IV 

infusion of diazepam in rat for each of the mechanistic models investigated. All models 

except the models 3A, 2E and 2F could adequately describe the median of the observed 

data (simulations using the empirical model as surrogate for observed data), whereas the 

10th and the 90th percentiles were not always well captured (Figure 3.7). The shaded area 

incorporates inter-study variability on clearance and other unexplained variability 

(proportional residual error). 

Due to poor physiological plausibility of several Kpus and poor model 

performance, the models 3A, 2E, 2F, 3E and 3F would not be selected here. Other models 

such as models 2A, 2B, 2C,2D, 3C and 3D performed well and can be selected for further 

use. Based on the BIC, plausibility of estimated values, the model performance, three 

reduced models were selected as primary candidates (Table 3.8): the models 3C and 2D. 
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Table 3.8: Comparison of model performance for estimating diazepam data in rat according to 

evaluation criteria 

Models Criteria 

BIC 

ranking 

Goodness of 

fits and 

convergence 

plots 

Precision 

of 

estimates 

(CV≤0.4) 

Plausibility 

of Kpus 

Vss within 

20% 

(YYY), 

25% (YY), 

30% (Y) 

1 2 Yes No Yes YY 

2A 4 Yes Yes Yes No 

2B 11 Yes Yes Yes No 

2C 1 Yes Yes Yes No 

2D 9 Yes Yes Yes Y 

2E 7 Yes Yes Yes No 

2F 13 Yes Yes ? No 

3A 6 Yes Yes ? No 

3B 10 Yes Yes Yes No 

3C 3 Yes Yes Yes YY 

3D 8 Yes Yes Yes No 

3E 5 Yes No ? YY 

3F 12 Yes Yes ? No 
Abbreviations for model are defined in Table 3.4. 

BIC: Bayesian information criterion ranking from lowest to highest value 

Plausibility of Kpus: (?) one Kpu may not be plausible 
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Figure 3.7: Simulated time profiles of diazepam following an infusion dose (1 mg during 4.33h) 

in rat for the different investigated mechanistic models vs the reference model 
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Figure 3.7: Simulated time profiles of diazepam following an infusion dose (1 mg during 4.33h) 

in rat for the different investigated mechanistic models vs the reference model (continued) 

H 

 

I

 
J 
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L

 

M

 
The solid red line represents the median concentrations and the semi-transparent red field 

represents a simulation based 90% confidence interval for the median using the reference model 

(empirical 3-compartmental model). The other solid line represents the median concentrations 

and the other semi-transparent field represents a simulation based 90% confidence interval for 

the median using the models 1 (A), 2A, 2B, 3A, 3B (B, C, H, I respectively), 2C, 2D, 3C, 3D (D, 

E, J, K respectively), and the models 2E, 2F, 3E and 3F (F, G, L, M respectively).  

(NB: as the hepatic clearance (CLH) in rat was greater that the hepatic blood flow (Q_HV), it 

was assumed that CLH=0.99*Q_HV for simulations) 
Abbreviations for model are defined in Table 3.4. 
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3.5. Discussion 

In this work, two mechanistic approaches for simplifying whole-body PBPK 

models were presented and are summarised in Table 3.9. Both approaches were 

sufficiently flexible as the investigated models generally showed a good ability to fit data 

and to estimate model parameters. 

 

Table 3.9: Summary and characteristics of the approaches investigated for simplifying PBPK 

models  

Models and assumptions Advantages Disadvantages 

Lumped 3 compartment model: 

• QSS approximation for blood and 

lung 

• Lumping of compartments based on 

similar tissue kinetics 

• Drug distributes homogenously 

among the lumped tissue at the same 

distribution rate 

• Easy to implement as 

closed form solution 

• Possible to use 

computer-intensive 

methods for estimation 

• Possible to derive 

individual lung profiles 

• May be 

difficult to 

extrapolate due 

to different 

lumped models 

between 

species 

• Assumptions 

on tissue 

kinetics 

(blood-flows 

and volumes) 

• Limited to 

compounds 

with relatively 

low tissue-to-

plasma 

partitioning 

• Assumption of 

low clearance 

compounds 

14 compartment 

PBPK model: 

• QSS 

approximation 

for blood and 

lung 

• Grouping of 

tissue based on 

steady states 

similarities in 

drug 

partitioning or 

physiological 

similarities 

With common 

Kpus: 

Assumption of 

same Kpus 

between 

species 

• No assumption on 

tissue kinetics (except 

for lung) 

• Better extrapolation 

potentially due to 

stronger similarity of 

tissue composition 

compared to tissue 

kinetics between 

species 

• Possible to derive 

individual tissue 

profiles 

• Not limited by any 

drug properties 

• Long running 

time due to 

model high 

dimensionality 

 

With common 

scalars: 

Assumption of 

similar bias 

from predicted 

Kpus (by R&R 
model) across 

species 

QSS: quasi-steady state 
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The first proposed method followed Nestorov’s lumping principles for PBPK 

models [6] where lumping of tissues is mainly based on similar or low time constants. 

This is consistent with other minimal PBPK models, which reduce the number of 

compartments to just one or a few compartments with comparable blood flow rates [60, 

61]. A lumped reduced PBPK models can be easily used during development as it is 

simple to implement and numerically stable while investigating the kinetics of a few 

tissue and plasma compartments. The number of compartments considered was in good 

agreement with previous work by Pilari and Huisinga where they presented lumped 

models that comprised generally of three to four compartments for bases and acids which 

are moderately to highly unbound, while a single compartment model was sufficient for 

acids with high plasma protein binding [9]. However, lung was often lumped with other 

tissues, which may be inconsistent as the lung blood flow is in the opposite direction 

compared to other tissue compartments. Arundel suggested a model with more 

compartments (six tissue compartments) but estimating six Kpu parameters may be 

challenging [17]. In the current approach based on ranking of tissue distribution rate, the 

drug’s tissue time constant was considered to only depend on volume and blood flow and 

the effect of drug-specific partition coefficient was considered minimal (Kb close to 1 

and Clint close to 0). However, this assumption seems invalid in many cases e.g., 

diazepam. In the manner of previous studies [6, 62], a general “quasi-steady state” (QSS) 

approximation was postulated for blood and lung lumping due to the time scale 

differences between lung distribution relative to any observations. This assumption holds 

true in the artery, vein and lungs in general except for highly lipophilic compounds. Being 

in the central compartment, the lung Kpu might represent additional processes more rapid 

than considered blood flows (e.g., extravasation from the site of injection or during the 

transit from the site of injection to the site of observation). However, scaling of this first 

approach across species may not work well as some tissues (e.g. muscle, skin, adipose) 

have different flows and volumes (Table 3.1), and consequently different tissue kinetics 

between human and animals resulting in slightly different lumped tissue compartments 

(Figure 3.2). Moreover, rat has low information for adipose tissue as it is a much leaner 

species than human and human has a smaller proportion of skin compared to other tissues 

than rat. It could be possible to extrapolate to human with this first approach by assuming 

a same model structure in rats and humans, and thus use the lumped human model to fit 

parameters in rat before extrapolating to human. Additionally, the kinetically lumped 

model can be expressed in analytical form that could be of great utility when using time-
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intensive estimation methods, although it would be reserved for compounds with 

relatively low Kp values (satisfying the kinetic assumptions).  

The second approach followed the assumption that a drug has similar steady state 

binding/partitioning behaviour in tissues with similar compositions, but different kinetic 

behaviours given their different volumes and flow rates of tissues. This assumption is 

consistent with the results of a previous work where it was observed several tissues had 

similar Kp behaviour while adipose standing out possibly due to different tissue 

composition [35]. Additionally, a previous study observed correlation between muscle 

Kpu and other tissues Kpu and proposed to have muscle Kpu representing lean tissues 

[63]. To formalize this idea, a clustering analysis was performed to identify tissues with 

common Kpus or scalars thus reducing the number of unknown parameters while keeping 

the complexity of PBPK model structure and making minimal assumption about tissue 

kinetics. Like in the first approach, it was assumed that the kinetics of venous, arterial 

blood and lungs are quasi-instantaneous (QSS approximation) and these tissues can be 

lumped into one central compartment [6]. Two clustering methods were applied to 

formally group tissues using two different types of information: human or rat tissue 

composition data or rat normalised Kps data, which both contain uncertainty and 

variability. The tissue composition data are a hybrid combination of measured, calculated, 

approximated individual or mean values [23-25, 64]. Moreover, rat data could originate 

from different strains such as Sprague-Dawley or Wistar. For human, actual data from 

humans are very limited and often surrogate information is taken from another species 

(generally rat or monkey). On the other hand, rat Kps data are generally derived from in 

vivo studies following a constant rate infusion of drug until steady state is supposedly 

reached. Alternatively, Kps data can be calculated based on plasma and tissue areas under 

concentration time (AUC) profiles following an iv bolus. Additionally, these in vivo Kp 

methods require at least one animal per time point. Therefore, the different tissue 

grouping from the clustering using rat experimental Kps compared to the clustering 

analysis based on tissue composition data could be because of the size of the data set, the 

availability of data (high percentage of missing data), the quality of reported experimental 

Kps, as well as the varying source of studies and methods used for measuring Kps. And 

when using the tissue grouping from the clustering of rat Kps for a PBPK model in human, 

the assumption is that Kpus are the same between species which may not be always true. 

Indeed, Kpu values may be different across species especially for relatively lipophilic 

compounds and for ionised bases if lipid levels highly differ between species [65]. 
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In this work, the mechanistic models using either a kinetic lumping approach or 

an approach with common Kpus or scalars were found equivalent at describing IV data 

compared to empirical models. Data in human showed better bioanalytical resolution and 

slower kinetics, which may reveal kinetic phases that are hidden in rat. It should be noted 

the quality of the plasma PK data used for fitting was not ideal as the data were mostly 

arithmetic mean data which may misrepresent the terminal phase in addition to coming 

from multiple studies following different protocols in different populations. Thus, the 

recommendation would be to perform this analysis on individual data or on geometric 

mean data if data are aggregated.  

For the example of diazepam, the proposed mechanistic models produced 

estimates of Kpu that were comparable to those obtained in distribution studies from the 

IV data alone. Compared to previous works where diazepam data was fitted in man [48, 

49, 58], the models investigated here have the advantage of not requiring a highly-

dimensional PBPK model structure and the use of prior information or full Bayesian 

estimation methods for estimating the multiple parameters. The current work is an 

example of middle-out approach linking PBPK modelling (bottom-up) and population 

PK modelling (top-down) and where PBPK models can be fitted to observed preclinical 

or clinical data. Contrary to empirical compartment models that are frequently used in all 

stages of drug development, the investigated PBPK models retain important physiological 

features giving estimates with physiological meaning and thus supporting extrapolation 

purposes while requiring a similar number of free parameters.  

The value of PBPK modelling is indeed its ability to be used for extrapolation to 

another population or species and experimental conditions. The aspect of the interspecies 

extrapolation from preclinical species (rat and monkey) to human will be investigated in 

a future study (Chapter 4) for diazepam and additional compounds. Among the various 

investigated PBPK models, the PBPK models with scalars show more promise for a wider 

set of drugs and for inter-species translation. Although the PBPK models with 3 scalars 

are more parsimonious and should be considered first when data are limited, the PBPK 

models with 4 scalars are more physiologically relevant with regards to the tissue 

composition and conclusions of the clustering analysis and the plausibility of Kpu values 

estimated. However, the PBPK model with 4 scalars using hierarchical clustering and the 

PBPK models with 3 or 4 scalars using rat Kps did not find plausible estimates for all rat 

Kpus for diazepam and therefore these models may not be appropriate. Additionally, the 

PBPK model with commonalities based on the clustering using normalized rat Kps need 
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to assume that Kpus are the same between species for it to be extrapolated to human, 

which may not be true as mentioned above. For a comprehensive comparison of the 

investigated mechanistic models, evaluation of different compounds would be needed.  

 

3.6. Conclusion 

The main goal of the current study was to determine simplified PBPK models that 

can be easily used for fitting purposes. The two approaches for simplifying PBPK models 

presented in this work allow more mechanistic models to be explored instead of only 

empirical models for fitting PK data. These models using either a kinetic lumping 

approach, a widely established method, or a novel approach defining common Kpus or 

scalars. Both types of models were overall found equivalent at describing IV data 

compared to empirical models but are likely to have different behaviour for PK translation 

(see Chapter 4). These mechanistic models generally produced Kpu estimates that were 

physiologically plausible. Although the current study is based on diazepam, the findings 

provide insights that the kinetically lumped model has great utility for compounds with 

relatively low tissue-to-plasma partitioning (satisfying the kinetic assumptions), and the 

PBPK models with scalars show more promise for a wider set of drugs and for the purpose 

of extrapolation. The PBPK models with 4 scalars where adipose is separated could be 

the most relevant for a simplified PBPK model as adipose has quite a different tissue 

composition compared to other tissues. Further research with additional compounds 

should be conducted to assess the different models. 
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Chapter 4:  Prediction of human drug disposition 

from preclinical data using a ‘middle-out approach’ to 

physiologically based pharmacokinetic (PBPK) 

modelling 
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4.1. Abstract 

4.1.1. Background 

In Chapter 3, several simplified physiologically based pharmacokinetic (PBPK) 

models, using estimated tissue-to-unbound plasma partition coefficients (Kpu), were 

investigated by fitting to in vivo pharmacokinetic (PK) data: a kinetically lumped 3 

compartment model, 14 compartment models with 3 or 4 common Kpus and 14 

compartment models with 3 or 4 common scalars. In the 14 compartment models, 

commonality of the 3 or 4 tissue groups was based on the similarity in tissue composition 

following a clustering analysis using K-means or hierarchical methods. The current work 

evaluated the performance of several PBPK models for the prediction of human 

concentration-time profiles and volumes of distribution at steady state (Vss) after fitting 

the models to preclinical PK data. After optimisation with preclinical data, the 

performance of these models for translation of distribution kinetics from rat and monkey 

to human was compared with the traditional whole-body PBPK (WBPBPK) modelling 

strategy (‘bottom-up’), in order to determine the best approaches for the prediction of 

human drug disposition. 

4.1.2. Methods 

The analysis was performed for 3 lipophilic bases (diazepam, midazolam and 

basmisanil) for which intravenous PK data were available in rat, monkey and human. In 

vivo and in vitro preclinical data were used in fitting the simplified PBPK models in 

preclinical species by analysing the blood or plasma PK profile while fixing clearance. 

The best models and the three or four estimated parameters were then used to predict the 

human PK profile and Vss. 

4.1.3. Results 

The models with scalars using K-means were generally the best for fitting the data 

in the preclinical species and the estimated parameters gave plausible Kpu values. 

Predictions of plasma concentrations for diazepam and midazolam using the best models 

and parameters obtained from fitting rat or monkey data were consistent with observed 

clinical data. The best model for fitting and for translation were generally the models with 

3 or 4 common Kpu scalars. For diazepam, the Vss,b in human could be predicted within 

1.1 and 1.5-fold error after optimisation in rats and within 3.1- and 2.5-fold error after 

optimisation in monkeys. These predictions are better compared to the Vss,b estimated 

from the traditional WBPBPK modelling approach (Vss,b=41L, 3.7-fold error). For 



138 

 

midazolam, the Vss,b in human could be predicted within 1.1- and 2.2- -fold error after 

optimisation in rats and within 3.1-fold and 2.5-fold error after optimisation in monkeys. 

The predictions are better or similar compared to the Vss,b estimated from the traditional 

WBPBPK modelling approach (Vss,b=41L, 3.7-fold error). For basmisanil, the poor 

quality of preclinical data available could have affected the model performance for fitting 

in the preclinical species and subsequently extrapolation to human. 

4.1.4. Conclusions 

Overall, this work provides a rational strategy to predict human drug distribution 

using preclinical PK data within the PBPK modelling strategy. 
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4.2. Introduction 

During drug discovery and development, characterizing the pharmacokinetic (PK) 

properties (absorption, distribution, metabolism, and excretion) of a drug in the early 

stage is crucial to avoid failures due to poor PK properties. Prediction of human PK helps 

to design the optimal phase 1 studies and allows the selection of the starting dose in 

humans that is safe and effective in order to maintain a rapid dose escalation, saving time 

and cost [1]. Different strategies for predicting human PK profiles based on preclinical 

data have been proposed, such as Dedrick plots, the steady-state plasma drug 

concentration (Css)–mean residence time (MRT) method and physiologically-based 

pharmacokinetic (PBPK) modelling [2-5]. Among them, the whole-body physiologically-

based pharmacokinetic (WBPBPK) modelling has the advantage to provide a biological 

and mechanistic understanding for inter-species scaling and intra-species scaling as well 

as a better understanding of the drug behaviour [6-8]. Several studies showed better 

accuracy of the PBPK modelling approach for predicting PK compared to empirical and 

allometric approaches [9-12]. 

PBPK model development is an iterative ‘predict, learn, confirm’ process [13-15]. As 

a bottom-up approach, WBPBPK modelling and simulation are based on physiological 

input data (tissue volumes, blood flows, composition, etc.) and in vitro input data (plasma 

protein binding, microsomal or hepatocyte intrinsic clearance, cell membrane 

permeability, etc.). The predictions from WBPBPK models are then compared with 

observed PK data. However, mismatches often occur between model predictions and 

observations; and thus, model parameters need to be adjusted. In this case, the PBPK 

model is built to fit the observed data following a ‘middle-out’ approach which allows 

available in vivo data to estimate unknown or uncertain model parameters [16-18]. 

However, parameter estimation with WBPBPK models is challenging due to the large 

number of parameters and the paucity of observed data usually available (especially 

preclinical in vivo data). When data are associated with high uncertainty and/or variability, 

this would be mirrored in the estimated parameters. It is thus a common practice to fix 

some parameters and estimate others. The decision on which parameters to fix and which 

to estimate is subjective and therefore the final model and parameters may vary 

significantly between different modellers [16, 19]. Consequently, this approach does not 

usually follow a systematic and formal approach. The previous work (Chapter 3) showed 

the possibility of using simplified PBPK models for fitting PK data. In these models, 
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tissue distribution was described by mechanistic equations that calculate tissue-to-

unbound plasma partition coefficients (Kpus) [20, 21]. Kinetically lumped models based 

on tissue time constants [22] were investigated as well as PBPK models with common 

tissue Kpus or common tissue scaling factors. The commonality in tissue partitioning was 

considered when observing similar behaviour of tissue Kpus across compounds with 

different properties [23]. More details of the model structures and lumping approaches 

can be found in this chapter Methods section. While the kinetically lumped model may 

not extrapolate well across species due to interspecies differences in tissue blood flows 

and volumes, the PBPK models with a full structure may perform better due to stronger 

similarity of tissue composition compared to tissue kinetics between species. By 

assuming identical model structure across species and species independence of Kpus or 

scaling factors, the refined model and estimated parameters using preclinical data can be 

applied to predict human PK. For prediction of clinical PK from pre-clinical data, the use 

of empirical scaling factors derived by model fitting to animal PK has to assume that 

these scaling factors are species independent. 

The aim of this work was to develop and evaluate a strategy for the extrapolation of 

non-clinical PK to humans using the aforementioned simplified PBPK models and 

subsequently improving the quality of predictions used to support candidate drug 

selection and internal decision making during preclinical development. Herein the current 

paper presents a proof-of-concept work using diazepam, midazolam and basmisanil as 

model drugs for which IV PK data in rats, monkeys and humans were available for the 

fitting and evaluation of the translation to man.   
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4.3. Methods 

The proposed models were applied to three compounds: diazepam, basmisanil, 

midazolam. Criteria for compound selection were the availability of intravenous plasma 

concentrations profiles after intravenous administration in rats, monkeys and humans and 

the availability of relevant in vitro information for Kpu-predictions (sensitivity to LogP, 

fup and B:P).  

4.3.1. Experimental data 

Physicochemical and in vitro data 

Physicochemical properties and in vitro data for the 3 weak basic compounds are 

listed in Table 4.1. Molecular weight, pKa, and LogP data were extracted from the 

literature. fup and BP were measured in-house (details of experiments can be found in 

Appendix A3.1-A3.2). 

Table 4.1. Physicochemical properties, in vitro PK data for the 3 compounds 

Drug 
Molecular weight [g/mol] 

pKa LogP 
Rat Monkey Human 

fup BP fup BP fup BP 

Diazepam 284.7a 3.4a 2.82a 0.1 0.836 0.084 0.606 0.0087 0.559 

Midazolam 325.8a 5.88a 3.13a 0.054 0.742 0.0603 0.594 0.055 0.57 

Basmisanil 445.5a 2.07b 1.86b 0.181 0.99 0.065 0.59 0.055 0.59 

pKa: acid dissociation constant; LogP: n-octanol/water partition coefficient; fup: fraction 

unbound in plasma; BP: blood-plasma ratio 
a From [24]; b From [25]; fup and BP are from internal data 

 

In vivo pharmacokinetic data 

For diazepam and midazolam, the literature was searched for PK studies where 

plasma (or blood or serum) concentrations were reported following an intravenous 

administration in rats (Wistar, Sprague Dawley and Holtzman strains), Cynomolgus 

monkeys, and humans (Table 4.2). These studies provided a mixture of average profiles 

and individual concentration time profiles which were digitized using WebPlotDigitizer 

(version 4.2, https://automeris.io/WebPlotDigitizer). For basmisanil, data were collected 

from Roche-internal PK studies (Appendix A3.2) and these were historical data subject 

to retrospective analysis. Summaries of the pharmacokinetic data available for each 

compound are shown in Table 4.2. 
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Table 4.2. Summary of the animal and clinical IV studies available 

D
r
u

g
 

S
p

e
c
ie

s 

S
tu

d
y

 

Number of PK 

profiles 

IV dose 

(length of 

infusion) 

Reported total 

clearance (s.d.) 

(plasma or 

blood) 

Volume of 

distribution 

(s.d) 

fup and BP (s.d) 
fe 

(%) 
Reference 

D
ia

z
e
p

a
m

 

R
a
t 

1 
1 average of 10 male 

Wistar 

4mg/kg 

(bolus); 

1.1 (0.2) L/h 

(plasma) 
1.3 (0.2) L 

fup: 0.036 

(0.009); BP:1.06 

(0.04) 

 [26] 

2 
1 average of 4 male 

Wistar 

1.2mg/kg 

(bolus) 

1.2 (0.03) L/h 

(plasma) 
1.4 (0.1) L 

Fup:0.14 (0.003); 

BP:1.037 (0.007) 
 [27] 

3 
1 average of 24 male 

Sprague Dawley 

1mg (5min 

infusion) 

N/A 

(intrinsic 

clearance: 400 

ml/min) 

N/A Fup:0.15; BP:1  [28] 

4 

2 average of 5 

middle-aged male 

Wistar and of 5 old 

male Wistar 

5mg/kg 

(bolus) 

1.1 L/h for 

middle-aged rat, 

3.3 L/h for old 

rats (plasma) 

1.2 L for middle-

aged rat, 13 L for 

old rats 

N/A  [29] 

5 
1 average of 3 male 

Wistar 

5mg/kg 

(bolus) 

3.9 (0.5) L/h 

(blood) 
1.1 (0.2) L for 

fup:0.137 (0.011); 

BP:0.38 (0.07) 
 [30] 

M
o
n

k
e
y

 

1 

2 average of 6 young 

cynomolgus and 6 

aged cynomolgus 

0.04mg/kg 

(bolus) 

6.6 (0.6) L/h for 

young monkeys; 

4.7 (0.8) L/h for 

aged monkeys 

(plasma) 

4.1 (1.7) L/ for 

young monkeys; 

5.8 (2.1) for aged 

monkey L 

Fup:0.0843 

(0.0111) for 

young monkeys; 

0.0780 (0.0103) 

for aged 

monkeys; 

BP: 0.662 

0.05 [31] 

H
u

m
a

n
 

1 
1 average of 6 male 

and 5 female 

0.15mg/kg 

(1min) 

2.1 (0.3) L/h 

(plasma) 
87 (2) L N/A  [32] 

2 

4 average : 1 young 

male, 1 elderly male, 

1 young female, 1 

elderly female 

0.15mg/kg 

(0.375min) 

1.3 to 1.7 L/h 

(plasma) 
80 to 161 L 

fup: 0.009 to 

0.027 
 [33] 

3 1 average of 6 males 10mg (2min) 
1.2 (0.4) L/h 

(plasma) 
63 (19) L N/A  [34] 

4 
1 individual (healthy 

male) 

0.1mg/kg 

(2min) 

1.6 (0.5) L/h 

(plasma) 
66 (13) L 

fup: 0.026 (0.01); 

BP: 0.58 (0.15) 
 [30] 

5 
1 average of 10 

young males 

0.1mg/kg 

(2min) 

1.6 (0.2) L/h 

(plasma) 
79 (20) L 

fup: 0.032 

(0.008); BP:0.58 

(0.11) 

 [35] 

6 
4 individuals 

(healthy males) 
10mg (bolus) 

3.3 to 4.0 L/h 

(blood) 
105 to 174 L N/A  [36] 

7 

23 individuals 

(healthy 

males/females) 

0.15mg/kg 

(0.375min) 
1.8 L/h (plasma) N/A 

fup: 0.015 ; 

BP:0.65 
 

[33, 37, 

38] 

M
id

a
z
o
la

m
 

R
a

t 

1 
1 average of 10 male 

Wistar 

5mg/kg 

(bolus) 

1.5 (0.04) L/h 

(plasma) 
1.0 (0.2) L   [39] 

2 

2 average of 3 male 

Sprague Dawley and 

of 3 Sprague Dawley 

2.5mg/kg 

(bolus) 
N/A N/A   [40] 

3 
1 average of 6 male 

Holtzman 

0.55mg/kg 

(bolus) 

0.78 (0.19) L/h 

(plasma) 
0.95 (0.36) L   [41] 

4 
1 average of 8 male 

Wistar 

10mg/kg 

(5min) 

0.9 (0.03) L/h 

(plasma) 
0.385 (0.025) L   [42] 

5 
1 average of 10 male 

Wistar 

0.1mg/kg 

(bolus) 

0.63 (0.10) L/h 

(plasma) 
0.33 (0.16) L   [43] 

6 
1 average of 7male 

Wistar 

10mg/kg 

(15min) 

1.16 (0.04) L/h 

(plasma) 
0.49 (0.018) L fup:0.031 (0.001)  [44] 

M
o
n

k
e
y

 

1 
1 average of 4 male 

cynomolgus 

0.3mg/kg 

(bolus) 

2.5 (0.32) L/h 

(plasma) 
3.2 (0.16) L   [45] 

2 
1 average of 3 male 

cynomolgus 

1mg/kg 

(bolus) 

4.6 (0.63) L/h 

(plasma) 
8.2 (1.9) L   [46] 

3 
1 average of 3 male 

cynomolgus 

1mg/kg 

(15min 

infusion) 

6.3 (0.77) L/h 

(plasma) 
N/A   [46] 

H u m a n
 

1 1 average of 6 male 
0.075mg/kg 

(bolus) 

17 (2.6) L/h 

(plasma) 
48 (11) L   [47] 
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Table 4.2. Summary of the animal and clinical IV studies available (continued) 

D
r
u

g
 

S
p

e
c
ie

s 

S
tu

d
y

 

Number of PK 

profiles 

IV dose (length of 

infusion) 

Reported total 

clearance (s.d.) 

(plasma or blood) 

Volume of 

distribution 

(s.d) 

fup 

and BP 

(s.d) 

fe 

(%) 
Reference 

  

2 1 individual (male) 

5mg (bolus) + 4mg 

(120min infusion)] 

+ [3mg (bolus) + 

5.4mg (120min 

infusion)] 

+ [2.2mg (bolus) 

+6.8mg (120min 

infusion) 

17 (2.6) L/h 

(plasma) 
48 (11) L   [47] 

3 1 average of 8 male 0.15mg/kg (bolus) 
21 (5.2) L/h 

(plasma) 
50 L   [48] 

4 
6 individuals 

(healthy males) 
0.15mg/kg (bolus) 13-28 L/h (plasma) 39-68 L   [48] 

5 
1 average of 8 

males/females 

0.1mg/kg (15min 

infusion) 

31 (0.18) L/h 

(plasma) 
60 (7) L   [42] 

6 
1 average of 7 

males 
7.5mg (bolus) 27 (1.9) (plasma) 112 (7) L   [49] 

7 
1 average of 6 

males/females 
1mg (bolus) 

33 (6.8) L/h 

(plasma) 
83 (41) L   [50] 

8 
2 individuals 

(females) 
5mg (bolus) 26; 17 L/h (serum) 78 ; 45 L   [51] 

9 
1 average of 9 

males/females 
2mg (bolus) 

33 (12) L/h 

(plasma) 
136 (57) L   [52] 

10 

2 average of 7 

females and of 7 

males 

0.15mg/kg (2min 

infusion) 
20-33 L/h (plasma) 70-218 L   [53] 

11 
1 average of 7 

females 
0.15mg/kg (bolus) 

31 (4.5) L/h 

(plasma) 
79 (18) L   [54] 

12 
1 average of 11 

males/females 

0.1mg/kg (1min 

infusion) 

46 (5.0)L/h 

(plasma) 
162 (12) L   [32] 

B
a

sm
is

a
n

il
 

R
a

t 

1 
2 individuals (male 

Wistar) 
4.3 mg/kg (bolus) 0.77 L/h 0.69 L  0.2 

Internal 

source 

M
o

n
k

e
y

 

1 
3 individuals (male 

cynomolgus) 
1 mg/kg (bolus) 2.0 (0.47) L/h 10 (6.8) L   

Internal 

source 

H
u

m
a

n
 

1 
6 individuals 

(healthy males) 

0.001 mg/kg 

(15min) 
4.4 (1.2) L/h 49 (5.8) L  0.4 

Internal 

source 

 

4.3.2. Fitting and extrapolation approach of the simplified PBPK 

models 

Model structures 

The approaches for simplifying PBPK models and the investigated model 

structures have been described in detail in the previous chapter (Chapter 3). These models 

showed a good ability to fit data in rats and in humans for diazepam. Figure 4.1 shows 

the lumped 3-compartment model with one central and two peripheral compartments and 

the 14-compartment model with common Kpus or common scalars. In the first model, 

tissue compartments are lumped together based on similar tissue time constants [22] In 

the latter model, it is assumed that certain tissues either share the same Kpu or share a 

common scalar (bias from the Kpu predicted from the R&R model). The tissue 
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commonality was determined based on clustering analysis (using hierarchical or k-means 

method) of either rat tissue composition data or of a dataset of imputed normalized in vivo 

rat Kps. In the kinetically lumped approach, clearance was assumed to be from the 

plasma/blood compartment whereas in the 14-compartment model clearance can be 

considered to be from eliminating organs such as the liver and kidney. In the current work, 

these models are applied for translation between species. Grouping of tissues that are 

common in the 14-compartment models is detailed in Table 4.3. 

 

Figure 4.1: Structure of the investigated models: lumped 3-compartment model (left) and 14 

compartment model with common Kpus or common scalars (right) 
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Table 4.3: Models and details of tissue grouping 
Model Model description Tissue grouping (by lumping or clustering) 

1 Lumped 3 compartment model 

Kpu1: blood, lungs, kidneys, heart, spleen, liver, pancreas, 

gut, stomach, bone, brain 

Kpu2: adipose, muscle, rest of body 

Kpu3: skin 

2A 
14-compartment PBPK model 

with 3 common Kpus (H) 

Kpu1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body 

Kpu2: lung, gut, stomach, kidney, heart, spleen, liver 

Kpu3: skin 

2B 
14-compartment PBPK model 

with 4 common Kpus (H) 

Kpu1:bone, brain, muscle, pancreas, muscle, rest of body 

Kpu2: lung, gut, stomach, kidney, heart, spleen, liver 

Kpu3: skin 

Kpu4: adipose 

2C 
14-compartment PBPK model 

with 3 common Kpus (Km) 

Kpu1: adipose, bone, brain, muscle, pancreas, rest of body 

Kpu2: kidney, spleen, liver 

Kpu3: skin, lung, gut, stomach, heart 

2D 
14-compartment PBPK model 

with 4 common Kpus (Km) 

Kpu1: bone, brain, muscle, pancreas, rest of body 

Kpu2: kidney, spleen, liver 

Kpu3: skin, lung, gut, stomach, heart 

Kpu4: adipose 

2E 
14-compartment PBPK model 

with 3 common Kpus (ss) 

Kpu1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

Kpu2: kidney, liver 

Kpu3: lung 

2F 
14-compartment PBPK model 

with 4 common Kpus (ss) 

Kpu1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

Kpu2: kidney 

Kpu3: liver 

Kpu4: lung 

3A 
14-compartment PBPK model 

with 3 scalars (H) 

SF1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body 

SF2: lung, gut, stomach, kidney, heart, spleen, liver 

SF3: skin 

3B 
14-compartment PBPK model 

with 4 scalars (H) 

SF1: bone, brain, muscle, pancreas, muscle, rest of body 

SF2: lung, gut, stomach, kidney, heart, spleen, liver 

SF3: skin 

SF4: adipose 

3C 
14-compartment PBPK model 

with 3 scalars (Km) 

SF1: adipose, bone, brain, muscle, pancreas, rest of body 

SF2: kidney, spleen, liver 

SF3: skin, lung, gut, stomach, heart 

3D 
14-compartment PBPK model 

with 4 scalars (Km) 

SF1: bone, brain, muscle, pancreas, rest of body 

SF2: kidney, spleen, liver 

SF3: skin, lung, gut, stomach, heart 

SF4: adipose 

3E 
14-compartment PBPK model 

with 3 scalars (ss) 

SF1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

SF2: kidney, liver 

SF3: lung 

3F 
14-compartment PBPK model 

with 4 scalars (ss) 

SF1: adipose, bone, brain, muscle, pancreas, muscle, rest 

of body, skin, gut, stomach, heart, spleen 

SF2: kidney 

SF3: liver 

SF4: lung 

H: hierarchical clustering on rat tissue composition data; Km: k-means clustering on rat tissue 

composition data; ss: clustering on in vivo rat Kps data; SF: scaling factor 
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Optimization of the distribution with preclinical data and model evaluation 

The performance of the developed models in preclinical species was assessed by 

comparing the simulated concentration-time profiles with experimental data of 

intravenous studies from the literature (diazepam, midazolam) and from internal studies 

(basmisanil) (Table 4.2). 

For diazepam and midazolam, as the data were coming from various studies with 

different designs (Table 4.2), a model-based analysis was first performed: rat and monkey 

data were fitted using compartmental analysis in order to estimate the Vss and CL of the 

observed data using the first order estimation with interaction (FO-I) and the first order 

conditional estimation with interaction (FOCE-I) methods in NONMEM 7.3 (ICON 

Development Solutions, Hanover, MD, USA) [55]. For basmisanil, the Vss and CL of the 

observed data were obtained by noncompartmental analysis of the PK studies. These 

‘observed’ Vss and ‘observed’ CL were considered as the reference values in this study. 

The error model was defined as a proportional error. For all compounds, the different 

simplified PBPK models were then fitted to the rat and monkey PK data while fixing the 

clearance to the value estimated from the compartmental analysis (diazepam and 

midazolam) or the value obtained by noncompartmental analysis reported in the study 

(basmisanil) in order for the model performance to be comparable between the different 

investigated models. Estimating clearance would otherwise influence the estimation of 

Kpu parameters. FO-I, FOCE-I and stochastic approximation expectation maximization 

(SAEM) methods were used for the fitting, SAEM was used when either FO-I or FOCE-

I failed to converge due to model complexity and data sparsity. A study comparing 

performance of FOCE and EM methods reported that EM methods such as SAEM were 

more robust for more complex models and sparse data [56]. Estimated parameters were 

mu-referenced (log-transform of a Gaussian random vector to meet with constraints of 

positivity) to improve the computational efficiency [57]. The AUTO option was first 

switched on (AUTO=1) allowing NONMEM to determine the best options for Monte 

Carlo using the SAEM method, and optimized options were tested and used if significant 

improvement was observed (decrease of BIC, convergence, better precision of estimates, 

etc.). Initial values for lumped Kpu and common Kpu parameters were calculated as a 

weighted sum of all the tissue Kpus (predicted by the Rodgers and Rowland model) that 

are lumped or clustered together. Similarly, by expecting Kpu values predicted using the 

R&R model to be true, initial values of the common scalars were chosen to be 1. After 
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fitting the simplified models to the preclinical data, several criteria were used to evaluate 

the model performance and determine its suitability for extrapolation to human. These 

criteria included: Bayesian information criterion (BIC), convergence, goodness-of-fit 

plots, precision of estimates, physiological plausibility of Kpu estimates, and closeness 

of estimated Vss value to the ‘observed’ Vss. For each compound, models which match 

all the above criteria are considered the ‘best’ models. Biological plausibility could be 

assessed based on the analysis of a dataset of compiled rat experimental tissue partitioning 

coefficients from the literature where it was found that 95% of these Kpu predictions 

would be within around 21-fold error. There is a higher probability of Kpu predictions 

being much closer than 21-fold error and obtaining predicted values beyond are less likely 

to occur (further details can be found in Appendix A3.3). 

The reader is referred to Chapter 3 for extensive details about the models. For each 

model, blood Vss (Vss,b) in the preclinical species was calculated as follows: 

For the lumped model: 

𝑉𝑠𝑠, 𝑏 = 𝑉𝑐𝑒𝑛𝑡𝑟𝑎𝑙 + 𝑉𝑝1 + 𝑉𝑝2 Eq. 4.1 

where Vcentral= Varterial+Vvenous+ Kbcentral*Vlung with Kbcentral being the blood tissue-to-

plasma partitioning coefficient of the central compartment. Vp1= (ΣVi-Vliver-Vkidney) + 

Vliver (1-CLH/Qliver) + Vkidney (1-CLR/Qrenal). Qi and Vi are the blood flow and volume of 

the ith-tissue lumped in the peripheral 1 compartment. Vp2= ΣVi. Qi and Vi are the blood 

flow and volume of the ith-tissue lumped in the peripheral 2 compartment model. 

For the 14-compartment PBPK model with common Kpus or Kpu scalars: 

𝑉𝑠𝑠, 𝑏 = 𝑉𝑣𝑒𝑛𝑜𝑢𝑠 + 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 + ∑ 𝐾𝑏𝑖 ∙ 𝑉𝑖 ∙ (1 − 𝐸𝑅𝑖) Eq. 4.2 

where Vi is the volume of the ith-tissue, and Kbi and ERi are respectively its tissue-to-

blood partitioning coefficient and extraction ratio. Kb can be determined from Kpu: 

𝐾𝑏 = 𝐾𝑝𝑢 ∙
𝑓𝑢𝑝

𝐵𝑃
 Eq. 4.3 

Where fup and BP are the fraction unbound in plasma and the blood-to-plasma ratio. 

 

Intravenous prediction in human of simplified model 

The best model for fitting was then used for extrapolation to human. For diazepam 

and midazolam, as the clinical observations were from various PK studies with different 
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doses and lengths of infusion, it was not feasible to use a single visual predictive check 

(VPC) plot to compare predicted vs observed data. Therefore, in order to compare 

performance of the different models and to remove differences in study design, a common 

study design was simulated using the R package ‘RxODE’ [58]. Observations in human 

were simulated from a reference model (structure, parameter estimates, and associated 

uncertainty) which was the compartmental model (two or three compartments) fitted to 

the diazepam or midazolam data. 1,000 drug concentration-time courses were simulated 

for a single IV dose and infusion rate to achieve a steady state plasma concentration 

determined by the drug elimination rate: a 16.1h infusion of 10 mg for diazepam and a 

0.01h infusion of 5 mg for midazolam were chosen to illustrate the different kinetic phases. 

For basmisanil, CL was fixed to the value calculated from non-compartmental analysis in 

the clinical study (7.26 L/h) and the simulations were performed similarly to the design 

in the reported clinical study (Table 4.2) and predicted concentrations were compared to 

observed data. The extrapolation for each approach and model was then performed as 

follows: 

In the kinetically lumped model and the 14-compartment PBPK model with 

common Kpus: the assumption is that tissue compositions are similar and Kpus are the 

same across species. While adjusting for the differences in species physiology and species 

fup and BP, Kp human were estimated by assuming Kpuhuman is equal to Kpuspecies where 

species correspond to rat or monkey: 

𝐾𝑝ℎ𝑢𝑚𝑎𝑛 =  𝐾𝑝𝑢𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∙  𝑓𝑢𝑝ℎ𝑢𝑚𝑎𝑛  Eq. 4.4 

In the 14-compartment PBPK model with common scalars: the assumption is that 

the same bias from R&R predicted Kpu (KpuRR) exist across species and no assumptions 

on interspecies similarity of tissue composition or Kpus are made. While adjusting for the 

differences in species physiology and species fup and BP, Kphuman were estimated by 

assuming Kpuhuman is equal to KpuRRhuman* SFspeceis where SFspecies correspond to the 

scalar estimated in rat or monkey and KpuRR is the tissue to plasma unbound partition 

coefficient calculated using the equations developed by Rodgers and Rowland [20, 21]: 

𝐾𝑝ℎ𝑢𝑚𝑎𝑛  = (𝐾𝑝𝑢𝑅𝑅ℎ𝑢𝑚𝑎𝑛 ∙  𝑆𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠) ∗ 𝑓𝑢𝑝ℎ𝑢𝑚𝑎𝑛  Eq. 4.5 

Interspecies extrapolation was conducted using the species-specific tissue blood flow 

rates and tissue volumes and tissue composition when using the models with common 

scalars (Table A3.1-Table A3.6). 
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Assessment of human prediction accuracy /performance assessment of 

extrapolation 

For the studied compounds, simulation of intravenous concentration-time profiles 

in human using the best models were compared against the simulation using the 

traditional WBPBPK modelling approach with 16 compartments and tissue Kpus 

calculated from the Rodgers and Rowland equations [20, 21]. 

For each best model, the Vss in human was calculated using equations Eq. 4.1 and 

Eq. 4.2 with human physiological parameters. For the traditional WBPBPK modelling 

approach, the Vss,b in human was calculated using equation Eq. 4.2. These Vss,b values 

were assessed against the ‘observed’ Vss (simulated from the fitted empirical model) for 

diazepam and midazolam or the Vss,b reported in clinical trials (noncompartmental 

analysis) for basmisanil. When Vss in plasma (Vss,p) was reported in the literature study, 

plasma Vss was converted to blood Vss (Vss, b = Vss, p ∙ BP). 

Additionally, simulated concentration profiles from each best model (‘middle-out’ 

approach) and from the traditional WBPBPK model with Kpus predicted from the R&R 

model (‘bottom-up’ approach) were compared against the median ‘observed’ 

concentration profile by calculating the root-mean-square error (RMSE, Eq. 4.6) to assess 

the accuracy of the predictions, with lower RMSE value representing greater precision of 

the model: 

𝑅𝑀𝑆𝐸 = √
∑(𝑃𝑅𝐸𝐷𝑡 − 𝑂𝐵𝑆𝑡)2

𝑛
 Eq. 4.6 

Where OBSt is the median ‘observed’ concentration value at time t and PREDt is the 

median simulated concentration at time t, and n is the number of time points evaluated. 

  



150 

 

4.5. Results 

The three studied compounds were weak bases and among them, diazepam (DZP) 

was selected as the first compound for optimization due to the number of PK studies in 

humans (n=36), monkeys (n=2) and rats (n=5). Based on the preliminary results of the 

fitting of the models to rat data of DZP, it was decided to reduce the number of models 

to be further tested for the fitting of DZP model to monkey data. The number of models 

tested was also reduced for the fitting of midazolam and basmisanil. The best simplified 

models fitted in rat and monkey for all 3 compounds are summarised in Table 4.4. 

 

Table 4.4: Summary of the best simplified models fitted in preclinical species for each of the 3 

compounds 

 Diazepam Midazolam Basmisanil 

Rat 3C, 3D 3D None 

Monkey 3C, 3D 3C, 3D None 
Abbreviations for model are defined in Table 4.3. 

 

Results shown in this work are based on using FO-I or FOCE-I. It should be noted 

that the algorithm sometimes failed to converge possibly due to the sparse data or the 

complexity of the models in our analysis. Thus, estimation of distribution parameters 

(scalars or clustered Kpu) using SAEM method in NONMEM was also considered when 

FOCE-I failed. The FO-I or FOCE-I algorithm generally performed well in this work 

except in some cases where convergence failed or estimation was biased. SAEM-I/IMP 

could improve the estimation accuracy or convergence success at the expense of a longer 

running time and more parameter tuning (results not shown). 

 

4.5.1. Compound 1: Diazepam 

Rat 

The PK data for diazepam in rat were extracted from literature studies (Table 4.2). 

Using a fixed blood clearance of 0.915L/h in rat (obtained from fitting a 3-compartment 

model), the concentration-time profiles were analysed with all the investigated simplified 

models. The estimated parameters are listed in Table A3.9 and the fitted profiles of the 

best models are shown in Figure A3.5-Figure A3.6. All model parameters were 

estimated with high precision (RSE% < 50%) except for the Kpu of the central 

compartment in the lumped model where it was found to be 2730%. This lack of precision 
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is surprising but may be due to the insufficient flexibility of the model structure with the 

lung Kpu being highly influenced by the assumptions made around the other tissue 

kinetics and the non-applicability to diazepam i.e., not a compound with low Kpus. The 

SAEM algorithm led to more precise estimates (results not shown). Among the 

compartment models, several models could recapture an estimated Vss,b close to the 

Vss,b observed (0.91 L) in rat within- 20% error (models 3C and 3E), within 25% error 

(3D) and within 30% error (models 2C and 2D) (see Table A3.9 for details). Based on 

the analysis of 124 compounds where it was found that 95% of Kpu predictions would 

agree with experimental values within a factor of 21 (see Appendix A3.4), models 3C and 

3D have plausible estimated values for Kpus. Additionally, estimated rat Kpu and derived 

tissue concentrations were biologically plausible as the values obtained were close to 

tissue Kpu measurements in rat available from the literature (Table A3.7). Although 

differences exist between the estimated and observed Kpu values, tissue concentrations 

were still well predicted. Thus, the two models 3C and 3D were the best for fitting the 

diazepam data in rats (Table 4.4) and were subsequently selected for extrapolation to 

human (Figure 4.2). The simulated human PK profiles from models 3C and 3D showed a 

major improvement compared to the simulation using the traditional WBPBPK modelling 

approach (RMSE 4.9 and 10.2 vs 28). Similarly, the Vss,b in human estimated from the 

model 3C (132 L) and 3D (97 L) were within 1.1 and 1.5-fold error of the Vss,b observed 

(152 L) which is considerably better than the Vss,b estimated from the traditional 

WBPBPK modelling approach (41 L, 3.7-fold error). Thus, the approach using the 14 

compartments with common scalars (especially models 3C and 3D) seemed more 

promising for translation and all the derived models from this approach were selected for 

application to the rest of the analysis. 

 

Table 4.5: Best models after fitting all models to diazepam data in rat and the associated tissue 

Kpu estimates 
Model Kpu 

Adipose Bone Brain Gut Heart Lung Kidney Liver Muscle Skin Stomach Spleen Pancreas RoB 

3C 183 43.2 90.8 3.11 1.38 2.02 281 292 30.8 4.61 3.11 162 98.7 30.8 

3D 14.6 41.6 87.2 58.8 26.1 38.3 341 353 29.6 87.5 58.8 196 94.8 29.6 
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Monkey 

The PK data for diazepam in monkey were extracted from literature studies (Table 

4.2). Using a fixed blood clearance of 9.97L/h in monkey (obtained from fitting a 2-

compartment model), the concentration-time profiles were analysed with the approach of 

simplified models with scalars (models 3A-F). The estimated parameters are listed in 

Table A3.10 and the fitted profiles of the best models are shown in Figure A3.7-Figure 

A3.8. No interindividual variability was estimated as there were only 2 subjects in the PK 

study. Models 3C and 3D presented parameter estimates with reasonable relative standard 

errors (RSE% < 50%). Models 3C and 3D recaptured an estimated Vss,b close to the 

Vss,b observed (11.1 L) within 20% error (see Table A3.10 for details). Moreover, the 

obtained Kpu parameters of the two models were physiologically plausible, these models 

were the best for fitting the diazepam data in monkeys (Table 4.4) and were subsequently 

selected for extrapolation to human (Figure 4.2). The simulated human PK profiles from 

these selected models showed improvement compared to the simulation using the 

traditional WBPBPK modelling approach (RMSE 26 and 20 vs 28). The Vss,b in human 

estimated from models 3C (Vss,b=47 L) and 3D (Vss,b =57 L) were within 3.1-fold and 

2.5-fold error of the Vss,b observed (Vss,b=152L), which were better than the Vss,b 

estimated from the traditional WBPBPK modelling approach (Vss,b=41L, 3.7-fold error).  
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Figure 4.2: Simulated human PK profiles of diazepam from the most suitable simplified PBPK 

models optimized in rat (left) and in monkey (monkey) versus traditional WBPBPK modelling 

approach 
Prediction in human after optimisation in rat 

 

 

Prediction in human after optimisation in monkey 

 

 

The dashed red line represents the median concentrations and the semi-transparent red field 

represents a simulation based 90% confidence interval for the median using the reference model 

(empirical 3-compartmental model). The solid lines represent the median concentrations using 

the traditional WBPBPK model approach (black), the model 3C (green) and the model 3D (light 

blue).  

 

4.5.2. Compound 2: Midazolam 

Rat 

The PK data for midazolam in rat were extracted from literature studies (Table 

4.2). Using a fixed blood clearance of 1.30 L/h (obtained from fitting a 2-compartment 

model), the concentration-time profiles were analysed with the models with scalars 

(models 3A-F). The estimated parameters are listed in Table A3.11 and the fitted profiles 

of the best models are shown in Figure A3.9. In general, the RSE were low (<50%) with 

certain exceptions (see Table A3.11 for details). Models 3C and 3D could capture an 

estimated Vss,b close to the Vss,b observed (0.64 L) within 20% error. Considering the 

different criteria (precision of estimates, physiological plausibility of Kpu estimates, and 

estimated Vss value), model 3D was the best for fitting the midazolam data in rats. 

Moreover, the estimated rat Kpu were biologically plausible as the values obtained were 

mostly within 2-fold of Kpu measurements in rat available from literature (Table A3.8). 
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Model 3D was subsequently selected for extrapolation to human (Figure 4.3). The 

simulated human PK profiles from model 3D was slightly better than the simulation using 

the traditional WBPBPK modelling approach (RMSE 0.021 vs 0.018). The Vss,b in 

human estimated from model 3D in rat (183 L, which is within a 1.3-fold error) was also 

closer to the Vss,b observed (141 L) compared to the Vss,b estimated from the traditional 

WBPBPK modelling approach (202 L, which is within a 1.5-fold error).  

 

Monkey 

The PK data for midazolam in monkey were extracted from literature studies 

(Table 4.2). Using a fixed blood clearance of 6.4 L/h (obtained from a 2-compartmental 

model), the concentration-time profiles were analysed with the models with scalars 

(models 3A-F). The estimated parameters are listed in Table A3.12 and the fitted profiles 

of the best models are shown in Figure A3.10. In general, the RSE were low (<50%) with 

certain exceptions (see Table A3.12 for details). Several models could capture an 

estimated Vss,b close to the Vss,b observed (8.8 L) within 20% error: (model 3D) and 

within 30% error (model 3C). The physiological plausibility of Kpu estimates of these 2 

models was reasonable. Considering the different criteria (precision of estimates, 

physiological plausibility of Kpu estimates, and estimated Vss value), models 3C and 3D 

were the best for fitting the midazolam data in monkeys and were selected for 

extrapolation to human (Figure 4.3). It should be noted that the traditional WBPBPK 

modelling approach for midazolam gave good prediction in human (which was not the 

case for diazepam). The simulated human PK profiles from models 3C and 3D were 

comparable to the simulation using the traditional WBPBPK modelling approach (RMSE 

0.018 and 0.019 vs 0.018). The Vss,b in human estimated from model 3C in monkey (131 

L, which is within a 1.1-fold error) was similar to the Vss,b observed (141 L) and better 

than the Vss,b estimated from the traditional WBPBPK modelling approach (202 L, 

which is within a 1.5-fold error). The Vss,b in human estimated from model 3D in 

monkey was not better but still reasonable within 2.2-fold-error (302 L). 
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Figure 4.3: Simulated human PK profiles of midazolam from the most suitable simplified PBPK 

models optimized in rat (left) and in monkey (monkey) versus traditional WBPBPK modelling 

approach 
Prediction in human after optimisation in rat 

 

 

Prediction in human after optimisation in monkey 

 

 

The dashed red line represents the median concentrations and the semi-transparent red field 

represents a simulation based 90% confidence interval for the median using the reference model 

(empirical 3-compartmental model). The solid lines represent the median concentrations using 

the traditional WBPBPK model approach (black), the model 3C (green) and the model 3D (light 

blue).  

 

4.5.3. Compound 3: Basmisanil 

Rat 

The PK data of basmisanil in rat were obtained from an internal PK study (Table 

4.2). Using a fixed blood clearance of 0.824 L/h (obtained from a 2-compartment model), 

the concentration-time profiles were analysed with the approach of simplified models 

with scalars. The estimated parameters are listed in Table A3.13. No interindividual 

variability was estimated as there were only 2 subjects in the PK study. Model 3F did not 

converge. Although some models were able to produce parameter estimates with 

reasonable relative standard errors (RSE<50%), none of them provided an estimated 

Vss,b close to the Vss,b observed (0.91 L) within 20% error. The models’ performance 

could be limited by the lack of measurements in the terminal phase of the PK data. In the 

absence of any additional data to improve the optimization in rat, the decision was to 

perform the prediction in human using the traditional PBPK model approach (Figure 4.4). 

Extrapolation should not be attempted even with the “best” worst model (model 3E) since 

this would cause incorrect predictions as illustrated in Figure 4.4. The simulated human 
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PK profiles from the traditional WBPBPK modelling approach was within a 3-fold error 

of the Vss,b in human (38 L vs 84 L). Therefore, the traditional WBPBPK modelling 

approach gave a good prediction in human for basmisanil. 

Monkey 

The PK data for basmisanil in monkey were obtained from a PK study of 3 

subjects (Table 4.2) and using a fixed blood clearance of 3.82 L/h (obtained from a 2-

compartment model), the concentration-time profiles were analysed with the approach of 

simplified models with scalars. When using FOCE-I, convergence failure was 

encountered with most of the models. The parameters estimated using SAEM are listed 

in Table A3.14. None of the models were able to produce parameter estimates with 

reasonable relative standard errors (RSE<50%), also, none of them provided an estimated 

Vss,b close to the Vss,b observed (24 L) within 20 or 30% error. This could be due to the 

heterogeneity of PK profiles in the 3 monkeys as the proportional error were very large 

(>68%). Similar to the case of basmisanil with rat data, the decision was to perform the 

prediction in human using the traditional PBPK model approach in the absence of any 

additional data to improve the optimization in monkey (Figure 4.4). Although the 

extrapolation using the “best” worst model (model 3C) could give good prediction in 

human as illustrated in Figure 4.4, there is no clear rationale and high uncertainty for this 

practice. Nonetheless, the traditional WBPBPK modelling approach gave a good 

prediction of PK profile in human for basmisanil within a 3-fold error of the Vss,b in 

human (38 L vs 84 L). 
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Figure 4.4: Simulated human PK profiles of basmisanil (IV infusion of 0.1mg for 15 min) 
  

Prediction in human after optimisation in rat 

 

Prediction in human after optimisation in monkey 

 

  

The red dots represent observed data. The solid lines represent the median concentrations using 

the traditional WBPBPK model approach (black), the model 3C (green). and the model 3E 

(brown).  

 

4.6. Discussion 

In this work, several approaches and PBPK models were presented for cross-species 

extrapolation (Table 4.6). The Kp prediction method used here was the Rodgers and 

Rowland method [20, 21], but other Kp methods could also be used [4, 59-61]. In general, 

they strongly rely on drug properties such LogP, pKa, fup and BP, which are expected to 

be well- characterized. A low confidence in the measurement of these values may 

subsequently prevent parameter estimation from in vivo data and increase uncertainty 

around the predictions in human [23].  
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Table 4.6: Assumptions, advantages, and disadvantages of the different simplified PBPK models 

for interspecies extrapolation 

Models Assumptions Advantages Disadvantages 

Lumped 3 

compartment 

model 

Lumping based on 

similar tissue kinetics 

(blood-flows and 

volumes) and low 

tissue Kpus 

Similar lumped 

model structure 

between species 

Drug distributes 

homogenously 

among the lumped 

tissue at the same 

distribution rate 

Clearance 

implemented from 

plasma/blood 

Easy to implement as 

closed form solution 

Possible to use 

computer-intensive 

methods for estimation 

Possible to derive plasma 

and lung profiles 

Meaningful use of 

plasma volume and 

prediction of drug 

distribution in groups of 

lumped tissues while 

only analysing plasma 

time-course data 

May be difficult to 

extrapolate due to 

species differences 

in tissue kinetics 

Limited in use to 

compounds with 

relatively low Kpu 

values 

14 compartment 

PBPK model 

with common 

Kpus 

Grouping of tissue 

based on steady state 

similarities in drug 

partitioning  

Flow-limited 

distribution 

Identical model 

structure across 

species  

Species 

independence of 

Kpus 

No assumption on tissue 

kinetics (except for lung) 

Better extrapolation 

potentially due to 

stronger similarity of 

tissue composition 

compared to tissue 

kinetics between species 

Possible to derive 

individual tissue profiles 

Applicable for a wider 

set of compounds 

Longer running time 

due to model high 

dimensionality 

May be more 

difficult to estimate 

parameters with 

limited data 

14 compartment 

PBPK model 

with common 

scalars 

 

Grouping of tissues 

based on steady 

states similarities in 

drug partitioning  

Flow-limited 

distribution 

Identical model 

structure across 

species  

Species 

independence of 

scaling factors 

No assumption on tissue 

kinetics (except for lung) 

Better extrapolation 

potentially due to 

stronger similarity of 

tissue composition 

compared to tissue 

kinetics between species 

Possible to derive 

individual tissue profiles 

Applicable for a wider 

set of compounds  

More flexibility by 

assuming similar bias 

from predicted Kpus (by 

R&R equations) across 

species 

Long running time 

due to model high 

dimensionality 

May be more 

difficult to estimate 

parameters with 

limited data 
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In the kinetic lumping approach, one model structure (lumped model in man) was 

assumed to be common across species (Table 4.6). The lumped model was based on 

human as it is the target species for extrapolation in this work. This approach assigned 

similar tissue kinetics between species which potentially alter the mechanistic realism of 

the model in preclinical species. For most tissues, the ratio of blood flows to tissue 

volumes were similar between species except for adipose and skin (Table A3.4-Table 

A3.6). In human, skin and adipose volumes account for 3.9 % and 24 % of total tissue 

volume respectively, whereas they account for 19 % and 8.4 % respectively in rats, and 

for 11 %and 3 % in monkeys. Adipose tissue can be key for drug distribution in human 

due to its size and characteristics (lowest tissue water, high neutral lipids and low 

phospholipids) and thus having adipose as a separate compartment can help to better 

describe the PK in human. However, rats and monkeys are lean animals and adipose tissue 

do not represent such an important organ for drug distribution compared to other tissues. 

Optimization of the ‘human’ lumped model may limit its use and interpretation in 

preclinical species. Therefore, the cross-species extrapolation using this approach may 

not work well and be challenging especially for drugs that distribute largely in the adipose 

tissue, such as highly lipophilic compounds. 

In the 14-compartment PBPK models approach with tissue commonalities, 

parameters could be separated into system- and drug-specific components which allowed 

the extrapolation of mechanistic knowledge from a reference species (here rat or monkey) 

to a target species (human) as in a traditional WBPBPK model. Species differences in 

organ size and blood flow rates were accounted for by extrapolation in all the models of 

this approach. In the models with common scalars, species differences in tissue 

composition are considered and different Kpu values are allowed for tissues whereas it is 

less flexible in the models with common Kpus (Table 4.6). Additionally, in the latter 

models, Kpus are assumed to be the same across species whereas in the former models it 

is assumed that the same bias from R&R Kpus exist across species. In the models with 

common scalars, the best models are able to provide physiologically relevant predictions 

of tissue distribution while analysing plasma profiles only. This was affirmed in the case 

of diazepam where actual tissue concentrations from rat studies were available in the 

literature (comparison can be found in Appendix A3.5). 

Kp parameter values may be estimated from rat data and then used to predict 

human Kp values and drug disposition assuming Kpu are the same between species and 
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taking into account species differences [10]. Moreover, while some studies require 

plasma and various tissue concentrations in rats to estimate Kps and predict human PK 

[27, 28, 38, 62], the method proposed here only use plasma concentrations which are 

more readily available from animal studies.  

The aim of this work was to propose a PBPK strategy for extrapolating drug 

distribution from preclinical species to human. Based on the findings obtained for these 

three compounds (lipophilic weak bases), a strategy is proposed in Figure 4.5. 

Figure 4.5: Optimized PBPK modelling strategy for distribution 

 

These three compounds were provided as examples on how human PK profiles could be 

predicted by optimizing simplified models in rats and monkeys. The predictive 

performance for extrapolation was compared retrospectively with the classical WBPBPK 

approach (with R&R Kpus) for diazepam and midazolam (weak bases). Sparse data and 

incomplete profiles resulted in parameter estimation issues for basmisanil and 

subsequently, it is not recommended to further extrapolate the “best” worst model as it 

could be inconsistent and impair predictions in human and the better choice is to use the 

traditional PBPK modelling approach with the R&R model (Figure 4.5). Generating 

good quality data should be a prerequisite for the extrapolation. When limited data are 

available at early sampling times, this could also affect the model optimization in 

preclinical species causing deviations in initial phase predictions in human. Nevertheless, 

the 14-compartment model assumes the lumped central compartment (blood and lungs) 

as the initial dilution space which increases accuracy and stability for fitting the initial 
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PK decline phases. This simplified PBPK approach reduced the number of parameters to 

be estimated from 16 (all tissues) to only three or four, resolving therefore parameter 

identifiability issues when trying to fit WBPBPK models to data (see Chapter 3). The 

insensitivity of one parameter for the overall PK profiles may explain the low precision 

in some of the models. Nevertheless, the high precision (low CV% values) for the 

parameter estimates in the best models in animals indicated good model performance, 

although fittings for some of the digitized data are only approximate. The presented 

approach can be combined with PBPK software such as Simcyp®, PK-Sim® or 

Gastroplus® by using the optimized parameters to derive the tissue Kpu values needed 

as inputs. For diazepam and midazolam, it was shown that as long as the volume of 

distribution (calculated using Eq. 4.2) and the clearance (here, it was fixed to the observed 

clearance value) were well characterized, the model described the overall profile in 

animals and would reasonably predict the concentration time profiles in human (better 

than the traditional WBPBPK modelling approach). Additionally, the models with scalars 

using k-means clustering generally performed well for fitting and extrapolation and can 

be tried first. In the case where these models do not describe the data well, other simplified 

PBPK models could be explored. If none of the models performed well in animals, as for 

basmisanil, the extrapolation could still be done using the traditional WBPBPK modelling 

approach although confidence in prediction accuracy will be low. It is however not 

recommended to use the poor fitting of simplified models to preclinical data, as the 

predictions in human are uncertain and could be poor. Variability and uncertainty in 

population physiology and drug parameters could potentially be integrated if they are 

known instead of only predicting an average human profile [63, 64].  

This work has some limitations due to the assumptions and data sources. Relevant 

physiological data and evidence may be lacking to address the potential limitations of 

cross-species translation. Although monkey is generally considered to be the most 

suitable preclinical species, the case study using diazepam did not find greater similarity 

of monkey than rat for drug-distribution. This could be due to the lack of information 

regarding monkey tissue composition as the tissue composition data used for the monkey 

was a hybrid of rat, human and monkey data (Table A3.3). Therefore, better knowledge 

on species specific physiological parameters could improve the fitting and the prediction 

accuracy across species. Another explanation could be the interspecies difference in 

volume of distribution for diazepam. Rat Vuss,p (L/kg) was 4.6 times higher than human 
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Vuss,p (L/kg) whereas monkey Vuss,p (L/kg) was surprisingly 7.8 times higher. Besides 

insufficient data, this analysis also highlighted the need for good quality of PK data in 

animal studies to avoid parameter fitting issues and consequently the suitability of models 

for prediction in human. Low numbers of animals and variable methods for bioanalysis 

in the different preclinical studies might also have influence on the fitting of the models. 

PBPK modelling is increasingly applied in drug development and regulatory 

review [65-69]. Recent regulatory guidance regarding PBPK modelling [70, 71] 

highlighted the need for a more systematic approach to establish confidence in PBPK 

models especially when estimating model parameters (middle-out approach). Overall, 

this work provided a rational and systematic strategy to predict human PK using 

preclinical data within a PBPK modelling strategy. The extrapolation is focused on 

selected best fitted models and plausible parameters which are not arbitrarily chosen thus 

bringing a more rational way to translate PBPK models for drug distribution between 

species. The strategy was applied to a dataset of 3 weak bases mostly due to the limited 

availability of PK data simultaneously in several species. The validation of this 

framework would require further assessment with a large dataset of compounds with 

diverse physicochemical properties. It should be noted that the predictive performance of 

the models in preclinical species were not validated with independent preclinical data as 

new data are generally not generated due to 3R principles. Following the development 

and verification of models in rats, it can be suggested to have an additional step for 

validating the predictive performance of these models using monkey data when they 

become available to increase confidence before predictions in human. Additionally, this 

strategy mainly focused on drug distribution which is only one key component of drug 

PK. Indeed, it did not consider challenges related to absorption and clearance [72, 73] by 

considering only intravenous administration and assuming a fitted clearance, which 

would have further increased the degree of complexity and potential uncertainty. For 

example, there were interspecies differences in plasma clearance which was very rapid 

and large in rat compared to man and monkey for diazepam whereas rat blood clearance 

was higher than hepatic blood flow rate for midazolam. 

In this work, the PBPK modelling strategy was mainly focused on an application for 

interspecies extrapolation from animals to human. However, it could also be used for 

intra-species extrapolation from a base population to paediatrics or a special population 
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[74-77]. If some mechanisms are modified in the target population, this knowledge should 

be updated and incorporated in the model. 

 

4.7. Conclusion 

This work proposed a strategy to integrate preclinical data and optimize simplified 

PBPK models in order to successfully predict the distribution of small molecules in 

human. While fixing the clearance and using the approach of simplified PBPK models 

with common scalars, PK profiles could be well described in preclinical species and using 

the best models, plasma profiles were successfully predicted in human for two of the three 

tested compounds. Discrepancy for the third compound could be due to lack of data in 

preclinical species and may be addressed by generating appropriate PK data. In 

comparison with the traditional PBPK approach, the strategy proposed here provided an 

easy and systematic alternative for optimizing drug distribution in PBPK models and 

indicated better or similar accuracy of human drug distribution for diazepam and 

midazolam. This proof of concept was shown for diazepam and midazolam but the 

strategy can be generalised. The potential of this strategy for PBPK models of drug 

distribution could be applied to translation within species e.g., from adult to paediatric 

population. 
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This project focused on the development of a systematic framework to integrate 

preclinical data within PBPK models, especially in order to improve the prediction of 

human drug disposition during drug discovery and development programme. The PBPK 

modelling approach for prediction of human PK of small molecules has become more 

common with various studies validating this approach using large drug datasets and 

examples of successful predictions [1-6]. However, in drug discovery and development, 

there is often a need to optimise model parameters when bias exists between PBPK model 

predictions and observed data. Herein, a systematic approach has been proposed and 

evaluated for such purpose within a PBPK modelling framework (Figure 6). As stated in 

the regulatory guidelines for PBPK modelling, it is recommended to perform sensitivity 

analyses when developing and refining PBPK models, the framework started with a 

global sensitivity analysis to identify sensitive parameters involved in the drug 

distribution model [7, 8]. Due to the multidimensional nature of the PBPK models which 

limits estimation of the model parameters simultaneously, several simplified 

physiological models for distribution in PBPK models were investigated. These models 

were used for parameter estimation using data from preclinical species. Subsequently, the 

potential to extrapolate and improve human predictions incorporating pre-clinical data 

was evaluated. The framework proposed here has advantages and limitations which are 

going to be discussed in this chapter. 
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Figure 6: Proposed systematic framework for integrating preclinical data in PBPK 

modelling for distribution 

 

 

5.1. Thesis findings 

A Global Sensitivity Analysis (GSA) was performed in Chapter 2, on the Rodgers 

and Rowland (R&R) model which predicts tissue Kpus, the essential inputs for 

distribution in PBPK. Various GSA methods have been proposed and applied during 

PBPK modelling and simulation in recent years [9-13]. Some of the proposed GSA 

methods can be very sophisticated, allowing sampling of independent or correlated input 

parameters, and also possibly assesses qualitatively or quantitatively the variation of 

parameters on the model outputs [14]. In Chapter 2, the partial rank correlation 

coefficients method (PRCC) was chosen as it can deal with nonlinear relationships and 

monotonicity could be assumed between parameters and outputs [15]. The PRCC has 

been shown to be an efficient and robust methods without needing a very large sample 

size [15, 16]. It may be possible to use one of the more recently developed GSA methods 

which are able to better account for correlation between parameters, but these methods 

require data gathering to properly identify parameter correlations and are generally 

computationally expensive. In addition, the work in Chapter 2 was based on the R&R 

model which is the model most used for distribution. Several studies found that the R&R 

model was overall the most accurate model for predicting Kpu using datasets of drugs 

[17-19]. The R&R model have however some limitations as it does not take into account 

all the mechanisms that could exist (e.g., transporter activity, inaccurate prediction for 

highly lipophilic compounds, and relevance of lysosomal trapping for strong bases) [20, 
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21]. One evident finding from this GSA was that the predictions of the volume of 

distribution and tissue Kp values are very sensitive to drug parameters LogP and fup. 

Drug parameters are indeed important since differences in the distribution of drugs 

depends on their drug classes, binding, and lipophilicity (ability to interact with lipid 

constituents of tissues). Consistent experimental measurements of these values are 

essential as uncertainty in these drug parameters would largely impact the predicted Kpu 

values and thus the predicted drug PK profile. The most interesting finding was that tissue 

composition data in particular acidic phospholipids and extracellular proteins are fairly 

influential parameters although often overlooked compared to drug parameters. These 

results are consistent with a recent study where a standardized tissue composition data in 

human were used to predict tissue:plasma partition coefficients [22]. However, values 

from nonclinical species remain part of this standardized tissue composition database due 

to the limited availability of these values in human. Further research should be undertaken 

to investigate and characterize tissue composition data across species. Most of available 

tissue composition information are determined in rats although from different studies and 

strains of rat [23-25]. It should be noted that some efforts have been made to collect tissue 

composition data for several tissues from the literature in various species (mouse, rat, 

guinea pig, rabbit, beagle dog, pig, monkey, and human) [26, 27]. Due to the scarcity of 

data and limited knowledge of tissue composition data from the same source and species, 

a full species-specific tissue composition dataset is often composed of values averaged 

from a number of different studies and sourced from different species (and strains). This 

is especially true for the monkey tissue composition data used in Chapter 4, which was a 

hybrid of rat and human tissue composition data. Among the different tissue composition 

components, the GSA assessment (Chapter 2) suggests the highest chance to improve Kp 

predictions by focusing primarily on quantifying acidic phospholipids and extracellular 

proteins.  

 

Prediction of profiles in human from preclinical and physicochemical data for a 

new chemical entity is an important part of drug discovery and development. Among the 

various approaches that are conventionally used, PBPK modelling is the most mechanistic 

approach by integrating species-specific and compound-specific parameters. Several 

studies demonstrated that animal PBPK models which could accurately predict animal 

steady state volume of distribution (Vss), resulted in accurate prediction of drug PK in 

human PBPK models [1, 2, 19, 28]. However, predictions from animal PBPK models 
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have also often showed mismatches between simulated and observed concentration 

profiles for some animals and compounds [2]. It is then necessary to optimize the PBPK 

models to improve the prediction accuracy in animals before performing simulations in 

humans. One of the issues that emerges is the complexity of whole-body PBPK model 

structure and the large number of parameters involved, which renders the optimization 

process challenging. In Chapter 3, several approaches were thus investigated to simplify 

the PBPK model structure and/or reduce the number of parameters in order to facilitate 

parameter estimation for PBPK modelling. A common approach to fit PK data is a 

classical compartmental analysis which usually results in empirical models of 1, 2 or 3 

compartments. However, since these models are not physiological, their use for 

extrapolation from preclinical to clinical development is limited. Following this 

observation of model reduction to a few compartments, the first approach considered for 

simplifying PBPK models was to apply an approach similar to kinetic lumping. Lumping 

technique is a well-established method for simplifying PBPK models [29-32]. For 

example, it was reported that the WB-PBPK of 25 various compounds (moderate-to-

strong bases, weak bases and acids) could be lumped into 1 to 5 compartments [32]. The 

model structure will generally change for each new compound as they are dependent on 

drug specific properties. A general lumped model was proposed to overcome the drug-

specificity inherent to kinetic lumping. The proposed lumped model may however have 

limited application since the a priori lumping based on tissue volumes and blood flow 

rates required the assumptions of compounds with relatively low Kb values (Kb=1). On 

the other hand, these assumptions were not made in the approach where the structure of 

WB-PBPK models was conserved to 14 compartments. Two different cases were then 

considered: either tissues with similar compositions share common Kpu values or tissues 

share common empirical scalars reflecting the bias in the prediction of the Kpu by the 

R&R model. The first case is supported by evidence in the literature that correlates the 

Kp of different tissues, especially muscle, adipose, and skin, which were suggested to be 

representative of other tissue Kps [33, 34]. Here, the common Kp, or Kpu values could 

be considered as an average of several tissues, and thus not necessarily be comparable to 

particular experimental tissue Kps, or Kpus. In the second case, the assumption was to 

consider that some tissues have a common bias, reflected in a scalar that would adjust the 

Kp predictions from the R&R model. Empirical scaling factors are commonly used in 

practice during optimization of PBPK models, however the choice of universal or specific 

scalars for some tissues is not always consistent [35-37]. The second case provides a more 
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systematic and rational way to alleviate this concern and address the recommendations 

from regulatory guidelines [7, 8]. With diazepam as a model compound, the different 

approaches and models were used to fit PK data using a nonlinear mixed effect (NLME) 

approach. When fitting the data, all model parameters could be estimated including 

clearance, inter-individual variability on clearance, as well as Kpus or Kpu scalars. The 

results showed that these proposed models were flexible enough to fit data while keeping 

the physiological nature of the model. From a parameter optimization point of view, these 

mechanistic models are more informative than classical compartmental PK models. It is 

important to bear in mind that the selection of the model (mechanistic or empirical) would 

depend on its purpose and use to answer specific questions. In the second approach, the 

tissue grouping was mostly based on rat tissue composition. As mentioned in Chapter 2, 

reported tissue composition data include some level of variability and uncertainty due to 

their origin and this may affect the tissue grouping. Nevertheless, the concept of tissue 

grouping using clustering methods on tissue composition remains relevant. If new tissue 

composition becomes available, the same methodology can be applied, and tissue 

grouping may then be updated as well as associated models. 

 

Chapter 4 can be seen as an application of the models/concepts developed in 

Chapter 3. The aim here was to evaluate the performance of the models previously 

investigated for translation of drug distribution from preclinical species (rat and monkey) 

to humans. The evaluation of the different PBPK models was performed for 3 test 

compounds. These were basic compounds with high lipophilicity, indicating a high 

membrane permeability, which is in accordance with the assumption that the passive 

diffusion is predominant for tissue distribution in these models. For translational purposes, 

the same model structure was assumed across species. The a priori lumped model was 

based on human physiology as human is the target species for extrapolation. This kinetic 

lumping approach assigned similar tissue kinetics between species which potentially 

alters the mechanistic realism of the model in preclinical species. Contrary to the kinetic 

lumping, the second approach based on steady state commonality in drug partitioning 

(common Kpus or common Kpu scalars) has the advantage to retain most of the organ 

structure of the WBPBPK model and is thus preferable. The main assumption of the 

models with common Kpus is that tissue composition is very similar across species and 

consequently Kpus are the same between species. It is consistent with a recent study 

which found no significant species differences of fraction unbound for tissue binding and 
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rat tissue fraction unbound can be a good predictor of other tissue binding and other 

species [38]. Whereas the main assumption of the models with common Kpu scalars is 

that empirical scaling factors can be derived from fitting animal PK data and these scaling 

factors are species independent. These latter models have more flexibility as tissues can 

have different Kpu values although having the same scalar. The results from the fitting to 

diazepam and midazolam preclinical data support the use of these more flexible models 

(especially with scalars obtained from the k-means clustering method) as they were 

generally more able to fit the available preclinical PK data and subsequently to predict 

drug concentrations in human. For basmisanil, the fitting of models to preclinical data 

was not successful possibly due to the quality of data, highlighting the need for good 

quality data for these purposes (i.e., well defined distribution and elimination phases). 

Although monkey could be expected to perform better as they are considered more similar 

to humans, it was not found that predictions from monkey would always be better than 

from rat. One explanation could be the limited in vivo data available in monkey in the 

study. Based on the findings obtained for these three compounds, a general strategy was 

proposed in the form of a decision-tree (Figure 6). One of the key points from this 

decision-tree relates specifically to the quality of preclinical PK data used: good quality 

data should be available or generated before considering any optimisation and 

extrapolation. Data quality could be improved by better sampling, optimal design, 

infusions instead of IV bolus, etc. Additionally, the use of several criteria allows to 

evaluate the performance of the simplified models for fitting the preclinical data and 

subsequently determine its suitability for extrapolation to human. Given the nature of 

these simplified models which are based on physiology, their use should be applicable to 

a large set of compounds. Further work should be undertaken with more compounds and 

different drug classes (acids, strong bases, neutral) in order to validate the proposed 

framework. 

 

5.2.  Future perspectives 

A systematic framework was proposed for the optimisation and interspecies 

translation of PBPK models. It focused on the estimation of Kpu parameters, but 

estimation of other model parameters could also be investigated with the availability of 

different data. Further research might explore the combination of Bayesian estimation 

methods with this proposed PBPK modelling framework. And a similar approach could 
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be useful beyond the topic of interspecies translation of drug distribution such as 

translation of other PK processes or intraspecies extrapolation, for example. 

 

5.2.1. Optimisation of drug and physiological parameters 

This thesis focused on the estimation of PBPK parameters (especially Kpus) using 

preclinical IV data. The estimation of other PBPK model parameters could also be 

considered with the availability of different data. In the R&R model, Kpu depends on 

tissue composition and most of the parameters are based on the physicochemical 

properties of the compound except Ka, the association constant to acidic phospholipid 

content [24, 39]. Ka is calculated from the BP ratio, considering the known concentration 

of acidic phospholipid in blood cells and plasma protein binding. The affinity of a 

compound to acidic phospholipid is then assumed to be the same for all tissues of the 

body. Rodgers et al. predicted Kpus using tissue composition data and verified the Kpu 

predictions against experimental Kpu values which were steady state data following a 

constant rate infusion content [24, 39]. Given the availability of these data, the model can 

be fitted to all the tissue Kpu data to estimate a global value of Ka instead of using the 

derived value from the BP ratio (which can be used as an initial estimate). The parameter 

Ka could also be estimated using IV plasma data after taking into account renal clearance 

and intrinsic hepatic clearance. After substitution of Kpu in the PBPK model by the tissue 

composition model for each tissue, Ka would be the only parameter to estimate thereby 

vastly reducing the dimensionality of the WBPBPK model and associated estimation 

problem. The performance of these Kpu values calculated with the optimised Ka can then 

be compared to those that were estimated by the R&R model. 

Another aspect to explore could be the optimisation of physiological parameters 

as many of these parameters are generally fixed. A further work might explore the fitting 

of a WBPBPK model to PK data to estimate the blood flow rates to each tissue (assuming 

perfusion rate limited distribution) rather than to assume literature values [40, 41]. The 

data from a study investigating PBPK modelling of beta-blockers (strong bases) in the rat 

following an IV bolus dose [42] could be used for this purpose. Additionally, seven 

racemic beta blockers were administered as cocktails of 3-4 compounds and individual 

enantiomers were measured in this study. The estimation of blood flow rates may also 

help to address the potential issue of a cardiovascular effect that could happen at the doses 

employed in the drug cocktail.  
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Additionally, the GSA from Chapter 2 showed that acidic phospholipid and 

extracellular protein are very sensitive parameters and should be well characterised. An 

alternative to experimental studies could be to optimize the values of these tissue 

composition data using the dataset of rat experimental Kps that have been collected from 

literature and used in Chapter 3 for deriving tissue groups. Tissue Kpu measured for 

strong basic compounds could inform the estimation of acidic phospholipids. Weak basic 

and neutral compounds would help the estimation of the tissue lipoprotein ratio while 

acidic compounds could help the estimation of the tissue to albumin ratio.  

The findings from the optimization of drug and physiological parameters in a PBPK 

model would help to translate the prior knowledge and uncertainty associated with 

experimental methods and data into statistical prior distributions. The definition of 

appropriate prior distributions for the model parameters would aid to establish a Bayesian 

framework for PBPK modelling.  

 

5.2.2. Bayesian hierarchical modelling 

Overall, the present work is one of the first attempts to investigate a systematic 

framework for integrating drug preclinical data into PBPK modelling. A recent study 

proposed to optimize PBPK model parameters using available species-specific 

toxicokinetic data for an organic pollutant [43]. Such an approach which uses whole PK 

profiles (and not only PK parameters e.g., Vss or AUC) is especially of interest as it 

extracts most information out of the animal experiments and thus contributes to the 3R’s 

principles. The fitting of PBPK models to preclinical data and subsequent extrapolation 

to humans allows the description of an average animal and the prediction of an average 

human profile. A natural progression of this work would be to integrate variability and 

uncertainty in population physiology and drug parameters. All system-related and drug-

specific parameters are mechanistic in nature and prior information about their range can 

be extracted from anatomical and physiological literature, in vitro experiments, and 

previous published models. The use of Bayesian estimation methods could be optimal as 

it allows the integration of prior information [44-46]. Bayesian population PBPK has been 

applied successfully in physiological pharmacokinetic and toxicokinetic models [31, 43, 

47-60]. The principle of the Bayesian approach is to define unknown parameters as 

random variables with probability distributions rather than unknown fixed variables [61]. 

The prior distribution of a parameter is a key part of Bayesian inference as it represents 
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the information about uncertain parameters that will be combined with the probability 

distribution of new data to yield the posterior distribution and the updated parameter 

estimates. A prior distribution for PBPK model parameters can be informed from the in 

vitro experiments, literature databases, and predictions derived from in silico models; 

here we focus on parameters that can be informed for predicting drug distribution. For 

example, the distribution of the accuracy of rat Kpu predictions from the R&R model 

(Figure 7) could be used to assign priors to the scalars in the models with common Kpu 

scalars. It was for example found that the ratio of log predicted to observed Kpu could 

follow a normal distribution for the different tissues. 

 

Figure 7: Distribution of the log-transformed random error of observed Kpu/predicted Kpu 

overall and per drug class 

 

Details of this analysis can be found in Appendix A3.3 

 

Due to the limited data and the model sensitivity to noisy data or outliers, 

information from experimental data is often not sufficient to obtain estimates of 

parameters in a PBPK model. The Bayesian approach combined with population 

hierarchical modelling (if population data are available) can be considered as an 

alternative to the maximum likelihood approach [62]. The initial issue of a very high 
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dimensional parameter space in the Bayesian population PBPK approach could be 

addressed by the use of a simplified PBPK model similar to the maximum likelihood or 

‘classical’ approach. The Bayesian population approach also provides posterior 

distributions for the individual and population parameters rather than single point 

estimates [63, 64]. Similar to the approach taken in Chapter 2, a GSA could help to 

identify sensitive parameters before Bayesian-PBPK model estimation as shown in a 

previous study [65]. Deriving credible prior distributions of relevant PBPK model 

parameters would be an important aspect. For PBPK models, it is sometimes difficult to 

translate the prior knowledge into statistical prior distribution. Indeed, most of the prior 

information regarding drug-related parameters is derived from in vitro experiments, 

literature databases, and in silico methods generating point estimates (e.g., mechanistic 

predictions of partition coefficients) or estimates with combined uncertainty and 

variability (e.g., predictions of intrinsic clearance from pooled human liver microsomes). 

Consequently, many experimental studies (in vitro and animal in vivo) focused on 

metabolism and excretion. PBPK models mechanistically integrate all available measures 

of metabolism and excretion in order to provide realistic estimates of human exposure in 

target organs. Various in vitro, in vivo, and in silico models are often employed 

throughout drug discovery and development to predict the metabolic disposition of new 

and existing drug molecules [66-70]. We could use the available data to derive priors of 

the in vitro– in vivo extrapolation (IVIVE) of metabolic clearance and also understand 

the potential reasons for mispredictions. Prior information for anatomical and 

physiological can be found in literature [71-76]. The estimated posterior probability 

distribution derived from Markov chain Monte Carlo (MCMC) analysis can then be used 

to perform PK simulations at population- or individual level [53, 55, 57].  

 

5.2.3. Additional applications 

In this thesis, a systematic framework for the translation of a PBPK model was 

primarily investigated for drug distribution. However, distribution is only one of the 

ADME processes that influence the PK of a drug. Elimination is a process that does not 

translate well from preclinical species due to species differences in enzyme and 

transporter expressions and activities. A framework similar to the one investigated herein 

could provide insights for the absorption process. The absorption is a complex process 

depending on the interplay between the drug/formulation properties and the 
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gastrointestinal tract (transit times, first pass effect). Both drug parameters and 

physiological parameters could influence the fraction absorbed (solubility, dissolution, 

permeability) and oral bioavailability [77]. Due to its multifactorial nature and oral 

bioavailability process, translation of drug absorption between species is often not well 

predicted [78, 79]. Fitting some of the absorption parameters in preclinical species may 

be informative and provide insights for human absorption. Future research could explore 

whether parameters such as solubility, dissolution, permeability, and clearance could be 

estimated systematically using preclinical PK data for several compounds. These 

parameters could then be assumed to be similar in human and permit the extrapolation of 

absorption to human. Additionally, the Bayesian approach could be considered in this 

systematic framework for absorption. This study may encounter limitations due to the 

availability of PK data following both an iv and oral dose in several species. 

The present research focused on the use of simplified PBPK models for 

extrapolation from preclinical species to human. More broadly, these simplified models 

can have application beyond interspecies translation. When the simplified PBPK model 

is developed and selected, it could follow the compound even after clinical development. 

The insight gained from interspecies extrapolation will prove useful in expanding the 

application of these simplified models for intra-species translation such as extrapolation 

from adult to children or from healthy to disease populations. 
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A1.1. Details of the partial rank correlation coefficient (PRCC) 

analysis 

The global sensitivity analysis (GSA) was performed using R v. 3.4.2 [1] and 

combined the partial rank correlation coefficient (PRCC) with the Latin hypercube 

sampling (LHS) scheme [2, 3]. In the random sampling scheme, the whole range of each 

parameter is divided into N equal probability segments, each of which is sampled once. 

Monte–Carlo simulations (N = 10000) were performed to randomly generate independent 

simulated values of drug variables from their respective uniform distribution (Table 2.1). 

A matrix that consists of N rows for the number of simulations (sample size) and of k 

columns corresponding to the number of varied parameters (see Figure below) was 

generated. And using each combination of generated drug parameter values (each row of 

the matrix) N model solutions were calculated. The model outputs of interest (here, tissues 

Kpu outputs) were collected for each model simulation.  

A correlation provides a measure of the strength of a linear association between 

an input and an output. Using the residuals obtained from the regression procedure, partial 

correlation characterises the linear relationship between the input parameters and the 

outputs after discounting the linear effects of the inputs on the outcome measures [4]. A 

Pearson’s correlation coefficient (rxy) between two variables x and y is given by: 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥̅𝑖 )(𝑦𝑖 − 𝑦̅)

√∑ (𝑥𝑖 − 𝑥̅𝑖 )2 × ∑ (𝑦𝑖 − 𝑦̅𝑖 )2 

 
Eq. A1.1 

where xi and yi are the set of paired sampled data, and x̅ and y̅ are the respective sample 

means. PRCC performs a partial correlation on rank-transformed data. The 

transformation usually results in uniform residuals (xj-x̂j) and (y-ŷj) for the transformed 

variables, where xj is the rank transformed sampled jth parameter, and y is the rank 

transformed output variable. x̂j and ŷj are built for k samples following two linear 

regression models: 𝑥𝑗̂ = 𝑐0 + ∑ 𝑐𝑝𝑥𝑝
𝑘
𝑝=1
𝑝≠𝑗

 and 𝑦̂ = 𝑏0 + ∑ 𝑏𝑝𝑥𝑝
𝑘
𝑝=1
𝑝≠𝑗

 . 

 

A Pearson correlation coefficient for the residuals from those two regression 

models gives the PRCC value for that specific parameter [4] (see Figure A1.1 below). 

The measure of the PRCC indicates the importance of the uncertainty in estimating the 

parameter value to the imprecision in the output variable prediction [5] which allows a 

classification of parameters. The closer the PRCC value is to +1 or -1, the stronger the 

input parameter influences the outcome measure. The sign of the PRCC indicates the 
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qualitative relationship between the input parameter and the output variable. A positive 

PRCC value indicates that an increase in the input parameter value leads to an increase 

in the predicted output variable whereas a negative value indicates that it leads to a 

decrease in the predicted output variable. The significance of a non-zero PRCC value was 

tested using a two-sided Student’s t-test [4]. As the number of tests performed is large, a 

multiple test correction was applied. The Bonferroni correction provides the most 

conservative approach to control for false positives multiplying the p-value of each PRCC 

by the number of tests performed [6]. If the corrected p-value is still below 0.001 for 

significance, then the PRCC is significantly different from 0. Otherwise, the PRCC will 

be considered not significant. 

 

Figure A1.1. Scheme of sensitivity analysis performed with Monte Carlo simulation and 

PRCC methods 

 

  



191 

 

A1.2. Dependency between LogP and fup 

Model input variables are typically assumed to be independent for practical reasons 

as non-independent inputs samples are more complex to generate and can need a very 

high sample size to compute sensitivity measures. However, the assumption of 

independence among input variables may not be appropriate given the nature of the 

relationship between lipophilicity and plasma protein binding. Consequently, several 

degrees of dependency between LogP and fup were considered when sampling the LogP 

and fup as drug inputs:  

˗ Independence of LogP and fup: LogP and fup were each sampled independently 

from its defined uniform distribution with the LHS method. 

˗ Linear relationship between LogP and fup while investigating different correlation 

coefficient ρ=-0.3, -0.5 and -0.9. The LHS method assumes that the sampling is 

performed independently for each parameter and introducing correlations between 

parameters other than in the special case of Gaussian distributions is not trivial. 

Iman and Conover developed a procedure to impose correlations on sampled 

values based on the ranks of the variables instead of using the values of the 

variables [7]. LogP and fup were generated using LHS from a bivariate normal 

distribution with statistical dependence between these two variables (correlation 

matrix of ρ) and each having a normal marginal distribution following Iman and 

Conover’s method implemented in the R package “EnvStats” [8]. The variables 

were then transformed by their cumulative distribution function to get uniform 

distributions in the interval [0, 1]. The marginal distributions with the limits 

defined in Table A1.2 were finally applied to the uniformly transformed variables 

to get variables uniformly distributed and correlated with the desired ρ. 

˗ Nonlinear relationship between LogP/LogD and fup (ρ =-0.8 for neutral basic 

drugs, ρ =0.5 for acids) [9]. For example, LogP and pKa were each sampled 

independently from its defined uniform distribution with the LHS method as the 

relationships described by Yamazaki and Kanaoka were between LogD and 

plasma protein binding for basic, neutral, and acidic compounds. LogD was then 

calculated from LogP and pKa as follows (Eq. A1.2): 

𝐿𝑜𝑔𝐷𝑝𝐻 7.4 = 𝐿𝑜𝑔𝑃 − 𝑙𝑜𝑔10(1 + 107.4−𝑝𝐾𝑎) Eq. A1.2 

For neutral and basic drugs, fup is calculated using the Eq. A1.3 [9]: 
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𝑓𝑢𝑝 = (1 −
0.5578 ∙ 𝑒𝑥𝑝(𝑙𝑜𝑔𝐷𝑝𝐻 7.4) + 0.0188

0.5578 ∙ 𝑒𝑥𝑝(𝑙𝑜𝑔𝐷𝑝𝐻 7.4) + 1.0188
 

Eq. A1.3 

And for acidic drugs, fup is calculated by the Eq. A1.4 [9]: 

𝑓𝑢𝑝 = (1 −
0.3127 ∙ 𝑒𝑥𝑝(𝑙𝑜𝑔𝐷𝑝𝐻 7.4) + 0.5121

0.3127 ∙ 𝑒𝑥𝑝(𝑙𝑜𝑔𝐷𝑝𝐻 7.4) + 1.5121
 

Eq. A1.4 

When dealing with correlated factors, Saltelli et al. advised that dependencies be 

treated as explicit relationships with a noise term [10], and so fup is then a function 

of LogP-pKa and a noise factor. This noise factor following a standard normal 

distribution is added to the calculated fup which has been logit-transformed, the 

sum is then passed through an inverse-logit function in order to ensure that fup has 

logical constraints between 0 and 1 [11]. 

The sample size of the GSA for the different degrees of dependency evaluated is chosen 

to be the same (N=10000). 
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A1.3. Details of Incorporation of variability/uncertainty in 

physiological parameters 

The sensitivity to physiological parameters was explored by incorporating 30% 

variability/uncertainty alternately on different biological parameters: 

- Variability/uncertainty on all fractional tissue lipid volumes, fractional tissue water 

volumes, as well as acid phospholipid concentrations and tissue:plasma proteins ratios 

- Variability/uncertainty only on fractional tissue lipid volumes and fractional tissue 

water volumes 

- Variability/uncertainty only on acid phospholipid concentrations and tissue:plasma 

proteins ratios 

Population distributions of fractional tissue volumes that have means matching the typical 

average values used for tissue composition-based models [12] and a CV of 30 % (30 % 

CV was selected here as a middle case) were generated. 

Based on Table A1.2, the fractional parameter (fNL, fNP, fEW and fIW) were 

assumed to follow logistic-normal distributions [13]. However, the sum of fractional 

tissue volumes given in Table A1.2 did not equal to 1, and a normalisation was applied 

to each fractional volume to keep the overall proportion. The j normalised fractional tissue 

volumes per tissue were assumed to follow a (j+1)-dimensional logistic-normal 

distribution which is derived after the transformation of a standard (j+1)-multivariate 

normal distribution with mean vector M and variance-covariance matrix Σ. Examples of 

how to generate samples from a logistic-normal distribution were previously reported [11, 

13]. It was assumed that F = [f1, f2, ..., fj]
T ~ Nj(M, Σ ), where F is a j-dimensional vector 

that follows a standard multivariate normal distribution with mean vector M defined as a 

null-vector of length j, and variance-covariance matrix Σ defined as a j-scalar matrix of 

0.0862 (=0.302 in order to have 30 % CV). The vector F is updated by adding an additional 

zero element, so that fj+1 = 0. Then applying the logistic transformation (Eq. A1.5) on the 

updated vector F, we derived a (j+1)-dimensional vector Θ = [θ1, θ2,…, θj+1]
T following 

the logistic-normal distribution. 

𝜃𝑖 =
𝑒𝑓𝑖

∑ 𝑒𝑓𝑖
𝑗+1
𝑖=1

 
Eq. A1.5 

 

For plasma, the two normalised fractional parameters (fNL and fNP) were assumed 

to follow a two-dimensional logistic normal distribution. For adipose, bone, brain, gut, 

heart, kidney, liver, lung muscle, skin, and spleen, four normalised fractional parameters 
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(fNL, fNP, fEW and fIW) were assumed to follow a four-dimensional logistic normal 

distribution. And for blood cells, the three normalised fractional parameters (fNL, fNP and 

fIW) were assumed to follow a three-dimensional logistic normal distribution. With this 

approach, the normalised fractional parameters will always be constrained to be between 

0 and 1 and their sum equal to 1. Here, M and Σ parameters were fixed to generate 

population distributions of fractional tissue volumes that have means matching the 

average values and a CV of 30% in the logistic domain.  

Due to the high dimensionality coming from the 4th or 3rd order vector, evaluating 

the integral for the calculation of mean and variance of the logistic normal is challenging. 

A solution is to primarily simulate in R some initial data that agree with the constraints 

that all the fractional parameters should always be between 0 and 1 and their sum equal 

to 1. Assume ϕ being the vector of fractions and the sum of elements of ϕ equals to 1. A 

multivariate logistic vector of j-1 dimensions was found so that its multivariate inverse 

logit formulation (MVIL) has a mean (μ) equal to 1 summarised as MVIL(μ)=1. This was 

obtained by minimizing the sum of squares of the absolute value of |MVIL(μ)-ϕ | (using 

the function nlminb in R). A total of 1000 samples were generated with (j+1)-dimensional 

logistic-normal distribution for the normalised fractional volumes per tissue and these 

values were then multiplied by the sum of fractional volumes at individual tissue level so 

that the sampled fractional tissue volumes were in the original scale. 

Also, acid phospholipids concentration, albumin and lipoprotein ratio, albumin 

ratio and lipoprotein ratio were sampled from a normal distribution N(μ, σ) where μ is the 

average value given in Table II and σ is the variance of the associated normal in order to 

generate distributions of these physiological parameters with mean matching the average 

values and a CV of 30%. 

Finally, Kpu values were calculated based on Rodgers-Rowland equations [14, 15] 

for a hypothetical compound for each class (neutral, acid, weak base, strong base) and 

according to several scenarios of LogP and fup (Table 2.3) using three different 

assumptions: either both sampled fractional tissue volumes and sampled values of other 

physiological parameters, or only sampled fractional tissue volumes and average values 

of physiological parameters, or else average values of fractional tissue volumes and 

sampled values of other physiological parameters. BP is commonly assumed to be one 

for all compounds except ionised acids where a value of one minus haematocrit is 

generally used as an approximation when the BP data is not measured in vitro/ ex vivo 

(although BP is not involved in the Kpu equation for acids).  
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Table A1.1: Tissue blood flow rates (Q) and volumes (V) for a reference man of 70 kg 
 Blood flow rate (Fraction of Qc) Volume (Fraction of BW) Density 

Adipose 0.05 0.214 0.96 

Bone 0.05 0.143 1.92 

Brain 0.12 0.020 1.04 

Gut 0.09 0.017 1.04 

Heart 0.04 0.005 1.04 

Kidney 0.19 0.004 1.04 

Liver (arterial) 0.065 0.026 1.08 

Lung 1 0.008 1.04 

Muscle 0.17 0.4 1.04 

Pancreas 0.01 0.001 1.04 

Skin 0.05 0.037 1.04 

Spleen 0.03 0.003 1.04 

Rest of body 0.325 0.043 1.04 

Plasma  0.046 1.04 

Blood 1 0.079 1.04 

-Arterial blood 1 0.020 1.04 

-Venous blood 1 0.059 1.04 

Tissue blood flow data are from [16, 17] 

Qc is used to describe total cardiac output. Qc (L/min) was calculated as function of BW [18]:  

Qc (L/h) =0.06×187 × BW0.81 

Fraction of body weight data is from [19]. 

The value of 1.040 was used for all tissue density except for adipose, bone [19] and liver [20]. 
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Table A1.2: Physiological input parameters used for tissue composition-based models in humans 

[12] 

 Water 

(fw) 

Neutral 

lipids 

(fNL) 

Neutral 

phospho

-lipids 

(fph) 

Extra-

cellular 

water 

(fEW) 

Intra-

cellular 

water 

(fIW) 

Acidic 

phospho

lipids 

(mg/g) 

(Concen

tration) 

Albumi

n ratio 

Lipoprot

ein ratio 

Plasma 0.95 0.0032 0.0021      

Adipose 0.15 0.79 0.002 0.135 0.017 0.4 0.049 0.068 

Bone 0.45 0.074 0.0011 0.1 0.346 0.67 0.1 0.05 

Brain 0.78 0.051 0.0565 0.162 0.62 0.4 0.048 0.041 

Gut 0.76 0.0487 0.0163 0.282 0.475 2.41 0.158 0.141 

Heart 0.78 0.0115 0.0166 0.32 0.456 2.25 0.157 0.16 

Kidney 0.76 0.0207 0.0162 0.273 0.483 5.03 0.13 0.137 

Liver 0.73 0.0348 0.0252 0.161 0.573 4.56 0.086 0.161 

Lung 0.78 0.003 0.009 0.336 0.446 3.91 0.212 0.168 

Muscle 0.71 0.022 0.0072 0.079 0.63 2.42 0.064 0.059 

Skin 0.67 0.0284 0.0111 0.382 0.291 1.32 0.277 0.096 

Spleen 0.79 0.0201 0.0198 0.207 0.579 3.18 0.097 0.207 

Thymus 0.78 0.0168 0.0092 0.15 0.626 2.3 0.075 0.075 

Blood 

cells 
0.63 0.0012 0.0033  0.603 0.57   

 

Table A1.3: Physiological input parameters used for tissue composition-based models on rats [21] 

 
Water 

(fw) 

Neutral 

lipids 

(fNL) 

Neutral 

phospho

-lipids 

(fNP) 

Extra-

cellular 

water 

(fEW) 

Intra-

cellular 

water 

(fIW) 

Acidic 

phospho

lipids 

(mg/g) 

(Concen

tration) 

Albumi

n ratio 

Lipopro

tein 

ratio 

Plasma 0.96 0.00147 0.00083 1     

Adipose 0.12 0.853 0.002 0.175 0.017 0.4 0.049 0.068 

Bone 0.446 0.0273 0.0027 0.42 0.346 0.67 0.1 0.05 

Brain 0.788 0.0392 0.0533 0.162 0.62 0.4 0.048 0.041 

Gut 0.749 0.0292 0.0138 0.39 0.475 2.41 0.158 0.141 

Heart 0.779 0.014 0.0118 0.156 0.456 2.25 0.157 0.16 

Kidney 0.771 0.0123 0.0284 0.346 0.483 5.03 0.13 0.137 

Liver 0.705 0.0138 0.0303 0.159 0.573 4.56 0.086 0.161 

Lung 0.79 0.0219 0.014 0.484 0.446 3.91 0.212 0.168 

Muscle 0.756 0.01 0.009 0.115 0.63 2.42 0.064 0.059 

Skin 0.651 0.0239 0.018 0.462 0.291 1.32 0.277 0.096 

Spleen 0.771 0.0077 0.0136 0.264 0.579 3.18 0.097 0.207 

Thymus     0.626 2.3 0.075 0.075 

Blood 

cells 
    0.603 0.57   
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A1.4. Supplementary figures 

 

Figure A1.2: Scatterplots of adipose Kpu vs LogP or fup for neutrals with different degrees of 

correlation between LogP and fup (0, -0.3, -0.5, -0.9, nonlinear) 

 

 

Figure A1.3: Scatterplots of adipose Kpu vs LogP, fup or pKa for acids with different degrees of 

correlation between LogP and fup (0, -0.3, -0.5, -0.9, nonlinear) 
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Figure A1.4: Scatterplots of adipose Kpu vs LogP, fup or pKa for weak bases with different 

degrees of correlation between LogP and fup (0, -0.3, -0.5, -0.9, nonlinear) 
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Figure A1.5: Scatterplots of adipose Kpu vs LogP, fup, pKa or BP for strong bases with 

different degrees of correlation between LogP and fup (0, -0.3, -0.5, -0.9, nonlinear) 
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Figure A1.8: Effect of inputting CV30% uncertainty simultaneously in all tissue composition 

data (solid line) or individually in fractional tissue volumes (dashed line) and/or all tissue acidic 

phospholipids/extracellular protein ratios (dotted line) when varying fup or LogP on typical tissue 

Kpus  

A. LogP= -0.3 and fup=[0.001:1] 

 
Other tissues Kpu: skin behaves similarly to bone; spleen behaves similarly to liver; gut, heart, lung, muscle, 

thymus, pancreas, rest of body behave similarly to kidney 

B. LogP=3 and fup=[0.001:1] 

 
Other tissues Kpu: brain, skin behave similarly to bone; gut, heart, liver, lung, muscle, spleen, thymus, pancreas, rest 

of body behave similarly to kidney; 

C. LogP=[-3:6] and fup=0.01 

 
Other tissues Kpu: skin behaves similarly to bone; muscle, skin, spleen, thymus, pancreas, rest of body behave 

similarly to liver; gut, heart, lung behave similarly to kidney; 

D. LogP=[-3:6] and fup=0.9 

 
Other tissues Kpu: brain, skin, muscle, gut, heart, thymus, pancreas, rest of body behave similarly to bone; liver, lung, 

spleen behave similarly to kidney; 

 

Hypothetical compounds: neutral (red line), acidic (green line), weakly basic (blue v) and 

strongly basic (purple line) 

4 case scenarios: hydrophilic (A), lipophilic (B), highly bound (C), lowly bound (D) compound 
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A2.1. Supplementary Tables 

Table A2.1: Physiological parameter values for a reference man (70kg)[1-4] and rat 

(250g)(Brown et al., 1997; Kuwahira et al., 1994) 

Tissues Human  Rat 

Blood flows 

(L/min) 

Volume 

(L) 

 Blood flows 

(ml/min) 

Volume 

(ml) 

Adipose 0.292 15.619  5.816 19.792 

Bone 0.292 5.210  10.136 5.401 

Brain 0.701 1.346  1.662 1.370 

Gut 0.526 1.010  9.139 5.385 

Heart 0.234 0.316  4.071 0.793 

Kidney 1.109 0.296  11.715 1.755 

Liver 1.489 1.666  12.546 8.472 

Lung 5.839 0.512  83.085 1.202 

Muscle 0.993 26.923  23.098 97.188 

Pancreas 0.058 0.094  1.496 0.769 

Skin 0.292 2.497  4.819 45.745 

Spleen 0.175 0.175  0.831 0.481 

Stomach 0.058 0.141  1.080 1.106 

RoB 0.730 2.914  7.228 27.938 

Arterial 5.839 1.329  83.085 6.538 

Venous 5.839 3.988  83.085 13.077 

RoB: rest of body 

 

Table A2.2: Tissue composition data for human (Poulin et al., 2011)  

Tissue Vw vNL vNP fEW fIW cAP ALR AR LPR 

plasma 0.95 0.0032 0.0021 NaN NaN NaN NaN NaN NaN 

adipose 0.15 0.79 0.002 0.135 0.017 0.4 0.15 0.049 0.068 

bone 0.45 0.074 0.0011 0.1 0.346 0.67 0.5 0.1 0.05 

brain 0.78 0.051 0.0565 0.162 0.62 0.4 0.5 0.048 0.041 

gut 0.76 0.0487 0.0163 0.282 0.475 2.41 0.5 0.158 0.141 

heart 0.78 0.0115 0.0166 0.32 0.456 2.25 0.5 0.157 0.16 

kidneys 0.76 0.0207 0.0162 0.273 0.483 5.03 0.5 0.13 0.137 

liver 0.73 0.0348 0.0252 0.161 0.573 4.56 0.5 0.086 0.161 

lungs 0.78 0.003 0.009 0.336 0.446 3.91 0.5 0.212 0.168 

muscle 0.71 0.022 0.0072 0.079 0.63 2.42 0.5 0.064 0.059 

pancreas 0.641 0.0403 0.009 0.12 0.664 1.67 NaN 0.06 0.06 

skin 0.67 0.0284 0.0111 0.382 0.291 1.32 0.5 0.277 0.096 

spleen 0.79 0.0201 0.0198 0.207 0.579 3.18 0.5 0.097 0.207 

thymus 0.78 0.0168 0.0092 0.15 0.626 2.3 0.5 0.075 0.075 

RBC 0.63 0.0012 0.0033 NaN 0.603 0.57 NaN NaN NaN 

Vw: fractional volume of water; vNL: fractional volume of neutral lipids; vNP: fractional volume 

of neutral phospholipids; fEW: fractional volume of extracellular water; fIW: fractional volume 

of intracellular water; cAP: acid phospholipid concentrations (mg/g); ALR: albumin and 

lipoprotein ratio; AR: albumin ratio; LPR: lipoprotein ratio; RBC: red blood cells  
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Table A2.3: Tissue composition data for rat [5] 

Tissue Vw vNL vNP fEW fIW cAP AR LPR 

plasma 0.96 0.0023 0.0013 0.945 NaN 0.057 NaN NaN 

adipose 0.144 0.853 0.0016 0.135 0.017 0.4 0.049 0.068 

bone 0.417 0.0174 0.0016 0.1 0.346 0.67 0.1 0.05 

brain 0.753 0.0391 0.0015 0.162 0.62 0.4 0.048 0.041 

gut 0.738 0.0375 0.0124 0.282 0.475 2.41 0.158 0.141 

heart 0.568 0.0135 0.0106 0.32 0.456 2.25 0.157 0.16 

kidneys 0.672 0.0121 0.024 0.273 0.483 5.03 0.13 0.137 

liver 0.642 0.0135 0.0238 0.161 0.573 4.56 0.086 0.161 

lungs 0.574 0.0215 0.0123 0.336 0.446 3.91 0.212 0.168 

muscle 0.726 0.01 0.0072 0.118 0.63 1.53 0.064 0.059 

pancreas 0.641 0.0403 0.009 0.12 0.664 1.67 0.06 0.06 

skin 0.658 0.0603 0.0044 0.382 0.291 1.32 0.277 0.096 

spleen 0.562 0.0071 0.0107 0.207 0.579 3.18 0.097 0.207 

thymus 0.752 0.0168 0.0092 0.15 0.626 2.3 0.075 0.075 

RBC 0.6 0.0017 0.0029 NaN 0.603 0.5 NaN NaN 

Vw: fractional volume of water; vNL: fractional volume of neutral lipids; vNP: fractional volume 

of neutral phospholipids; fEW: fractional volume of extracellular water; fIW: fractional volume 

of intracellular water; cAP: acid phospholipid concentrations (mg/g); AR: albumin ratio; LPR: 

lipoprotein ratio; RBC: red blood cells 
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Table A2.4: Clinical PK studies of diazepam available 
Study Number 

of PK 

profiles 

IV dose 

(length of 

infusion) 

Reported 

total 

clearance 

(s.d.) 

Reported 

volume of 

distributi

on (s.d) 

Number 

of 

subjects 

and 

character

istics 

fup and 

BP used 

in study 

Referenc

e 

1 1 average 0.15mg/kg 

(1min) 

2.1 (0.3) 

L/h 

(plasma) 

87 (2) L 6 males 

and 5 

females 

NA [6] 

2 4 average 0.15mg/kg 

(0.375min) 

1.3 to 1.7 

L/h 

(plasma) 

80 to 161 

L 

1 young 

male, 1 

elderly 

male, 1 

young 

female, 1 

elderly 

female 

fup: 0.009 

to 0.027 

[7] 

3 1 average 10mg 

(2min) 

1.2 (0.4) 

L/h 

(plasma) 

63 (19) L 6 males NA [8] 

4 1 

individual 

0.1mg/kg 

(2min) 

1.6 (0.5) 

L/h 

(plasma) 

66 (13) L 1 normal 

individual 

fup: 0.026 

(0.01); 

BP: 0.58 

(0.15) 

[9] 

5 1 average 0.1mg/kg 

(2min) 

1.6 (0.2) 

L/h 

(plasma) 

79 (20) L 10 young 

males 

fup: 0.032 

(0.008); 

BP:0.58 

(0.11) 

[10] 

6 4 

individual 

10mg 

(bolus) 

3.3 to 4.0 

L/h 

(blood) 

105 to 

174 L 

4 healthy 

males 

NA [11] 

7 23 

individual 

0.15mg/kg 

(0.375min) 

1.8 L/h 

(plasma) 

NA 12 healthy 

males/fem

ales and 

11 healthy 

females 

fup: 

0.015; 

BP:0.65 

[7, 12, 13] 
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Table A2.5: Rat PK studies of diazepam available 
Study Number 

of PK 

profiles 

IV dose 

(length of 

infusion) 

Reported 

total 

clearance 

(s.d.) 

Reported 

volume of 

distributi

on (s.d) 

Number 

of 

subjects 

and 

character

istics 

fup and 

BP used 

in study 

Referenc

e 

1 1 average 4mg/kg 

(bolus); 

1.1 (0.2) 

L/h 

(plasma) 

1.3 (0.2) 

L 

10 male 

Wistar 

fup: 0.036 

(0.009); 

BP:1.06 

(0.04) 

[14] 

2 1 average 1.2mg/kg 

(bolus) 

1.2 (0.03) 

L/h 

(plasma) 

1.4 (0.1) 

L 

4 male 

Wistar 

fup:0.14 

(0.003); 

BP:1.037 

(0.007) 

[15, 16] 

3 1 average 1mg 

(5min 

infusion) 

400 

ml/min 

(intrinsic 

clearance) 

NA 24 male 

Sprague-

Dawley 

fup:0.15; 

BP:1 

[17, 18] 

4 2 average 5mg/kg 

(bolus) 

1.1 L/h 

for 

middle-

aged rat, 

3.3 L/h 

for old 

rats 

(plasma) 

1.2 for 

middle-

aged rat, 

13 L for 

old rats 

5 middle-

aged male 

Wistar 

and 5 old 

male 

Wistar 

NA [19] 

5 1 average 5mg/kg 

(bolus) 

3.9 (0.5) 

L/h 

(blood) 

1.1 (0.2) 

L 

3 male 

Wistar 

fup:0.137 

(0.011); 

BP:0.38 

(0.07) 

[9] 
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A2.2. Closed form solutions of the lumped 3 compartment model and 

the 14 compartmental PBPK model 

A2.2.1. Equations for the lumped PBPK model (3 compartments) 

This model assumes that drug very quickly reach a quasi-steady state in the central 

compartment (lung, arterial, venous). The differential equation (Eq. A2.1) for the drug 

concentration in this compartment is: 

𝑑𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑑𝑡
= (

𝑄𝑝1 ∙ Cp1

𝐾𝑏𝑝1
+

𝑄𝑝2 ∙ Cp2

𝐾𝑏𝑝2
− 𝑄𝑐𝑒𝑛𝑡𝑟𝑎𝑙 ∙

𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙
− 𝐶𝐿𝑏𝑙𝑜𝑜𝑑

∙
𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝐾𝑏𝑐𝑒𝑛𝑡𝑟𝑎𝑙
) ∙

1

𝑉𝑐𝑒𝑛𝑡𝑟𝑎𝑙
 

Eq. A2.1 

Where Ccentral= Carterial+Cvenous+Clung, Cp1, Cp2 are the venous blood total drug 

concentration in the central, the peripheral 1 and peripheral 2 compartments, respectively. 

The blood flow Qcentral and the volume Vcentral of the central compartment are defined as 

Qcentral=cardiac output and Vcentral= Varterial+Vvenous+ Vlung ; Kbcentral is defined as the blood 

tissue-to-plasma partitioning coefficient of the central compartment and corresponding to 

(Varterial+Vvenous+Vlung Kblung)/(Vlung+Varterial+Vvenous); Qp1 and Kbp1 are the blood flow and 

blood tissue-to-plasma partitioning coefficient of all tissues in the lumped peripheral 1 

compartment; Kbp1 is weighted by the following volume (ΣVi-Vliver-Vkidney) + Vliver (1-

CLH/Qliver) + Vkidney (1-CLR/Qrenal))/ΣVi where i includes tissue lumped in the peripheral 

1 compartment; Qp2 and Kbp2 are the blood flow and blood tissue-to-plasma partitioning 

coefficient of all the tissues in the lumped peripheral 2 compartment; CLblood is the total 

blood clearance and corresponds here to the sum of the hepatic and renal clearance (CLH 

and CLR, respectively). 

Similar to a classical 3 compartment model with an infusion dose at time tdose and 

length of infusion Tinf, the total drug concentration C(t) in the central compartment (lung, 

arterial, venous) of the lumped model can be described as closed form solutions (Eq. 

A2.2-Eq. A2.3): 

If t-tdose≤ Tinf,  

𝐶(𝑡) =
𝐷𝑜𝑠𝑒

𝑇𝑖𝑛𝑓
∙ [

𝐴

𝛼
∙ (1 − 𝑒−𝛼∙(𝑡−𝑡𝑑𝑜𝑠𝑒)) +

𝐵

𝛽
∙ (1 − 𝑒−𝛽∙(𝑡−𝑡𝑑𝑜𝑠𝑒)) +

𝐶

𝛾
∙ (1 − 𝑒−𝛾∙(𝑡−𝑡𝑑𝑜𝑠𝑒))] Eq. A2.2 

If t-tdose>Tinf, 

𝐶(𝑡) =
𝐷𝑜𝑠𝑒

𝑇𝑖𝑛𝑓
∙ [

𝐴

𝛼
∙ (1 − 𝑒−𝛼∙(𝑡−𝑡𝑑𝑜𝑠𝑒−𝑇𝑖𝑛𝑓)) +

𝐵

𝛽
∙ (1 − 𝑒−𝛽∙(𝑡−𝑡𝑑𝑜𝑠𝑒−𝑇𝑖𝑛𝑓)) +

𝐶

𝛾

∙ (1 − 𝑒−𝛾∙(𝑡−𝑡𝑑𝑜𝑠𝑒−𝑇𝑖𝑛𝑓))] 
Eq. A2.3 

With the variables α, β, γ, A, B and C defined as following: 
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𝐴 =
1

𝑉
∙

𝑘21−𝛼

𝛼−𝛽
∙

𝑘31−𝛼

𝛼−𝛾
, 𝐵 =

1

𝑉
∙

𝑘21−𝛽

𝛽−𝛼
∙

𝑘31−𝛽

𝛽−𝛾
, 𝐶 =

1

𝑉
∙

𝑘21−𝛾

𝛾−𝛽
∙

𝑘31−𝛾

𝛾−𝛼
 

𝑎0 = 𝑘 ∙ 𝑘21 ∙ 𝑘31 , 𝑎1 = 𝑘 ∙ 𝑘31 + 𝑘21 ∙ 𝑘31 + 𝑘21 ∙ 𝑘13 + 𝑘 ∙ 𝑘21 + 𝑘31 ∙ 𝑘21 , 𝑎2 = 𝑘 + 𝑘12 + 𝑘13 +

𝑘21 + 𝑘31 

𝑝 = 𝑎1 −
𝑎2

2

3
, 𝑞 = 2 ∙

𝑎2
3

27
−

𝑎1∙𝑎2

3
+ 𝑎0,  

𝑟1 = √− (
𝑝3

27
), 𝑟2 = 2 ∙ 𝑟1

1/3
, Φ =

arccos(−
𝑞

2∙𝑟1
)

3
 

𝛼 = − (cos(Φ) ∙ 𝑟2 −
𝑎2

3
), 𝛽 = − (cos (Φ +

2∙π

3
) ∙ 𝑟2 −

𝑎2

3
), 𝛾 = − (cos (Φ +

4∙π

3
) ∙ 𝑟2 −

𝑎2

3
) 

The general 3-compartment linear mammillary model is available in NONMEM and 

parameterized in micro-constants k, k12, k21, k13, and k31 (TRANS 1 subroutine) or with CL, 

V1, Q2, V2, Q3 and V3 (TRANS 4 subroutine). These parameters are defined as following 

(Eq. A2.4-Eq. A2.8): 

𝑘12 =
𝑄2

(𝑉1 − 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 − 𝑉𝑣𝑒𝑛𝑜𝑢𝑠) ∙ 𝐾𝑏1 + 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑉𝑣𝑒𝑛𝑜𝑢𝑠
 Eq. A2.4 

𝑘21 =
𝑄2

𝐾𝑏2 ∙ [𝑉2 − 𝑉𝑙𝑖𝑣𝑒𝑟 ∙
𝐶𝐿𝐻

𝑄𝑙𝑖𝑣𝑒𝑟
− 𝑉𝑘𝑖𝑑 ∙

𝐶𝐿𝑅

𝑄𝑘𝑖𝑑𝑛𝑒𝑦
] 

 
Eq. A2.5 

𝑘31 =
𝑄3

𝑉3 ∙ 𝐾𝑏3
 Eq. A2.6 

𝑘13 =
𝑄3

(𝑉1 − 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 − 𝑉𝑣𝑒𝑛𝑜𝑢𝑠) ∙ 𝐾𝑏1 + 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑉𝑣𝑒𝑛𝑜𝑢𝑠
 Eq. A2.7 

𝑘 =
𝐶𝐿𝑏𝑙𝑜𝑜𝑑

(𝑉1 − 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 − 𝑉𝑣𝑒𝑛𝑜𝑢𝑠) ∙ 𝐾𝑏1 + 𝑉𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑉𝑣𝑒𝑛𝑜𝑢𝑠
 Eq. A2.8 

Where Kb1, Kb2 and Kb3 are the blood tissue-to-plasma partitioning coefficient of the 

central, lumped peripheral 1 compartment and lumped peripheral 2 compartments; CLblood 

is the total blood clearance. 

For the lumped model in man, the following blood flows (Q) and volumes (V) are used:  

𝑄2 = 𝑄𝑚𝑢𝑠𝑐𝑙𝑒 + 𝑄𝑏𝑜𝑛𝑒 + 𝑄𝑠𝑘𝑖𝑛 + 𝑄𝑏𝑟𝑎𝑖𝑛 + 𝑄𝑅𝑜𝐵 + 𝑄𝑝𝑜𝑟𝑡𝑎𝑙 𝑣𝑒𝑖𝑛 + 𝑄ℎ𝑒𝑎𝑟𝑡 + 𝑄𝑘𝑖𝑑𝑛𝑒𝑦 , 𝑄3 = 𝑄𝑎𝑑𝑖𝑝𝑜𝑠𝑒 , 𝑄1 = 𝑄2 + 𝑄3 

𝑉1 = 𝑉𝑙𝑢𝑛𝑔 + 𝑉𝑎𝑟𝑡 + 𝑉𝑣𝑒𝑛 , 𝑉2 = 𝑉𝑚𝑢𝑠𝑐𝑙𝑒 + 𝑉𝑏𝑜𝑛𝑒 + 𝑉𝑠𝑘𝑖𝑛 + 𝑉𝑏𝑟𝑎𝑖𝑛 + 𝑉𝑅𝑜𝐵 + 𝑉𝑙𝑖𝑣𝑒𝑟 + 𝑉𝑠𝑡𝑜𝑚𝑎𝑐ℎ + 𝑉𝑔𝑢𝑡 + 𝑉𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠 +

𝑉𝑠𝑝𝑙𝑒𝑒𝑛 + 𝑉ℎ𝑒𝑎𝑟𝑡 + 𝑉𝑘𝑖𝑑𝑛𝑒𝑦, 𝑉3 = 𝑉𝑎𝑑𝑖𝑝𝑜𝑠𝑒  

For the lumped model in rat, the following blood flows (Q) and volumes (V) are used:  

𝑄2 = 𝑄𝑚𝑢𝑠𝑐𝑙𝑒 + 𝑄𝑏𝑜𝑛𝑒 + 𝑄𝑎𝑑𝑖𝑝𝑜𝑠𝑒 + 𝑄𝑏𝑟𝑎𝑖𝑛 + 𝑄𝑅𝑜𝐵 + 𝑄𝑝𝑜𝑟𝑡𝑎𝑙 𝑣𝑒𝑖𝑛 + 𝑄ℎ𝑒𝑎𝑟𝑡 + 𝑄𝑘𝑖𝑑𝑛𝑒𝑦 , 𝑄3 = 𝑄𝑠𝑘𝑖𝑛 , 𝑄1 = 𝑄2 + 𝑄3 

𝑉1 = 𝑉𝑙𝑢𝑛𝑔 + 𝑉𝑎𝑟𝑡 + 𝑉𝑣𝑒𝑛 , 𝑉2 = 𝑉𝑚𝑢𝑠𝑐𝑙𝑒 + 𝑉𝑏𝑜𝑛𝑒 + 𝑉𝑎𝑑𝑖𝑝𝑜𝑠𝑒 + 𝑉𝑏𝑟𝑎𝑖𝑛 + 𝑉𝑅𝑜𝐵 + 𝑉𝑙𝑖𝑣𝑒𝑟 + 𝑉𝑠𝑡𝑜𝑚𝑎𝑐ℎ + 𝑉𝑔𝑢𝑡 +

𝑉𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠 + 𝑉𝑠𝑝𝑙𝑒𝑒𝑛 + 𝑉ℎ𝑒𝑎𝑟𝑡 + 𝑉𝑘𝑖𝑑𝑛𝑒𝑦, 𝑉3 = 𝑉𝑠𝑘𝑖𝑛  
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A2.2.2. Equations for 14 compartmental PBPK model 

For the central (arterial, venous blood and lung compartment) and renal 

elimination form part of the central compartment, the rate equation is defined as (Eq. 

A2.9): 

𝑉𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑑𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙

𝑑𝑡
= (∑ 𝑄𝑖 ∙

Ci

𝐾𝑏𝑖
) − (𝑄𝑐𝑒𝑛𝑡𝑟𝑎𝑙 + 𝐶𝐿𝑅) ∙ 𝐶𝑐𝑒𝑛𝑡𝑟𝑎𝑙 Eq. A2.9 

where Ccentral is the concentration of the central compartment. The blood flow Qcentral and 

the volume Vcentral of the central compartment are defined as Qcentral=cardiac output and 

Vcentral= Varterial+Vvenous+ Vlung; Kbcentral is defined as the blood tissue-to-plasma 

partitioning coefficient of the central compartment and corresponding to 

(Varterial+Vvenous+Vlung Kblung)/(Vlung+Varterial+Vvenous). CLR is the renal clearance. The sum 

∑ 𝑄𝑖 ∙
𝐶𝑖

𝐾𝑏𝑖
 includes all the ith tissues except the stomach, gut, pancreas and spleen tissues. 

For each ith non-eliminating tissues, the rate equation is defined as (Eq. A2.10): 

𝑉𝑖 ∙
𝑑𝐶𝑖

𝑑𝑡
= 𝑄𝑖 ∙ (Ccentral −

𝐶𝑖

𝐾𝑏𝑖
) Eq. A2.10 

where Ci, Vi and Qi are the total drug concentration, the volume and blood flow of the ith-

tissue. For each ith-tissue, the tissue-to-blood partition coefficient, Kb, represents the ratio 

of steady state tissue drug concentration to the steady state blood concentration. 

For the liver, the rate equation is defined as (Eq. A2.11): 

𝑉𝑙𝑖𝑣𝑒𝑟 ∙
𝑑𝐶𝑙𝑖𝑣𝑒𝑟

𝑑𝑡
= 𝑄ℎ𝑎 ∙ Ccentral + ∑ 𝑄𝑠𝑝𝑙𝑎𝑛,𝑖 ∙

𝐶𝑠𝑝𝑙𝑎𝑛,𝑖

𝐾𝑏𝑠𝑝𝑙𝑎𝑛,𝑖
− 𝑄𝑙𝑖𝑣𝑒𝑟 ∙

𝐶𝑙𝑖𝑣𝑒𝑟

𝐾𝑏𝑙𝑖𝑣𝑒𝑟

− 𝐶𝐿𝑖𝑛𝑡𝑙𝑖𝑣𝑒𝑟 ∙ 𝑓𝑢𝑏 ∙
𝐶𝑙𝑖𝑣𝑒𝑟

𝐾𝑏𝑙𝑖𝑣𝑒𝑟
 

Eq. A2.11 

where the Qsplan,i, Csplan,i and Kbsplan,i are the concentration, the blood flow, the volume 

and the blood partition coefficient of the ith splanchnic organs (stomach, gut, pancreas 

and spleen); Qha is the blood flow from the hepatic artery; Cliver, Qliver, Vliver, Kbliver are 

the concentration, the blood flow, the volume and the blood partition coefficient of the 

liver; CLint is the hepatic intrinsic clearance and fub is the fraction unbound in blood. 
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A2.3. Clustering analysis 

Clustering algorithms use the distance between observations in order to separate them 

into different groups. Euclidean distance is the most commonly used method to measure the 

distance. It is calculated using the square of the difference between x and y coordinates of the two 

points a and b in a 2-dimensional space: 

Euclidean distance(a, b) = √(𝑎𝑥 + 𝑏𝑥)2 + (𝑎𝑦 + 𝑏𝑦)
2
 Eq. A2.12 

Note, if two variables do not have the same units, one may have more weight in the calculation 

of the Euclidean distance than the other. Therefore, it is preferable to scale the data such that 

variables are independent of their unit. 

 

A2.3.1. K-means clustering  

The K-means clustering method aims to assign observations to k groups. After pre-

specifying a number of k clusters with randomly selected centroids (cluster means) representing 

each cluster, the algorithm minimizes the squared error between each observation and the centroid 

by calculating the distance of all data points to the centroids and then assign the data points to the 

closest cluster. During each iteration, it updates the centroids of each cluster by taking the mean 

of all data in the new clusters. The iterative process continues until all points converge 

(convergence criterion met) and cluster centres stop moving. This algorithm is highly computing-

efficient and produce tight clusters, but it is sensitive to initial seeds and outliers. The effect of 

outliers can greatly skew the central measure, especially when the mean is used. Additionally, k-

means clustering method is found to work well when the shape of the clusters is spherically 

shaped (assuming uncorrelated variables) but not so well when clusters are globular or of varying 

sizes and density, which is more realistic and common and may be our case.  

The k-means algorithm aims to minimize the within cluster sum of squared errors (SSE) which is 

equal to the sum of pairwise squared Euclidean distances: 

𝑆𝑆𝐸 = ∑ ∑ (𝑥 − 𝑐𝑘)2

𝑥∈𝐶𝑘

𝐾

𝑘=1

 Eq. A2.13 

Where k is the index specifying a given cluster, ck is the central mean, and x are the observations 

belonging to that central mean, ck are the observations that are part of the cluster cantered by the 

particular centroid ck. 

As k-means algorithm uses a random set of initial centroids, the clustering results may vary every 

time. By running the algorithm several times with different initial centres and taking the most 

optimal one, it can limit this issue and stabilize the results. More details on k-means clustering 

can be found in [20]. 
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A2.3.2. Hierarchical clustering 

Contrary to the k-means clustering algorithm, the hierarchical clustering is not as 

sensitive to outliers and does not require a pre-specified number of clusters nor randomly select 

initial centroids. Hierarchical clustering builds a hierarchy of clusters, based on the measure of 

closeness/similarity between the observations and hence is more informative than k-means 

clustering. Before applying a clustering algorithm, dissimilarity (or similarity) measures between 

elements needs to be derived as a basis for comparing the different observations. In the 

agglomerative clustering (most common type of hierarchical clustering), small clusters are 

merged into larger ones: each data point in the beginning stands for an individual cluster on their 

own, and then the two closest clusters are merged into a new cluster until only one cluster is left. 

The decision of merging two clusters is based on the distance between observations and the 

distance between clusters (linkage). Calculating the distance matrix between observations can be 

done by calculating the Euclidean distance. Then for calculating the linkage, Ward’s method [21] 

is the most popular as it usually creates compact, homogeneous clusters, by joining clusters that 

minimally increase a given measure of heterogeneity. This measure is the sum of the square of 

the distance between two clusters c1 and c2: 

Dc1,c2  =
𝑛𝑐1 ∙ 𝑛𝑐2

𝑛𝑐1 + 𝑛𝑐2
∥ 𝑥̅𝑐1 − 𝑥̅𝑐2 ∥2 Eq. A2.14 

Where x̄ck is the centre of cluster ck (with k, the index specifying a given cluster), and n is the 

number of observations in it. At first, the sum of squares starts out at zero (because every point is 

in its own cluster) and then grows as clusters are merged.  

Hierarchical clustering provides an output as a tree-like diagram called a dendrogram. By 

observing, the number of clusters, that best depict different groups, can be chosen (number of 

vertical lines in the dendrogram cut by a horizontal line that can transverse the maximum vertical 

distance vertical without intersecting a cluster). Hierarchical clustering is suitable for datasets 

with arbitrary shape and attributes of arbitrary type. The hierarchical relationship among clusters 

is easily detected, and the scalability is in general relatively high. More details on hierarchical 

clustering can be found in [22].  



215 

 

A2.4. Determination of plasma protein binding and blood to plasma 

partitioning ratio 

Plasma protein binding was determined by equilibrium dialysis using the 96-well equilibrium 

dialysis device (HTD-96b, HTDialysis)[23, 24]. Blank human and rat plasma (K2-EDTA, mixed 

gender, pooled) spiked with diazepam was dialysed against phosphate buffer (133 mM pH=7.4) 

for 5 hours in triplicates. Prior to centrifugation, final dialysate and plasma samples were matched 

with blank matrices (90/10 buffer/plasma v/v) and proteins were precipitated by addition of 

acetonitrile (containing the internal standard, IS) in 3 volumes. Supernatant of the centrifuged 

samples were analysed by LC-MS/MS. The fup value was calculated as the ratio of the peak area 

ratio of diazepam:IS in the final buffer sample to the peak area ratio of diazepam:IS in the final 

plasma sample.  

The blood to plasma partitioning ratio was determined by spiking fresh male human or rat blood 

with diazepam. After a 30-minute incubation, an aliquot of blood was collected and plasma was 

produced from the rest of the blood. Final plasma and blood samples were matched with blank 

matrices (50/50 blood/plasma), mixed with acetonitrile (containing the internal standard), 

centrifuged and the supernatants were analysed by LC-MS/MS following appropriate dilution. 

BP was calculated as the ratio of the peak area ratio in spiked blood to the peak area ratio in spiked 

plasma at 0.5h. 
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A2.5. Cluster analysis of tissues based on tissue composition 

Figure A2.1: Characteristics of clustered tissues in terms of tissue composition with the different 

clustering methods in human and rat (tissue composition data are standardised) 
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Each vertical bar represents a tissue component and each line represent a tissue that is grouped 

in one of the 3 or 4 clusters. Distinct clusters are shown in different coloured solid lines. 

Vw: fractional volume of water; vNL: fractional volume of neutral lipids; vNP: fractional volume 

of neutral phospholipids; fEW: fractional volume of extracellular water; fIW: fractional volume 

of intracellular water; cAP: acid phospholipid concentrations (mg/g); AR: albumin ratio; LPR: 

lipoprotein ratio; RBC: red blood cells 

A2.6. Clustering analysis based on imputed dataset of rat steady state 

Kpus 

Table A2.6: Percentage of missing data in total and per tissue in the Kpu dataset 
Total Pancreas Bone Thymus Spleen Gut Skin Adipose Liver Lung Brain Heart Kidney Muscle 

48 85 81 80 74 60 56 47 27 24 23 23 23 17 
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A2.7. Fits of diazepam data in human 

A2.7.1. For the empirical 2 compartment model 

Figure A2.2: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the empirical 2 compartment model 

 

 

Figure A2.3: Basic goodness-of-fits plots for the empirical 2 compartment model 

 
DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.7.2. For the lumped 3 compartment model (man) 

Figure A2.4: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the lumped 3-compartment model 

(man) 

 

Figure A2.5: Basic goodness-of-fits plots for the lumped 3 compartment model (man) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.7.3. For the PBPK model with 3 common Kpus model 

Figure A2.6: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 common 

Kpus model 

 

 

Figure A2.7: Basic goodness-of-fits plots for the PBPK model with 3 common Kpus model 

 
DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 

  



220 

 

A2.7.4. For the PBPK model with 4 common Kpus model 

Figure A2.8: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 common 

Kpus model 

 

 

Figure A2.9: Basic goodness-of-fits plots for the PBPK model with 4 common Kpus model 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.7.5. For the PBPK model with 3 scalars model 

Figure A2.10: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 scalars model 

 

 

Figure A2.11: Basic goodness-of-fits plots for the PBPK model with 3 scalars model 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.7.6. For the PBPK model with 4 scalars model 

Figure A2.12: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 scalars model 

 

 

Figure A2.13: Basic goodness-of-fits plots for the PBPK model with 4 scalars model  

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8. Fits of diazepam data in rat 

A2.8.1. For the empirical 3 compartment model 

Figure A2.14: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the empirical 3 compartment model 

 

 

Figure A2.15: Basic goodness-of-fits plots for the empirical 3 compartment model 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8.2. For the lumped 3 compartment model (rat) 

Figure A2.16: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the empirical 3 compartment model 

 

 

Figure A2.17: Basic goodness-of-fits plots for the empirical 3 compartment model 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8.3. For the PBPK model with 3 common Kpus model (Hierarchical 

clustering) 

Figure A2.18: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 common 

Kpus model (Hierarchical clustering) 

 

 

Figure A2.19: Basic goodness-of-fits plots for the PBPK model with 3 common Kpus model 

(Hierarchical clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h)  
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A2.8.4. For the PBPK model with 4 common Kpus model (Hierarchical 

clustering) 

Figure A2.20: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 common 

Kpus model (Hierarchical clustering) 

 

 

Figure A2.21: Basic goodness-of-fits plots for the PBPK model with 4 common Kpus model 

(Hierarchical clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8.5. For the PBPK model with 3 common Kpus model (K-means 

clustering) 

Figure A2.22: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 common 

Kpus model (K-means clustering) 

 

 

Figure A2.23: Basic goodness-of-fits plots for the PBPK model with 3 common Kpus model (K-

means clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8.6. For the PBPK model with 4 common Kpus model (K-means 

clustering) 

Figure A2.24: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 common 

Kpus model (K-means clustering) 

 

 

Figure A2.25: Basic goodness-of-fits plots for the PBPK model with 4 common Kpus model (K-

means clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8.7. For the PBPK model with 3 common Kpus model (clustering on 

steady state Kpus) 

Figure A2.26: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 common 

Kpus model (clustering on steady state Kpus) 

 

 

Figure A2.27: Basic goodness-of-fits plots for the PBPK model with 3 common Kpus model 

(clustering on steady state Kpus) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8.8. For the PBPK model with 4 common Kpus model (clustering on 

steady state Kpus) 

Figure A2.28: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 common 

Kpus model (clustering on steady state Kpus) 

 

 

Figure A2.29: Basic goodness-of-fits plots for the PBPK model with 4 common Kpus model 

(clustering on steady state Kpus) 

 
DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A2.8.9. For the PBPK model with 3 common scalars model (Hierarchical 

clustering) 

Figure A2.30: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 scalars model 

(Hierarchical clustering) 

 

 

Figure A2.31: Basic goodness-of-fits plots for the PBPK model with 3 scalars model 

(Hierarchical clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h)  
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A2.8.10. For the PBPK model with 4 common scalars model (Hierarchical 

clustering) 

Figure A2.32: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 scalars model 

(Hierarchical clustering) 

 

 

Figure A2.33: Basic goodness-of-fits plots for the PBPK model with 4 scalars model 

(Hierarchical clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h)  
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A2.8.11. For the PBPK model with 3 common scalars model (K-means 

clustering) 

Figure A2.34: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 scalars model 

(K-means clustering) 

 

 

Figure A2.35: Basic goodness-of-fits plots for the PBPK model with 3 scalars model (K-means 

clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h)  
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A2.8.12. For the PBPK model with 4 common scalars model (K-means 

clustering) 

Figure A2.36: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 scalars model 

(K-means clustering) 

 

 

Figure A2.37: Basic goodness-of-fits plots for the PBPK model with 4 scalars model (K-means 

clustering) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h)  
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A2.8.13. For the PBPK model with 3 common scalars model (clustering on 

steady state Kpus) 

Figure A2.38: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 3 scalars model 

(clustering on steady state Kpus) 

 

 

Figure A2.39: Basic goodness-of-fits plots for the PBPK model with 3 scalars model (clustering 

on steady state Kpus) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h)  
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A2.8.14. For the PBPK model with 4 common scalars model (clustering on 

steady state Kpus) 

Figure A2.40: Plots of the observations (black circles), population predictions (solid grey lines) 

and individual predictions (solid blue lines) versus time for the PBPK model with 4 scalars model 

(clustering on steady state Kpus) 

 

Figure A2.41: Basic goodness-of-fits plots for the PBPK model with 3 scalars model (clustering 

on steady state Kpus) 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A3.1. Experimental data of diazepam and midazolam 

A3.1.1. Protein Binding Studies 

Plasma protein binding was determined by equilibrium dialysis using the 96-well 

equilibrium dialysis device (HTD-96b, HTDialysis) [1, 2]. Blank human and rat plasma 

(K2-EDTA, mixed gender, pooled) spiked with the studied compound was dialysed 

against phosphate buffer (133 mM pH=7.4) for 5 hours in triplicate. Prior to 

centrifugation, final dialysate and plasma samples were matched with blank matrices 

(90/10 buffer/plasma v/v) and proteins were precipitated by addition of acetonitrile 

(containing the internal standard, IS) in 3 volumes. Supernatant of the centrifuged 

samples were analysed by LC-MS/MS. The fup value was calculated as the ratio of the 

peak area ratio of compound:IS in the final buffer sample to the peak area ratio of 

compound:IS in the final plasma sample. 

 

A3.1.2. Blood/Plasma Partitioning 

The blood to plasma partitioning ratio was determined by spiking fresh male human or 

rat blood with the studied compound. After a 30-minute incubation, an aliquot of blood 

was collected and plasma was produced from the rest of the blood. Final plasma and blood 

samples were matched with blank matrices (50/50 blood/plasma), mixed with acetonitrile 

(containing the internal standard), centrifuged and the supernatants were analysed by LC-

MS/MS following appropriate dilution. BP was calculated as the ratio of the peak area 

ratio in spiked blood to the peak area ratio in spiked plasma at 0.5h. 

 

A3.2. Experimental data of basmisanil  

All animal studies were performed according to the Swiss animal welfare regulations and 

in accordance with applicable SOPs and guidelines for the care and use of laboratory 

animals. 

A3.2.1. Rat PK study  

Basmisanil was administered intravenously as a solution in 33% NMP/26 % 

Hydroxypropyl g-Cyclodextrine (2 mL/kg body weight) at a mean dose level of 5 mg/kg 

to two male Wistar rats. The rats (Wistar strain, body weight 200-277 g) were obtained 

from Biological Research Laboratories, Füllinsdorf, Switzerland. Food was given ad 

libitum. The animals had free access to tap water during the whole study period. Blood 
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samples (approx. 0.5 mL per time point) were collected at 0.083, 0.25, 0.5, 0.75, 1.5, 3, 6 

and 24 hours after intravenous. Collection tubes contained EDTA as anticoagulant and 

stabilizer. After centrifugation, plasma was removed and stored deep-frozen at 

approximately -20 °C until analysis. Concentrations in plasma were determined by HPLC 

with tandem mass spectrometric detection. The lower limit of quantification was 1 ng/mL, 

using 50μL of plasma specimen.  

 

A3.2.2. Monkey PK study  

Basmisanil was administered intravenously as a solution in 31.5% polyethylene glycol 

400 /29 % propylene glycol (0.25 mL/kg body weight) at a mean dose level of 1 mg/kg 

to 3 Cynomolgus monkey. Cynomolgus monkeys (11.8 kg, 11.5 kg and 10.5 kg in body 

weight) were from a colony kept at F. Hoffmann-La Roche in Basel/ Switzerland. The 

animals had free access to food and tap water during the whole study period. Blood 

samples (approx. 0.5 mL per time point) were collected at 0.083, 0.25, 0.5, 0.75, 1.5, 3, 6 

and 24 hours after intravenous administration. Collection tubes contained EDTA as 

anticoagulant and stabilizer. After centrifugation, plasma was removed and stored deep-

frozen at approximately -20 °C until analysis. Concentrations in plasma were determined 

by HPLC with tandem mass spectrometric detection. The lower limit of quantification 

was 1 ng/mL, using 50μL of plasma specimen. 

 

A3.2.3. Clinical PK study  

PK data were collected from a Phase 1, single-centre, single-cohort, open-label, multiple 

dose study in 6 healthy male subjects was performed (ClinicalTrials.gov identifier 

NCT01684891). The clinical study was reviewed and approved by an independent ethics 

committee (Stichting Beoordeling Ethiek Bio-Medisch Onderzoek, Assen, NL). Only 

data related to the first dose administration were used in this work. On the mornings of 

Days 1 (and 28), an iv dose containing 0.1 mg of [13C]-labelled basmisanil was given as 

an infusion over 15 minutes. Serial venous blood samples for pharmacokinetic 

assessments were collected. In addition, urine and faeces were collected according to 

predefined collection time points and intervals. Stopping criteria for urine and faeces 

collection: <1% of the administered dose excreted within 24 hours in faeces and urine on 

two consecutive days. Plasma concentrations of unlabelled basmisanil and its primary 
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metabolite, and of the stable isotopes [13C]-basmisanil and [13C]-metabolite were 

measured by a specific liquid chromatography/tandem mass spectrometry (LC/MS-MS) 

method. Total ([14C]) radioactivity concentrations were determined in whole blood, 

plasma, urine and faeces by liquid scintillation counting. Six healthy male subjects were 

included. All subjects completed the study as planned and were included in all analyses. 

The parent compound was not detected in urine. 

 

A3.2.4. Protein Binding Studies 

Equilibrium dialysis studies were carried out as described by Banker et al [3]. Briefly, the 

dialysis sides of the apparatus were loaded with 0.15 mL phosphate buffer (mixture of 

0.133 M potassium-di-hydrogen-phosphate and 0.133 M di-sodium-hydrogen-phosphate, 

pH 7.5). The same volume of diluted plasma spiked with different concentrations of test 

compound was pipetted into the sample side of each well. After the apparatus was loaded, 

the dialysis unit was sealed with an adhesive cover. The unit was incubated at 37°C for 5 

hours, sufficient time to ensure equilibrium was reached. At the end of dialysis, the 

plasma and buffer samples were retrieved and the drug concentrations quantified by LSC. 

The free fraction fu in plasma was calculated as follows: fu = (CB/CPe) where CB and 

CPe are the concentrations in buffer and plasma at the end of the dialysis, respectively. 

Concentrations of [14C]-basmisanil were determined in buffer and plasma by measuring 

radioactivity on a liquid scintillation counter with on-line quench correction by means of 

an external standard. For all samples, aliquots of 50 μL were added to 4.5 mL of 

scintillation liquid in counter vials. 

 

A3.2.5. Blood/Plasma Partitioning 

Aliquots (3.0 mL to 9.0 mL) of freshly drawn blood were centrifuged at low speed (600x 

g) for 10 minutes to generate a small erythrocyte-free plasma layer, and equilibrated at 

37°C. The samples were spiked with aliquots of [14C]-basmisanil solutions in DMSO, 

added to the erythrocyte-free plasma layer. This procedure was used to avoid the 

haemolysis otherwise observed when blood is spiked directly with buffer. Samples were 

immediately mixed at the desired constant temperature on a Coulter Mixer™ (Coulter 

Electronics, UK). The concentrations of [14C]-basmisanil in blood ranged from ~10 to 

10,000 ng/mL. After 5, 15 and 30 min, aliquots were removed, centrifuged at the same 
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temperature (3,000x g for 3 min), and concentrations of [14C]-basmisanil in plasma and 

whole blood determined by LSC. 

Reversibility of the distribution was established as follows: at the end of the equilibration 

phase, the plasma was removed and weighed, and the red blood cells resuspended in equal 

volumes of fresh plasma at the same temperature [2]. 

The haematocrit (H) was determined in the freshly drawn blood using a haematocrit 

centrifuge and haematocrit reader (Haemofuge™, Heraeus, Switzerland). 

The blood/plasma concentration ratio (λ) and the fraction of drug in the erythrocytes (fE) 

can be calculated from: 

λ = CW/CP and fE = QE/QW = (λ+H−1)/λ 

Here, CW and CP are the drug concentrations in whole blood and plasma, QE and QW 

are the amount of drug in the erythrocyte compartment and in blood. 

Drug concentrations in whole blood were determined (in triplicate) after digestion of 

samples (50 μL) with Soluene 350® (Perkin Elmer, Order No. 6003038)/Isopropanol 1:1, 

bleaching with H2O2, and addition of Ultima-Gold® scintillation fluid (16 mL). For 

plasma, 50 μL aliquots were mixed with 4.5 mL scintillation fluid (triplicate 

determinations). The radioactivity was quantified in a liquid scintillation counter with 

online quench correction by means of an external standard. 
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A3.3. Biological plausibility of tissue to plasma unbound partitioning 

(Kpu) values 

 

A number of equations have been developed to predict tissue to plasma partition 

coefficients (Kp) as they are widely used to describe drug distribution in PBPK models 

[3-10]. A study by Graham et al. compared the predictive performance between multiple 

tissue:plasma partition coefficient prediction methods with experimental rat partition 

coefficients and showed the Rodgers and Rowland (R&R) model generally made the most 

accurate predictions of Kps and Vss [11]. It was reported that 77.3% of the Kp predicted 

by R&R model were within 3-fold of experimentally determined Kp values. The two 

mechanistic equations proposed by Rodgers et al. [8, 9] for predictions of unbound 

partition coefficients (Kpu) require various input parameters such as physicochemical 

properties and in vitro data, as well as tissue composition data both of which can be 

accompanied by uncertainty and/or variability and thus affecting the predicted Kpu values 

[12]. 

Consequently, since it can be assumed that the true tissue to plasma unbound value (Kpu) 

is not equal to the R&R predicted tissue to plasma unbound partition coefficient (𝐾𝑝𝑢𝑇̂), 

a random error factor or bias (RE) can be considered as follows:  

𝑲𝒑𝒖𝑻

𝑲𝒑𝒖𝑻̂

= 𝑹𝑬 Eq. A3.1 

A log-normal distribution was assumed for RE where RE is expected to be 1 if Kpu 

predictions from the R&R equations are not systematically biased. Similarly, log (
𝐾𝑝𝑢𝑇

𝐾𝑝𝑢𝑇̂
) 

was assumed to follow a normal distribution with mean µ and standard deviation σ. 

Fitting of data was performed in order to estimate the parameters of the normal 

distribution N(µ,σ2). The dataset was rat Kps collected from the literature. In this dataset 

of 124 compounds (78 strong bases, 10 weak bases, 25 acids and 10 neutrals), 48% of the 

Kp data was missing. 

Experimental steady state tissue to plasma partition coefficients (Kp) can be converted to 

tissue to unbound plasma partition coefficients (Kpu) by considering the free fraction in 

plasma (fup) of each compound: 

𝑲𝒑 = 𝑲𝒑𝒖 ∙ 𝒇𝒖𝒑 Eq. A3.2 
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After log-transforming the ratio of experimental steady state Kpu data to the R&R 

predicted Kpu, a normal distribution was fitted to the dataset of log (
𝐾𝑝𝑢𝑇

𝐾𝑝𝑢𝑇̂
) . Results of 

the fittings are shown in Figure A3.1. 

 

Figure A3.1: Distribution of the log-transformed random error of observed Kpu/predicted Kpu 

overall and per drug class 

 

 

Using the fitted normal distribution, it is possible to derive 95% confidence interval of 

log (
𝐾𝑝𝑢𝑇

𝐾𝑝𝑢𝑇̂
) and subsequently 

𝐾𝑝𝑢𝑇

𝐾𝑝𝑢𝑇̂
. Overall, Kpu predictions were within a 13-fold-error 

of the true value with 90% probability (21-fold-error with 95% probability). For acidic 

compounds, 90% of Kpu predictions agreed with experimental values within a factor of 

9 (95% within a factor 14). For basic compounds, 90% of Kpu predictions agreed with 

experimental values within a factor of 16 (95% within a factor 27). For weakly basic 

compounds, 90% of Kpu predictions agreed with experimental values within a factor of 

9 (95% within a factor 13). For basic compounds, 90% of Kpu predictions agreed with 

experimental values within a factor of 12 (95% within a factor 18). 

Therefore, this analysis gave an indication about physiological plausibility of the Kpu 

values estimated.  
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A3.4. Physiological data 

Table A3.1: Tissue composition data for rat [13] 

Tissue Vw vNL vNP fEW fIW cAP AR LPR 

plasma 0.96 0.0023 0.0013 0.945 NaN 0.057 NaN NaN 

adipose 0.144 0.853 0.0016 0.135 0.017 0.4 0.049 0.068 

bone 0.417 0.0174 0.0016 0.1 0.346 0.67 0.1 0.05 

brain 0.753 0.0391 0.0015 0.162 0.62 0.4 0.048 0.041 

gut 0.738 0.0375 0.0124 0.282 0.475 2.41 0.158 0.141 

heart 0.568 0.0135 0.0106 0.32 0.456 2.25 0.157 0.16 

kidneys 0.672 0.0121 0.024 0.273 0.483 5.03 0.13 0.137 

liver 0.642 0.0135 0.0238 0.161 0.573 4.56 0.086 0.161 

lungs 0.574 0.0215 0.0123 0.336 0.446 3.91 0.212 0.168 

muscle 0.726 0.01 0.0072 0.118 0.63 1.53 0.064 0.059 

pancreas 0.641 0.0403 0.009 0.12 0.664 1.67 0.06 0.06 

skin 0.658 0.0603 0.0044 0.382 0.291 1.32 0.277 0.096 

spleen 0.562 0.0071 0.0107 0.207 0.579 3.18 0.097 0.207 

thymus 0.752 0.0168 0.0092 0.15 0.626 2.3 0.075 0.075 

RBC 0.6 0.0017 0.0029 NaN 0.603 0.5 NaN NaN 
Vw: fractional volume of water; vNL: fractional volume of neutral lipids; vNP: fractional volume 

of neutral phospholipids; fEW: fractional volume of extracellular water; fIW: fractional volume 

of intracellular water; cAP: acid phospholipid concentrations (mg/g); AR: albumin ratio; LPR: 

lipoprotein ratio; RBC: red blood cells 

 

Table A3.2: Tissue composition data for human (Poulin et al., 2011) 

Tissue Vw vNL vNP fEW fIW cAP ALR AR LPR 

plasma 0.95 0.0032 0.0021 NaN NaN NaN NaN NaN NaN 

adipose 0.15 0.79 0.002 0.135 0.017 0.4 0.15 0.049 0.068 

bone 0.45 0.074 0.0011 0.1 0.346 0.67 0.5 0.1 0.05 

brain 0.78 0.051 0.0565 0.162 0.62 0.4 0.5 0.048 0.041 

gut 0.76 0.0487 0.0163 0.282 0.475 2.41 0.5 0.158 0.141 

heart 0.78 0.0115 0.0166 0.32 0.456 2.25 0.5 0.157 0.16 

kidneys 0.76 0.0207 0.0162 0.273 0.483 5.03 0.5 0.13 0.137 

liver 0.73 0.0348 0.0252 0.161 0.573 4.56 0.5 0.086 0.161 

lungs 0.78 0.003 0.009 0.336 0.446 3.91 0.5 0.212 0.168 

muscle 0.71 0.022 0.0072 0.079 0.63 2.42 0.5 0.064 0.059 

pancreas 0.641 0.0403 0.009 0.12 0.664 1.67 NaN 0.06 0.06 

skin 0.67 0.0284 0.0111 0.382 0.291 1.32 0.5 0.277 0.096 

spleen 0.79 0.0201 0.0198 0.207 0.579 3.18 0.5 0.097 0.207 

thymus 0.78 0.0168 0.0092 0.15 0.626 2.3 0.5 0.075 0.075 

RBC 0.63 0.0012 0.0033 NaN 0.603 0.57 NaN NaN NaN 
Vw: fractional volume of water; vNL: fractional volume of neutral lipids; vNP: fractional volume 

of neutral phospholipids; fEW: fractional volume of extracellular water; fIW: fractional volume 

of intracellular water; cAP: acid phospholipid concentrations (mg/g); ALR: albumin and 

lipoprotein ratio; AR: albumin ratio; LPR: lipoprotein ratio; RBC: red blood cells 

 

  



247 

 

Table A3.3: Tissue composition data for monkey [8, 14, 15] 

Tissue Vw vNL vNP fEW fIW cAP** AR** LPR** 

plasma 0.95* 0.002 0.0021* 0.945** NaN 0.057 NaN NaN 

adipose 0.15* 0.79* 0.002* 0.141** 0.039** 0.4 0.049 0.068 

bone 0.45* 0.074* 0.0011* 0.3** 0.31** 0.67 0.1 0.05 

brain 0.804 0.063 0.0471 0.166558 0.637442 0.4 0.048 0.041 

gut 0.76* 0.0487* 0.0163* 0.282** 0.475** 2.41 0.158 0.141 

heart 0.794 0.015 0.005 0.327423 0.466577 2.25 0.157 0.16 

kidneys 0.76* 0.009 0.0458 0.308** 0.516** 5.03 0.13 0.137 

liver 0.772 0.006 0.0148 0.169335 0.602665 4.56 0.086 0.161 

lungs 0.826 0.003* 0.009* 0.354905 0.471095 3.91 0.212 0.168 

muscle 0.791 0.006 0.0121 0.088137 0.702863 1.53 0.064 0.059 

pancreas 0.641* 0.0403* 0.009* 0.12** 0.664** 1.67 0.06 0.06 

skin 0.758 0.0284* 0.0111* 0.430247 0.327753 1.32 0.277 0.096 

spleen 0.78* 0.0168* 0.0092* 0.207** 0.579** 3.18 0.097 0.207 

thymus 0.752* 0.0168* 0.0092* 0.15** 0.626** 2.3 0.075 0.075 

RBC 0.698 0.002 0.0037 NaN 0.698 0.5 NaN NaN 

Vw: fractional volume of water; vNL: fractional volume of neutral lipids; vNP: fractional volume 

of neutral phospholipids; fEW: fractional volume of extracellular water; fIW: fractional volume 

of intracellular water; cAP: acid phospholipid concentrations (mg/g); ALR: albumin and 

lipoprotein ratio; AR: albumin ratio; LPR: lipoprotein ratio; RBC: red blood cells 

*Human source; **Rat source 

 

Table A3.4: Blood flow and volumes data for a reference rat (250g)[16, 17] 

Tissues Blood flows 

(ml/min) 

Volume 

(ml) 

Lung 83.09 1.20 

Arterial 83.09 6.54 

Kidney 11.72 1.76 

Venous 83.09 13.08 

Heart 4.07 0.79 

Pancreas 1.50 0.77 

Bone 10.146 5.40 

Spleen 0.83 0.48 

Gut 9.14 5.39 

Liver 12.55 8.47 

Brain 1.66 1.37 

Stomach 1.08 1.11 

Adipose 5.82 19.79 

RoB 7.23 27.94 

Muscle 23.10 97.19 

Skin 4.82 45.75 
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Table A3.5: Blood flow and volumes data for a reference man (70kg)[17-20] 

Tissues Blood flows 

(L/min) 

Volume 

(L) 

Lung 5.84 0.51 

Arterial 5.84 1.33 

Kidney 1.11 0.30 

Venous 5.84 3.99 

Spleen 0.18 0.18 

Heart 0.23 0.32 

Liver 1.11 1.67 

Pancreas 0.06 0.09 

Brain 0.70 1.35 

Gut 0.53 1.01 

Stomach 0.06 0.14 

RoB 0.73 2.91 

Skin 0.29 2.50 

Bone 0.29 5.21 

Muscle 0.99 26.92 

Adipose 0.29 15.62 

 

Table A3.6: Blood flow and volumes data for a monkey (5kg) [17, 21-23] 

Tissues Blood flows 

(mL/min) 

Volume 

(mL) 

Lung 785.8 41.9 

Arterial 785.8 86.1 

Kidney 99.8 18.1 

Venous 785.8 172.2 

Heart 43.2 18.4 

Pancreas 7.1 9.6 

Bone 98.2 386.9 

Spleen 14.9 3.3 

Gut 90.4 184.6 

Liver 123.4 118.5 

Brain 51.9 81.6 

Stomach 11.0 23.8 

Adipose 19.6 131.0 

RoB 121.8 130.7 

Muscle 154.8 2535.5 

Skin 33.8 487.0 
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A3.5. Comparison of tissue concentrations between experimental 

and predicted values after optimization of simplified models using 

blood or plasma data 

Following fitting of the simplified PBPK models, new Kpu estimates were obtained either 

from the approach with common Kpus or common scalars. It is then reasonable to 

hypothesize that using the new Kpu values, the models can describe tissue profiles besides 

plasma profiles. This is indeed an advantage over a compartmental model approach which 

can fit plasma data but is not highly informative about the drug tissue distribution. 

Furthermore, this simplified PBPK model approach is able to provide prediction of drug 

distribution in each tissue instead of in groups of lumped tissues as in the kinetically 

lumped models. The question of whether these predictions of drug distributions from 

these simplified PBPK models are then physiologically relevant needs to be considered. 

 

A3.5.1. Example of diazepam in rat 

Measured tissue concentrations and Kpus were available in rat for diazepam [24, 25]. 

Thus, a comparison of tissue concentrations and Kpus could be made with the best suited 

models optimized in rat for diazepam. Results are shown in Table A3.7 and Figure A3.2. 

Tissue concentration seemed to be well predicted using the optimized Kpu in tissues like 

adipose and muscle (Figure A3.3). The model with common scalars using clustering on 

K-means data could gave good predictions of concentration in lung, heart, liver. 
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Table A3.7: Comparison of measured and optimised rat Kpus of diazepam 
Kpu Experimental Kpus 1 Experimental Kpus 2 Model 3C Model 3D 

Lung 
 

23.29 2.02 38.3 

Gut 37.6 14.29 3.11 58.8 

Stomach 58.73 
 

3.11 588 

Pancreas 
  

98.7 94.8 

Liver 29 32.14 292 353 

Bone 0 0 43.2 41.6 

Brain 18.4 7.29 90.8 87.2 

Heart 50.8 15.64 1.38 26.1 

Kidney 41.67 16.43 281 341 

Skin 35.4 24.07 4.63 87.5 

Muscle 18.33 9.79 30.8 29.6 

Adipose 235.33 92.14 183 14.6 

RoB 
 

28.57 30.8 29.6 

Testis 57.2 21.43 
  

Spleen 
 

12.86 162 196 
1 [26](area method); 2 [27] 

 

Figure A3.2: Comparison of measured [26] and optimised rat Kpus of diazepam vs R&R 

predicted Kpu 

 

Dashed-lines represent 2-fold error. Mod_3scal_Km=model 3C and Mod_4scal_Km=model 3D 
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Figure A3.3: Comparison of measured and predicted rat tissue concentration of diazepam 
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A3.5.2. Example of midazolam in rat 

Measured Kpus were available in rat for midazolam [28]. A comparison of tissue Kpus 

could be made with the best suited models optimized in rat for midazolam. Results are 

shown in Table A3.8 and Figure A3.4. 

Table A3.8: Comparison of measured and optimised rat Kpus of midazolam  
Experimental Kpus 1 Model 3D 

Lung 57 15.3 

Gut 29-60 22.4 

Stomach 97 22.4 

Liver 111 40.5 

Brain 42 30.5 

Heart 53 10.5 

Kidney 56 40 

Skin 17 33.6 

Muscle 16 10.8 

Adipose 115 29.5 

Spleen 41 23.5 
1 [28] 

 

Figure A3.4: Comparison of measured [28] and optimised rat Kpus of midazolam vs R&R 

predicted Kpu 

 

Dashed-lines represent 2-fold error 
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A3.6. Performance of the best models 

A3.6.1. Diazepam 

Fitting of the investigated models in preclinical species 

Table A3.9: Parameter estimates of the investigated model for diazepam in rat 
Models BIC Kpu1/SF1 

(RSE%) 

Kpu2 

/SF2 

(RSE%) 

Kpu3/SF3 

(RSE%) 

Kpu4/SF4 

(RSE%) 

IIV CL 

as %CV 

(RSE%) 

Prop 

err 

Vss,b 

estimated 

[L] 

Vss 

within 

20% 

(YYY), 

25% 

(YY), 

30% (Y) 

1 -

209.012 

40.3 

(2730) 

26.4 (2.5) 199.5 

(12.5) 

N/A 26.8% 

(25.4) 

19.5% 

(14.5) 

1.11 YY 

2A -

208.136 

28.4 (12) 307 

(45.9) 

88.2 (13.9) N/A 29.2% 

(21.8) 

20.3% 

(8.6) 

1.34 N/A 

2B -

169.673 

29.4 (12.7) 309 

(44.1) 

88.1 (13.9) 23.1 (7.1) 28.8% 

(21.8) 

20.2% 

(8.6) 

1.34 N/A 

2C -

211.201 

27.3 (11.6) 427 

(19.5) 

87.3 (13.5) N/A 26.4% 

(20.8) 

19.8% 

(7.1) 

1.14 Y 

2D -

172.823 

29.1 (12.6) 438 

(11.4) 

87.3 (13.6) 17.8 (12.9) 26.9% 

(20.6) 

19.8% 

(7.1) 

1.15 Y 

2E -

169.818 

47.0 (6.8) 334 (7.3) 424 (59.1) N/A 33.6% 

(33.6) 

29.3% 

(9.9) 

1.22 N/A 

2F -

135.196 

46.9 (6.8) 334 (8.4) 3.11 (24.2) 505 (69.5) 31.6% 

(19.7) 

29.2% 

(9.9) 

1.3 N/A 

3A -

198.144 

1.92 (28.9) 27.3 

(20.7) 

1.77 (18.7) N/A 30.6 

(18.9) 

21.5 

(7.8) 

1.71 N/A 

3B -

169.725 

3.20 (11.7) 19.5 

(31.9) 

2.03 (13.9) 0.394 (7.7) 29.8 

(21.1) 

20.2 

(8.8) 

1.56 N/A 

3C -

206.274 

3.33 (9.5) 19.5 

(27.6) 

0.11 (23.8) N/A 26.2 (21) 20.1 

(9.2) 

1.06 YYY 

3D -

173.892 

3.2 (11.2) 23.5 

(23.7) 

2.02 (13.8) 0.265 

(20.9) 

26 (21.7) 19.6 

(8.8) 

1.11 YY 

3E -

204.291 

1.77 (11.5) 42.9 

(18.7) 

0.894 (5.8) 
 

26.3 

(20.3) 

20.5 

(6.8) 

0.99 YYY 

3F -

170.095 

1.76 (11.4) 42.4 

(18.8) 

757 (17.2) 0.009 

(10600) 

25.9 

(21.2) 

20.4 

(7.4) 

1.86 N/A 

Estimates were reported with relative standard error (RSE) in brackets. Relative standard errors 

(RSEs) were calculated as: (standard error/estimate)*100. To obtain the RSEs in the domain of 

the reported original parameter instead of the log-transformed domain, normal/log-normal 

reverse algebra was applied (see A3.7). Intra-individual variability (IIV) was expressed as 

Coefficient of variation (% CV) which was calculated as: √(𝒆𝝎𝟐
− 𝟏) ∙ 𝟏𝟎𝟎 

Abbreviations for model are defined in Table 4.3. 
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Table A3.10: Parameter estimates of the investigated model for diazepam in monkey 
Models BIC SF1 

(RSE%) 

SF2 

(RSE%) 

SF3 

(RSE%) 

SF4 

(RSE%) 

Prop err Vss,b est 

[L/kg] 

Vss within 20% 

(YYY), 25% (YY), 

30% (Y) 

3A -

140.543 

0.153 

(52.9) 

44..5 

(100) 

3.34 (3.9) N/A 51.4% 

(14.9) 

50.9 N/A 

3B -

137.609 

0.289 

(20.7) 

21.0 

(94.2) 

3.30 (4.4) 1.20 

(10.4) 

55.8% 

(4.6) 

28.8 N/A 

3C -

138.918 

0.500 

(23.9) 

12.9 

(10.9) 

3.47 (7.4) N/A 64.3% 

(6.5) 

12.17 YYY 

3D -

136.666 

0.425 

(26.6) 

14.8 (8.9) 3.38 (4.4) 1.20 

(25.4) 

62.8% 

(6.6) 

12.16 YYY 

3E -

132.007 

1.23 (5.7) 0.453 

(5.7) 

121 (10.0) N/A 63.2% 

(7.3) 

14.9 N/A 

3F -

129.234 

1.23 (5.7) 0.921 

(34.7) 

8.33 (148) 120 (10.5) 63.2% 

(7.3) 

14.8 N/A 

Estimates were reported with relative standard error (RSE) in brackets. Relative standard errors 

(RSEs) were calculated as: (standard error/estimate)*100. To obtain the RSEs in the domain of 

the reported original parameter instead of the log-transformed domain, normal/log-normal 

reverse algebra was applied (see A3.7). Intra-individual variability (IIV) was expressed as 

Coefficient of variation (% CV) which was calculated as: √(𝒆𝝎𝟐
− 𝟏) ∙ 𝟏𝟎𝟎 

Abbreviations for model are defined in Table 4.3. 
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Fitting of the best simplified models in preclinical species 

Figure A3.5: Fits of PBPK model with 3 common Kpu scalars model (K-means clustering) in rat 

 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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Figure A3.6: Fits of PBPK model with 4 common Kpu scalars model (K-means clustering) in rat 

 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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Figure A3.7: Fits of PBPK model with 3 common Kpu scalars model (K-means clustering) in 

monkey  

 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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Figure A3.8: Fits of PBPK model with 4 common Kpu scalars model (K-means clustering) in 

monkey 

 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A3.6.2. Midazolam 

Fitting of the investigated models in preclinical species 

Table A3.11: Parameter estimates of the investigated model for midazolam in rat 
Models BIC SF1 

(RSE%) 

SF2 

(RSE%) 

SF3 

(RSE%) 

SF4 

(RSE%) 

IIV CL 

as %CV 

(RSE%) 

Prop 

err 

Vss,b 

estimated 

[L] 

Vss 

within 

20% 

(YYY), 

25% 

(YY), 

30% 

(Y) 

3A -

203.717 

0.553 

(34.9) 

24.7 

(25.8) 

0.626 

(18) 

N/A 28 (15.7) 23.5 

(11.7) 

1.04 N/A 

3B -

166.558 

0.584 

(32.3) 

24.7 

(25.2) 

0.644 

(13.3) 

0.511 

(46.3) 

27.9 

(15.5) 

23.6 

(12) 

1.04 N/A 

3C -

193.811 

1.19 

(17.2) 

4.80 

(22.7) 

0.236 

(92) 

N/A 30.6 

(15.2) 

25.7 

(17) 

0.51 YYY 

3D -

157.038 

1.17 

(11.5) 

5.18 

(41.7) 

0.761 

(27.8) 

0.487 

(44.9) 

29.7 

(15.4) 

25.8 

(17.3) 

0.54 YYY 

3E -

195.665 

0.647 

(14.6) 

28.5 

(28.6) 

14.9 

(66.4) 

N/A 29.6 

(14.6) 

25.2 

(16.1) 

0.34 N/A 

3F -

158.207 

0.667 

(14.4) 

27.2 

(27.1) 

1.19 

(69.1) 

13.9 

(62.1) 

30 (14) 25.4 

(15.6) 

0.31 N/A 

N/A: no value due to model failing to converge  

Estimates were reported with relative standard error (RSE) in brackets. Relative standard errors (RSEs) 

were calculated as: (standard error/estimate)*100. To obtain the RSEs in the domain of the reported 

original parameter instead of the log-transformed domain, normal/log-normal reverse algebra was applied 

(see A3.7). Intra-individual variability (IIV) was expressed as Coefficient of variation (% CV) which was 

calculated as: √(𝒆𝝎𝟐
− 𝟏) ∙ 𝟏𝟎𝟎 

Abbreviations for model are defined in Table 4.3. 

 

Table A3.12: Parameter estimates of the investigated model for midazolam in monkey 
Models BIC SF1 

(RSE%) 

SF2 

(RSE%) 

SF3 

(RSE%) 

SF4 

(RSE%) 

IIV CL 

as %CV 

(RSE%) 

Prop 

err 

Vss,b 

estimated 

[L] 

Vss 

within 

20% 

(YYY), 

25% 

(YY), 

30% 

(Y) 

3A -

120.577 

0.367 

(15.8) 

6.50 

(19.2) 

0.225 

(17.8) 

N/A 27.2 

(7.9) 

25 

(17.7) 

18.5 - 

3B -

114.154 

0.409 

(14.6) 

6.55 

(18.8) 

0.201 

(16.9) 

0.153 

(15.4) 

26.9 

(8.3) 

24.9 

(17.5) 

18.6 - 

3C -

117.811 

0.323 

(16.3) 

11.565 

(37.7) 

1.481 

(13) 

N/A 28.1 

(7.5) 

28.5 

(20.8) 

11.43 Y 

3D -

124.556 

0.324 

(16) 

21.22 

(9.6) 

0.203 

(14.7) 

1.878 

(13.2) 

21.6 

(3.3) 

31.5 

(21.5) 

10.31 YYY 

3E -

105.884 

0.644 

(8.8) 

0.617 

(40.2) 

5.73 

(91.8) 

N/A 35.2 

(10.9) 

25.2 

(27.9) 

11.87 N/A 

3F -

104.170 

0.625 

(7.0) 

8.72 

(26.3) 

10.8 

(64.4) 

2.37 

(98.7) 

34.6 

(11.4) 

24.8 

(27.6) 

11.93 N/A 

N/A: no value due to model failing to converge  

Estimates were reported with relative standard error (RSE) in brackets. Relative standard errors (RSEs) 

were calculated as: (standard error/estimate)*100. To obtain the RSEs in the domain of the reported 

original parameter instead of the log-transformed domain, normal/log-normal reverse algebra was applied 

(see A3.7). Intra-individual variability (IIV) was expressed as Coefficient of variation (% CV) which was 

calculated as: √(𝒆𝝎𝟐
− 𝟏) ∙ 𝟏𝟎𝟎 

Abbreviations for model are defined in Table 4.3.  
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Fitting of the best simplified models in preclinical species 

Figure A3.9: Fits of PBPK model with 4 common Kpu scalars model (K-means clustering) in rat 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 

  



261 

 

Figure A3.10: Fits of PBPK model with 3 common Kpu scalars model (K-means clustering) in 

monkey 

 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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Figure A3.11: Fits of PBPK model with 4 common Kpu scalars model (K-means clustering) in 

monkey 

 

 

DV: observed; PRED: population predicted; IPRED: individual predicted concentration (ng/ml); 

CWRES: conditional weighted residuals: TIME: time (h) 
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A3.6.3. Basmisanil 

Fitting of the investigated models in preclinical species 

Table A3.13: Parameter estimates of the investigated model for basmisanil in rat 
Models BIC SF1 

(RSE%) 

SF2 

(RSE%) 

SF3 

(RSE%) 

SF4 

(RSE%) 

Prop 

err 

Vss,b 

estimated 

[L] 

Vss within 

20% (YYY), 

25% (YY), 

30% (Y) 

3A 163.831 1.68 (2.5) 339 (8.9) 2292 

(7.7) 

N/A 43.6% 

(6.7) 

111.02 N/A 

3B 190.657 2.344 357 0.313 8344 48.4% 

(8.7) 

153 N/A 

3C 175.292 0.273 

(240) 

119 (31) 577 (3.2) N/A 46.1% 

(1.8) 

30.84 N/A 

3D 181.136 2.84 

(38.3) 

1.56 

(30.4) 

553 (1.8) 0.033 

(66.1) 

46.3% 

(2.2) 

29.59 N/A 

3E 160 5.23 

(19.2) 

15.1 (9.6) 693 

(10.5) 

N/A 30.6% 

(9.2) 

2.22 N/A 

3F N/A N/A N/A N/A N/A N/A N/A N/A 

Estimates were reported with relative standard error (RSE) in brackets. Relative standard errors (RSEs) 

were calculated as: (standard error/estimate)*100. To obtain the RSEs in the domain of the reported 

original parameter instead of the log-transformed domain, normal/log-normal reverse algebra was applied 

(see A3.7). Intra-individual variability (IIV) was expressed as Coefficient of variation (% CV) which was 

calculated as: √(𝒆𝝎𝟐
− 𝟏) ∙ 𝟏𝟎𝟎 

Abbreviations for model are defined in Table 4.3. 

 

Table A3.14: Parameter estimates of the investigated model for basmisanil in monkey 
Models BIC SF1 

(RSE%) 

SF2 

(RSE%) 

SF3 

(RSE%) 

SF4 

(RSE%) 

IIV CL 

as %CV 

(RSE%) 

 Prop 

err 

Vss,b 

est 

[L/kg] 

Vss 

within 

20% 

(YYY), 

25% 

(YY), 

30% (Y) 

3A 74.52 1.7 

(22.3) 

3.6x10-4 

(221) 

0.23 

(195) 

N/A 341 

(40.9) 

 73% 

(19.1) 

5.49 N/A 

3B 75.34 1.84 

(96.6) 

5.7x10-5 

(N/A) 

0.24 

(71.8) 

0.6 (41) 341 

(40.8) 

 72% 

(19.3) 

5.67 N/A 

3C 69.04 1.99 

(27.9) 

25.4 

(62.1) 

0.19 

(94.8) 

N/A 348 

(40.8) 

 69% 

(18.2) 

8.63 N/A 

3D 69.89 2.15 

(33.8) 

26.1 (68) 0.19 

(53.3) 

0.6 

(88.8) 

348 (41)  68% 

(18.4) 

8.87 N/A 

3E 75.16 1.41 

(16.2) 

7.8x10-5 

(1.9x103) 

9.8x10-5 

(1.6x10-

4) 

N/A 340 

(40.8) 

 73% 

(18.5) 

6.30 N/A 

3F 70.32 1.68 

(23) 

24.6 

(64.6) 

520 

(585) 

4.9x10-6 

(6.4x10-

4) 

348 (41)  69% 

(18.8) 

42.7 N/A 

Estimates were reported with relative standard error (RSE) in brackets. Relative standard errors (RSEs) 

were calculated as: (standard error/estimate)*100. To obtain the RSEs in the domain of the reported 

original parameter instead of the log-transformed domain, normal/log-normal reverse algebra was applied 

(see A3.7). Intra-individual variability (IIV) was expressed as Coefficient of variation (% CV) which was 

calculated as: √(𝒆𝝎𝟐
− 𝟏) ∙ 𝟏𝟎𝟎 

Abbreviations for model are defined in Table 4.3. 
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A3.7. Notes on the calculation of RSE% 

The parameters estimated in the simplified models were log-transformed when fitting the 

simplified models to the data. In order to calculate the relative standard errors (RSEs) in 

the domain of the reported original parameter instead of the log-transformed domain 

normal/log-normal reverse algebra needed to be applied. 

Considering a variable following a lognormal distribution with mean (M) and variance 

(V), then the mean (µ) and standard-deviation (σ) of the respective normally 

untransformed variable is calculated as followed: 

𝜇 = exp (𝑀 +
𝑉

2
) Eq. A3.3 

𝜎2 = exp(2 ∙ 𝑀 + 𝑉) ∙ (exp(𝑉) − 1) Eq. A3.4 

And finally, 𝑅𝑆𝐸 =
𝜎

𝜇
∙ 100 
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