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Abstract

The University of Manchester
Wei Liu
Doctor of Philosophy (PhD)
Three Essays on Macroeconomic Information,
Volatility Persistence and Structural Change
September 2019

This thesis explores the relationship between macroeconomic information and

stock market volatility. Firstly, we employ the GARCH-MIDAS model to investi-

gate the impact of fundamental macroeconomic variables on long-term stock market

volatility across three developed countries: U.S, UK and Japan. Secondly, we fur-

ther investigate the impact of macroeconomic information on long-term persistence

and structural changes in volatility. Thirdly, we introduce a discrete-time realized

volatility option pricing model which incorporates macroeconomic variable for op-

tion valuation.

This thesis consists of five chapters. In the first chapter, we make a brief intro-

duction of my thesis. In the second chapter, we explore the relationship between

macroeconomic information and long-term stock market volatility across three de-

veloped countries, U.S, UK and Japan. We employ the two-component GARCH-

MIDAS model to carry out international analysis and observe the relationship be-

tween macroeconomic variables and stock market volatility changes over time, both

in magnitude and significance. This time-varying relationship might largely at-

tributes to the time-varying expectations of market participants towards forthcom-

ing monetary policy changes and macroeconomic uncertainty.

In the third chapter, we extend the Heterogeneous Autoregressive Realized

Volatility-type models (HAR and Tree-HAR models) that allows macroeconomic in-

formation to explain long-term persistence and structural changes in stock volatility,

simultaneously. We find that both macroeconomic information and its uncertainty

have prominent impacts on stock volatility. Strikingly, macroeconomic information

helps to deliver a more elaborate regime-switching structure for U.S stock volatility,

which infers a tight link between macroeconomic information and potential struc-

tural changes in stock volatility.

In the fourth chapter, we employ our extended HAR model for option pricing do-

main. We aim to examine whether macroeconomic information, through its influence

on conditional volatility, can affect corresponding option prices? Root mean squared

errors for both put and call S&P500 Index options show that adding macroeconomic

information, in particular unanticipated information, into option pricing process in-

creases option pricing accuracy and mitigates implied volatility biases, relative to

traditional Black-Scholes model and GARCH model. In the last chapter, we make

a conclusion and possible future directions.
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Chapter 1

Introduction

As mentioned by Bollerslev et al. (1992), the volatility of asset returns in

financial markets is time-varying in a persistent manner across different assets,

time spans and countries. Accurately modelling asset volatility is of crucial im-

portance for asset pricing, risk management and portfolio allocation. Recent

financial crises and the associated large variations in volatility that accom-

pany them indicate the need for deep exploration of the relationship between

macroeconomic information and financial market volatility. Consequently, a

large body of literature has emerged modelling the link between macroecon-

omy and financial volatility; see, for instance, Morana and Beltratti (2004),

Engle and Rangel (2008), Christiansen et al. (2012), Engle et al. (2013), Con-

rad and Loch (2015) and Asgharian et al. (2013). In this thesis, we focus on

the link between macroeconomic information and stock market volatility, and

the application of the link between macroeconomic information and volatility

for European Option pricing. Our empirical results provide a contribution

to the debate on whether including macroeconomic information in volatility

models delivers a better description of stock market volatility, helps our under-

standing of structural breaks in volatility and what drives them, improves the

predictive performance of volatility models and helps in the pricing of options
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when volatility is not held constant. The following sections expand on these

points and discuss the chapters of the thesis in more details.

1.0.1 The Relationship between Macroeconomic Infor-

mation and Financial Volatility

The relation between macroeconomic information and financial market

volatility was initially proposed by Schwert (1989), who raised the question

“why does stock market volatility vary over time?”. In Schwert (1989)’s cross

sectional analysis, aggregated monthly stock volatility is explained by volatil-

ity of real and nominal macroeconomic variables and also financial leverage.

Empirical results of Schwert (1989) infers a weak relationship between macroe-

conomic information and stock volatility, which might possibly due to the fact

that long-term trend of stock returns (also volatility) are more related with

risk premia and relevant macroeconomic information flow (see Chen et al.

(1986) and Engle and Lee (1999)). An alternative explanation would be the

mismatched frequency between macroeconomic observations (usually observed

monthly or quarterly) and asset returns (usually observed daily or intra-daily.)

Engle et al. (2013) successfully resolved this mismatch in frequency by intro-

ducing the GARCH-MIDAS model which allows volatility to vary over time

(the GARCH part) while also allowing for the inclusion of macroeconomic in-

formation (the MIDAS part, MIDAS standing for Mixed Data Sampling.) This

GARCH-MIDAS model can be nested into a two-component GARCH process

that stems from Ding and Granger (1996) and Engle and Lee (1999), where

volatility is decomposed into two parts: the long-term volatility component

and the short-term volatility component. The short-term volatility component

follows a standard GARCH process and slowly evolves around the long-term

volatility component. Owing to the Mixed data sampling (MIDAS) approach
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(Ghysels et al. (2007)), macroeconomic data observed at different frequencies

can be included in the model to explain long-term volatility movements. The

empirical results in Engle et al. (2013) reveal that industrial production growth

and inflation improve the long-run prediction of U.S. stock market volatility.

In the second Chapter, We use the GARCH-MIDAS model to examine the

relationship between macroeconomic variables and stock return volatility for

the U.S, the UK and Japan to see whether the findings are consistent across

countries and, given our sample includes the global financial crisis and the

sovereign debt crisis, how the GARCH-MIDAS model performs over time, both

in terms of the significance of the macroeconomic variables and the forecasting

performance of the model. We find that macroeconomic variables are impor-

tant determinants of return volatility in the U.S, the UK and Japan and that

the inclusion of macroeconomic variables improves forecasting performance in

terms of predicting volatility. However, our sub-sample analysis reveals that

while macroeconomic information matters, the significance of the individual

macroeconomic variables, the magnitude of their coefficients and even the sign

of the coefficients on some of the macroeconomic variables change over time,

suggesting that parameters in the GARCH-MIDAS model are not stable over

time and that consideration needs to be given to structural breaks in volatility

and their determinants.

1.0.2 Macroeconomic Information and Potential Struc-

tural Breaks in Financial Volatility

Empirical results from our second chapter suggest that while evaluating the

link between macroeconomic information and long-term financial volatility, it

is necessary to bring potential structural breaks into consideration. Ander-

sen and Bollerslev (1997) point out that neglecting proper consideration of
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structural breaks might artificially lead to a strong persistence of volatility in

financial market. Engle et al. (2013) also mention that the GARCH-MIDAS

with fixed parameters fails to reflect potential structural changes in volatil-

ity. One possible solution is to follow Engle et al. (2013) and partition the

whole estimation sample into several sub-periods according to existing struc-

tural breaks in volatility, and then carry out GARCH-MIDAS analysis across

the different sub-samples. Alternatively. we could employ a regime-switching

volatility model that is able to account for structural breaks and different

regimes in volatility.

Based on the GARCH framework, Audrino and Bühlmann (2001) introduce

a regime-switching GARCH process, the Tree-GARCH model, where the num-

ber of regime is endogenously determined. Building on this, Audrino (2006) in-

troduces a regime-switching realized volatility model, the Tree-Heterogeneous

Autoregressive (HAR) model, where unobserved volatility is proxied by re-

alized volatility. Regime determination embedded in both the Tree-GARCH

and Tree-HAR models comes from the binary-tree algorithm of Breiman et al.

(1984) in which the optimal number of regimes are endogenously driven by

the data. Therefore, a tree-structured volatility model enables the adjustment

of the number of regimes so as to fit structural changes in volatility. Conse-

quently, it is able to generate a multi-regime structure, where macroeconomic

variables might possibly be used as explanatory variable, explaining volatility

movement within each regime, meanwhile identifying structural changes across

regimes.

In the third chapter we use the Tree-HAR model to further analyse the re-

lationship between macroeconomic information and stock market volatility for

the US stock market. We extend the Tree-HAR model to allow macroeconomic

information to not only explain long-term volatility movements within each

regime, but also to determine the regime structure of volatility. We find that
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the macroeconomic variables individually explain not only long-term volatil-

ity movements but also different regimes for stock market volatility. These

findings suggest that macroeconomic information is important not only for

explaining return volatility but for determining (at least some) changes in

volatility regime. The Tree-HAR model also suggests that the regime struc-

ture is more sophisticated than the more usual high/low volatility regimes.

In particular, we find the Tree-HAR identifies a medium-volatility regime in

addition to high and low regimes and that macroeconomic information often

plays a role in further sub-dividing at least one of these regimes to give a stable

four-regime structure in most cases.

1.0.3 Macroeconomic Information and Option Pricing

Application

Due to the importance of macroeconomic information in explaining stock

volatility, Christoffersen et al. (2009) utilizes the GARCH-MIDAS model with

macroeconomic information for option pricing and finds that introducing macroe-

conomic information leads to some improvements in the pricing of options:

pricing errors in the GARCH-MIDAS option pricing model are less than those

observed in traditional GARCH and Black-Scholes option pricing models.

As mentioned in the second chapter, volatility in the GARCH-MIDAS

model consists of short-term and long-term volatility components. Andersen

and Bollerslev (1997) notes that volatility observed during short time spans

largely accounts for high-frequency intraday information. Hence, failure to use

intraday returns when estimating short-term volatility persistence, something

which the GARCH-MIDAS model does not, might artificially lead to strong

persistence in the short-term volatility component. Consequently, extreme per-

sistence of the short-term volatility component in the GARCH-MIDAS option
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pricing model could have a negative impact on pricing of options.

Corsi (2009) develops the Heterogeneous Autoregressive (HAR) realized

volatility (HAR) model that describes daily volatility as a sequence of autore-

gressive volatility components realized over daily, weekly and monthly hori-

zons. Application of the HAR model in option pricing (Corsi et al. (2013))

reveals that it outperforms the GARCH option pricing model, especially for

short-maturity European options. The HAR model has two advantages: First,

it is able to mimic the long-memory feature of volatility, which benefits the

pricing of long-maturity options and second, its multi-component structure

makes it possible for low frequency macroeconomic information to be incorpo-

rated into a high-frequency volatility model.

In the fourth chapter, we incorporate macroeconomic information into the

HAR model and develop a realized volatility option pricing model. Our re-

sults suggest that most macroeconomic variables outperform Duan’s GARCH

model across maturity and moneyness for both put and call options. Empirical

results infer a tight link between option and market reactions towards changes

in economy. For instance, macroeconomic variables that usually perform as

recession indicators, such as term spread and unemployment rate, tends to

be less effective for call option. While inflation factor, that is more active

during economy expansion, seems to have limited performance for put op-

tion. Surprisingly, unexpected macroeconomic information, which is measured

by economic uncertainty, outperforms alternative macroeconomic variables for

out-of-money (OTM) options with long-maturity. It infers that unexpected

macroeconomic shock matters for option valuation, espeicial for long-maturity

options.
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1.0.4 Thesis Structure

This thesis is structured around three self-contained essays in Chapter 2,

3 and 4. Each chapter has separate introduction, background information,

methodology, data analysis, conclusion and reference. The equations, tables,

figures, footnotes are sorted in sequential orders throughout the thesis.

The thesis continues as follows: Chapter 2 investigates the relationship

between long-term stock market volatility and macroeconomic variables using

the GARCH-MIDAS model throughout U.S, UK and Japan stock markets;

Chapter 3 examines the impact of macroeconomic information, especially un-

expected information, on the long-term persistency and structural changes

in the U.S stock market using HAR-type realized volatility model; Chapter

4 introduces a discrete-time realized option pricing model incorporated with

macroeconomic information. Chapter 5 makes conclusion of the major findings

of the thesis.

Finally, I use third person (we, our) rather than the first person (I, my)

throughout the thesis, indicating that three chapters are in the form of work-

ing, or submitted, co-authored with my supervisor Ian Garrett at Alliance

Manchester Business School.
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Chapter 2

Do the Macroeconomic variables

contain explanatory information

for stock market volatility?

International evidence from the

GARCH-MIDAS model

We explore the relationship between long-term stock market volatility and

fundamental macroeconomic variables using the GARCH-MIDAS model across

US, UK and Japan1. The GARCH-MIDAS model introduced by Engle et al.

(2013) maintains a two-component volatility structure, where volatility is di-

vided into a short-term component and a long-term component. While the

short-term volatility component follows a standard GARCH process, the long-

term volatility component is directly determined by macroeconomic informa-

1The reason for considering these markets maily arises from the fact that, US, UK and
Japan stock markets represents the world’s major centre for trading. For US, shares being
traded in the New York exchange market accounts for 54.5% of total. For UK, shares being
traded in the London exchange market roughly accounts for 5.1%. While for Japan, shares
being traded in the Tokyo exchange market accounts for 7.7% of total.

20



tion. This is done through different lags of macroeconomic observations being

brought together and transformed into a weighted average value via the Mixed

data sampling (MIDAS) approach of Ghysels et al. (2007). Our findings sug-

gest that macroeconomic variables have an uneven (or time-varying) impact on

stock return volatility across countries, with the magnitude of impact and the

statistical significance of the macroeconomic variables being different across

different sub-periods in every financial market, although the term spread and

first principal component perform rather well in most cases. This time-varying

relationship might largely attributes to the time-varying expectations of mar-

ket participants towards forthcoming monetary policy changes and macroeco-

nomic uncertainty. We also observe that long-term volatility originating from

the US market transmits to the UK and Japanese markets. Consequently, con-

sidering US volatility spillovers helps us to capture the real impact of macroe-

conomic information on local stock volatility, which is complementary to the

global volatility transmission from US to local stock volatility.

Keywords : Mixed Data Sampling, Principal Component, Macroeconomic Vari-

ables, Model Confidence Set.
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2.1 Introduction

It is well known that the estimation and prediction of volatility is essential

for asset pricing and risk management. Following the seminal work of Schwert

(1989), one area that has received significant attention is the relationship be-

tween stock market volatility and macroeconomic information. Schwert (1989)

examines changes in volatility over time and the extent to which such changes

are driven by the volatility of macroeconomic variables. He finds that macroe-

conomic information tends to have limited success in explaining changes in

volatility over time. One possible explanation for Schwert (1989) limited find-

ings might be: macroeconomic source is more influential on the long-run trend

of variations in financial market, rather than short-run variations (see Chen

et al. (1986) and Rebonato and Hatano (2018)). Another possible explanation

is the mismatch in the frequency with which macroeconomic variables and

stock returns are observed. The problem here is that macroeconomic variables

are usually only observed at a monthly or quarterly frequency whereas stock

returns are typically observed at a daily or intra-daily frequency. To deal with

the mismatched frequency between macroeconomic variables and stock returns,

Engle et al. (2013) introduce the GARCH-MIDAS model, where macroeco-

nomic variables observed at low frequency are able to be directly incorporated

into the high-frequency volatility model.

The GARCH-MIDAS model can be nested into a two-component GARCH-

type volatility model initially introduced by Engle and Lee (1999), where stock

volatility is decomposed into two components: a long-term volatility compo-

nent and a short-term volatility component. The short-term volatility compo-

nent follows a standard GARCH process and evolves around a time-varying

long-term volatility component. Engle et al. (2013) introduce the mixed data

sampling (MIDAS) approach of Ghysels et al. (2007) into the two-component
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GARCH process and create the GARCH-MIDAS model. Under the GARCH-

MIDAS framework, macroeconomic data observed at different frequencies are

able to be brought up together into one MIDAS filter explaining long-term

stock volatility movements, and consequently in turn affect short-term stock

variations in the same empirical model. Using the GARCH-MIDAS model,

Engle et al. (2013) find that macroeconomic variables partially explain stock

volatility in the US market and improve predictive ability relative to other

GARCH-type models (see Asgharian et al. (2013) and Conrad and Loch (2015)

for further evidence on the relationship between US stock market volatility and

macroeconomic information.)

Though much of the evidence to date illustrates the significant relation-

ship between macroeconomic variables and stock market volatility for the US

2, there is little evidence on the effect of macroeconomic variables on stock

volatility in other countries and how stock volatility driven by macroeconomic

information transmits from the US to other countries. In this paper, we use

the GARCH-MIDAS model (we term this model GARCH-MIDAS-X to de-

note the presence of macroeconomic variables in the model) to examine the

relationship between macroeconomic variables and stock market volatility for

developed economies, rather than purely for the US market. We are interested

in whether relationships documented for the US are observed in other devel-

oped economies, in particular the UK and Japan. To examine this, we employ

a range of macroeconomic variables that have been widely used in the previous

literature, including growth in industrial production; inflation; unemployment

rate; term spread, housing starts and exchange rate, to examine whether and

how they impact stock market volatility and whether these relationships are

stable over time.

2see for example Engle and Rangel (2008), Engle et al. (2013), Asgharian et al. (2013)
and Conrad and Loch (2015)

23



We first examine whether macroeconomic information contributes to stock

volatility in the GARCH-MIDAS model for the US, UK and Japan. For the

US, we reconfirm a counter-cyclical pattern of stock variations response to

macroeconomic information. We also find that the response of volatility to-

wards different macroeconomic variables is vary over time, both in magnitude

and significance. Industrial production growth, for example, becomes less in-

formative after the Great Moderation of the 1980s, whereas the unemployment

rate and the term spread gradually increase their impacts after the Great

Moderation. This counter-cyclical volatility pattern in US is consistent with

previous studies of Schwert (1989) and Boyd et al. (2001), who argue that

large variations in the macroeconomy are expected to promote stock market

volatility, whereas large variations of macroeconomy in UK and Japan during

the period 1990-2006 is found to depress stock volatility. For instance, stock

volatility in the UK experienced unexpected large spikes, which contrasts with

the deflationary economy during the Great Moderation. Similarly for Japan,

when its economy entered into its deflationary phase after the burst of the real

estate bubble, volatility seems to be more volatile than before. One possible

explanation is the fundamental change of monetary policy, which might trigger

changes in how stock market volatility responds to macroeconomic informa-

tion. Another possible explanation might be related to market participant’s

expectation of further change in monetary policy.

We then proceed to examine whether there is any additional macroeco-

nomic effect accounts for stock variation in the UK (or Japanese) stock mar-

ket, after controlling the volatility spillovers of US. To do this, we estimate

two alternative models GARCH-MIDAS-RV-X models (where RV denotes the

presence of realized volatility for the US in the model), one that is restricted

with no spillover effects and one that is unrestricted with spillover effects. Es-

timation results reveal that the likelihood ratio test significantly favors the
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unrestricted model over the restricted one: US volatility spillovers have an

effect on stock market volatility in the UK and Japan. Perhaps surprisingly,

most macroeconomic variables still perform equally well in term of providing

additional impacts on stock markets.

As most of the macroeconomic impacts on stock volatility changes over

different sub-samples, both in magnitude and significance, it is difficult to

distinguish the dominant macroeconomic variable from alternative competi-

tors. Therefore, we employ principal component analysis (PCA) to derive a

“macroeconomic factor” that can be used in one GARCH-MIDAS-X model,

avoiding the computational complications and difficulties of including all of

the macro variables into one GARCH-MIDAS model. We find that the first

principal component (PC1) of the macroeconomic variables contributes most

to explain stock volatility for the full sample across all three countries. How-

ever, when looking across different sub-samples for each country, we observe

that PC1 does not always dominate on stock volatility. In fact, its contribu-

tion varies across different sub-samples. For the US market, PC1 gradually

increases in its impact, from 21.38% in 1970-1984 to 31.58% in 2007-2014. In

contrast, PC1 for Japan decreases from 25.25% in 1970-1989 to 9.34% in 2007-

2014. In terms of additional impact being observed in the GARCH-MIDAS-X

model, PC1 outperforms alternative macroeconomic variables, excluding infla-

tion growth.

Finally, we utilize the Model Confidence Set (MCS), which is suitable for

comparisons among a large group of macroeconomic variables across different

sub-periods, to evaluate the predictive ability of the GARCH-MIDAS models

with different macroeconomic variables. The prediction results reveal that

macroeconomic variables seem to be less useful during the global financial

crisis (2008-2009) for both the US and UK. Both term spread and PC1 have

superior predictive ability relative to alternative macroeconomic variables in
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most cases, especially for UK.

The rest of this paper is organized as follows. Section 2.2 provides literature

review. Section 2.3 introduces the GARCH-MIDAS model and discusses vari-

ous specifications of the MIDAS filter. Section 2.4 describes the stock return

data and the macroeconomic variables for the US, UK and Japan. Section 2.5

analyses the empirical results, comparing the GARCH-MIDAS models speci-

fied with purely realized volatility with those using realized volatility as well

as the macroeconomic variables. Section 2.6 evaluates the additional impacts

on stock volatility, if any, of US volatility spillovers. In Section 2.7, we employ

principal component analysis (PCA) to generate a “macroeconomic factor” to

see whether this improves the performance of the GARCH-MIDAS model. In

Section 2.8 provides the Model Confidence Set results for prediction ability

comparison. Conclusions are presented in section 2.9.

2.2 Literature Review

Prices in financial markets tend to fluctuate when economic news arrives

and they might exhibit unusually large fluctuations during major episodes in

the macroeconomy. Campbell and Shiller (1988) relate price fluctuations to the

variations in macroeconomic state. They show that the dividend-price ratio

reflects expectations about future cash flow growth (dividends) and future

movements in returns (discount rates) which in turn are part of a larger set

of variables that provide information about the state of the macroeconomy.

Campbell and Shiller (1988) note that these other variables capturing the state

of the economy can be used to forecast returns and cash flows and as such asset

prices reflect expectations of the future state of the economy. Fama (1981,

1990) provide empirical evidence to show there exists interactions between the

stock market and aggregate economic activities in the US. A large proportion
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of stock variations are attributed to the forecast of real economic activity,

which includes production growth and inflation. Ferson and Harvey (1993)

find similar interrelations for other international equity markets.

One strand of the Macro-Finance literature explores the role of finan-

cial information, particularly stock returns, in explaining movements in the

macroeconomy, investigating whether financial market volatility is useful for

predicting future aggregate economic activity, and whether a huge downturn in

financial markets in turn predicts recession in the macroeconomy in the future.

Harvey (1988, 1989) find that the revision of slope in bond yield curve helps

to predict economic growth in the future. Stock and Watson (2003) examine

the role of asset prices in forecasting fundamental macroeconomy and observe

that it has limited and unstable predictive power for output growth. Ferrara

et al. (2014) find out the asset variations have significant predictive power

on GDP growth during the Great recession period (2007-2010) over three in-

dustrialized countries, the US, the UK and France, while Bellégo and Ferrara

(2012) compress financial market information into synthetic factors from a fac-

tor model and use it to predict Euro area business cycles, which suggests an

lead-lag relationship between synthetic factors and recent one-year economic

recessions.

Another strand focuses on evaluating the contribution of the macroeconomy

in explaining movements in financial markets. Fama and French (1989) exam-

ine the time-varying nature of risk premiums and claim that risk premiums

in the stock market are counter-cyclical with respect to different underlying

economic states. Schwert (1989) addresses a similar issue for stock volatility,

investigating the exogenous sources that drive stock market movements. He

employs the volatility of macroeconomic variables to explain aggregate stock

market volatility. His findings reveal that stock market volatility exhibits a

counter-cyclical pattern with respect to macroeconomic fundamental variables

27



such as inflation and monetary growth. Boyd et al. (2001) and Mele (2007)

provide further evidence to support this conclusion.

However, despite the findings in these papers, macroeconomic variables

seem to have limited explanatory power in relation to explaining asset volatil-

ity. For instance, although Schwert (1989) uses a large set of macroeconomic

variables to explain US stock market volatility, none of the variables provide a

dominant contribution to explaining stock volatility in the US market: their ex-

planatory power is often limited. More recently, Calvet et al. (2006) arrives at

a similar conclusion. One possible explanation for this is that macro variables

are more influential in explaining the long-term component of return instead

of the entire asset return. If we decompose return into the expected return

and noise and if the underlying expected return is persistent (see Ferson et al.

(2003), for example), then from the evidence in Chen et al. (1986) that macroe-

conomic variables explain expected returns, the link between macro variables

and expected returns can be viewed as a kind of macro-finance relationship in

the long-run.

Similar points hold for long-term trend of volatility when exploring the

contribution of macroeconomic variables. Engle and Rangel (2008) isolate

long-term volatility through a Spline-GARCH model, then observe a signif-

icant relationship between macroeconomic variables and long-term volatility

in the US stock market. The way in which Engle and Rangel (2008) isolate

long-term volatility is inspired by Andersen and Bollerslev (1998) and Engle

and Lee (1999). As noted by Andersen and Bollerslev (1998), in a conventional

GARCH model where we can write the return as rt = σtzt, the conditional vari-

ance reverts to its mean value of σ2 but it is difficult to model this potentially

slow-moving component of return volatility because zt is noisy. Engle and Lee

(1999) suggest a way to do this by decomposing the unconditional volatility

σ2 into a two-component structure: a permanent (slow-moving) component
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which is interpreted as trend around which the other transitory component

fluctuates. Engle and Lee (1999) provide economic interpretations for these

two components: the transitory component accounts for short-lived macroe-

conomic shocks as well as such things as leverage effects that are observed in

stock market volatility; the permanent component is interpreted as investors’

response to the risk level for the longer-term. Since the transitory compo-

nent only accounts for instant shocks which die out quickly, the permanent

component is closely related to risk premia and can then be priced.

These two seminal works offer insight and some understanding of Engle

and Rangel (2008)’s main results in terms of the finding of a significant re-

lationship between macroeconomic variables and the long-term (permanent)

volatility component. That is, long-term volatility component viewed as a

proxy of long-term risk, is priced in asset returns. As long-lasting risk can be

easily affected by underlying economic states, it is reasonable to consider pos-

sible linkages between the long-term volatility component and macroeconomic

variables. Engle et al. (2013) further extend this model by adding a MIDAS fil-

ter into the two-component structure, the GARCH-MIDAS model. The main

advantage of the GARCH-MIDAS model is that macroeconomic data with dif-

ferent frequencies are able to be incorporated into the model within one MIDAS

filter, allowing macroeconomic variables to potentially explain the permanent

volatility component. Their empirical results demonstrate that macroeconomic

variables help to improve stock volatility forecasting accuracy in the long-run.

In the following chapter, we will introduce the GARCH-MIDAS model in de-

tails.
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2.3 The GARCH-MIDAS model

In this section, we introduce the GARCH-MIDAS model with three alter-

native specifications: the realized volatility (MIDAS-RV) model, the macroe-

conomic variables (MIDAS-X) model and the mixture of RV together with

macroeconomic variables (MIDAS-RV-X). Referring back to Engle et al. (2013),

the long-term volatility component possesses a high degree of persistence rela-

tive to the short-term volatility component. Monthly RV could be one source

that drives long-term volatility movements within the MIDAS structure. This

leads to the MIDAS-RV specification. In the MIDAS-X specification, macroe-

conomic variables are used to explain long-term volatility movements in the

stock market. Therefore, we are able to directly evaluate the relationship be-

tween macroeconomic information and long-term stock market volatility using

the MIDAS-X specification. We can also combine RV and macroeconomic

variables together and create a new MIDAS-RV-X specification, in order to

exmaine to what extent macroeconomic variables provide complementary in-

formation to that contained in RV.

2.3.1 GARCH-MIDAS Model with Realized Volatility

The basic GARCH-MIDAS model specified with Realized Volatility (RV)

is:

ri,t − Ei−1,t(ri,t) =
√
τtgi,tεi,t i = 1, 2, ...Nt

εi,t/Ii−1,t ∼ N(0, 1)

(2.1)

where ri,t is daily log return observed on date i in a period of time t, where i

indexes the number of trading days within one period of time t, i = 1, 2..., Nt.

For example, if we were to specify the time interval t to be monthly, Nt would
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be the total number of trading days in one month t. On the right-hand side, the

entire conditional volatility is decomposed into two sub-components, a long-

term component τt and a short-term component gi,t. According to Engle et al.

(2013), the short-term component gi,t follows a typical, but more distinctive

GARCH(1,1) process:

gi,t = (1− α− β) + α
(ri−1,t − µ)2

τt
+ βgi−1,t

α > 0, β > 0, α + β < 1

(2.2)

where the short-term volatility component gi,t on day i of month t is explained

by its previous day’s value of gi−1,t and the squared error term (ri−1,t−µ)2. One

distinguishing feature in Equation 2.2 is that the squared error term has been

adjusted by its long-term component τt, where τt keeps a relatively constant

value during that period of time t. Please note that, the long-term component

could be one month, quarter or even a year. In this thesis, we will specify the

long-term component τt in a monthly frequency. To understand why Engle

et al. (2013) make such an adjustment, multiply both sides of Equation 2.2 by

τt on both sides, and rearrange to give:

gi,t τt = (1− α− β)τt + α(ri−1,t − µ)2 + βgi−1,t τt (2.3)

where the intercept term in Equation 2.3 is allowed to evolve slowly with

the long-term component, rather than keeping a constant level. Intuitively,

maintaining a relative constant value during, say, a one month period of time

enables the long-term component τt to accommodate to the underlying eco-

nomic circumstances during that month. When the economic state switches,

the long-term component τt will change accordingly. Then, from Equation 2.3,

we can infer that the short-term component gi,t actually swings around the

long-term component τt during month t with available information up to date
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i− 1 in the information set Ii−1,t.

Following Ghysels et al. (2007) and Engle et al. (2013), the long-term

volatility component τt is explained by a weighted average value of past realized

volatilities in the MIDAS-RV specification:

τt = m+ θ
K∑
k=1

φk(ω1, ω2)RVt−k

RVt =

√√√√ Nt∑
i=1

r2
i,t

(2.4)

In Equation 2.4, parameter θ measures the impact of aggregated historical

realized volatilities on the long-term volatility component τt. K denotes the

optimal number of lags of past realized volatilities (RV) being added into the

MIDAS-RV filter. The Realized Volatility (RV) is a proxy of unobserved stock

volatility, which is measured by taking the square root of the sum of squared

returns within a fixed time span t. As an alternative to the fixed RV in

Equation 2.4, RV can also be calculated with a rolling window, which means

realized volatility is recursively calculated:

RV rw
i,t =

√√√√ N ′∑
j=1

r2
i−j,t (2.5)

In Equation 2.5, N ′ denotes the length of the rolling window. On day i, we

roll back N ′ days from day i in period t, then sum up squared returns during

that rolling window. In this paper, we set up N ′ equal to 22. Therefore, RV rw

denotes a monthly rolling RV calculated in a daily frequency. Correspondingly,

with RV rw, both the long-term component τ and the short-term component

g are able to be observed in a daily frequency.

In the MIDAS-RV specification, φk is a beta weighting scheme that de-

termines the weight attached to each lag of RV and therefore determines the
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impact each lag of RV has on the long-term component of volatility τ . The

beta weight is defined as:

φk(ω1, ω2) =
(k/K)ω1−1(1− k/K)ω2−1∑K
j=1(j/K)ω1−1(1− j/K)ω2−1

(2.6)

An advantage of the beta weighting scheme is that it governs the shape of

the weighting scheme quite flexibly with only two parameters, ω1 and ω2. The

beta weights being generated from Equation 2.6 satisfy the restrictions that

φk > 0 and
∑K

k=1 φk = 1. If ω1 is set equal to 1 the beta weighting scheme

exhibits a decaying pattern. In Figure 2.1, the decaying pattern is shown as

the black dashed line and it can be seen that with a decaying pattern the most

recent observations tend to exert a greater impact on the long-term component

τt but the impact weakens over time. The decaying speed is captured by ω2.

If the value of ω2 increases, the decay is more rapid (see the black solid line

in Figure 2.1). If ω1 and ω2, are unrestricted then a hump shape weighting

scheme will result. Such a scheme is shown by the red line in Figure 2.1, where

the maximum weight is allocated to a more distant observation rather than

most recent observation.

Figure 2.1: Beta Weighting Scheme

Equations 2.1, 2.2, 2.4 and 2.6 jointly constitute the GARCH-MIDAS
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model with Realized Volatility (GARCH-MIDAS-RV) specification. The pa-

rameter space is defined as Φ = [µ, α, β,m, ω1, ω2], which is estimated via the

maximum likelihood algorithm. The log-likelihood function is:

LLF = −1

2

T∑
t=1

{log (gt(Φ)τt(Φ))− (rt − µ)2

gt(Φ)τt(Φ)
} (2.7)

where gt(Φ)τt(Φ) denotes the conditional variance in the GARCH-MIDAS

model.

2.3.2 GARCH-MIDAS Model with Macroeconomic Vari-

ables

As an alternative to the realized volatility specification, we can incorporate

macroeconomic information (call this X) into the MIDAS filter, leading to the

MIDAS-X specification. The MIDAS-X specification allows us to evaluate the

relationship between macroeconomic information and stock volatility. The

MIDAS-X specification is described below:

logτt = ml + θl

Kl∑
k=1

φk(ω1,l, ω2,l)Xl,t−k (2.8)

The long-term volatility τt in Equation 2.8 is smoothed out by K lags of

monthly observations from one macroeconomic variable X. Research associ-

ated with the GARCH-MIDAS model has shown that most macroeconomic

variables exert significant impacts on stock volatility in the U.S. For example,

Engle et al. (2013) observe significant effects of industrial production (IP) and

the producer price index (PPI) on US stock volatility. Conrad and Loch (2015)

provided encouraging results for the term spread (TS) and housing starts (HS)

in the US market as well. Their findings are consistent with Campbell (1999),

who documents that the stock volatility could be a result of the impact of
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macroeconomic factors that vary over different economic states. Not only fo-

cusing on the US market, in this paper we examine whether the effects of

macroeconomic information on stock volatility observed in the U.S are present

in the UK and Japan stock markets.

2.3.3 Measuring the Contribution of Macroeconomic In-

formation

A natural question to ask at this stage is, “How much of stock volatility

can be attributed to macroeconomic sources?” To answer this question, we

implement two alternative approaches: the first is to examine the incremental

contribution, if any, of macroeconomic variables to stock market volatility

having controlled for the effects of historical realized volatility; the second

is to use the variance ratio introduced by Engle et al. (2013), quantifying

the relative contribution of the macroeconomic variables to the entire stock

volatility.

A. The GARCH-MIDAS Model with RV and Macroeconomic Vari-

ables

To evaluate the additional impacts of macroeconomic variables on stock

market volatility, we follow Asgharian et al. (2013) and Conrad and Loch

(2015) that combine both realized volatility and macroeconomic variables to-

gether within one GARCH-MIDAS model. We term this the GARCH-MIDAS-

RV-X model. Hence in the MIDAS-RV-X filter, both macroeconomic informa-

tion and historical realized volatility jointly account for the stock volatility:

τt = m+ θrv

Krv∑
k=1

φrv(ω1,rv, ω2,rv)RVt−k + θx

Kx∑
k=1

φx(ω1,x, ω2,x)Xt−k (2.9)
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whereXt is the macroeconomic variable and captures the additional macroe-

conomic information that is supplementary to that provided by past realized

volatility, supplementary due to the fact that past realized volatilities might

already contain information from the macroeconomic variable. Accordingly, θx

accounts for the additional effect of the macroeconomic variable on long-term

volatility τt. Under this MIDAS-RV-X specification, past realized volatility

(RV) can also be viewed as a benchmark relative to different macroeconomic

variables: if θx is insignificant, the macroeconomic variable contains no addi-

tional information about stock market volatility to that contained in realized

volatility.

B. Variance Ratio

Instead of using MIDAS-RV-X filter (2.9) to evaluate the additional im-

pact of macroeconomic variables, we implement an alternative method of The

Variance Ratio from Engle et al. (2013). The variance ratio is defined as

the fraction of the sample variance of the log long-term volatility component

log(τMt ) relative to the entire volatility log(τMt g
M
t ):

V R =
v̂arlogτMt

v̂arlog(τMt g
M
t )

(2.10)

where M refers to a typical GARCH-MIDAS model, in which long-term com-

ponent could be driven by one specified macroeconomic variable x. In the

numerator of Equation 2.10, the long-term volatility component τMt is solely

explained by one macroeconomic variable x in a MIDAS filter (see Equation

2.8 as an example). In the denominator of Equation 2.10, we combine the long-

term component τMt and the short-term component gMt together as the total

volatility. Therefore, we can see how large a proportion of stock variations is

attributed to the variations of macroeconomic variable .
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2.3.4 GARCH-MIDAS model with the Principal Com-

ponent

Previous studies suggest a wide range of macroeconomic variables that have

significant impacts on the U.S stock market. For instance, Conrad and Loch

(2015) find the term spread and housing starts are significant for the U.S mar-

ket, Asgharian et al. (2013) find the short-term interest rate performs well in

the U.S markets while Engle et al. (2013) find industrial production growth

and inflation matter in explaining volatility. One problem these findings raise

is that they might result in confusion over which macroeconomic variable con-

tributes most for stock volatility. In fact, Campbell (1999) document that

variation in the stock market could be a result of different macroeconomic im-

pacts that vary over different economics states. If this is the case, it is necessary

to use a combined macroeconomic indicator to evaluate the dynamic relation-

ship between the macroeconomy and stock market volatility. Asgharian et al.

(2013) use Principal Components Analysis (PCA) to address this issue and

introduce the principal components into the GARCH-MIDAS model.

PCA offers us an efficient way to bring all the macro variables together into

one MIDAS filter, avoiding the significant computational complications and

possible convergence problems that arise when they are included in the MIDAS

filter as a group. PCA is a dimensionality reduction approach, which constructs

principal components to extract combined macroeconomic information from a

group of macro variables. The first principal component (PC1) accounts for

the largest proportion of variation from the different macro series. Therefore,

we compress a large group of macro variables into one common factor, PC1,

and add it into the MIDAS regression:

τt = mp + θp

Kp∑
k=1

φk(ω1,p, ω2,p)PC1,t−k (2.11)
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where PC1 refers to the first principal component. With the MIDAS-PC spec-

ification in Equation 2.11, we are able to evaluate combined macroeconomic

impacts on stock market volatility efficiently. In line with Section A., we also

combine realized volatility and the principal component together into one MI-

DAS regression:

τt = m+ θrv

Krv∑
k=1

φk(ω1,rv, ω2,rv)RVt−k + θpc

Kpc∑
k=1

φk(ω1,pc, ω2,x)PCt−k (2.12)

We use Equation 2.12 to evaluate the performance of principal components

relative to the benchmark of realized volatility. Also, we will make compar-

isons with different MIDAS-RV-X specifications to identify whether individual

macro variables or the principal component have the most prominent effect on

stock market volatility.

2.4 Data Description and Summary Statistics

To fully capture the dynamic relationship between macroeconomic informa-

tion and stock volatility across the different countries in our study, we employ

a large set of macroeconomic variables, including industrial production (IP),

housing starts (HS), producer price index (PPI), unemployment rate (UEM)

and term spread (TS). Both industrial production and housing starts are used

as proxies of real activity. The change in the PPI measures average growth

in the selling price offered by producers who charge for goods and services.

Growth in the PPI Index is the economic indicator for inflation in our study.

Following Estrella and Mishkin (1998), we use the term spread, measured as a

difference between the ten-year and three-month Treasury yields, and evaluate

its impacts on stock volatility, especially during economic recessions. Given
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the evidence that there are significant spillover effects from the US to Japan

(see Ng (2000)), we also include the Japanese Yen Index for Japan. All the

macroeconomic data is seasonally adjusted and gathered from Federal Reserve

Economic database (FRED) and Datastream. The macroeconomic variables

are observed at a monthly frequency and our sample period is January 1970

to December 2014. Excluding the term spread, each macroeconomic variable

is converted into a compounded annualized growth rate:

∆X = ((Xt/Xt−1)12 − 1) (2.13)

where ∆X refers to the compounded annualized growth rate of the macroe-

conomic variable X. Daily log returns on the S&P500 Index (US) and the

FTSE All share Index (UK) are collected from WRDS, starting from 02/01/1970

to 31/12/2014. The log return on the Nikkei 225 Index (Japan) is collected

from the Global Financial Database.

As mentioned by Liu et al. (2015), RV calculated from 5-minute tick-by-tick

data outperforms more sophisticated realized measures in terms of volatility

prediction. Therefore, we use 5-minute RV estimated via the two-scale esti-

mator of Zhang et al. (2005) from Oxford-Man Institute Realized library. RV

for the S&P 500 Index, FTSE All Share Index and the Nikkei 225 Index are

available from 02/01/1970 to 31/12/2014 in a daily frequency.

To allow for potential structural breaks, we partition the whole sample

(01/1970 to 12/2014) into three sub-samples for each country. As noted by

Schwert (1989) and Stock and Watson (2002), a significant structural break

occurred around 1984 in the US, associated with the Great Moderation. Con-

currently, the UK started receiving positive feedback from the economy after

the implementation of Thatcher’s deflationary policy at the beginning of the

1980s. Hence the first split in both the US and UK is around 1984. The
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first partition in Japan happens around 1989, a known turning point for the

Japanese economy (more details will be provided in Section 2.5.3). The second

partition of the sample is around 2006 for all three countries. This is associated

with the Subprime Mortgage crisis that originated in the US and resulted in a

global financial crisis. To summarize, data for the US and UK are divided into

three sub-samples: 01/1970-12/1984, 01/1985-12/2006 and 01/2007-12/2014

while the data for Japan is divided into the three sub-samples 01/1970-12/1989,

01/1990-12/2006, 01/2007-12/2014. Table 2.1 reports descriptive statistics for

all the data, including mean, standard deviation, skewness and kurtosis.

[Insert Table 2.1 here]

Figure 2.2 through 2.4 plot monthly realized volatility and the macroe-

conomic series for the US, UK and Japan. With the exception of the term

spread, most of the time large peaks and troughs in the growth rates of the

macroeconomic variables coincide with the local crises in each country as well

as the global financial crisis (2007–2009). The term spread appears to behave

as a leading economic indicator that signals recessions. As shown in Figures

2.2 through 2.4, substantial declines in the term spread appear to precede re-

cessions (as shown by the shaded areas) across different financial markets. The

macroeconomic data in the UK (Figure 2.3) seems to be more volatile before

1980s and then becomes fairly constant up until the global financial crisis.

When we take a close look at Japanese market in Figure 2.4, we find stock

volatility was relatively stable around 1975-1989, which is associated with the

excellent performance of Japanese economy. However, once the asset price

bubble collapsed at the end of 1989, Japan’s economy abruptly stopped fast

growth and stepped into a downturn. Both industrial production growth and

inflation became quite constant during 1990-2005, which has been widely rec-

ognized as long period of stagnation in the Japanese economy. Bearing this in
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mind, we undertake an empirical analysis of the relationship between macroe-

conomic variables and stock market volatility to examine how those changes

in financial markets are explained, if at all, by changes in macroeconomic fun-

damentals.

[Insert Figures 2.2 through 2.4 here]

2.5 Empirical Analysis for GARCH-MIDAS model

In this section, we conduct a cross-country study on stock volatility for the

US, UK and Japanese stock markets. We initially incorporate monthly RV

into the GARCH-MIDAS model, namely as the GARCH-MIDAS-RV model.

We use this GARCH-MIDAS-RV model to evaluate the explanatory power of

historical stock volatility (approximated by RV) on current long-term stock

volatility. We then employ the GARCH-MIDAS-X framework (see Equa-

tion 2.8), where macroeconomic information accounts for long-term stock volatil-

ity, not only for the full sample but also for the sub-samples. Quite apart from

that, we measure the relative performance of the macroeconomic variables via

two approaches: one is through examining the impact of the macroeconomic

variables on volatility having controlled for historical volatility; the other is

through the variance ratio introduced by Engle et al. (2013), quantifying the

relative contribution of the macroeconomic variables to stock market volatility.

In the MIDAS filter, we allow for two years (24 months; K=24) of macro obser-

vations.3. Following Engle et al. (2013), we set up a restriction that ω1 equals

to one in the Beta weighting scheme (see Equation 2.6), which provides a de-

caying weighting curve, where lower weights are assigned to more distant lags

3The optimal number of lags K in the MIDAS filter is determined by the maximum
Log-likelihood estimation results. The MIDAS filter with 24 monthly lags yields the highest
maximum likelihood value for all sub-samples.
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of the macro variables, reasonably indicating that the macro variable becomes

less informative the further back the observation.

2.5.1 Estimation Results in the GARCH-MIDAS model

with Realised Volatility

First, we need to evaluate the explanatory power of historical stock volatil-

ity for current stock volatility. To do this, we incorporate only historical RV

into the MIDAS filter and examine whether it is significant in explaining the

long-term volatility component τ (see Equation 2.4). In a stationary GARCH-

MIDAS process, the short-term volatility component g reverts back to the

long-term component τ over a long time horizon. The reversion speed is mea-

sured by the sum of α and β. As shown in Table 2.2, the sum of the parameters

α and β is close to one, which allows us to infer there is a high degree of per-

sistence in stock volatility in all the countries in our sample. The parameter θ

measures the impact of historical RV on the current long-term volatility com-

ponent τ . We find a significant θ with positive sign across all sub-samples,

ranging from 0.0183 up to 0.0494, which indicates that lags of RV have a sig-

nificant influence on current volatility. Looking at the relative performance

of RV in the different countries in our sample, in Figure 2.5 we observe that

the impact of historical RV on current long-term volatility decays quite fast

with the exception of Japan during 1970-1984. In general, most weights are

attached to the recent lags of monthly RV (K=1,2,3) for US, UK and Japan.

As distance increases, weights sharply decrease and completely vanish after 10

months (K=10). Overall the results indicate that historical realized volatility

has a significant short-term impact in the US, UK and Japan. The next ques-

tion we evaluate is whether there is any significant impact from macroeconomic

information on the long-term volatility component τ .
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[Insert Table 2.2 here]

[Insert Figure 2.5 here]

2.5.2 Estimation Results in the GARCH-MIDAS model

with Macroeconomic Variable for US

For the US market, estimation results for the GARCH-MIDAS-X mod-

els are summarized in Tables 2.3 and 2.4. In general, the full-sample (1970-

2014) results demonstrate a counter-cyclical pattern between movements in the

macroeconomic variables and long-term stock volatility, which is in line with

the main findings in Schwarz et al. (1978), Campbell (1999), Engle et al. (2013)

and Conrad and Loch (2015). During 1970-2014, inflation and unemployment

are positively related with stock market volatility at the 10% and 1% levels

of significance respectively. Meanwhile, growth rates of Industrial Production

and Housing Starts as well as the term spread are negatively related with stock

variations at the 1% significance level. Table 2.5 contains the results for the

Variance Ratios. We can see from Table 2.5 that the term spread accounts for

17.49% of stock volatility in the full sample, and it reaches its highest level

of 51.09% during the 1985-2006 sub-sample. This is almost twice higher than

the other macroeconomic variables during that period. As noted by Harvey

(1989, 1991) and Stock and Watson (2003), we find that most peaks in long-

term volatility that is driven by term spread (solid magenta line) are followed

by peaks being observed in total conditional volatility (dash green line) (see

in Figure 2.6). This phenomenon infers that the term spread, as a leading

indicator, has better performance in predicting financial crisis than alternative

macroeconomic variables.

[Insert Tables 2.3 through 2.5 here]

43



[Insert Figure 2.6 here]

Looking across all the sub-samples, we observe the linkages between the

macroeconomic variables and stock volatility vary across the sub-samples with

respect to different underlying conditions in the economy. Both industrial

production and housing starts have larger impacts on stock volatility prior

to the Great Moderation. After the Great Moderation, industrial production

and housing starts become less volatile and their impacts on volatility tends

to weaken. Taking industrial production as an example, θIP observed in Table

2.3 dramatically decreases from −0.9540 in 1970-1984 to −0.0914 in 2007-

2014. Similar results can be found in Table 2.5, where the variance ratio of

∆IP is 15.24% during 1970-1984. The contribution of ∆IP to total stock

volatility then begins to decrease and continues to decrease. During 2007-

2014, it merely accounts for 1.98% of the variation in stock volatility. The

decreasing influence of ∆IP actually coincides with the arguments in Schwarz

et al. (1978),Blanchard and Simon (2001) and Stock and Watson (2002) that

the explanatory power of output growth tends to be weaker after the Great

Moderation. This can be seen graphically in Figure 2.7 where prior to the

Great Moderation (the top panel) the peaks and troughs of the long-term

volatility component τ (the dashed blue line) often coincide with those in

∆IP (the solid magenta line). This does not appear to be the case post

the Great Moderation (the bottom panel.) Meanwhile, the contribution of

unemployment seems to gradually increase after 1984. The variance ratio of

∆UEM increases from 12.87% to 17.81% across the three sub-samples.

[Insert Figure 2.7 here]

Strikingly, we observe a significant change in the direction of the impact

of inflation on stock volatility. In Table 2.3 a positive relationship between
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inflation and stock volatility can be found during the 1970-1984 and 2007-

2014 samples. However, in contrast, the relationship between inflation and

stock volatility during the 1985-2006 is negative. The observed change of sign

in the relationship between stock volatility and inflation possibly reflects a

fundamental change in the economy. Around 1984, the U.S economy ended

its boom and bust cycle and stepped into a period with low inflation and

positive economic growth, known as the Great Moderation. At the same time,

a reduction of instability in monetary policy was also observed. A negative

relation during 1985-2006 might also possibly be explained by the inflation

illusion hypothesis of Modigliani and Cohn (1979). The hypothesis explains

that stock values are undervalued when inflation is high and become overvalued

when inflation is low. Consequently, the risk premium is negatively related to

inflation.

So far, our results suggest that, when modelled separately, both realized

volatility and macroeconomic variables are significant in explaining volatility.

We now examine whether the macroeconomic variables contain information

above that contained in realized volatility. To do this we use the GARCH-

MIDAS-RV-X model, where both realized volatility and macroeconomic vari-

ables are incorporated into one MIDAS filter within the GARCH-MIDAS

framework (see in Equation 2.9). Results from estimating the GARCH-MIDAS-

RV-X model are reported in Table 2.6. θRV measures the impact of histori-

cal RV on current volatility and θX measures the impact of the individual

macroeconomic variables on volatility. We can see that with the inclusion of

the macroeconomic variables, RV still has a positive and statistically signifi-

cant (at the 1% level) impact on stock volatility, with θrv ranging from 0.27

(2007-2014) to 0.04 (1985-2006). In terms of the different macroeconomic vari-

ables, their significance varies across the different sub samples, with none of the

macroeconomic variables having a significant effect on volatility in the 2007-
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2014 sub-sample. Within this, the term spread tends to quite consistently have

a significant effect on volatility. In the Full sample, θTS is −0.0585 and sig-

nificant at the 1% level. Since the weighting function with ωTS = 1.0347 puts

0.0438 on the first lag (the maximum weight) and 0.038 on last lag (at the end

of 2nd year), we observe that 1% increase in the term spread during the cur-

rent month would reduce next month’s volatility by e0.0585∗0.0438 − 1 ' 0.26%.

This negative impact decays quite slowly, which means that the past 2-year’s

term spread will still have a significant impact on next month’s stock volatility.

The results overall suggest that both RV and the macroeconomic variables to-

gether significantly explain stock volatility. However, the results also indicate

that the significance or otherwise of the macroeconomic variables is dependent

on the sub-sample, suggesting that the relationship between macroeconomic

variables and volatility changes over time, both in magnitude and significance.

This is something we will return to later.

[Insert Table 2.6 here]

2.5.3 Estimation Results in Japan

As noted by Schnabl (2015) and Schnabl and Hoffmann (2008), Japanese

stock market experienced boom-and-bust cycle during 1970-2014. Before 1989,

stock market and real economy were characterized with boom and start to

have bubble around 1985. The economy bubble was largely attributed to

the loose monetary and fiscal policy as well as the trading conflict between

Japan and US. To resolve trading conflict, US and Japan reached up the

Plaza Aggrement in 1985, whereas it adversely leaded to Yen appreciation

that far beyond targeted range. Accordingly, central bank tried to reduce

appreciation pressure by cutting the short-term interest rate, which lead to

a further expansion of economy bubbles. Consistently, we observe a sharp
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decline of term spread between 1985 and 1987 in Figure 2.4. Later afterward,

the Bank of Japan tighten its monetary policy which led to bubble burst in

stock and real estate markets. Hence stock market stepped into a prolonged

recession.

[Insert Figure 2.4 here]

Tables 2.7-2.8 summarize estimation results for the GARCH-MIDAS-X

models for Japan. Generally speaking, industrial production growth, growth

in housing starts, the term spread and the Yen index are counter-cyclical,

with stock volatility falling as these variables grow (excluding Housing starts

in the 1970-1989 sub-sample) while inflation and unemployment are negatively

related to stock market volatility over the full sample (1970-2014).

[Insert Tables 2.7 through 2.8 here]

To try and understand the negative relationship between inflation (or un-

employment rate) and volatility for the full sample, we look at their sub-sample

performances in Tables 2.7 and 2.8 . McQueen and Roley (1993) and Boyd

et al. (2005) argue that high inflation (or unemployment rate) can be regarded

as a predictor of future changes in monetary policy and corporate profits,

which differ in boom and bust periods. During the boom phase (1970-1989),

inflation and the unemployment rate have significant (1% level) and negative

impact on stock volatility. This negative impact could be a result of mar-

ket participants’ expectation of a tightening of fiscal and monetary policy in

the future and the corresponding negative effect this would have on the stock

market and hence volatility. During the bust phase (1990-2006), we observe

a positive impact of inflation and unemployment on volatility, which implies

that market participants might have changed their expectations about future

fiscal and monetary policy from tightening to loosening. Comparing these two
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sub-samples (1970-1989, 1990-2006), we can see that the impact of inflation

on volatility decays slowly (it exerts a longer-term impact) during the boom

phase (ωPPI = 1.0015), whereas the effect of inflation on volatility dies out

quickly during the bust phase (ωPPI = 19.5730). These results suggest that

inflation has a more persistent effect on stock volatility during a boom phase

than in a bust phase.

Similar to the US, we observe a negative and significant relationship be-

tween industrial production and stock volatility in Japan. As can be seen in

table 2.7, θIP takes negative and significant values for all sub-samples, ranging

from −0.8090 to −0.5046. θIP across the sub-samples displays a bell-shape

pattern, where it increases from 0.5675 in 1970-1989 to 0.6422 in 1990-2006,

then decreases to 0.5046 in 2007-2014. This implies that a one unit increase

in the previous month’s IP (θIP = −0.5675) lead to a 2.86% decrease in

volatility during the period 1970-1989 and a 2.7% decrease during 1990-2006

(θIP = −0.6422). Consistent with this, the variance ratio for IP has its max-

imum value at 11.3% in 1990-2006, relative to 6.65% in 1970-1989 and 6.28%

in 2007-2014 (see Table 2.5).

Now we turn to results from estimating the GARCH-MIDAS-RV-X model

for Japan. Results from this model are reported in Table 2.9. For the full sam-

ple, as for the US, we find that even with the inclusion of the macroeconomic

variables, RV still has a positive and statistically significant (at the 1% level)

impact on stock volatility. In terms of the significance of the macroeconomic

variables for the full sample, we find that with the exception of housing starts,

the individual macroeconomic variables still contribute significantly to explain-

ing volatility, that is, they contain information relevant for volatility over that

contained in historical realized volatility. However, the sub-sample results

show that while RV is always significant, different macroeconomic variables

are significant across different sub-samples, with some of the macroeconomic
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variables experiencing a change in sign, as we found for the GARCH-MIDAS-X

models in Tables 2.7 and 2.8.

[Insert Table 2.9 here]

2.5.4 Estimation Results in the GARCH-MIDAS model

with Macroeconomic Variable for UK

Figure 2.3 plots movements in the macroeconomic variables for the UK.

Both inflation and unemployment growth reach their peaks around 1975-1980,

then take their minimums around 1985-1990, which is the time that UK econ-

omy enters into a Great Moderation and characterized by low inflation and pos-

itive industrial production growth. The Great Moderation is largely attributed

to the successful deflationary monetary policy the UK followed. Despite the

low inflation, stock market volatility experienced large swings during the Great

Moderation. This raises the question, ”Why has stability in the macroecon-

omy not been followed by stability and even a decline in stock volatility?” To

address this, we employ the GARCH-MIDAS-X model to, as we did for the

US and Japan, examine the impact of individual macroeconomic variables on

UK stock market volatility, with particular emphasis on the Great Moderation

episode. From the results in Tables 2.11 and 2.12, many of the macroeconomic

variables individually have a significant counter-cyclical relationship with stock

volatility for the full sample, which is consistent with the full-sample results for

the US. Looking across the sub-samples, we observe significant changes in the

magnitude of the impact from alternative macroeconomic variables to stock

volatility around the turning point of the Great Moderation. Industrial pro-

duction, for example, has a negative and significant impact (θ = −0.4345) on

stock volatility before the Great Moderation in 1970-1984. During the Great
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moderation, its magnitude dramatically decreases to −0.0454.

[Insert Tables 2.11 through 2.12 here]

We observe that both inflation and unemployment rate experience changes

in sign, going from positive to negative during the Great Moderation episode.

The unemployment rate has a positive impact on volatility (θ = 0.0062) during

1970-1984. Then it evolves into an insignificant negative one during 1985-2006.

This sign change of unemployment is consistent with Boyd et al. (2005)’s main

findings. Boyd et al. (2005) state that increasing in unemployment rate is

good news for stock market stability during economy expansions ( therefore

negative macro-volatility relation is expected), and bad news for stock market

stability during economy recessions (therefore positive macro-volatility relation

is expected).

In terms of inflation, Schwert (1989), Boyd et al. (2001) and Kontonikas

and Ioannidis (2005) document that an inflation targeting regime is expected

to promote financial market stability (positive relation is expected). However,

in our study, inflation has a negative effect during the Great Moderation (1985-

2006), which seems to be contrary to their arguments. Borio and Lowe (2002)

provide a possible explanation for such a negative relationship during an ex-

pansion (1985-2006). Borio and Lowe (2002) argue that low inflation is not a

sufficient condition for stock market stability. In fact, lack of inflation pressure

might potentially remove the threat of an interest rate increase from the finan-

cial market. Consequently, low inflation might result in stock market booms.

The foreign exchange rate (USD to British Pound) has a significant effect on

stock volatility during 1985-2006. This might be suggestive of a spillover effect

from US stock market volatility to the UK market. We turn our attention to

investigating spillover effects in the following section.
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2.6 Spillover Effect and Macroeconomic Con-

tribution

To have a deeper understanding of the macroeconomic drivers of stock

volatility, it is important to take financial integration into consideration. Since

the global stock market crash in 1987, a number of studies document significant

volatility spillovers across international equity markets. Some empirical stud-

ies suggest that both the UK and Japan stock markets are tightly linked with

the US stock market. Hamao et al. (1990) investigate the return and volatility

spillovers among the US, UK and Japanese markets. They observe signifi-

cant volatility spillovers originating from the US to the Japanese market and

conclude international transmissions reflect fundamental changes in the global

macroeconomy. Following on from this study, Lin et al. (1994) suggest that

volatility spillovers between US and Japan stock markets are bi-directional.

Susmel and Engle (1994), however, observe weak and less persistent volatility

spillovers that come from the US stock market into the UK. Hence, we bring

global volatility (the US) and local volatility (UK or Japan) into one MIDAS

filter evaluating the spillover effects from the US on local stock markets across

all sub-samples:

τt = m+ θL

K∑
k=1

φL(ωL)RVL,t−k + θUS

K∑
k=1

φUS(ωUS)RVUS,t−k (2.14)

where RVUS refers to the historical realized volatility that comes from the

US stock market. We calculate weighted average value of RVUS as a proxy for

the global volatility transmission onto the local long-term volatility component

τt. RVL refers to the historical realized volatility from the local stock market

(either UK or Japan market). We also calculate the average value of RVL
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to explain the long-term volatility component τt. The estimation results are

reported in Table 2.15.

[Insert Table 2.15 here]

For the full sample (see in Table 2.15), the parameter θRVUS that measures

the spillover effect has a negative impact of −0.0043 on the Japanese market

and a positive impact of 0.0041 on the UK market. In terms of sub-samples,

US volatility spillovers had a considerably larger impact (θRVUS = 0.0079) during

1985-2006 in UK, which implies that stock volatility in the UK has been in-

creasingly driven by global volatility since the Great Moderation. Interestingly,

for Japan we observe a change in the sign of US volatility spillovers after the

real estate bubble burst: Before 1989, US volatility spillovers have a negative

impact on stock market volatility in Japan; After 1989, this turns into a posi-

tive impact. All above results are consistent with Baele (2005): the effect (in

terms of magnitude and sign) of US volatility spillovers on UK and Japanese

stock market volatilities are regime-dependent (sub-sample dependent).

Given our results concerning spillover effects from the US, we augment the

GARCH-MIDAS-RV-X model in Equation 2.9 by bringing local volatility, indi-

vidual macroeconomic variables and US volatility spillovers (global volatility)

together into one MIDAS filter:

τt = m+θL

K∑
k=1

φL(ωL)RVL,t−k+θUS

K∑
k=1

φUS(ωUS)RVUS,t−k+θX

K∑
k=1

φX(ωX)Xt−k (2.15)

In such a way, we control for the US spillover effect and re-evaluate the role

of macroeconomic variables in terms of volatility explaination. The results are

summarized in Table 2.10 for Japan and Table 2.14 for UK, respectively. For

the Japanese stock market, the impact from the macroeconomic variables is

found to be increased in terms of magnitude (and/or significance level) rela-

tive to the GARCH-MIDAS-RV-X estimation results without controlling for
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volatility spillovers (see Table 2.9). For instance, the negative impact from

industrial production growth increases from −0.4819 to −0.2319 after control-

ling for US volatility spillovers. More importantly, controlling for US volatility

spillovers helps to improve the significance of the macroeconomic variables on

volatility for the 2007-2014 period. With the exception of the unemployment

rate and the term spread, all remaining macroeconomic variables have signifi-

cant impacts during 2007-2014. We find similar results for the UK (see Table

2.14) once we control for volatility spillovers from the US.

[Insert Table 2.10 here]

[Insert Table 2.14 here]

2.7 Principal Component Analysis: Combined

Macroeconomic contribution on Stock Vari-

ations

Our empirical results so far in relation to the macroeconomic variables

indicate that the magnitude and significance of the impact for each macroe-

conomic variable on volatility is uneven across sub-samples in that not all of

the variables are significant across all of the sub-samples. Further, our re-

sults suggest that alternative macroeconomic variables perform equally well

in terms of providing additional contributions to explaining volatility above

that provided by historical volatility. This makes it quite difficult for us to

select the macroeconomic variables that are the best out of the alternatives

we consider. Following Asgharian et al. (2013), we opt for extracting the first

principal component from the macroeconomic variables we use and apply it
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into the GARCH-MIDAS model, evaluating the combined macroeconomic ef-

fect on stock market volatility. Following Equation 2.11, we let the long-term

volatility component τt be driven by the first principal component (hereafter

PC1). Our estimation results are summarized in Tables 2.16.

[Insert Table 2.16 here]

Table 2.16 summarizes estimation results across all sub-samples for each

country. For the US stock market, PC1 has a high correlation with industrial

production (92%), the unemployment rate (−87%) and housing starts (50%),

respectively. We observe a negative and significant impact of PC1 on the long-

term volatility component, with the exception of the 2007-2014 sub-sample.

For the UK stock market, PC1 is closely related with inflation (79%) and the

unemployment rate (75%). As reported in Table 2.11 and Table 2.12, both

inflation and unemployment rate experience a change in sign from positive to

negative during the UK’s Great Moderation because of changes in economic

conditions. Hence, we observe that PC1 in Table 2.16 changes into a negative

but insignificant sign during the Great Moderation episode (1985-2006) in the

UK.

To try and gain some insight into the additional contribution that PC1

makes to explaining volatility, we examine the significance of PC1 in two al-

ternative models: one in which we include PC1 and RV in the MIDAS filter,

which we term the restricted model for the purposes of this discussion (see

in Equation 2.12), and one in which we additionally include US volatility

spillovers, which we term the unrestricted model. The long-term volatility

component τt in the restricted GARCH-MIDAS-RV-PC model is:

τt = m+ θL

Krv∑
k=1

φL(ωL)RVL,t−k + θpc

Kpc∑
k=1

φPC(ωpc)PC1,t−k
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while for the unrestricted GARCH-MIDAS-RV-PC model it is:

τt = m+ θL

K∑
k=1

φL(ωL)RVL,t−k + θUS

K∑
k=1

φUS(ωUS)RVUS,t−k + θpc

K∑
k=1

φPC(ωpc)PC1,t−k

where RVL is local historical realized volatility and RVUS is global realized

volatility that spillovers from the U.S into local market. PC1 refers to the first

principal component derived from the local market. Results are reported in

Table 2.17.

[Insert Table 2.17 here]

Comparing results from these two specifications in Table 2.17, we can see

that adding US volatility spillovers into the Japanese stock market helps to de-

liver a better description of additional impact of PC1 on stock variations in the

sense that the magnitude of the coefficient and its significance increase. There

seems to be less improvement on PC1 when adding US volatility spillovers into

the UK stock market, which is consistent with the argument in Susmel and En-

gle (1994) that there is only weak evidence of volatility spillovers from the US

to the UK. In the UK stock market, PC1 is superior to all the macroeconomic

variables bar inflation, in terms of goodness fit across all sub-samples (see in

Table 2.14). Taking the full sample results as an example, the log-likelihood

ratio for PC1 is 36525.4, which is larger than that for the other macroeconomic

variables bar inflation (36526.7).
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2.8 Forecasting Comparison: The Model Con-

fidence Set Approach

In this section, we implement the Model Confidence Set (MCS ) approach,

as introduced by Hansen et al. (2011), to evaluate the predictive ability of the

GARCH-MIDAS models specified with alternative macroeconomic variables.

Before introducing the MCS approach, we will describe a recursive forecasting

procedure which is used to construct a sequence of loss functions for pair-

wise forecasting comparisons in the Model confidence set.4 We use a recursive

forecasting procedure to allow for any change/breaks in the parameters of

the models we use to forecast. The recursive forecating procedure allows the

parameters to be updated to reflect any breaks or time variations in the stock

market.

2.8.1 Recursive Forecasting Procedure

We set up a recursive forecasting procedure, which involves a rolling esti-

mation window with fixed length and this estimation window moves forward

recursively after one-step ahead predictions over a one-month horizon have

been calculated. The recursive prediction procedure is as follows. First, we

divide the whole dataset into two sub-periods, as shown in Figure 2.8. There

is an initial estimation window from 01/1970 to 12/2009 and a prediction

period from 01/2010 to 12/2012. We use available data from the initial esti-

mation window to estimate the GARCH-MIDAS model specified with a macro

variable. Second, with the estimated parameters we generate iterated one-day-

ahead volatility predictions over a one-month horizon. We then compare the

predicted volatilities with the realized volatilities. The daily forecast errors are

4The loss function refers to a way of measuring the forecasting error, and it can be
interpreted as the distance between predicted and the real values.
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averaged over the forecasting month and saved as a loss function. Following

Patton (2011), the loss function we use is the mean squared error (MSE) one:

Li,t = MSE(σi,t, σ̂i,t) =
1

Nt

Nt∑
jt=1

(σi,jt − σ̂i,jt)2 (2.16)

where Li,t denotes the loss function of model i in month t, σ̂i,jt is the one-

day ahead volatility forecast available on date j of month t, σi,jt is the realized

volatility available on the same date j, jt indexes trading days during month t

and Nt is the total number of trading days in month t. Third, after calculat-

ing the loss function, the estimation window automatically moves forward one

month so that the sample starts in 02/1970 and ends in 01/2010. The param-

eters of the GARCH-MIDAS model are then re-estimated. With the updated

parameters, we follow the second step above. By repeating this forecasting

procedure, a series of loss functions {Li,t}Tt=1 for each month over which we

forecast are generated.

We would also like to see how, if at all, macroeconomic information helps

to predict the global financial crisis so we repeat the recursive forecasting

procedure but this time we use an initial estimation window from 01/1985

to 12/2006, and generate recursive predictions over the period 01/2007 to

12/2009. The time line for this prediction exercise is shown in Figure 2.9.

2.8.2 Model Confidence Set

From the traditional viewpoint, a “best” forecasting model generally should

keep its superior position under any circumstance. Hansen et al. (2011), how-

ever, argues that model selection in terms of choosing a model based on fore-

casting performance depends on its informativeness under a certain dataset.

When data is informative, it is easy to identify the best forecasting model.

When it is not so informative, it might be difficult to distinguish superior
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models from inferior ones. Hansen et al. (2011) proposed the Model Confi-

dence Set (MCS) to examine the predictive ability of volatility models in a

more flexible way that allows more than one model to stay within a certain

confidence interval when dealing with uninformative dataset. With regard to

our data, a sub-period associated with high volatility in stock market might

be more informative about which macro variable contributes most, and vice

versa. Therefore, we implement the Model Confidence Set (MCS) to evaluate

to what extent does macroeconomic information contribute to stock market

volatility in terms of improving the predictive ability of the model.

We now briefly describe the MCS approach to model selection for our

case. The main mechanism of MCS in selecting superior models is similar to

a hypothesis test of parameter significance under a certain confidence interval.

In the first step, we construct an initial set M0 that contains all the GARCH-

MIDAS models specified with the different macroeconomic variables. The

null hypothesis (H0,M) assumes that all candidate models in the set M0 have

equal predictive ability (EPA). In contrast, the alternative hypothesis (HA,M)

assumes there is at least one candidate model that is inferior than the other

models. More formally,

H0,M : di,j = 0 HA,M : di,j 6= 0

di,j = E(dij,t) = E(Li,t − Lj,t) ∀i, j ∈M t = 1, 2, ...n

(2.17)

The null hypothesis of equal predictive ability can be tested by means of dij,

which infers the relative performance of any two models, i and j. If i and j have

equal predictive ability, the null hypothesis is accepted. Otherwise, the null

hypothesis is rejected. In Equation 2.17, dij is calculated as the expectation

of loss differential between any two models, i and j.
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In the second step, we test the null hypothesis of equal predictive ability

in set M0. To achieve this, we make pairwise comparisons of the relative

performance (dij) between any two models in the set M0. If the null hypothesis

is accepted, we terminate the MCS procedure, setting the confidence set M̂∗
1−α

equal to M0, which suggests all candidates models perform equally well under

a confidence interval 1− α. If the null hypothesis is rejected, the model with

the worst performance is eliminated from the initial set M0. In this case,

the initial set M0 narrows down into set M1, which satisfies the condition of

M1 ⊂ M0. In the third step, we repeat the above second step. As long as

the null hypothesis is rejected, the model set will continue to be trimmed of

the most inferior model.5. Once the null hypothesis is accepted, the surviving

models with equal predictive ability are saved in a confidence set M̂∗
1−α. This

set M̂∗
1−α with the surviving models is denoted as M∗, and it satisfies the

following condition:

M∗ = {i ∈M0 : E(dij,t ≤ 0) ∀i, j ∈M0} (2.18)

which indicates that any surviving model i in set M∗ must satisfy the

condition that it is superior to other eliminated models with E(dij,t) less than

zero.

Following Hansen et al. (2011), we employ the range test statistic, TR, to

test the null hypothesis. TR is constructed based on the t-statistics:

TR = maxi,j∈M = |tij|

tij =
d̄ij
σ̂d̄ij

(2.19)

d̄ij in equation 2.19 denotes the loss differential on average between two

5As long as the null hypothesis is rejected, the initial Set M0 will continue to narrow
down into a smaller set that satisfies Mm0... ⊂M2 ⊂M1 ⊂M0.
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models i and j. The standard deviation σ̂d̄ij can be estimated by using the

bootstrap methodology. In Equation 2.19, TR measures the largest loss differ-

ence between two models. In this context, the candidate model that yields the

largest value of TR will be eliminated.

Tables 2.18 through 2.20 report the prediction performance of all the GARCH-

MIDAS models specified with the different macroeconomic variables using the

MCS equivalent test for the US, UK and Japan, respectively. For each coun-

try, we conduct recursive prediction for two periods: 2007-2009 and 2010-

2012, which are related to two major events: the global financial crisis and the

sovereign debt crisis. Each prediction period covers 36 months that we divide

into 6-month sub-periods. For every sub-period, we aggregate monthly loss

functions and generate the MCS equivalent test using a significance level of α

equal to 25%.

Table 2.18 presents the MCS results for the US stock market. The figures

reported are MCS p-values. This p-value can be interpreted as the probability

of being kept in the Model Confidence Set. The prediction period of Jul 2010-

Dec 2012 seems to be more informative, where most models are left within

the confidence set M̂∗
75%. The term spread and unemployment rate models in

the 2010-2012 period outperform alternatives in terms of obtaining the high-

est probability of 1.0000 in 4 out of 6 sub-periods, where a p-value of 1.0000

indicates that this candidate model is the last survivor in the set M̂∗
75%. In con-

trast, the prediction period of Jan/2007-Dec/2009 seems to be less informative

and only a few candidates are kept within the confidence set. In particular,

the model where the macroeconomic variable is the first principal component

is superior to alternatives with the highest probability of 1.0000 during the

financial crisis episode.

[Insert Table 2.18 here]
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Table 2.19 reports MCS results for the UK stock market. Looking across

all sub-periods, PC1 contributes most during the global financial crisis while

inflation seems to replace PC1 and becomes more prominent after 2010. In

terms of the Japanese stock market, the MCS p-values in Table 2.20 reveal

that term spread and PC1 perform equally well with p-value no less than 0.8

during 2010-2012.

[Insert Tables 2.19 and 2.20 here]

2.9 Conclusion

In this paper, we examine the dynamic relationship between macroeco-

nomic variables and stock market under the framework of the GARCH-MIDAS

model. We investigate the sources of macroeconomic information that drive

long-run volatility fluctuations in the US, UK and Japanese stock markets.

To allow for potential structural breaks and to investigate what impact they

may have, if any, we partition our full sample, which runs from 1970-2014

into three different sub-samples and observe the interactions between different

macroeconomic variables and stock volatility across the different sub-samples

for each country.

For the US, we re-confirm the counter-cyclical relationship between many of

the macroeconomic variables and stock volatility found by Engle et al. (2013),

Asgharian et al. (2013) and Conrad and Loch (2015). We do find that the

counter-cyclical response of stock volatility varies with respect to different

underlying economic conditions across all sub-samples. For example, industrial

production and housing starts, as indicators of economic activity, become less

informative after the Great Moderation. In contrast, the unemployment rate

becomes more informative after the Great Moderation.
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Though individual macroeconomic variables are found to have significant

impacts on stock variations for both UK and Japan markets, macroeconomic

influences observed in both UK and Japan are some differences compared to

the US. For instance, after the real estate bubble burst at the end of 1989

in Japan, the Japanese economy entered a prolonged deflationary period and

therefore we might expect a change in the relationship between stock market

volatility and the macroeconomy between the boom phase (1970-1989) and the

deflationary period. We find that during the boom phase period, inflation and

the unemployment rate have a significantly negative impact on stock volatil-

ity. During the deflationary phase, however, we observe a positive relationship

between inflation and unemployment and volatility, which implies that mar-

ket participants might have changed their expectations about future fiscal and

monetary policy from tightening to loosening. We find that the change be-

tween those two periods can be quite pronounced: the impact of inflation on

volatility decays slowly during the boom phase whereas the effect of inflation

on volatility dies out quickly during the deflationary phase. For the UK, once

the economy entered into the Great Moderation, stock market volatility tends

to increase. We also observe significant changes in the magnitude of the im-

pact from alternative macroeconomic variables to stock volatility around the

turning point of the Great Moderation. Industrial production, for example,

has a negative and significant impact on stock volatility before the Great Mod-

eration. During the Great moderation, its magnitude dramatically decreases.

We also observe that both inflation and the unemployment rate experience

changes in sign, going from positive to negative during the Great Moderation

episode.

Following the literature on volatility spillovers, we examine the robust-

ness of our findings in terms of the significance of macroeconomic variables in

explaining stock return volatility for the UK and Japan after controlling for
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volatility spillovers from the US. We find that US volatility, which we use as

a proxy for common volatility, is significant in explaining UK and Japanese

stock market volatility. However, the significance of volatility spillovers does

not change our conclusions in relation to the role that macroeconomic vari-

ables play in explaining stock market volatility. In fact, most macroeconomic

variables perform equally well, if not better, once we control for volatility

spillovers.

Finally, we examine the forecasting performance of the GARCH-MIDAS-X

models using the Model Confidence Set. We find that depending on the fore-

casting period, the model with the first principal component as the macroeco-

nomic variable performs well across all the countries in our sample, although

the models including the term spread and the unemployment rate work well

for the US when predicting over the sovereign debt crisis period.

To summarize, using the GARCH-MIDAS model we find evidence that the

relationship between macroeconomic variables and stock market volatility that

has been documented for the US is still alive and well and is also present in the

UK and Japan, although the nature of the relationship in terms of the signs of

the coefficients on the macroeconomic variables is not the same across all the

countries in our sample. In particular, our sub-sample analysis reveals that

the the relationship between the macroeconomy and stock market volatility is

not stable over time and may be subject to structural breaks. While any time

variation or breaks can be accommodated to some extent when using these

models to predict volatility, as the results from our forecasting exercise show,

it raises an interesting question as to whether the macroeconomic variables help

to explain not only stock market volatility but structural breaks in volatility.

We investigate this question in the next chapter.
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Table 2.1: Summary Statistics for stock market and macro data

Sample Variable Mean STD Skewness Kurtosis Variable Mean STD Skewness Kurtosis

UK U.S

1970-2014 RFTSE 0.0004 0.0106 −0.2579 11.1051 RS&P500 0.0003 0.0107 −0.5605 20.5128

∆IP 0.9235 7.1513 0.9854 10.4108 ∆IP 2.4074 6.1030 −1.0151 6.2105

∆PPI 1.8012 2.3170 1.6995 7.2302 ∆PPI 1.3284 3.8082 0.1029 10.0304

∆UEM 3.6641 29.2911 1.8112 7.5175 ∆UEM 0.3889 18.1837 0.5130 4.8061

TS 1.0764 1.7386 −0.1779 2.9654 TS 1.6463 1.3190 −0.6011 2.9102

∆HS 0.1452 18.0300 −0.1500 4.1097 ∆HS 0.9659 13.6814 0.5301 4.2002

1970-1984 RFTSE 0.0006 0.0111 0.2244 8.6460 RS&P500 0.0002 0.0089 0.3179 4.9473

∆IP 1.3980 10.6344 0.8519 5.9017 ∆IP 2.7511 8.2581 −0.6246 3.8173

∆PPI 3.8068 2.7540 0.8761 4.4771 ∆PPI 2.4021 3.5682 2.2839 13.3845

∆UEM 15.2207 34.9393 0.8723 4.1946 ∆UEM 2.1111 22.2477 0.4748 4.2874

TS 2.0062 1.5804 −0.2107 3.5055 TS 1.1804 1.5104 −0.5781 2.4842

∆HS −1.6382 19.9451 0.2027 2.9629 ∆HS 1.7250 15.7342 0.6028 4.2079

1985-2006 RFTSE 0.0005 0.0093 −0.8705 14.1445 RS&P500 0.0004 0.0104 −1.3139 30.0902

∆IP 1.3751 4.1178 0.8601 5.1497 ∆IP 2.8166 3.5980 −0.5217 3.5152

∆PPI 0.8029 1.0446 0.3754 3.4118 ∆PPI 0.7602 3.0341 0.1021 5.9474

∆UEM −4.3148 16.6609 1.4610 6.3147 ∆UEM −1.0985 13.7026 0.2074 3.6709

TS 0.1704 1.4997 −0.2279 3.1652 TS 1.7373 1.1708 −0.0108 1.8094

∆HS 1.1915 11.7441 −0.3354 3.1888 ∆HS 0.5910 10.8558 0.4341 4.2253

2007-2014 RFTSE 0.0002 0.0128 −0.1743 9.7969 RS&P500 0.0003 0.0139 −0.0773 12.5519

∆IP −1.2080 5.1741 −1.5856 5.8594 ∆IP 0.6378 6.7090 −1.7865 5.5515

∆PPI 0.7785 1.3116 0.4931 3.9004 ∆PPI 0.9172 5.4125 −1.0694 6.0515

∆UEM 3.6641 29.2911 1.8112 7.5175 ∆UEM 1.2500 20.2744 0.3166 3.3333

TS 1.8247 1.3164 −0.6978 2.2418 TS 2.2694 0.9752 −0.9643 3.6852

∆HS 0.6116 26.5282 −0.2535 2.9231 ∆HS 0.5738 16.3602 0.3139 2.5001

JAPAN

1970-2014 RNikkie225 0.0002 0.0126 −0.4342 13.4042 ∆IP 0.1633 1.6827 −2.2272 20.6261

∆PPI 1.1590 6.9643 4.2493 37.8422 ∆UEM 1.1590 6.9643 4.2493 37.8422

TS 1.8190 0.8204 0.3683 2.5006 ∆HS 0.1254 6.6542 0.7375 14.6261

∆Y en 8.9749 42.5824 2.1738 11.7219

1970-1989 RNikkie225 0.0004 0.0083 −1.1620 16.1157 ∆IP 0.3484 1.3411 −0.1454 3.0379

∆PPI 3.2529 8.7972 4.2014 28.5326 ∆UEM 3.9117 13.2949 0.8626 3.7525

TS 2.3320 0.7517 0.1829 3.1056 DeltaHS 0.2934 9.0365 1.0917 11.1978

∆Y en 10.7724 38.2405 1.7403 7.6240

1990-2006 RNikkie225 0.0004 0.0130 −0.7702 26.6373 ∆IP 0.0719 1.2650 −0.1631 3.5127

∆PPI −0.7263 2.7418 −0.1918 3.0262 ∆UEM 4.1455 10.1730 0.3969 2.3738

TS 1.6703 0.6151 0.5616 2.6809 ∆HS 0.1117 4.2497 0.1374 3.8918

∆Y en 8.1847 46.4783 2.6266 14.8040

2007-2014 RNikkie225 0.0000 0.0161 −0.5150 10.9457 ∆IP −0.1049 2.8184 −2.4130 13.3079

∆PPI −0.0698 6.6474 −0.0444 4.8793 ∆UEM −0.0698 6.6474 −0.0444 4.8793

TS 0.8880 0.2442 −0.2168 1.9561 ∆HS −0.1517 6.8724 −1.0755 7.9440

∆Y en 7.2839 41.9627 1.4340 5.7191

a Table reports statistics for U.S, UK and Japan Stock markets and macroeconomic dataset,
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ranging from 01/1970 to 12/2014. For all macroeconomic variables, ∆ denotes as the first
difference of respective levels. Excluding the Term spread, ∆ refers to annualized month-
to-month percentage changes as ∆Xt = ((Xt/Xt−1)12 − 1). The Term Spread is measured
as a difference between 10-year Treasury Bond Yield and 3-month T-bill rate. The log-
returns for all markets are collected from WRDS database and global financial database.
All macroeconomic data is gathered from Federal Reserve Economic dataset (FRED). Re-
alized Volatility (RV) calculated from 5-min tick-by-tick data is gathered from Oxford-Man
Institute Realized library for S&P500 Index, FTSE All Share Index and Nikkei 225 Index.
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Table 2.2: Parameter Estimates for the GARCH-MIDAS with Realized Volatil-
ity

Sample MIDAS Filter α β θ ω1 ω2 m L-Likelihood AIC BIC

Panel A: GARCH-MIDAS with Realized Volatility in U.S

Full Sample Rolling RV 0.0849 0.8609 0.0281*** 1 8.4989*** 0.0000 35608.2042 −71204.4083 −71160.3838
1970-2014 (32.3056) (92.2387) (13.8398) (5.5277) (9.3576)

Sub-sample Rolling RV 0.0332 0.8863 0.0355*** 1 46.4365 0.0000 10970.9613 −21929.9226 −21892.4803
1970-1984 (3.7818) (9.0296) (6.0409) (1.5355) (2.2153)

Sub-sample Rolling RV 0.1101 0.8002 0.0334*** 1 7.7203*** 0.0000 16544.5118 −33077.02377−33037.2943
1985-2006 (26.4980) (49.7525) (13.8101) (5.6323) (6.8383)

Sub-sample Rolling RV 0.1280 0.8235 0.0183*** 1 6.3705* 0.0001 4831.0054 −9650.0108 −9616.3635
2007-2014 (7.5937) (30.0502) (3.4985) (2.0817) (3.7695)

Panel B: GARCH-MIDAS with Realized Volatility in UK

Full Sample Rolling RV 0.1216 0.7991 0.0297*** 1 10.1055*** 0.0000 36187.4884 -72362.9768 -72318.8736
1970-2014 (20.6358) (69.3261) (17.5896) (6.9554) (11.0941)

Sub-sample Rolling RV 0.1246 0.7597 0.0335*** 1 13.7498** 0.0000 10887.8605 -21763.7210 -21726.0887
1970-1984 (9.1345) (25.3432) (11.2577) (3.2072) (4.8478)

Sub-sample Rolling RV 0.1225 0.8033 0.0241*** 1 9.2504*** 0.0000 17063.9056 -34115.8113 -34076.0561
1985-2006 (15.7879) (50.9676) (8.8746) (4.3409) (8.0927)

Sub-sample Rolling RV 0.1159 0.7919 0.0289*** 1 12.7572** 0.0000 4857.1449 -9702.2898 -9668.6306
2007-2014 (6.1195) (20.5612) (5.0499) (2.3693) (3.1066)

Panel C: GARCH-MIDAS with Realized Volatility in Japan

Full Sample Rolling RV 0.1605 0.8038 0.0494*** 1 2.6595*** 0.0000 33317.6 -66623.2 -66579.3
1970-2014 (45.8341)(144.7237) (13.1501) (8.0819) (5.5630)

Sub-sample Rolling RV 0.2850 0.6209 0.0337*** 1 3.5726*** 3.52E-05 15795.7 -31579.3 -31540.2
1970-1989 (42.2200) (45.240) (10.1040) (7.0648) (6.6957)

Sub-sample Rolling RV 0.0822 0.8892 0.0284*** 1 1.9649** 7.97E-05 10586.7 -21161.4 -21123.4
1990-2006 (9.0903) (66.6060) (3.7630) (2.0470) (2.3567 )

Sub-sample Rolling RV 0.1198 0.8224 0.0107 1 6.2214 0.0002 4141.8 -8271.6 -8238.2
2007-2014 (8.6405) (29.3864) (1.5889) (1.0204) (4.3203)

a Table reports estimation results for the GARCH-MIDAS model with Realized Volatility, where
the long-term volatility component τt is smoothed out by a MIDAS filter with 24 lags (K=24)
of monthly realized volatility:

τi,t = m+ θ ∗
K∑
k=1

φk(1, ω2)RV rwi,t−k

We employ the rolling window approach to calculate monthly realized volatility, RV rwi,t . RV rwi,t

is calculated by recursive rolling back fixed number of days (N’=22) from day i. Consequently,
monthly τi,t and RV rwi,t is available at each day i in month t. The number in brackets are ro-
bust t-statistics. ***, **, * indicate the significants at 1%, 5%, 10% level, respectively.
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Table 2.3: Parameter Estimates for GARCH-MIDAS incorpated with Macroe-
conomic Variables I in U.S

Sample MIDAS filter α β θ ω1 ω2 m L-Likelihood AIC BIC

Panel A: GARCH-MIDAS-IP Model

Full Sample IP 0.0690 0.9310 −0.5370*** 1 4.9999*** −0.2302 34883.2119 −69754.4238−69710.3993

1970-2014 (53.6931) (724.2345) (−33.3301) (28.0670) (−0.6384)

Sub-sample IP 0.0677 0.9323 −0.9540*** 1 4.9998*** −0.3087 9737.1821 −19462.3643−19424.9219

1970-1984 (154.2410)(2123.9494) (−57.8164) (33.0843) (−0.8069)

Sub-sample IP 0.0775 0.9134 −0.1074*** 1 1.0516*** −8.6609 16690.4284 −33368.8568−33329.1275

1985-2006 (32.6609) (253.4220) (−4.0417) (5.7665) (−47.7846)

Sub-sample IP 0.1245 0.8463 −0.0914*** 1 4.8899*** −8.9082 4829.3512 −9646.7025 −9613.0552

2007-2014 (8.3181) (48.1014) (−4.7819) (2.9936) (−48.6548)

Panel B: GARCH-MIDAS-TS Model

Full Sample TS 0.0751 0.9170 −0.1907*** 1 13.1404 −8.5603 35602.3438 −71192.6876−71148.6631

1970-2014 (37.4606) (325.4681) (−6.2165) (1.4547) (−52.5856)

Sub-sample TS 0.0399 0.9601 −0.3323* 1 1.0173*** −10.2221 10962.1946 −21912.3891−21874.9468

1970-1984 (10.4733) (264.2631) (−1.7204) (5.7879) (−18.6021)

Sub-sample TS 0.0834 0.8969 −0.4461*** 1 1.0010*** −8.3797 16703.6207 −33395.2415−33355.5121

1985-2006 (31.8836) (178.8744) (−8.1855) (23.1092) (−64.7790)

Sub-sample TS 0.1474 0.8512 0.4874* 1 1.0781 −7.7128 4826.6839 −9641.3677 −9607.7205

2007-2014 (8.9781) (51.4262) (1.8609) (1.3610) (−8.8168)

Panel C: GARCH-MIDAS-PPI Model

Full Sample PPI 0.05156 0.9484 0.1622* 1 1.0476*** −10.528 35013.5 −70015 −69971

1970-2014 (48.644) (742.12) ( 1.9007) (7.6991) (−25.356)

Sub-sample PPI 0.0446 0.9434 0.2184*** 1 1.0034*** −10.069 11286.9 −22561.8 −22524.4

1970-1984 (8.3795) ( 130.85) (3.9859) ( 22.012) (−61.369)

Sub-sample PPI 0.0684 0.9315 −0.1421* 1 4.9999* −0.2604 16300.7 −32589.4 −32549.7

1985-2006 (35.658) ( 485.3) (−1.6826) (1.878) (−1.1406)

Sub-sample PPI 0.1388 0.8085 0.4329** 1 2.3337*** −9.749 3809.74 −7607.48 −7573.84

2007-2014 (6.5502) ( 28.752) (2.845) (3.7024) (−51.323)

a Table 2.3 reports estimation results for the GARCH-MIDAS model with alternative macroeconomic variables.

Panel A provides parameter estimates for the GARCH-MIDAS-IP model, in which the long-term volatility com-

ponent τ in a MIDAS filter has been smoothed out by 24 lags (K=24) of Industrial production growth rates in a

monthly frequency:

τt = m+ θ ∗
∑K=24

k=1 φk(1, ω2)IPt−k

b Panel B and Panel C provide parameter estimates for the GARCH-MIDAS model incorporated with Term Spread

and Inflation (PPI). c The numbers in parentheses are robust t-statistics, where ***,**,* indicate significant lev-

els at 1%, 5% and 10%, respectively. The number in bold means estimated parameter is significant with at least

10% level. For each specification of the GARCH-MIDAS model, we set up restricted weighting scheme with ω1 = 1.

67



Table 2.4: Parameter Estimates for the GARCH-MIDAS incorporated with
Macroeconomic Variables II in U.S

Sample MIDAS filter α β θ ω1 ω2 m L-Likelihood AIC BIC

Panel A: GARCH-MIDAS-UEM Model

Full Sample UEM 0.0728 0.9127 1.1346*** 1 3.8371*** −9.2501 35785.9330 −71559.8661−71515.8416

1970-2014 (37.7527)(292.7543) (4.8408) (3.4969) (−131.4361)

Sub-sample UEM 0.2154 0.7846 0.5632** 1 13.8246 −0.0204 10975.5840 −21939.1680−21901.7257

1970-1984 (14.4671) (52.7054) (2.2918) (1.3163) (−0.0412)

Sub-sample UEM 0.1915 0.8085 1.5639*** 1 9.4033*** −0.3407 16578.7214 −33145.4428−33105.7135

1985-2006 (25.3263)(106.9614) (4.0651) (2.8093) (−0.8799)

Sub-sample UEM 0.1344 0.8653 0.8471 1 1.0017*** −5.3063 4929.1501 −9846.3003 −9812.6530

2007-2014 (9.1834) (59.1261) (1.2491) (5.8320) (−6.2944)

Panel B: GARCH-MIDAS-HS Model

Full Sample HS 0.0752 0.9151 −0.1091*** 1 1.0026*** −8.8603 35787.9173 −71563.8345−71519.8100

1970-2014 (36.3466)(301.2894) (−5.7428) (83.5328) (−73.9977)

Sub-sample HS 0.0465 0.9459 0.0055 1 43.7535 −9.4708 11142.7945 −22273.5890−22236.1467

1970-1984 (8.8704) (149.0078) (1.0588) (0.4761) (−57.7475)

Sub-sample HS 0.0900 0.8919 −0.3111*** 1 1.0083*** −8.9427 16704.7243 −33397.4486−33357.7193

1985-2006 (30.2037)(178.2835) (−8.6988) (132.2393) (−87.1610)

Sub-sample HS 0.1291 0.8366 −0.1270*** 1 1.0010*** −8.9161 4830.8089 −9649.6179 −9615.9706

2007-2014 (7.8584) (38.6042) (−4.9136) (32.3409) (−53.9686)

a Table 2.4 reports estimation results for the GARCH-MIDAS model with two alternative specifications, UEM

and HS. Panel A provides parameter estimates for the GARCH-MIDAS-UEM model, in which the MIDAS filter

smooths out 24 lags (K=24) of monthly growth rates of unemployment rate:

τt = m+ θ ∗
K=24∑
k=1

φk(1, ω2)∆UEMt−k

b Panel B provides parameter estimates for the GARCH-MIDAS-HS model, in which the MIDAS filter smooths

out 24 lags of monthly growth rates of Housing Starts:

τt = m+ θ ∗
K=24∑
k=1

φk(1, ω2)∆HSt−k

c The numbers in parentheses are robust t-statistics, where ***,**,* indicate significant levels at 1%, 5% and

10%, respectively. The number in bold means estimated parameter is significant with at least 5% level. For each

specification of the GARCH-MIDAS model, we set up restricted weighting scheme with ω1 = 1.

68



Table 2.5: Variance Ratios for Macroeconomic Contribution in the stock Mar-
kets

Macro Variable 1970–2014 1970-1984 1985-2006 2007-2014

U.S Stock Market

Industrial Production Growth (∆IP ) 12.11% 15.24% 9.05% 1.98%

Housing Starts Growth (∆HS) 16.17% 29.97% 28.31% 21.04%

Unemployment Rate (∆UEM) 10.01% 12.87% 14.93% 17.81%

Producer Price Index Growth (∆PPI) 0.68% 13.12% 5.15% 13.06%

Term Spread (TS) 17.69% 26.56% 51.09% 24.07%

1st Principal Component (PC1) 16.48% 21.38% 23.64% 31.58%

UK Stock Market

Industrial Production(∆IP ) 6.40% 7.85% 2.97% 16.65%

Unemployment Rate (∆UEM) 4.13% 4.68% 13.34% 25.19%

Producer Price Index (∆PPI) 9.76% 39.21% 17.50% 13.97%

Term Spread (TS) 1.92% 1.63% 11.13% 34.98%

1st Principal Component (PC1) 32.65% 39.49% 22.0% 21.11%

1970–2014 1970-1989 1990-2006 2007-2014

Japan Stock Market

Industrial Production Growth (∆IP ) 8.24% 6.65% 11.13% 6.28%

Housing Starts Growth (∆HS) 9.78% 14.24% 35.62% 6.24%

Unemployment Rate (∆UEM) 21.17% 12.58% 8.55% 12.95%

Producer Price Index Growth (∆PPI) 27.57% 28.30% 9.09% 30.24%

Term Spread (TS) 39.64% 35.82% 3.52% 1.63%

Japanese Yen Index (Yen) 3.13% 14.10% 8.81% 29.11%

1st Principal Component (PC1) 41.05% 25.25% 13.26% 9.34%

a Table 2.5 summarizes variance ratio for the GARCH-MIDAS model specified

with alternative macroeconomic variables and their combined factor, the first

principal component.
b The variance ratio is calcluated by a sample variance fraction:

v̂arlogτM
t

v̂arlog(τM
t gMt )

,

where M refers to a GARCH-MIDAS model specified with one macro variable.

v̂arlogτMt denotes the log long-run volatility component that is purely driven

by macroeconomic variable x. v̂arlog(τMt gMt ) denotes that both long-run and

short-run components are combined together as an entire volatility.
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Table 2.6: Parameter Estimates for GARCH-MIDAS model with Realized
Volatility and Macroeconomic Variable in U.S

MIDAS α β m θRV ωRV θX ωX Likelihood AIC BIC

Full-sample 1970-2014

RV+IP 0.0809 0.7805 2.23e-05 0.0385*** 49.074*** -0.0109** 2.8976* 35935 -71853 -71794

(30.294) (48.29) (9.2027) (26.667) (7.1594) (-3.2465) (2.0313)

RV+PPI 0.0808 0.7769 1.47e-05 0.0401*** 48.779*** 0.01181 3.5098 35931 -71846 -71787

(30.2) (47.522) (8.0935) (29.362) (7.565) (1.4151) (0.68195)

RV+UEM 0.0812 0.7789 1.94e-05 0.0386*** 49.129*** 0.0049*** 7.0165* 35935 -71854 -71795

(30.209) (47.275) (9.988) (26.766) (7.13) (3.435) (1.7751)

RV+HS 0.0808 0.7788 2.17e-05 0.0381*** 48.939*** -0.0210∗ ∗ ∗ 1.0548∗ ∗ ∗ 35937 -71859 -71800

(29.934) (47.415) (10.407) (26.426) (7.0358) (-4.8306) (7.8091)

RV+TS 0.0807 0.7782 3.07e-05 0.0374∗ ∗ ∗ 48.953∗ ∗ ∗ -0.0585∗ ∗ ∗ 1.0347∗ ∗ ∗ 35940 -71865 -71806

(30.331) (46.608) (9.7523) (26.405) (6.8621) (-5.9303) (4.8021)

Sub-sample 1970-1984

RV+IP 0.0319 0.9060 3.16e-05 0.0309∗ ∗ ∗ 48.532∗ -0.0148∗∗ 3.3825∗ 11242 -22468 -22418

(4.0717) (22.001) (4.3524) (6.6921) (1.838) (-2.9875) (2.0261)

RV+PPI 0.0317 0.9001 1.17e-05 0.0339∗ ∗ ∗ 47.366∗ 0.0376∗ 1.2001 11239 -22463 -22413

(3.9354) (21.166) (2.5842) (8.2025) (2.2356) (2.3206) (1.1951)

RV+UEM 0.0320 0.9035 2.01e-05 0.0347∗ ∗ ∗ 48.107∗ 0.0034∗ 5.0145 11238 -22461 -22411

(3.9799) (21.052) (3.9771) (8.3566) (2.0802) (1.8429) (0.9257)

RV+HS 0.0310 0.9062 1.62e-05 0.0369∗ ∗ ∗ 47.006∗ 0.0036 44.37 11239 -22463 -22413

(3.9895) (21.265) (3.3792) (9.2653) (2.31) (1.4451) (0.62448)

RV+TS 0.0306 0.8998 3.24e-05 0.0322∗ ∗ ∗ 49.637∗ -0.0726∗ ∗ ∗ 1.2562∗ 11243 -22469 -22419

(3.8498) (18.842) (4.9127) (7.952) (1.8528) (-3.7795) (1.9359)

Sub-sample 1985-2006

RV+IP 0.0534 0.7993 2.01e-05 0.0401∗ ∗ ∗ 37.307∗ ∗ ∗ -0.0205∗ ∗ ∗ 2.2687∗ 16847 -33679 -33626

(6.117) (19.561) (7.9744) (25.676) (9.0867) (-3.9715) (2.1499)

RV+PPI 0.0538 0.7946 1.33e-05 0.0411∗ ∗ ∗ 35.202∗ ∗ ∗ -0.0143 7.1095 16844 -33673 -33619

(6.0464) (18.553) (5.9314) (25.328) (8.9983) (-1.2065) (0.9639)

RV+UEM 0.0526 0.7967 1.75e-05 0.0389∗ ∗ ∗ 42.536∗ ∗ ∗ 0.0108∗ ∗ ∗ 6.8743∗∗ 16849 -33683 -33629

(5.9639) (18.745) (8.1121) (24.07) (7.5599) (4.0308) (2.609)

RV+HS 0.0542 0.7959 2.39e-05 0.0372∗ ∗ ∗ 46.814∗ ∗ ∗ -0.0706∗ ∗ ∗ 1.0023∗ ∗ ∗ 16857 -33698 -33645

(6.1289) (18.896) (9.382) (22.59) (5.9596) (-6.7428) (100.99)

RV+TS 0.0503 0.7922 3.60e-05 0.0365∗ ∗ ∗ 47.384∗ ∗ ∗ -0.0873∗ ∗ ∗ 1.0428 16855.3 -33695 -33642

(5.6709) (17.325) (6.9897) (20.487) (6.0668) (-5.5703) (5.9681)

Sub-sample 2007-2014

RV+IP 0.1283 0.8096 4.83e-05 0.0266∗ ∗ ∗ 12.15∗∗ -0.0205 48.441 4979 -9942 -9897

(7.3047) (25.615) (3.4935) (5.0272) (2.9278) (-1.1519) (0.48833)

RV+PPI 0.1283 0.8022 3.23e-05 0.0275∗ ∗ ∗ 12.006∗∗ 0.0732 3.8744 4979 -9943 -9898

(7.0517) (23.522) (3.2843) (5.6934) (2.9772) (1.4019) (0.97058)

RV+UEM 0.1305 0.8066 3.66e-05 0.0279∗ ∗ ∗ 11.362∗∗ -0.0046 21.48 4978 -9940 -9895

(7.2667) (25.33) (2.759) (5.0384) (2.9637) (-0.5781) (0.36914)

RV+HS 0.1277 0.8072 4.03e-05 0.0268∗ ∗ ∗ 12.113∗∗ 0.0010 19.846 4978 -9939 -9895

(7.1172) (24.744) (3.1766) (5.2649) (2.9397) (0.068962) (0.060886)
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RV+TS 0.1279 0.8054 5.86e-06 0.0264∗ ∗ ∗ 12.634∗∗ 0.1412 30.008 4979 -9942 -9897

(7.114) (24.195) (0.27022) (5.2204) (2.9211) (1.602) (0.18437)

a Table 2.6 reports paramter estimates for GARCH-MIDAS-RV-X models including lags of RV and

macro variable X for the U.S market. In the MIDAS filter, long-term volatility component is regressed

by lags of RV and monthly observations from one alternative macro variable:

τt = m+ θrv

Krv∑
k=1

φk(ωrv)RVt−k + θx

Kx∑
k=1

φk(ωx)Xt−k

with K=24. Parameter θrv and θx govern impacts of realized volatility and macro variable, respec-
tively. The numbers in parentheses are robust t-statistics, where ***,**,* indicate significant levels
at 1%, 5% and 10%, respectively.
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Table 2.7: Parameter Estimates for GARCH-MIDAS incorpated with Macroe-
conomic Variables I in Japan

Sample MIDAS filter α β θ ω1 ω2 m L-Likelihood AIC BIC

Panel A: GARCH-MIDAS-IP Model

Full Sample IP 0.1391 0.8552 −0.8090*** 1 1.0010*** −7.7168 33274 −66536−66492

1970-2014 (47.2842)(240.8802) (−7.0763) (81.7391) (−26.2501)

Sub-sample IP 0.2478 0.7090 −0.5675*** 1 1.2112*** −9.0376 11966 -23920 -23883

1970-1989 (47.9922) (67.0730) (−3.0051) (2.6105) (−61.0008)

Sub-sample IP 0.0803 0.9022 −0.6422*** 1 1.0010*** −8.3289 10708 −21405−21367

1990-2006 (10.4595) (96.5828) (-3.2180) (32.3668) (-70.6963)

Sub-sample IP 0.1139 0.8831 −0.5046* 1 1.0988*** −6.8926 4257 −8501 −8462

2007-2014 (9.4848) (72.7179) (−1.7281) (3.3815) (−10.0431)

Panel B: GARCH-MIDAS-TS Model

Full Sample TS 0.1521 0.8238 −0.8231∗ ∗ ∗ 1 1.001∗ ∗ ∗ −7.0207 33879 −67746−67702

1970-2014 (48.637) (176.94) (−20.134) (40.897) (−56.631)

Sub-sample TS 0.2645 0.6254 −0.9800*** 1 1.6486*** −7.1457 11742 -23471 -23434

1970-1989 (35.1218) (39.4744) (−14.5275) (6.5767) (−40.5935)

Sub-sample TS 0.0761 0.9024 −0.2178*** 1 9.6234 −8.0793 10775 −21538−21500

1990-2006 (10.6694) (93.9640) (−2.8257) (0.6072) (−53.4502)

Sub-sample TS 0.1171 0.8484 0.6167 1 49.9834 −8.8939 4141 −8270 −8237

2007-2014 (8.5402) (45.4606) (1.6359) (0.3002) (-24.4642)

Panel C: GARCH-MIDAS-PPI Model

Full Sample PPI 0.1338 0.8613 −0.1398*** 1 1.3764*** −7.7120 33275 −66539−66495

1970-2014 (40.6430)(249.2422) (-8.2286) (4.9714) (-24.4094)

Sub-sample PPI 0.2678 0.7128 −0.0808*** 1 1.0015*** −8.4286 10817 −21622−21585

1970-1989 (46.318) (81.4120) (−4.3975) (18.4330) (−27.2880)

Sub-sample PPI 0.1343 0.8641 0.0914** 1 19.5730* −6.9065 10705 −21398−21360

1990-2006 (46.6600) (284.59) (2.4789) (1.7214) (−12.8000)

Sub-sample PPI 0.1147 0.8253 0.1147*** 1 7.8595** −8.5489 4035 −8058 −8025

2007-2014 (8.3819) (31.6424) (3.2959) (2.2254) (−78.8703)

a Table 2.7 reports estimation results for the GARCH-MIDAS model with alternative macroe-

conomic variables. Panel A provides parameter estimates for the GARCH-MIDAS-IP model,

in which the long-term volatility component τ in a MIDAS filter has been smoothed out by 24

lags (K=24) of Industrial production growth rates in a monthly frequency:

τt = m+ θ ∗
∑K=24
k=1 φk(ω2)IPt−k

b Panel B and Panel C provide parameter estimates for the GARCH-MIDAS model incorporated

with Term Spread and Inflation (PPI), respectively: τt = m+ θ ∗
∑K=24
k=1 φk(ω2)TSt−k τt =

m+ θ ∗
∑K=24
k=1 φk(ω2)PPIt−k

c The numbers in parentheses are robust t-statistics, where ***,**,* indicate significant levels

at 1%, 5% and 10%, respectively. For one GARCH-MIDAS model, we set up restricted weight-

ing scheme with ω1 = 1 and ω2, governing shape of beta weights.
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Table 2.8: Parameter Estimates for the GARCH-MIDAS incorporated with
Macroeconomic Variables II in Japan

Sample MIDAS filter α β θ ω1 ω2 m L-Likelihood AIC BIC

Panel A: GARCH-MIDAS-UEM Model

Full Sample UEM 0.1221 0.8768 −0.0449*** 1 1.0010*** 0.0038 33291 −66571−66527

1970-2014 (47.6221) (328.8445) (−8.5875) (265.7575) (445.46)

Sub-sample UEM 0.2338 0.7233 −0.0150*** 1 5.1837*** 0.0008 11890 -23767 -23730

1970-1989 (45.8524) (79.5560) (−3.8077) (3.0656) (7.1679)

Sub-sample UEM 0.0772 0.9053 0.0060** 1 19.981 0.0007 10778 −21544−21506

1990-2006 (10.6730) (102.17) (2.1361) (1.6128) (4.5406)

Sub-sample UEM 0.1186 0.8358 0.0091* 1 4.6497 0.0008 4256 −8501 −8467

2007-2014 (9.0703) (40.4422) (1.6816) (1.0690) (70.4548)

Panel B: GARCH-MIDAS-HS Model

Full Sample HS 0.1384 0.8563 −0.1738*** 1 1.0010*** 0.0006 −32556 −65099−65056

1970-2014 (47.2680) (256.7100) (−9.4569) (34.7710) (7.8260)

Sub-sample HS 0.2923 0.6963 0.2919*** 1 1.7692*** 0.0820 11713 −23414−23377

1970-1989 (42.2554) (77.5987) (4.5244) (3.1103) (7.5720)

Sub-sample HS 0.0743 0.8971 −0.5443*** 1 1.0850*** 0.0269 10716 −21420−21382

1990-2006 (9.5554) (77.2182) (−6.1105) (12.1568) (1.3307)

Sub-sample HS 0.1218 0.8202 −1.6938* 1 16.3520* 0.0009 4301 −8591 −8557

2007-2014 (8.3496) (27.0280) (−2.9975) (1.7956) (−2.3945)

Panel B: GARCH-MIDAS-Yen Model

Full Sample Yen 0.0743 0.9257 −0.2725*** 1 4.9689*** 1.74e-05 28106 −56200−56156

1970-2014 (247.7327)(3086.3924)(−110.1697) (91.8104) (80.0800)

Sub-sample Yen 0.2579 0.6588 0.0391*** 1 1.0010*** 6.28e-06 11722 −23432−23395

1970-1989 (32.8015) (43.6460) (10.2729) (50.2913) (76.4280)

Sub-sample Yen 0.0713 0.9286 −0.0182** 1 1.1614*** 4.7e-05 10718 −21424−21386

1990-2006 (19.8464) (284.8544) (-2.4721) (2.7570) (3.1146)

Sub-sample Yen 0.1143 0.8409 −0.0671* 1 1.5375* 8.56e-06 4256 −8501 −8467

2007-2014 (8.8107) (42.6369) (−1.7858) (1.7822) (−65.0082)

a Table 2.8 reports estimation results for the GARCH-MIDAS model with two alternative specifi-

cations, UEM and HS. Panel A provides parameter estimates for the GARCH-MIDAS model, in

which the MIDAS filter smooths out 24 lags (K=24) of monthly growth rates of unemployment

rate: τt = m+ θ ∗
∑K=24
k=1 φk(ω2)∆UEMt−k

b Panel B provides parameter estimates for the GARCH-MIDAS model, in which the MIDAS filter

smooths out 24 lags of monthly growth rates of Housing Starts: τt = m+θ∗
∑K=24
k=1 φk(ω2)∆HSt−k

c The numbers in parentheses are robust t-statistics, where ***,**,* indicate significant levels

at 1%, 5% and 10%, respectively. For one GARCH-MIDAS model, we set up restricted weighting

scheme with ω1 = 1 and ω2, governing shape of beta weights.
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Table 2.9: Parameter Estimates for GARCH-MIDAS model with Realized
Volatility and Macroeconomic Variable in Japan

MIDAS α β θRV ωRV θX ωX m Likelihood AIC BIC

Full-sample 1970-2014

RV+IP 0.1381 0.7311 0.0455*** 49.438*** −0.2319*** 1.7368*** 2.44e-05 29504 −58993 −58935

(18.735) (46.277) (27.067) (7.7357) (−4.5839) (4.3188) (7.2592)

RV+PPI 0.1383 0.7313 0.0465*** 49.288*** −0.0149*** 2.192* 1.68e-05 29501 -58987 -58929

(18.652) (46.953) (29.016) (8.5049) (-3.5347) (1.8333) (8.1497)

RV+UEM 0.1364 0.7336 0.0469*** 49.04*** −0.0035*** 4.9675** 1.87e-05 29504 −58992 −58934

(18.375) (47.081) (30.872) (8.8127) (−3.2487) ( 2.36) (8.2404)

RV+HS 0.1387 0.7298 0.0485*** 49.076*** −0.0046 25.371 1.24e-05 29499 −58982 −58925

(18.795) (46.896 ) (30.854) ( 8.744) (−1.0891) (0.7674) (7.5874)

RV+TS 0.1339 0.7387 0.0394*** 49.503*** −0.1942*** 1.2599*** 7.08e-05 29521 −59026 −58968

(18.442) (48.702) (24.006) (7.1966) (−9.6352 ) ( 5.624) (10.551)

RV+Yen 0.1380 0.7306 0.0476*** 49.193*** −0.0013* 7.8907 1.53e-05 29500 −58985 −58927

(18.5650) (46.653) (30.917) (8.8228) (−1.9463) (1.1541) (8.0509)

Sub-sample 1970-1989

RV+IP 0.1820 0.5856 0.0332*** 49.499*** −0.0221 34.692 1.58e-05 11963 -23910 -23860

( 10.17) (16.484) (15.871) (4.8618) (−1.0177) ( 0.4781) (9.4448)

RV+PPI 0.1837 0.5799 0.0317*** 49.495*** −0.0079** 3.9724 1.74e-05 11964 −23911 −23861

( 10.114) (15.97) (15.543) (4.7274 ) (−2.3274) ( 1.0675 ) (9.3427)

RV+UEM 0.1774 0.5875 0.0318*** 49.483*** −0.0021** 6.8459** 1.88e-05 11966 −23917 −23867

(10.032) (16.169) (15.827) ( 4.785) ( -2.7542) (2.0657) (9.6554)

RV+HS 0.1834 0.5841 0.0322*** 49.507*** 0.0222 1.1757 1.61e-05 11963 −23909 −23859

(10.188 ) (16.5) (15.14 ) (4.6107) (1.325) (1.3323 ) ( 9.1343)

RV+TS 0.1840 0.5769 0.0297*** 49.503*** −0.0979*** 1.408*** 4.39e-05 11967 −23917 −23868

(10.12) (15.895) (14.478) ( 4.3788) (−4.3767) (2.7975) (6.3377)

RV+Yen 0.1801 0.5889 0.0325*** 49.497*** −0.0007 8.9603 1.66e-05 11963 −23910 −23860

(10.202) (16.552 ) (15.936) (4.8758) (-1.2998) (0.7796) (9.4837)

Sub-sample 1990-2006

RV+IP 0.0772 0.8284 0.0354*** 47.824*** −0.1358 47.329 5.76e-05 10732 −21449 −21398

(6.7853) (26.663) (9.8488) (3.282) (−1.5529) ( 0.6655) (4.8748)

RV+PPI 0.0773 0.825 0.0367*** 47.488*** 0.0153 20.669 5.28e-05 10730 −21445 −21394

(6.7831 ) (24.991) (10.847) (3.4415) ( 0.5531) (0.3134) (5.1162)

RV+UEM 0.0768 0.8233 0.0367*** 48.51*** 0.0096*** 17.565** 4.34e-05 10735 −21455 −21404

(6.6627 ) (25.562) (10.934) (3.4874) (3.1845) (2.0206) (4.1975)

RV+HS 0.0751 0.8299 0.0338*** 48.006*** −0.2520*** 1.0211*** 6.11e-05 10732 −21448 −21397

(6.633) (26.183) (9.4851) (3.2648) (-2.7794) (12.2910) (5.4717 )

RV+TS 0.0754 0.8258 0.0348*** 48.067*** -0.1302* 29.254 8.05e-05 10731 −21446 −21396

(6.4353) (25.827) (10.206) (3.422) (−1.9401) (0.2498) (4.3605)

RV+Yen 0.0789 0.8269 0.0365*** 47.634*** 0.0044** 45.401 5.02e-05 10733 −21450 −21399

(6.7575) (27.477 ) (10.638) (3.5296 ) ( 2.095 ) (0.8177) (4.829)

Sub-sample 2007-2014

RV+IP 0.0952 0.7867 0.0317*** 48.343** 0.1004 12.416 6.14e-05 4269 −8522 −8477

(6.1746) (19.083) (7.5756) (2.1871) (1.0449) (0.6107) (4.2107)

RV+PPI 0.0939 0.7828 0.0322*** 48.576** 0.0619 6.699 6.25e-05 4269 -8523 -8478

(5.9533) ( 17.678) ( 7.4142) (1.9702) (1.0436) ( 0.8477) (4.0622)
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RV+UEM 0.0965 0.7919 0.0300*** 48.573* 0.0047 5.4912 6.81e-05 4268 -8521 -8476

(6.2748) (20.247) (6.6405) (1.8814) ( 0.5477) (0.4312) (4.3096)

RV+HS 0.0954 0.7846 0.0324*** 48.395** 0.1096 4.0361 5.96e-05 4268.79 −8522 −8477

(6.1464) (19.272) (7.0259) (2.1195) (0.8243) (0.7442) (3.4795)

RV+TS 0.0962 0.7908 0.0315*** 48.583* −0.1429 25.8 7.61e-05 4268 −8521 −8476

(6.0741) ( 19.336) (6.9175) (1.9673) (−0.3805) (0.0379) (2.3329)

RV+Yen 0.0926 0.7809 0.0316*** 49.688* -0.0137** 30.916 6.51e-05 4272 -8528 -8484

(5.8345) (16.0510) (7.4603) (1.8952 ) (-2.0552 ) (1.0877) (4.4275)

a Table 2.9 reports paramter estimates for GARCH-MIDAS-RV-X models including lags of RV and

macro variable X for the Japan market. In the MIDAS filter, long-term volatility component is

regressed by lags of RV and monthly observations from one alternative macro variable:

τt = m+ θrv

Krv∑
k=1

φk(ωrv)RVt−k + θx

Kx∑
k=1

φk(ωx)Xt−k

with K=24. Parameter θrv and θx govern impacts of realized volatility and macro variable, re-
spectively.
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Table 2.10: Parameter Estimates for GARCH-MIDAS-RV-X: Japan (Including RV of US)

Sample MIDAS Filter α β θRVJ
ωRVJ

θRVU
ωU θX ωX m Likelihood AIC BIC

1970-2014 RVJ +RVU + IPJ 0.1537 0.8109 0.0585*** 2.7249*** -0.0272*** 3.5563*** -0.4819*** 1.6315*** 7.98e-05 29522.2 -59024.5 -58952.4

(40.197) (136.07) (11.269) (8.0165) (-5.5421) (4.2538) (-3.1965) (3.2219) (6.022)

1970-2014 RVJ +RVU + PPIJ 0.1764 0.6712 0.0497*** 44.854*** -0.0016 9.8067 -0.0195*** 1.436** 2.06e-05 29514.6 -59009.2 -58937.2

(35.573) (54.49) ( 26.355) (7.681) (-1.0207) (0.5908) (-3.9513) (2.1152) (6.934)

1970-2014 RVJ +RVU + UEMJ 0.1525 0.8077 0.0559*** 3.2508*** -0.0177*** 3.2208*** -0.0053** 6.4247* 5.33e-05 29521.5 -59023.1 -58951

(38.357) (131.49) (13.024) (8.2825) (-4.1223) ( 3.035) (-2.2578) (1.9415) (6.0423)

1970-2014 RVJ +RVU + TSJ 0.1677 0.6829 0.0390*** 48.792*** 0.0021 27.694 -0.2496*** 1.0131*** 8.57e-05 29539.7 -59059.4 -58987.4

(33.801) (54.032) (19.45) (5.4531) (1.2484) (0.5274) (-9.8174 ) (16.692) (10.598)

1970-2014 RVJ +RVU +HSJ 0.1533 0.8098 0.0600*** 3.0555*** -0.0225*** 3.5267*** 0.0194* 24.114* 5.08e-05 29523.1 -59026.3 -58954.2

(41.044) (135.4) (12.722) (8.3994) ( -4.9624) (3.5635 ) (1.9099) (1.4817 ) (5.8926)

1970-2014 RVJ +RVU + Y enJ 0.1783 0.6720 0.0523*** 38.747*** -0.0031*** 12.164 -0.0012 9.4091 1.85e-05 29511.2 -59002.5 -58930.4

(38.225) (55.123) (30.696) (8.9052) (-1.9395) (1.1822) (-1.7078) (0.9884) (6.5073)

1970-2014 RVJ +RVU + PC1J 0.1522 0.8075 0.0502*** 3.5676*** -0.0167*** 3.0932*** 0.1818*** 1.2283** 6.37e-05 29520.7 -59021.4 -58949.4

(36.625) (127.7) (10.5) (7.5315) (-3.7739) (3.0616) ( 3.5718 ) (2.8757) (6.3933)

Average 0.0526 −0.0176

1970-1989 RVJ +RVU + IPJ 0.2863 0.4757 0.0392*** 47.548*** -0.0046** 17.485 -0.1049 1.4321 2.92e-05 12005.4 -23990.8 -23928.4

(36.445) (18.003) (13.485) (4.9001) (-2.7118) (1.7242) (-1.5904) (1.581) (5.6043)

1970-1989 RVJ +RVU + PPIJ 0.2859 0.4697 0.0359*** 48.103*** -0.0030** 13.414 -0.0124*** 3.0997 2.63e-05 12006.7 -23993.3 -23930.9

(36.898) (17.779 ) (12.677 ) (4.6334) ( -1.756) (1.1776) ( -2.7411 ) (1.3788 ) (8.3054)

1970-1989 RVJ +RVU + UEMJ 0.2809 0.4769 0.0372*** 47.678*** -0.0036** 13.672 -0.0026** 5.944* 2.78e-05 12008.2 -23996.3 -23933.9

(36.074) (17.947) (14.308) (4.8326) ( -2.187) (1.3067) (-2.3701) (1.9114) ( 8.2926)

1970-1989 RVJ +RVU + TSJ 0.2807 0.4745 0.0309*** 48.568*** -0.0023 9.5239 -0.1584*** 1.0891*** 6.94e-05 12012.1 -24004.3 -23941.9

(35.609) (18.164) (10.261) (3.7249) (-1.3174) (0.8878) (-4.9914) (4.004) (7.0705)

1970-1989 RVJ +RVU +HSJ 0.2822 0.4718 0.0346*** 47.895*** -0.0032* 18.783 0.0305** 6.2404** 2.55e-05 12008.8 -23997.5 -23935.1

(36.239) (17.334) (11.475) (4.2795) (-1.6803) ( 1.0652) (2.2519) (1.9908 ) (8.3175)
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1970-1989 RVJ +RVU + Y enJ 0.2856 0.4745 0.0386*** 47.733*** -0.0037** 16.373 -0.0009 9.9742 2.47e-05 12005.2 -23990.4 -23928

(36.963) (17.931) (14.417) (5.036) (-2.1237) (1.351) (-1.3106) (0.8294) (7.9647)

1970-1989 RVJ +RVU + PC1J 0.2841 0.4698 0.0336*** 48.294*** -0.0028* 12.142 0.0853*** 1.1105** 3.13e-05 12008.7 -23997.4 -23935

(36.147) (17.724 ) (11.634) ( 4.2333) (-1.7304) (1.1274 ) (3.857) (2.9807) (8.5356)

Average 0.0357 −0.0033

1990-2006 RVJ +RVU + IPJ 0.0669 0.8307 0.0302*** 49.811** 0.0162*** 1.6796* -0.3625*** 5.4097* 4.53e-05 10803.7 -21587.4 -21524

(6.0684) (23.362) (7.9692) (2.7492) (3.8637) (1.7275) (-2.9083) (1.8782) ( 4.1314)

1990-2006 RVJ +RVU + PPIJ 0.0681 0.8276 0.0317*** 49.026*** 0.0190*** 2.0798 0.15139* 1.0704** 4.51e-05 10801.9 -21583.7 -21520.3

(6.1351) (23.46) (8.8061) (3.0959) (4.2887) (1.7939) (1.9495) (2.4287) ( 3.8843)

1990-2006 RVJ +RVU + UEMJ 0.0657 0.8344 0.0317*** 49.206*** 0.0179*** 1.5248** 0.0078*** 28.675* 2.69e-05 10808.1 -21596.2 -21532.9

(5.8056) (23.463) ( 8.6772) (3.0977) (4.0269) (2.0014) (3.3806) (1.3024) (2.799)

1990-2006 RVJ +RVU + TSJ 0.0678 0.8305 0.0324*** 48.926** 0.0195*** 1.4568* 0.1397 1.1456 4.20e-05 10801.2 -21582.4 -21519

(6.3119) (23.136) (9.0109) (3.0402) (3.7812 ) (1.8205) (1.5405) (0.5396) (0.1967)

1990-2006 RVJ +RVU +HSJ 0.0687 0.8290 0.0325*** 49.785** 0.0114** 29.577 -0.4608*** 1.0284*** 6.77e-05 10808.4 -21596.8 -21533.4

(5.8697) (22.066) (6.8685) (2.2958 ) ( 2.7281 ) (0.7340) (-4.1718) (24.41) (5.0088)

1990-2006 RVJ +RVU + Y enJ 0.0687 0.8290 0.0325*** 48.947*** 0.0163*** 1.8635 0.0006 10.68 3.36e-05 10800.5 -21581 -21517.6

(5.9957) (23.96) (8.9631) (3.3144) (3.7464) (1.5844) (0.2483) ( 0.1331) ( 3.3931)

1990-2006 RVJ +RVU + PC1J 0.0686 0.8288 0.0323*** 48.966*** 0.0161*** 1.906 0.0407 7.4243 3.47e-05 10800.7 -21581.3 -21517.9

(6.3021) (24.184) (8.8724) (3.2468) (3.5918) (1.5215 ) (0.4243) (0.1884) (3.4443)

Average 0.0319 0.0166

2007-2014 RVJ +RVU + IPJ 0.1086 0.8174 0.0244*** 9.7097** -0.0032 2.4334 0.3355** 13.133 0.0001 4306.41 -8592.83 -8537.03

(8.7917) (27.068) (3.2921) (2.1328) (-0.4306) (0.3335) ( 2.2128) ( 1.3656) ( 4.1563)

2007-2014 RVJ +RVU + PPIJ 0.1084 0.7731 0.0085 41.454 0.0207** 23.86 0.1915** 5.2426** 0.0001 4307.93 -8595.86 -8540.06

(8.5563) (19.368) (1.3223) (0.4968) (2.3739) (1.2603) (2.1191) ( 2.0555 ) (5.8039)

2007-2014 RVJ +RVU + UEMJ 0.1139 0.7917 0.0124** 41.784 0.0089 27.182 0.0060 3.5672 0.0001 4303.99 -8587.99 -8532

(8.7127) (23.035) (2.4199) (0.8295) (1.2248) (0.4625) ( 0.5370) (0.4210) ( 5.933)
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2007-2014 RVJ +RVU + TSJ 0.1143 0.7892 0.0133** 47.908 0.0096 9.829 -0.2811 2.8026 0.0001 4303.69 -8587.38 -8531.58

(8.5779) (22.231) (2.5803) (0.8325) (1.3989) (0.9429) (-0.4547) (0.1216) (2.3178)

2007-2014 RVJ +RVU +HSJ 0.1074 0.8258 0.0151** 4.1023 0.0123 26.967 0.3683** 5.0301* 9.34e-05 4308.39 -8596.78 -8540.99

(8.7832) (32.019) (1.9535) ( 1.4597 ) (1.4551) (0.6358) (2.2947) (1.8273) (3.4528)

2007-2014 RVJ +RVU + Y enJ 0.1089 0.7667 0.0087 10.074 0.0229** 27.756 -0.0466*** 5.9556** 0.0001 4310.91 -8601.82 -8546.02

(8.8672) (18.487) (1.2639) (0.9889) (2.5099) (1.2398) (-3.0668) (2.3661) ( 5.2738)

2007-2014 RVJ +RVU + PC1J 0.0998 0.7901 0.0098 8.1227 0.0235** 27.664 -1.1469** 5.045** 0.0002 4312.93 -8605.85 -8550.05

(8.6694) (21.233) (1.5295) (1.035) (2.5606) (1.2532) (-2.4024) (2.5136) (4.9322)

Average 0.0132 0.0224

Table 2.10 reports parameter estimates for the GARCH-MIDAS-RV-X models including lags of local RV and macro variable in the Japan market as well as global RV

obtained from the U.S market. In the MIDAS filter, the long-term volatility component:

τt = m+ θUK
rv

K∑
k=1

φk(ωUK
rv )RV UK

t−k + θUS
rv

K∑
k=1

φk(ωUS
rv )RV US

t−k + θx

Kx∑
k=1

φk(ω1,x, ω2,x)Xt−k

Parameter θUK
rv accounts for the impact of local RV in the UK market. θUK

rv measures the spillover effect that from U.S into Japan market.
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Table 2.11: Parameter Estimates for GARCH-MIDAS incorpated with
Macroeconomic Variables I in UK

Sample MIDAS filter α β θ ω1 ω2 m L-Likelihood AIC BIC

Panel A: GARCH-MIDAS-IP Model

Full Sample IP 0.0692 0.9308 −0.7217*** 1 4.9991*** −0.3773 26490 −52968−52924

1970-2014 (76.4868)(1029.4539) (-65.0043) (70.0688) (−1.8223)

Sub-sample IP 0.0680 0.9320 −0.4345*** 1 4.9990*** −0.1314 9528 −19045−19007

1970-1984 (35.0670) (480.3149) (-25.3135) (26.2200) (−0.6036)

Sub-sample IP 0.1011 0.8764 −0.0454** 1 1.0010*** −9.2230 17235 −34458−34418

1985-2006 (15.6917) (108.2209) (−2.2952) (39.3547) (−82.4351)

Sub-sample IP 0.0973 0.8997 −0.1054* 1 3.3551 −7.7859 4964 −9915 −9882

2007-2014 (7.9590) (69.3764) (-1.8844) (1.6210) (-15.9077)

Panel B: GARCH-MIDAS-TS Model

Full Sample TS 0.0957 0.8885 −0.0676** 1 1.0011***−9.0370*** 36401 −72790−72746

1970-2014 (22.7639) (201.2582) (−2.4733) (4.0901) (−100.2728)

Sub-sample TS 0.0984 0.9005 −0.1448 1 1.2014 −6.6827*** 11102 −22192−22154

1970-1984 (14.4927) (132.1581) (−1.2841) (0.6901) (−11.6026)

Sub-sample TS 0.1003 0.8700 −0.1519*** 1 1.0419***−9.3542*** 17242 −34472−34432

1985-2006 (15.9057) (105.0936) (−4.6783) (3.2875) (−129.2613)

Sub-sample TS 0.0861 0.9130 −0.1959 1 16.8684 −6.5912*** 5010 −10008 −9975

2007-2014 (8.3166) (87.1692) (-0.9557) (0.2820) (-8.4067)

Panel C: GARCH-MIDAS-PPI Model

Full Sample PPI 0.0965 0.8846 0.1173*** 1 19.6527** −9.3659 36166 −72321−72277

1970-2014 (23.1796) (181.3542) (5.9298) (2.4946) (−116.4090)

Sub-sample PPI 0.0922 0.8623 0.2452*** 1 6.1794*** −10.1595 10889 −21767−21729

1970-1984 (10.0395) (60.7882) (9.2200) (4.7090) (-76.8303)

Sub-sample PPI 0.1680 0.8319 −0.3832*** 1 1.0252*** −2.6183 16995 −33979−33939

1985-2006 (18.2050) (90.1639) (−3.6621) (9.8848) (−6.0152)

Sub-sample PPI 0.0968 0.8768 0.9468*** 1 1.4454*** −9.8526 4854 −9696 −9662

2007-2014 (6.9286) (49.7906) (3.7898) (3.8079) (−38.6655)

a Table 2.11 reports estimation results for the GARCH-MIDAS model with alternative macroeconomic

variables. Panel A provides parameter estimates for the GARCH-MIDAS model, in which the long-

term volatility component τ has been smoothed out by 24 lags (K=24) of Industrial production growth

rates in a monthly frequency:

τt = m+ θ ∗
K=24∑
k=1

φk(1, ω2)IPt−k

b Panel B and Panel C provide parameter estimates for the GARCH-MIDAS model incorporated with

Term Spread and Inflation (PPI):

τt = m+ θ ∗
K=24∑
k=1

φk(1, ω2)TSt−k τt = m+ θ ∗
K=24∑
k=1

φk(1, ω2)PPIt−k

c The numbers in parentheses are robust t-statistics, where ***,**,* indicate significant levels at 1%,

5% and 10%, respectively. For one GARCH-MIDAS model, we set up restricted weighting scheme with

ω1 = 1.
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Table 2.12: Parameter Estimates for the GARCH-MIDAS incorporated with
Macroeconomic Variables II in UK

Sample MIDAS filter α β θ ω1 ω2 m L-Likelihood AIC BIC

Panel A: GARCH-MIDAS-UEM Model

Full Sample UEM 0.0961 0.8866 0.0057*** 1 15.7905 0.0001 36327 −72642−72598

1970-2014 (23.1541) (188.0205) (3.6449) (1.5733) (13.0201)

Sub-sample UEM 0.0851 0.8962 0.0062*** 1 15.3764 0.0001 11043 −22075−22037

1970-1984 (11.6331) (112.3988) (3.0860) (1.2711) (7.1452)

Sub-sample UEM 0.1038 0.8720 −0.0040 1 4.1233 0.0001 17234 −34457−34417

1985-2006 (16.5890) (107.3848) (−1.4254) (0.4722) (10.8963)

Sub-sample UEM 0.0978 0.8435 0.0309*** 1 11.0624** 0.0001 3863 −7714 −7680

2007-2014 (4.8235) (26.4587) (4.5731) (2.2550) (8.6024)

Panel B: GARCH-MIDAS-HS Model

Full Sample HS 0.1316 0.8684 −0.1728*** 1 1.0728*** 0.0007 35603 −71193−71149

1970-2014 (29.1700) (192.4400) ( −2.9760) (2.8484 ) ( 9.1350)

Sub-sample HS 0.0630 0.9370 −0.1778* 1 7.4670 0.0006 10882 −21751−21714

2007-1984 ( 18.2420)(264.9100) (−1.7787) (0.9728) (4.3776)

Sub-sample HS 0.1148 0.8852 −0.2226** 1 1.0713* 0.0006 16453 −32894−32854

1985-2006 (16.6310) (128.2200) (−1.9796) (1.7574) (5.5680)

Sub-sample HS 0.0995 0.8831 −0.1844* 1 1.0178*** 0.0006 4851 −9690 −9656

2007-2014 (7.0517) (52.8580) (−1.7284) (4.9165) (2.8142)

Panel C: GARCH-MIDAS-Exchange Rate Model

Full Sample Exchange 0.0548 0.9452 −1.0506*** 1 1.0027*** 0.0004 35923 −71833−71789

1970-2014 (31.932) (609.18) (−11.753) (38.527) (7.1930)

Sub-sample Exchange 0.0713 0.9286 −0.6803*** 1 4.7977** 0.0002 10781 −21550−21513

1970-1984 (17.3590) (255.6400) (−3.6981) (2.4328) (1.6458)

Sub-sample Exchange 0.0797 0.9203 −0.7215*** 1 1.6612*** 0.0006 16938 −33864−33824

1985-2006 (21.7370) (269.5000) (−3.3964) (3.7051) (8.1734)

Sub-sample Exchange 0.0957 0.8997 −0.2021 1 2.3593 0.0006 4839 −9666 −9632

2007-2014 (7.1764) (65.5660) (−0.2913) (0.3100) (−0.4415)

a Table 2.12 reports estimation results for the GARCH-MIDAS model with alternative specifica-

tions, UEM, HS and Exchange rate (USD/GBP). Panel A provides parameter estimates for the

GARCH-MIDAS model, in which the MIDAS filter smooths out 24 lags (K=24) of monthly growth

of unemployment rate:

τt = m+ θ ∗
K=24∑
k=1

φk(ω2)∆UEMt−k

b Panel B provides parameter estimates for the GARCH-MIDAS model, in which the MIDAS

smooths out 24 lags of monthly growth rates of Housing Starts:

τt = m+ θ ∗
K=24∑
k=1

φk(ω2)∆HSt−k

c Panel C provides parameter estimates for the GARCH-MIDAS model specified with Exchange

rate. The numbers in parentheses are robust t-statistics, where ***,**,* indicate significant levels

at 1%, 5% and 10%, respectively. For one GARCH-MIDAS model, we set up restricted weighting

scheme with ω1 = 1 and ω2, governing shape of beta weights.
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Table 2.13: Parameter Estimates for GARCH-MIDAS model with Realized
Volatility and Macroeconomic Variable in UK

MIDAS α β θRV ωRV θX ωX m Likelihood AIC BIC

Full-sample1970-2014

RV+IP 0.1101 0.7762 0.0347*** 29.9955*** −0.0031 7.2727 2.33e-05 36447 −72879 −72820

(16.8971) (49.6785) (24.7625) (9.8371) (−1.3904) (0.9297) (3.4235)

RV+PPI 0.1096 0.7761 0.0337*** 30.2629*** 0.0208** 9.0344 2.07e-05 36448 −72880 −72821

(16.6199) (49.4703) (22.4481) (9.4968) (2.0162) (0.6840) (10.857)

RV+UEM 0.1096 0.7755 0.0337*** 31.5301*** 0.0019** 9.5324 2.36e-05 36449 −72882 −72823

(16.8059) (49.1876) (23.0360) (8.9280) (2.4167) (1.1240) (12.2940)

RV+TS 0.1099 0.7763 0.0348*** 28.9850*** −0.0085 5.6074 2.36e-05 36447 −72878 −72819

(16.7736) (49.7636) (24.4685) (10.2058) (−0.9988) (0.2605) (12.294)

RV+FX 0.1096 0.7762 0.0345 30.6045 0.1076 1.2937 0.0006 36448 −72880 −72821

(16.7180) (49.2120) (24.4880) (9.7065) (2.1840) (0.4659) (8.3058)

RV+HS 0.1095 0.7917 0.0332*** 38.3090*** −0.0046** 1.0643*** 2.54E-05 35355 −70693 −70634

(16.3380) (55.8100) (21.973) (9.2621) (−2.1174) (2.7784) (11.7740)

Sub-sample 1970-1984

RV+IP 0.1139 0.7658 0.0352*** 17.7814*** −0.0013 3.3673 2.31e-05 11065 −22113 −22063

(8.2028) (22.7472) (11.3774) (3.4429) (−0.3019) (0.2209) (4.3454)

RV+PPI 0.1121 0.7478 0.0277*** 28.3823*** 0.0794*** 7.0452* 1.04e-05 11069 −22123 −22073

(7.7224) (19.0637) (7.6433) (3.1878) (3.1282) (1.7947) (1.7559)

RV+UEM 0.1140 0.7647 0.0345*** 18.3509*** 0.0009 7.0793 2.31e-05 11065 −22114 −22064

(8.0731) (22.2692) (10.0895) (3.4456) (0.7806) (0.3652) (4.2491)

RV+TS 0.1141 0.7657 0.0351*** 17.9119*** 0.0137 7.8481 2.31e-05 11065 −22114 −22064

(8.1127) (22.6343) (11.3627) (3.5414) (0.6288) (0.1969) (4.2491)

RV+FX 0.1166 0.7967 0.0307*** 15.8570*** 0.0012 9.8792 1.15e-05 11065 −22113 −22063

(8.6345) (30.8040) (8.4932) (3.3892) (1.2346) (0.1613) (0.6317)

RV+HS 0.1204 0.7829 0.0319*** 9.2661*** −0.0029 15.7660 2.84e-05 10887 −21757 −21707

(9.2674) (30.6390) (9.7257) (3.7937) (−1.2284) (0.3159) (4.4401)

Sub-sample 1985-2006

RV+IP 0.1077 0.7379 0.0339*** 48.9864*** −0.0205*** 1.0032*** 2.49e-05 17297 −34578 −34525

(11.7988) (29.4636) (18.3645) (4.9539) (−3.5066) (19.7731) (10.883)

RV+PPI 0.1094 0.7390 0.0330*** 48.9628*** −0.0632*** 5.6503 2.79e-05 17296 −34576 −34523

(12.6192) (30.3478) (17.7420) (4.7716) (−2.6723) (1.0149) (8.6115)

RV+UEM 0.1099 0.7363 0.0341*** 48.8796*** 0.0008 7.9153 2.103e-05 17294 −34572 −34519

(12.4310) (29.6068) (18.3882) (4.9608) (0.7828) (0.3193) (10.248)

RV+TS 0.1066 0.7359 0.0315*** 49.0672*** −0.0389*** 7.0147 2.10e-05 17300 −34583 −34530

(12.1758) (27.9073) (17.1450) (4.7734) (-4.0671) (0.9864) (10.248)

RV+FX 0.1247 0.7921 0.0254*** 12.9140*** 0.0245 3.2974 −5.48E-06 17068 −34120 −34067

(15.1530) (44.4680) (9.7692) (4.2986) (1.5733) (0.5582) (−0.2095)

RV+HS 0.1248 0.7913 0.0253*** 12.9250*** 0.0048** 2.9021 3.46e-05 17069 −34121 −34068

(15.0190) (44.3500) (9.5886) (4.2794) (2.0853) (1.5192) (8.8758)

Sub-sample 2007-2014

RV+IP 0.1110 0.7749 0.0339*** 27.8893** −0.0097 2.8563 2.73e-05 4972 −9929 −9884

RV+PPI 0.1100 0.7786 0.0316*** 24.218** 0.1562 5.6728 2.04e-05 4974 −9932 −9887

( 5.7735) (18.426) (1.4957) (0.7186) (6.7298) (2.6929) (2.7861 )
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RV+UEM 0.1063 0.7756 0.0239*** 33.8279* 0.0135*** 5.5872 4.73e-05 4976 −9936 −9891

(5.5862) (16.9119) (4.7479) (1.7301) (2.9567) (1.6157) (4.4399)

RV+TS 0.1065 0.7774 0.0333*** 26.5266*** 0.1369 1.8625 4.73e-05 4973 −9931 −9886

(5.5561) (17.9704) (7.3161) (2.6933) (1.6368) (1.2921) (4.4399)

RV+FX 0.0949 0.7694 0.0351*** 47.3460** −0.0228 1.4485 0.0004 4979 −9942 −9897

(4.8314) (14.4210) (8.6551) (1.9975) (−1.0935) (1.4509) (1.1454)

RV+HS 0.1095 0.7760 0.0310*** 29.1340** −0.0058** 3.6905 3.47E-05 4974 −9931 −9886

(5.7584) (17.2550) (6.3862) (2.2953) (−1.6967) ( 1.5000) (3.5247)

Table 2.13 reports paramter estimates for GARCH-MIDAS-RV-X models including

both lags of RV and macro variable X for the UK market. In the MIDAS filter,

long-term volatility component is regressed by lags of RV and monthly observations

from one alternative macro variable:

τt = m+ θrv

Krv∑
k=1

φk(ωrv)RVt−k + θx

Kx∑
k=1

φk(ωx)Xt−k

with K=24 (months). Parameter θrv and θx govern impacts of realized volatility
and macro variable, respectively.
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Table 2.14: Parameter Estimates for GARCH-MIDAS-RV-X (Including U.S RV): UK

Sample MIDAS Filter α β θRVUK
ωRVUK

θRVUS
ωUS θX ωX m Likelihood AIC BIC

1970-2014 RVUK +RVUS + IPUK 0.1089 0.7576 0.0327 ∗ ∗ ∗ 46.259∗ ∗ ∗ 0.0038∗ ∗ ∗ 4.1734∗ ∗ ∗ -0.0028 1.2427 1.95e-05 36523.1 -73026.3 -72952.8

(16.274 ) (45.742 ) (19.064) ( 7.152) (2.6564) (7.152) ( -0.9421 ) (0.6225) ( 9.9145)

1970-2014 RVUK +RVUS + PPIUK 0.1075 0.7611 0.02988∗ ∗ ∗ 48.487∗ ∗ ∗ 0.0051∗ ∗ ∗ 4.153∗ ∗ ∗ 0.0305∗ ∗ ∗ 8.4289 1.59e-05 36526.7 -73033.3 -72959.8

(15.973 ) (46.278) ( 14.585 ) (5.1662 ) ( 3.3431) ( 2.5858 ) ( 2.9321 ) ( 1.0863 ) (7.7998 )

1970-2014 RVUK +RVUS + UEMUK 0.1082 0.7593 0.0312∗ ∗ ∗ 47.766∗ ∗ ∗ 0.0046∗ ∗ ∗ 4.9712∗∗ 0.0018∗∗ 1.0188∗ ∗ ∗ 1.88e-05 36524.7 -73029.4 -72955.9

(16.083) (46.097) ( 17.18 ) ( 6.7397) (2.9881) ( 2.2203) ( 2.1902) (4.9324) (10.44)

1970-2014 RVUK +RVUS + TSUK 0.1087 0.7575 0.0329∗ ∗ ∗ 45.902∗ ∗ ∗ 0.0036∗ ∗ ∗ 3.6955∗ -0.0079 5.6588 1.95e-05 36523.3 -73026.5 -72953

( 16.208 ) ( 45.529) (19.658) (7.3459) ( 2.6512) ( 1.9325) (-1.0933 ) (0.26161) (10.598)

1970-2014 RVUK +RVUS +HSUK 0.1086 0.7579 0.0325∗ ∗ ∗ 46.736∗ ∗ ∗ 0.0039∗ ∗ ∗ 3.675∗∗ -0.0007 8.3674 1.88e-05 36523.1 -73026.2 -72952.6

(16.276) (45.693 ) ( 19.265) (6.9473) ( 2.9215) (2.0997) (-0.7266) ( 0.2781) ( 10.087)

1970-2014 RVUK +RVUS + FEUK 0.1079 0.7592 0.0317*** 47.997*** 0.0044*** 3.6493** 0.0011** 1.321 0.0006 36525 −73031 −72957

(16.1060) (45.7430) (18.1270) (6.2522) (3.1472) (2.3374) (2.5588) (0.5491) (8.1521)

1970-2014 RVUK +RVUS + PC1UK 0.1080 0.7606 0.0305∗ ∗ ∗ 48.297∗ ∗ ∗ 0.0048∗ ∗ ∗ 4.218∗∗ 0.0455∗∗ 9.3158 2.08e-05 36525.4 -73030.9 -72957.4

(16.161) (46.528) (15.123) ( 5.1902) ( 3.1748 ) (2.4548 ) (2.3919) (1.0116) ( 9.748)

Average 0.0316 0.0043

1970-1984 RVUK +RVUS + IPUK 0.1192 0.7423 0.0366∗ ∗ ∗ 19.636∗ ∗ ∗ 0.0035 4.4176 0.0009 5.208 1.50e-05 11142.9 -22265.8 -22203.1

(8.4011) ( 20.506 ) (10.078) ( 4.4438 ) (0.5852 ) ( 0.3767 ) (0.2151) ( 0.1690) ( 1.5512)

1970-1984 RVUK +RVUS + PPIUK 0.1177 0.7258 0.029∗ ∗ ∗ 29.545∗ ∗ ∗ 0.0021 4.1653 0.0764∗ ∗ ∗ 6.4537∗ 6.37e-06 11147.4 -22274.7 -22212

(7.9711) (17.749) (7.1205) ( 3.6199 ) (0.4878) ( 0.2879) ( 2.9085) (1.7482 ) (0.8983)

1970-1984 RVUK +RVUS + UEMUK 0.1191 0.7406 0.0364∗ ∗ ∗ 20.43∗ ∗ ∗ 0.0015 5.0969 0.0654 6.3486 1.79e-05 11143 -22266 -22203.3

(8.3706) (20.344) (9.8938) (3.9963) (0.2932) (0.1541) (0.5121) (0.2494 ) (2.4298)

1970-1984 RVUK +RVUS + TSUK 0.1198 0.7412 0.0358∗ ∗ ∗ 20.114∗ ∗ ∗ 0.0053 4.2854 0.0206 7.7794 1.05e-05 11143.3 -22266.6 -22203.8

(8.45) (20.552 ) (9.5398) (4.5394) ( 0.8941) (0.5717) (0.8630) ( 0.2577) (1.0004)

1970-1984 RVUK +RVUS +HSUK 0.1187 0.7422 0.0365∗ ∗ ∗ 19.8∗ ∗ ∗ 0.0035 3.2844 -0.0014 7.9814 1.56e-05 11143.2 -22266.3 -22203.6

(8.4132) (20.319) (9.9698) (4.5382) (0.7052) ( 0.4221) (-0.6955) (0.2279) (2.3219)

Continued on next page
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1970-1984 RVUK +RVUS + FEUK 0.1189 0.7415 0.0360*** 20.7870*** 0.0069 1.4323 0.0079 7.1730 0.0006 11143.2 −22266.5 −22203.8

(8.3790) (20.2070) (9.7335) (4.5547) (0.8631) (0.8855) (0.8056) (0.1078)

1970-1984 RVUK +RVUS + PC1UK 0.1184 0.7283 0.0303∗ ∗ ∗ 28.389∗ ∗ ∗ 0.0002 5.2192 0.1323∗∗ 9.8091 2.25e-05 11146.7 -22273.3 -22210.6

(8.3171) (18.964) (7.5678) ( 3.4606) (0.0379) (0.0198) (2.8287) (1.6011 ) (3.5074)

Average 0.0344 0.0033

1985-2006 RVUK +RVUS + IPUK 0.0982 0.7604 0.0287∗ ∗ ∗ 49.134∗ ∗ ∗ 0.0044∗ ∗ ∗ 2.5388∗∗ -0.0217∗ ∗ ∗ 1.0415∗ ∗ ∗ 2.22e-05 17400.9 -34781.9 -34715.6

( 11.149 ) (30.955) (11.892 ) (3.5801) (3.0877) ( 2.223 ) (-3.3101) ( 5.7132) (9.8125)

1985-2006 RVUK +RVUS + PPIUK 0.1003 0.7618 0.0263∗ ∗ ∗ 49.151∗ ∗ ∗ 0.0053∗∗ 8.8633∗ -0.0719∗ ∗ ∗ 3.681 2.69e-05 17401 -34782 -34715.7

(12.052) (32.297) (7.5923) (3.05) ( 2.1631) ( 1.8327 ) ( -2.8479 ) (1.0433 ) ( 7.8966)

1985-2006 RVUK +RVUS + UEMUK 0.0996 0.7628 0.0254∗ ∗ ∗ 49.068∗ ∗ ∗ 0.0069∗ ∗ ∗ 9.2058∗∗ 0.1654 8.7384 1.91e-05 17398.9 -34777.8 -34711.5

(11.782) (31.777) (7.2426) (2.9263) ( 2.7296) ( 2.4005) (1.2912) (0.5804) ( 9.143)

1985-2006 RVUK +RVUS + TSUK 0.0976 0.7584 0.0259∗ ∗ ∗ 49.136∗ ∗ ∗ 0.0047∗∗ 8.924∗ -0.0333∗ ∗ ∗ 8.6284 2.30e-05 17402.7 -34785.4 -34719.1

(11.637) (29.353 ) (7.7523) (3.0783) ( 2.0464) ( 1.7446 ) (-3.6986) (0.7399) (9.7249)

1985-2006 RVUK +RVUS +HSUK 0.1008 0.7629 0.0255∗ ∗ ∗ 49.018∗ ∗ ∗ 0.0068∗ ∗ ∗ 9.3015∗∗ 0.0027 2.0126 1.86e-05 17399.3 -34778.5 -34712.2

(11.995) (32.181) (7.4553) (2.9536) (2.7442) (2.2422) (1.631) (1.1918) (8.5617)

1985-2006 RVUK +RVUS + FXUK 0.1017 0.7820 0.0284*** 48.3190*** 0.0041*** 1.0069*** −0.0042 5.4658 1.95e-05 17141 −34263 −34196

(11.5760) (33.3780) (12.3770) (3.7668) (3.2334) (13.8110) (−0.0381) (0.1348) (1.0523)

1985-2006 RVUK +RVUS + PC1UK 0.0987 0.7555 0.0271∗ ∗ ∗ 49.157∗ ∗ ∗ 0.0027 8.1551 -0.1638∗ ∗ ∗ 2.9724∗ 1.46e-05 17403.5 -34787 -34720.8

( 11.679) ( 28.911) ( 8.3727) ( 3.3207) ( 1.1616) (1.0171) (-4.1704) (1.7504) ( 6.5048 )

Average 0.0268 0.0050

2007-2014 RVUK +RVUS + IPUK 0.0995 0.7833 0.0273∗ ∗ ∗ 31.999∗∗ 0.0069∗∗ 1.5081∗ 0.0525∗ 1.062∗ ∗ ∗ 1.42e-05 5023.53 -10027.1 -9970.97

(5.4018) (18.407) (5.155) (1.9723 ) ( 2.2399) (1.9452) (1.982) (3.1372) (2.0093)

2007-2014 RVUK +RVUS + PPIUK 0.1063 0.7803 0.0201∗∗ 36.813 0.0076 5.7054 0.1779 3.9222 2.09e-05 5024.17 -10028.3 -9972.24

(5.8351) (18.638) (2.3707) (1.042) (1.2797) (1.1875) (1.4502) ( 0.6091)

2007-2014 RVUK +RVUS + UEMUK 0.1019 0.7828 0.0201∗∗ 41.168 0.0037 8.7967 0.0119∗ 6.8237 4.58e-05 5024.75 -10029.5 -9973.4

(5.5861) ( 17.277) ( 2.0138) (0.9624) ( 0.6334) (0.4825) (1.9481) (1.2112) (3.3375)

2007-2014 RVUK +RVUS + TSUK 0.1005 0.7812 0.0219∗ ∗ ∗ 46.113 0.0079∗ 4.9246∗ 0.1772∗∗ 1.0184∗ ∗ ∗ -1.32e-05 5023.94 -10027.9 -9971.78

Continued on next page
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( 5.5362) ( 18.507 ) (3.1561) (0.9948) (1.8323) (1.8133) (2.0896) (4.5218) (-0.7269)

2007-2014 RVUK +RVUS +HSUK 0.1049 0.7807 0.0254∗ ∗ ∗ 36.661 0.0049 4.0941 -0.0035 6.3786 3.02e-05 5022.6 -10025.2 -9969.1

(5.7962) ( 18.17) (3.4609) ( 1.2865) (1.0436) ( 1.0943 ) ( -1.1519) ( 0.7317) (3.2335)

2007-2014 RVUK +RVUS + FXUK 0.1064 0.7762 0.0258*** 37.0730 0.0050 4.4345 −0.0269 1.3448 0.0004 4974 −9928.9 −9872.8

(5.6607) (17.4110) (3.5167) (1.3496) (1.1088) (0.8829) (−0.8457) (1.3746) (0.8886)

2007-2014 RVUK +RVUK + PC1UK 0.1035 0.7804 0.0189∗ 40.514 0.0061 8.9772 0.3141∗ 5.4031 4.55e-05 5024.9 -10029.8 -9973.7

( 5.6965 ) (18.112 ) (1.9599 ) (0.9698) (1.014) (0.8529) (1.8792) ( 0.6939) ( 3.4461)

Average 0.0228 0.0060

Table 2.14 reports parameter estimates for the GARCH-MIDAS-RV-X models including lags of local RV and macro variable in the UK market as

well as global RV obtained from the U.S market. In the MIDAS filter, the long-term volatility component is defined as:

τt = m+ θUKrv

K∑
k=1

φk(ωUKrv )RV UKt−k + θUSrv

K∑
k=1

φk(ωUSrv )RV USt−k + θx

K∑
k=1

φk(ω1,x, ω2,x)Xt−k

Parameter θUKrv accounts for the impact of local RV in the UK market. Parameter θx accounts for the impact of local macroeconomic variable on
UK stock market. θUKrv measures the spillover effect that from U.S into UK market.
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Table 2.15: U.S Volatility Spillover in 1970-2014

Coefficients θRVL ωRVL θRVUS ωRVUS Likelihood

Panel A: Volatility Spillover from the U.S into UK

1970-2014 0.0308*** 32.1310*** 0.0041** 4.2303** 36280.1

(16.4820) (7.4831) (2.5190) (1.8827) (0.0000)

1970-1984 0.0352*** 26.0770*** 0.0048 5.5488 10899.3

(9.8523) (3.5510) (0.9811) (0.5154) (0.0001)

1985-2006 0.0225*** 48.2680** 0.0079*** 17.9320** 17141.1

(6.1920) (2.4862) (3.0603) (2.3308) (0.0000)

2007-2014 0.0205*** 13.2510* 0.0054 1.1908 4917.17

(3.4352) (1.8004) (1.5532) (1.4213) (0.0000)

Panel B: Volatility Spillover from the U.S into Japan

1970-2014 0.0517*** 33.4900*** −0.0043** 13.1500 33373.5

(28.0650) (10.3750) (−2.3792) (1.4758) (0.0000)

1970-1989 0.0394*** 47.0350*** −0.0033* 17.3220 15850.9

(15.8150) (5.4313) (−1.7905) (1.1488) (0.0000)

1990-2006 0.0204*** 46.7020** 0.0205*** 2.4088* 10597.2

(5.7642) (2.2365) (3.8673) (1.6733) (0.0000)

2007-2014 0.0166*** 13.1000 0.0040 1.2089 4143.38

(2.6258) (1.5828) (0.7810) (0.5109) (0.0000)

a Table 2.15 reports volatility spillovers from the U.S into the

UK (Panel A) and the Japan (Panel B) stock markets based on

the GARCH-MIDAS model, where local volatility RVL and global

volatility RVUS are brought into one MIDAS filter shown as below:

τt = m+ θL

K∑
k=1

φk(ωL)RVL,t−k + θUS

K∑
k=1

φk(ωUS)RVUS,t−k

b θUS accounts for the spillover effects from U.S stock volatility

onto the local stock markets. ωUS governs weights being attached

onto each lags of volatility spillover from U.S. θL accounts for the

local effect from historical volatility onto the local UK or Japanese

markets. ωL governs weights being attached onto lags of local real-

ized volatilities.
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Table 2.16: Parameter Estimates for GARCH-MIDAS model with Principal Components

MIDAS α β m θ ω1 ω2 Likelihood AIC BIC

Panel A: Principal Component for U.S

PC1 0.1374 0.8626 −0.2534 −0.4314∗ ∗ ∗ 1 5.7700∗ ∗ ∗ 35600.6520 −71189.3 −71145.3
1970-2014 (31.9980) (200.8751) (−0.8245) (−6.5844) (3.5011)

PC1 0.0470 0.9387 −9.4986 −0.3160*** 1 2.0113** 11225.5 −22439.1 −22401.6
1970-1984 (7.5001 ) (112.14) (-97.935) (3.1052) (2.0464 )

PC1 0.0850 0.9007 -9.0182 −0.8912*** 1 2.3880*** 16700.3 −33388.7 −33348.9
1985-2006 (32.6267) (211.0995) (−79.0543) (−7.0290 ) (5.2731)

PC1 0.1449 0.8531 −6.6857 −0.3667 1 9.6117 4932.5 −9852.9 −9819.3
2007-2014 (8.8919) (51.0470) (−8.7526 ) (−1.6367) (1.3605)

Panel B: Principal Component for JAPAN

PC1 0.1352 0.8544 0.0003 0.0152*** 1 1.0010*** 29231.7 −58451.5 −58408.2
1970-2014 (39.925) (211.2800) (4.9836) (4.8714) (48.8400)

PC1 0.2621 0.6608 9.21E-05 0.0032*** 1 1.2851*** 11720.8 −23429.6 −23392.1
1970-1989 (44.6320) (51.0400) (12.2530) (7.9542) (4.8293)

PC1 0.0789 0.8990 0.0002 0.0061** 1 5.1260 10585.4 −21158.9 −21120.8
1990-2006 (10.6430) (91.4200) (9.1524) (2.0100) (1.0053)

PC1 0.1189 0.8454 0.0003 −0.0043* 1 49.8710 4143 −8274.2 −8240.7
2007-2014 (8.7706) (42.8070) (5.7932) (−1.8408) (0.8577)

Panel C: Principal Component for UK

PC1 0.0975 0.8832 −9.1506 0.2033*** 1 30.5579** 36333.7 −72655.5 −72611.3
1970-2014 (22.8954) (171.5795) (−126.8185) (8.8361) (2.4882)

PC1 0.0699 0.9301 −10.7505 0.8985*** 1 1.7151*** 11021.5 −22031 −21993
1970-1984 (17.2097) (207.8554) (−12.0652) (3.4342) (3.2096)

PC1 0.0604 0.9396 −10.1515 −0.0415 1 1.0736 17171.5 −34331 −34291.3
1985-2006 (25.5358) (381.3614) (−14.4165) (−0.0699) (0.1246)

PC1 0.0968 0.9016 −7.0168 0.8705** 1 5.2061 4964.4 −9916.9 −9883.2
2007-2014 (8.0517) (73.3330) (−18.4450) (1.9866) (0.8288)
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Table 2.16 reports estimation results for the GARCH-MIDAS model with Principal Component (PC1), where
the long-term volatility component τt is smoothed out by a MIDAS filter with 24 lags (K=24) of monthly first
principal component:

τt = m+ θ ∗
K∑
k=1

φk(1, ω2)PCt−k

Panels A,B and C summarize results of the first principal component for the U.S, UK and Japan markets,
respectively.
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Table 2.17: Parameter Estimates for GARCH-MIDAS-RV-X model with Principal Components

MIDAS α β m θL ωL θX ωX θUS ωUS Likelihood AIC BIC

Panel A: Principal Component for U.S

RVL+PC1 0.0811 0.7797 2.20E-05 0.0372*** 49.1980*** −0.1103** 2.0728*** 35939.2 −71862.5 −71803.8

1970-2014 (30.4630) (47.6110) (10.8820) (25.6320) (6.9159) (−5.1264) (3.4295)

RVL+PC1 0.0314 0.9037 2.47E-05 0.0319*** 49.6630** −0.0815*** 3.1525* 11241.5 −22466.9 −22417

1970-1984 (4.0017) (20.7100) (4.3924) (7.3257) (1.8874) (−3.1182) (1.7835)

RVL+PC1 0.0513 0.7999 2.04E-05 0.0377*** 46.2887*** −0.2021*** 2.2840 16855 −33694 −33641.1

1985-2006 (5.9055) (19.1681) (9.2150) (24.1407) (6.8355) (−6.6046) (3.9028)

RVL+PC1 0.1282 0.8069 3.91E-05 0.0271*** 11.9072*** 0.0270 18.0838 4977.9 −9939.8 −9894.9

2007-2014 (7.2110) (24.8306) (2.6167) (4.9657) (2.9326) (0.1703) (0.1166)

Panel B: Principal Component for JAPAN

RVL+PC1 0.1309 0.7569 2.75E-05 0.0418*** 41.4290*** 0.014*** 1.2103*** 29311.1 −58606.1 −58548.5

1970-2014 (18.7630) (62.6480) (8.9045) (23.6100) (8.8420) (6.9208) (5.1026)

RVL+PC1 0.2565 0.6330 3.36E-05 0.0291*** 5.4097*** 0.0063** 4.9371 11731.9 −23447.8 −23397.9

1970-1989 (29.9590) (40.5960) (5.5807) (7.4167) (5.0180) (2.0638) (1.0165)

RVL+PC1 0.0823 0.8399 1.37E-05 0.0268*** 46.0030** 0.0026* 7.2945 10592.4 −21168.9 −21118.2

1990-2006 (7.6228) (30.6730) (6.0273) (6.3955) (2.3297) (1.8879) (0.8723)

RVL+PC1 0.1196 0.7868 0.0001 0.0230*** 8.8766* −0.0104* 5.4842* 4148.76 −8281.5 −8236.8

2007-2014 (8.1468) (20.9440) (4.4770) (4.3968) (1.8573) (−1.8633) (1.7753)
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RVL+RVUS+PC1 0.1521 0.8083 6.39E-05 0.0512*** 3.4799*** 0.0168*** 1.3508** −0.0178** 3.1865*** 29520.8 −59021.6 −58949.5

1970-2014 (36.9040) (129.28) (6.3502) (10.3240) (7.5561) (3.2649) (2.5655) (−3.9156) (3.1474)

RVL+RVUS+PC1 0.2839 0.4699 3.14E-05 0.0332*** 48.3780*** 0.0089*** 1.1396 −0.0024 8.8790 12008.5 −23997.1 −23934.7

1970-1989 (36.0410) (17.7120) (8.4323) (11.4620) (4.1389) (3.9021) (2.8563) (−1.4825) (1.0071)

RVL+RVUS+PC1 0.0683 0.8290 3.51E-05 0.0324*** 49.7790*** 0.0048 6.0861 0.0155*** 1.8004 10800.6 −21581.3 −21517.9

1990-2006 (6.2839) (24.1690) (3.4199) (8.9255) (3.1919) (0.3888) (0.2000) (3.2638) (1.4664)

RVL+RVUS+PC1 0.1031 0.7835 0.0002 0.0066 39.5820 −0.1536*** 3.7459*** 0.0250*** 9.4020** 4310.9 −8601.7 −8545.9

2007-2014 (8.5564) (21.1120) (5.8156) (1.1726) (0.4851) (−2.8754) (3.3511) (3.0758) (2.0652)

Panel C: Principal Component for UK

RVL+PC1 0.1091 0.7764 2.54E-05 0.0331*** 32.7295*** 0.0579*** 46.3980 36451.1 −72886.1 −72827.3

1970-2014 (16.8192) (49.5026) (10.868) (21.4634) (8.5638) (3.2629) (0.6755)

RVL+PC1 0.1147 0.7420 2.61E-05 0.0271*** 33.7527*** 0.1431*** 39.2856 11071.3 −22126.6 −22076.5

1970-1984 (8.2009) (19.4823) (11.0540) (7.5310) (2.7563) (4.0693) (1.1617)

RVL+PC1 0.1074 0.7364 2.78E-05 0.0299*** 49.1048*** −0.1924*** 2.0403** 17301.1 −34586.3 −34533.2

1985-2006 (12.5563) (28.4402) (5.6087) (16.1693) (4.4931) (−4.6350) (2.2685)

RVL+PC1 0.1067 0.7747 2.78E-05 0.0263*** 30.4557** 0.3637*** 4.4901 4976.1 −9936.3 −9891.4

2007-2014 (5.6238) (17.4815) (5.6086 ) (5.6393) (2.0727) (2.6538) (0.8357)

RVL+RVUS+PC1 0.1080 0.7606 2.08E-05 0.0305*** 48.297*** 0.0455** 9.3158 0.0048*** 4.218** 36525.4 −73030.9 −72957.4

1970-2014 (16.161) (46.528) ( 9.748) (15.123) ( 5.1902) (2.3919) (1.0116) (3.1748) (2.4548)

RVL+RVUS+PC1 0.1184 0.7283 2.25E-05 0.0303*** 28.389*** 0.1323** 9.8091 0.0002 5.2192 11146.7 −22273.3 −22210.6

91



1970-1984 (8.3171) (18.964) (3.5074) (7.5678) ( 3.4606) (2.8287) (1.6011 ) (0.0379) (0.0198)

RVL+RVUS+PC1 0.0987 0.7555 1.46E-05 0.0271*** 49.157*** −0.1638*** 2.9724* 0.0027 8.1551 17403.5 −34787 −34720.8

1985-2006 (11.679) ( 28.911) ( 6.5048 ) ( 8.3727) ( 3.3207) (−4.1704) (1.7504) (1.1616) (1.0171)

RVL+RVUS+PC1 0.1035 0.7804 4.55E-05 0.0189* 40.5140 0.3141* 5.4031 0.0061 8.9772 5024.9 −10029.8 −9973.7

2007-2014 ( 5.6965 ) (18.112 ) ( 3.4461) (1.9599 ) (0.9698) (1.8792) ( 0.6939) (1.014) (0.8529)

92



Table 2.17 reports estimation results for the GARCH-MIDAS-RV-X model with Principal Component (PC1) across U.S, UK and Japan

markets.

In Panel A: long-term volatility component τt is smoothed out by a MIDAS filter specified with 24 lags (K=24) of month local RVL and

first principal component PC1 in U.S market, which is defined as below:

τt = m+ θLrv

K∑
k=1

φk(ωLrv)RV
L
t−k + θpc

K∑
k=1

φk(ωPC)PCt−k

In Panel B, we consider two different situations to explain the long-term volatility component τt:

One way τt is smoothed out by a MIDAS filter with local RVL and first principal component PC1 in Japan market:

τt = m+ θLrv

K∑
k=1

φk(ωLrv)RV
L
t−k + θpc

K∑
k=1

φk(ωPC)PCt−k

Alternatively, τt is smoothed out by a MIDAS filter with local RVL, first principal component PC1 in Japan (or UK) market as well as

the global RVUS from the U.S market.

τt = m+ θLrv

K∑
k=1

φk(ωLrv)RV
L
t−k + θUSrv

K∑
k=1

φk(ωUSrv )RV USt−k + θpc

K∑
k=1

φk(ωPC)PCt−k

where θUSrv accounts for the spillover effect from U.S market onto the local market (Japan or UK).
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Table 2.18: Model Confidence Set For U.S

Initial Window: Jan-Jun/2010 Jul-Dec/2010 Jan-Jun/2011 Jul-Dec/2011 Jan-Jun/2012 Jul-Dec/2012

1970-2009

MIDAS-IP 0.1568 0.9669 1.0000 0.7494 0.6984 0.5864

MIDAS-PPI 0.1568 0.9670 0.9441 0.8873 0.7962 0.7904

MIDAS-UEM 1.0000 1.0000 0.9441 0.6433 0.4904 0.3339

MIDAS-TS 0.1568 0.9669 0.9441 1.0000 1.0000 0.9778

MIDAS-HS 0.1354 0.1494 0.1866 0.6433 0.4904 0.3340

MIDAS-PC1 0.2581 0.9670 0.9441 0.8873 0.9485 1.0000

Initial Window: Jan-Jun/2007 Jul-Dec/2007 Jan-Jun/2008 Jul-Dec/2008 Jan-Jun/2009 Jul-Dec/2009

1985-2006

MIDAS-IP 0.9357 0.4343 0.3803 0.3425 0.4222 0.4405

MIDAS-PPI 0.5848 0.2528 0.2457 0.3425 0.4507 0.4405

MIDAS-UEM 0.9357 0.2367 0.2457 1.0000 1.0000 1.0000

MIDAS-TS 0.0299 0.2367 0.2457 0.3425 0.4222 0.4405

MIDAS-HS 0.2704 0.1685 0.2457 0.7751 0.4222 0.4405

MIDAS-PC1 1.0000 1.0000 1.0000 0.7751 0.7030 0.7135

Table 2.18 presents model confidence sets for our selection of GARCH-MIDAS models spi-
cified with alternative macroeconomic variables. Our forecast horizon covers two periods,
one is 2007-2009, another one is 2010-2012. For the first forecast period (2007-2009), we
construct initial estimation window (1985-2006), which is rolling forward in a monthly fre-
quency. For the second forecast period (2010-2012), the initial estimation window is set up
around 1970-2009. Hence each forecasting period covers three years. We divide three-year
length into equally length of sub-period with 6-month, and calcluate MCS P-values for each
6-month sub-period. * indicates that the model is in the (1-α) confidence interval of M̂∗1−α
using for all comparisons, where α=0.25.
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Table 2.19: Model Confidence Set For UK

Initial Window: Jan-Jun/2010 Jul-Dec/2010 Jan-Jun/2011 Jul-Dec/2011 Jan-Jun/2012 Jul-Dec/2012

1970-2009

MIDAS-IP 0.2284 0.3705 0.3611 0.5931 0.4107 0.1702

MIDAS-PPI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MIDAS-UEM 0.5352 0.2896 0.2747 0.2527 0.2186 0.1649

MIDAS-TS 0.1842 0.3705 0.3611 0.3194 0.2606 0.1649

MIDAS-PC1 0.3162 0.3704 0.3611 0.5931 0.4107 0.1702

Initial Window: Jan-Jun/2007 Jul-Dec/2007 Jan-Jun/2008 Jul-Dec/2008 Jan-Jun/2009 Jul-Dec/2009

1985-2006

MIDAS-IP 0.7637 0.4542 0.3172 0.0781 0.0247 0.0360

MIDAS-PPI 0.0471 0.7403 1.0000 0.1419 0.0400 0.0360

MIDAS-UEM 1.0000 1.0000 0.4603 0.0951 0.0271 0.0296

MIDAS-TS 0.0011 0.2832 0.3600 0.1419 0.0400 0.0360

MIDAS-PC1 0.0011 0.2282 0.9910 1.0000 1.0000 1.0000

Table 2.19 presents model confidence sets for our selection of GARCH-MIDAS models spi-
cified with alternative macroeconomic variables in the UK market. Our forecast horizon
covers two periods, one is 2007-2009, another one is 2010-2012. For the first forecast period
(2007-2009), we construct initial estimation window (1985-2006), which is rolling forward
in a monthly frequency. For the second forecast period (2010-2012), the initial estimation
window is set up around 1970-2009. Hence each forecasting period covers three years. We
divide three-year length into equally length of sub-period with 6-month, and calcluate MCS
P-values for each 6-month sub-period. * indicates that the model is in the (1-α) confidence

interval of M̂∗1−α using for all comparisons, where α=0.25.
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Table 2.20: Model Confidence Set For Japan

Initial Window: Jan-Jun/2010 Jul-Dec/2010 Jan-Jun/2011 Jul-Dec/2011 Jan-Jun/2012 Jul-Dec/2012

1970-2009

MIDAS-IP 0.5941 0.4409 0.4040 0.3244 0.3279 0.3331

MIDAS-PPI 0.3941 0.4409 0.5293 0.4587 0.4719 0.4939

MIDAS-UEM 0.4412 0.4409 0.5293 0.3684 0.3839 0.4108

MIDAS-TS 0.5941 0.4409 1.0000 1.0000 1.0000 1.0000

MIDAS-HS 0.6316 1.0000 0.4053 0.3244 0.3279 0.3331

MIDAS-Yen 1.0000 0.4409 0.4053 0.3244 0.3279 0.3331

MIDAS-PC1 0.5941 0.4409 0.9167 0.8538 0.8435 0.8315

Initial Window: Jan-Jun/2007 Jul-Dec/2007 Jan-Jun/2008 Jul-Dec/2008 Jan-Jun/2009 Jul-Dec/2009

1985-2006

MIDAS-IP 1.0000 0.9553 0.8765 0.6507 0.4924 0.4951

MIDAS-PPI 0.8646 1.0000 0.4871 0.7857 0.7649 0.7708

MIDAS-UEM 0.7570 0.4598 0.3524 1.0000 1.0000 1.0000

MIDAS-TS 0.8646 0.8230 0.9442 0.6507 0.4924 0.4951

MIDAS-HS 0.1310 0.1372 0.0510 0.2018 0.2090 0.1985

MIDAS-Yen 0.8646 0.9553 1.0000 0.6507 0.6234 0.6214

MIDAS-PC1 0.8646 0.9553 0.8765 0.7137 0.6234 0.6214

Table 2.20 presents model confidence sets for our selection of GARCH-MIDAS models spici-
fied with alternative macroeconomic variables in the Japan. Our forecast horizon covers two
periods, one is 2007-2009, another one is 2010-2012. For the first forecast period (2007-2009),
we construct initial estimation window (1985-2006), which is rolling forward in a monthly
frequency. For the second forecast period (2010-2012), the initial estimation window is set
up around 1970-2009. Hence each forecasting period covers three years. We divide three-
year length into equally length of sub-period with 6-month, and calcluate MCS P-values for
each 6-month sub-period. * indicates that the model is in the (1-α) confidence interval of

M̂∗1−α using for all comparisons, where α=0.25.
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Figure 2.2: S&P 500 Realized Volatility and Macroeconomic Variables In The
U.S Market (1970-2014)

The Figure 2.2 plots Realized Volatility of S&P500 Index and annually growth rates

of macroeconomic variables available in a monthly frequency, including Industrial

Production (IP), Producer Price Index (PPI), Unemployment Rate (UEM), Term

Spread (TS) and Housing Starts (HS). Monthly Macro data ranges from Jan/1970

to Dec/2014. Shade areas represent NBER recessions during 1970–2014.
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Figure 2.3: FTSE All Share Index Realized Volatility and Macroeconomic
Variables In The UK Market

The Figure 2.3 plots Realized Volatility of FTSE All Index and annually growth

rates of macroeconomic variables available in a monthly frequency, including In-

dustrial Production (IP), Producer Price Index (PPI), Unemployment Rate (UEM)

and Term Spread (TS). Monthly Macro data ranges from Jan/1970 to Dec/2014.

Shade areas represent OECD recessions for the UK business cycles from 1970–

2014.
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Figure 2.4: Nikkei 225 Index Realized Volatility and Macroeconomic Variables
In The Japan Market

The Figure 2.4 plots Realized Volatility of Nikkei 225 Index and annually growth

rates of macroeconomic variables available in a monthly frequency, including Indus-

trial Production (IP), Producer Price Index (PPI), Unemployment Rate (UEM),

Term Spread (TS), Housing Starts (HS) and Japanese Yen Index. Monthly Macro

data ranges from Jan/1970 to Dec/2014. Shade areas represent Japanese business

cycle recessions during 1970–2014.
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Figure 2.5: Weights of the GARCH-MIDAS model with Realized Volatility

The Figure 2.5 plots beta weighting curves derived from the GARCH-MIDAS model

specified with RV throughout different sub-samples of 1970-1984, 1985-2006 and

2007-2014. The blue line depicts the weighting curve of GARCH-MIDAS-RV in the

U.S stock market. The red line represents the weighting curve of GARCH-MIDAS-

RV in the UK stock market. The yellow line is the weighting curve of GARCH-

MIDAS-RV in the Japanese stock market. Weights are assigned to 24 lags (K=24)

of observations from monthly realized volatility in the GARCH-MIDAS frame.
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Figure 2.6 Long-run Volatility Component for the GARCH-MIDAS model in
U.S

(a) Industrial Production (b) Producer Price Index

(c) Unemployment Rate (d) Term Spread

(e) Housing Starts (f) Realized Volatility

Figure 2.6 depicts the whole conditional volatility τtgt(green dash line)

and long-run volatility components τt driven by alternative macroeco-

nomic variables (solid magenta line) and principal component (solid

blue line) from GARCH-MIDAS model.

101



Figure 2.7: Sub-sample comparisons of long-term volatility component driven
by ∆IP

The Figure 2.7 depicts the whole conditional volatility τtgt (blue dash line) and

long-run volatility component τt driven by growth of industrial production ∆IP

(solid magenta line) for two sub-periods. Top panel refers to the sub-period 1970-

1984 in the U.S market. Bottom panel refers to the sub-period 1985-2006 in the

U.S market.
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Figure 2.8: Pseudo out-of-sample forecasting for 2010-2012 dataset
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Figure 2.9: Pseudo out-of-sample forecasting for 2007-2009 dataset
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Chapter 3

The Role of Macroeconomic

Information in High-frequency

Realized Volatility: Evaluating

Persistence and Structural

Change in U.S Stock Market

Volatility

This paper investigates the relationship between macroeconomic informa-

tion and volatility in the US stock market. We examine whether the long-

term persistence and structural changes in stock volatility can be explained

by relevant macroeconomic information, especially fundamental variables and

macroeconomic uncertainty. To examine the effects of macroeconomic informa-

tion on long-term persistence in stock volatility, we extend the Heterogeneous

Autoregressive Realized Volatility (HAR-RV) model of Corsi (2009) to include
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macroeconomic information by using the Mixed Data Sampling (MIDAS) ap-

proach of Ghysels et al. (2007). To investigate the relationship between struc-

tural changes in volatility and macroeconomic information, we use and extend

the Tree-HAR model of Audrino and Bühlmann (2001). The Tree-HAR model

describes volatility as a regime-switching process, where daily realized volatil-

ity locally follows a HAR process in each regime, and shifts among regimes are

governed by variables that trigger changes in regime after crossing particular

threshold values. We allow macroeconomic variables to trigger the changes in

regime. Empirical results show that the macroeconomic variables and uncer-

tainty measures we use not only have significant impacts on stock volatility,

but also consistently deliver a more elaborate regime structure (typically 3 or

4 regimes) for US stock volatility, relative to the traditional Markov Regime-

Switching GARCH (MRS-GARCH) model. In terms of prediction ability, the

comparison results generated from the Model Confidence Set (MCS) show that,

as the horizon extends, the Tree-HAR models with macro variables outperform

the original Tree-HAR model that exclusively depends on volatility, especially

during the crisis periods of 2000–2001 and 2007–2008.

Keywords : Macroeconomic Uncertainty, realized volatility, MIDAS, regime

switching, long-term volatility, HAR-RV, Tree-HAR, Model Confidence Set.
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3.1 Introduction

Volatility is a fundamental measure of risk in financial markets and a large

literature has been developed to model and explain volatility and its features.

Within this literature, one area of interest is the link between macroeconomic

information and volatility, particularly whether macroeconomic information

contributes to explaining the long-term component of volatility, persistence in

volatility and whether macroeconomic information contributes to explaining

structural breaks in volatility. Motivated by Lee and Engle (1993) decom-

position of volatility into a short-run (transitory) component and a long-run

(permanent) component, several studies have found that macroeconomic in-

formation is significant in explaining long-run volatility and its persistence.

Examples include the growth rate of industrial production and inflation (Engle

et al. (2013)); the term spread and housing starts (Conrad and Loch (2015));

and the short-term interest rate and the first principal component derived from

factor analysis of several macroeconomic variables (Asgharian et al. (2013)).

With regard to macroeconomic information determining and explaining struc-

tural changes in volatility, using Markov-switching GARCH (MS-GARCH)

models Hamilton and Lin (1996), Dueker (1997) and So et al. (1998) observe

an association between the real economy and structural changes in volatility.

In particular, high volatility regimes appear to be triggered by downturns in

the real economy. Campbell (1999) also notes that volatility tends to be higher

during recessions than expansions.

Though significant progress has been made in examining the relationship

between macroeconomic information and financial market volatility, much of

the extant literature examines the link between either the macroeconomy and

persistence in volatility or the macroeconomy and structural changes in volatil-

ity but not both, despite evidence that both are present for at least some
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markets (see Beine et al. (2001) and Morana and Beltratti (2004) for evi-

dence of both persistence and structural changes in volatility for the foreign

exchange market, for example.) The concern here is that failure to consider

structural breaks in volatility, for example, might lead to a misinterpretation

of the relationship between macroeconomic information and long-term volatil-

ity persistence. Andersen and Bollerslev (1997) note that ignoring structural

breaks might artificially lead to strong persistence in volatility while Engle

et al. (2013) argue that the GARCH-MIDAS volatility model with fixed pa-

rameters cannot capture fundamental changes in the real economy over time.

The contribution of this paper is to investigate the relationship between

macroeconomic information and US stock market volatility by taking both

long-term volatility persistence and structural changes in volatility into con-

sideration, and to examine whether this improves out-of-sample volatility fore-

casting. We use the Heterogeneous Autoregressive Realized Volatility (HAR-

RV) model of Corsi (2009) as the basis of our analysis. Comparing to tradi-

tional GARCH-type models, HAR-type models possess potential advantages

when dealing with the relationship between macroeconomic information and

stock market volatility. Unlike traditional GARCH models, HAR-type mod-

els typically have a multi-component volatility structure which means they

are suitable to deal with the mismatch in frequencies between macroeconomic

and financial data (macroeconomic data is usually observed in a monthly or

quarterly frequency while stock returns are typically observed in a daily or

intra-daily frequency.) In the HAR-RV model Corsi (2009), for example, daily

realized volatility is explained as a function of autoregressive volatility compo-

nents realized over daily, weekly and monthly horizons. We extend the HAR-

RV model to allow for the inclusion of macroeconomic variables as explanatory

variables using the Mixed Data Sampling (MIDAS) approach of Ghysels et al.

(2007). Using the MIDAS approach allows us to directly observe how macroe-
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conomic information affects volatility movements within the HAR-RV frame-

work. The HAR-RV model can be further extended to incorporate changes

in regime by imposing a tree structure on the model. Such a model is known

as the Tree-HAR model (Audrino and Bühlmann (2001)). In the Tree-HAR

model, volatility is described in a regime-switching model, where volatility

locally follows a HAR process in one regime, and shifts across regimes are gov-

erned by variables that trigger a change in regime when they cross particular

threshold values. We extend the Tree-HAR model to allow macroeconomic

information to not only explain long-term volatility movements within each

regime, but also to determine the regime structure of volatility.

We utilize several macroeconomic variables in our empirical analysis, in-

cluding the growth in industrial production growth, inflation, housing starts,

unemployment rate and money supply. With the exception of the unemploy-

ment rate, all of the macroeconomic variables individually explain not only

long-term volatility movements but also different regimes for stock market

volatility. For instance, industrial production growth, inflation and housing

starts are commonly selected as thresholds that distinguish between three

regimes for stock market volatility: low volatility, medium volatility and high

volatility while money supply growth is important as a threshold for high

volatility regimes. As alternative macroeconomic variables perform equally

well in terms of regime identification, we examine whether “broader” mea-

sures of macroeconomic information. We use principal components analysis

(PCA) and the Aruoba-Diebold-Scotti (ADS) Index as more broad measures

of “the macroeconomy” in our HAR-type volatility models to examine the

impact of combined macroeconomic information on stock volatility. We also

use a measure of macroeconomic uncertainty in our HAR models. Since uncer-

tainty in the macroeconomy is a major concern for investors, and consequently

affects risk premia, we investigate the relationship between macroeconomic un-
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certainty and stock volatility. Following Jurado et al. (2015), we construct a

measure of macroeconomic uncertainty by aggregating unexpected informa-

tion from a broad range of macro variables into an uncertainty index and

we use this in our HAR-type models. Our results show that stock market

volatility prior to the financial crisis can largely be attributed to macroeco-

nomic uncertainty rather than macroeconomic fundamentals themselves. This

suggests that what really matters for market participants, at least outside of

times of crisis, is uncertainty about the economy as a whole. Results from our

out-of-sample forecasting exercises show that the inclusion of macroeconomic

information in the models leads to an improvement in volatility forecasting,

particularly over longer-term forecasting horizons.

The rest of the paper is organised as follows. Section 3.2 provides litera-

ture reviews. Section 3.3 discusses the models we use in our empirical analysis.

Section 3.4 describes the data while sections 3.5 and 3.6 discuss our empiri-

cal results by using macroeconomic variables. Section 3.7 discusses empirical

results by using macroeconomic uncertainty. Section 3.8 examines forecasting

performance while Section 3.9 concludes.

3.2 Literature Review

One typical feature of time-varying volatility in financial markets is volatil-

ity clustering and persistence: large changes in the price of an asset are usually

followed by other large changes (see Fama (1965), Chou (1988) and Engle and

Patton (2007) among many others). Bollerslev (1986) provides an empirical

interpretation of volatility persistence as reflecting that news might not be ab-

sorbed into prices immediately. Rather, the impact of the arrival of news might

last for a while, showing as a hyperbolic decaying pattern in the GARCH pro-

cess. Ding et al. (1993) argue that long-range persistence might arise from the
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cross-sectional aggregation of news arrival being observed with different degrees

of persistence. Müller et al. (1997) provide a similar theoretical interpretation

of volatility persistence from the perspective of heterogeneous trading activi-

ties in financial markets. According to the Heterogeneous Market Hypothesis

(Müller et al. (1997)), different types of participant have different investment

time horizons and consequently different trading activities. Hence these differ-

ent participants react to the same news differently, which in turn contributes

to different frequency volatility components. The interactions among those

volatility components can lead to volatility persistence.

Macroeconomic information occupies a large proportion of news. Con-

sequently, there have been many studies that relate volatility persistence to

macroeconomic information. Inspired by Lee and Engle (1993)’s decompo-

sition of volatility into short-term and long-term components, Engle et al.

(2013) introduce the GARCH-MIDAS model that employs macroeconomic

variables to explain long-term volatility movements and its persistence. In

the two-component GARCH-MIDAS framework, the long-term component of

volatility is interpreted as the trend in volatility around which the short-term

component fluctuates. Engle et al. (2013) allow the long-term component to be

driven by macroeconomic variables through a MIDAS filter. They find that the

macroeconomic variables are significant in explaining volatility and lead to an

improvement in predictions of volatility. Following on from Engle et al. (2013)

several studies adopt the GARCH-MIDAS framework to examine a the role

of a large set of macroeconomic variables in explaining and forecasting stock

market volatility. For instance, Conrad and Loch (2015) observe that the term

spread and housing starts are able to explain volatility prior to the financial cri-

sis while Asgharian et al. (2013) observe that combining the macroeconomic

variables into factors, these factors are able to explain long-term volatility

movements. This body of evidence suggests that macroeconomic information
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is important in explaining stock market volatility, particularly the long-term

component.

Another strand of the literature examines long-term persistence in volatil-

ity taking structural breaks into consideration. Inclan and Tiao (1994) study

structural changes in volatility of asset returns in emerging markets and find

those changes match up with local economic crises, political events and the

global financial crisis. Hamilton and Lin (1996), Dueker (1997) and So et al.

(1998) observe a significant relationship between stock market volatility and

macroeconomic conditions under a regime switching model. Their findings

highlight that the high volatility regime appears to be triggered by economic

downturn. Beltratti and Morana (2006) evaluates the linkage between finan-

cial market volatility and macroeconomic volatility taking both persistence and

structural breaks into consideration. The empirical evidence in Beltratti and

Morana (2006) indicates that the volatility break process for the S&P500 co-

incides with volatility breaks in the Federal Funds Rate and M1 growth. More

importantly, Beltratti and Morana (2006) points out that omitting volatility

breaks will lead to misleading results with regard to volatility persistence. Ig-

noring potential breaks in S&P 500 volatility leads to the artificial emergence

of cointegration relationships between output growth, the Federal Funds rate

and stock volatility. Granger and Hyung (2004) also highlight the importance

of structural breaks when evaluating the long-memory feature of volatility.

Both Beltratti and Morana (2006) and Granger and Hyung (2004), therefore,

emphasise the importance of taking breaks into consideration when evaluat-

ing long-term persistence (or long memory) in volatility: both long-memory

and structural breaks characterize time-varying volatility in financial markets

(Morana and Beltratti (2004)).
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3.3 HAR-type Realized Volatility models

3.3.1 The HAR-RV model

The intuition behind the HAR-RV model comes from the Heterogeneous

Market Hypothesis (see, for example, Müller et al. (1997)). The hypothesis

suggests that different types of market participants have different time hori-

zons and different trading activities and as a consequence different types of

participants react to the same news differently. Short-term traders usually

make transactions at a daily or intra-daily frequency. Consequently they are

interested in short-term price fluctuations and their trading activities con-

tribute to short-term variations. Long-term traders prefer to hold assets for

relatively longer periods of time and consequently are not particularly inter-

ested in short-term price movements, focusing more on large price movements.

Accordingly, their trading activities contribute to long-term variations in fi-

nancial market. For the case of foreign exchange market, Müller et al. (1997)

and Dacorogna et al. (1997) observe that the long-term variation predicts the

short-term variations better than the opposite way around, which infers that

return volatilities in financial market actually arise from the interactions of dif-

ferent volatility components realized over different time scales. Following this

line, recent empirical works suggest a additive cascade relationship between

long-term and short-term asset variations whereby short-term volatility can

be influenced by long-term volatility, but not vice versa. (see Arneodo et al.

(1998), Muzy et al. (2000), Breymann et al. (2000) and Muzy et al. (2001) as

examples.)

Inspired by the Heterogeneous Market Hypothesis of Müller et al. (1997),

Corsi (2009) introduces the Heterogeneous Autoregressive Realized Volatility

(HAR-RV) model that describes daily volatility as a sequence of autoregressive
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volatility components realized over daily, weekly and monthly time horizons:

σdt+1 = β0 + β1

√
RV d

t + β2

√
RV w

t + β3

√
RV m

t + εt+1 (3.1)

where σdt+1 is daily volatility and
√
RV ∗t is Realized Volatility which is used

as a proxy for unobserved volatility component realized over daily (d), weekly

(w) and monthly (m) horizons (∗ = d, w,m). The daily realized variance RV d
t

is calculated as a sum of squared intra-daily returns sampled with tick-by-tick

frequency. RV suffers from an estimation bias that will become even worse as

sampling frequency increases, and this bias usually comes from microstructure

noise in finely intervals. In order to balance the trade-off between microstruc-

ture noise and sampling frequency, we employ the two-scale realized volatility

method of Zhang et al. (2005) to estimate RV, which is robust to endogeneous

microstructure noise under a finely interval. RV w
t and RV m

t refer to weekly

and monthly realized variances, respectively. These are both calculated using

a recursive rolling window with fixed length (one week or one month respec-

tively). RV w
t and RV m

t are calculated from non-overlapping daily observations

as,

RV w
t =

1

4

4∑
i=1

RV d
t−i RV m

t =
1

17

21∑
i=5

RV d
t−i (3.2)

3.3.2 The HAR-RV Model Incorporating Macroeconomic

Variables (the HAR-MIDAS Model)

Our first contribution in this paper is incorporating macroeconomic vari-

ables into the HAR-RV model to create a link between macroeconomic infor-

mation and stock volatility. Recall from the discussion in Subsection 3.3.1

that a cascade relationship exists among different volatility components such

that the short-term (daily) volatility component is influenced by the long-
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term (weekly and/or monthly) volatility component. We begin by specifying

monthly volatility (the long-term component) as a function of lagged realized

volatility and macroeconomic variables:

σmt+1 = βm0 + βm1
√
RV m

t + βm2 X
m
t + εmt+1 (3.3)

where σmt+1 is the unobserved monthly volatility component at day t + 1,

which in turn is driven by two streams of information, financial market infor-

mation represented by monthly realized volatility
√
RV m

t and macroeconomic

information represented by Xm
t . Given the cascade relationship discussed ear-

lier, we can write weekly volatility as:

σwt+1 = βw0 + βw1
√
RV w

t + βw2 Et[σ
m
t+1] + εwt+1 (3.4)

where the weekly volatility component σwt+1 is a function of current realized

weekly volatility
√
RV w

t and the expectation at time t of the monthly volatility

component on day t+ 1, σmt+1. In a similar fashion, we can write the following

expression for daily volatility:

σdt+1 = βd0 + βd1

√
RV d

t + βd2Et[σ
w
t+1] + εdt+1 (3.5)

where the daily volatility component σdt+1 is a function of current realized

daily volatility
√
RV d

t and the expectation at time t of the weekly volatility

component on day t+ 1.

Substituting 3.3 into 3.4 for σmt+1, then substituting 3.4 into 3.5 for σwt+1

respectively gives,

σdt+1 = β0 + β1

√
RV d

t + β2

√
RV w

t + β3

√
RV m

t + β4X
m
t + υt+1 (3.6)
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In Equation 3.6 we employ the Mixed Data Sampling (MIDAS) filter of

Ghysels et al. (2007) into the HAR-RV model. The MIDAS filter specifies Xm
t

as a smoothed weighted function of lagged observations of the macroeconomic

variable:

Xm
t =

K∑
k

ϕ(ω1, ω2)xmt−k (3.7)

In the MIDAS filter given by 3.7, Xm
t can be thought of as an weighted average

of the available information on the variable x from time t−k to t. The weights

allocated to lags of xm are governed by a beta weighting scheme ϕ(ω1, ω2)

1with two parameters, ω1 and ω2, which satisfy the conditions ϕk > 0 and∑K
k=1 ϕk = 1. The weighting scheme is specified as

ϕ(ω1, ω2) =
(k/K)ω1−1(1− k/K)ω2−1∑K
j=1(j/K)ω−1(1− j/K)ω2−1

(3.8)

This beta weighting scheme is able to deliver flexible weight patterns with only

two parameters, ω1 and ω2. In particular, if ω1 is restricted to equal one such

that there is only one flexible parameter, ω2, the weighting scheme can deliver

a decaying pattern where higher weights are allocated to more recent lags of

the variable.

To complete the model we need to specify an equation for returns. We

specify the return-generating equation as

rt+1 = µ+ σdt+1εt+1 (3.9)

Equations 3.9 and 3.6 constitute the HAR-MIDAS model that forms the basis

1According to Ghysels et al. (2007), the polynomial lag operator (ϕ(ω1, ω2)) in MIDAS
filter can be parameterized through alternative ways, such as exponential Beta or Almon
lag scheme, Autoregressive distributed lag (ADL) scheme, Distributed lag scheme. In this
paper, we follow Engle et al. (2013) that utilize Beta weighting scheme in the MIDAS filter.
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of our empirical analysis:

rt+1 = µ+ σdt+1εt+1

σdt+1 = β0 + β1

√
RV d

t + β2

√
RV w

t + β3

√
RV m

t + β4X
m
t + υt+1

(3.10)

3.3.3 The Tree-HAR model

Our second contribution is to incorporate macroeconomic information into

the Tree-HAR model. The role of the macroeconomic variables in the Tree-

HAR model is two-fold, explaining long-term volatility movements and being

the threshold variables that identify the regime structure in volatility. The

Tree-HAR model introduced by Audrino and Corsi (2010) divides the whole

data set G into non-overlapping regimes:

G = ∪Kj=1Rj Rj ∩Ri = ∅ (3.11)

where G should comprises all historical information available at time t and

K denotes number of regimes finally being identified in the Tree-HAR model.

Reviewing the Tree-HAR model application in Audrino and Corsi (2010), G

consists of historical returns and realized volatility for the US market. For each

regime Rj, daily volatility σdt+1 locally follows a HAR-RV process with fixed

parameters. Therefore, the Tree-HAR model is a regime switching HAR-RV

model, defined as:

rt+1 = µ+ σdt+1εt+1

σdt+1 =
K∑
j=1

[β0,j + β1,j

√
RV d

t + β2,j

√
RV w

t + β3,j

√
RV m

t ]IΦt∈Rj
+ υt+1

(3.12)
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where the dummy variable IΦt indicates whether daily realized variance

RV d
t belongs to a particular regime Rj, or not. The shifts among regimes

are governed by a set of threshold variables Φt that trigger changes in regime

once a particular threshold value is crossed. In the case of Audrino and Corsi

(2010), stock returns and daily realized volatility are the threshold variables.

3.3.4 The Tree-HAR Model Incorporating Macroeco-

nomic Variables (the Tree-HAR-MIDAS Model)

A multiple-regime structure in the Tree-HAR model can be constructed

using the binary tree algorithm of Breiman et al. (1984). The whole data set

G can be decomposed into several non-overlapping regimes through a sequence

of binary partition steps. In each partition step, the optimal value selected

from one threshold variable in set Φt serves as an indicator, determining a

binary partition in one of the existing regimes. Repeating the binary partition

procedure several times, the set G develops into a tree-structure where terminal

nodes are perceived as regimes.

Our first extension of the Tree-HAR model is to let macroeconomic infor-

mation determine daily volatility within each regime:

rt+1 = µ+ σdt+1εt+1

σdt+1 =
K∑
j=1

[β0,j + β1,j

√
RV d

t + β2,j

√
RV w

t + β3,j

√
RV m

t + β4,jX
m
t ]IΦt∈Rj

+ υt+1

(3.13)

where the variables are as defined earlier. In each regime daily volatility

locally follows a HAR-MIDAS process. The regime switching is determined by

the threshold variables in Φt. Our second extension of the Tree-HAR model

is to add macroeconomic variables into Φt in addition to stock returns and
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monthly realized volatility so that in our case, Φt = {r̃t,
√̃
RV m

t , X̃t}. r̃t

denotes a sequence of stock returns available at time t. Similarly,
√̃
RV m

t

denotes a sequence of monthly realized volatilities and X̃t refers to a series of

macroeconomic observations for one macro variable that is available at time t.

The threshold set Φt contains α-quantiles of values for all threshold vari-

ables where α denotes as i/mesh and i=1,....mesh-1. In terms of mesh points,

we simply follow Audrino and Corsi (2010) to choose mesh=8. If we assume

the whole data set G is kept in a p-dimensional space (p refers to the number of

threshold variables) edged by p coordinates. Therefore, quantiles of threshold

values for each threshold variable can be interpreted as mesh points located on

each coordinate. In this context, the binary tree algorithm is arranged through

a sequence of space-partitions. For each partition step, we search for an opti-

mal binary partition that is triggered by one particular value of one threshold

variable by crossing over all possible mesh points of different coordinate. After

a sequence of partition steps, the p-dimensional space can be transformed into

a multiple-regime strucure. We describe the binary tree algorithm and how we

proceed to estimate the Tree-HAR-MIDAS model as below.

A. The Binary Tree Algorithm: Initial Setting

� The data set G in our study consists of historical macroeconomic infor-

mation, returns and the daily, weekly and monthly realized variances of

stock returns: G = {X̃t, r̃t, R̃V
d

t , R̃V
w

t , R̃V
m

t }

� The threshold set contains quantiles of values for returns, monthly re-

alized volatilities and macroeconomic variables observed until time t:

Φ = {r̃t,
√̃
RV m

t , X̃t}

� The binary partition procedure has m steps. In every step j (j =
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1, 2, . . .m), an optimal value dj and its associated threshold variable φj

are both selected from the threshold set Φ.

� In step j, using the optimal value dj and its threshold variable φj, the

whole data set G has an optimal regime structure P j
opt, which satisfies

P j
opt = {Rj

1 ∪R
j
2... ∪R

j
k}.

� Subsequently in step j + 1, one regime Rj
i∗ that comes from the existing

structure of P j
opt is selected and split further into two, namely Ri∗,left and

Ri∗,right, according to whether φj+1 > dj+1 or φj+1 ≤ dj+1, respectively.

Thus the whole data set G is re-constructed with an optimal regime

structure P j+1
opt that satisfies P j+1

opt = {Rj+1
1 ∪ ...Rj+1

i−1 ∪R
j+1
i∗,left ∪R

j+1
i∗,right ∪

Rj+1
i+1 ... ∪R

j+1
k }.

B. The Binary Tree Algorithm: Partition Steps

The starting point is the Tree-HAR-MIDAS model with no partition of G.

This can be nested in the HAR-MIDAS model:

σdt+1 = β0 + β1

√
RV d

t + β2

√
RV w

t + β3

√
RV m

t + β4X
m
t + υt+1 (3.14)

where the parameter set θ = {β0, β1, β2, β3, β4, ω1, ω2} is estimated via maxi-

mum likelihood with the log-likelihood function shown as below:

−l(θ,Φ) = −
∑n

t=1
1
2

log(2π)− 1
2

∑n
t=1 log(σ2

t (θ))− 1
2

∑n
t=1

[
rt+1−µ(θ)

σ2
t (θ)

]
(3.15)

First step: we construct a multi-dimensional grid search that spreads out

over the mesh-points of the different threshold variables to find a combina-

tion of threshold variable and its corresponding threshold value which delivers

a partition structure that minimizes the log-likelihood function in Equation
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3.15. With an optimal combination of threshold variable and value (φ1, d1),

observations of set G available at time t can be allocated into two regimes

according to whether φ1,t > d1 or φ1,t ≤ d1, respectively. Diagrammatically,

R0

↙ ↘

R1 = R0,left{IΦ : φ1 > d1} R2 = R0,right{IΦ : φ1 ≤ d1}

G = R1 ∪R2 P
(1)
opt = {R1, R2}

(3.16)

Starting from j = 0, G is given by R0 (see Equation 3.11) and is split into

two regimes, R0,left and R0,right; This gives the optimal partition structure

P
(1)
opt . We rename R0,left and R0,right as R1 and R2, respectively. If we stop the

binary partition here, we have a Tree-HAR model with two regimes:

σdt+1 =
∑

Rj∈{R1,R2}

[
β0,j + β1,j

√
RV d

t + β2,j

√
RV w

t + β3,j

√
RV m

t + β4,jX
m
t

]
IΦt∈Rj

+ υt+1

(3.17)

Second step: we continue the binary partition into the second step (j = 2).

As G already has a two-regime structure (P
(1)
opt ) from the first step (j = 1),

we therefore conduct two independent grid searches that go over all available

threshold values of the different threshold variables within the two existing

regimes, R1 and R2, respectively. We then find the new optimal combination

of threshold variable (φ2) and its value (d2) that comes from one of the two

existing regimes, either of which could deliver an optimal partition structure.

For instance, if the optimal combination of φ2 and d2 can be found in, say, R1,

then R1 is split into R1,left and R1,right. Diagrammatically,
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R0

↙ ↘

R1 = {IΦ : φ1 > d1} R2 = {IΦ : φ1 ≤ d1}

↙ ↘

R3 = R1,left{IΦ : φ1 > d1&φ2 > d2} R4 = R1,right{IΦ : φ1 > d1&φ2 ≤ d2}
(3.18)

The two descendants (we rename R1,left and R1,right as R3 and R4) that stem

from R1 together with the other regime R2 constitute a new optimal partition

structure P
(2)
opt . If we terminate the binary partition at the second step, we

have a Tree-HAR model with three regimes:

σdt+1 =
∑

Rj∈{R2,R3,R4}

[
β0,j + β1,j

√
RV d

t + β2,j

√
RV w

t + β3,j

√
RV m

t + β4,jX
m
t

]
IΦt∈Rj

+ υt+1

(3.19)

m steps: we continue the binary partition until it reaches the mth step.

With an optimal partition structure P
(M−1)
opt obtained in the (m − 1)th step,

we implement independent grid-searches across all existing regimes to find

an optimal combination of threshold variable φm and its threshold value dm.

Assuming this optimal combination can be found in one of the existing regimes

Rj∗ , j∗ ∈ {1, 2, 3, ...m}, observations in regime Rj∗ are again sub-divided into

two according to whether φm,t > d1 or φm,t ≤ d1, respectively.

The number of partition steps in the Tree-HAR-MIDAS model is impor-

tant. Too large or too small a tree structure will lead to misspecification.

When the tree structure is too fine, the Tree-HAR-MIDAS model is likely to

be over-parameterized. When the tree structure is not fine enough, the Tree-
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HAR model might fail to capture some regimes. We follow Audrino and Corsi

(2010) and Audrino and Bühlmann (2001) and let the sequence of partition

steps terminate at 5 (m = 5), which seems sufficient empirically to develop a

large enough tree structure for financial time series.

C. The Binary Tree Algorithm: Optimal sub-tree structure

Having developed a sufficiently large tree structure it is necessary to prune

the tree upward to search for the best subtree structure. This can be done

on the basis of Akaike’s Information Criterion (AIC). We save all tree nodes

into a set Ψ, which includes intermediate partition nodes as well as terminal

tree nodes. The intermediate partition nodes are all derived from previous

partition steps. We then implement a bottom-up procedure to find all valid

combinations from those tree nodes in Ψ that are able to cover entire obser-

vations without overlapping. Every valid combination is then defined as a

valid sub-tree structure. Among these sub-tree structures, the best sub-tree

structure is that which minimizes the AIC.

3.4 Data description

We use daily returns on the S&P500 Index and the daily realized volatility

of returns on the S&P500 index over the period January 2nd 1996 to December

31st 2014 as the basis of our analysis. The realized volatility data comes from

the Oxford-Man Institute Realized Library, where daily realized volatility is

calculated from intra-day returns sampled at the 5-minute frequency. Descrip-

tive statistics for the realized volatilities can be found in Table 3.1, where it

can be seen that the realized volatilities for the daily, weekly and monthly

horizons are right-skewed. The realized volatilities are all persistent, as shown

by the first order autocorrelation coefficient, with the monthly realized volatil-
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ity being the most persistent. Daily returns and daily realized volatility are

plotted in Figure 3.1. The areas shaded grey in Figure 3.1 denote recessions as

defined by the NBER. Unsurprisingly, the most volatile period in our sample

is the most recent financial crisis which coincides with an economic recession.

[Insert Figure 3.1 and Table 3.1 here]

We are interested in evaluating how different types of macroeconomic in-

formation contribute to time-varying volatility. The macroeconomic variables

we use are Industrial Production (IP), the Producer Price Index (PPI), the

Unemployment Rate (UEM), Housing Starts (HS) and the Term Spread (TS).

We use monthly seasonally-adjusted data covering the period January 1996

to December 2014; the data is obtained from the Federal Reserve Economic

Database (FRED). The term spread is constructed as the difference between

the 10-year treasury bond yield and the 3-month T-bill rate. Bar the Term

Spread, we use the annualized growth rate of the macroeconomic variables in

our empirical analysis:

∆Xt =

[
Xt

Xt−1

]12

− 1 (3.20)

In terms of the variance of the macroeconomic variables, we estimate it

through a simplified mean equation:

∆Xt = µ+ σtεt (3.21)

where εt is the innovation that is assumed to follow a standard normal distri-

bution, ε ∼ N(0, 1). σ̂t is our estimate of macroeconomic volatility.

In addition to the macroeconomic variables above, we also employ the

Aruoba-Diebold-Scotti (ADS) Business Conditions Index and principal com-

ponents to compress multi-dimensional macroeconomic information into one

variable. The ADS Business Conditions Index was introduced by Aruoba et al.
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(2009) and combines macroeconomic information, suitably weighted, into an

index that proxies underlying economic conditions. The ADS Index is con-

structed from several macroeconomic series: jobless claims , growth of payroll

employment, industrial production growth, real manufacturing and trade sales,

real personal income and real GDP. Figure 3.2 plots the annualized growth

rates for all the macroeconomic variables. The two shaded areas represent the

Dotcom Bubble and the Subprime Crisis. It can be seen from the graphs that

there are periods where volatility in the macroeconomic variables quite pro-

nounced, coinciding with one or more of the crises for several of the variables

but not restricted to these.

[Insert Figure 3.2 here]

3.5 Empirical Results for HAR-MIDAS model

In this section, we use the HAR-MIDAS model (Equation 3.10) to exam-

ine the relationship, if any, between daily realized volatility for returns on

the S&P500 Index and macroeconomic information. We consider two sets of

macroeconomic information in our empirical analysis: growth rates (bar the

term spread) in the macroeconomic variables discussed in the previous section,

and the volatility of these macroeconomic variables. We also need to specify

any restrictions on parameters in the beta weighting scheme (Equation 3.8).

We follow Engle et al. (2013) and restrict ω1 = 1. The intuition for this re-

striction is that greater weight is then given to more recent observations on

the relevant variable x. We also set the lag length K equal to 6 in Equation

3.8.

[Insert Table 3.2 here]
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Table 3.2 reports the estimation results for the HAR-MIDAS model with

each of the macroeconomic variables and each of the macroeconomic volatili-

ties. β1, β2 and β3 are the coefficients on the daily, weekly and monthly realized

volatility components respectively while β4 measures the effect of the particu-

lar macroeconomic variable on stock volatility. The first point to note is that

in all of the models the sum of β1 through β3 is close to unity, which implies

a high degree of persistence in volatility. We can also see from the results in

Panel A of Table 3.2 that the coefficients on the macroeconomic variables are,

with the exception of the term spread, statistically significant. This suggests

that macroeconomic information is important in explaining realized volatility.

Consistent with Engle et al. (2013) and Stock and Watson (2002), there is

evidence that stock market volatility is counter-cyclical to the business cycle.

The parameters on industrial production growth (∆IP ) and growth in housing

starts (∆HS) negatively affect stock market volatility. In contrast, an increase

in the unemployment rate (∆UEM) and inflation (∆PPI) increase volatility.

With the exception of the term spread, which is statistically insignificant any-

way, the estimates of ω2 in Panel A of Table 3.2 are slightly above, but close

to, one. This implies that rather than declining quickly for more distant lags,

the weights are quite equally distributed over the six lags in the weighting

scheme. The results in Panel B of Table 3.2 indicate that with the exception

of volatility in industrial production growth, which is statistically significant

at the 1% level, and to a lesser extent the volatility of inflation, volatility in

the macroeconomy is not a particularly strong determinant of stock market

volatility.

The results in Panel A of Table 3.2 show that several of the macroeco-

nomic variables appear to perform equally well in explaining daily volatility

movements under the HAR-MIDAS framework. The individual significance of

four out of the five macroeconomic variables (except Term spread) we consider
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suggests that there is more than one source of macroeconomic information

that is important in explaining stock market volatility. However, including

all of the macroeconomic variables in the HAR-MIDAS model at the same

time leads to overparameterization of the model with the consequence that

the parameters are poorly estimated or convergence is not achieved. As an

alternative, we estimate the first principal component of the macro variables,

and also use the Aruoba-Diebold-Scotti (ADS) Business Conditions Index, to

examine the influence of, for want of a better expression, combined macroe-

conomic information on stock market volatility. The results in Panel C show

that the first principal component and the ADS Business Conditions Index

are statistically significant at the 1% level, showing that macroeconomic in-

formation more broadly significantly contributes to explaining stock market

volatility. The results in this section show that macroeconomic information is

a significant determinant of stock market volatility. In the next section, using

the Tree-HAR-MIDAS model, we turn our attention to an analysis of whether

and how the relationship between stock market volatility and macroeconomic

information varies as underlying economic conditions vary.

3.6 Regime Structure and Macroeconomic In-

formation

In this section, we employ the Tree-HAR-MIDAS model to investigate to

what extent volatility persistence and structural changes in volatility can be

attributed to macroeconomic information. As in the previous section 3.5, we

restrict ω1 to equal one in the beta weighting scheme and we set the number of

lags K to six. The parameter estimates for all the Tree-HAR-MIDAS models

are summarized in Tables 3.3 through 3.7. As a general comment, the results in
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Tables 3.3 and 3.4 reveal that the regime structure is more elaborate than that

often suggested by Markov Switching volatility models, there being three or

four regimes with the Tree-HAR-MIDAS model often identifying low, moderate

and high volatility regimes with the macroeconomic variables being important

in determining some, but not all, of the regimes. We explore this in more

detail in the next subsection.

[Insert Table 3.3 and 3.4 here]

Figures 3.3 through 3.6 show the possible regime structures for daily stock

market volatility that the results in Tables 3.3 and 3.4 suggest. When macroe-

conomic information is not selected as a threshold variable that determines

regime structure, which is the case for the growth rate in unemployment

(UEM), the term spread (TS) and the ADS Business Conditions Index, daily

volatility can be described by a three-regime structure in which the thresh-

old variable is monthly realized volatility RVm. This situation is shown in

Figure 3.3. This three-regime structure is characterized by a high volatility

regime (when RVm > 0.0101), a moderate or medium-volatility regime (when

0.0058 < RVm < 0.0101) and a low volatility regime (when RVm ≤ 0.0058).

[Insert Figures 3.3 through 3.6 here]

When macroeconomic variables are selected as threshold variables, the

three-regime structure that we observe when the threshold variable is real-

ized volatility only, now evolves into a more elaborate four-regime structure,

where the macroeconomic variables are typically employed to further partition

the medium or high volatility regime into two further sub-regimes. Indus-

trial production growth (Figure 3.4) splits the medium volatility regime (the

regime where 0.0058 < RVm < 0.0101) into two parts, which are character-

ized by high and low production growth regimes, respectively. Both housing
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starts (Figure 3.5) and inflation (Figure 3.6) is able to refine the high volatility

regime further into two regimes.

The sample period in our study covers several significant financial events

including (but not limited to) the Dot-com bubble (2000–2002), the Global

Financial crisis (2007–2009) and the subsequent European Sovereign Debt cri-

sis after 2009. These events are known to cause volatility fluctuations in stock

markets so it is interesting to interpret these events in the light of our Tree-

HAR-MIDAS models. Figures 3.8 through 3.12 plot daily realized volatility

with the regime that the particular Tree-HAR-MIDAS model classifies a par-

ticular observation into superimposed on realized volatility. With regard to

the the Dot-com bubble, for the model with a three regime structure (Fig-

ure 3.11), most daily volatility observations tend to stay within two regimes:

the high volatility regime (RVm > 0.0101) and the medium volatility regime

(0.0058 < RVm < 0.0101). Prior to the Dot-com crash, volatility mostly stays

in the medium volatility regime (0.0058 < RVm < 0.0101). Where a macroe-

conomic variable does play a role in determining regimes, such as growth in

inflation (Figure 3.9) for example, it can be seen that at the beginning of the

Dot-com bubble, increasing of inflation growth triggers a regime shift from

the high volatility regime with low inflation growth (the cluster of volatilities

that are edged by 0.0058 < RVm < 0.0101 and ∆PPI < 0.0095) to the high

volatility regime with high inflation growth (the cluster of volatilities that are

edged by RVm > 0.0101 and ∆PPI > 0.0095).

[Insert Figures 3.8 through 3.12 here]

When we look at the global financial crisis period (2007-2008), volatility

prior to that period in the three-regime model (Figure 3.11) is mostly in the

low volatility regime (shown in yellow RVm < 0.0058). In the run up to the

financial crisis the model with the three-regime structure classifies realized
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volatility as being in the moderate volatility regime (shown in blue 0.0058 <

RVm < 0.0101) and into the high volatility regime (shown in purple RVm >

0.0101) during the crisis. Where macroeconomic variables do play a role as

threshold variables, high volatility during the financial crisis is characterized

by higher growth in, for example, high inflation growth with ∆PPI > 0.0095

(Figure 3.9) and high housing starts growth with ∆HS > 0.0015 (Figure 3.10).

In terms of the role macroeconomic information plays in explaining volatil-

ity in the Tree-HAR-MIDAS model, the results in tables 3.3 and 3.4 show that

the picture is somewhat different for the Tree-HAR-MIDAS models compared

to the HAR-MIDAS models. Of particular interest here is not just the signif-

icance or otherwise of β4 but the magnitude of ω2. Recall from the previous

section that in the HAR-MIDAS models (Table 3.2) ω2 is close to one, suggest-

ing that rather than declining quickly for more distant lags, the weights are

quite equally distributed over the lags in the weighting scheme. The results

in Tables 3.3 and 3.4 suggest that in the “extreme” regimes (particularly the

high volatility regime and to a lesser extent the low volatility regime) ω2 is

quite often much greater than one in at least one of the “extreme” regimes.

Figure 3.7 plots the weights attached to the lags (which we term beta lags)

observed in each regime, as generated by the Tree-HAR-MIDAS models in Ta-

bles 3.3 and 3.4. The speed of decay is determined by ω2. The larger the value

of ω2, the faster the decaying speed that the lags have. Generally, beta lags

generated by the different macro variables in the Tree-HAR-MIDAS models

decay faster when stock volatility is located in the “extreme” regimes.2 This

suggests that more distant macroeconomic information has much less impact

on volatility when volatility is high and/or low.3 In contrast, macroeconomic

2With housing starts growth, for example, ω2 is 4.16 for the high volatility regime and
2.5 for the low volatility regime while with respect to medium volatility regime its value
turns into 1.45.

3In this context, high volatility refers to the regime being classified by threshold variable
RVm that exceeds value of 0.0101 and low volatility refers to the regime being classified by
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information becomes prominent and has a longer lasting impact on volatility

when volatility is in the medium regime.4

[Insert Figures 3.7 here]

In terms of the significance of the macroeconomic variables in explaining

daily realized volatility, their role is much less clear cut in the Tree-HAR-

MIDAS model than in the HAR-MIDAS models of the previous section. Recall

from Table 3.2 that β4 was often statistically significant, suggesting macroe-

conomic information has a role to play in explaining daily volatility. Compare

those findings to the results in Tables 3.3 and 3.4 where it can be seen that

macroeconomic information does not consistently explain daily volatility across

all regimes. Growth in industrial production is significant only in the medium

volatility regime, for example, while unemployment rate is significant in both

medium and low volatility regimes. The results in tables 3.3 and 3.4 suggest

that the importance of macroeconomic information in explaining volatility is

very much dependent on which variable is being used and which regime volatil-

ity is in.

To examine the accuracy of the regime identification in the Tree-HAR-

MIDAS model incorporated with macroeconomic variable, we also estimate the

Markov Switching GARCH (MS-GARCH) model as the benchmark model for

comparison. Following Gray (1996), we employ a two-regime Markov Switching

GARCH (hereafter MS-GARCH) model5. The model is:

rt = µ+
√
ht,jηt ηt ∼ IID(0, 1)

ht,j = α0,j + α1,jε
2
t−1 + α2,jht−1

(3.22)

threshold variable RVm that is less than value of 0.0058.
4Consistent with empirical results in Table 3.3 and Table 3.4, medium volatility is iden-

tified as 0.0058 < RVm < 0.0101.
5According to the information criteria (AIC, BIC) and log-likelihood ratio, MS-GARCH

with two-regime structure seems to be more suitable for S&P 500 Realzied volatility during
1996-2014.
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where the parameters [α0,j, α1,j, α2,j] vary across two regimes j, j = 1, 2.6

For the purposes of comparison, we use the first principal component as a com-

bined macroeconomic factor to be incorporated into the Tree-HAR-MIDAS

model. Figure 3.13 plots the regime specifications from the Tree-HAR-MIDAS

model (top graph) and the MS-GARCH model (bottom graph.) The top graph

plots realized volatility with regimes that the particular Tree-HAR-MIDAS

model classifies a particular observation into superimposed on realized volatil-

ity. The bottom graph plots smoothed probabilities from the MS-GARCH

model, where the red line shows the probability of staying in the low-volatility

regime while the blue line shows the probability of staying in the high-volatility

regime. the plots show that there are episodes of what is quite moderate volatil-

ity that the MS-GARCH model characterises as being either in a low or high

volatility state while the Tree-HAR-MIDAS model with its more sophisticated

regime structure correctly classifies as moderate volatility.

3.7 Macroeconomic Uncertainty

In this section we investigate how macroeconomic uncertainty more gen-

erally is transmitted into stock market volatility, if at all. Uncertainty mat-

ters because a high degree of uncertainty might depress productivity growth,

reduce investment and increase risk premia (Bloom et al. (2018)). Since un-

certainty is inherently unobservable, we adopt the measure from Jurado et al.

(2015), and examine the response of stock market volatility to macroeconomic

uncertainty under the Tree-HAR-MIDAS model. Based on the notion that

what matters to economic decision-making is whether the economy has be-

come more or less predictable, Jurado et al. (2015) introduce an aggregated

proxy of macroeconomic uncertainty whereby they aggregate the conditional

6These regimes can be thought of as high and low volatility regimes.
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volatility of pure unexpected components which are realized from h-step-ahead

forecast errors from a wide range of macroeconomic variables. Specifically, Ju-

rado et al. (2015) compress a large set of macroeconomic variables into latent

common factors (yj) via a diffusion index model. With this limited number

of common factors, they generate h-step-ahead predictions and obtain their

associated forecast errors:

V y
jt+h = yjt+h − E[yjt+h|It] (3.23)

The conditional volatility of the prediction errors E[(V y
t+h)

2|It] then provide

a proxy for individual uncertainty, denoted as Uyjt(h):

Ujt(h)y =
√
E[(V y

jt+h)
2|It] (3.24)

An economic-wide uncertainty index, which we use as our measure of

macroeconomic uncertainty, is then calculated as a weighted average of in-

dividual uncertainty measures:

Ujt(h) =

Ny∑
j=1

wjUyjt(h) (3.25)

where wj is the weight attached to each individual uncertainty. Ny indexes

the number for each individual uncertainty.

Using Equations 3.24 through 3.25, we construct macroeconomic uncer-

tainty from 132 monthly macroeconomic variables, which cover a broad cat-

egory of economic activities in the U.S. A detailed summary of the variables

can be found in the online appendix of Jurado et al. (2015)7. Figure 3.14

plots the estimated macroeconomic uncertainty for three forecasting hori-

7In this chapter, we follow Jurado et al. (2015) to construct macroeconomic uncertainty
via 132 macro series. The list of 132 macro variables is available through the link: https:

//assets.aeaweb.org/asset-server/articles-attachments/aer/app/10503/20131193_app.pdf
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zons: h = 1, 3, 12 months, along with NBER recessions (the shaded areas),

and compares it to the corresponding realized monthly volatility (the dashed

green line), the first principal component (the solid red line), as well as the

Aruoba-Diebold-Scotti Business Conditions Index (the yellow line) for the pe-

riod 1996-2004. As the forecasting horizon h increases, macroeconomic uncer-

tainty tends to become less volatile. We also observe that uncertainty measures

reached their peaks prior to the Dot-com bubble and the global financial cri-

sis, which suggests a lead-lag relationship between macroeconomic uncertainty

and volatility.

Table 3.6 reports estimation results for including macroeconomic uncer-

tainty in HAR-MIDAS model. Our measure of macroeconomic uncertainty

realized over the 3-month, 6-month and 12-month horizons all have a positive

sign, suggesting that the higher is uncertainty the higher will be volatility, and

are all significant at the 1% level. As the forecasting horizon used to calculate

the measure of macroeconomic uncertainty increases, the magnitude of the

impact from uncertainty on stock volatility increases.

In line with the regime identification results in Section 3.6, macroeconomic

uncertainty is also selected as a threshold to account for further partition

within the moderate volatility regime (0.0058 < RVm < 0.0101), delivering a

four-regime structure. This is perhaps not that surprising given we found sim-

ilar results for some of the individual macroeconomic variables but what is of

interest is that regardless of the forecasting horizon used in estimating uncer-

tainty, a four regime structure is always chosen as the best structure: a high

volatility regime edged by RVm > 0.0101; a low volatility regime edged by

RVm < 0.0058; and a moderate volatility regime (0.0058 < RVm < 0.0101)

which is further subdivided into two parts characterized by high and low

macroeconomic uncertainty, respectively (see Table 3.7). Macro uncertainty,

then, matters most in the moderate volatility regime when uncertainty exceeds
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its threshold value. For instance, both U(3) and U(6) have positive and signif-

icant impacts with magnitude of more than 0.8 on stock volatility within the

“moderate volatility and high uncertainty ” regime. More importantly, from

Figure 3.12 we can see that this positive impact of uncertainty on volatility

in the moderate volatility regime occurs prior to financial crises during which

volatility moves into the high volatility regime. This suggests that when macro

uncertainty exceeds a certain level, it appears to push up stock volatility, nudg-

ing the stock market into the high volatility regime. Once the switch from the

moderate volatile regime into the high volatile regime has taken place, the

significance of macro uncertainty disappears. In terms of goodness of fit, the

Tree-HAR-MIDAS model specified with U(3) yields a higher maximum likeli-

hood ratio relative to the principal component and ADS Index models.

3.8 Out of Sample Forecasting for the Tree-

HAR-MIDAS Model

The results in the previous sections have shown the importance of macroe-

conomic information in explaining stock market volatility and in determin-

ing volatility regimes. In this section we investigate whether the inclusion of

macroeconomic information improves the accuracy of volatility predictions and

whether the role of macroeconomic information in predicting volatility (if any)

changes over time.

To evaluate the forecasting performance of the Tree-HAR-MIDAS model

with different macroeconomic variables, we use a recursive prediction proce-

dure associated with an increasing window (IW). The initial estimation window

starts in January 1996 and ends in December 2006. Once we have estimated

the model, we generate our initial one-day ahead (h = 1) volatility forecasts
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over the following month as follows:

σdt+1 =
K∑
j=1

[β0,j + β1,j

√
RV d

t + β2,j

√
RV w

t + β3,j

√
RV m

t ]IΦt∈Rj
+ υt+1 (3.26)

We then extend the estimation window by including the month we have just

forecast over. For example, the estimation window now becomes January 1996

through January 2007 rather than January 1996 through December 2006. We

then re-estimate the model and use the new parameter estimates to make one-

day predictions over the following month. Repeating this procedure, we obtain

96 months of prediction results covering the period from January 2007 until

December 2014. For each month, we compute the mean squared error (MSE),

Li,t = MSE(σ2
i,t, σ̂

2
i,t) =

1

n

n∑
j=1

(σ2
i,j − σ̂2

i,j)
2 (3.27)

where Li,t denotes the loss function for model i for month t, σ̂2
i,j is the one-

step ahead forecast at date j in month i and σ2
i,j is the realized volatility

observed at date j. As noted in Section 3.6, we observe that the impact of the

macroeconomic variables on stock volatility vary with respect to which regime

volatility is in. Therefore, it is difficult to come to a clear-cut conclusion as to

which model dominates in terms of explaining volatility. Accordingly, we use

the Model Confidence Set (MCS) analysis of Hansen et al. (2011) to compare

relative forecasting performance among the various Tree-HAR-MIDAS models

and to identify a set of superior models under a joint confidence interval, rather

than picking out one single best model. The main mechanism of MCS is to

construct an initial set M0 containing all competing models. Inferior models

are eliminated step-by-step through a sequence of equivalent tests. In the first

step, an equivalent test δM is applied between any pair of competing models
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in set M0. Those pairwise equivalent tests in set M0 are constructed based on

the null hypothesis H0,M that assumes all models perform equally well:

δM =


H0,M : di,j = 0

HA,M : di,j 6= 0

(3.28)

d̄i,j = E(dij,t) = E (Li,t − Lj,t) ∀i, j ∈M

where d̄i,j refers to the relative performance between any two models, i and j,

which is calculated as the difference in the loss functions between i and j on

average. If H0,M is accepted for a significance level α, all candidates perform

equally well. Otherwise, the worst-performing model (the model which has

the highest TR statistic, defined below) is discarded from the initial set M0. In

this context, TR measures the greatest loss between two models:

TR = maxi,j∈M =
d̄i,j√
var(d̄i,j)

(3.29)

Note that the variance of d̄i,j in Equation 3.28 is estimated through the boot-

strap procedure. This process test is repeated until the null hypothesis is

accepted. At this stage, the initial set M0 has shrunk and reached the con-

fidence set M̂∗
1−α with a significance level of α. The set M̂∗

1−α contains the

surviving models which have equivalent forecasting performance.

Following Hansen et al. (2011), we use a significant level of α equal to 25%.

Our one-day ahead (h = 1) prediction results are summarized in Table 3.8,

where the standard Tree-HAR model incorporated with RV is included as a

benchmark for the purpose of comparison. The standard Tree-HAR model

performs particularly well when volatility is high, especially during the global

financial crisis of 2007–2008 and the Sovereign Debt crisis at the start of 2010.

When comparing the p-value of the MCS with 25% significance level, the
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standard Tree-HAR model obtains the highest probability of 1.0000 in 10 out

of 16 cases8, where a p-value of 1.0000 indicates that the Tree-HAR model is the

last surviving model in set M̂∗
75%. By contrast, models that include the macro

variables are less informative about future daily volatility during 2007-2008

and 2010. Results in Table 3.8 suggest relatively weak performance of models

with macroeconomic variables with the exception of housing starts. This is

perhaps because growth in housing starts have long, quite persistent effects in

the high volatility regime and the moderate volatility regime (see Figure 3.10

and Table 3.3). This feature pays off in terms of predictive accuracy. During

the financial crisis of 2007–2008, ∆HS outperforms alternative candidates when

making short-term predictions.

[Insert Table 3.8 here]

We now turn our attention to investigating the predictive performance of

the macroeconomic variables over a longer horizon, given that macroeconomic

variables tend to be associated with the long-term component of volatility.

Following Bollerslev et al. (2016), we extend the forecast horizon to one-week

ahead (medium-term) prediction as well as one-month ahead (longer-term)

prediction, respectively:

RV w
t+5/t+1 =

K∑
j=1

[β0,j + β1,j

√
RV d

t + β2,j

√
RV w

t + β3,j

√
RV m

t ]IΦt∈Rj
+ υt+1

(3.30)

RV m
t+22/t+1 =

K∑
j=1

[β0,j + β1,j

√
RV d

t + β2,j

√
RV w

t + β3,j

√
RV m

t ]IΦt∈Rj
+ υt+1

(3.31)

8We generate MCS comparisons at a biannual frequency. Therefore, MSEs and p-values
are shown for 16 cases.

141



where RV w
t+5/t+1 is the one-week-ahead forecast of volatility, which is equiv-

alent to daily realized volatility rolling forward from time t+ 1 to t+ 5. Sim-

ilarly, RV m
t+22/t+1 refers to the one-month-ahead forecast, rolling forward from

t + 1 to t + 22. Tables 3.9 to 3.10 provide one week ahead and one-month

ahead prediction results respectively. Rather surprisingly, the term spread

performs relatively well over the longer horizon when volatility is low.9 Un-

surprisingly, as the forecasting horizon increases macroeconomic information

becomes much more valuable. Taking the global financial crisis period (2007–

2008) as an example, relative to the rather weak performance of the individual

macroeconomic variables in short-term prediction (see Table 3.8), we can see

that more models that include the macro variables are present in the set M̂∗
75%

with higher p-values for long-term prediction. In particular, inflation provides

superior long-term predictions in Table 3.10, obtaining p-values of 1.0000 in 5

out of 16 cases.

[Insert Table 3.9 and Table 3.10 here]

Since different macroeconomic variables offer the best forecasting results

in different sub-periods, it is hard to identify one dominant variable that out-

performs the others in terms of forecasting ability. Christiansen et al. (2012)

identify this kind of difficulty as model uncertainty. They point out that it is

quite difficult for an economic agent to select the right macro variables that

are best suited for volatility prediction. This is where using a composite vari-

able that captures multiple aspects of the macroeconomy, such as the first

principal component or the ADS index or macroeconomic uncertainty should

help. The results in Table 3.11 show that, especially when forecasting one

month ahead, macroeconomic uncertainty outperforms alternative composite

9Stock and Watson (2003) and Wheelock et al. (2009) state that the term spread usually
performs better for recession prediction rather than output growth.
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variables in most of our forecasting periods. In a nutshell, our forecasting

results in Section 3.8 reveal that adding macroeconomic information helps to

improve volatility prediction for both the long-run and short-run horizons.

[Insert Table 3.11 here]

3.9 Conclusion

In this paper, we have proposed the HAR-MIDAS and Tree-HAR-MIDAS

models to describe and forecast US stock market volatility. These models allow

us to employ macroeconomic information as explanatory variables to both ac-

count for movements in stock market volatility (the HAR-MIDAS model) and

to determine switches in volatility regimes (the Tree-HAR-MIDAS model.) In

the Tree-HAR-MIDAS model, regimes are constructed by using the binary tree

partition process, where macroeconomic information together with volatility

determine the thresholds for each partition step. With no structural change,

adding macroeconomic information into the HAR-MIDAS model provides a

better description of stock market volatility relative to the traditional HAR-

RV model. When considering potential structural changes in volatility, both

expected and unexpected macroeconomic information helps to deliver a more

elaborate regime structure, partitioning volatility into low, medium and high

volatility regimes with macroeconomic information further partitioning the

medium volatility regime regimes. The Tree-HAR-MIDAS model outperforms

the Markov-Switching GARCH model and the traditional Tree-HAR model.

Finally, we observe a significant improvement in long-term volatility forecasts

when using macroeconomic variables in the Tree-HAR-MIDAS model.
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Table 3.1: Summary Statistics

Rs&p500 Daily RV Weekly RV Monthly RV ∆ IP ∆ PPI ∆ HS ∆UEM TS ADS

Mean 0.0340 0.8921 0.8925 0.8935 2.1342 3.3132 0.5926 0.0000 0.0177 −0.1891

Std 1.2489 0.5875 0.5333 0.4931 7.8749 13.3867 12.6987 16.3299 0.0117 0.6120

Skew −0.0847 3.1970 3.0011 2.8066 −1.0900 −0.1576 0.2826 0.3082 −0.1749 −2.0429

Kurt 10.8754 21.6864 17.7025 15.2260 7.9621 5.0223 3.2975 4.1275 1.8927 9.6695

Autocorrelations

1-lag −0.0742 0.7898 0.9771 0.9978 0.1959 0.3321 −0.3533 0.1908 0.9370 0.9983

5-lag −0.0503 0.6829 0.8304 0.9705 0.2203 −0.1308 0.0759 0.3470 0.8240 0.9907

10-lag 0.0270 0.6217 0.7611 0.9113 0.0551 0.0017 0.0444 0.1201 0.3424 0.9316

a Table 3.1 describes statistics for daily, weekly and monthly Realized Volatility series and annual growth rates

for all cited macroeconomic variables. The daily realized volatility is calculated by averaging up 5-mins squared

returns over on day horizon, t. The weekly (or monthly) realized volatility observed at date t is calculated by

averaging up non-overlapping daily RVs over past one week (or one-month) horizon, which is shown as:

RV w
t =

1

4

4∑
i=1

RV d
t−i RV m

t =
1

17

21∑
i=5

RV d
t−i

b Term spread is the yield spread between 3-month treasury bill and ten-year government bond. ADS refers to

the Aruoba-Diebold-Scotti business conditions index, which is designed to track real business condition at a daily

frequency.
c Series autocorrelations are specified with 1-lag, 5-lag and 10-lag length, respectively. The sample perid is January
1996-December 2014, for a total of 228 macroeconomic observations and 4733 realized volatility observations.
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Table 3.2: Parameter Estimates for the HAR-MIDAS model with Macroeco-
nomic Variables and Macroeconomic Variances

Macro-variable specification β0 β1 β2 β3 β4 ω1 ω2 Loglikelihood AIC

Panel A: HAR-MIDAS specified with macroeconomic variable

∆ IP 0.0010*** 0.3779*** 0.3461*** 0.1826*** −0.0397*** 1 1.0101*** −19921.5607 −39731

(4.3499) (11.0650) (9.0085) (5.6694) (-5.4725) ( 2.9973 )

∆ PPI 0.0006*** 0.3778*** 0.3448*** 0.1954*** 0.0033*** 1 1.1198*** −19921.7994 −39727

(3.0290) (11.1364) (8.9920) (6.1090) (2.5607) (4.6141)

∆ UEM 0.0009** 0.3774*** 0.3456*** 0.1795*** 0.0022*** 1 1.0111 − 19923.5077 −39729

(4.0878) (11.0531) (8.9862) (5.4615) (3.9111) (1.6459)

∆ TS 0.0007*** 0.3794*** 0.3477*** 0.1945*** 0.0022 1 3.9035 −19917.4755 −39717

(3.2228) (11.0438) (8.7332) (5.8741) (0.3926 ) (1.4027)

∆ HS 0.0008*** 0.3783*** 0.3468*** 0.1859*** −0.0049** 1 1.1005*** − 19920.4367 −39720

(3.9642) (11.0712) (9.0271) (5.6944) (-2.0850) (2.9207)

Panel B: HAR-MIDAS specified with macroeconomic variance

∆ IP Variance 0.0006*** 0.3778*** 0.3459*** 0.1812*** 0.0503*** 1 1.0100*** −19921.5887 −39725

( 2.8847 ) (11.0478) (8.9951) ( 5.6216) (5.6308) (3.6966)

∆ PPI Variance 0.0005** 0.3775 0.3455*** 0.1782*** 0.0039** 1 1.0167* − 19922.4781 −39725

( 2.2215) (11.0939) ( 9.0531) (5.3013) (1.9668) (1.7521)

∆ UEM Variance 0.0006*** 0.3792*** 0.3477*** 0.1916*** 0.0012 1 1.0361*** −19918.0280 −39718

(3.0162) (11.0913) (9.0402) (5.9019) (1.2512) (3.8114)

TS Variance 0.0006*** 0.3792*** 0.3475*** 0.1945*** 0.5100 1 1.5539 −19917.9546 −39718

( 3.5893) ( 11.0678) (9.0164) (6.0493 ) (0.7914) ( 1.7014)

∆ HS Variance 0.0008*** 0.3793*** 0.3476*** 0.1953*** -0.0014 1 2.1164*** -19917.9063 -39717

(3.2602) (11.0765) (9.0302) (6.0710) (-1.1451) (7.0820)

Panel C: HAR-MIDAS specified with combined economic indicator and its variance

PC1 0.0008*** 0.3785*** 0.3471*** 0.1845*** 0.0173*** 1 1.0110*** −19919.7800 −39723

(3.7946) (11.0774) ( 9.0249) (5.6764) (3.4836) ( 4.1411)

ADS 0.0009*** 0.3772*** 0.3452*** 0.1752*** -0.0310*** 1 1.0100*** −19923.2947 −39728

( 4.0733) ( 11.0522) (8.9716) (5.3336) (-4.7282) (3.5515)

PC1 Variance 0.0006*** 0.3790*** 0.3477*** 0.1879*** 0.0134** 1 1.0116* −19918.3962 −39718

(3.3780) (11.0794) ( 9.0416) (5.8191) ( 2.8663 ) (1.9229)

ADS Variance 0.0008*** 0.3787*** 0.3471*** 0.1845*** 0.0080*** 1 1.0108*** − 19919.3889 −37920

(3.6834) (11.0719) (9.0294) (5.7266 ) (3.7519) (3.8178)

Benchmark: HAR-RV model

HAR-RV 0.0005*** 0.4302*** 0.3643*** 0.1498***

(4.9583) (30.3922) (18.9163) (8.5977)

a Table 3.2 reports estimation results for the HAR-MIDAS model specified with alternative macroeconomic vari-

ables and macroeconomic variances. The HAR-MIDAS model is shown as below:

Et[σ
(d)
t+1|Ft] = β0j + β1jRV

d
t + β2jRV

w
t + β3jRV

m
t + β4jXt Xt =

K∑
k=1

φk(ω)xi,t−k Xt =
K∑
k=1

φk(ω)σ̂i,t−k

Xt has two alternative specifications: one is a weighted average value of lagged observations from one macroe-

conomic variable,xi. Another one is a weighted average value of lagged volatilities from one macroeconomic

variance,σ̂i. Panel A reports estimation results for all alternative macroeconomic variables. Panel B reports es-

timation results for all alternative macroeconomic variances. Panel C provides estimation results for combined

macroeconomic indexes, including the first principal component (PC1) and the ADS index. The last row displays

estimations of the HAR-RV model, which is defined as:

Et[σ
(d)
t+1|Ft] = β0j + β1jRV

d
t + β2jRV

w
t + β3jRV

m
t

The numbers in parentheses are robust t-statistics. Statistic significance at the 1%, 5% and 10% level is indicated
by ***,**,*, respectively. 145



Table 3.3: Parameter Estimates for Daily Volatility in the Tree-HAR-MIDAS
model with Macroeconomic Variables

Macro-variable Regime structure β0 β1 β2 β3 β4 ω1 ω2 Loglikelihood AIC

∆ IP R1 RVm > 0.0101

(1178 obs) 0.0013* 0.3804*** 0.3224*** 0.1922*** 0.0019 1 7.1338*** −20583.2584 −40744

(1.8125) (7.4337) (5.8477) (3.7572) (0.9371) (45.7257)

R2 0.0058 < RVm < 0.0101 ∆IP > 0.0578

(636 obs) 0.0094 0.4476*** 0.1269 0.0070 −0.0731* 1 3.2156***

(2.4834) (4.1253) (0.9899) (0.0524) (−1.8242) (3.6062)

R3 0.0058 < RVm < 0.0101 ∆IP < 0.0578

(1719 obs) 0.0013*** 0.2832*** 0.4142*** 0.1461** −0.0115*** 1 1.0100***

(2.7927) (8.9944) (9.3353) (2.3665) (−3.9907) (4.8284)

R4 RVm ≤ 0.0058

(1178 obs) 0.0021*** 0.3191*** 0.2335*** 0.0690 0.0024 1 4.5709***

(4.1582) (6.6419) (4.2183) (0.6423) (1.1225) (11.0280)

∆ PPI R1 RVm > 0.0101 ∆PPI > 0.0095

(1178 obs) 0.0051** 0.2186*** 0.3670*** 0.1257 −0.0315 1 1.0144 −20574.9902 −40727

(2.5755) (4.4887) (4.8391) (1.4929) (−1.1547) (1.3819)

R2 RVm > 0.0101 ∆PPI < 0.0095

(1080 obs) 0.0017** 0.4195*** 0.2870*** 0.1929*** 0.0096 1 2.8384**

(1.9648) (6.4463) (4.2825) (3.1960) (1.3730) (2.2791)

R3 0.0058 < RV ≤ 0.0101

(1275 obs) 0.0015*** 0.3494*** 0.3230*** 0.1299** 0.0100* 1 1.0291*

(3.1760) (7.1919) (5.7210) (2.0267) (1.9240) (1.7254)

R4 RVm < 0.0058

(1178 obs) 0.0025*** 0.3154*** 0.2270*** 0.0564 −0.0095** 1 2.9782***

(4.8827) (6.5608) (4.1034) (0.5356) (−2.4925) (3.0444)

∆ HS R1 RV m > 0.0101 ∆HS < −0.0015

(2051 obs) 0.0049** 0.4058*** 0.2969*** 0.1460** 0.0502* 1 4.1652** −20611.2111 −40800

(2.5342) (6.0530) (4.1255) (2.2517) (1.8380) (2.2514)

R1 RVm > 0.0101 ∆HS > −0.0015

(1178 obs) 0.0044** 0.2998*** 0.3063*** 0.2161*** −0.0644*** 1 1.0168***

(2.4361) (5.4676) (4.1483) (2.7237) (−7.1416) (4.1801)

R3 0.0058 < RVm < 0.0101

(304 obs) 0.0021*** 0.3448*** 0.3134*** 0.0705 −0.0177*** 1 1.4564**

(4.2329) (7.0408) (5.5647) (1.0737) (−4.0360) (2.2519)

R4 RVm < 0.0058

(1178 obs) 0.0024*** 0.3124*** 0.2211*** 0.0602 −0.0130*** 1 2.5087***

(4.7424) (6.6501) (3.9587) (0.5614) (−2.8195) (4.2246)

a Table 3.3 reports estimated parameters, regimes and related statistics for the Tree-HAR-MIDAS model spec-
ified with alternative macroeconomic variables, including ∆ IP, ∆ PPI and ∆ HS. The estimation period is
January 2006-December 2014, for a total of 228 monthly macroeconomic observations and 4733 daily returns
and realized volatilities. In Tree-HAR-MIDAS model:

σ
(d)
t+1 =

N∑
j=1

[β0j + β1jRV
d
t + β2jRV

w
t + β3jRV

m
t + β4jXt]IXpred

t ∈Rj
+ υt+1 Xm

t =
K∑
k=1

φk(ω)xi,t−k

Xt is a weighted average value of lagged observations from one typical macroeconomic variable xt. This macroe-

conomic variable has been adjusted as annual growth rates. In a Tree-HAR-MIDAS model, the regime structure

is constructed by selecting a sequence of optimal threshold values from threshold set Xpred = {RVm, r,Xt},
where XT represents alternative ∆ IP, ∆ PPI and ∆ HS. The numbers in parentheses are robust t-statistics.

Statistic significance at the 1%, 5% and 10% level is indicated by ***, **, *, respectively.
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Table 3.4: Parameter Estimates for Daily Volatility in the Tree-HAR-MIDAS
model with Macroeconomic Variables

Macro-variable Regime structure β0 β1 β2 β3 β4 ω1 ω2 Loglikelihood AIC

∆ UEM R1 RVm > 0.0101

(1178 obs) 0.0014** 0.3797*** 0.3219*** 0.1926*** −0.0015 1 9.5014*** −20525.1538 −40627

(1.9939) (7.4310) (5.8452) (3.7622) (−1.3852) (55.4589)

R2 0.0058 < RVm < 0.0101

(2355 obs) 0.0023*** 0.3467*** 0.3155*** 0.0498 0.0052*** 1 1.0100***

(4.5060) (7.1829) (5.6428) (0.6755) (4.3229) (2.6686)

R3 RVm < 0.0058

(1178 obs) 0.0027*** 0.3176*** 0.2318*** 0.0126 0.0035* 1 1.1258**

(4.6841) (6.7018) (4.1837) (0.1132) (1.7899) (2.3547)

TS R1 RVm > 0.0101

(1178 obs) 0.0014** 0.3808*** 0.3222*** 0.1928*** −0.0102 1 2.2922*** −20522.7416 −40623

(1.8652) (7.4274) (5.8359) (3.7571) (−0.7518) (7.8215)

R2 0.0058 < RVm < 0.0101

(2355 obs) 0.0025*** 0.3474*** 0.3157*** 0.0709 −0.0234*** 1 3.2197***

(3.7008) (6.9803) (5.5450) (1.1093) (−2.8338) (4.2236)

R3 RVm < 0.0058

(1178 obs) 0.0024*** 0.3181*** 0.2326*** 0.0458 −0.0084 1 18.4154***

(4.5809) (6.7037) (4.1786) (0.4270) (−1.4280) (79.2483)

a Table 3.4 reports estimated parameters, regimes and related statistics for the Tree-HAR-MIDAS model speci-
fied with alternative macroeconomic variables, including ∆ UEM and ∆ TS. The estimation period is January
2006-December 2014, for a total of 228 monthly macroeconomic observations and 4733 daily returns and realized
volatilities. In Tree-HAR-MIDAS model:

σ
(d)
t+1 =

N∑
j=1

[β0j + β1jRV
d
t + β2jRV

w
t + β3jRV

m
t + β4jXt]IXpred

t ∈Rj
+ υt+1 Xm

t =
K∑
k=1

φk(ω)xi,t−k

Xt is a weighted average value of lagged observations from one typical macroeconomic variable xt. This macroe-

conomic variable has been adjusted as annual growth rates. In a Tree-HAR-MIDAS model, the regime structure

is constructed by selecting a sequence of optimal threshold values from threshold set Xpred = {RVm, r,Xt},
where XT represents alternative ∆ UEM, ∆ and TS. The numbers in parentheses are robust t-statistics. Statis-

tic significance at the 1%, 5% and 10% level is indicated by ***, **, *, respectively.
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Table 3.5: Parameter Estimates for Daily Volatility in the Tree-HAR-MIDAS
model with Macroeconomic Variables

Macro-variable Regime structure β0 β1 β2 β3 β4 ω1 ω2 Loglikelihood AIC

ADS R1 RVm > 0.0101

(1178 obs) 0.0013* 0.3807*** 0.3223*** 0.1921*** 0.0096 1 19.8077*** −20520.2655 −40617

(1.8543) (7.4335) (5.8405) (3.7510) (0.8130) (186.9733)

R2 0.0058 < RVm < 0.0101

(2355 obs) 0.0019*** 0.3496*** 0.3205*** 0.0881 −0.0382*** 1 1.0100***

(3.9813) (7.2010) (5.6982) (1.3030) (−3.5726) (3.6741)

R3 RVm < 0.0058

(1178 obs) 0.0022*** 0.3179*** 0.2316*** 0.0593 0.0316* 1 17.5808***

(4.3806) (6.7396) (4.1493) (0.5461) ( 1.7455) (115.8082)

PC1 R1 RVm > 0.0101

(1178 obs) 0.0012* 0.3809*** 0.3218*** 0.1965*** 0.0092 1 19.9921*** −20619.4034 −40816

(1.6949) (7.4350) (5.8186) (3.8173) (0.8124) (56.1587)

R2 0.0058 < RVm < 0.0101 PC1 > 0.0070

(570 obs) 0.0012 0.4867*** 0.0538 −0.1434 0.3268*** 1 19.9945***

(1.0344) (5.8416) (0.5442) (−0.9292) (3.8364) (8.4553)

R3 0.0058 < RVm < 0.0101 PC1 < 0.0070

(1785 obs) 0.0014*** 0.2588*** 0.4346*** 0.1377** 0.0262** 1 4.2746***

(2.9096) (6.8632) (8.6132) (2.2940) (2.1569) (6.3737)

R4 RVm < 0.0058

(1178 obs) 0.0024*** 0.3148*** 0.2241*** 0.0326 0.0380** 1 2.0913**

(4.7562) (6.6052) (4.0410) (0.3092) (2.5305) (2.3218)

PC2 R1 RVm > 0.0101

(1178 obs) 0.0012* 0.3809*** 0.3218*** 0.1965*** 0.0092 1 19.9921*** −20619.4034 −40816

(1.6949) (7.4350) (5.8186) (3.8173) (0.8124) (56.1587)

R2 0.0058 < RVm < 0.0101 PC2 > 0.0070

(570 obs) 0.0012 0.4867*** 0.0538 −0.1434 0.3268*** 1 19.9945***

(1.0344) (5.8416) (0.5422) (−0.9292) (3.8364) (8.4553)

R3 0.0058 < RVm < 0.0101 PC2 ≤ 0.0070

(1785 obs) 0.0014*** 0.2588*** 0.4346*** 0.1377** 0.0262** 1 4.2746***

(2.9096) (6.8632) (8.6132) (2.2940) (2.1569) (6.3737)

R4 RVm < 0.0058

(1178 obs) 0.00*** 0.3174*** 0.2303*** 0.0262 0.0177** 1 1.5958**

(4.7562) (6.6052) (4.0410) (0.3092) (2.5305) (2.3218)

a Table 3.5 reports estimated parameters, regimes and related statistics for daily volatility in the Tree-HAR-

MIDAS model specified with alternative macroeconomic variables, including PC1, PC2 and ADS Index. The

estimation period is January 2006-December 2014, for a total of 228 monthly macroeconomic observations and

4733 daily returns and realized volatilities. In Tree-HAR-MIDAS model:

σ
(d)
t+1 =

N∑
j=1

[β0j + β1jRV
d
t + β2jRV

w
t + β3jRV

m
t + β4jXt]IXpred

t ∈Rj + υt+1 Xm
t =

K∑
k=1

φk(ω)xi,t−k

Xt is a weighted average value of lagged observations from one typical macroeconomic variable xt. This macroe-

conomic variable has been adjusted as annual growth rates. In a Tree-HAR-MIDAS model, the regime structure

is constructed by selecting a sequence of optimal threshold values from threshold set Xpred = {RVm, r,Xt},
where XT represents alternative PC1 ,PC2 and ADS Index. The numbers in parentheses are robust t-statistics.

Statistic significance at the 1%, 5% and 10% level is indicated by ***, **, *, respectively.
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Table 3.6: Parameter Estimates for the HAR-MIDAS model with Macroeco-
nomic Uncertainty

Macro-Uncertainty β0 β1 β2 β3 β4 ω1 ω2 Loglikelihood AIC

U(3) −0.0006* 0.3782*** 0.3464*** 0.1830*** 0.0163*** 1 1.0362*** −19920.7186 −39723

(−1.8489) (11.0853) (9.0038) (5.6201) (4.0785) (3.7411)

U(6) −0.0012*** 0.3780*** 0.3462*** 0.1819*** 0.0224*** 1 1.0146*** −19921.2846 −39727

(−2.8145) (11.0714) (8.9939) (5.5884) (4.2348) (3.7767)

U(12) −0.0027*** 0.3776*** 0.3457*** 0.1797*** 0.0370*** 1 1.0333*** − 19922.2189 −39729

(−3.5109) (11.0663) (8.9804) (5.4881) (4.2210) (4.4988)

a Table 3.6 reports estimation results for the HAR-MIDAS model specified with alternative

macroeconomic uncertainty being realized over 3-month, 6-month and 12-month horizons, re-

spectively. The HAR-MIDAS model is shown as below:

Et[σ
(d)
t+1|Ft] = β0j + β1jRV

d
t + β2jRV

w
t + β3jRV

m
t + β4jU(h)t h = 3, 6, 12

The numbers in parentheses are robust t-statistics. Statistic significance at the 1%, 5% and
10% level is indicated by ***,**,*, respectively.
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Table 3.7: Parameter Estimates for Daily Volatility in the Tree-HAR-MIDAS
model with Macroeconomic Uncertainty

Macro-uncertainty Regime structure β0 β1 β2 β3 β4 ω1 ω2 Loglikelihood AIC

U(3) R1 RVm > 0.0101

(1178 obs) 0.0029*** 0.3788*** 0.3205*** 0.1920*** −0.0175* 1 11.2891*** −20649.7167 −40775

(2.5896) (7.4239) (5.8213) (3.7616) (−1.8054) (30.7505)

R2 0.0058 < RVm < 0.0100 Ū(3) > 0.0085

(614 obs) −0.0797*** 0.4699*** 0.2578** 0.1271 0.9312*** 1 5.6633***

(−3.0185) (6.4826) (2.3085) (1.0069) (3.0780) (12.8760)

R3 0.0058 < RV ≤ 0.0101 Ū(3) ≤ 0.0846

(1741 obs) 0.0002 0.2359*** 0.3195*** 0.1158* 0.0272*** 1 1.0825*

(0.2171) (6.6505) (7.2675) (1.8077) (2.8693) (1.8799)

R4 RVm < 0.0846

(1178 obs) 0.0027** 0.3195*** 0.2352*** 0.0704 −0.0068 1 2.3221

(2.7224) (6.7036) (4.2353) (0.6585) (−0.6614) (1.5449)

U(6) R1 RVm > 0.0100

(1178 obs) 0.0034** 0.3790*** 0.3206*** 0.1923*** −0.0221* 1 11.1610*** −20647.8592 −40771

(2.4882) (7.4246) (5.8202) (3.7640) (−1.7632) (29.6900 )

R2 0.0058 < RVm < 0.0100 Ū(6) > 0.0905

(1235 obs) −0.0736*** 0.4810*** 0.2713*** 0.1928 0.8039*** 1 5.5580***

(−2.6833) (6.9031) (2.5791) (1.5490) (2.7509) (9.3489)

R3 0.0058 < RVm < 0.0100 Ū(6) < 0.0905

(1120 obs) −0.0004 0.2272*** 0.3210*** 0.1272* 0.0319** 1 1.0972*

(−0.3469) (6.4005) (7.3349) (1.9880) (2.4862) (1.8335)

R4 RVm ≤ 0.0058

(1178 obs) 0.0029* 0.3195*** 0.2352*** 0.0704 −0.0080 1 2.5086

(1.7855) (6.7010) (4.2418) (0.6568) (−0.4616) (1.6769)

U(12) R1 RVm > 0.0100

(1178 obs) 0.0046** 0.3791 *** 0.3205*** 0.1925*** −0.0330* 1 11.0545*** −20627.8085 −40731

(2.3037) (7.4292) (5.8208) (3.7668) (−1.7352) (61.7309)

R2 0.0058 < RVm < 0.0100 Ū(12) > 0.0946

(967 obs) −0.0235** 0.4630*** 0.3094*** 0.0136 0.2647*** 1 5.5690**

(−2.5137) (7.2880) (3.6967) (0.1298) (2.7319) (2.4833)

R3 0.0058 < RV ≤ 0.0101 Ū(12) ≤ 0.0946

(1388 obs) 0.0096** 0.2269*** 0.3183*** 0.0666 −0.0745* 1 18.0179***

( 2.4375) (5.5648) (6.4401) (0.9179) (−1.8350) (16.7050)

R4 RVm < 0.0058

(1178 obs) 0.0035 0.3195*** 0.2350*** 0.0756 −0.0146 1 1.9358***

(1.6030) (6.6977) (4.2379) (0.7053) (−0.6322) (3.5653)

a Table 3.7 reports estimated parameters, regimes and related statistics for the Tree-HAR-MIDAS model specified

with macroeconomic uncertainty being realized over 3-month, 6-month and 12-month horizons, respectively.
b The Aggregate Uncertainty is measured by cross averaging individual uncertainty (Ū), U(h) = 1

N

∑N
j=1 U j(h),

where h specifies the uncertainty horizon in a monthly frequency.

c The estimation period is January 2006-December 2014, for a total of 228 monthly macroeconomic observations and

4733 daily returns and realized volatilities. In Tree-HAR-MIDAS model:

σ
(d)
t+1 =

N∑
j=1

[β0j + β1jRV
d
t + β2jRV

w
t + β3jRV

m
t + β4jXt]IUpredt ∈Rj

+ υt+1 Umt =
K∑
k=1

φk(ω)U t−k

U t is a weighted average value of lagged observations from one macroeconomic undertainty factor. In a Tree-HAR-

MIDAS model, the regime structure is constructed by selecting a sequence of optimal threshold values from threshold

set Xpred = {RVm, r,U t}. The numbers in parentheses are robust t-statistics. Statistic significance at the 1%, 5%

and 10% level is indicated by ***, **, *, respectively.

150



T
ab

le
3.

8:
M

o
d
el

C
on

fi
d
en

ce
S
et

fo
r

on
e-

d
ay

ah
ea

d
p
re

d
ic

ti
on

of
S
&

P
50

0
V

ol
at

il
it

y
20

07
-2

01
4

o
n

e
-w

e
e
k

a
h

e
a
d

fo
re

ca
st

in
g

(h
=

1)
J
an

20
07

-J
u
n

20
07

J
u
l

20
07

-D
ec

20
07

J
an

20
08

-J
u
n

20
08

J
u
l

20
08

-D
ec

20
08

J
an

20
09

-J
u
n

20
09

J
u
l

20
09

-D
ec

20
09

J
an

20
10

-J
u
n

20
10

J
u
l

20
10

-D
ec

20
10

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

T
re

e-
H

A
R

-M
ID

A
S
-I

P
4.

78
75

0.
00

02
11

.3
25

5
0.

77
76

*
17

.3
17

0
0.

17
80

93
.4

94
5

0.
12

65
14

.4
78

9
0.

84
16

*
7.

02
04

0.
16

81
19

.2
75

6
0.

21
28

6.
46

81
0.

07
61

T
re

e-
H

A
R

-M
ID

A
S
-P

P
I

4.
59

08
0.

02
29

11
.3

94
6

0.
77

76
*

18
.2

68
9

0.
17

80
91

.3
59

4
1
.0

0
0
0

*
23

.1
56

4
0.

00
01

6.
99

86
0.

16
81

19
.0

60
9

0.
21

28
6.

53
58

0.
07

61

T
re

e-
H

A
R

-M
ID

A
S
-U

E
M

5.
54

98
0.

00
02

11
.5

72
0

0.
02

01
17

.1
72

9
0.

82
84

*
12

0.
41

86
0.

01
73

17
.8

88
0

0.
00

01
9.

58
27

0.
02

05
19

.2
69

8
0.

21
28

7.
17

93
0.

00
01

T
re

e-
H

A
R

-M
ID

A
S
-T

S
4.

59
13

0.
02

29
11

.7
45

5
0.

02
01

17
.1

90
0

0.
82

84
*

98
.1

22
7

0.
12

65
14

.0
93

1
1
.0

0
0
0

*
6.

93
33

0.
16

81
19

.0
07

0
0.

21
28

7.
00

29
0.

00
00

T
re

e-
H

A
R

-M
ID

A
S
-H

S
4.

23
87

0.
79

79
*

11
.5

62
1

0.
02

01
17

.0
19

3
1
.0

0
0
0

*
94

.5
17

2
0.

12
65

14
.6

36
3

0.
84

16
*

6.
41

58
0.

53
00

*
19

.1
40

7
0.

21
28

6.
50

59
0.

07
61

T
re

e-
H

A
R

-R
V

4.
21

37
1
.0

0
0
0

*
11

.0
30

7
1
.0

0
0
0

*
22

.5
60

4
0.

02
28

11
5.

35
38

0.
01

73
17

.0
66

3
0.

00
47

6.
26

67
1
.0

0
0
0

*
17

.0
05

8
1
.0

0
0
0

*
5.

78
79

1
.0

0
0
0

*

J
an

20
11

-J
u
n

20
11

J
u
l

20
11

-D
ec

20
11

J
an

20
12

-J
u
n

20
12

J
u
l

20
12

-D
ec

20
12

J
an

20
13

-J
u
n

20
13

J
u
l

20
13

-D
ec

20
13

J
an

20
14

-J
u
n

20
14

J
u
l

20
14

-D
ec

20
14

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

T
re

e-
H

A
R

-M
ID

A
S
-I

P
8.

06
16

0.
34

03
*

34
.8

37
7

0.
21

75
6.

97
49

1
.0

0
0
0

*
7.

44
71

0.
86

96
*

7.
44

82
0.

00
26

4.
17

53
0.

00
00

2.
89

73
0.

11
65

5.
82

37
0.

02
24

T
re

e-
H

A
R

-M
ID

A
S
-P

P
I

8.
19

97
0.

12
42

34
.7

67
5

0.
24

45
7.

02
30

0.
96

68
*

7.
41

56
0.

86
96

*
7.

26
29

0.
00

26
4.

05
57

0.
00

00
3.

04
37

0.
01

29
5.

81
01

0.
09

86

T
re

e-
H

A
R

-M
ID

A
S
-U

E
M

8.
88

65
0.

08
73

34
.7

07
0

0.
24

45
7.

00
30

0.
96

68
*

7.
57

95
0.

66
07

*
7.

24
34

0.
00

26
4.

31
17

0.
00

00
4.

73
28

0.
01

29
8.

52
58

0.
00

05

T
re

e-
H

A
R

-M
ID

A
S
-T

S
8.

16
63

0.
34

03
34

.9
52

1
0.

24
45

7.
31

72
0.

03
36

7.
64

84
0.

76
77

*
7.

02
65

0.
00

26
4.

07
41

0.
00

00
2.

92
21

0.
01

99
5.

53
53

0.
08

40

T
re

e-
H

A
R

-M
ID

A
S
-H

S
7.

87
93

1
.0

0
0
0

*
35

.6
22

9
0.

21
75

7.
00

42
0.

96
68

*
7.

60
97

0.
66

07
*

3.
47

66
1
.0

0
0
0

*
5.

51
94

0.
00

00
3.

03
91

0.
01

99
5.

30
60

0.
09

86

T
re

e-
H

A
R

-R
V

8.
48

53
0.

12
42

32
.8

06
5

1
.0

0
0
0

*
7.

14
52

0.
96

68
*

7.
23

61
1
.0

0
0
0

*
6.

87
98

0.
00

26
3.

22
61

1
.0

0
0
0

*
2.

47
94

1
.0

0
0
0

*
4.

64
22

1
.0

0
0
0

*

a
T

ab
le

3.
8

su
m

m
ar

iz
es

re
la

ti
ve

fo
re

ca
st

in
g

p
er

fo
rm

an
ce

fo
r

a
gr

ou
p

of
T

re
e-

H
A

R
-M

ID
A

S
m

o
d
el

s
as

so
ci

at
ed

w
it

h
d
iff

er
en

t
m

ac
ro

ec
on

om
ic

va
ri

ab
le

s,
to

ge
th

er
w

it
h

th
e

tr
ad

it
io

n
al

T
re

e-
H

A
R

m
o
d
el

(T
re

e-
H

A
R

-R
V

).
O

u
r

fo
re

ca
st

in
g

h
or

iz
on

co
ve

rs
a

p
er

io
d

fr
om

J
an

u
ar

y
20

07
to

D
ec

em
b

er
20

14
.

M
S
E

s
an

d
M

C
S

p
-v

al
u
es

ar
e

ca
lc

u
la

te
d

fo
r

ea
ch

su
b
-p

er
io

d

co
ve

ri
n
g

6
m

on
th

s.
*

in
d
ic

at
es

th
at

th
e

m
o
d
el

is
in

th
e

(1
-α

)
co

n
fi
d
en

ce
in

te
rv

al
of
M̂
∗ 1−
α

u
si

n
g

fo
r

al
l

co
m

p
ar

is
on

s,
w

h
er

e
α

=
0.

25
.

151



T
ab

le
3.

9:
M

o
d
el

C
on

fi
d
en

ce
S
et

fo
r

on
e-

w
ee

k
ah

ea
d

p
re

d
ic

ti
on

of
S
&

P
50

0
V

ol
at

il
it

y
20

07
-2

01
4

o
n

e
-w

e
e
k

a
h

e
a
d

fo
re

ca
st

in
g

(h
=

5)
J
an

20
07

-J
u
n

20
07

J
u
l

20
07

-D
ec

20
07

J
an

20
08

-J
u
n

20
08

J
u
l

20
08

-D
ec

20
08

J
an

20
09

-J
u
n

20
09

J
u
l

20
09

-D
ec

20
09

J
an

20
10

-J
u
n

20
10

J
u
l

20
10

-D
ec

20
10

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

T
re

e-
H

A
R

-M
ID

A
S
-I

P
3.

68
05

0.
20

08
7.

24
57

0.
96

93
*

11
.9

97
3

0.
94

85
*

72
.1

83
9

0.
23

27
8.

90
17

0.
95

91
*

3.
39

42
0.

66
26

*
15

.3
52

4
0.

18
04

3.
59

39
0.

14
97

T
re

e-
H

A
R

-M
ID

A
S
-P

P
I

3.
50

96
1
.0

0
0
0
*

7.
22

39
0.

96
93

*
13

.4
69

5
0.

46
27

*
68

.0
45

9
0.

53
10

*
13

.6
50

2
0.

00
38

3.
56

73
0.

11
02

14
.8

11
7

0.
18

04
3.

54
52

0.
14

97

T
re

e-
H

A
R

-M
ID

A
S
-U

E
M

5.
41

88
0.

20
08

7.
42

93
0.

72
87

*
12

.5
04

8
0.

47
29

*
11

6.
96

86
0.

07
10

11
.5

24
4

0.
00

38
5.

89
05

0.
11

02
15

.1
79

7
0.

18
04

4.
41

38
0.

01
70

T
re

e-
H

A
R

-M
ID

A
S
-T

S
3.

77
22

0.
20

08
7.

23
47

0.
96

93
*

12
.0

23
8

0.
94

85
*

81
.9

66
2

0.
21

31
8.

79
37

1
.0

0
0
0

*
3.

08
25

1
.0

0
0
0

*
16

.8
95

6
0.

18
04

3.
14

72
0.

66
58

*

T
re

e-
H

A
R

-M
ID

A
S
-H

S
3.

62
55

0.
20

08
7.

18
96

1
.0

0
0
0

*
11

.9
77

1
0.

94
85

*
72

.9
25

3
0.

23
27

18
.2

45
7

0.
00

38
3.

42
41

0.
57

39
*

15
.1

69
4

0.
18

04
3.

33
86

0.
66

58
*

T
re

e-
H

A
R

-R
V

3.
59

13
0.

61
88

*
7.

53
62

0.
45

35
*

11
.7

78
7

1
.0

0
0
0

*
62

.5
95

5
1
.0

0
0
0

*
10

.2
17

1
0.

01
79

3.
21

27
0.

66
26

*
13

.8
92

4
1
.0

0
0
0

*
2.

88
75

1
.0

0
0
0

*

J
an

20
11

-J
u
n

20
11

J
u
l

20
11

-D
ec

20
11

J
an

20
12

-J
u
n

20
12

J
u
l

20
12

-D
ec

20
12

J
an

20
13

-J
u
n

20
13

J
u
l

20
13

-D
ec

20
13

J
an

20
14

-J
u
n

20
14

J
u
l

20
14

-D
ec

20
14

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

M
S
E

P
M
C
S

T
re

e-
H

A
R

-M
ID

A
S
-I

P
4.

39
53

0.
48

82
*

22
.1

28
9

0.
01

21
2.

33
57

0.
00

52
3.

55
54

0.
04

01
4.

48
14

0.
00

80
3.

08
45

0.
00

00
2.

32
76

0.
01

75
6.

70
28

0.
03

05

T
re

e-
H

A
R

-M
ID

A
S
-P

P
I

4.
51

81
0.

48
82

*
21

.8
14

9
0.

01
52

2.
95

88
0.

00
52

4.
01

49
0.

04
01

4.
39

26
0.

00
87

2.
92

14
0.

00
07

2.
53

48
0.

00
11

6.
80

94
0.

03
05

T
re

e-
H

A
R

-M
ID

A
S
-U

E
M

4.
50

41
0.

48
82

*
21

.4
00

0
0.

56
05

*
2.

57
32

0.
00

52
3.

86
76

0.
01

65
4.

81
01

0.
00

01
4.

75
62

0.
00

00
5.

62
42

0.
00

11
10

.4
65

2
0.

00
00

T
re

e-
H

A
R

-M
ID

A
S
-T

S
4.

91
07

0.
02

68
23

.5
25

7
0.

01
21

2.
56

10
0.

00
52

3.
70

46
0.

00
00

4.
42

01
0.

00
01

3.
49

57
0.

00
00

1.
38

12
1
.0

0
0
0

*
2.

33
56

1
.0

0
0
0

*

T
re

e-
H

A
R

-M
ID

A
S
-H

S
4.

32
36

0.
62

18
*

22
.4

02
9

0.
01

52
2.

10
09

0.
83

51
*

3.
35

53
0.

34
38

*
3.

47
98

8
0.

71
59

*
2.

81
40

0.
01

42
2.

49
38

0.
01

03
7.

22
76

0.
03

05

T
re

e-
H

A
R

-R
V

3.
99

96
1
.0

0
0
0

*
21

.0
53

8
1
.0

0
0
0

*
2.

07
03

1
.0

0
0
0

*
2.

98
12

1
.0

0
0
0

*
3.

40
80

1
.0

0
0
0

*
1.

75
16

1
.0

0
0
0

*
1.

96
58

0.
10

69
5.

17
24

0.
18

48

a
T

ab
le

3.
9

su
m

m
ar

iz
es

re
la

ti
ve

fo
re

ca
st

in
g

p
er

fo
rm

an
ce

fo
r

a
gr

ou
p

of
T

re
e-

H
A

R
-M

ID
A

S
m

o
d
el

s
as

so
ci

at
ed

w
it

h
d
iff

er
en

t
m

ac
ro

ec
on

om
ic

va
ri

ab
le

s,
to

ge
th

er
w

it
h

th
e

tr
ad

it
io

n
al

T
re

e-
H

A
R

m
o
d
el

(T
re

e-
H

A
R

-R
V

).
O

u
r

fo
re

ca
st

in
g

h
or

iz
on

co
ve

rs
a

p
er

io
d

fr
om

J
an

u
ar

y
20

07
to

D
ec

em
b

er
20

14
.

M
S
E

s
an

d
M

C
S

p
-v

al
u
es

ar
e

ca
lc

u
la

te
d

fo
r

ea
ch

su
b
-p

er
io

d

co
ve

ri
n
g

6
m

on
th

s.
*

in
d
ic

at
es

th
at

th
e

m
o
d
el

is
in

th
e

(1
-α

)
co

n
fi
d
en

ce
in

te
rv

al
of
M̂
∗ 1−
α

u
si

n
g

fo
r

al
l

co
m

p
ar

is
on

s,
w

h
er

e
α

=
0.

25
.

152



T
ab

le
3.

10
:

M
o
d
el

C
on

fi
d
en

ce
S
et

fo
r

on
e-

m
on

th
ah

ea
d

p
re

d
ic

ti
on

of
S
&

P
50

0
V

ol
at

il
it

y
20

07
-2

01
4

o
n

e
-m

o
n
th

a
h

e
a
d

fo
re

ca
st

in
g

(h
=

22
)

J
an

20
07

-J
u

n
20

07
J
u

l
20

07
-D

ec
20

07
J
an

20
08

-J
u

n
20

08
J
u

l
20

08
-D

ec
20

08
J
an

20
09

-J
u

n
20

09
J
u

l
20

09
-D

ec
20

09
J
an

20
10

-J
u

n
20

10
J
u

l
20

10
-D

ec
20

10

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

T
re

e-
H

A
R

-M
ID

A
S

-I
P

3.
24

17
0.

03
33

9.
65

53
0.

13
07

9.
36

11
1
.0

0
0
0

*
79

.5
93

1
0.

40
59

*
15

.9
92

9
0.

00
46

4.
24

70
0.

24
29

13
.4

03
2

1
.0

0
0
0

*
2.

71
38

0.
29

66
*

T
re

e-
H

A
R

-M
ID

A
S

-P
P

I
2.

49
42

1
.0

0
0
0

*
10

.4
67

0
0.

02
75

12
.4

57
4

0.
02

27
71

.1
59

6
1
.0

0
0
0

*
8.

37
67

1
.0

0
0
0

*
2.

71
27

1
.0

0
0
0

*
13

.9
20

8
0.

69
03

*
3.

18
08

0.
19

71

T
re

e-
H

A
R

-M
ID

A
S

-U
E

M
9.

57
60

0.
00

00
9.

83
55

0.
14

49
22

.5
66

6
0.

00
56

26
7.

04
87

0.
14

40
39

.4
95

5
0.

00
13

18
.9

73
0

0.
00

84
19

.6
52

1
0.

69
03

*
11

.1
18

9
0.

00
10

T
re

e-
H

A
R

-M
ID

A
S

-T
S

4.
00

65
0.

00
13

8.
59

96
1
.0

0
0
0

*
9.

44
05

0.
93

73
*

11
3.

33
34

0.
25

14
*

14
.5

78
3

0.
17

90
2.

86
72

0.
75

74
*

27
.8

75
9

0.
69

03
*

3.
71

80
0.

19
70

T
re

e-
H

A
R

-M
ID

A
S

-H
S

3.
69

20
0.

00
00

9.
83

33
0.

29
43

*
10

.0
30

9
0.

02
27

76
.1

89
6

0.
58

07
*

97
.9

31
6

0.
00

00
3.

81
57

0.
24

29
13

.4
94

5
0.

76
95

*
7.

89
10

0.
19

71

T
re

e-
H

A
R

-M
ID

A
S

-R
V

2.
92

58
0.

09
09

11
.8

38
8

0.
02

75
12

.4
56

0
0.

02
27

10
0.

02
76

0.
40

59
*

8.
41

79
0.

96
86

*
2.

91
66

0.
55

34
*

13
.8

02
1

0.
69

03
*

2.
55

85
1
.0

0
0
0

*

J
an

20
11

-J
u

n
20

11
J
u

l
20

11
-D

ec
20

11
J
an

20
12

-J
u

n
20

12
J
u

l
20

12
-D

ec
20

12
J
an

20
13

-J
u

n
20

13
J
u

l
20

13
-D

ec
20

13
J
an

20
14

-J
u

n
20

14
J
u

l
20

14
-D

ec
20

14

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

M
S

E
P
M
C
S

T
re

e-
H

A
R

-M
ID

A
S

-I
P

3.
13

92
0.

85
53

*
21

.5
77

4
0.

25
21

*
7.

58
96

0.
00

00
8.

06
62

0.
00

00
8.

69
57

0.
00

00
17

.5
57

6
0.

00
03

6.
50

17
0.

01
58

18
.7

19
8

0.
00

08

T
re

e-
H

A
R

-M
ID

A
S

-P
P

I
2.

89
86

1
.0

0
0
0

*
22

.9
18

9
0.

25
21

*
2.

34
74

0.
00

00
4.

22
82

0.
00

00
3.

13
45

0.
00

12
2.

60
59

0.
00

03
2.

44
36

0.
04

34
12

.0
87

1
0.

72
23

*

T
re

e-
H

A
R

-M
ID

A
S

-U
E

M
6.

44
61

0.
02

56
19

.7
04

9
1
.0

0
0
0

*
6.

35
56

0.
00

00
6.

44
22

0.
00

00
4.

53
78

0.
00

00
7.

22
39

0.
00

03
9.

57
15

0.
01

58
21

.7
30

9
0.

02
65

T
re

e-
H

A
R

-M
ID

A
S

-T
S

3.
58

18
0.

20
63

21
.5

60
9

0.
51

67
*

1.
59

93
0.

43
54

*
3.

24
72

0.
08

77
3.

57
56

0.
00

12
4.

08
95

0.
00

03
3.

22
67

0.
01

58
15

.2
97

0
0.

02
65

T
re

e-
H

A
R

-M
ID

A
S

-H
S

3.
32

26
0.

69
89

*
21

.1
13

0
0.

51
67

*
1.

36
86

0.
43

54
*

3.
49

72
0.

42
77

*
2.

39
04

1
.0

0
0
0

*
2.

91
47

0.
00

03
2.

58
82

0.
47

96
*

11
.7

06
6

1
.0

0
0
0

*

T
re

e-
H

A
R

-M
ID

A
S

-R
V

2.
98

98
0.

85
72

*
21

.2
92

9
0.

51
67

*
1.

28
75

1
.0

0
0
0

*
2.

30
40

1
.0

0
0
0

*
2.

73
00

0.
05

65
1.

95
92

1
.0

0
0
0

*
1.

86
47

1
.0

0
0
0

*
12

.2
01

5
0.

72
23

*

a
T

ab
le

3.
10

su
m

m
ar

iz
es

re
la

ti
ve

fo
re

ca
st

in
g

p
er

fo
rm

an
ce

fo
r

a
gr

ou
p

of
T

re
e-

H
A

R
-M

ID
A

S
m

o
d

el
s

as
so

ci
at

ed
w

it
h

d
iff

er
en

t
m

ac
ro

ec
on

om
ic

va
ri

ab
le

s,
to

ge
th

er
w

it
h

th
e

tr
ad

it
io

n
al

T
re

e-
H

A
R

m
o
d

el
(T

re
e-

H
A

R
-R

V
).

O
u

r
fo

re
ca

st
in

g
h

or
iz

on
co

ve
rs

a
p

er
io

d
fr

om
J
an

u
ar

y
20

07
to

D
ec

em
b

er
20

14
.

M
S

E
s

an
d

M
C

S
p

-v
al

u
es

ar
e

ca
lc

u
la

te
d

fo
r

ea
ch

su
b

-p
er

io
d

co
ve

ri
n
g

6
m

on
th

s.
*

in
d

ic
at

es
th

at
th

e
m

o
d

el
is

in
th

e
(1

-α
)

co
n

fi
d

en
ce

in
te

rv
al

of
M̂
∗ 1−
α

u
si

n
g

fo
r

al
l

co
m

p
ar

is
on

s,
w

h
er

e
α

=
0.

25
.

153



T
ab

le
3.

11
:

M
o
d
el

C
on

fi
d
en

ce
S
et

:
U

.S
20

07
-2

01
4

P
M

C
S

P
M

C
S

P
M

C
S

P
M

C
S

P
M

C
S

P
M

C
S

P
M

C
S

P
M

C
S

o
n
e
-w

e
e
k

a
h
e
a
d

fo
r
e
c
a
s
t
in

g
(
h
=

5
)

V
o
la

t
il

it
y

P
r
e
d
ic

t
io

n
-L

o
s
s
=

M
S
E

J
a
n

2
0
0
7
-J

u
n

2
0
0
7

J
u
l

2
0
0
7
-D

e
c

2
0
0
7

J
a
n

2
0
0
8
-J

u
n

2
0
0
8

J
u
l

2
0
0
8
-D

e
c

2
0
0
8

J
a
n

2
0
0
9
-J

u
n

2
0
0
9

J
u
l

2
0
0
9
-D

e
c

2
0
0
9

J
a
n

2
0
1
0
-J

u
n

2
0
1
0

J
u
l

2
0
1
0
-D

e
c

2
0
1
0

T
re

e
-H

A
R

-M
ID

A
S
-P

C
1

0
.9

2
1
1

0
.7

8
0
0

0
.8

9
7
0

0
.4

9
3
1

0
.2

9
3
0

0
.8

2
9
6

0
.7

5
6
1

0
.0

0
2
9

T
re

e
-H

A
R

-M
ID

A
S
-A

D
S

0
.9

0
4
4

0
.7

3
4
1

0
.8

9
7
0

0
.4

9
3
1

1
.0

0
0
0

0
.8

2
9
6

0
.4

1
8
4

0
.0

8
2
2

T
re

e
-H

A
R

-M
ID

A
S
-U

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.3

8
7
0

0
.2

9
3
3

0
.9

1
0
0

1
.0

0
0
0

1
.0

0
0
0

T
re

e
-H

A
R

-R
V

0
.9

0
4
4

0
.1

1
3
4

0
.9

7
9
1

1
.0

0
0
0

0
.1

2
0
6

1
.0

0
0
0

0
.7

5
6
1

0
.6

5
0
0

V
o
la

t
il

it
y

P
r
e
d
ic

t
io

n
-L

o
s
s
=

M
S
E

J
a
n

2
0
1
1
-J

u
n

2
0
1
1

2
0
1
1
-D

e
c

2
0
1
1

J
a
n

2
0
1
2
-J

u
n

2
0
1
2

J
u
l

2
0
1
2
-D

e
c

2
0
1
2

J
a
n

2
0
1
3
-J

u
n

2
0
1
3

J
u
l

2
0
1
3
-D

e
c

2
0
1
3

J
a
n

2
0
1
4
-J

u
n

2
0
1
4

J
u
l

2
0
1
4
-D

e
c

2
0
1
4

T
re

e
-H

A
R

-M
ID

A
S
-P

C
1

1
.0

0
0
0

0
.6

5
9
7

0
.0

0
0
9

0
.7

2
5
2

0
.3

8
4
8

0
.5

2
4
7

0
.0

1
4
2

1
.0

0
0
0

T
re

e
-H

A
R

-M
ID

A
S
-A

D
S

0
.3

8
3
6

0
.7

8
7
1

0
.1

8
9
4

0
.5

6
8
0

0
.0

1
1
1

0
.0

0
0
0

0
.1

6
3
2

0
.0

4
8
3

T
re

e
-H

A
R

-M
ID

A
S
-U

0
.3

8
3
6

0
.6

5
9
9

0
.3

4
0
0

0
.7

5
0
0

1
.0

0
0
0

0
.2

3
4
0

0
.6

5
3
3

0
.5

2
1
4

T
re

e
-H

A
R

-R
V

0
.9

4
2
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.8

6
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.2

6
4
5

o
n
e
-m

o
n
t
h

a
h
e
a
d

fo
r
e
c
a
s
t
in

g
(
h
=

2
2
)

V
o
la

t
il

it
y

P
r
e
d
ic

t
io

n
-L

o
s
s
=

M
S
E

J
a
n

2
0
0
7
-J

u
n

2
0
0
7

J
u
l

2
0
0
7
-D

e
c

2
0
0
7

J
a
n

2
0
0
8
-J

u
n

2
0
0
8

J
u
l

2
0
0
8
-D

e
c

2
0
0
8

J
a
n

2
0
0
9
-J

u
n

2
0
0
9

J
u
l

2
0
0
9
-D

e
c

2
0
0
9

J
a
n

2
0
1
0
-J

u
n

2
0
1
0

J
u
l

2
0
1
0
-D

e
c

2
0
1
0

T
re

e
-H

A
R

-M
ID

A
S
-P

C
1

0
.6

9
5
2

0
.3

9
1
9

0
.1

6
9
6

0
.6

8
5
0

0
.8

5
5
2

0
.1

4
6
2

0
.1

5
9
6

0
.0

0
0
3

T
re

e
-H

A
R

-M
ID

A
S
-A

D
S

0
.2

8
8
6

0
.7

3
2
6

0
.2

3
0
4

0
.5

4
3
1

0
.0

1
2
3

0
.1

4
6
2

0
.7

0
2
1

0
.6

5
4
3

T
re

e
-H

A
R

-M
ID

A
S
-U

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
.9

3
2
2

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

T
re

e
-H

A
R

-R
V

0
.8

2
4
5

0
.2

5
6
0

0
.0

9
7
3

0
.6

8
5
0

1
.0

0
0
0

0
.3

9
2
2

0
.3

1
7
6

0
.2

9
4
0

H
o
ri

z
o
n

(m
o
n
th

)
J
a
n

2
0
1
1
-J

u
n

2
0
1
1

2
0
1
1
-D

e
c

2
0
1
1

J
a
n

2
0
1
2
-J

u
n

2
0
1
2

J
u
l

2
0
1
2
-D

e
c

2
0
1
2

J
a
n

2
0
1
3
-J

u
n

2
0
1
3

J
u
l

2
0
1
3
-D

e
c

2
0
1
3

J
a
n

2
0
1
4
-J

u
n

2
0
1
4

J
u
l

2
0
1
4
-D

e
c

2
0
1
4

V
o
la

t
il

it
y

P
r
e
d
ic

t
io

n
-L

o
s
s
=

M
S
E

T
re

e
-H

A
R

-M
ID

A
S
-P

C
1

0
.0

6
5
5

0
.0

1
3
5

0
.0

0
0
8

0
.0

1
1
9

0
.9

5
2
0

0
.1

1
0
9

1
.0

0
0
0

1
.0

0
0
0

T
re

e
-H

A
R

-M
ID

A
S
-A

D
S

0
.4

7
7
6

1
.0

0
0
0

0
.2

3
1
7

0
.7

2
0
0

0
.9

6
6
2

0
.1

1
0
9

0
.4

1
7
2

0
.1

1
3
1

T
re

e
-H

A
R

-M
ID

A
S
-U

0
.4

7
7
6

0
.3

7
5
6

1
.0

0
0
0

1
.0

0
0
0

0
.9

6
6
2

0
.0

6
1
8

0
.7

3
2
0

0
.4

5
9
6

T
re

e
-H

A
R

-R
V

1
.0

0
0
0

0
.9

2
0
0

0
.7

1
1
2

0
.2

4
1
0

1
.0

0
0
0

1
.0

0
0
0

0
.4

2
8
0

0
.1

1
3
1

a
T

ab
le

3.
1
1

su
m

m
a
ri

ze
s

re
la

ti
ve

fo
re

ca
st

in
g

p
er

fo
rm

a
n
ce

fo
r

a
gr

o
u
p

of
T

re
e-

H
A

R
-M

ID
A

S
m

o
d
el

s
a
ss

o
ci

at
ed

w
it

h
a
lt

er
n
a
ti

v
e

P
ri

n
ci

p
a
l

co
m

p
o
n
en

t
P
C

1
,

A
D

S
In

d
ex

,
m

ac
ro

ec
on

om
ic

u
n

ce
rt

ai
n
ty
U

,
to

ge
th

er
w

it
h

th
e

tr
ad

it
io

n
al

T
re

e-
H

A
R

m
o
d
el

(T
re

e-
H

A
R

-R
V

).
O

u
r

re
cu

rs
iv

e
o
n
e-

w
ee

k
(h

=
5
)

a
n

d
on

e-
m

on
th

(h
=

22
)

fo
re

ca
st

in
g

h
or

iz
on

en
ti

re
ly

co
ve

rs
a

p
er

io
d

fr
om

J
an

u
a
ry

20
0
7

to
D

ec
em

b
er

20
14

.
M

S
E

s
an

d
M

C
S

p
-v

al
u
es

ar
e

ca
lc

u
la

te
d

fo
r

ea
ch

su
b

-p
er

io
d

co
ve

ri
n

g
6

m
o
n
th

s.
*

in
d

ic
a
te

s
th

at
th

e
m

o
d

el
is

in
th

e
(1

-α
)

co
n

fi
d

en
ce

in
te

rv
a
l

o
f
M̂
∗ 1−
α

u
si

n
g

fo
r

a
ll

co
m

p
ar

is
o
n
s,

w
h
er

e
α

=
0.

25
.

154



Figure 3.1: S&P 500 Daily Stock Returns and Daily Realized Volatility

Figure 3.1 shows S&P500 daily stock returns and its daily realized volatility for the period

January 1996 to December 2014. Shade areas represent NBER recession periods.
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Figure 3.2: Macroeconomic Variables In The U.S Market (1996-
2014)

The Figure 3.2 plots monthly growth rates of macroeconomic variables

including Industrial Production (IP), Producer Price Index (PPI), Un-

employment Rate (UEM), Term Spread (TS) and Housing Starts (HS).

Monthly Macro data ranges from Jan/1996 to Dec/2014. The first and

second principal components are constructed based on monthly growth

of IP, PPI, UEM, TS and HS. Aruboa-Diebold-Scotti Business Con-

ditions (ADS) Index is obtained in a daily frequency. Gray shading

areas represent NBER recession periods.
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Figure 3.3: Binary Tree Structure in the Tree-HAR-MIDAS model specified
with either ∆ UEM, TS, or ADS Index

d1 = 0.0101

d2 = 0.0058
R1

R3
R2

RVm ≤ 0.0101 RVm > 0.0101

RVm ≤ 0.0058 0.0058 < RVm < 0.0101

The Tree-HAR-MIDAS specified with the unemployment rate (or term

spread, or ADS) maintains a Binary tree structure with three regimes,

G = {R1, R2, R3}. Those three regimes in this model are identi-

fied by one threshold variable, RVm, available from the threshold set

φ = {r,RVm, X}. di, i ∈ {1, 2, 3} refers to the threshold value being

selected from threshold variable RVm in each partition step.

Figure 3.4: Binary Tree Structure in the Tree-HAR-MIDAS model specified
with ∆ IP

d1 = 0.0101

d2 = 0.0058
R1

R2
d3 = 0.0058

R3
R4

RVm ≤ 0.0101 RVm > 0.0101

RVm ≤ 0.0058 0.0058 < RVm < 0.0101

∆IP ≤ 0.058 ∆IP > 0.058

The Tree-HAR-MIDAS specified with Industrial Production growth

maintains a Binary tree structure with four regimes, G =

{R1, R2, R3, R4}. Those four regimes in this model are identified by

two threshold variables, RVm and ∆IP , available from the threshold

set φ = {r,RVm,∆IP}. di, i ∈ {1, 2, 3, 4} refers to the threshold value

being selected from RVm or ∆IP in each partition step.
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Figure 3.5: Binary Tree Structure in the Tree-HAR-MIDAS model specified
with ∆ HS

d1 = 0.0101

d2 = 0.0058 d3 = −0.0015

R4

R3

R2

R1

RVm ≤ 0.0101 RVm > 0.0101

RVm ≤ 0.0058

0.0058 < RVm < 0.0101

∆HS ≤ −0.0015

∆HS > −0.0015

The Tree-HAR-MIDAS specified with the Housing Starts growth

rate maintains a Binary tree structure with four regimes, G =

{R1, R2, R3, R4}. Those four regimes in this model are identified by

two threshold variables, RVm and ∆HS, available from the thresh-

old set φ = {r,RVm,∆HS}. di, i ∈ {1, 2, 3, 4} refers to the threshold

value being selected from RVm or ∆HS in each partition step. Regime

R1 is edged by {RVm > 0.0101&∆HS > −0.0015}, Regime R2 is

edged by {RVm > 0.0101&∆HS ≤ −0.0015}, Regime R3 is edged by

{0.0058 < RVm < 0.0101}, Regime R4 is edged by {RVm ≤ 0.0058}

Figure 3.6: Binary Tree Structure in the Tree-HAR-MIDAS model specified
with ∆PPI.

d1 = 0.0101

d2 = 0.0058 d3 = 0.0095

R4
R3

R2

R1

RVm ≤ 0.0101 RVm > 0.0101

RVm ≤ 0.0058

0.0058 < RVm < 0.0101

∆PPI ≤ 0.0095

∆PPI > 0.0095

The Tree-HAR-MIDAS specified with the Producer Price Index growth

rate maintains a Binary tree structure with six regimes, G =

{R1, R2, R3, R4, R5, R6}. Those six regimes in this model are iden-

tified by three threshold variables, RVm, r and ∆PPI available from

the threshold set φ = {r,RVm, PPI}. di, i ∈ {1, 2, 3...6} refers to the

threshold value being selected from either of RVm, r and ∆PPI in

each partition step.Regime R1 is edged by {RVm > 0.0101&∆PPI >

0.0095}, Regime R2 is edged by {RVm > 0.0101&∆PPI ≤ 0.0095},
Regime R3 is edged by {0.0058 < RVm < 0.0101}, Regime R4 is edged

by {RVm ≤ 0.0058}
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Figure 3.7: Beta Lags in Regimes
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In Figure 3.7 depicts restricted beta weighting schemes (ω1 = 1) from the
Tree-HAR-MIDAS models specified with alternative macroeconomic variables
within high volatility, low volatility and medium volatility regimes, alterna-
tively. First panel refers to beta weighting schemes for alternative Tree-
HAR-MIDAS models within the high-volatility regime, which is edged by
RV m > 0.0101. Second panel refers to beta-weighting schemes for alternative
Tree-HAR-MIDAS models within the low-volatility regime, which is edged by
RV m < 0.0058. Then remaining parts are beta weighting schemes for alter-
native Tree-HAR-MIDAS models within medium volatility regime, which is
edged by 0.0058 < RV m < 0.0101.
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and J. E. von Weizsäcker (1997). Volatilities of different time resolu-

tions—analyzing the dynamics of market components. Journal of Empirical

Finance 4 (2), 213–239.

Muzy, J.-F., J. Delour, and E. Bacry (2000). Modelling fluctuations of financial

time series: from cascade process to stochastic volatility model. The Eu-

ropean Physical Journal B-Condensed Matter and Complex Systems 17 (3),

537–548.

170



Muzy, J.-F., D. Sornette, J. Delour, and A. Arneodo (2001). Multifractal

returns and hierarchical portfolio theory.

So, M. E. P., K. Lam, and W. K. Li (1998). A stochastic volatility model

with markov switching. Journal of Business & Economic Statistics 16 (2),

244–253.

Stock, J. H. and M. W. Watson (2002). Macroeconomic forecasting using

diffusion indexes. Journal of Business & Economic Statistics 20 (2), 147–

162.

Stock, J. H. and M. W. Watson (2003). Forecasting output and inflation: The

role of asset prices. Journal of Economic Literature 41 (3), 788–829.

Wheelock, D. C., M. E. Wohar, et al. (2009). Can the term spread predict

output growth and recessions? a survey of the literature. Federal Reserve

Bank of St. Louis Review 91 (5 Part 1), 419–440.

Zhang, L., P. A. Mykland, and Y. Aı̈t-Sahalia (2005). A tale of two time scales:

Determining integrated volatility with noisy high-frequency data. Journal

of the American Statistical Association 100 (472), 1394–1411.

171



Chapter 4

Option Valuation using

Macroeconomic Information: A

Realized Volatility Approach

We develop a discrete-time realized option pricing model where the option

price is partly determined by macroeconomic information. In an application

using a measure of macroeconomic uncertainty, our new model outperforms al-

ternative benchmarks such as Duan’s GARCH and Corsi’s HAR Option pric-

ing models, in terms of accuracy in price and implied volatility, especially

for Out-of-Money (OTM) S&P 500 Index options. Our results demonstrate

that adding macroeconomic information, especially unanticipated information,

improves long-term prediction for market participants. Consequently option

biases that come from the Black-Scholes are able to be mitigated to some

extent.

Keywords : HAR-RV, Mixed Data Sampling Approach, Macroeconomic Uncer-

tainty, Option Pricing.
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4.1 Introduction

Traditionally, Black and Scholes (1973) presume that for the same under-

lying asset, volatility shall be a constant value in the same maturity across

different strike prices. However, empirical evidence shows that implied volatil-

ities vary across different strike prices, and takes the shape of a smile or smirk.

To address this anomaly, or bias, some studies turn to pricing options under a

discrete-time volatility model, in which the conditional variance of asset returns

is time-varying (see Duan (1995), Heston and Nandi (2000) for example). The

time-varying volatility of asset returns can be interpreted as market response

with respect to uncertainty and information flows. Therefore, it is reasonable

to expect that volatility model filled with sufficient information could produce

better performance in the option pricing domain. In this paper, we endeavor to

explore the influence of macroeconomic information that is not perfectly corre-

lated with asset returns on option prices. We propose a discrete-time realized

volatility option pricing model, namely the HAR-MIDAS option pricing model,

examining to what extent exogenous macroeconomic information, through its

influence on conditional volatility of returns, can affect corresponding option

prices.

It has been widely confirmed in the literature that macroeconomic infor-

mation helps improve asset volatility modelling and forecasting. As both

Campbell and Shiller (1988) and Schwert (1989) state, in an efficient mar-

ket, the variation of arriving rates of different information flows is related to

heterogeneity in asset return volatility. Macroeconomic information usually

being observed in a low frequency, might be closely related with the long-run

persistence in asset volatility. In line with this, Engle et al. (2013) develop

a two-component GARCH-type model, the GARCH-MIDAS model. In the

two-component GARCH-MIDAS model, the short-term volatility component
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evolves around a time-varying long-term volatility component that is driven

by macroeconomic information. Engle et al. (2013) creatively adopt the MI-

DAS filter of Ghysels et al. (2007) to incorporate macroeconomic data which

is used to explain the long-term volatility component. Following this thought,

Dorion (2016) applies the GARCH-MIDAS model further for option pricing.

Due to the contribution of macroeconomic information, pricing errors in the

GARCH-MIDAS option pricing model are less than those observed in tradi-

tional GARCH and Black-Scholes pricing models.

Though the GARCH-MIDAS model has allowed for significant progress

in linking stock volatility and macroeconomic information because of its two-

component structure, studies around the contribution of macroeconomic infor-

mation to asset volatility and option pricing still can be improved. In the two-

component GARCH-MIDAS model, both the short-term and long-term com-

ponents are measured identically by daily returns. However, the short-term

component is typically associated with high-frequency intraday returns. As

mentioned by Andersen and Bollerslev (1997), volatility observed during short

time spans largely accounts for high-frequency intraday information. Hence,

failure to use intraday returns when estimating short-term volatility persis-

tence might artificially lead to strong persistence in the short-term volatility

component. Consequently, extreme persistence of the short-term volatility

component in the GARCH-MIDAS option pricing model could have a nega-

tive impact on the short-maturity option valuation. Using intraday returns for

short-term volatility component construction might overcome this. We con-

sider the effect of realized volatility constructed by high-frequency intraday

returns on option pricing. Constructed using high-frequency returns, the real-

ized volatility is able to change rapidly according to the market’s movements.

Hence, it is widely recognized that proper use of realized volatility generates

great improvements in volatility modelling and forecasting (see Andersen and
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Bollerslev (2003),Andersen et al. (2006) and Barndorff-Nielsen and Shephard

(2006)). Excepting the heterogeneous autoregressive realized volatility model

(hereafter HAR), to date there has been limited use made of realized volatil-

ity for option pricing. Corsi (2009) develops the HAR model that describes

daily volatility as a sequence of autoregressive volatility components realized

over daily, weekly and monthly horizons. These three realized components are

consistent with the heterogeneous asset varations that are driven by the ar-

rival of information at different frequencies. Application of the HAR model in

option pricing (Corsi et al. (2013)) reveals that it outperforms the GARCH op-

tion pricing model, especially for short-maturity European options. The HAR

model has two advantages: First, it is able to mimic the long-memory fea-

ture in volatility, which benefits the pricing of long-maturity options. Second,

its multi-component structure makes it possible to incorporate low frequency

macroeconomic information into a high-frequency volatility model, so as to

investigate the macro-volatility relationship properly.

As seen in Chapter 3, we extended Corsi (2009)’s HAR model to the HAR-

MIDAS model by including macroeconomic information in the model to explain

the monthly realized volatility component. We did this by utilizing the MI-

DAS technique and introducing it into the original HAR model. Therefore, in

a HAR-MIDAS model, the monthly realized volatility component is explained

by macroeconomic variables. Empirical results in Chapter 2 show that incor-

porating macroeconomic information provides a better description of volatility,

relative to the original HAR model. As our HAR-MIDAS model in Chapter 2

achieved significant progress in the context of volatility modelling, we use it to

further explore the impact of macroeconomic information on option valuation.

We are particularly interested in how and to what extent European option

price can be affected by macroeconomic information.

Option valuation results suggest that most macroeconomic variables out-
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perform Duan’s GARCH model across maturity and moneyness for both put

and call options. It infers a close relationship between option and market

reactions towards changes in underlying economic conditions. For instance,

macroeconomic variables that usually perform as recession indicators, such as

term spread and unemployment rate, tends to be less effective for call option.

While inflation factor, that is more active during economy expansion, seems

to have limited performance for put option. Strikingly, unexpected macroeco-

nomic information, which is measured by economic uncertainty, outperforms

alternative macroeconomic variables for out-of-money (OTM) options with

long-maturity. It infers that unexpected macroeconomic shock matters for

option valuation, espeicially for long-maturity options.

The rest of paper is organized as follows. In section 4.2, we introduce

two benchmark option models, Duan’s GARCH and Corsi’s HAR models. We

then formally show our HAR-MIDAS option pricing model under the physical

measure, and how to transfer the physical measure into a risk-neutral mea-

sure. In section 4.3, we describe the S&P 500 Index Option data and the

macroeconomic data. Section 4.4 discusses a new measure of macroeconomic

uncertainty due to Jurado et al. (2015). Section 4.5 presents results on op-

tion pricing performance for the HAR-MIDAS model specified with alternative

macroeconomic variables and macro uncertainty. We then compare them with

two benchmark models mentioned in Section 4.2. Finally, Section 4.6 summa-

rizes and concludes.

4.2 Discrete-time Option Pricing model

In this section we first present two discrete-time option pricing models:

Duan’s GARCH(1,1) model and Corsi’s HAR-RV model, both of which serve as

benchmark models throughout our study. We then introduce our HAR-MIDAS
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model as a further extension of the HAR-RV model, in which macroeconomic

information is incorporated to explain volatility movements and the pricing

kernel.

4.2.1 Duan’s GARCH Option Pricing Model

Duan (1995) derives an option pricing model where asset returns follow a

GARCH process. Under the physical measure (hereafter P measure), the asset

spot price is assumed to be lognormally distributed:

ln(St/St−1) = r + λ
√
ht − γt + εt (4.1)

where excess return ln(St/St−1) − r is determined by the risk premium

λ
√
ht. In line with Cox et al. (2005), λ measures a proportion of volatility risk

that is associated with excess return. Parameter γt serves as a mean correction

factor, which satisfies:

exp(γt) = Et−1 [exp(εt)] (4.2)

Adding γt ensures that the conditional expected gross return equals exp(r +

λ
√
ht):

Et−1 [ln(St/St−1)] = Et−1

[
r + λ

√
ht

]
(4.3)

Therefore γt must be equal to 1
2
ht, and 4.1 under the P measure now becomes:

ln(St/St−1) = r + λ
√
ht −

1

2
ht + εt (4.4)

Proof: see Appendix A1

Conditional variance of asset returns ht is assumed to follow a GARCH(1,1)
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process:

ht = α0 + α1ε
2
t−1 + β1ht−1 (4.5)

where parameter α1 determines the kurtosis of distribution for asset return,

and the conditional variance satisfies the stationarity constraint β1 +α1γ
2
1 ≤ 1.

Following the equivalent martingale measure (EMM), Duan (1995) trans-

fers both log-return (Eq.4.4) and conditional volatility (Eq.4.5) from the physi-

cal measure into the risk-neutral measure (the Q meaure). The GARCH option

pricing model under the Q measure is:

ln(
St
St−1

) = r − 1

2
ht + ε∗t

ht = α0 + α1(ε∗t−1 − λ
√
ht−1)2 + β1ht−1

(4.6)

Proof: see Appendix A2

where innovation ε∗t under the Q measure satisfies ε∗t = εt + λ.

4.2.2 Return with decomposed realized volatility

Instead of using latent volatility, Corsi (2009) uses the implied realized

volatility. As noted before, realized volatility with high-frequency trading in-

formation is able to react quickly with respect to new information arriving and

also better capture the long-memory characteristic for option valuation. In this

subsection, we will present Corsi’s HAR option pricing model and then intro-

duce our extension that incorporates macroeconomic information for option

pricing under the HAR framework.

178



A. The HAR-RV Option Pricing Model

Based on the heterogeneous market hypothesis of Müller et al. (1997), Corsi

(2009) models daily volatility with a multi-components structure, in which

daily volatility follows an autoregressive process with a sequence of volatil-

ity components being realized over daily, weekly and monthly horizons (the

Heterogenous Autoregressive Realized Volatility, or HAR-RV, model). Con-

structed from high frequency intra-daily returns, realized volatility is able

to change rapidly with respect to new arrival information in financial mar-

kets. Hence, the HAR-RV model outperforms the traditional GARCH volatil-

ity model in terms of prediction ability. In addition, the HAR-RV model is

able to mimic the long-memory feature of volatility movements. With those

advantages, Corsi et al. (2013) utilize the HAR-RV model to develop an op-

tion pricing model. Using RV as a proxy for the variance, log-returns in the

HAR-RV model evolve as:

ln

[
St+1

St

]
= r + γRVt+1 +

√
RVt+1εt+1 (4.7)

where parameter γ can be decomposed into two parts, γ̃ and −1
2
. γ̃ is the

price of risk for the conditional variance while −1
2

is a mean correction factor

as mentioned in Eq.4.3.

Under the physical measure, RVt+1 in a HAR-RV process follows a noncen-

tral gamma distribution with shape and scale parameters δ and c:

RVt+1|Ft ∼ Γ(δ, β′(RVt, Lt), c)

β′(RVt, Lt) = β0 + β1RV
d
t + β2RV

w
t + β3RV

m
t + β4Lt

(4.8)

In Eq.4.8, daily RVt+1 conditioned on past information set Ft being avail-

able until date t is decomposed into three non-overlapping components: RV d
t
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(short-term variance component measured at the daily frequency), RV w
t (medium

variance component measured at the weekly frequency) and RV m
t (long-term

variance component measured at the monthly frequency) together with a lever-

age factor Lt that accounts for asymmetric effects. Asymmetric effect refers

to a stylized fact that (realized) volatility usually reacts more after negative

shock rather than positive shock with same magnitude. Therefore, Corsi et al.

(2013) lets Lt = I(yt<0)RVt, where I(yt<0) as a dummy variable takes one unit

if return yt takes negative value, otherwise takes zero if return yt takes non-

negative value. Former three components in Eq.4.8 are recursively calculated

by aggregating daily RV over a specified time-horizon:

RV w
t =

1

4

4∑
i=1

RV d
t−i RV m

t =
1

17

21∑
i=5

RV d
t−i (4.9)

As RV d
t+1 follows a noncentral gamma distribution, its conditional mean

and variance are defined as:

Et(RV
d
t+1) =cδ + c(β1RV

d
t + β2RV

w
t + β3RV

m
t + β4Lt)

Vt(RV
d
t+1) =c2δ + 2c2(β1RV

d
t + β2RV

w
t + β3RV

m
t + β4Lt)

(4.10)

Combining Eq. 4.7 and Eq. 4.8, Corsi et al. (2013) have the Heterogeneous Au-

toregressive Gamma with Leverage (HARGL) option model. Using a discrete-

time exponential affine stochastic discount factor (SDF) as in Gagliardini et al.

(2011), parameters in the HARGL process can be mapped into risk-neutral

measures as follows:
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ln(St+1/St)|RVt+1 ∼ N(r + γRVt+1,
√
RVt+1),

RVt+1|Ft ∼ Γ(δ∗, β∗(RVt, Lt), c
∗).

β∗(RVt, Lt) = β1RV
d
t + β2RV

w
t + β3RV

m
t + β4L

m
t .

(4.11)

where β∗ = β
(1+cλ)2 , δ∗ = δ, c∗ = c

1+cλ
.

B. HAR-MIDAS option model

We extend the HAR option model (Corsi et al. (2013)) to include macroe-

conomic information, examining to what extent option pricing biases can be

further mitigated, and whether pricing accuracy can be improved. To achieve

this, we first assume that the growth in a macroeconomic variable ∆x follows

a process with constant mean and dynamic variance:

xt+1 = µx + σx,t+1ut+1 (4.12)

where ut+1 ∼ N (0, 1) are serially uncorrelated innovations with zero mean and

unit variance. Second, we include macroeconomic volatility rather than the

macro variable itself, into the HAR option model, so as to accommodate the

non-centralized gamma distribution the HAR-RV process follows (see Equation

4.11). We employ the mixed data sampling (MIDAS) approach from Ghysels

et al. (2007). For our model here, the macroeconomic information is calculated

as:
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Xm
t+1 =

K∑
k=1

ϕk(ω1)σ̂mx,t+1−k

ϕk(ω1, ω2) =
(k/K)ω1−1(1− k/K)ω2−1∑K
j=1(j/K)ω1−1(1− j/K)ω1−1

(4.13)

where σ̂x,t+1 is the estimated conditional variance of the chosen macro vari-

able. Xm
t+1 can be thought of as a weighted average of lags of variations in the

macroeconomic variable xmt+1 with a monthly frequency. The weights allocated

to lags of σ̂mx,t+1 are governed by a beta weighting scheme ϕk(ω1, ω2), which sat-

isfies the conditions ϕk > 0 and
∑K

k=1 ϕk = 1. In the beta weighting scheme,

parameter ω1 is restricted to one unit, making sure a decaying pattern for lags

of weights. To avoide non-negative value, parameter ω2 is restricted as ω2 > 1.

1 Following Christoffersen et al. (2009), we assume shocks to the market come

from two main sources: macroeconomic shocks, and “pure-market” shocks that

are unrelated to macro information. Therefore, εt+1 is decomposed into:

εt+1 = ρut+1 +
√

1− ρ2zt+1 (4.14)

where the “pure-market” shock, zt+1, has zero mean and unit standard devi-

ation. The parameter ρ refers to the correlation coefficient between market

returns and innovations in the macroeconomic variable. We can now generate

a discrete-time option pricing model with macroeconomic information under

the P-measure, which we call the HAR-MIDAS option model:

1Since ω2 is restricted as ω2 > 1, the null hypothesis is H0 : ω2 ≤ 1.
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xt+1 = µx + σx,t+1ut+1

ln(St+1/St) = r + γRVt+1 +
√
RVt+1εt+1 where εt+1 = ρut+1 +

√
1− ρ2zt+1

RV dt+1|Ft ∼ Γ(δ, β′(RVt, X
m
t ), c)

β′(RVt, X
m
t ) = β1RV

d
t + β2RV

w
t + β3RV

m
t + β4X

m
t where Xm

t+1 =

K∑
k=1

ϕk(1, ω2)σ̂mx,t+1−k

(4.15)

In Equation 4.15, daily realized variance RV d
t+1 is modelled as an autoregressive

function β′(RVt, X
m
t ) with three realized variance components (RV d

t , RV
w
t , RV

m
t )

together with a weighted average value of variations (Xm
t ) from the macroe-

conomic variable xt.

4.2.3 Risk Neutralization for the HAR-MIDAS model

In previous literature, the risk neutralization for discrete-time option mod-

els such as Duan’s GARCH and Heston’s GARCH usually follows the equiva-

lent martingale measure (EMM) of Christoffersen et al. (2009), in which only

stock return innovations are considered. In our case, however, we need to

take both log-return and realized volatility into consideration when generating

risk neutralization procedure. Christoffersen et al. (2009) provide the moment

generating function (MGF) for a joint process of RV and log-return under the

HAR-RV framework:

ϕPRV (η) =E [exp(−ηRVt+1|(RVt))]

=exp

(
− cη

1 + cη
(β′(RVt)− δln(1 + cη))

) (4.16)
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where η ∈ R and β′(RVt) refers to the HAR-RV process shown in Equation

4.8.

The MGF of the HAR-RV model in Equation 4.16 allows us to derive a new

MGF that transfers the joint process of log-returns, RV and macro volatility

from the physical measure into the risk-neutralized measure. First, we set up a

joint process Φ′t+1 = [β′(RVt), β
′(σ̂x,t), yt+1] which is a multi-dimensional real-

value process of Realized volatility (RV ), macro volatility(σ̂x) and log-return

(yt+1). Propostion 1 defines a closed-form expression for the MGF of Φ′t+1.

Proposition 1. In the HAR-MIDAS model, if RVt+1|Ft ∼ Γ(δ, β′(RVt, Xt), c),

then the closed-form expression for the MGF of Π′t+1 = (β′(RVt), β
′(Xt), yt+1)

in α′ = (α1, α2, α3) under P measure is:

EP
t [exp{−α′Πt+1}]

= EP
t [exp{−α1β

′(RVt))− α2β
′(Xt)− α3yt+1}]

= φPRV (ϑ1)φPX(ϑ2)

(4.17)

with

β′(RVt, Xt) = β1RV
d
t + β2RV

w
t + β3RV

m
t︸ ︷︷ ︸

β′(RVt)

+ β4Xt︸ ︷︷ ︸
β′(Xt)

φPRV (ϑ1) = exp{−b(ϑ1)− a(ϑ1)β′(RVt)} φPX(ϑ2) = exp{−b(ϑ2)− a(ϑ2)β′(Xt)}

(4.18)
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Proof: see Appendix A3

where β′(RVt, Xt) is divided into two parts: β′(Xt) macroeconomic weighted

average value Xt, and remaining part of β′(RVt) consists of RV d
t , RV w

t and

RV m
t . There are two terms b(ϑi) and a(ϑi) i = 1, 2 in Eqs (4.17-4.18) are

expressed as below:

b(ϑ) = δ ln(1 + cϑ) a(ϑ) =
cϑ

1 + cϑ

where ϑ1 =
(
α1 + γα3 − 1

2
α2

3

)
and ϑ2 =

(
α2 + γα3 − 1

2
α2

3

)
in Eq.4.18.

Following Gagliardini et al. (2011) and Corsi et al. (2013), we specify

a stochastic discount factor (SDF) that includes log-return, RV and macro

volatility:

Mt,t+1 =
Mt+1

EP
t [Mt+1]

=
exp{−m1RV

RV
t+1 −m2RV

X
t+1 −m3yt+1}

φPRV (u1)φPX(u2)

φPRV (u1) = exp{−b(u1)− a(u1)β′(RVt)} with u1 = m1 + γm3 −
1

2
m2

3

φPX(u2) = exp{−b(u2)− a(u2)β′(Xt)} with u2 = m2 + γm3 −
1

2
m2

3

(4.19)

Proof of Equation 4.19: see Appendix A4

where EP
t [ ] is the conditional expectation at time t under the P measure.

In order to satisfy the no-arbitrage restriction:
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EP
t [Mt,t+1 exp{yt+1}] = 1 (4.20)

we plug the stochastic discount factor (SDF) Eq.4.19 into the no-arbitrage

condition Eq.4.20 to give:

m3 = γ +
1

2
(4.21)

Proof of Eq. 4.21: see Appendix A5

We can then convert the HAR-MIDAS option model under the P measure

into that under the Q measure:

EQt [exp(−α′Πt+1)] = EPt [Mt,t+1 exp(−α′Πt+1)]

= EPt [Mt,t+1 exp{−α1β
′(RVt)− α2β

′(Xt)− α3yt+1}]

=
φPRV ($1)φPX($2)

φPRV (u1)φPX(u2)

(4.22)

where

u1 = m1 + γm3 −
1

2
m2

3

u2 = m2 + γm3 −
1

2
m2

3

$1 = (m1 + α1) + γ(m3 + α3)− 1

2
(m3 + α3)2

$2 = (m2 + α2) + γ(m3 + α3)− 1

2
(m3 + α3)2

Plugging m3 = γ + 1
2

into Eq. 4.22, we have
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EQ
t [exp(−α′Πt+1)] = EP

t [Mt,t+1exp(−α′Πt+1)]

=
φPRV ($1)φPX($2)

φPRV (u1)φPX(u2)

=
φPRV (ς1 + λ1)φPX(ς2 + λ2)

φPRV (λ1)φPX(λ2)

(4.23)

where $i, i = 1, 2 is:

$1 = m1 +
1

2
γ2 − 1

8︸ ︷︷ ︸
λ1

+α1 −
1

2
α3 −

1

2
α2

3︸ ︷︷ ︸
ς1

and

$2 = m2 +
1

2
γ2 − 1

8︸ ︷︷ ︸
λ2

+α2 −
1

2
α3 −

1

2
α2

3︸ ︷︷ ︸
ς2

Proof of Eq. 4.23: see in Appendix A6

Relying on the SDF which is compatible with the no-arbitrage condition,

we can derive the risk-neutral specification of HAR-MIDAS option model:

Proposition 2. Under the risk neutral probability measure Q, the HAR-MIDAS

option pricing model has the following parameters:
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β
′∗
RV =

β

1 + c∗1λ1

with c∗1 =
c

1 + cλ1

& λ1 = α1 −
1

2
α3 −

1

2
α2

3

β
′∗
X =

β

1 + c∗2λ2

with c∗2 =
c

1 + cλ2

& λ2 = α2 −
1

2
α3 −

1

2
α2

3

u∗t = ut + ρ
1

4
RVt z∗t = zt +

√
1− ρ2

1

4
RVt

δ∗ = δ γ∗ = −1

2

ε∗t = ρu∗t +
√

1− ρ2z∗t = εt +RVt(
1

2
+ γ)

(4.24)

Proof of Proposition 2: see in Appendix A7

4.2.4 Estimation for the HAR-MIDAS Option Model

Following Gourieroux and Jasiak (2006) and Corsi et al. (2013), the HAR-

MIDAS process follows a non-centred gamma distribution which is charac-

terized by three parameters: the degrees of freedom δ, the non-centrality

parameter β′(RVt, Xt) and the scale parameter c. This non-centred gamma

distribution arises as a Poisson mixture of gamma distributions. The density

of the non-centred gamma distribution is as follows:

fδ,β′(RVt,Xt),c = exp

[
−RVt

c

] ∞∑
k=0

[
RV δ+k−1

cδ+kΓ(δ + k)

β′(RVt, Xt)
k

k!

]
(4.25)

In line with the PDF of the non-centred gamma in 4.25, the log-likelihood

function is:
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lt(θ) =
1

c
(RVt+1 +cβ′(RVt, Lt))+ log

(
∞∑
k=0

RV δ+k−1
t+1

cδ+kΓ(δ + k)

β′(RVt, Xt)
k

k!

)
(4.26)

where the parameter set θ = {δ, β′, c}. The log-likelihood function cannot

be applied directly since it contains infinite number of terms. Thus, we need

to truncate the infinite sum in Eq. 4.25. We follow Corsi et al. (2013) and set

the truncation number equal to 90.

Recall from Eq. (4.7) that the log-return is expressed as:

ln

[
St+1

St

]
= r + γRVt+1 +

√
RVt+1εt+1

To estimate the market price of risk γ, we can rewrite this as

ln [St+1/St]− r√
RVt+1

= γ
√
RVt+1 + εt+1 (4.27)

The parameter γ can be estimated through robust ordinary least square (OLS).

The log-likelihood function can be written as:

lt(θ) = −1

2
logV (RVt+1/RVt)−

1

2

RVt+1 − E((RVt+1/RVt))
2

V (RVt+1/RVt)
(4.28)

where

E(RVt+1/RVt) = cδ + cβ′(RVt, Xt)

V (RVt+1/RVt) = c2δ + 2c2β′(RVt, Xt)
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4.3 Data Description

In this section, we will explain the European option data that is written

on S&P500 Index in details. Also, we will introduce a set of fundamental

macroeconomic variables that are added into the HAR-MIDAS option pricing

model.

4.3.1 European Option data

We consider European put and call options that are written on S&P 500

Index. The Option data is collected from the OptionMetrics database for the

period from January 1, 1996 to December 31, 2014. Following Christoffersen

et al. (2008), we only include options that are traded on Wednesday, which

seems to be more liquid than other trading days. In addition, options with

trading volume less than 20 are discarded. For maturity, we delete options

with time to maturity less than 20 days or more than 160 days. To filter

out more volatile options, we only use options with implied volatility less

than 60%. For option price, we filter out observations with prices less than 5

dollars. Tables 4.1 and 4.2 present descriptive statistics for S&P500 Put and

Call Options. Options are categorized into different groups according to the

moneyness (K/S) and time to maturity (τ).

Tables 4.1 and 4.2 present descriptive statistics for S&P500 Put and Call

Options, respectively. Options are categorized into different groups according

to the moneyness K/S and term to marturity time τ . For the call option,

out-of-the-money options (hereafter OTM) are defined as 1.02 < K/S ≤ 1.04,

and deep OTM (hereafter DOTM) options are defined as K/S > 1.04. In

constrast, if 0.94 < K/S ≤ 0.96, the put option is OTM. If K/S ≤ 0.94, the

put option is DOTM. In relation to time to maturity τ , both put and call

options are categorized into three groups: short-maturity options with τ ≤ 20,
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medium maturity options with 20 < τ ≤ 60 and long-maturity options with

60 < τ ≤ 160. Looking at the implied volatility across different degrees of

moneyness (from Deep in-the-money through to Deep out-of-money) for both

put and call options, implied volatility exhibits a smirk curve.

[Insert Tables 4.1 and 4.2 here]

As noted in Chapter 3.3.1, the Realized volatility is calculated from intra-

daily returns sampled with tick-by-tick 5-mins frequency, in a purpose to bal-

ance the trade-off between between microstructure noise and finely sampling

frequency (see Liu et al. (2015) for details). Consistent with Chapter 3.3.1, we

collect realized variance data from the Oxford-Man Institute Realized Library,

where daily realized variance is reported to be estimated via Realized Kernel

method (Barndorff-Nielsen et al. (2008)) with 5-mins frequency. All RV data

covers a period from Jan 1st 1996 to Dec 31th 2014.

4.3.2 Fundamental Macroeconomic Variables

As our main focus is to investigate the impact of macroeconomic informa-

tion on volatility, we initially employ a wide range of macroeconomic variables

consistent with that being adopted in Chapter 2: Industrial production (IP),

Producer Price Index (PPI), Unemployment rate (UEM), Housing Starts (HS)

and the Term Spread (TS). We select monthly seasonally-adjusted data that

ranges from Jan 1996 to Dec 2014. The data is obtained from the Federal

Reserve Economic Database (FRED). All of the macroeconomic variables are

converted into annualized growth rates:

∆Xt =

[
Xt

Xt−1

]12

− 1 (4.29)

According to Gourieroux and Jasiak (2006) and Corsi et al. (2013), daily
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volatility in a HAR-type process follows non-central gamma distribution. For

consistency, we add the variance of the macroeconomic variables into the HAR-

MIDAS option model. To get our estimate of the macroeconomic variance, we

let the macroeconomic growth rate follow a linear regression with constant

mean and dynamic variance (see in Eq.4.12):

xt+1 = µx + σx,t+1ut+1

We extract σx and put it into the HAR-MIDAS option model for pricing mea-

surement.

4.4 An Application Using Macroeconomic Un-

certainty Measure

In addition to the macroeconomic fundamental variables discussed in the

previous subsection, we consider the influence of macroeconomic uncertainty

on stock index options. Macroeconomic uncertainty here is the conditional

volatility of a disturbance that is unexpected from the perspective of economic

agents. Haddow et al. (2013) and Bloom et al. (2018) mention that high levels

of uncertainty might have adverse effects on financial markets, by affecting

decision-making in all parts of financial markets as well as that of policymak-

ers. In reality, macroeconomic uncertainty is difficult to quantify due to its

latent feature. One attempt to overcome this difficulty is Jurado et al. (2015)

and we employ their measure of macroeconomic uncertainty here. Jurado

et al. (2015) construct a proxy for macroeconomic uncertainty by aggregating

conditional volatility of unexpected components realized via multi-step ahead

forecast errors from a wide range of macroeconomic variables. Precisely speak-

ing, macroeconomic uncertainty is constructed by 3 steps. First, a large set of
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macroeconomic variables are compressed into common factors, denoted by yj.

With a limited number of common factors, the unexpected errors are:

V y
jt+h = yjt+h − E[yjt+h|It] (4.30)

Second, define the conditional volatility of unexpected error as a proxy of

individual uncertainty, Ujt(h)y:

Ujt(h)y =
√
E[(V y

jt+h)
2|It] (4.31)

Third, a macroeconomic uncertainty index is calculated as a weighted av-

erage of individual uncertainty measures:

Ujt(h) =

Ny∑
j=1

wjUyjt(h) (4.32)

where wj is the weight attached to each individual uncertainty and Ny is the

number of individual uncertainties. Following Equations 4.31 and 4.32, we es-

timate a macroeconomic uncertainty index from 132 macroeconomic variables,

which are consistent with that being used in Jurado et al. (2015). In line with

Chapter 2, we employ macroeconomic uncertainty estimated for 3-month hori-

zon, Ut(3). The macroeconomic uncertainty index is shown in Figure 4.1, which

is depicted against the S&P 500 Index returns during 1996-2014. The shad-

ing areas highlights economic recessions in U.S market, which is in line with

the dates published by the National Bureau of Economic Research (NBER).

We can see that large spikes in macroeconomic uncertainty are coincide with

financial crisises occurred around 2001-2002, 2007-2008.

[Insert Figure 4.1 here]
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4.5 Empirical Comparison with Benchmark mod-

els

In this section, we present parameter estimates for the HAR-MIDAS model

specified with different macroeconomic variables and macroeconomic uncer-

tainty. To evaluate HAR-MIDAS’s performance, we conduct empirical com-

parisons among the alternative HAR-MIDAS models (i.e. the HAR-MIDAS

models using different macroeconomic variables) and two benchmarks, Duan’s

GARCH and Corsi’s HARG models, examining whether macroeconomic infor-

mation helps improve pricing accuracy.

Following Corsi et al. (2013), we utilize the Monte Carlo simulation method

in the HAR-MIDAS volatility model for option pricing. The whole proce-

dure consists of three steps: First, generate maximum likelihood parameter

estimates for the HAR-MIDAS model under a physical measure (see in Eq.

4.15). Second, map the parameters in the HAR-MIDAS model from the phys-

ical measure P into the risk-neutral measure Q. Third, generate Monte Carlo

simulations of both the log-return and conditional volatility, so as to obtain

simulated asset prices at maturity under the Q measure. With the underlying

spot price St, we simulate L paths of asset prices {STt } (from t to maturity

T ) and realized volatilities RV T
t for each strike price K. With these simulated

values, we can simulate the value of call option at maturity: max{ST −K, 0},

and the value of put option at maturity: max{K − ST , 0}.

Table 4.3 summarizes the parameter estimates for the HAR-MIDAS alter-

native models as well as two benchmarks, Duan’s GARCH model and Corsi’s

HAR model. For the HAR-MIDAS model, parameter β4 accounts for the effect

of the macroeconomic variable, and ω accounts for the decaying impact the

macroeconomic variable has. Excluding inflation (PPI), all the macroeconomic
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variables have a significant impact on stock volatility, including macroeconomic

uncertainty. Comparing the log-likelihood ratio among the different models,

the HAR-MIDAS model with macroeconomic information provides a better

description of stock volatility relative to the two benchmarks. This general im-

provement from using the HAR-MIDAS model is largely due to the significant

contribution of the macroeconomic variables to explaining volatility, consis-

tent with Engle et al. (2013)’s argument. Given the parameter estimates, for

the second step we follow Eq. 4.24 to convert the estimated parameters from

the physical measure (P) into the risk-neutral measure (Q). We then gener-

ate Monte carlo simulations for both log-return and conditional volatility, and

calculate the option prices for both put and call at maturity.

[Insert Table 4.3 here]

We implement the root mean squared error (RMSE) for both price and

implied volatility to evaluate the option pricing performances of each HAR-

MIDAS model specified with different macroeconomic variables. The RMSEp

is defined as:

RMSEp =

√√√√ N∑
i=1

p̃mkti − p̃modeli

N
(4.33)

where N denotes the number of options. For each option i, pmkti refers to its

market price and pmodeli refers to its model simulated price. Following Corsi

et al. (2013), we then express the option price relative to underlying asset price

S, p̃i = pi/S. For implied volatility, the RMSEIV is

RMSEIV =

√√√√ N∑
i=1

ĨV
mkt

i − ĨV
model

i

N
(4.34)

where IV mkt refers to the market implied volatility and IV model refers to the
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model implied volatility. Note that the market implied volatility is the Black-

Scholes implied volatility.

Tables 4.4 through 4.12 summarize option performances for both put and

call. Initially, we need to look at performance of the two benchmarks in terms

of RMSEp and RMSEIV . Panel A of Table 4.4 shows that the HAR option

model outperforms Duan’s GARCH option model for both short- and medium-

maturity call option pricing, which is largely due to the direct use of RV as

a proxy for volatility. However, for long-term maturity, the two benchmarks

deliver similar results in terms of performance. Similar results can be found in

Table 4.9 for put options. The results suggest that the HAR model has limited

ability when pricing long-term options, even with the long memory feature of

volatility that the HAR model captures. In addition, both Table 4.4 and Table

4.9 demonstrate that the HAR model is superior to Duan’s GARCH in terms of

the implied volatility root mean squared error, RMSEIV (Panel B), especially

when term-to-maturity is less than 160 days. A comparison between Duan’s

GARCH and the HAR models confirms the importance of utilizing RV for

option pricing. As RV contains high-frequency trading information, the HAR

model delivers better pricing for both short-term and medium term options.

Now we add in macroeconomic information into the HAR model, to see whether

it yields better performance for long-term put and call options.

Since we employ several macroeconomic variables, we calculate the rela-

tive performance ratio of RMSE for the HAR-MIDAS model against Duan’s

GARCH and Corsi’s HAR models. Tables 4.5 and 4.6 summarize call option

pricing relative performance, RMSEp. In table 4.5 we observe that the HAR-

MIDAS model incorporating macroeconomic variables has, in general (with

the exception of the term spread), superior performance relative to Duan’s

GARCH model across different degrees of moneyness. That the term spread

does not perform particularly well might be explained by the fact that term-
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spread usually more associated with recession rather than expansion. In partic-

ular, there is a body of literature that finds that the term spread, as a leading

indicator, predicts recessions well. Therefore, call options, which are more

associated with market expectation of economic expansion, are less likely be

affected by negative shocks to the term spread (and unemployment.) When we

turn to look at the relative performance of RMSEp for the HAR-MIDAS model

against Corsi’s HAR model, we find that only macroeconomic uncertainty has

better performance when the call option is Out-of-the-Money (OTM) or Deep-

Out-of-the-Money (DOTM) (see Table 4.6).

Table 4.10 and 4.11 summarize put option pricing relative performance,

RMSEp. Most of the HAR-MIDAS models which include the macro variables

provide superior performance to Duan’s GARCH model but worse performance

than the original HAR model. Inflation seems to have the least impact for put

option pricing. Perhaps unsurprisingly, macroeconomic uncertainty outper-

forms alternative macroeconomic variables and delivers better pricing results

for OTM put options.

In terms of implied volatility relative performance, the root mean squared

errors (RMSEIV ) for both call and put are reported in Table 4.8 and 4.12,

respectively. Estimation results strongly favor the original HAR model as

well as the HAR-MIDAS model specified with macroeconomic uncertainty.

Especially when the option has a long term to maturity, the implied volatility

errors when using macroeconomic uncertainty are on average 15% less than in

the HAR model. The results suggest that adding macroeconomic information,

especially macroeconomic uncertainty, into the HAR model pays off in terms

of delivering significant improvements for long-term option.

[Insert Tables 4.4 through 4.12 here]
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4.6 Conclusion

In this paper, we propose a discrete-time realized option valuation model,

the HAR-MIDAS model. In the HAR-MIDAS model, the option price is deter-

mined by financial market information and macroeconomic information. We

employ the Mixed data sampling (MIDAS) approach, connecting macroeco-

nomic information with stock volatility directly.

The HAR-MIDAS model potentially possesses several advantages for volatil-

ity modelling and option pricing. First, latent volatility is directly measured by

realized volatility (RV), which is constructed using high-frequency intradaily

returns. Embedded within high frequency trading information, HAR-MIDAS

model is able to response quickly with respect to market shocks. Second, with

its multi-component structure, the HAR-MIDAS model can capture the long

memory feature well. Therefore, it might be of benefit in pricing long-maturity

options.

Empirically, we consider two sources of macroeconomic information: fun-

damental macroeconomic variables that reflect past information and a mea-

sure of macroeconomic uncertainty that is associated with future expectations.

Our empirical results indicate that most macroeconomic variables outperform

Duan’s GARCH model across maturity and moneyness. In particular, macroe-

conomic uncertainty has superior performance for OTM options with long-

maturity. Precisely speaking, the HARG-MIDAS model incorporated with

macroeconomic uncertainty have smaller RMSE results for both Put and Call

options when their term to maturities are longer than 60 days, comparing

with benchmark models (Duan’s GARCH and Corsi’s HARG). It suggests

that macroeconomic uncertainty plays an important role in mitigating OTM

option pricing biases.
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Figure 4.1: S&P 500 log return and macroeconomic uncertainty In The U.S
Market (1996-2014)

The Figure 4.1 plots daily log return of S&P500 Index, ranging from 1996

to 2014 (shown in upper plot). and estimates of macro uncertainty Ut(3)

for 3 month horizon h=3 (shown in lower plot). The macroeconomic uncer-

tainty is avaiable in a monthly frequency from Jan 1996 to Dec 2014. To

consistent with daily returns, we extend month macro uncertainty into a

daily frequency. The shading areas corresponds to economic recessions in

the U.S market.
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Table 4.1: S&P500 Call Option Data, 1996–2014

Maturiy τ

Moneyness τ ≤ 20 20 < τ ≤ 60 60 < τ ≤ 160

K/S Panel A: Implied Volatility of Call Options

K/S≤ 0.94 0.3221 0.2879 0.2762

0.94<K/S≤0.96 0.2101 0.2114 0.2028

0.96<K/S≤0.98 0.1811 0.1885 0.1907

0.98<K/S≤1.02 0.1509 0.1590 0.1742

1.02<K/S≤1.04 0.2090 0.1574 0.1558

1.04<K/S 0.3270 0.2369 0.1799

Panel B: Implied Volatility Standard Deviation of Call Options

K/S≤ 0.94 0.1138 0.1046 0.1033

0.94<K/S≤0.96 0.0658 0.0692 0.0554

0.96<K/S≤0.98 0.0609 0.0650 0.0574

0.98<K/S≤1.02 0.0576 0.0633 0.0575

1.02<K/S≤1.04 0.0672 0.0660 0.0572

1.04<K/S 0.0981 0.1026 0.0683

Panel C: Number of Call Options

K/S≤ 0.94 1295 5215 3617

0.94<K/S≤0.96 1026 2823 1265

0.96<K/S≤0.98 1887 4333 2005

0.98<K/S≤1.02 5823 15678 8384

1.02<K/S≤1.04 596 5482 4028

1.04<K/S 154 3938 8790

All 10781 37469 28089

1 In Table 4.1, we provide descriptive statistics for the European Call Option written
on the S&P500 Index. Consider about liquidity, we adopt call option prices quoted
on each Wednesday available from January 1, 1996 to December 31, 2014. All call
options are categorized into different groups according to the moneyness K/S and
the term to maturity τ , where moneyness is calculated as the underlying index level
divided by strike price. Panels A and B summarize mean values and standard devi-
ations of Implied Volatility for the S&P500 Call Option across different categories.
Panel C provides number of observations for the S&P500 Call Option.
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Table 4.2: S&P500 Index Put Option Data, 1996–2014

Maturiy τ

Moneyness τ ≤ 20 20 < τ ≤ 60 60 < τ ≤ 160

K/S Panel A: Implied Volatility of Put Options

1.04<K/S 0.2590 0.2341 0.2525

1.02<K/S≤1.04 0.1576 0.1635 0.1915

0.98<K/S≤1.02 0.1552 0.1651 0.1808

0.96<K/S≤0.98 0.2004 0.1844 0.1808

0.94<K/S≤0.96 0.2742 0.2082 0.1815

K/S≤ 0.94 0.3836 0.2863 0.2255

Panel B: Implied Volatility Standard Deviation of Put Options

K/S≤ 0.94 0.1138 0.1046 0.1033

0.94<K/S≤0.96 0.0658 0.0692 0.0554

0.96<K/S≤0.98 0.0609 0.0650 0.0574

0.98<K/S≤1.02 0.0576 0.0633 0.0575

1.02<K/S≤1.04 0.0672 0.0660 0.0572

1.04<K/S 0.0981 0.1026 0.0683

Panel C: Number of Put Options

K/S≤ 0.94 1295 5215 3617

0.94<K/S≤0.96 1026 2823 1265

0.96<K/S≤0.98 1887 4333 2005

0.98<K/S≤1.02 5823 15678 8384

1.02<K/S≤1.04 596 5482 4028

1.04<K/S 154 3938 8790

All 10781 37469 28089

In Table 4.2, we provide descriptive statistics for the European Put Option written
on the S&P500 Index. Consider about liquidity, we adopt put option prices quoted
on each Wednesday available from January 1, 1996 to December 31, 2014. All put
options are categorized into different groups according to the moneyness K/S and
the term to maturity τ , where moneyness is calculated as the underlying index level
divided by strike price. Panels A and B summarize mean values and standard devi-
ations of Implied Volatility for the S&P500 Put Option across different categories.
Panel C provides number of observations for the S&P500 Put Option.
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Table 4.3: Parameter Estimation on Options, 1996–2014

Parameters HARG-MIDAS

IP PPI UEM HS TS U
β1 0.0349*** 0.0343*** 0.0348*** 0.0356*** 0.0332*** 0.0335***

(12.3581) (10.2172) (8.9001) (12.1425) (11.3272) (11.4853)

β2 0.0425*** 0.0402*** 0.0417*** 0.0437*** 0.0391*** 0.0396***

(11.4969) (3.1310) (8.7220) (11.8993) (11.5985) (6.9749)

β3 0.0231*** 0.0149** 0.0205*** 0.0251*** 0.0117*** 0.0184***

(6.2958) (5.1459) (5.3391) (6.5908) (5.0992) (5.1113)

β4 0.8593*** 0.6646*** 0.7509*** 0.7065*** 0.6321*** 0.7566***

(38.1678) (47.5850) (43.1698) (34.1472) (27.4855) (24.6879)

ω 9.8363*** 1.0100 1.0100** 1.7601*** 1.5534*** 14.7688***

(36.2673) (0.3086) (2.3024) (10.9075) (14.6394) (5.7956)

c 15.5051*** 15.5181*** 15.5096*** 15.5142*** 15.5179*** 15.5124***

(56.7290) (62.7761) (54.4542) (60.1484) (56.3498) (37.0025)

δ 1.3600*** 1.1400*** 1.2300*** 1.0300*** 1.0100*** 1.0100***

(14.9855) (14.5407) (15.3981) (14.7012) (14.9363) (19.6156)

Log-likelihood −12059.0877 −12059.2821 −12059.1273 −12059.2075 −12059.2064 −12059.1106

GARCH HARG

α0 2.05E-06*** β1 0.0348***

(5.0587) (12.1485)

α1 0.0604*** β2 0.0423***

(7.3494) (11.3767)

β1 0.8391*** β3 0.0230***

(45.7691) (6.2722)

λ 1.2389*** c 15.5047***

(9.5852) (55.3772)

δ 1.0100***

(15.1997)

Log-likelihood −9588.5678 −11086.3421

In Table 4.3, we generate maximum likelihood estimation for the HAR-MIDAS
model specified with alternative macroeconomic fundamental variables (or macroe-
conomic uncertainty) The estimation period ranges from January 1, 1996 to Decem-
ber 31, 2014. In addition, for further comparisions of option pricing performance,
we also estimate parameters for two benchmark models, Duan’GARCH model and
Corsi’s HAR model.
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Table 4.4: Call Option Performance for the Benchmark models, 1996–2014

Maturiy 10 < τ < 20 Maturiy 20 < τ < 60 Maturiy 60 < τ < 160

K/S Duan-GARCH HARG Duan-GARCH HARG Duan-GARCH HARG

Panel A: Option Pricing Performance

K/S≤0.94 0.0027 0.0028 0.0065 0.0056 0.0110 0.0132

0.94<K/S≤0.96 0.0055 0.0044 0.0099 0.0077 0.0152 0.0147

0.96<K/S≤0.98 0.0075 0.0046 0.0114 0.0083 0.0164 0.0157

0.98<K/S≤1.02 0.0100 0.0047 0.0134 0.0085 0.0171 0.0160

1.02<K/S≤1.04 0.0051 0.0052 0.0119 0.0088 0.0167 0.0163

1.04<K/S 0.0074 0.0054 0.0096 0.0085 0.0125 0.0131

Panel B: Implied Volatility Performance

0.94<K/S≤0.96 9.96 10.97 12.69 12.37 9.77 8.29

0.96<K/S≤0.98 14.81 7.35 11.49 9.55 9.50 8.28

0.98<K/S≤1.02 12.76 5.79 11.29 6.21 8.86 7.99

1.02<K/S≤1.04 7.16 6.46 10.86 4.55 8.93 9.00

1.04<K/S 10.31 8.38 8.72 6.21 7.15 8.21

a In Table 4.4, we provide root mean squared errors (RMSE) of the Call Option
pricing performance for alternative GARCH-type option models (Heston Nandi’s
GARCH, Duan’s GARCH) as well as the HARG model. All RMSEp are sorted by
moneyness and term to maturity.
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Table 4.5: Call Option Pricing Relative Performance for the HAR-MIDAS
model, 1996–2014

HARG-MIDAS/Duan’s GARCH Maturiy 10 < τ < 20

K/S IP PPI UEM TS HS U

K/S≤ 0.94 1.1111 1.3333 1.4074 2.7407 1.0741 2.6296

0.94<K/S≤0.96 0.7818 0.7818 0.8909 1.1091 0.8182 0.9091

0.96<K/S≤0.98 0.6533 0.7200 1.4933 1.1467 0.8133 0.6667

0.98<K/S≤1.02 0.5100 0.6500 1.4100 0.6300 0.4900 0.4900

1.02<K/S≤1.04 1.2353 0.8627 0.8627 0.9412 1.0392 0.8824

1.04<K/S 1.2027 1.4054 0.9054 0.8514 1.2027 0.5811

Maturiy 20 < τ < 60

K/S IP PPI UEM TS HS U

K/S≤ 0.94 0.9077 1.2769 1.5231 1.0615 0.9538 1.2615

0.94<K/S≤0.96 0.7879 0.8182 1.2323 1.6263 0.7778 0.9091

0.96<K/S≤0.98 0.7193 1.0789 1.5964 0.8421 0.7193 0.7632

0.98<K/S≤1.02 0.6119 0.9179 1.3582 0.7164 0.6119 0.6493

1.02<K/S≤1.04 0.7227 0.7731 1.3866 0.8403 0.7311 0.6891

1.04<K/S 1.1771 1.4688 1.2708 1.0104 1.1250 0.8438

Maturiy 60 < τ < 160

K/S IP PPI UEM TS HS U

K/S≤ 0.94 1.1455 0.9909 2.2545 1.5182 1.5909 0.9909

0.94<K/S≤0.96 0.8487 0.9145 0.9605 1.0592 0.9605 0.8947

0.96<K/S≤0.98 0.8232 0.9817 1.8476 1.0366 0.9634 1.0122

0.98<K/S≤1.02 1.2923 0.7778 1.8128 1.0234 0.7310 0.7539

1.02<K/S≤1.04 0.7725 0.9281 1.9042 1.0659 0.9281 0.9341

1.04<K/S 0.8560 1.0560 2.1440 1.0880 0.8720 0.9440

a In Table 4.5, we provide root mean squared errors (RMSE) of Call Option for the
HAR-MIDAS models relative to the benchmark (Duan’s GARCH) sorted by mon-
eyness and term to maturity. Maturity is shown in days and monenyness is K/S,
where K denotes call option strike price and S denotes underlying market price. Call
Option is written on S&P 500 Index from January 1, 1996 to December 31, 2014.
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Table 4.6: Call Option Pricing Relative Performance for the HAR-MIDAS
model, 1996–2014

HARG-MIDAS/HARG Maturiy 10 < τ < 20

K/S IP PPI UEM TS HS U

K/S≤ 0.94 1.0714 1.2857 1.3571 2.6429 1.0357 2.5357

0.94<K/S≤0.96 0.9773 0.9773 1.1136 1.3864 1.0227 1.1364

0.96<K/S≤0.98 1.0652 1.1739 2.4348 3.9783 1.3261 1.0870

0.98<K/S≤1.02 1.0851 1.3830 3.0000 1.3404 1.0426 1.0426

1.02<K/S≤1.04 1.2115 0.8462 0.8462 0.9231 1.0192 0.8654

1.04<K/S 1.6481 1.9259 1.2407 1.1667 1.6481 0.7963

Maturiy 20 < τ < 60

K/S IP PPI UEM TS HS U

K/S≤ 0.94 1.0536 1.4821 1.7679 1.2321 1.1071 1.4643

0.94<K/S≤0.96 1.0130 1.0519 1.5844 2.0909 1.0000 1.1688

0.96<K/S≤0.98 1.0241 1.0361 2.4819 1.1687 0.9879 1.0000

0.98<K/S≤1.02 0.9647 1.4471 2.1412 1.1294 0.9647 1.0235

1.02<K/S≤1.04 0.9773 1.0455 1.8750 1.1364 0.9886 0.9318

1.04<K/S 1.3294 1.6588 1.4353 1.1412 1.2706 0.9529

Maturiy 60 < τ < 160

K/S IP PPI UEM TS HS U

K/S≤ 0.94 0.9545 0.8257 1.8787 1.2651 1.3257 0.8257

0.94<K/S≤0.96 0.8776 0.9456 0.9932 1.0952 0.9932 0.9252

0.96<K/S≤0.98 0.8600 1.0255 1.9299 1.0828 1.0064 1.0573

0.98<K/S≤1.02 1.3813 0.8312 1.9375 1.0938 0.7813 0.8063

1.02<K/S≤1.04 0.7914 0.9509 1.9509 1.0920 0.9509 0.9571

1.04<K/S 0.8168 1.0076 2.0458 1.0382 0.8321 0.9008

a In Table 4.6,we provide root mean squared errors (RMSE) of Call Option for the
HAR-MIDAS models relative to the benchmark (Corsi’s HARG) sorted by money-
ness and term to maturity. Maturity is shown in days and monenyness is K/S, where
K denotes call option strike price and S denotes underlying market price. Call Op-
tion is written on S&P 500 Index from January 1, 1996 to December 31, 2014.
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Table 4.7: Call Option Implied Volatility Relative Performance for the HARG-
MIDAS model, 1996–2014

HARG-MIDAS/GARCH Maturiy 10 < τ < 20

K/S IP PPI UEM TS HS U

0.94<K/S≤0.96 0.9177 0.8504 1.5502 2.1215 1.1376 1.6044

0.96<K/S≤0.98 0.6962 0.5300 1.3599 1.0635 0.7373 0.5557

0.98<K/S≤1.02 0.4960 0.6110 1.4110 0.6280 0.4640 0.4750

1.02<K/S≤1.04 1.1313 0.7905 0.8408 0.8478 0.9274 0.8450

1.04<K/S 1.2231 1.5936 0.9117 0.8535 1.2182 0.6305

Maturiy 20 < τ < 60

K/S IP PPI UEM TS HS U

0.94<K/S≤0.96 0.6060 0.6028 1.1710 1.5658 0.6383 0.9748

0.96<K/S≤0.98 0.6335 0.6423 1.7163 0.7955 0.6301 0.6867

0.98<K/S≤1.02 0.5740 0.8530 1.2923 0.6829 0.5784 0.6395

1.02<K/S≤1.04 0.6464 0.6842 1.3619 0.8057 0.6860 0.6188

1.04<K/S 1.0000 1.6044 1.3383 1.0252 1.1066 0.8073

Maturiy 60 < τ < 160

K/S IP PPI UEM TS HS U

0.94<K/S≤0.96 0.7390 0.7462 0.8557 0.9396 0.8557 0.7308

0.96<K/S≤0.98 0.7495 0.8874 1.6832 0.9368 0.8811 0.9074

0.98<K/S≤1.02 1.2607 0.7607 1.7370 0.9865 0.7133 0.7427

1.02<K/S≤1.04 0.7872 0.9619 1.9642 1.1007 0.9574 0.8723

1.04<K/S 0.8923 1.0448 2.4545 1.2014 0.8951 0.9413

a In Table 4.7,we provide implied volatility root mean squared errors (RMSEIV )
of Call Option for the HAR-MIDAS models relative to the benchmark (Duan’s
GARCH) sorted by moneyness and term to maturity. Maturity is shown in days
and monenyness is K/S, where K denotes call option strike price and S denotes
underlying market price. Call Option is written on S&P 500 Index from January 1,
1996 to December 31, 2014.
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Table 4.8: Call Option Implied Volatility Relative Performance for the HARG-
MIDAS model, 1996–2014

HARG-MIDAS/HARG Maturiy 10 < τ < 20

K/S IP PPI UEM TS HS U

0.94<K/S≤0.96 0.8332 0.7721 1.4075 1.9262 1.0328 1.4567

0.96<K/S≤0.98 1.4027 1.0680 2.7401 2.1429 1.4857 1.1197

0.98<K/S≤1.02 1.0933 1.3472 3.1088 1.3834 1.0225 1.0466

1.02<K/S≤1.04 1.2538 0.8761 0.9319 0.9396 1.0279 0.9365

1.04<K/S 1.5048 1.9606 1.1217 1.0501 1.4988 0.7757

Maturiy 20 < τ < 60

K/S IP PPI UEM TS HS U

0.94<K/S≤0.96 0.6217 0.6184 1.2013 1.6063 0.6548 1.0000

0.96<K/S≤0.98 0.7623 0.7728 2.0649 0.9571 0.7581 0.8262

0.98<K/S≤1.02 1.0435 1.5507 2.3494 1.2415 1.0515 1.1626

1.02<K/S≤1.04 1.5429 1.6330 3.2505 1.9231 1.6374 1.4769

1.04<K/S 1.4042 2.2528 1.8792 1.4396 1.5539 1.1337

Maturiy 60 < τ < 160

K/S IP PPI UEM TS HS U

0.94<K/S≤0.96 0.8709 0.8794 1.0084 1.1074 1.0084 0.8613

0.96<K/S≤0.98 0.8599 1.0181 1.9312 1.0749 1.0109 1.0411

0.98<K/S≤1.02 1.3980 0.8436 1.9262 1.0939 0.7910 0.8235

1.02<K/S≤1.04 0.7811 0.9544 1.9489 1.0922 0.9500 0.8656

1.04<K/S 0.7771 0.9099 2.1376 1.0463 0.7795 0.8197

a In Table 4.8,we provide implied volatility root mean squared errors (RMSEIV ) of
Call Option for the HAR-MIDAS models relative to the benchmark (Corsi’s HARG)
sorted by moneyness and term to maturity. Maturity is shown in days and mon-
enyness is K/S, where K denotes call option strike price and S denotes underlying
market price. Call Option is written on S&P 500 Index from January 1, 1996 to
December 31, 2014.
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Table 4.9: Put Option Performance for the Benchmark models, 1996–2014

Maturiy 10 < τ < 20 Maturiy 20 < τ < 60 Maturiy 60 < τ < 160

K/S Duan-GARCH HARG Duan-GARCH HARG Duan-GARCH HARG

Panel A: Put Pricing Performance

1.04<K/S 0.0039 0.0062 0.0104 0.0119 0.0114 0.0123

1.02<K/S≤1.04 0.0064 0.0065 0.0119 0.0114 0.0159 0.0124

0.98<K/S≤1.02 0.0093 0.0049 0.0131 0.0092 0.0168 0.0133

0.96<K/S≤0.98 0.0067 0.0051 0.0114 0.0083 0.0172 0.0172

0.94<K/S≤0.96 0.0040 0.0063 0.0096 0.0081 0.0185 0.0195

K/S≤ 0.94 0.0052 0.0078 0.0071 0.0072 0.0141 0.0189

Panel B: Put Implied Volatility Performance

1.02<K/S≤1.04 13.72 8.69 12.68 10.13 8.70 6.42

0.98<K/S≤1.02 12.09 5.90 10.83 7.33 8.54 6.72

0.96<K/S≤0.98 11.02 6.98 11.30 7.12 9.06 8.60

0.94<K/S≤0.96 6.65 9.81 10.88 8.03 11.10 10.21

K/S≤ 0.94 8.77 13.58 8.58 8.55 8.56 8.29

a Table 4.9 summarizes root mean squred errors RMSEp for the Put Option, which
are sorted by moneyness K/S and maturity τ . We use the maximum-likelihood pa-
rameter estimates from Table 3.3 to compute the root mean squared error (RMSEp)
for alternative discrete volatility models, including Heston-Nandi’s GARCH option
model (HN-GARCH), Duan’s GARCH option model (Duan GARCH) and Corsi’s
HARG model.
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Table 4.10: Put Option Pricing Relative Performance for the HAR-MIDAS
model, 1996–2014

HARG-MIDAS/Duan’s GARCH Maturiy 10 < τ < 20

K/S IP PPI UEM TS HS U

1.04<K/S 1.6154 2.3333 1.3846 2.1026 1.6154 1.3077

1.02<K/S≤1.04 0.9219 1.1250 0.7813 0.9844 1.0625 0.7656

0.98<K/S≤1.02 0.5699 0.5269 0.5806 0.5054 0.6882 0.6129

0.96<K/S≤0.98 0.7761 0.7761 0.6269 0.7164 0.9104 0.5970

0.94<K/S≤0.96 1.3750 1.3000 1.2500 1.0500 1.4750 1.0250

K/S≤ 0.94 0.8846 1.1538 1.3269 0.8269 0.8462 0.8462

Maturiy 20 < τ < 60

K/S IP PPI UEM TS HS U

1.04<K/S 1.5481 1.2692 1.1731 1.3077 1.4904 1.3750

1.02<K/S≤1.04 0.9748 1.2269 0.8739 0.9076 1.1008 1.0168

0.98<K/S≤1.02 0.6565 1.3740 0.7786 0.6718 0.7863 0.8015

0.96<K/S≤0.98 0.6404 0.6842 1.0789 0.6140 0.8246 0.7368

0.94<K/S≤0.96 0.7604 1.1146 1.2604 0.6771 0.7917 0.7083

K/S≤ 0.94 1.2113 1.0704 1.0000 0.9718 1.3521 0.9155

Maturiy 60 < τ < 160

K/S IP PPI UEM TS HS U

1.04<K/S 0.9386 1.1754 0.8421 0.9474 1.0438 1.1667

1.02<K/S≤1.04 0.8113 1.1384 0.7547 1.6101 0.8239 0.7925

0.98<K/S≤1.02 1.3155 1.4702 1.2500 0.8929 0.8333 0.8155

0.96<K/S≤0.98 0.7849 1.2151 0.9070 0.9070 0.9593 1.0349

0.94<K/S≤0.96 0.6973 1.2919 0.9622 1.1946 1.1189 0.9946

K/S≤ 0.94 0.8936 2.0426 1.5177 1.6809 2.0496 1.1631

a In Table 4.10, we provide root mean squared errors (RMSE) of Put Option for the
HAR-MIDAS models relative to the benchmark (Duan’s GARCH) sorted by mon-
eyness and term to maturity. Maturity is shown in days and monenyness is K/S,
where K denotes put option strike price and S denotes underlying market price. Put
Option is written on S&P 500 Index from January 1, 1996 to December 31, 2014.
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Table 4.11: Put Option Pricing Relative Performance for the HAR-MIDAS
model, 1996–2014

HARG-MIDAS/HARG Maturiy 10 < τ < 20

K/S IP PPI UEM TS HS U

1.04<K/S 0.5897 0.7692 0.8846 0.5513 0.5641 0.5641

1.02<K/S≤1.04 0.8730 0.8254 0.7937 0.6667 0.9365 0.6508

0.98<K/S≤1.02 1.0196 1.0196 0.8235 0.9412 1.1961 0.7843

0.96<K/S≤0.98 1.0816 1.0000 1.1020 0.9592 1.3061 1.1633

0.94<K/S≤0.96 0.9077 1.1077 0.7692 0.9692 1.0462 0.7538

K/S≤ 0.94 1.0161 1.4677 0.8709 1.3225 1.0161 0.8226

Maturiy 20 < τ < 60

K/S IP PPI UEM TS HS U

1.04<K/S 1.1944 1.0556 0.9861 0.9583 1.3333 0.9027

1.02<K/S≤1.04 0.9012 1.3210 1.4938 0.8025 0.9383 0.8395

0.98<K/S≤1.02 0.8795 0.9398 1.4819 0.8434 1.1325 1.0120

0.96<K/S≤0.98 0.9348 1.9565 1.1087 0.9565 1.1196 1.1413

0.94<K/S≤0.96 1.0175 1.2807 0.9123 0.9474 1.1491 1.0614

K/S≤ 0.94 1.3529 1.1092 1.0252 1.1429 1.3025 1.2017

Maturiy 60 < τ < 160

K/S IP PPI UEM TS HS U

1.04<K/S 0.8699 1.0894 0.7805 0.8780 0.9675 1.0813

1.02<K/S≤1.04 1.0403 1.4597 0.9677 2.0645 1.0565 1.0161

0.98<K/S≤1.02 1.6617 1.8571 1.5789 1.1278 1.0526 1.0301

0.96<K/S≤0.98 0.7849 1.2151 0.9070 0.9070 0.9593 1.0349

0.94<K/S≤0.96 0.6615 1.2256 0.9128 1.1333 1.0615 0.9435

K/S≤ 0.94 0.6667 1.5238 1.1323 1.2539 1.5291 0.8677

a In Table 4.11, we provide root mean squared errors (RMSE) of Put Option for
the HAR-MIDAS models relative to the benchmark (Corsi’s HARG) sorted by mon-
eyness and term to maturity. Maturity is shown in days and monenyness is K/S,
where K denotes put option strike price and S denotes underlying market price. Put
Option is written on S&P 500 Index from January 1, 1996 to December 31, 2014.
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Table 4.12: Put Option Implied Volatility Relative Performance for the HARG-
MIDAS model, 1996–2014

HARG-MIDAS/HARG Maturiy 10 < τ < 20

K/S IP PPI UEM TS HS U

1.02<K/S≤1.04 1.3924 1.9390 0.9217 0.9747 1.0518 0.9321

0.98<K/S≤1.02 1.1068 1.0305 1.1559 0.9729 1.3237 1.1542

0.96<K/S≤0.98 1.0072 1.1848 0.8954 1.0903 1.2149 0.8109

0.94<K/S≤0.96 1.0489 0.9776 0.7523 0.6126 0.9205 0.6045

K/S≤ 0.94 0.6112 0.7644 0.8837 0.5560 0.6038 0.5700

Maturiy 20 < τ < 60

K/S IP PPI UEM TS HS U

1.02<K/S≤1.04 1.1165 1.1629 1.0267 1.0089 1.0760 1.2014

0.98<K/S≤1.02 0.9195 1.9127 1.1214 0.9441 1.0914 1.0764

0.96<K/S≤0.98 0.8455 0.9101 1.4677 0.8371 1.1067 0.9565

0.94<K/S≤0.96 0.8144 1.2341 1.7098 0.7522 0.8518 0.8406

K/S≤ 0.94 1.1123 1.0012 0.9357 0.9263 1.2421 0.8854

Maturiy 60 < τ < 160

K/S IP PPI UEM TS HS U

1.04<K/S 1.2002 1.0700 0.8046 0.8794 0.9578 1.0446

1.02<K/S≤1.04 1.8069 1.4346 1.0062 2.1916 1.0483 1.0109

0.98<K/S≤1.02 1.0074 1.8259 1.5997 1.1116 1.0432 1.0238

0.96<K/S≤0.98 1.1709 1.1965 0.9314 0.9442 0.9628 1.0826

0.94<K/S≤0.96 1.1861 1.1900 0.9598 1.1117 1.0402 0.9980

a In Table 4.12,we provide implied volatility root mean squared errors (RMSEIV ) of
Put Option for the HAR-MIDAS models relative to the benchmark (Corsi’s HARG)
sorted by moneyness and term to maturity. Maturity is shown in days and moneny-
ness is K/S, where K denotes put option strike price and S denotes underlying mar-
ket price. Put Option is written on S&P 500 Index from January 1, 1996 to December
31, 2014.
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4.7 Appendix

Appendix A

A1 proof of Equation 4.4

Proof. Ψt(u) is defined as the natural logarithm of MGF:

Et−1 [exp(−uεt)] = exp(Ψt(u)) = exp(
1

2
htu

2)

where εt ∼ N (0, ht). Note that in the normal case we have Ψt(u) = 1
2
htu

2,

and Ψt(−1) = 1
2
ht. As noted by Eq.4.3, expected log-return satisfies:

Et−1 [ln(St/St−1)] = Et−1

[
r + λ

√
ht

]
which is equivalent to say:

Et−1 [St/St−1] = Et−1

[
exp(r + λ

√
ht − γt + εt)

]
= Et−1

[
exp(r + λ

√
ht − γt)

]
+ Et−1 [exp(εt)]

= Et−1

[
exp(r + λ

√
ht − γt)

]
+ exp(Ψt(−1))

= Et−1

[
exp(r + λ

√
ht − γt +

1

2
ht)

]
So only when γt equals to 1

2
ht, log-return will converge to its conditional mean

of ut = r + λ
√
ht

A2 proof of Equation 4.6

Proof. The risk-neutralization of Duan(1995) is a special case of CEFJ(2010)

in which the equivalent martingale measure (EMM) obtains by assuming that

the Radon-Nikodym derivative is linear in stock return innovations. That is:

ξτ =
dQ

dP
| Fτ = exp{−

τ∑
t=1

(ηtεt + Ψε
t(ηt))} (4.35)

Transferring the GARCH specifications from P measure to Q2 measure, it must

satisfies:

2Q refers to the risk-neutral measure.
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EQ
t−1[

St
St−1

/
Bt

Bt−1

] = EP
t−1[

ξt
ξt−1

× St
St−1

/
Bt

Bt−1

] = 1 (4.36)

where ξt
ξt−1

is equivalent to the pricing kernel. Bt

Bt−1
= er3 Rearrange equation,

we have:

EP
t−1[e−ηtvt−Ψε

t (ηt) × St
St−1

/
Bt

Bt−1

] = 1

EP
t−1[e−ηtvt−Ψε

t (ηt)er+λ
√
ht− 1

2
ht+
√
htvt/er] = 1

EP
t−1[e−ηtvt−Ψε

t (ηt)eλ
√
ht− 1

2
ht+
√
htvt ] = 1

EP
t−1[e−(ηt−

√
ht)vt ]e−Ψε

t (ηt)eλ
√
ht− 1

2
ht = 1

exp{Ψt(ηt −
√
ht)−Ψt(ηt) + λ

√
ht −

1

2
ht} = 1

Ψt(ηt −
√
ht)−Ψt(ηt) + λ

√
ht −

1

2
ht = 0

1

2
(ηt −

√
ht)

2 − 1

2
η2
t + λ

√
ht −

1

2
ht = 0

(λ− ηt)
√
ht = 0→ λ = ηt

Replacing ηt by λ in equation 4.4, the Radon-Nikodym derivative turns into:

dQ

dP
| Ft = exp{(λεt +

1

2
λ2)}

And the risk-neutral innovation v∗t :

v∗t = vt + λ

Replacing vt by v∗t − λ in equations 4.4 we now have:

ln(
St
St−1

) = r + λ
√
ht− 1

2
ht +

√
ht(v

∗
t − λ)

ln(
St
St−1

) = r − 1

2
ht +

√
htv
∗
t ε∗t =

√
htv
∗
t

Replacing vt by v∗t − λ in equations 4.5 we now have:

ht = α0 + α1(v∗t−1

√
ht−1 − λ

√
ht−1)2 + β1ht−1

So now we have the GARCH option model of Duan (1995) under the Q

3Bt is the Bond price at time t.
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measure:

ln(
St
St−1

) = r − 1

2
ht + ε∗t

ht = α0 + α1(ε∗t−1 − λ
√
ht−1)2 + β1ht−1

(4.37)

A3 proof of Proposition1

Proof. Let us compute the LT of Π′t+1 = β′(RVt), β
′(Xt), yt+1) in the HAR-

MIDAS option model:

Πt+1 =

β
′(RVt)

β′(Xt)

yt+1

α =

α1

α2

α3



EP
t [exp{−α′Πt+1}]

= EP
t [exp{−α1β

′(RVt)− α2β
′(Xt)− α3yt+1}]

= EP
t [exp{−α1β

′(RVt)− α2β
′(Xt)− α3(γRVt+1 +

√
RVt+1εt+1)}]

= EP
t [exp{−(α1 + γα3 −

1

2
α2

3︸ ︷︷ ︸
ϑ1

)β′(RVt)} exp{−(α2 + γα3 −
1

2
α2

3︸ ︷︷ ︸
ϑ2

)β′(Xt)}]

= φPRV (ϑ1)φPX(ϑ2)

where

φPRV (ϑ1) = exp{−b(ϑ1)− a(ϑ1)β′(RVt)}}

.

b(ϑ1) = δ ln(1 + cϑ1) a(ϑ1) =
cϑ1

1 + cϑ1

ϑ1 = α1 + γα3 −
1

2
α2
3

φPX(ϑ2) = exp{−b(ϑ2)− a(ϑ2)β′(Xt)}}
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.

b(ϑ2) = δ ln(1 + cϑ2) a(ϑ2) =
cϑ2

1 + cϑ2

ϑ2 = α2 + γα3 −
1

2
α2
3

A4 proof of Equation4.19

Proof.

Mt,t+1 =
Mt+1

EP
t [Mt+1]

=
exp{−m1β

′(RVt)−m2β
′(Xt)−m3yt+1}

EP
t [exp{−m1β′(RVt)−m2β′(Xt)−m3yt+1}]

=
exp{−m1β

′(RVt)−m2β
′(Xt)−m3yt+1}

Ep
t [exp{−(m1 + γm3 − 1

2
m2

3)(β′(RVt)} exp{−(m2 + γm3 − 1
2
m2

3)(β′(Xt)}]

=
exp{−m1β

′(RVt)−m2β
′(Xt)−m3yt+1}

φPRV (u1)φPX(u2)

Where

u1 = m1 + γm3 −
1

2
m2

3 u2 = m2 + γm3 −
1

2
m2

3

φPRV (u1) = exp{−b(u1)− a(u1)β′(RVt)} φPX(u2) = exp{−b(u2)− a(u2)β′(Xt)}

b(u1) = δ ln(1 + cu1) a(u1) =
cu1

1 + cu1

b(u2) = δ ln(1 + cu2) a(u2) =
cu2

1 + cu2

A5 proof of Equation 4.21

Proof. In order to satisfy the no-arbitrage condition in Equation 4.21, we plug

stochastic discount factor into Eq.4.21, then we have:
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EP
t

[
exp{−m1β

′(RVt)−m2β
′(Xt)−m3yt+1 + yt+1}

φPRV (u1)φPX(u2)

]
= 1

EP
t

[
exp{−(v1 + γ(v3 − 1)− 1

2
(v3 − 1)2)β′(RVt)} exp{−(v2 + γ(v3 − 1)− 1

2
(v3 − 1)2)β′(Xt)}

φPRV (u1)φPX(u2)

]
= 1

φPRV (ũ1)φPX(ũ2)

φPRV (u1)φPRV (u2)
= 1

where

φPRV (u1) = exp{−b(u1)− a(u1)β′(RVt)} φPX(u2) = exp{−b(u2)− a(u2)β′(Xt)}

u1 = m1 + γm3 −
1

2
m2

3 u2 = m2 + γm3 −
1

2
m2

3

φPRV (ũ) = exp{−b(ũ)− a(ũ)β′(RVt)} φPX(ũ) = exp{−b(ũ)− a(ũ)β′(Xt)}

ũ1 = m1 + γ(m3 − 1)− 1

2
(m3 − 1)2 ũ2 = m2 + γ(m3 − 1)− 1

2
(m3 − 1)2

Now we let ũ1 = u1 & ũ2 = u2, so as to satisfy right-hand side of Eq.??.

Hence we have:

m1 + γ(m3 − 1)− 1

2
(m3 − 1)2 = m1 + γm3 −

1

2
m2

3

− γ − 1

2
m2

3 +m3 −
1

2
= −1

2
m2

3

m3 = γ +
1

2
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A6 proof of Equation 4.23

Proof.

EQt [exp(−α′Πt+1)] = EPt [Mt,t+1 exp(−α′Πt+1)]

= EPt [Mt,t+1 exp{−α1β
′(RVt)− α2β

′(Xt)− α3yt+1}]

=
Ept [exp{−(m1 + α1)β′(RVt)− (m2 + α2)β′(Xt)− (m3 + α3)yt+1}]

φPRV (u1)φPX(u2)

=
EPt

[
exp{−(m1 + α1) + γ(m3 + α3)− 1

2 (m3 + α3)2β′(RVt)}
]

φPRV (u1)φPRV (u2)

×
EPt

[
exp{−(m2 + α1) + γ(m3 + α3)− 1

2 (m3 + α3)2β′(Xt)}
]

φPRV (u1)φPRV (u2)

=
φPRV ($1)φPX($2)

φPRV (u1)φPX(u2)

where

$1 = (m1 + α1) + γ(m3 + α3)− 1

2
(m3 + α3)2

= (m1 + α1) + γ(
1

2
+ γ + α3)− 1

2

[
1

4
+ γ + α3 + 2α3γ + γ2 + α2

3

]
=

(
m1 +

1

2
γ2 − 1

8

)
︸ ︷︷ ︸

λ1

+

(
α1 −

1

2
α3 −

1

2
α2

3

)
︸ ︷︷ ︸

ς1

= λ1 + ς1

and

$2 = (m2 + α2) + γ(m3 + α3)− 1

2
(m3 + α3)2

= (m2 + α2) + γ(
1

2
+ γ + α3)− 1

2

[
1

4
+ γ + α3 + 2α3γ + γ2 + α2

3

]
=

(
m2 +

1

2
γ2 − 1

8

)
︸ ︷︷ ︸

λ2

+

(
α2 −

1

2
α3 −

1

2
α2

3

)
︸ ︷︷ ︸

ς2

= λ2 + ς2
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Therefore, the LT of HAR-MIDAS under risk-neutral measure Q can be

written as:

EQ
t [exp(−α′Πt+1)] = EP

t [Mt,t+1 exp(−α′Πt+1)]

=
φPRV ($1)φPX($2)

φPRV (u1)φPX(u2)

=
φPRV (λ1 + ς1)φPX(λ2 + ς2)

φPRV (λ1)ϕPX(λ2)

A7 proof of Proposition 2

Proof. Since

EQt [exp(−α′Πt+1)] = EPt [Mt,t+1 exp(−α′Πt+1)]

=
φPRV ($1)φPX($2)

φPRV (u1)φPX(u2)

=
φPRV (λ1 + ς1)φPX(λ2 + ς2)

φPRV (λ1)ϕPX(λ2)

=
exp{−b(λ1 + ς1)− a(λ1 + ς1)β′(RVt)} exp{−b(λ2 + ς2)− a(λ2 + ς2)β′(Xt)}

exp{−b(λ1)− a(λ1)β′(RVt)} exp{−b(λ2)− a(λ2)β′(Xt)}

Thus
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b(λ1 + ς1)− b(λ1) = δln (1 + c(λ1 + ς1))− δln (1 + cλ1)

= δln

[
1 + cλ1 + cς1

1 + cλ1

]

= δln

[
1 +

c

1 + cλ1
ς1

]
where c∗1 = c

1+cλ1

b(λ2 + ς2)− b(λ2) = δln (1 + c(λ2 + ς2))− δln (1 + cλ2)

= δln

[
1 + cλ2 + cς2

1 + cλ2

]

= δln

[
1 +

c

1 + cλ2
ς2

]
where c∗2 = c

1+cλ2
, δ∗ = δ

a∗(ς1)β∗RVt = a(ς1 + λ1)− a(λ1)

a∗(ς1)β∗RVt =

[
c(ς1 + λ1)

1 + cς1 + cλ1

− cλ1

1 + cλ1

]
β′RVt

=


(

c

1 + cλ1

)
︸ ︷︷ ︸

c∗1

(
ς1

1 + cλ1 + cς1

) β′RVt

=


(

c

1 + cλ1

)
︸ ︷︷ ︸

c∗1

(1− c∗1λ1) β′RVt︸ ︷︷ ︸
β∗RV



where β∗RVt =
β′RVt

1+c∗1λ1
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a∗(ς2)β∗Xt
= a(ς2 + λ2)− a(λ2)

a∗(ς2)β∗Xt
=

[
c(ς2 + λ2)

1 + cς2 + cλ2

− cλ2

1 + cλ2

]
β′Xt

=


(

c

1 + cλ2

)
︸ ︷︷ ︸

c∗2

(
ς2

1 + cλ2 + cς2

) β′Xt

=


(

c

1 + cλ2

)
︸ ︷︷ ︸

c∗2

(1− c∗2λ2) β′Xt︸ ︷︷ ︸
β∗X



where β∗Xt
=

β′Xt

1+c∗2λ2
.
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Chapter 5

Conclusions and Future

Research Suggestions

This thesis consists of three papers that focus on evaluating the impacts

of macroeconomic information on volatility, its long-term persistence and its

structural changes, as well as European option pricing.

In the first paper, we explore the relationship between macroeconomic infor-

mation and long-term stock market volatility, which has attracted considerable

attention after the recent financial crisis and subsequent European debt crisis.

We employ the GARCH-MIDAS model to evaluate the impact of macroeco-

nomic information on stock volatility across three developed countries, U.S,

UK and Japan. Adopting a wide range of macroeconomic variables for each

country, we observe a significant improvement for volatility modelling and fore-

casting from including macroeconomic information throughout all three stock

markets. We also find that the relationship between macro information and

stock volatility is time-varying with regard to different underlying economic

conditions. It is quite difficult to identify a dominant variable that contributes

most in terms of explaining stock market volatility. To address with this we

employ principal component analysis to compress the macroeconomic variables
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into common factors. We then use the the first principal component to exam-

ine if there is a “combined”, or more general macroeconomic effect on stock

volatility. Empirical results in the UK reveal that the first principal component

outperforms most individual macroeconomic variables, in terms of goodness of

fit across all sub-samples. We also find that there are significant volatility

spillovers from the US to the UK and Japan and that including spillovers in

the models provides a better understanding of the impact of macro information

on local stock volatility.

Our study contributes to the literature on the relationship between the

macroeconomy and stock return volatility by providing international evidence

on the time-varying relationship between macro information and stock volatil-

ity and the importance of global volatility spillovers, proxied by US volatility,

in explaining the relationship between volatility and the macroeconomy. Our

results in the first chapter also highlight the importance of taking structural

breaks into consideration when evaluating the macro influence on long-term

volatility persistence. The main shortcoming in the GARCH-MIDAS model

is that, without further partition, it can not incorporate potential structural

changes in long-term volatility. Hence, further research evaluating the macroe-

conomic determinants of stock volatility can be carried out under a regime-

switching volatility model, where the number of regimes are data driven.

In the second paper, we undertake an analysis of the impact of macroe-

conomic information on long-term persistence and structural changes in stock

volatility. We firstly extend the Heterogeneous autoregressive Realized Volatil-

ity (HAR) model by including macroeconomic information using the Mixed

data sampling (MIDAS) approach, which we term the HAR-MIDAS model.

Our empirical evidence shows that there is a significant improvement in volatil-

ity modelling and forecasting via the HAR-MIDAS model specified with macroe-

conomic variables. We then extend the Tree-HAR model to allow macroeco-
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nomic information to determine volatility within local regimes and to perform

as a threshold to identify regime-switching in volatility. In addition to the

significant explanatory power of macroeconomic information, we also observe

that macroeconomic information together with historical volatility jointly trig-

ger structural changes in volatility. Both expected and unexpected macroeco-

nomic information helps to deliver a more elaborate regime structure for stock

volatility. In addition to high and low volatility regimes, we also identify a

medium-volatility regime that itself can be further split by the macroeconomic

threshold variables.

The findings in the second paper contribute to the existing literature on

the macroeconomic determinants of structural changes in stock volatility. A

limitation of the current literature is the lack of evidence concerning the varia-

tion of macroeconomic effects across different regimes in one realized volatility

model. According to our estimation results, in the Tree-HAR model most

macroeconomic variables re-define the medium-volatility regime into two sub-

regions. Strikingly, a substantial amount of magnitude changes of macroe-

conomic effects can be found across those two sub-regions. Further research

can examine whether these variations in the macroeconomic determinants of

volatility across different regimes can be related to changes in monetary policy.

In the third paper, we apply our HAR-MIDAS model to the option pricing

domain and examine the option valuation aspects of macroeconomic infor-

mation in a realized volatility model. Our results reveal that macroeconomic

variables helps to deliver better option valuation results, relative to the Duan’s

GARCH-MIDAS model, across maturity and moneyness. Other than that, un-

expected information, measured by macroeconomic uncertainty, outperforms

alternative macro variables in the sense that it delivers more accurate results

in pricing out-of-money (OTM) options with long-maturity.

The findings in our third paper offer several avenues for further research.
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Our HAR-MIDAS option model quantifies to what extent changes in economic

conditions are reflected in option valuation, which might shed new light on

using option data to infer market participants’ reactions regarding changes in

the economy. In our study, macroeconomic information together with return

and realized volatility jointly determine the pricing kernel in the HAR-MIDAS

option model. Consequently, the pricing kernel indicates the compensation for

two source of risks: one from the stock market (both return and volatility)

and one from macroeconomic conditions. Therefore, further research can also

focus on the macroeconomic interpretation of the pricing kernel.

In sum, evaluating the relationship between macroeconomic information

and asset volatility in this thesis not only enriches the Macro-finance literature

but also provides empirical insights that are of benefit for market participants

and policy makers. From the market participants’ perspective, volatility es-

timation and prediction are of essential importance for risk management and

asset allocation. As various assets behave differently during economic reces-

sion (also expansion), investor needs to rebalance the porfolio according to

its underlying economic circumstance, so as to maintain a stable returns with

lower volatility risk. Kollar (2013) points out that as assets behave differently

over different stages of the business cycle, bringing macroeconomic information

into consideration in asset allocation and the rebalancing of portfolio positions

pays off in terms of more stable performance and lower volatility. Avramov

et al. (2011) also state that incorporating macroeconomic information to im-

prove volatility predictability is important in terms of optimal portfolios for

hedge funds. In terms of option pricing, our results show that with the inco-

proation of macroeconomic information, we are able to isolate the long-term

volatility component more precisely, somehting which is favourable for option

pricing. This is particularly important because, as noted by Amin and Ng

(1993), the short-term volatility component does not play an important role
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for option pricing, especially for long-maturity options. Instead accuracy is

largely attributed to the long-term volatility component. Therefore, our study

on the relationship between macroeconomic information and long-term volatil-

ity movements can surely shed some light on judging the accuracy of option

pricing for individual stock options.

In terms of implications for research involving the macroeconomy, consider

monetary policy. Its main objective is to achieve price stability and economic

growth. Due to the close link between financial market volatility and macroe-

conomic information, financial market volatility actually reflects participants’

expectations about the future direction of the economy and monetary policy.

Central banks can make use of this to conduct (or adjust) its monetary policy

based on the relationship between and feedback between volatility in the stock

market and the macroeconomy. When financial markets are informative, the

central bank will promptly adjust its monetary policy. However, when infor-

mation flows are disrupted, such as during times of financial stress, ineffective

policy and the spillover effect from financial markets to the real economy might

lead to downturns in the economy (see Bemanke and Gertler (1989)Mishkin

(2009)). Our research sheds some light on the linkage between the stock mar-

ket and the macroeconomy and the role macroeconomic information can play

in determining volatility regimes, which in turn provide valuable insight and

information about periods of severe market and economic turbulence such as

that during and following the most recent financial crisis. The research and

results in this thesis suggest that further examination and investigation of the

use of macroeconomic variables and macroeconomic information to improve

asset allocation strategies, the accuracy of asset pricing models such as those

used for pricing options as well as for hedging risk should prove fruitful. Our

research also suggests that further research into the real response of different

type of trading activities in financial markets to macroeconomic policies such

228



as monetary policy would be beneficial.
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