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Error driven synapse augmented
neurogenesis

Adam Perrett*, Steve B. Furber and Oliver Rhodes

Department of Computer Science, The University of Manchester, Manchester, United Kingdom

Capturing the learning capabilities of the brain has the potential to

revolutionize artificial intelligence. Humans display an impressive ability to

acquire knowledge on the fly and immediately store it in a usable format.

Parametric models of learning, such as gradient descent, focus on capturing

the statistical properties of a data set. Information is precipitated into a network

through repeated updates of connection weights in the direction gradients

dictate will lead to less error. This work presents the EDN (Error Driven

Neurogenesis) algorithm which explores how neurogenesis coupled with

non-linear synaptic activations enables a biologically plausible mechanism to

immediately store data in a one-shot, online fashion and readily apply it to a

task without the need for parameter updates. Regression (auto-mpg) test error

was reduced more than 135 times faster and converged to an error around

three times smaller compared to gradient descent using ADAM optimization.

EDN also reached the same level of performance in wine cultivar classification

25 times faster than gradient descent and twice as fast when applied to MNIST

and the inverted pendulum (reinforcement learning).

KEYWORDS

neurogenesis, synaptic activation, classification, regression, reinforcement learning,

one-shot

1. Introduction

The brain possesses an impressive ability to acquire information and is able to readily

apply it without a disconnect between learning and acting. An adult can be presented

novel stimuli with associated labels and is immediately able to recall and manipulate

these concepts. This is in part a consequence of the learning that has happened before

(both in the life time of the human and on an evolutionary timescale) to extract general

features, but it is also a consequence of the state in which information is stored in the

brain. With time, through sleep and further training, memories can be consolidated and

kept in a more general form (Stickgold, 2005) for future application.

One possible mechanism by which information can be stored in the brain is

via neurogenesis, a process which continues throughout a lifetime (Spalding et al.,

2013). Research has suggested that adult hippocampal neurogenesis plays a roll in

learning and memory (Deng et al., 2010). Newborn neurons de novo grow axons and

dendrites forming both efferent and afferent synapses enabling topological adaptation.

The integration of neurogenesis in the hippocampus suggests an important role in

learning and memory throughout a lifetime, which is missed from the majority of

machine learning approaches.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.949707
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.949707&domain=pdf&date_stamp=2022-10-28
mailto:adam.perrett@manchester.ac.uk
https://doi.org/10.3389/frai.2022.949707
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2022.949707/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Perrett et al. 10.3389/frai.2022.949707

Traditional Artificial Neural Network (ANN) training

techniques, such as gradient descent, skip the initial acquisition

of memories and their functional storage, and jump straight

to building a generalized representation. These algorithms are

examples of parametric models that allow an input-output

mapping to be compressed into the parameters of a network.

Owing to the universal approximation properties of artificial

neurons with sigmoid activation (Cybenko, 1989), in theory,

a statistical summary of any data can be captured in the

parameters of an ANN. Learning usually begins with the weights

of a predefined architecture being randomly initialized, the

gradient of an error with respect to the weights is estimated and

used to gradually move the network toward a position in the

parameter space with reduced error. The random initialization

can also have a bearing on the final optimum that will be

converged upon due to a sensitivity to initial conditions. This

is an incremental approach and requires averaging over many

samples before a useful model can be elucidated.

Gradient descent uses data to build a statistical summary

and incorporate it in the weights of the ANN. This leads to a

condensed representation within the network and a generalized

solution, assuming suitable architecture and hyperparameters.

This condensed statistical representation leads to the black box

nature of ANNs; their behavior cannot easily be investigated

without evaluation using a test set. This can be problematic

in cases with limited data where situations that must be

accounted for are not part of the training data, such as different

weather and lighting conditions for an autonomous car. It is

also of importance in understanding what particular features

are being selected for to produce an output, for example in

medical diagnosis.

The general function of gradient descent algorithms applied

to ANNs, such as Back-Propagation (BP), requires that the

network be paused to perform an update. This is in part

because of gradient descent often utilizing batch updates to

smooth weight updates across multiple examples. There is

also the computational demand of calculating gradients for all

weights within the network and combining it with the produced

error which can prove challenging during operation. Online

learning could allow robots to explore an environment and

adapt its behavior continuously, such as changing its gait to

adapt to unexpected terrain or select new behavior after damage.

Solutions exist to this such as the multi-compartment model

of dendritic microcircuits (Sacramento et al., 2018) in which

activity is simultaneously passed forwards and backwards to

enable online updating of connection weights in a biologically

plausible way.

Recent research has shown that the branching arms,

dendrites, of L2/L3 pyramidal neurons possess non-linear

activation functions capable of solving the XOR task (Gidon

et al., 2020). They are not active with low level stimulus

before a threshold level at which they begin producing

activity. After a point, as input stimulus increases their activity

decreases. This suggests some tuning of dendritic activity to

a particular level of input activation. If that tuning can be

adjusted to the level of inputs then the dendrites can be

argued to have stored memory of those activations. This is

a contrast to standard ANN connections which perform only

linear transforms of inputs. There is evidence of dendritic

dynamics andmaintenance being involved in long termmemory

formation and cognition (Sutton and Schuman, 2006; Kasai

et al., 2010), suggesting there is still far more untapped

computational power within the biological brain yet to be

harnessed by modern artificial intelligence.

Memory within neural networks often takes the form of

Long Short Term Memory (LSTM) units (Sundermeyer et al.,

2012; Greff et al., 2016; Bellec et al., 2018; Rao et al., 2022). They

have shown great performance applied to time series data such

as video and speech processing (Sak et al., 2014; Huang et al.,

2015). They allow the storing of information in a way that can

be trained via gradient descent which is ideal for traditional

learning approaches in ANNs. External memory units have

also been used in conjunction with neural networks (Weston

et al., 2014; Graves et al., 2016). A powerful example is the

neural Turing machine in Graves et al. (2014) which possesses

memory locations which can be used to store and retrieve

data. Their design allows training via gradient descent, as

with LSTMs. However, due to their reliance on gradient based

techniques they require large amounts of compute time to

form and manipulate useful memories of the system. Deep

neural networks have been augmented with episodic memory

units in an attempt to solve the data hungriness of model-

based neural network approaches. This is often in the form

of a lookup table whose stored value is used in conjunction

with a neural network trained with gradient descent (Lengyel

and Dayan, 2008; Lopez-Paz and Ranzato, 2017; Lin et al.,

2018). The addition of an episodic memory buffer enables

quick acquisition of beneficial behaviors which can be exploited.

This is exemplified in Blundell et al. (2016) in which a purely

table based approach to episodic memory is used to solve

Markov Decision Processes. The approach boasted fast learning

capabilities as a result of being able to quickly exploit highly

rewarding states. However, the episodic approach may be

overtaken by parametric function approximators, such as DQN,

in the later stages of training.

As mentioned earlier, neurogenesis has been suggested

to play a role in learning and memory formation. However,

neurogenesis has been a target of research within the machine

learning community mainly with a focus on continual learning.

In Draelos et al. (2017), this is displayed by first training

an auto-encoder on a reduced number of Modified NIST

(MNIST) classes using gradient descent. After adding the

missing classes neurons are added to layers with a high

reconstruction error and further trained with a reduced learning
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rate on non-new connections. This allows the network to

adapt its architecture in response to the data and incorporate

new information with mitigated catastrophic forgetting. Other

examples of neurogenesis in literature often rely on starting

first with a trained network and adding neurons via some

method and further training the networks, such as in Mixter

and Akoglu (2021) where neurons were added to a seed

network using neuron activity as a selection metric. The

algorithm grew the network displaying a reduced parameter

size compared to standard approaches or methods employing

pruning techniques with comparable MNIST performance.

Martin and Pilly (2019) also start with a pre-trained network

applied to MNIST. Following initial training a perturbed

version of MNIST is presented and a genetic algorithm used

to determine where new neurons should be added before

being trained with stochastic variational inference to set the

new weights. Parisi et al. (2018) apply neurogenesis to self-

organizing maps with new neurons added to a pre-trained

feature extractor layer and later trained with a Hebbian learning

rule. Abolfazli Esfahani et al. (2021) use a seed network not

trained on the desired task and instead took the first feature

extraction layer of GoogLeNet trained on Places205 (Zhou et al.,

2016), a place recognition data set. By utilizing the robust

feature detectors of the first convolutional layer, particle swarm

optimization was applied to control neurogenesis to create a

corner detector.

There is very limited work on neurogenesis that does not rely

on a seed network, the best example comes from Strannegård

et al. (2019) in the paper Lifelong Learning Starting From

Zero. They begin with an empty network and add neurons

in response to errors, unlike the similar work of Eriksson

and Westlund Gotby (2019) in which neurons are added for

unrepresented states. Value nodes connected to neurons use

Gaussian transfer functions to enable downstream neurons to be

maximally responsive to particular inputs. The weights, biases,

and Gaussian parameters are updated via backpropagation and

gradient descent. Quick learning capabilities are displayed in

contrast to networks trained with only gradient descent.

The algorithm explored in this paper, Error Driven

Neurogenesis (EDN), leverages neurogenesis to enable online

one-shot learning in a range of applications. It displays a rapid

acquisition of new information, without the need for gradient

calculation, in a biologically plausible way by modeling forms

of neurogenesis and dendritic non-linearities. Starting from an

empty network imbues it with no initialization bias and it is

therefore only driven by the inputs it is presented and the context

they are put in by the current performance of the network and

how that effects the error generated. The paper is organized

as follows: in Section 2 an overview will be given of EDN’s

design before discussing how it is applied to different domains

in Section 2.2 and then contrasting it with similar algorithms in

Section 2.3. Following this results are displayed in Section 3 and

discussed in Section 4.

2. Methods

The current focus of machine learning research is often

on the fine tuning of ANN parameters. An architecture is

predetermined using expert knowledge to best suit a specific

task and is gradually fed data to create a statistical model. This

limits the general applicability of the network as a different

topology may be required in a different domain and applying

it to a new task can result in catastrophic forgetting, significantly

hurting performance on the previously learnt task. It also does

not enable the network to fine tune its structure in response

to unexpected limitations, such as requiring more layers or

more neurons to extract different features. Neurogenesis offers

a potential solution to these problems by incorporating new

neurons into a network. This can be done in a way that does

not effect the previously learned information whilst allowing

incorporation of new data. The algorithm explored in this work

relies on three key principles: (1) errors drive learning, (2)

synapses can be used to store information, and (3) neurogenesis

facilitates information acquisition. When put in a learning

scenario this combination leads to amodular network that grows

in response to errors and stores information to mitigate these

errors in its synapses. Code is available at: https://github.com/

adamgoodtime/neurogenesis.

2.1. Error driven neurogenesis algorithm
design

An overview of EDN’s operation can be seen in Figure 1A.

There are three key elements to the EDN algorithm: error

generation, neurogenesis and synaptic storage. First an input

is presented to the network which in turn produces an output.

The output is used to generate an error signal which is

compared with a threshold to determine whether neurogenesis is

triggered. Following the triggering of neurogenesis input values

are selected to be stored, creating a neuron that is maximally

active at the presentation of the same input. This newborn

neuron is then connected to the corresponding outputs as

determined by generated error, e.g., guessing a 3 when the

class was 8 would connect negatively to the 3 and positively

to the 8. This has now added a neuron to the network

that upon seeing the same input of an 8 will inhibit the 3

and excite the 8. This process continues incrementally adding

more information to the network each time the error is large

enough. The repeated process of neurogenesis will build a

network similar to Figure 1B. The following subsections will

build on the overview of Figure 1 by first explaining how

the network processes information and how that determines

its representation. Next neurogenesis will be explained and

how it makes use of the synapses to store information and

alleviate errors.
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FIGURE 1

(A) The general structure of the EDN algorithm. First an input is presented which produces an associated error, if the magnitude of the error is

above the error threshold then neurogenesis is triggered. A�erent synapses of the newborn neuron are selected and the values of the current

inputs set the center of the kernel function on the synapses. The outputs whose error is above threshold are connected to the new neuron using

synapses with weights proportional to the errors produced. (B) An example topology created with EDN. The di�erent colors connected to the

hidden neurons signify di�erent sub-sampled input vectors which have been stored on the synapses; they all contribute equally to neuron

activity. The color and thickness of connections between the hidden layer and the outputs displays that output connections are weighted and

the magnitude can be negative or positive. The weight of these connections is determined during the training process by the error produced

when neurogenesis is triggered.

2.1.1. Network activation

The EDN network is composed of two elements, the neurons

and the synapses. In contrast to traditional ANNs, the synapses

contain the non-linearities, not the neurons. The synapse

activation is a triangle kernel centered around a value v which

is sampled from the inputs when neurogenesis is triggered and

stored as a synapse parameter. The width of this kernel is

controlled by the spread s. Equation (1) shows how an input, x,

is transformed with the triangle kernel, k, to produce the synapse

activation. This puts maximum synapse activation when the

input x is the same as v with activation dropping the larger the

separation until a difference of s at which it becomes zero. This

is similar to the non-linear properties of dendrites discussed in

Gidon et al. (2020) shown to be able to solve the XOR problem.

k(x) = max

(

0, 1−
|(v− x)|

s

)

(1)

an =
1

N

N
∑

i

k(xi) (2)

Neuron activation, an, is governed by Equation (2). The N

inputs, xi, are passed through the triangle kernel, k, to produce

the synapse activations. The synapse activations are averaged to

produce the neuron activation without any weight term. This

makes neuron activation a measure of similarity between the

synapse parameter v (taken from previously stored input values)

and the current inputs x. The measure of similarity is 0 − 1

because of the activation limits imposed by the function k and

the averaging of the inputs. Synapses from the hidden neurons

to the outputs also possess the non-linear activation shown in

Equation (1) with v = 1 and the same value of s as the rest of the

network. This acts to threshold neuron contributions to outputs

to only the most similar detected features.

ay =

N
∑

i

wik(ani ) (3)

Output activation, ay, is controlled by Equation (3). Output

values are calculated in much the same way as neuron activation

with the main difference being the addition of a weight term

w which is a function of the error (discussed in Section 2.2

for each task domain). The weight is calculated during training

and modulates the contribution of each neuron, and therefore

feature, to the output values. Also, activation is now the sum

of the inputs rather than the average. As many hidden neurons

can be connected to the outputs with only a fraction of them
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FIGURE 2

A comparison of a standard ANN neuron with ReLU activation and an EDN neuron’s activation. The black dot is a single data point, the pink

shaded area shows the output activation of the neuron in both cases, with a deeper color representing a higher level of activation. The red and

blue shaded areas represent the level of activation of each synapse, which possess the triangle kernel shown in the bottom right, with spread s

and centered at individual values of v. The EDN neuron’s activity is the average of the incoming synapse activity and is also passed along an

outgoing synapse using a triangle kernel with the same s value and v = 1. This output synapse acts to threshold neuron activity and create the

bounded purple area in the input space in which the neuron is active.

being active, the sum provides more information about relative

difference between output activity.

A graphical 2D example of a single neuronal unit’s activation

(composed of synapses connecting inputs to the neuron and

the neuron to an output) is shown in Figure 2. The EDN

neuron’s synapse activation can be seen to be highest around

the values v0 and v1 and decreasing further from those stored

values. As the neuron activation also passes through a synapse

possessing a triangle kernel, the neuron activation is thresholded

creating the diamond activation at the center of the two

synapses peak activation, (v0, v1), which is narrower than the

synapse activation.

2.1.2. Network representation

A key difference in EDN compared to traditional ANN

approaches is the way information is stored within a network.

Neurons in a standard ANN take a linearly weighted sum of

inputs and pass it through a non-linear activation function. This

is analogous to drawing a hyperplane through n-dimensional

space and having the neuron’s activation relative to the distance

from this plane (see Figure 2). By combining multiple neurons

in multiple layers a complex high dimensional boundary can

be created which determines a certain output for any input.

The training of such a network typically requires the gradual

acquisition of data to build a statistical summary of input-output

mappings into the functionality of the network architecture.

Instead of neuron activity being relative to distance from

a hyperplane, the activity of neurons in EDN are relative to

distance from a data point. This removes the need for averaging

over multiple instances as a single point can already say with

confidence that the area around it is likely to share the same

property. This is exemplified by Figure 2 where on the left

a traditional ANN neuron with ReLU activation attempts to

classify a single data point but without other data it becomes

hard to say with any confidence where the boundary should

be placed. On the right an ANN neuron’s activation is shown

with the neuron activation being limited to the area around the

stored data point. The ReLU neuron will remain active infinitely

far from the hyperplane. For this to be beneficial, generalization

overmany data points is required to create an appropriate model

of the input-output mapping.

EDN neurons allow the instant acquisition of information

and an adaptation of the network’s model without disruption

to previously learned information. The parameters retained

within the model are never updated; information is only
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added never altered. In parametric versions of ANNs care

must be taken when incorporating new information as error

is transferred to the parameters (connection weights) of

the network and can effectively overwrite previously learned

knowledge. This is termed catastrophic forgetting and can

limit the continual learning capabilities of ANNs as result

of them being parametric models. Updating the model to

include more information requires updating parameters which

is where previous information is stored. The knowledge is

being condensed into a limited number of parameters, therefore,

changing any can alter the representation as a whole. Training

a parametric model requires gradual tuning of parameters to

ensure the model represents the data as a whole.

2.1.3. Synapse creation

When neurogenesis is triggered the current input values are

retrieved to become the v parameter for synapses connecting

to the newborn neuron. They form the afferent synapses of the

newborn neuron creating a neuron which is maximally active

when presented with the same inputs as were just stored. Subsets

of inputs can be selected to be the incoming synapses of the

neuron. This moves the neuronal representation from an input-

output mapping to a feature-output mapping. Efferent synapses

of all hidden neurons have a uniform v equal to 1, in contrast

to the afferent synapses where v is set by the values of the

inputs. Because the synapses still possess a triangle kernel this

acts to threshold and amplify output contributions of neurons

which are receiving themost similar inputs to their stored values.

Neuron contributions to outputs is further modulated by error,

discussed next.

2.1.4. Error integration

The algorithm uses neurogenesis to mitigate errors

produced by the network. Neurogenesis is only triggered if the

magnitude of the error is above the error threshold Eth. The

way in which error is produced and integrated into the network

is task specific and will be elaborated in Section 2.2. A general

way to view it is to compare it to how weights are updated

in gradient descent. The sign of the gradient indicates which

direction the weight should be altered, more or less positive,

to reduce the error. You subtract the gradient from the weight

to move the weight in the opposite direction of the gradient

of the error with respect to the weight. This update can be

broken into two components: a magnitude and a direction. In

EDN the magnitude is incorporated into the w parameter of

efferent synapses of hidden neurons to outputs. The direction

is governed by the inputs stored in the afferent synapses’ v

parameter. This in essence makes each neuron an individual

update to overall network performance.

A comparison of learning dynamics between gradient

descent and EDN can be seen in Figure 3. It is a 2D toy example

composed of three classes: red, green, and blue, with all points

being the training data. Decision boundaries are drawn for each

class at each training step. At the start EDN has no output

representation and thereforemakes no guess about which output

belongs to what point in the input space, this can be seen as

the white area around the points. The network initialization of

gradient descent produces a bias at the beginning of training

creating an output for all points in space. This is a consequence

of the neuron activation that is active infinitely far from the

hyperplane drawn by the incoming synapse weights, although

they have no bearing on the data at this stage. As training

progresses the class boundaries drawn by gradient descent shift

and begin to match the data. It is also seen that EDN’s storage

of a few data points enables the classification of many other data

points immediately. This trend continues with gradient descent

gradually matching the input data until a general approximation

of data distribution is converged upon. EDN converges to

a general boundary surrounding the classes, although, there

remains no activity far from the data points. If subsamples of

inputs were taken neuron activity could persist along selected

dimensions, however, with this example all inputs are selected to

be a part of the new neuron. The network trained with gradient

descent is active far beyond the training data, although there is

no way to be certain those extrapolations are correct.

2.1.5. The neuronal unit

The network in EDN is a collection of independent and

modular neurons. Each one has a set of input synapses that

are more active the closer the input activity is to their stored

v value. A neuron’s contribution to the outputs is proportional

to the output error produced when that neuron was created.

Combined, this creates a modular neuronal unit that attributes a

specific output value to inputs similar to its stored v-values. The

more similar the input the more confident the neuron is in the

expected output. En masse this creates a network that, through

training, has an expectation of the correct output for all points

within a certain distance of the saved features.

The storage of information on the synapses allows neurons

to be investigated and input-output mappings to be extracted

from the network. The values of v on the afferent synapses

store the inputs and the efferent synapses indicate which outputs

those inputs correspond to. When subsets of inputs are selected

this enables feature-output mappings to be extracted. Parametric

models do not possess this ability as the knowledge is condensed

into a set number of parameters. Evaluating the model requires

querying it with input and observing the output. Investigating

output response to inputs is important to be able to accurately

examine performance, however, being able to dissect a network

and determine what constituent elements compose the behavior

as a whole enables fine grained inspection and conclusions to

drawn beyond the data presented to the model.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2022.949707
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Perrett et al. 10.3389/frai.2022.949707

FIGURE 3

A selection of training steps of EDN (top) and an ANN trained with gradient descent (bottom) are shown for a toy classification example. Each

training iteration is a single input presentation with the boundary being displayed after the network has been updated to incorporate the training

error. The data set is composed of three classes: blue, green, and red. Class boundaries are drawn in a darker shade than the data points

showing what output each model would associate to that point in space. The white area around the EDN plots indicates that there are no output

activation at that point in the input space, meaning all outputs are zero and, therefore, no class is chosen.

2.2. Task specific alterations

For all tests input values are normalized between 0 and 1

by subtracting the minimum and dividing by the range before

training. An error threshold, Eth, determines the minimum

absolute error that is required for neurogenesis to trigger. Only

outputs with a magnitude of error greater than Eth will form

connections with the new neuron.

2.2.1. Classification

For the classification tasks the error is generated by

subtracting the estimated classification (softmax of the output

values), y∗, from a one-hot encoding of the correct labels, y. This

gives positive error for outputs which were not large enough

and negative error for outputs which were too high. As shown

in Equation (4), this error value, E, becomes the weight of the

connection from a new neuron j to the respective output i if

neurogenesis is triggered.

wji = yi − y∗i = Ei (4)

2.2.2. Using surprise to guide input selection in
classification

During classification, when neurogenesis is triggered a

record of the input values stored on afferent synapses is

added to an expectation for the associated class. Similar to

the way regression values are calculated and saved, discussed

in Section 2.2.3, the stored values of v and their inverses are

collected from new neurons creating a combined representation

of the classes.

When neurogenesis is triggered the expected output for each

class, ey, is multiplied by the softmax activation values of their

respective outputs, ay, and summed across outputs creating

a combined expected output, e (see Equation 5). The activity

modulated expectation and the input values, x, are compared

for each individual input, i, to create the input surprise s, as

shown in Equation (6). Inputs with a surprise greater than the

surprise threshold, sth, are selected to form synapses of the new

neuron. When there is no expected value of an input, such as at

the beginning of training, the input is selected by default.

e =

outputs
∑

y

ayey (5)

si = abs(ei − xi) (6)

2.2.3. Encoding continuous values

Classification is a mapping from inputs to a discrete label but

many possible input output mappings do not map to discrete

outputs. Regression tasks involve mapping inputs to continuous
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FIGURE 4

An example of how output values of 0 and 1 are combined to

create a position on the regression scale. As described in

Equation (7) the output value for the real part of the scale (red) is

divided by the total of the real and inverted (blue) outputs to

create the position on the regression scale, in this case
26

26+14
= 0.65. This value is then scaled to the full range of

regression values possible in the task to produce the estimated

regression value of the input.

values and, therefore, require a different formulation to work

with EDN. Neurons within EDN attribute a specific input to

a specific output error. In classification this is straightforward

as neurons can be directly connected to the outputs associated

with the error produced. In regression this is less simple as

outputs can take any value within a continuous range. The

output connection has to be able to point at a specific position on

a scale. It also has to be able to point with a certain magnitude to

indicate similarity with stored inputs (neuron activity) and the

associated error created during neurogenesis (output weight).

These challenges are solved by splitting each regression value

into two components, one for the real value on a scale and one

for the inverse value. The scale is from 0 to 1 and is rescaled to

fit the full range of output values possible for the specific task.

A newborn neuron is connected to both the real and the inverse

outputs. The total activity of the network’s contribution to both

outputs is combined to estimate the regression value. This is

exemplified in Figure 4 where a value of 0.65 on a scale from

0 to 1 is encoded as 26 for the real output and 14 for the inverse.

Equation (7) is used to retrieve that position on the scale, where

x is the value, r is the real valued magnitude and i is the inverse

magnitude. This splitting enables the activity level of a neuron

to not effect the estimated output value and instead become a

measure of confidence in the value. Multiple neurons’ activities

can also be added together and modified by individual output

weights to create a weighted average of regression estimates.

x =
r

r + i
(7)

During operation all output values are bounded from 0

to 1 and used to calculate outputs as shown in Figure 4. The

range of possible regression values is used to calculate what

the minimum and maximum values should be when translating

back and forth between a scale from 0 to 1 and actual regression

values. They are scaled to the full range of regression values

to calculate the mean squared error for a given input and 0–1

when represented in the network. This error, E then becomes

the connection weighting from a neuron to the real, wr , and

inverse, wi, outputs with the ratio between the two encoding the

position in the output range associated with that input. This is

shown in Equation (8) and Equation (9) where x is the current

regression value for that input that needs to be stored on the

neuron, min is the minimum possible regression value and max

is the maximum possible value. This attributes a particular input

with a particular regression value and weights it by the error

produced by the network.

wr = E
x−min

max−min
(8)

wi = E(1−
x−min

max−min
) (9)

2.2.4. Reinforcement learning

Classification and regression are learning paradigms where

a model is trained with data in which all inputs are given

an output label, either discrete or continuous. Reinforcement

learning scenarios do not have access to such information and

must make connections between actions taken through time and

their eventual reward state. In EDN, actions are taken greedily

with the output with the highest value used to determine the

action performed. Random actions are taken when all outputs

are equal. There is no correct label due to the reinforcement

learning nature of the task, therefore, errors are simulated by

inhibiting the last m timesteps before a failure. This is in an

effort to reduce the chance of the action associated with a

negative behavior happening in the future. The most recent

timestep is given an error of −1, then decreasing by 1
m until

the t − mth timestep after which no more neurons are formed.

This generates m new neurons for each failure with the neurons

connected to the output chosen at that particular timestep.

Equation (10) shows how output weights are generated. Only the

ith output corresponding to action i being chosen, ai, at timestep

t forms a connection with the new neuron.

wi = −ai(1−
t

m
) (10)

2.2.5. Neuron reinforcement and deletion

Reinforcement learning presents the challenge of associating

actions with rewards. Unlike classification and regression

there is not a specific input output mapping to learn via

supervision. Negative reinforcement is captured in the error

driven neurogenesis. In the inverted pendulum task a positive

reward is given at each timestep the pole is balanced. This

signal is passed into the network and used to keep track of

each neuron’s contribution to network performance. A neuron’s

individual reward value, R, is first initialized to the average of

the network’s reward, starting at zero for the first neuron, to

allow time for new neurons to be evaluated. The equation for

updating the neuron’s reward, R, at each timestep can be seen in
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Equation (11) where r = 1 is multiplied by the activity of the

neuron, an, and low-pass filtered with a τ value of 0.9999.

To remove unrewarding behaviors, and keep the best input-

action mappings, neuron deletion is used in conjunction with

neuron reward to prune the network of the least productive

neurons. This is done when the number of neurons in the

network goes above a set limit. When a neuron needs to be

deleted the neuron with the lowest accumulated reward is

selected to be removed. This aids in capping network size and

has the added benefit of aiding speed of convergence.

R(t + 1) = τR(t)+ [(1− τ )ran(t + 1)] (11)

2.3. Related algorithms

While EDN shares attributes with ANNs and gradient

descent it also shares commonalities with other learning

algorithms. The methodologies discussed below are similar

in formulation to EDN and are introduced to highlight the

similarities to and differences from related algorithms. They do

not have the same breadth of applicability as backpropagation

and are therefore not used for comparison in the results.

2.3.1. K-nearest neighbors

A similar non-parametric algorithm that leverages the data

points to form the function output of the model is K-Nearest

Neighbors (KNN) (Fix and Hodges, 1989). All the training

data forms the model with the K closest training data points

performing a majority vote to determine the property of an

unseen point. Careful tailoring of K is needed to ensure

appropriate classification (Cover and Hart, 1967). EDN does not

require the defining of a Kwith the training process selecting and

weighting individual data point’s contribution to the combined

model output. The thresholding of output synapse activity puts

a limit on how many neurons will contribute to the prediction.

The synapse thresholding also alters the way in which distance

between data points is measured; if two input vectors are similar

in all but a small number of inputs which are very different

then Euclidean distance between them can become large. In

contrast the thresholded synapse activity will put a cap on the

distance between variables allowing the vector as a whole to

still be considered similar to stored values if a minority are

very dissimilar. This puts an emphasis on the feature-output

mapping rather than the input-output mapping. Only if an error

is produced will this assumption be adjusted and neurogenesis

triggered to alter the belief. This mechanism in combination

with input subsampling puts a stronger emphasis on the features

and their relation to network error rather than the data points

as a whole.

2.3.2. Radial basis functions

Radial Basis Function (RBF) networks share a similar

topological design to EDN. They both have a single layer of

neurons whose activity is distant-dependent from their centers

to the input point with the peak at zero distance. However,

EDN uses a triangle kernel on each synapse rather than an

absolute distance between two points. The neuron then becomes

a measure of distance between features rather than points

in n-dimensional space. This emphasis enables exploration

of different feature combinations and their contribution to

performance and allows neurons to have broader applicability

outside their local area.

When designing an RBF network, once a kernel has been

decided, often Gaussian, there are four main parameters of

RBF networks: number of nodes, center of nodes, radius of the

function, and the weights of the RBF outputs (see Dash et al.,

2016 for a survey of RBF networks). Common training methods

for determining the centers of nodes involve a clustering of the

data points, following this an iterative process of calculating the

radius and weights of each radial basis function reduces some

objective error and guides the network toward a local optimum.

EDN avoids the need for gradient descent and tuning of neuron

parameters by computing error on the fly, and combining this

with the current input to adjust the network as a whole. This

avoids the need for network parameter optimization, however,

EDNwill end up with more nodes within the network compared

to a typical RBF network.

2.3.3. Kernel density estimation

Another algorithm with commonalities to EDN is that of

kernel density estimation (KDE) (Silverman, 1998). By applying

a kernel to individual samples an approximation of the data

distribution can be established. This technique finds its main use

within establishing a probability distribution over a geographical

area. Applying a kernel to samples within a space allows

inference to be made about the area surrounding the samples.

This can even be extended to the time domain as in Nakaya and

Yano (2010) where the temporal element of crime statistics is

used to create an estimated crime density in Kyoto in both space

and time.

The main difference between KDE and EDN is the

uniformity of kernel contribution to the overall output. In KDE

each data point is part of a random distribution and the objective

is to combine those samples to estimate that distribution. Data

points are all considered of equal importance and specific inputs

are not subsampled to extract different features. With EDN

the data points are not all considered uniformly and are only

added to the network if they are not currently captured by the

model, as determined by the error during operation. This pivot

toward an error driven distribution removes the need to store

all data points in a model and also enables application to a wide

variety of machine learning domains. The subsampling of inputs
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FIGURE 5

A comparison of testing accuracy during training on the wine cultivar classification task of EDN (black) and an ANN trained via gradient descent

using ADAM optimization (blue). An inset is shown for the first few iterations of training to display the initial emptiness of the EDN network

producing no output and the initialization bias of the ANN network already achieving testing accuracy equivalent to random choice. The fast

acquisition of information in EDN allows it to overtake the testing accuracy of GD before the first batch update is done at the 8th

training instance.

enables useful features to be extracted in contrast to all inputs

contributing equally.

3. Results

Results are shown for the individual tasks comparing EDN

against Gradient Descent (GD) using the ADAM optimizer.

Following this a parametric analysis of EDN is given using the

wine data set to explore the sensitivity and influence of different

parameters. Parameter values for both EDN and GD were found

via grid search for each task individually and given below.

Parameters for both were selected to optimize primarily for

speed of learning without hurting the stability of performance.

3.1. Wine—classification

The UCI wine data set (Dua and Graff, 2019) is a standard

test classification benchmark comprised of 13 inputs and three

possible output labels determining the cultivar/type of wine.

There are 178 training examples with a class distribution of 59,

71, and 48 for each class, respectively. A stratified K-fold cross-

validation of K = 10 and test set size of 10% is used to evaluate the

performance of the algorithms. A comparison of performance

between EDN and a network trained with GD can be seen in

Figure 5. After every training update networks are evaluated on

the entirety of the test set and the average across each fold is

displayed. The EDN parameters used were: s = 0.4, Eth =

0.1, sth = 0.05. GD used a learning rate of 0.03 with ADAM

optimization, a batch size of 8 and a network with a single layer

of 200 neurons, a network of similar size to the final number of

neurons created in EDN training was selected for comparison.

The bias created by the initialization of the ANN can be

seen in the performance starting at an average testing accuracy

of 39.9%. This roughly mirrors the testing accuracy of random

output selection given the class distribution of this task. In

contrast, EDN begins with an empty network and, therefore,

starts with no initial bias. This results in the network not

being able to make any initial guesses and beginning with

a testing accuracy 0%. The training process adds neurons

to the network, rapidly increasing the testing accuracy and

surpassing the performance of the GD after four samples,

this is before the first batch update of GD has even been

calculated. It can also be seen that learning via GD causes

fluctuation in testing accuracy which stabilizes with time. EDN’s

performance displays less variance between training examples

with a final performance of 99.4+% reached in 298 iterations

using 216 neurons. A few thousand training examples is

required by GD before testing accuracy converges toward a

performance of 99.4%. This is over 25 times slower than EDN

with testing accuracy still not completely converged. Neuron
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FIGURE 6

A comparison of an ANN trained via gradient descent using ADAM optimization (red and blue, with lr being the learning rate and b being the

batch size) against EDN (black) applied to the auto-mpg non-linear regression task. A zoomed in inset is given to display the learning curve of

EDN. Batch sizes and learning rates were chosen which gave the fastest convergence in gradient descent.

count continues to increase in EDN with testing accuracy

remaining constant throughout the remainder of the training.

Early stopping could have been used here to limit network

growth, however, it is continued to display the lack of overfitting

present after convergence.

3.2. Auto-mpg—non-linear regression

The auto-mpg regression data set (mis, 1993) consists of

398 cars with 9 attributes such as number of engine cylinders

and horsepower. The aim is to process the attributes and output

the miles-per-gallon of the car. K-fold cross validation of K =

10 is used to evaluate performance. The results shown are the

average testing accuracy across all folds. The EDN parameters

used were s = 0.4, Eth = 0 and all inputs were selected

by each neuron. Two different configurations are shown for

GD to display how batch size and learning rate can effect

learning. A single layer of 1024 hidden neurons is used as

this resulted in the fastest and most stable learning using

ADAM optimization.

Mean squared error (MSE) is calculated over the whole

testing set after each presentation of an input or batch in

the GD cases where the batch size is greater than one. A

comparison between EDN and GD on the auto-mpg data set

can be seen in Figure 6. EDN begins with its MSE above the

ANN’s, however, it rapidly acquires enough data points to

surpass any converged MSE achieved by GD. GD achieved a

minimumMSE of 24.9mpg2 with a batch size of 1 and 32.9mpg2

with a batch size of 32 during the 20 epochs of training.

EDN surpasses the minimum achieved by GD with an MSE

of 23.2mpg2 after 29 training examples (creating 29 neurons)

and an MSE of 12.2mpg2 at the end of the first epoch (creating

358 neurons as Eth = 0 so every sample creates a neuron).

The error continues to be fine tuned during the proceeding

epochs until a converged MSE of 10.25mpg2. If it assumed that

GD reached its best performance at 4,000 training iterations

(even though performance has not converged yet, especially for

the batch size of 32) this makes EDN over 135 times faster

than GD to achieve the same result. With further training

EDN also converged toward an MSE almost three times smaller

than GD.

Gradient descent takes considerably longer to produce

the same level of performance. EDN can achieve a faster

acquisition of appropriate regression values as neurogenesis

can instantly store values. This mechanism enables any data

points close to this value to be attributed a similar value

which is often close to its true value in regression. EDN is

also not effected by the non-linear nature of this regression

problem compared to GD. As described in Section 2.1.2,

the combination of synapses and neurons in the GD ANN

draws a hyperplane through the input dimensions with a

neuron’s activity being relative to the distance from this plane.

This makes producing a smooth output value across the

input space difficult for GD to achieve, especially in non-

linear regression.
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FIGURE 7

A comparison of an ANN trained in tensorflow using ADAM optimization (black) against EDN with surprise driven input selection (blue) and

random input selection (red) applied to the MNIST classification task. A batch size of 64 is used to train the ANN and the moving average of the

last 50 batches is used to calculate the running training accuracy. EDN training accuracy is the moving average of the last 3,200 (50*64) training

examples as it does not perform batch updates. Training accuracy is used as, since these are the results of the first epoch, non of the data has

been seen before and therefore it is equivalent to testing accuracy.

3.3. MNIST—visual classification

MNIST hand-written digit recognition is a common

benchmark used in visual classification. It is comprised of

the numbers 0–9 discretized into a 28 × 28 grid with grey-

scale pixel intensity from 0 to 255. The data is split into a

training set of 60,000 digits and a test set of 10,000. The

dimensionality of the inputs is far greater for this task than those

explored previously and, therefore, an appropriate sampling of

the inputs is important to aid performance and reduced the

number of parameters in the network. EDN parameters used for

experiments unless otherwise specified were sth = 0.4, Eth =

0.1, and a kernel spread s = 0.4. For EDN with random input

selection the number of input synapses per neuron was limited

to 150, which produced the best performance and is inline

with the average number of synapses selected per neuron with

using sth = 0.4. The ANN trained with gradient descent with

ADAM optimization used 1024 neurons with ReLU activation, a

learning rate of 0.001 and a batch size of 64.

The graph in Figure 7 compares the performance of EDN

against GD. A running average of training classifications is

used to enable a fine grained comparison without needing to

evaluate over the test set after every training example. As the

comparison only shows the first epoch none of the training

examples have been seen before and therefore it is equivalent

to testing accuracy. As with the previously discussed tasks, a

fast acquisition of information allows EDN to reach a higher

level of accuracy faster than GD in the initial stages. EDN

reaches 90, 92.5, and 95% accuracy after around 4,300, 6,250,

13,000 iterations, respectively, whereas GD takes around 7,200,

12,000, and 25,000 making EDN almost two times faster. When

EDN uses random input selection the network’s ability to collect

the most pertinent input information is hampered resulting in

slower learning and a maximum accuracy of around 93%. This

highlights the importance of surprise driven input selection to

guide the network toward the inputs representing information

not currently captured by the model.

After one epoch the testing accuracy of EDN is 96.3% with

surprise selection and 90.93% with random input selection.

GD achieves 96.7% putting surprise selection at comparable

levels of performance after seeing the entire training set.

EDN’s testing accuracy does not increase considerably with

further training, gaining only another 0.5% after another

epoch and little after that. The parameters for GD were

chosen to produce the fastest, stable learning meaning that

continued training did not push testing accuracy to the 98%+

seen with state-of-the-art training methods, however, further

epochs continued to improve performance up to around

97.5%. These experiments display how EDN is able to acquire

information quickly and store it in a functional way that can
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FIGURE 8

A visualization of the expectation for the class 3 retrieved from the parameters stored by EDN during training on MNIST. A range of surprise

thresholds, sth, are given to show how this e�ects the stored values and the subsequent e�ect on testing accuracy after a single epoch through

the training set.

be applied to the task, however, the ability of GD to perform

slight alterations of parameters allows continued refinement

of the model which is not possible with EDN’s use of a

uniform kernel.

3.4. Visualizing the expectation

Using the input surprise method outlined in Section 2.2.2,

an expected output can be generated for each class. The

expectation is generated by an unweighted combination of

the input values stored in the network’s v parameter for

each class. In Figure 8, the effect of the surprise threshold,

sth, on the expectation and performance after one epoch

can be seen. When sth = 0 this corresponds to all inputs

being saved when neurogenesis is triggered which leads to

a well defined expectation of a 3. As sth is increased the

network now begins to use the expectation of a 3 to guide

input selection.

At low values of sth the performance suffers as many inputs

are above threshold, and therefore form synapses with the

new neuron, but the most similar inputs do not, resulting in

a neuron with an unrepresentative feature-output mapping.

When combined they create a good expectation of the class,

as can be seen in Figure 8, but individually their feature

detection suffers. As the threshold increases the neurons begin

to select inputs with a greater emphasis on the features of the

input that make it different from previous presentations. This

leads to a greater diversity and selectivity of feature-output

combinations captured by the network. The best performance

can be seen when sth = 0.4 and this comes when the

expectation is more evenly distributed around the input. This

broader expectation allows only the most different inputs to

be selected without too much focus on saving what is already

captured by the model. When sth increases beyond this point

performance drops considerably as now the threshold is too

high for a representative sample of the class to be captured.

At sth = 0.6 it can be seen that very few samples are taken

as there is pixelation from the lack of samples averaging out

the expectation.

3.5. Visualizing the receptive fields

The previously explored expectation was an unweighted

collection of each class’s stored values. To examine what each

class is sensitive to the weightings of each neuron are included.

In Figure 9, the receptive fields are extracted in the same way

as described in Section 2.2.3 with the stored values of v on the

synapses and their inverses being multiplied by their associated

weight, the weight from the neuron to the output. The top

part of Figure 9 displays the weighted sum of the neurons

which connect positively to the respective outputs, forming an

average representation of each class. When negative weights

are also included the full receptive field for each class can be

seen. Prominent examples of inhibition can be seen for class

0 and 1 where there is strong negative weighting at the center

of the 0 and to the sides of the 1. This technique shows it

is straightforward to extract the information present in the

network and evaluate what each class is responsive to. It is

possible that with some form of clustering that subdivision of

each class could also be extracted, such as sevens with and

without a line crossing their middle. Here just the average

receptive field is presented.

3.6. Inverted pendulum—reinforcement
learning

Networks are connected to the TensorFlow gym

environment (Brockman et al., 2016) cartpole_v1 to test

performance. The task is to keep a pole balanced on a cart

without the cart moving too far from the starting position or

the angle of the pole moving too far from the vertical. The

maximum balance time is 500 timesteps with the task being

considered solved if the average balance time over the last 100

trials is over 475. A slightly broader kernel proved effective in

this task resulting in s = 0.6 being chosen. A memory length,

m, of 10 was sufficient which means the last 10 timesteps are

classified as a failure and each trigger an individual neurogenesis

step. All inputs are selected by each neuron. An ANN actor-

critic model is trained using GD, a learning rate of 0.003 with
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FIGURE 9

The values of v stored on each neuron’s incoming synapses form a record of the inputs which were captured by EDN during training. The weight

on the synapse connecting the neurons to the outputs enables the receptive field of each class to be determined by multiplying the stored

values by their neuron’s associated weights. When taking the positively weighted neurons of each class and multiplying their stored v values by

their associated output weight you create the first row of the plot, this forms an weighted expectation of each class. The second row is

generated by also including the negatively weighted neurons connected to each output, showing the average receptive field of each class. The

bottom row is an unweighted combination of the input synapses which are instances of each class.

Adam optimization, 128 hidden neurons (more did not improve

performance) and a gamma value of 0.99.

Figure 10 compares the performance of EDN against an

ANN trained with GD. The quick acquisition of information

enables EDN to reach a stable control of the inverted pendulum

almost twice as fast as the GD approach case. The actor-critic

model takes on average 798 trials before a stable configuration

is reached. The best configuration of EDN, with a maximum

network size of 350, was able to solve the task in an average of

415 trials. Similar performance is seen for network sizes of 200

and above. The effect of maximum network size on performance

is most noticeable below 150 neurons. At this point neuron

deletion becomes too frequent to keep a stable set of behaviors

in the network. At 100 neurons the performance significantly
suffers with the network taking 1,091 trials to complete the task.

Amaximumnetwork size of 50 puts strain on the learning with it
failing to solve the task in 2,000 trials, only achieving an average
balance length of 424 timesteps at the end of training.

Without neuron deletion EDN takes on average 1,250 trials
to complete the task. Performance is initially better than the
actor-critic, displaying the fast learning capability of EDN,

although the convergence to stable balancing proves harder

leading to more trials needed to average over 475 over the

last 100 trials. During training without neuron deletion it was

noticed that there were a number of trials in which the learning

did not converge to stable behavior. Instead the performance

would quickly drop from balancing for the full duration to

struggling to get balance for longer than 100 timesteps. This

is likely a result of beneficial behaviors being inhibited via

neurogenesis during the learning process and, although those

actions are useful to balancing, causing strain on further

learning. Neuron reinforcement and deletion avoids this pitfall

by rewarding neurons which contribute to good behavior and

deleting the ones that do not, resulting in a better performing

and more condensed network.

The relative speed with which EDN is able to complete this

task is a result of the instant labeling of poor behavior and the

adapting of performance. This allows a behavioral space to be

built in which actions resulting in negative results are avoided.

The rewarding and subsequent deletion of neurons enables this

further by injecting positive reward into neurons which are

contributing to good behavior and removing the neurons which

do not aid performance. Overall this incorporates reinforcement

learning signals into the network behavior instantly and in a

one-shot fashion.

3.7. Parametric analysis

Parametric analysis was carried out on the wine classification

task. The following section discusses the effect of s, Eth
and input selection with a focus on the convergence and

number of neurons and synapses generated during learning. All

experiments used the same random seed and were averaged over

a stratified 10 fold cross validation. Unless otherwise specified

the parameters used for all test were s = 0.4, Eth = 0.2, and

sth = 0.1.

3.7.1. The e�ect of kernel spread

The top plot of Figure 11 displays how kernel spread affects

the final neuron and synapse count of EDN networks during

training. Generally, the more neurons created the worse the

performance as the error was more often above Eth. Low values

of s produce many neurons as the hat function is too narrow

to allow information transfer across examples. The synaptic

response is too specific and therefore the neuron is only active

when receiving almost the exact same input causing it to overfit

to the training data and perform poorly in testing. When s is

large there is the opposite problem. Note that all inputs are
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FIGURE 10

EDN with varied network size limits benchmarked against an ANN trained in tensorflow using an actor-critic model (black) applied to the

inverted pendulum task. The lines show the running average of the last 100 trials with the dashed line showing the threshold performance

required for the task to be considered solved. Each configuration is repeated 100 times and the average of their performance is shown.

normalized to fall between 0 and 1 and therefore any s > 1 will

be active at least by some amount for any input. This means with

large values of s that there are more neurons active at any one

time and, therefore, there are over generalizations made about

the data. This hurts performance with testing accuracy being

far more erratic, especially during the early stage of learning.

However, with further training and neuron generation a balance

is found in the network for different output activations bringing

the final testing accuracy to a comparable level with more

appropriately chosen values of s.

In Figure 11, it can be seen that the fewest neurons are

created when s = 0.6, however, this does not correspond to the

best testing accuracy. The best performance was found when s

was slightly below this level at 0.4; this is likely because there is

less transfer of information between saved data points resulting

in more triggering of neurogenesis. Increased neurogenesis in

tandem with slightly more specific neuron activation leads to

better defined input-output mappings. Overall the choice in s is

a balance between overfitting to the training data at low values

and over-generalizing from the training data with high values.

3.7.2. The e�ect of error threshold

Error threshold, Eth, controls the level at which neurogenesis

is triggered. When Eth = 0 every training example triggers

neurogenesis resulting in as many neurons in the network as

examples presented. Increasing the threshold slightly leads to

fewer neurons being created with little effect on testing accuracy.

It was found that Eth > 0.2 was when performance started

to be non-negligibly affected, at this point the model becomes

a less complete representation of data and testing accuracy

reduced. As Eth increases this effect becomes more pronounced

with fewer neurons being saved and accuracy dropping until

eventually neurogenesis is no longer triggered and the model

remains empty. It is possible that some form of annealing of

Eth could allow a detailed model to first be created and then add

neurons after that if the magnitude of the error is large helping

to reduced network size that remains representative of the data.

3.7.3. The e�ect of surprise threshold

The method used for selection of synapses in classification

tasks is to compare an expected input with the correct input

and select the ones with the highest disparity (see Section 2.2.2).

The inputs with a surprise value above sth are chosen to seed

the synapses of the newly formed neuron. The bottom plot of

Figure 11 shows how varying sth effects the number of synapses

and neurons created after training on the wine classification task.

Similar to the results of s, generally speaking the fewer

neurons created the better the performance on the task. From

the plot it can be seen that lower values of sth lead to fewer

neurons being created and more synapses being created. For

sth < 0.2 the final testing accuracies are equivalent but fewer

synapses are created overall the larger the threshold. This shows

that the selection process can allow the most important inputs

to be selected without hurting overall network performance.

This puts focus more on feature-output mappings rather than

input-output mappings.

As sth is increased further the model suffers as the inputs

selected by the model becomes too fragmented and no longer
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FIGURE 11

Showing the e�ect of range of parameter values for kernel spread s (top) and surprise threshold sth (bottom) on neuron and synapse count after

training on the wine classification task. The left y-axis and the line in blue of each plot corresponds with neuron counts. The right y-axis and the

red line correspond with the synapse count. The vertical bars show the standard error over a stratified 10 fold cross validation.

represent the data as a whole. This leads to fewer synapses

being created overall whilst the neuron count increases. For high

values of sth eventually a point is reached at which neurogenesis

is triggered and no input synapses are selected for the new

neuron causing the model to stagnate. Generally the choice of

sth is a balance between saving all information and extracting a

reduced form. FromMNIST experiments it was found sth = 0.4

allowed the most important features to be extracted resulting in

the best performance, again, putting emphasis on the feature-

output mapping rather than the input-output mapping.

3.7.4. How random input selection size e�ects
performance

An alternative method for input selection is to select n

inputs randomly, without replacement, to form the synapses

of the new neuron. This avoids the need for constructing an

expected input and comparing it with the actual input, reducing

the computational overhead for each training example. It was

found that when the number of synapses randomly selected

was increased the testing accuracy generally increased, however,

this also led to an increased neurogenesis in these experiments.

It would be expected that the better the testing accuracy the

less neurogenesis, however, neurogenesis is triggered by the

magnitude of the error produced not the classification. The

speed at which the error decreased was uniform across the values

of n but the larger the value of n the larger the error whichmeans

more instances in which neurogenesis was triggered. A likely

cause for this is that an increased number of synapses per neuron

leads to more accurate but less precise representations for each

class (accuracy being a measure of correctness and precision

a measure of exactness). A more accurate representation of

input-output mappings can be stored on the neuron with more

synapses as a more complete representation is stored of a data
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point. However, reducing the number of synapses stored on a

neuron makes the input-output mapping more precise as the

number of number of inputs involved in an output prediction

are limited. This precise representation comes at the cost of

a more fragmented model of each class which hurts testing

accuracy. This explains why the MNIST experiments run with

random input selection did not get the best performance when

all synapses are selected. The best performance does not come

from complete input-output mappings but extracting the most

important feature-output mappings, creating a more precise

representation of the classes.

4. Discussion

This work has outlined how non-linear synaptic activations

can be used in conjunction with neurogenesis to tackle a range of

tasks in an online fashion. A new neuron is created following an

error and the synapses are used to store input values related to

that error. This can be done in parallel with network operation

and requires no further updating of parameters which means

previously stored information is never forgotten from themodel.

The instant incorporation of information into the network

enables behavior to be updated immediately. In a robotic

scenario this could enable an agent to explore and acquire

information without the need for multiple trials and offline

computation. This would allow robots to explore unknown

environments whilst updating models of their surroundings. It

could also be applied to adjusting their behavior to account

for damage to components without the need for outside

intervention, much in the same way humans limp following

an injury.

EDN has been applied to a range of tasks (classification,

regression and reinforcement learning) and a fast and data

efficient learning has been displayed. EDN offered a speed up

of 25 times on the wine classification task, 135 times on the

auto-mpg regression task, 2 times on MNIST digit recognition,

and 2 times on the inverted pendulum reinforcement learning

task compared to a traditional ANN trained with GD. This

improvement in speed is a result of the encoding of input and

output values in the neurons enabling immediate application of

new information following error driven neurogenesis without

the need for gradual parameter updates. Classification accuracy

was the same for both EDN and GD, however, mean squared

error for the regression task was three times smaller with EDN

compared to GD. EDN was able to readily attach positions

in the input space to regression values, this led to both faster

and more accurate performance compared to gradient descent.

This is likely a consequence of the non-linear properties of

the regression task making capturing the exact input-output

mapping more difficult for traditional ANNs. Gradient descent

with ANNs requires the building of a statistical summary of the

data and encoding it in the weights of a predefined network,

paired with the neurons producing an output relative to the

distance from a hyperplane (see Section 2.1.2) this makes

producing a smooth non-linear output value difficult.

MNIST presented the greatest challenge for EDN with the

main gains being shown in comparison to GD in terms of speed.

The power of EDN comes from its ability to store a value on

the synapses and attribute a particular output to it through the

neuron, following this any input which is similar will cause

the neuron to activate the associated output. MNIST provides

a challenge to this as members of the same class could have

exactly the same inputs with only a slight spatial transformation.

The result of this transformation is that the input values will

now be different, and although the general structure of the

input is the same as a previously saved input the input-output

mappings will no longer be helpful. If the synapses or neurons

could encapsulate possible input transforms, effectively giving

the synaptic triangle kernel a spatial spread, then there could

be more information transfer between examples. Possibly some

form of convolutional filter may achieve a similar affect.

Another possible reason for the difficulty in reaching higher

levels of performance on MNIST is because of the increased

dimensionality of the input. This makes sampling the correct

features and using them to classify inputs increasingly difficult.

It was shown that altering the way in which the inputs are

sampled can effect the performance of EDN, if sampling or

the generation of expected response can be improved it would

increase the performance of the model further. A potential

route for this could be the implementation of an attention

mechanism that adaptively selects different inputs rather than

relying on a collective representation of individual classes. It is

also possible that a neuron deletion dynamic, as was displayed

in reinforcement learning, could enable EDN to remove neurons

whose activity does not aid performance in classification.

In the reinforcement learning task the positive reward

generated at each timestep was fed into the network and enabled

the deletion of the least useful neurons. This acted to put a cap on

the network size but came with the added benefit of improving

the speed of task completion by removing the least beneficial

input-output mappings. In future work it could be useful to find

an analogous mechanism for other learning regimes by which

network growth can be restricted and potentially, in parallel,

improve the performance of the model. As neurogenesis is

triggered by errors if they cannot be brought below threshold

then network size continues to increase. Some form of early

stopping or error threshold annealing may also help curtail

the continual growth of the network as performance generally

converges quickly with only minor fine tuning happening

afterwards even though network growth continues.

The mechanism by which information is stored within the

network allows easy access to what specifically is influencing

behavior leading tomore informedmodel debugging. Saved data

can also be extracted for post processing and the creation of a

more condensed model. This is of particular importance given
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the size to which EDN can grow a network. Without a cap on

network size the number of neurons continues to grow in the

presence of error, therefore, a mechanism by which saved data

can be elucidated into a reduced model would allow learning

over a much longer time period without a growing memory

footprint. This would also enable offline training without the

need for further examples as previous inputs are saved within

the model and can be extracted. The condensed model may

also provide beneficial extra dimensions to the inputs, akin to

the kernel trick used in support vector machines (SVM). In

SVMs, kernels are used to provide additional dimensions to the

data thereby allowing a linear classifier to separate the data.

If the produced EDN model could be used to generate ANN

neurons this would add extra dimensions to the data which

future learning with EDN can take advantage of.

If the branching structure of dendrites could also be made a

part of the network’s connections, more complex dependencies

between features could be constructed. As was shown in the

results the best performance came when the most appropriate

feature-output mappings were captured by the network and not

solely the input-output mappings. Branching dendrites could

allow a richer description of inputs to be represented by a single

neuron as activity would no longer be a uniform sum of synapse

activations. This may allow each neuron to have branching

dependencies of inputs with some being more important than

others. If neurons could also be allowed to connect to other

hidden neurons, instead of only inputs, it would enable synapses

to be responsive to higher level features and allowmore complex

topologies to grow.

EDN updates its model by adding new neurons to its current

network in response to errors. GD updates its model by moving

the weights in the direction gradient calculations dictate will

produce less error, eventually creating a statistical summary of

the data in its weights. This puts the model bias in EDN on

the order in which information is presented as opposed to bias

coming from the random initialization of the network as in GD.

This may be utilized with a form of curriculum learning in which

simple and representative examples are first presented and the

difficulty is increased from there. This is similar to how we teach

children, first starting with simple concepts and characteristic

features then incrementally building from there. Modern GD

approaches do not require this as they can eventually build

a statistical summary of the input-output mappings without

concern for first capturing the fundamentals.

This work explores how neurogenesis in tandem with

synapse/dendrite non-linearities can be used to store

information about inputs in a form that can be used to

alleviate errors. It enables a fast acquisition of information

and updating of a behavioral model. Ultimately, this is not

a panacea and is only a part of the puzzle. Traditional ANN

transfer functions, whose activity is relative to the distance from

a hyperplane, allow neurons to be active beyond a local area

of the input space, providing broader statements about input-

output mappings. It is likely that a hybrid approach between

quick, functional data acquisition, and the building of general

statistical representations of data is required to create more

complete learning systems. This could allow the data gathered

within the day to be condensed down into a reduced model,

iteratively increasing the complexity of the representations

captured by the network. Something akin to this may happen in

biological brains where wakeful hours are used to acquire data

through interacting with the world, followed by sleep in which

information is consolidated and pushed into a more general

model whilst freeing up previously used neural real estate.
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