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ABSTRACT

Machine Learning Approaches to Historic Music Restoration

Quinn Coleman

In 1889, a representative of Thomas Edison recorded Johannes Brahms playing a pi-

ano arrangement of his piece titled “Hungarian Dance No. 1”. This recording acts as

a window into how musical masters played in the 19th century. Yet, due to years of

damage on the original recording medium of a wax cylinder, it was un-listenable by

the time it was digitized into WAV format. This thesis presents machine learning ap-

proaches to an audio restoration system for historic music, which aims to convert this

poor-quality Brahms piano recording into a higher quality one. Digital signal process-

ing is paired with two machine learning approaches: non-negative matrix factorization

and deep neural networks. Our results show the advantages and disadvantages of our

approaches, when we compare them to a benchmark restoration of the same record-

ing made by the Center for Computer Research in Music and Acoustics at Stanford

University. They also show how this system provides the restoration potential for a

wide range of historic music artifacts like this recording, requiring minimal overhead

made possible by machine learning. Finally, we go into possible future improvements

to these approaches.
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Chapter 1

INTRODUCTION

Thomas Edison invented the phonograph: the first machine to record and reproduce

audio. Knowing he had made a technology so unprecedented, he put it to use by

sending his representatives on a tour to record famous people for marketing purposes

[15]. In December of 1889, a representative recorded a classical composer all-time-

great: Johannes Brahms. He was recorded playing a piano arrangement of his piece

titled “Hungarian Dance No. 1 in G Minor” [4]. This is an important recording

because it offers a priceless window through which to experience the earliest sound

of a great musician. This recording was engraved on a hollow wax cylinder: the

recording medium for the phonograph. Sadly, many early wax cylinders are damaged

from years of natural deterioration from use and misuse. This recording was on

one of those damaged cylinders, and by the time it was finally digitized it was nearly

inaudible. A musicologist, Gregor Benko, wrote about this digitized recording stating

”any musical value heard can be charitably described as the product of a pathological

imagination” [4]. In this thesis we make approaches for a system to solve this problem.

The system’s goal is to automatically turn the Brahms piano recording into a higher

quality one, and perhaps do this for any and many historic music recordings. The

motivation for this is if we can receive better audio from poor-quality historic musical

recordings like Brahms’, this will allow better or easier restoration of many historical

recordings. Other benefits will be better historical education and/or appreciation

of historical media. There are numerous collections of old recordings known and

unknown[15] that with possibility could benefit.
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There is arguably potential to restore music recordings of the present day. Poor qual-

ity audio is captured everyday due to resource limitations like poor-quality recording

equipment or a poor recording environment. This leads to music-related fields in

industry that can benefit from better music restoration. Music recognition, like used

in popular applications like Shazam and SoundHound, is a technology that allows

for song information to be returned to the user if they record the song being played

in an unobtrusive enough surrounding. A poor recording environment is a big use

case of this technology due to background noise that commonly covers up the music

under consideration. Automatic music transcription is a technology in its infancy

that receives musical audio, like music recognition, but it returns the sheet music

(transcription) pertaining to the recording based on what can be inferred. Music

restoration can fill this use case as a pre-processing step. Music production and other

media can benefit because of ”sampling”: the use of snippets of old music tracks to

create new and original music. Restoration could give a music producer the tool to

make an old recording sound much better.

Established techniques in music restoration use meticulous and time-intensive meth-

ods of digital signal processing (DSP) [4]. These techniques haven’t seen recent ad-

vances, but the modern emergence of big data and machine learning (ML) offers

potential to take away the manual labor. ML is a paradigm in computing that is

allowing software to solve problems that are intuitive for humans and have not been

attempted to be solved by conventional programs out of sheer complexity [10].

ML is allowing software to retrieve more and more complex interpretations of input

data. Given a useful data representation of a poor-quality audio recording, a machine

learning technique can use it as input. Non-negative Matrix Factorization (NMF) is

a relatively new machine learning technique. It lends itself well to physical data in

which values are naturally non-negative (i.e. audio data). Other ML techniques like
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Deep Learning, namely Deep Neural Networks (DNNs), have also shown promise in

handling audio data such as with Recurrent Neural Networks (RNNs) which make

use of sequential data like audio.

In this thesis we propose two approaches for restoring the damaged Brahms piano

recording using machine learning techniques: NMF and a DNN. The remainder is

structured as follows: a background section that will go over relevant topics of DSP

and ML used in the implementation, related works describing how others have restored

music audio, an overview of our implementation, evaluation of our results, and a

conclusion.
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Chapter 2

BACKGROUND

2.1 Sound and Digital Signal Processing

2.1.1 Sound, Music and Recording

Sound is the wave-like movement of air particles we can hear from the contact of

these particles within our ears. Sounds can be defined by volume and pitch; volume is

controlled by how far the air particles move (i.e. the amplitude) and pitch is controlled

by how fast they move (the frequency). In musical pitches, the air particles move in

coordination so that frequencies in the waveform remain consistent over time.

The origins of sound recording are connected with the application of the system in this

thesis. Thomas Edison is known as the inventor of the first sound recording machine:

the Phonograph. This device operates by facing an input apparatus towards the

sound source(s) of interest. As an aside, a source means a body or process that

generates a signal. For example, a piano is a source that can generate a composite

piano signal, and a coin dropping on the floor is a source that generates the signal of a

”clink” sound (even though unwanted if this is a special recording). The phonograph

used the recording medium of a hollow wax cylinder, which is fed through a spinning

axis. Being an analog recording device, it etches into the wax outer surface of the

cylinder, making a natural representation of the signal. Developments in technology

only made recordings higher quality but also more persistent as recording medium

materials were refined. This eludes correctly that many early recordings, such as the

Brahms, were permanently damaged, not only from misuse but also from too much
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use. The extended use of the Brahms recording due to its popularity unfortunately

damaged it more than other recordings of the same era.

The invention of digital recording and the digital medium offers persistence of data.

Contrary to analog recording, digital recording doesn’t capture an analog waveform

but approximates it instead by taking samples of an incoming analog signal at small

time intervals. This technique is called pulse-code modulation (PCM), and allows a

continuous waveform to be represented in digital audio. This technique gives way to

two errors: quantization error and aliasing. Quantization error is when a sampled

value is not exactly the analog signal at that time, and this can be mended with higher-

precision datatypes for samples. Another error is aliasing: sampling a signal that

contains higher frequencies than what the sampling rate fs can capture, resulting in

a distorted representation. Aliasing can be prevented if the input signal only contains

frequencies that are lower than fs/2, where fs/2 is known as the Nyquist frequency.

If a frequency greater than or equal to fs/2 is encountered during sampling, the peak

amplitude of the waveform (the minimum defining feature of a frequency) won’t be

captured, and will lead to artifacts. The industry-standard sampling rate for a PCM

signal is 44,100 Hz (commonly 44.1 kHz), yielding a Nyquist frequency comfortably

above the common maximum hearing frequency of humans: 20,000 Hz. Stereo signals

contain two channels, which in implementation are two signals - this makes for realistic

listening for use-cases of two sound sources like when using headphones or speakers.

Mono signals contain one channel and thus are one signal.

Broad types of noise in vintage recordings are: broad-band noise or impulsive noise

[17]. Broad-band noise is observed as hissing throughout the recording, and can

be solved with classical denoising methods. Impulsive noise is observed as random

clicks or crackles which are artifacts of once-present parts of a recording medium gone

missing from breakages, scratches, dust or dirt. This is solved by synthesizing material
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Figure 2.1: Waveform of a Piano Recording
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to fill the missing gaps [17]. Solving impulsive noise moves into a controversial area

that blurs the lines between restoration and dilution [15]; this is because synthesis of

missing parts of an art-piece, like an audio signal, isn’t technically the artist’s (in our

case Brahms’) making. For this reason, we will refer to noise as broad-band noise,

and ignore the impulsive noise problem.

2.1.2 Digital Signal Processing

Digital recording would be used in the field of digital signal processing (DSP). Digital

signal processing is the portion of signal processing concerned with signals in the

digital medium. Signal processing is a subfield in electrical engineering concerned

with analyzing, modifying and producing signals such as sound, images and scientific

measurements.

2.1.2.1 The Fourier Transform

The Fourier Transform (FT) is a commonplace operation in DSP. It allows a sig-

nal, which exists in the time-amplitude domain, to be transformed to the frequency-

amplitude domain. Said differently, the characteristics of a signal in terms of its

waveform over time are transformed directly into the characteristics of what frequen-

cies exist in the waveform over said time. The more the frequencies vary within this

time, the more inconclusive the result showing the active frequencies - this is why

it is important that anything close to a stationary signal (a signal whose frequencies

are constant through time) is used. If a non-stationary signal isn’t available, a small

enough time interval of the signal can approximate one well enough - this is given that

the signal source characteristics are known well enough to deduce that the frequencies

won’t change in such a small amount of time. For a human-performed music source
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signal this is doable, because there is a low enough limit to how fast a human can

play/perceive a rhythm.

A PCM signal is transformed with a Discrete Fourier Transform (DFT). The Fast-

Fourier Transform (FFT) is the algorithm of choice for calculating the DFT, and it

requires a signal length that is a power of 2. If a signal’s length is not a power of 2, it

can be padded with zeros on either side until it is - this interpolates the frequencies

and is harmless. The nature of the FFT makes its output complex-valued, inherently

storing 2 characteristics of the signal’s frequencies: the magnitudes and phases. One

can use Euler’s Identity to get these characteristics of the frequencies back to real

values, but as artifact it gives both positive and negative frequencies. To combat

this, the positive subset of their frequencies is taken. To get the magnitude of the

frequencies, the absolute value of them is taken. To get the phases, the angle of them

is taken.

The DFT size N , is the term for the length in samples in the DFT’s input, which

results in an N -length array. The output of the DFT is discrete, which means it

approximates the continuous frequency spectrum by binning, or grouping values of

similar frequencies into N ”bins”. The larger the DFT size, the longer amount of time

is consumed, but the larger amount of frequency bins results. Thus, DFT size makes

the compromise between time and frequency precision. The frequency precision or

bin size f , can be calculated using the sampling rate of the signal fs in the equation:

f =
fs
N

It’s possible to transform the frequency-amplitude domain output of the FFT back

into the time-freqency domain with the inverse FFT (iFFT). It takes in the FFT

result and returns the original signal. To prepare the complex-valued input from

8



positive magnitudes and phases, they can each be concatenated with their respective

mirrors, then joined back together into complex-values.

2.1.2.2 The Short-Time Fourier Transform

The FFT alone is useless if you want to know frequencies of a signal over time.

This can be solved for by splitting the signal into small consecutive segments, and

performing the FFT on and taking the positive frequencies of each. This is called the

Short-Time Fourier Transform (STFT). This is valuable for a visual representation

if the magnitudes are taken from each segment, called a spectrogram or magnitude

spectrum, but also for an ML representation. It is biologically found that our inner-

ears transform a signal waveform to a frequency-over-time representation for hearing,

which gives clues to why the STFT is a valuable representation for ML. Figure 2.2

shows a spectrogram of the same piano recording in Figure 2.1. Also, the spectrograms

shown in this paper only cover frequencies in the fundamental frequency range of piano

notes (for visual ease).

Given that this STFT transformation has been modified by a ML algorithm, it is

important that it can be transformed back to time-amplitude format to be heard.

This is solved by taking the iFFT of each segment concatenated with its mirror, and

connecting them back into a signal. This is called the inverse STFT (iSTFT).

An unwanted artifact from operating on segments of a signal can come from the fact

that the frequencies are disrupted on each end of the segment where cuts are made.

After manipulation with a ML algorithm, a segment will have different frequencies.

This means in the later iSTFT, each segment won’t be able to match its borders’

frequencies with its neighbors’ borders’ frequencies, causing unpleasant sound distor-

tion in the result. This is solved by the overlap-add method in which each positive

9



Figure 2.2: Spectrogram of a Piano Recording
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magnitude segment is applied to a window function (e.g. Hanning) so each the fre-

quencies of the segment reach 0 at each border. The window function also needs to

leave the frequencies symmetric around the segment center, because the segments are

then overlapped by half of their length with neighboring segments. The constructive

interference of the frequencies inside each overlap, rebuild the frequencies back to

their original magnitudes. Because the overlap-add method would shorten the sig-

nal length almost by half, it’s crucial that the segments created in the STFT have

enough redundancy so time isn’t modified. This is done in the STFT with a hop size

R, which controls how far a window is shifted on the signal before making the next

segment. R in hand controls overlap-adding such that if R is half the length of a

segment (R = N/2), the length of overlap needs to be half of a segment. By common

default, R = N/2.

Filters are used in DSP, which change characteristics of a signal when the signal is

passed through one. More specifically, filters can reduce or enhance any frequencies

of the signal. Another word for filter is a mask, which is terminology commonly seen

for filters which apply to frequencies variably at different points in time. As such,

masks can be applied to time-frequency representations like spectrograms to control

how much how much of a frequency is present at each timestep.

2.2 Machine Learning

Machine learning (ML) is a subset of the practice of Artificial Intelligence (AI): which

today boils down to automating tasks that require ”intelligence”. ML is understood

well when contrasted with the rest of AI which can be called Symbolic AI. Symbolic AI

describes when domain-knowledge is hard-coded into a program, letting it accomplish

what a human expert in this knowledge domain can do. On the other hand, ML relies

11



on a substantial sample size of data within a knowledge domain, and uses learning

methods to derive the domain-knowledge. Of the two, symbolic AI systems were the

first created but are still powerful in specific tasks. ML is powerful in broader tasks,

in knowledge domains that are intuitive to us but the inner-workings are still unsolved

[10].

The recent emergence of big data and advances in hardware allowing storage and

processing of it, has made for rapid advances in ML. In ML the goal is to ”train” a

model, or let a model ”learn” on a substantial amount of data called training data,

until it converges. A training data needs to be as much as possible, which helps it

be as representative of the population as possible. ML models also have some form

of loss function and optimizer. The loss function tells the model how good of an

approximation it makes, or how far off it is from convergence (having error at or very

close to the global minimum of the loss function). The optimizer’s goal is to tweak

the model’s parameters until it converges, at which point the model can be used on

unseen data like symbolic AI.

Two categories of ML are used in this thesis: supervised learning and unsupervised

learning. In unsupervised learning, the model comes up with novel interpretations of

the data fed into it. In supervised learning, training data is annotated, as in each

sample is paired with its ground-truth or target output (the result of some unknown

function). Thus, supervised learning allows the programmer control over a model to

approximate some function.

2.2.1 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is an ML algorithm developed by Lee and

Seung in 1999 [14]. It is an unsupervised algorithm similar to Principal Component
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Analysis (PCA), and it is a matrix factorization algorithm like Singular Value De-

composition (SVD). What sets NMF apart from similar methods is its non-negative

constraint which means that the input data to NMF cannot hold negative values,

and its output is also non-negative. In this way, NMF can transform a dataset into

not only a simpler one, but importantly an additive and parts-based representation.

This makes it an intuitive choice for dealing with non-negative data captured in the

“natural world” like audio, images, etc. It has many uses, including denoising au-

dio, topic extraction in text mining, clustering gene expressions, and general-case

dimensionality reduction.

How NMF works is that for an input matrix V ∈ Rm×n
+ , it tries to find two low-rank

matrices W ∈ Rm×k
+ and H ∈ Rk×n

+ such that V ≈ WH. This makes W and H

the approximate factors to input matrix V , hence the “matrix factorization.” Given a

column-vector h ∈ H, Wh is a linear transformation that approximates column-vector

v ∈ V , so NMF can be called a linear function approximator. The variable k (called

the “rank”) dictates how much dimensionality reduction to perform, the smaller it

gets. Dimensionality reduction maps input features into fewer ones, which is helpful

for simplifying data to perform good approximations. Typically, k < min(m,n) for

NMF to give meaningful results.

Figure 2.3: Non-Negative Matrix Factorization
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As an important linear algebra refresher, a matrix’s ”rank” means the number of basis

vectors needed to create it. This means each vector (row/column) in a rank-k matrix

is made up of a linear combination of k basis vectors. Basis vectors are defined as

the set of linearly independent vectors that span a vector space. For example, basis

vectors i = [1, 0] and j = [1, 0] span the length-2 vector space, and any vector in this

space can be made with a linear combination of i and j (e.g. a = [2,−0.5] = 2i−0.5j).

Most NMF implementations work in this way: it begins by randomly initializing W

and H, and then iterating over a number of alternating updates (AUs) to W and H,

for example W is updated with a fixed H, then H is updated with a fixed W , and

repeat. This goes on until their matrix product “converges” or makes a good enough

approximation to V .

Because the NMF problem is non-convex, multiplicative updates (MUs) are used

which implicitly minimize a loss function to yield a close approximation to V . It is

commonly known that MUs can be derived from the Kullback-Leibler (KL) Diver-

gence DKL(V ‖WH):

DKL(V ‖WH) =
∑
i,j

Vij log
Vij

(WH)ij
−
∑
i,j

(WH)ij +
∑
i,j

Vij

which can be treated as the NMF loss function. The MUs are below (where � is

element-wise multiplication), where l denotes the current update we are on:

H(l+1) ← H l �
W T V

WHl

W T1

W (l+1) ← W l �
V

W lH
HT

1HT
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You can see these formulas in lines 3 & 4 of algorithm 1: the algorithm for NMF with

MUs derived from KL Divergence, called KL-NMF.

Algorithm 1 KL-NMF

Require: 1 ∈ {1}m×n, V
1: Initialize W,H
2: while W,H not converged do

3: W ← W �
V

WlH
HT

1HT

4: H ← H � WT V

WHl

WT 1

5: end while
6: return W,H

The MUs in NMF are sensitive to the initial values of W and H, not working well

when they are close to 0. So values are initialized to the range between 0 and 1, and

added 1.

2.2.2 Deep Learning and Artificial Neural Networks

Deep learning is a category of machine learning that is characterized by learning

successive representations of data that are increasingly more meaningful. Most ML

models rely on appropriate representations (features) of input data before it can

be fed in - this task exists in a field called feature engineering. What makes deep

learning shine is that it doesn’t need feature engineering, but instead makes useful

representations out of data and then maps it to an output in one go.

In a deep learning model, a representation of data is called a ”layer” which is simply

the result of an operation on the data. What makes a deep learning model ”deep” is

the high number of layers and thus high number of successive operations on the input,

exactly like a large nested function. The input data is known as the first layer. Besides

the output layer, all others are called hidden layers because they contain values not

given in the input data. The size of a hidden layer is known as the hidden units. If
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the hidden units of a layer are less than the size of the input layer (the number of

input features), dimensionality reduction is automatically performed which maps the

features into newer ones which are fewer in number.

2.2.2.1 Artificial Neural Networks

Artificial neural networks (ANNs), or neural networks (NNs), is the specific algorithm

used in most deep learning. In NNs, input x is a vector of features that constitutes

a sample of data, and the goal is to approximate some function f ∗(x), with help of

learned parameters θ. This makes f(x, θ) to output y. NNs also consist of layers,

where each layer is a non-linear function - specifically an affine transformation con-

trolled by learned parameters W and b, followed by a fixed non-linear transformation

called an activation function σ. This is why NNs are called non-linear function ap-

proximators. Non-linear functions allow more representation possibilities, which gives

NNs the edge over related linear models like linear regression. The equation for the

lth layer of an NN is below, in terms of the layer’s activation h:

hl = σ
(
Whl−1 + b

)
where matrix W is called the weights and vector b is called the bias of the layer, and

count towards θ. If l = 2, replace hl−1 with x. We will refer to these layer types as

densely-connected or dense layers. The name ”NN” is loosely inspired by neuroscience

in the way that each layer is analogous to many neurons, which act at once by taking

in inputs from many other neurons and each firing off their own ”activation” value.
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Figure 2.4: Simple Neural Network Diagram

2.2.2.2 Recurrent Neural Networks and Deep Learning

Recurrent neural networks (RNNs) are a type of NN that are designed to handle

sequential data x1, ...xT . Thus xt now corresponds to a feature vector at a point t in

a sequence (often time). Most RNNs can also process sequences of variable length,

and are designed to handle long sequences standard DNNs cannot handle. Its ability

to handle long sequences comes from sharing the parameters θ across the model,

which manifests itself in a single hidden layer and thus a single representation of the

data sequence. Sometimes it is helpful to visualize an RNN not as composed of one

hidden layer but instead many hidden layers, where each one in reality is the same

hidden layer at a specific point on the input sequence. This is known as ”unrolling”

the computational graph of an RNN through time and drawing each data point in

sequence like a unique sample, which makes it appear similar to a DNN.
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Appropriately, xt is processed in order of place in the sequence. This leads to a major

factor in RNNs: the computation of activation h depends not only on xt but on all

data encountered so far. This means the data flow in this algorithm is cyclic. The

equation for an RNN at the tth timestep is below, in terms of the it’s activation h:

ht = σ (Uht−1 +Wxt + b)

where U and W are the weights for the hidden-hidden connections and input-hidden

connections, respectively.

Figure 2.5: Recurrent Neural Network A (left) Unrolled in Time (right)
[2]

Deep neural networks (DNNs), is simply a NN algorithm with many layers, which

unlocks the power of deep learning. Because RNNs alone process a sequence once,

they only create a single representation of it. They lack the ability to process a point

in sequence more than once and create hierarchical representations of a sequence.

For this reason, a deep recurrent neural network (DRNN) can be made by including

RNNs as layers in a DNN. The equation for the lth layer of a DRNN, an RNN, is

below in terms of the layer’s activation h:

hlt = σ
(
U lhlt−1 +W lhl−1

t + bl
)
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where U and W are the weights for the recurrent connections and hidden-hidden layer

connections, respectively. We will refer to these layer types as recurrent layers.

2.2.2.3 Gradient-Based Optimization and Backpropogation

During the supervised training of a DNN, it is driven to match f ∗(x) to f(x). This is

known as the learning or training process, which happens by updating the parameters

of the DNN. For this to happen, each input x is paired with its target answer y ≈

f ∗(x); after x passes through the DNN we get f(x) (or ŷ), which are used in the

loss function. The loss function quantifies how far off prediction ŷ is from expected

output y. Like the training process of other ML methods, an optimizer algorithm is

used, whose goal is minimize the loss function by updating the parameters θ of the

model.

What sets DNNs apart from other ML models is they contain non-linear transforma-

tions. This makes most loss functions become non-convex, meaning DNN models are

learned with iterative gradient-based optimizers. These aren’t guaranteed to drive

function f(x) to match f ∗(x) (find the global minimum of the loss function), but

instead find an approximation to f ∗(x) (find a local minimum). Thus, DNNs are

called parametric function approximation algorithms.

Loss functions need to be differentiable, so their gradients can be computed. A

gradient is the term for the derivative of a multi-variable function, which tells the

direction of steepest ascent for the input. Thus the negative gradient of the loss

function is used, to travel in the direction of steepest descent, which minimizes the

loss function. To descend the gradient, we need to change the network parameters θ

in proportion to the loss function output. Gradient-descent is sensitive to the inital

values of θ, which are normally initialized to small random numbers.
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Gradients are computed with the backpropogation algorithm. It is needed to find the

loss function as not a function of the predictions ŷ and targets y but as a function

of the networks parameters θ. It does this with the chain-rule, as the algorithm

backpropogates through the network. Thus the backpropogation algorithm returns

the gradient of the loss function with respect to the parameters θ of the network.

Stochastic gradient descent is a foundational optimization algorithm, but there exist

more sophisticated ones like Adam, which include the concept of momentum when

descending. Computing the gradient for an RNN is no different than computing it

for a DNN, because the algorithm unrolls the RNN’s computation graph. Then the

gradients can be used like those of DNNs by the optimization algorithm.

The averaged changes to each of the parameters θ, averaged over all training samples,

is the true negative gradient of the loss function. But for computational efficiency, the

optimizer works repeatedly on portions of the train data called mini-batches. This

means that the mini-batch size in addition to number of features (including sequence

length for RNNs), defines the width of the network, which combined with depth in

layers can measure its size.

2.2.3 Training Practice

Parallel processing n-D matrices of large NNs drives high demand on computer hard-

ware. This is why GPUs are generally a hardware requirement for training DNNs.

Common training practice in deep learning and ML is to separate data into a train

set and test set. The train set is training data, and the test set is used to test

the trained model. In supervised learning, the train set can be divided into a train

set and validation set. The validation set is used like the test set but since it is

annotated, it can give a performance measure of how well the model approximates
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outputs. Also during training, we can get a performance measure on the train set

after each parameter update. Performance measures on both train and validation

sets diagnose overfitting, which is when the model trains too specifically to the train

set, leading to poor performance on anything but the train set. Overfitting shows

when validation error is much higher than train error. DNNs can be built in ways to

combat overfitting, and help generalize the model.

Building DNNs in different ways translates to picking hyperparameters that define

the model architecture and training process. They are called hyperparameters to

differentiate from the parameters being learned inside of the DNN model; so they are

the term for parameters of a DNN program.

It usually isn’t apparent what hyperparameters to pick for a model. Good practition-

ers can choose these mostly based on theory or convention formed by repeated em-

pirical results. Otherwise, experimentation is required which involves testing possible

combinations of them. Due to computational intensity making for low turn-around

time of DNN training, quick experimentation can be unfeasible. Instead, a large ex-

periment containing many combinations is set off in a single hyperparameter-tuning

search, which can run anywhere from hours to weeks long.
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Chapter 3

RELATED WORKS

This thesis work falls into the area of machine learning applied to music signal process-

ing, a subfield of DSP. In this section, we will cover related works on music restoration

and surrounding work in music signal processing. This will include ML’s role, because

ML is allowing the computational power for advancements in this field among many

others.

Related works in music restoration boil down to a source separation task called de-

noising. Source separation is the act of, given an input signal that is a mix of signals

produced by different sources, separating and outputting the signals corresponding to

each source. A mixture is a signal that is the sum of other signals. To denoise music,

we want to separate two sources: the target music source, and the noise source that

interferes with the music.

In music denoising of a recording, the noise source is generally unknown because

it is made up of random factors of in recording environment or technology. This

rules out these source separation methods: microphone arrays and adaptive signal

processing because they require knowing all sources, and independent component

analysis because it requires a recording for each source [23].

3.1 Classical Restoration Methods

Classical restoration/denoising methods revolve around attenuating noisy parts of a

signal’s frequency spectrum. Some methods are wiener filtering, spectral subtraction,
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and minimum mean square error short time spectral attenuation (MMSE STSA) [23].

One of the earliest classical restorations of a musical recording was in 1975, by apply-

ing digital techniques to deconvolve the effects of horn on wax cylinder recordings of

Enrico Caruso from 1907 [17]. In 1994, DSP was used in a challenging music denoising

task by Berger, Coifman and Goldberg at the Center for Computer Research in Music

and Acoustics (CCRMA) at Stanford [4]. That piece of audio is the same that we

use in our system: Johannes Brahms’ personal piano performance of his piece titled

”Hungarian Dance No. 1”. The algorithm chooses an optimal basis for the Brahms

signal from a library of local trigonometric and wavelet packet bases. After choosing

the optimal basis, the algorithm splits the signal into clean source and noisy source,

then recurses on the noisy source. The end result is the sum of the clean parts. This

method’s shortcomings were remaining impulsive noise, and that it worked unevenly

in regions of the signal with high and low activity. The results of this system are the

best restoration of this recording, and act as a benchmark.

3.2 Machine Learning Restoration Methods

The work described so far is a manual process, and could benefit from automation by

ML. ML also has the advantage to model non-stationary noise, as opposed to previous

classical denoising approaches which assume stationary noise [19].

3.2.1 Methods with Non-Negative Matrix Factorization

NMF’s usage on music audio data was pioneered by Smaragdis et al. in 2003 for

automatic music transcription [21]. Since then, NMF has been applicable for simple

and effective music source separation, specifically denoising. This follows from NMF’s

non-negativity constraint, which allows a spectrogram to be modeled as a mixture of
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prototypical spectra [23]; each of which are the frequency spectrum of a unique music

note, which together make building blocks of music audio.

For source separation applications, V ∈ Rf×t
+ is the input spectrogram of the audio of

concern. Thus V is made up of t time segments of the recording, each containing f bins

or features making up the frequency spectra. W ∈ Rf×k
+ is the matrix of basis vectors

or dictionary elements, which are vectors that each encode the frequency spectrum of

an elementary source in the recording. H ∈ Rk×t
+ is the matrix of activations, weights

or gains, which contains column-vectors that denote how much of which of each basis

vector is being used (activated) in the current time segment. From another view, H

contains row vectors that each denote how much of its corresponding basis vector is

being used (activated) in each time segment. This means (where 0 < i < k), basis

vector wi multiplied by activations row vector hTi gives a spectrogram of one audio

source. Typically k < f < t [23]. This can be seen in Figure 3.1.

Figure 3.1: NMF Modeling a Recording of Mary Had a Little Lamb [23]

Denoising is done by picking the subset of basis vectors Ws and activations row-vectors

Hs corresponding to the target music source, then multiplying them together to get

V̂s which approximates the target source magnitudes. To enforce that the sources
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summed together equals the sum of the mixture, a time-frequency (T-F) mask Ms is

made from V̂s, which is applied to the input mixture V . Thus, Ṽ is the masked V

and is the answer. T-F masks, specifically soft masks, denote how much of a target

source is prevalent in a T-F unit of the T-F representation, or spectrogram, of a signal

[24]. The mask Ms shown previously is a soft mask which is made by dividing V̂s

by V̂ = WH. Ms is applied by element-wise multiplying Ms with V . This process,

including the pre and post processing of audio data, is illustrated in Figure 3.2.

Figure 3.2: NMF Source Separation Pipeline by Sun and Bryan [23]

In real music audio, a source rarely consists of a single NMF component (e.g. a piano

source requires 88 components for notes from 88 piano keys). This calls for incorpo-

rating prior information, done by Shoji et al. [9], which makes so-called supervised

NMF in which sources are known prior and encoded into W , which could allow only

H to be learned while W remains fixed. Pre-specified W are made by learning their

basis vectors from isolated sounds. They also termed semi-supervised NMF, in which

some sources known prior and encoded into a subset of W , meaning the subset is
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fixed while the rest of W is learned with H. The MU for W in the semi-supervised

case are below, where only a subset is updated:

W (l+1)[:, subset]← W l[:, subset]�
V

W lH
H[subset, :]T

1H[subset, :]T

Another variation is penalized NMF introduced by Févotte and Idier [8], where W

and/or H are regularized. Regularization is an ML practice in which a model’s

weight values are forced to take only small values. They specifically introduce l1-

norm regularization (l1-penalization), which drives values to near-exactly zero. The

KL-NMF loss function with an added l1-penalty on H is shown below:

min
H

DKL(V ‖WH) + λ‖H‖1

where λ is a tuning parameter. If λ = 0, H is not penalized. For l1-penalization,

as λ grows H will be forced to become smaller until it eventually contains all zeros,

because that will provide the lesser total loss in training. This translates to λ added

to the denominator in the MU for H:

H(l+1) ← H l �
W T V

WHl

W T1 + λ

NMF works in music denoising include Cabras et al. 2010 [5], who used a semi-

supervised approach in which noise source activations are learned by applying a sta-

tistical model to the input mixture, which are used to learn noise basis vectors. They

also use a Bayesian suppression rule to make a T-F soft mask from the noise source

approximation and the input mixture, to make the music source mask. Later in 2016,

Canadas-Quesada et al. [6] used a supervised, score-informed NMF approach. The
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musical score of the piece in the recording is used to inform the learning of the ac-

tivations, specifically by only allowing possible combinations of basis vectors at each

time step. Both piano basis vectors were prior-learned: the piano from recordings

of isolated acoustic piano notes, and noise from snippets of recordings with common

types of vinyl noise.

3.2.2 Methods with Deep Learning

Deep learning (DL) is said to have solved audio enhancement/denoising tasks pre-

viously addressed by NMF [19]. It made advances in many areas of music signal

processing. A jointly-trained NN can perform polyphonic music transcription [11]. A

”context encoder” has been created for audio inpainting [18], a convolutional neural

network (CNN) has performed audio super-resolution [13], and an RNN can recover

uncompressed audio from a low-bitrate encoding [7].

DL models designed for supervised source separation, and specifically audio enhance-

ment/denoising, fit our use case appropriately. Supervised source separation was

inspired by the concept of T-F masking in computational auditory scene analysis

[24]. These models are categorized into mapping and masking-based approaches:

mapping-based output the frequency spectra of a source, while masking-based out-

put a T-F mask that when applied to the input mixture yields the frequency spectra

of a source.

Huang et. al [12] were among the first to introduce DL for the task of source separa-

tion. Their model is a DRNN in order to exploit time-series data, and learn successive

representations of a mixture containing 1 or more sources. They soon extended the

application of their model to speech denoising, getting substantial results. For de-

noising, this model considers the input as a mixture of a target source and a noisy
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source. Thus at time t, the input xt is a vector of audio features (i.e. timesteps

of a spectrogram) of the window corresponding to t of the degraded mixture. The

two output targets y1t ∈ RF and y2t ∈ RF and the two output predictions ŷ1t and

ŷ2t of the model are the magnitude spectra of the different sources, where F is the

number of features. They synthesized training data for the denoising task by mix-

ing wanted vocal samples with unwanted environmental noise like airport terminal,

subway station, or drilling ambience.

Further, this model mixes mapping and masking approaches by jointly training with

a fixed T-F mask as the output layers. Thus, previous predictions ŷ1t and ŷ2t pass

through it. The T-F masking layers contains no weights, but the weights in remaining

layers are optimized for the error metric between mask function outputs ỹ1t, ỹ2t and

y1t, y2t. The mask is a soft mask, which also enforces the constraint that the sum of

the model’s predicted sources is equal to the sum of the input mixture. Thus, this

mask works the same as the one in NMF source separation. The masking layers are

as follows:

ỹ1t =
|ŷ1t|

|ŷ1t|+ |ŷ2t|
� xt ỹ2t =

|ŷ2t|
|ŷ1t|+ |ŷ2t|

� xt (3.1)

The model architecture is one-input two-outputs. The input layer is followed by one

or more recurrent layers, followed by a fork by which the last recurrent layer’s output

is shared to two densely-connected layers. Lastly, each densely-connected layer is

followed by a T-F masking layer.

The lth recurrent hidden layer’s activation for time t, hlt, is defined as:

hlt = relu
(
U lhlt−1 +W lhl−1

t

)
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and the dense lth hidden layer’s activation hlt is defined as:

hlt = relu
(
W lhl−1

t

)
where relu is the rectified linear unit activation function ReLU, W l is the weight

matrix for layer l, and U l is the recurrent weight matrix for layer l. The diagram for

this model is below:

The model’s loss function allows it to discriminate between predicted sources. It aims

to minimize the difference between the prediction and target spectra of each source,

but also to enforce a difference between the sources’ predictions. This amount of

enforcement is tuned with a constant γ in the loss function. Below is the loss function:

1

2

T∑
t=1

(
‖ y1t − ỹ1t ‖2 + ‖ y2t − ỹ2t ‖2 −γ ‖ y1t − ỹ2t ‖2 −γ ‖ y2t − ỹ1t ‖2

)

Hyperparameter Name Value
Features magnitude spectra

DFT size N (of features) 1024
# Hidden (Recurrent) Layers 2

# Hidden Units per Hidden Layer 1000
Input Normalization false

Table 3.1: Optimal Hyperparameters for Speech Denoising Setting by
Huang et al. [12]

In terms of other related works, it is unclear which DL architecture is superior in

the audio enhancement/denoising domain: CNNs, RNNs or convolutional recurrent

neural networks (CRNNs), because different research groups have claimed state-of-

the-art results with different models [19]. In this domain, use of bidirectional recurrent

layers, and residual connections (skip-connections) are shown to increase performance

as well [24].
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Figure 3.3: DL Source Separation Model Architecture by Huang et al.
[12]
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The residual connection layer combines the output of the recurrent-unit with the

input. The residual connection layer’s activation h3t is defined as:

h3t = h2t + xt

Open-Unmix is an open-source near state-of-the-art music source separation model,

released for research purposes by Stöter et al. [22]. This model has similarities to

Huang et al. in how it incorporates a DRNN and a T-F mask, but is more involved

with hyperparameters, including residual connection after the recurrent layers of the

network, a fully-connected layer with a tanh activation as the first hidden layer and

input layer scaling/output layer unscaling and batch normalization.
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Chapter 4

IMPLEMENTATION

The following section describes the implementation details of our restoration ap-

proaches. Each approach uses basic DSP and an ML method as its core technology:

either NMF, or Deep Learning.

4.1 Pre and Post Processing Audio Data

Both of our approaches share use of DSP to pre and post process audio data. Signals

are read in from and written out to WAV files using the input and output API of the

SciPy Python library.

On read in, signal values and datatypes are converted to that of the WAV format

of the largest value range we deal with: 16-bit integer PCM, which encodes signals

with the value range [-32,768, 32767] (The Brahms recording WAV format is 8-bit

integer PCM, with a range of [0, 255], so its values are scaled up to the range of

16-bit integer PCM). Then, stereo signals are converted to mono by averaging the 2

channels together.

Then signals are transformed into spectrograms using DFT size N = 4096 and the

hanning window function. N = 4096 was a good compromise because it guarantees to

capture all rhythms as small as quarter-note triplets, and all notes as low as G3 into

unique frequency bins, which are the majority of rhythms and notes in the recording.

As an additional step, for spectrograms fed into the deep learning model, their values

are converted from 64-bit to 32-bit floating point decimals for performance.
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Post-processing converts the model result spectrogram into a waveform which is writ-

ten back into hearable WAV format. If a signal’s original format isn’t int-16 integer

PCM, its values are converted to its original format’s before write out to WAV. Re-

member that spectrograms don’t include the phase information. This means in order

for post-processing, we preserved the positive phases of the Brahms recording in-

put, and combined them with the model result spectrogram (positive magnitudes) to

perform an iSTFT and retrieve a waveform.

4.2 Non-negative Matrix Factorization Approach

We began our NMF approach framed as a denoising source separation task with

supervised NMF. In this way, if we can put prior information into the basis vectors

that denote the make-up of wanted and/or unwanted sources, with appropriate use of

the basis vectors we can pick out the wanted source. In our case, the wanted source is

Brahms’ piano and the unwanted source is the noise that interferes with it. Like done

by Canadas-Quesada [6], the basis vectors used for Brahms’ piano Wp = Ws ⊆ W

are ”prior-learned” from isolated, high-quality recordings and are associated with the

source of interest. These offer hope of not only denoising, but improving the recording

with high quality basis vectors for a stronger restoration. ”Prior-learned” is the term

we will use for basis vectors which are learned prior to their use in supervised NMF

for source separation of the Brahms recording. The following sections go into the first

steps which are how the piano and noise basis vectors are prior-learned.

4.2.1 Learning Piano Basis Vectors

We learned 88 piano basis vectors, for the 88 possible notes played on a piano. High-

quality isolated piano note recordings, 16-bit PCM signals sampled at 44.1 kHz, were
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taken from the University of Iowa Electronic Music Studios [3]. These recordings were

labeled by volume level, so the ones at loudest volume were taken. After reading in

a recording signal, the silence on the either end is trimmed off using a threshold of

1% of its maximum waveform amplitude. Then after transforming the signal into a

spectrogram, we average across the time segments to create the averaged frequency

magnitudes of the piano note - this is the basis vector for that piano note.

Unlike the samples in [6], the Brahms recording departs from the score because of his

improvisation, so we can’t attempt a score-informed approach. Yet, we still thought

to use the score by only learning piano basis vectors for the piano notes (in all octaves)

appearing in the score. Although Brahms departed from the score, it is unlikely he

added notes outside of its key: G Minor. G minor leaves out notes of B and Ab,

yielding 73 notes (in all octaves) for 73 piano basis vectors total. Only necessary

notes minimizes the chances of piano basis vectors representing noise.

In hopes of better picking up Brahms’ piano again, we made a degraded copy of the

piano basis vectors. They were degraded in order to emulate the muffled sound of

Brahms’ piano, much like how musical sources sound in other vintage recordings.

This was done by passing the piano basis vectors through a filter which removed

frequencies less than 400 Hz and more than 3,000 Hz, and enhanced the upper-end

of the remaining frequencies by a small amount. It was found that removing these

frequencies, with some artistic tweaks, achieved this effect. This was done in the free

digital audio workstation, Audacity, and the filter in full-detail is shown in Figure 4.2.

The proposed method for using the degraded piano basis vectors is only to use them

within the updates of NMF to learn the piano activations. Once the piano activations

are made, we then use the corresponding high-quality piano basis vectors in matrix

multiplication with the piano activations for the wanted source synthesis.
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Figure 4.1: Score Piano Basis Vectors

Figure 4.2: Damaged Piano Filter
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Figure 4.3: Score Piano Basis Vectors with Damage
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4.2.2 Learning Noise Basis Vectors

The piano basis vectors Wp and noise basis vectors Wn, will be the make-up of our

entire W . Noise basis vectors were learned from unsupervised NMF on a signal that

is most-similar to that of the noise source(s) interfering with piano in the Brahms

recording. We retrieved this signal by taking the longest continuous portion of only

noise from the Brahms recording. This portion was found by-ear, which ended up

being the portion from the beginning up until the announcer’s voice.

Figure 4.4: Prior-Learned Basis Vectors: Noise (left) and Piano (right)
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4.2.3 Using the Learned Basis Vectors for Source Separation

Now that we have learned these basis vectors (a.k.a. they have been prior-learned),

we are presented with many possibilities of how we can restore the Brahms recording.

Unlike in classical (unsupervised) NMF, the basis vectors we have learned can be

used as priors for the basis vector matrix W in restoring the recording. This specifi-

cally means the basis vector matrix W can be initialized with prior information that

remains fixed during the updates of NMF, unlike in classical NMF where the entire

basis vector matrix W is initialized to random values and included in the updates. In

this implementation, our convention when putting together the basis vector matrix

W is putting noise basis vectors on the left and piano basis vectors on the right.

The most straight-forward approach for us to first explore is the use of both our

prior-learned piano and noise basis vectors. In this case, because our entire basis

vectors are prior-learned, only the activations matrix H is updated in NMF, while

the basis vectors W remain fixed. This approach is called supervised NMF, and after

it runs, H has been trained, containing the activations which tell how much of each

basis vector is in the signal at each time step. V , W and H at this point is illustrated

by Figure 4.5.

The prior-learned piano basis vectors Wp (right side of W ) in Figure 4.5 should look

similar to Figure 4.1 because they are the same. It’s important to realize that each

basis vector and corresponding activations row-vector technically encodes a source of

audio. So, if we only wanted to hear when Brahms played a middle-C on the piano in

his recording, we would pick the middle-C piano basis vector and its corresponding

activations row vector. Then we would multiply these vectors together to give us the

corresponding spectrogram. More practically, if we only want to hear Brahms’ piano

playing, we pick all piano basis vectors Wp and their corresponding activations Hp,
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Figure 4.5: Supervised NMF Results on the Brahms Recording: V (left),
W and H (right)

and then multiply them together to make the spectrogram of Brahms’ piano playing

V̂p; WpHp ≈ V̂p. Separating the piano basis vectors Wp and activations Hp from

the noise basis vectors Wn and activations Hn allows us to pick this out, and is the

source separation process of our NMF restoration pipeline. This process is shown in

Figure 4.6.

Figure 4.6: Supervised NMF Results as Mixture of Piano and Noise Source
of the Brahms Recording: Splitting W and H

In supervised NMF, we are able to do source separation because our prior-learned

basis vectors tell us the boundary where to split W and H. But in fact, we do not

need both of them prior-learned to do source separation. We only need one of these

sources. The basis vectors for the other source can be learned in the process of NMF.

This approach is called semi-supervised NMF. One possibility for this approach, is
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only using prior-learned piano basis vectors, and allowing the noise basis vectors to be

learned along with H. In this way, the NMF algorithm will learn noise basis vectors

that can fill in the noise sound which is too far off for use of the piano basis vectors.

Another possibility is only using prior-learned noise basis vectors, allowing NMF to

learn the piano sound which isn’t fitting for the noise basis vectors.

Note that in semi-supervised NMF mentioned above, if the basis vectors for one

source are prior-learned, then the rest of the basis vectors are initialized to random

values. The downside of that is, for example, if we don’t use the prior learned piano

basis vectors, we miss out on their high-quality sound because instead the piano basis

vectors are randomly-initialized. To try solving this, we can still use prior-learned

piano basis vectors and prior-learned noise basis vectors by initializing them as such in

W for NMF, and then allow NMF to update Wp from it’s prior-learned initialization.

Thus, the high quality spectra in Wp might be able to persist while also adapting to

the recording at hand. The same thing can be done with Wn if we wanted to.

With supervised and semi-supervised NMF, this leaves five ways we can use our prior-

learned basis vectors in NMF: both Wp and Wn (W ) being prior-learned and fixed (1

way - supervised NMF), and either Wp or Wn as prior-learned and fixed leaving Wn or

Wp to be learned respectively (2 ways - semi-supervised NMF), and initializing Wn or

Wp respectively with random values or their prior-learned selves to be learned on top

of (2 more ways - still, semi-supervised NMF). Lastly, we will also try l1-penalizing

the piano activations Hp in order to restrict the number of non-zero piano activations

allowed per timestep. This will naturally cause a realistic amount of piano notes to

be played at any time: a maximum of 10 in theory since Brahms only had 10 fingers

to work with. This will be possible by only using the l1-penalty term in the update

for the subset of the activations for piano Hp.
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We built our NMF algorithm to support supervised as well as semi-supervised learning

and l1-penalty. For this reason we will call it extended NMF and penalized extended

NMF when using l1-penalty, as seen in our NMF approach restoration pipeline in

Figure 4.7.

Figure 4.7: NMF Restoration Pipeline

4.3 Deep Learning Approach

Our deep learning approach is based off the supervised source separation model by

Huang et al. which we will configure for denoising. This is a DRNN which forks into

two outputs: the restored piano source, and the unwanted noise source. We begin by

explaining training data synthesis, and then go into the model building process.
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4.3.1 Synthesizing Training Data

To configure this model for denoising, we will give it training data as a mixture of

piano source and an interfering noise source for the denoising task. Because this is a

supervised model, we need to supply this training data: firstly a mix of piano source

and noise source, and secondly the same piano source and noise source by themselves.

Since we can’t access the latter from the Brahms recording, or any other damaged

historical recordings, we need to synthesize our training data. The goal of synthesizing

training data is for a mix to sound as similar to a damaged historic recording as we

can. Further, because this model is only for running on the Brahms recording, the

goal is simplified to make a mix to sound as similar to the Brahms recording as we

can.

Training data samples are synthesized by gathering audio excerpts of piano and audio

excerpts of noise, and mixing them together. For our use case, the piano excerpts are

gathered from recordings of solo piano renditions of Brahms’ Hungarian Dance No.

1 in G minor, and only the sections of these renditions which are the same sections

heard played in the Brahms recording. Because the model ours is based off of trains on

voice utterances that are sequences of at most 100 timesteps [12], our piano excerpts

are made to be sequences of 100 timesteps (spectrogram timesteps). We made the

noise excerpts from the same noise signal used to make the noise basis vectors in our

NMF approach. This was the longest continuous portion of only noise we could find

by-ear in the Brahms recording, which was the portion from the beginning of the

recording up until the announcer’s voice. Since the noise signal was shorter than 100

timesteps, it was looped starting from a random point within it, until it matched the

length of it’s corresponding piano excerpt. This made for unique samples of the same

length.
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This is how we made the mixes from each piano excerpt and noise excerpt (we can

refer to as the sources), and thus the final training data. Piano excerpt and noise

excerpt signals were scaled until they sounded around the same volume as the piano

and the noise in the Brahms recording, respectively. Since the SNR of the Brahms

recording is unknown, this process aimed to replicate the SNR via this scaling. Then

the piano and noise excerpt signals were summed together to make the noisy mixture.

We then came back to the scaling factors of the excerpts and tweaked them by-ear,

after comparing our mixtures to the Brahms recording. Finally the piano source,

noise source and mix signals are turned into spectrograms, where the mix serves as

the input and the piano and noise sources as the annotations. For DNN performance,

the spectrograms are saved to numpy files which are loaded from in the training

sessions.

4.3.1.1 Augmenting Noise Source Data

At this point, our training data mixes sounded pretty similar to the Brahms recording.

In attempt to make them more similar, we experimented with augmenting our piano

and noise source training samples before combining them into mixes. This was realized

as two techniques for the noise source, and one for the piano source. For the noise

source, a problem heard was that it didn’t have variation because it was a loop of

the noise at the beginning of the Brahms recording. We tried adding variation by

time-stretching this signal. Time stretching is altering the speed of, either speeding

up or slowing down, the contents of a signal without altering the frequencies. This

was done with the effects API of the Librosa [16] Python library for audio and music

processing. The process operated on adjacent random-length portions of the looped

noise signal, each of which which were stretched in time by a random factor between

0.3 and 2.0. The result was more natural patterns of noise that took on different

43



duration. The signal was then sliced or looped again to have the same length as its

corresponding piano source.

Our second technique for augmenting the noise source data was by mixing it with

synthetic noise. This was made with an online vinyl noise generator (cit dust n

scratches), which lets you create a custom audio mix of different types of noise you

would hear on an old record. The parameters of this generator were tweaked, again

by-ear, until it most closely matched the noise in the Brahms recording. After either

of our noise source augmentations, we would again scale the noise signal to roughly

the same noise volume heard in the Brahms recording.

4.3.1.2 Augmenting Piano Source Data

The piano source was augmented by degrading it exactly like how we degraded the

piano basis vectors in our NMF approach. This was by passing each piano excerpt

through a degradation filter (shown in figure 4.2) which largely removes frequencies

outside of the range of 400-3,000 Hz. This technique is found to result in a vintage

sound in which musical sources are muffled, like the piano in Brahms’ recording. With

this augmentation, it is our hope that the model can better train for the low-quality

piano in Brahms’ recording, and more importantly learn how to enhance it to the

level of quality modern piano recordings have. In order for the latter to happen, the

high quality piano excerpts remain as the annotations for their sample, while a copy

of them is damaged for use in the mix.

4.3.2 Improving Upon a Baseline

Our first deep learning approach was to recreate the source separation model by

Huang et al. [12] as a baseline. We specifically created the model they used in the
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speech denoising setting of their experiments. This was implemented as a two-output

model, where a spectrogram of a mixture can be fed in, and the two outputs are

returned: a spectrogram of the wanted source, and spectrogram of the interfering

source. This model is specifically a DNN that is jointly trained with a T-F mask,

which remains fixed throughout the training process but has the purpose to filter

the outputs of the DNN. Although the T-F mask isn’t actually the output layer of

the model, the optimizer pretends it is by tweaking the network weights under the

masking constraint. This constraint, like mentioned earlier, is that the sum of the

outputs of the model (a.k.a. the sum of the sources) is equal to the sum of the model

input (a.k.a. the sum of the mixture), which conforms to qualities of mixtures of

signals in the real world. This T-F mask is specifically a soft mask. The soft mask

for an output source is made by dividing the source by the sum of itself and the other

output source; this tells what proportion of the frequency in a T-F unit of the input

spectrogram (noisy mixture) belongs to the output source. The code for the T-F

masking layer is in the appendix.

The architecture of the baseline model is a DRNN, which begins with two consecutive

recurrent layers, followed by a fork in the network made by giving the output of the

recurrent layers to two dense layers, each followed by a fixed T-F masking layer. This

was displayed in Figure 3.3 of the related works. The activations of the weighted net-

work layers are ReLU to enforce non-negatitivity in the representations of magnitude

frequency spectra, in parallel to how NMF enforces the same non-negativity. Like in

Huang et al. all hidden layers have the same number of hidden units as features in

the input layer, so no dimensionality reduction is done. We used the Keras API of

the Tensorflow Python library to implement this model as quickly as possible [1].

Once the baseline model was created, upon initial training we immediately encoun-

tered the exploding gradient problem. This was detected by loss values reported as
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NaNs and silent signals as model output. We hypothesized this was because our sam-

ples with timesteps T = 100 were still too lengthy in time for the model to handle, so

we first explored hyperparameters shown to alleviate exploding gradient. We ended

up settling on using the Adam optimizer with a reduced learning rate, which together

gave us consistent non-NaN loss values and hearable model outputs.

We seeke to improve this baseline by (1) training it on our synthetic data and (2)

trying novel hyperparameters not mentioned in Huang et al., via a broad hyperpa-

rameter tuning search. This was for both the possibility of expanding upon their

search, and finding out how to best fit to our training data. Novel hyperparameters

explored were a dense layer with a TanH activation as the first hidden layer described

in [22], and bidirectional RNNs and a skip-connection after the recurrent layers as de-

scribed in [24]. These were joined by additional hyperparameters: the discriminative

loss function parameter γ, mini-batch size, number of contiguous recurrent layers,

residual dropout in the RNNs, input layer scaling and output layer un-scaling paired

with batch normalization. The model architectures using these novel hyperparame-

ters are displayed in Table 4.1. Note in the table, that the forking point of the model

is denoted by ”[forking point]” in a layer, which means that this layer is duplicated

into two layers which receive the output of the previous layer as their inputs. This

means every layer afterword is duplicated by two and only receives input from the

layers in their branch of the network.
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Model Baseline Baseline-Bidir-Skip Baseline-Dense
Layer 1 RNN(100x2049) Bi-RNN(100x4098) Dense(100x2049)

- ReLU ReLU TanH
Layer 2 RNN(100x2049) Bi-RNN(100x4098) RNN(100x2049)

- ReLU ReLU ReLU
Layer 3 Dense(100x2049) Concat(100x8196) RNN(100x2049)

- ReLU ReLU ReLU
- [forking point] - -

Layer 4 T-F Masking Dense(100x2049) Dense(100x2049)
- - ReLU ReLU
- - [forking point] [forking point]

Layer 5 - T-F Masking T-F Masking

Table 4.1: Model Architectures using Novel Hyperparameters as Potential
Improvements over the Baseline
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Chapter 5

EVALUATION

This chapter outlines the evaluation throughout the development of our approaches.

Being that this is an audio restoration problem, all evaluation is qualitative and aims

to describe how the music is restored. These evaluations take place in succession,

only considering a limited amount of parameters enabled by the system, and sticking

to the parameters giving best results, before moving onto evaluating more of them.

This technique aims to enforce order in the many possible parameter combos existing,

and promote productivity in finding the best parameter combinations. These evalua-

tions have been recorded in a designated experiment results document, and they are

transferred into this section as the tables.

Each restoration evaluation will fill in two observation criteria: (1) the improvement of

piano sound and (2) the amount of noise removed or denoising. Also each restoration

is run on the original recording of Johannes Brahms playing a piano arrangement

of his music piece titled ”Hungarian Dance No. 1” in G Minor. Specifically, this is

the bose acetate transfer of the original wax cylinder recording, in WAV file digital

format [4].

Before we get into evaluation let’s observe the status of the damaged Brahms record-

ing, so we can have these observations to compare restoration results with. Firstly,

the Brahms recording has constant noise that exists for the whole duration. We

will call this noise ”global noise”, and some of this is in the form of low rumbling

bass frequencies which we will call ”rumbling” noise. The rest of the constant noise

has medium frequencies which we will call ”crunching noise”, because the sound is
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Figure 5.1: Spectrogram of Original Brahms Recording
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analogous to how a car tire could sound when rolling and crunching over gravel on

a dirt road. The Brahms recording also has some higher-frequency noise that is less

constant throughout the recording, but is equally as noticeable as the others because

it rises in volume during the phrases of piano. This noise sounds like hissing in ways

comparable to white noise, so we will call this ”hissing noise”. Overall, most of the

noise seems correlated to the piano because at points of highest piano volume, the

hissing noise becomes present and the crunching noise comes forward in volume. Also

note that we will refer to piano notes that sound closely grouped together in time as

well as in musical structure as ”piano phrases”.

5.1 Non-negative Matrix Factorization Approach

We began evaluation on supervised NMF using both prior-learned piano and noise

basis vectors. Immediate observations are that gaps between piano phrases are com-

pletely silent. This is positive, except for the fact that it removes the quiet piano

that was once existing under noise in between these louder phrases. As for the noise

that still exists in the non-silent portions, it no longer contains the rumbling noise

from the original. Unfortunately the rest of the noise substantially persists, and now

the hissing noise contains random pitches in a way analogous to how a wind chime

sounds when exposed to a constant gust of wind. This is an artifact of our process

we will call ”wind-chime noise”, and entails that piano basis vectors are being used

to approximate the noise that noise basis vectors couldn’t. In terms of if the high

quality piano basis vectors improved the piano, there are hints of high quality sound

that are still covered with too much noise to tell if it improves the original recording

piano. The spectrogram of this result is in Figure 5.2.
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Figure 5.2: Spectrogram of Supervised NMF Restoration (1 Noise Basis
Vector)
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To solidify our evaluation on supervised NMF, we experimented with different amounts

of noise basis vectors in ascending order, starting from none. The observations of this

are put in Table 5.1, with evaluation criteria in the right-most columns. This table’s

order is consistent with the order we made observations: the first row’s observations

were the first made and are by comparison to the original recording, while remaining

row’s observations are always by comparison to the previous row’s for ease of reading.

Specifically, if the row says ”No change.”, adding noise basis vectors didn’t change

things from the previous result.

# Noise Basis Vectors (1) Piano Enhancement (2) Denoising
0 Piano is covered by No noise is removed

too much noise to and it is instead
detect improvement. replaced by wind-chime noise.

1 The piano underneath Noise between piano
the noise might phrases completely

sound clearer, but removed, resulting
is still covered in gaps of silence.

with too much noise But, quiet piano once
to detect improvement. existing in these gaps

is gone. Rumbling noise
removed. Crunching noise
decently removed. Noise
still covers up piano, and

includes wind-chime noise.
2 No change. More hissing noise is

removed from over the
piano notes.

3 No change. No change.
5 No change. No change.
10 No change. No change.
15 No change. No change.

Table 5.1: Results for the Number of Noise Basis Vectors with Supervised
NMF

With no noise basis vectors, noise was approximated with piano sound as expected.

With any noise basis vectors, the missing piano problem doesn’t grow any worse.

Noise is consistently removed from over the piano phrases until three or more noise
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basis vectors are used. We concluded that two noise basis vectors was optimal because

adding any more noise basis vectors made no further benefit or damage. This shows

how this number maximizes their representative abilities. The best results so far are

in Figure 5.3

Figure 5.3: Spectrogram of Current Supervised NMF Restoration with 1
Noise Basis Vector added (2 in Total)

At this point we also evaluated supervised NMF like so far but by learning the piano

activations with the damaged piano basis vectors instead of high quality ones. Im-

mediate results are lackluster: they showed that in addition to the wind-chime noise

our prior-learned piano basis vectors seem to make, a consistent high pitch seemed to

approximate a global noise and lasted the whole duration. Along with this, the piano

is covered by more noise. It is found later that this trend continues with damaged
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piano basis vectors, so we don’t consider them in the remainder of this evaluation

chapter.

Next, we experimented with semi-supervised approaches while keeping 2 noise basis

vectors. We tested either learning piano basis vectors or learning noise basis vectors as

well as initializing the basis vectors with random values or as being prior-learned. Like

our initial evaluation on supervised NMF, these observations are made in comparison

to the original recording. They are in Table 5.2.

Learned Prior-Learned Init. (1) Piano Improvement (2) Denoising

Piano False

None detected. Some rumbling noise
removed, and noise
in-between notes is
somewhat removed.

Piano True
None detected. Some rumbling noise

removed.

Noise False

Piano underneath Rumbling noise is
the noise might removed. Most of the

sound clearer, but crunching noise remains.
is still covered with All hissing noise seems
too much noise to to be replaced with

detect improvement. wind-chime noise.
Noise decently removed

from between piano
phrases - seemingly

preserves most
of the piano.

Noise True

Piano underneath Rumbling noise is
the noise might removed. Most of the

sound clearer, but crunching noise remains.
is still covered with All hissing noise seems
too much noise to to be replaced with

detect improvement. wind-chime noise.
Noise decently removed

from between piano
phrases - seemingly

preserves most
of the piano.

Table 5.2: Results for the Variations of Semi-Supervised NMF
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When learning piano basis vectors, even when they are initialized as prior-learned,

we observe no improvement of piano sound. Noise is either minimally or not removed

between the piano phrases, preserving all piano, and some rumbling noise is removed,

for not great results.

When learning noise basis vectors, there are hints of high quality piano sound that is

too hard to distinguish from the noise, like in supervised NMF. Unlike in supervised

NMF, noise is decently removed from between louder piano phrases while preserving

most of the quieter piano. Also, the crunching noise isn’t removed as well as in

supervised NMF, which might be the trade-off needed to preserve all of the piano. For

learning noise, no difference is heard between prior-learned and random initialization.

We concluded that learning noise basis vectors from random initialization give best

results so far, because decently denoises while preserving the piano notes, and allows

prior-learned piano basis vectors to remain fixed and improve quality, as seen in Fig-

ure 5.4. We carry on with this combination of parameters into l1-penalty evaluation.

Next we experimented with l1-penalty on piano activations. The l1-penalty tuning

parameter λ needed to be experimented with until it hopefully allows a few correct

piano activations to persist while bringing the many incorrect ones to zero. The λ tun-

ing search began by finding its upper-bound that makes for an all-zero Hp, resulting in

a silent restoration. As an aside, immediately it was found in earlier experiments that

when corresponding Wp = Wlearn in semi-supervised learning, Wp would make-up

for Hp by learning larger values which canceled-out l1-penalization. Because of this,

Hp can only be penalized when corresponding Wp is fixed, which happens to work

with our best NMF approach which fixes Wp. Our l1-penalty evaluation is done on

semi-supervised NMF which only uses prior-learned piano basis vectors, and learns

two noise basis vectors. Observations are made with respect to the original recording,

and are in Table 5.3.
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Figure 5.4: Spectrogram of Current Semi-Supervised NMF Restoration,
Learning the Noise Basis Vectors from Random Initialization
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Figure 5.5: Spectrogram of Current Best NMF Restoration with L1
Penalty Term of γ = 131, 072
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L1 Penalty Term (1) Piano Improvement (2) Denoising
> 4, 000, 000 Silence. Silence.
≈ 500, 000 Perfect. Occasional notes appear.
≈ 200, 000 Great - a little noise on top. Occasional piano phrases.
≈ 100, 000 Piano improvement is Very broken piano phrases.

finally noticeable - only Notes have fringes of noise.
some noise on top.

≈ 60, 000 Piano underneath Broken piano phrases
the noise might that are mostly covered

sound clearer, but in noise.
is still covered with
too much noise to

detect improvement.
≈ 30, 000 Piano underneath Rumbling noise is

the noise might removed. Most of the
sound clearer, but crunching noise remains.

is still covered with All hissing noise seems
too much noise to to be replaced with

detect improvement. wind-chime noise.

Table 5.3: Results for Various L1 Penalty Terms on Current Best NMF
Approach

We observed that the largest penalty without silencing the recording yielded high

quality piano sound with no overlaying noise. Unfortunately, the overlaying noise ap-

proximated with piano sound made this difficult to do without completely removing

most of the piano. As the penalty is lowered, more piano-approximated noise leaks

through as more piano is preserved. We found a good compromise using γ = 131, 072,

which allows enough high quality piano sound to be revealed and enough piano acti-

vations to be preserved.

As a final experiment, we tried replacing l1-penalty with only allowing the few piano

activations with the highest values to persist while zeroing out the rest of them, for

each timestep. Into trying this, we saw these highest-value activations consistently

included those in the bottom two row-vectors of the piano activations matrix Hp,

for the entirety of the signal. More so, these activations correspond to piano notes

that are not played in the recording, so it was apparent they were being used to
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approximate noise. To mend this, we excluded the bottom activations while only

including the top five activations per timestep. The result allows some piano phrases

to last a little longer than with our best compromise with l1-penalty, and thus this

result is better. The piano activations matrix (before excluding the bottom two row-

vectors) is in Figure 5.6.

Figure 5.6: Piano Activations Matrix of Current Best NMF Approach,
Restricted to the Top-5 Activations Per Timestep (Before Excluding the
Bottom Two Row-Vectors)

The best configuration for our NMF approach is semi-supervised NMF which learns

two noise basis vectors from random initialization, while restricting the piano activa-

tions to only include the top five values per timestep (excluding those in the bottom

two row-vectors). This allows the clear piano activations to be revealed from the
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noise, with the trade-off of excess denoising which removes most of the piano. This

final result is in Figure 5.7

Figure 5.7: Best NMF Approach: Restricted to the Top-5 Piano Activa-
tions Per Timestep

5.2 Deep Learning Approach

As a recap, we seeked to improve our deep learning model over the baseline in Huang

et a. [12]. This was (1) by synthesizing training data with unique augmentations

and (2) by trying novel hyperparameters in a hyperparameter-tuning search. The

hyperparameter-tuning search was performed on the Cal Poly high-performance com-
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puter servers on a Nvidia V100 GPU, while remaining evaluation was performed on

a personal workstation with an Nvidia GeForce GTX 970 GPU.

The hyperparameter tuning search was realized as a grid-search over all possible

combinations which totaled to 3072 and ran for one month. The grid search ran

on our initial training data set, which included no data augmentations: solo piano

excerpts of Brahms’ Hungarian Dance No. 1 in G Minor mixed with excerpts of

the noise retrieved from the beginning of the Brahms recording which was looped

over. To evaluate these grid search results, we retrieved the models corresponding

to those which returned a validation loss within 10% of the minimum validation

loss of the search. Of these models, we listened to the results of those with the

most varying hyperparameters. Of these results, they all sounded practically the

same. Upon comparing these results to the that of the baseline model, it was found

that they sounded the same as well. The results of the model with the optimal

hyperparameter combination is the baseline model that is trained on our data. The

final code implementation of this model is in the appendix. Other than the baseline

hyperparameters, these are the hyperparamters for this model: the discriminative loss

function parameter γ = 0.1, 2 contiguous recurrent layers, mini-batch size of 50, and

40 epochs. This result is in Figure 5.8.

Because this is a denoising model, the piano can’t be enhanced but only uncovered

by noise, so we do not give subjective observations on the quality of the piano. The

evaluation of this result shows that rumbling noise is removed, and hissing noise is

decently removed. The spaces between piano phrases are decently denoised, resulting

in gaps of silence, but quiet piano is occasionally taken out.

Next, we tried evaluation on the same hyperparameter combination but trained on

training data where the piano source is damaged. Results of this are in Figure 5.9.
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Figure 5.8: Spectrogram of Initial Denoising Model Result
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Figure 5.9: Spectrogram of Denoising Model Result, Trained on Data with
a Damaged Piano Source
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Upon meticulous observation, this model gives results that are almost identical to

the previous model’s, except for that these results take out more hissing noise. This

might reflect that the damaged piano source in the training data prepared the model

to more precisely identify piano through the noise. Given that the damaged piano

source is absent of higher frequencies, this could have helped the Brahms piano be

differentiated more accurately from the higher frequency hissing noise that interferes

with it.

Lastly, we evaluated this model on the augmented training data that contains the

damaged piano source, and the time-stretched and/or generated artificial mix noise

source. This results in a very good denoising of the piano phrases, because practically

no noise is heard on the piano. This is paired with the drawback that an immense

amount of piano is removed, only allowing occasional piano phrases appear. These

results occur when either of the augmented noise sources are in the training data,

which shows how sensitive the model was to a noise that is more representative of the

recording content. These results are in Figure 5.10.

5.3 Blind Test Including Both Approaches

Our results do not sound alike to the benchmark, so they don’t warrant a large-

scale blind test done by volunteers. Besides this fact, a blind-test script was created,

which allowed us to compare the results of both of our approaches to the CCRMA

benchmark and the original recording, without being told which recording is which.

This was done by taking a small snippet from each signal, and allowing the user

to play any of these snippets however many times they like. After listening to the

snippets, the user can rank each one before being presented with the actual recordings

that they ranked.
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Figure 5.10: Spectrogram of Denoising Model Result, Trained on Data
with a Damaged Piano Source and a Time-Stretched and Generated Noise
Mix Source
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This blind test becomes useless because our final restorations sound obviously different

than each other, the benchmark and the original recording. Besdies this, both our

NMF and DL approach are uncomparable to the benchmark and original, because

they remove too much piano, whereas the benchmark preserves all piano. Thus,

removing too much piano is the main disadvantage of our approaches.

The question comes up of if our approaches offer advantages when wanting to seek

more information than we can get from either the benchmark or the original recording.

Although it reveals denoised piano at occasional phrases, the DL approach has no

advantages because it yields sound quality no better than that in the benchmark. On

the contrary, the NMF approach uses high quality piano sound to emulate exactly

what Brahms was playing, so the smallest advantage is that the high quality piano

sound lets us get a sense for the sound of Brahms’ playing on a modern day piano.

More so, because the NMF approach allows most of the main piano phrases of the

recording to remain intact, the higher quality piano sound lets you hear the specific

times at which Brahms plays the notes (onsets) throughout the recording. This is

opposed to the CCRMA benchmark, in which the piano onsets are blurred by the

artifacts of the restoration. As a final evaluation remark, this is the main advantage of

our approach: the clearer onsets allowed by our NMF approach could allow someone

to hear a more definite musical structure in timings, whereas the benchmark could

leave listeners with a vague idea of when piano was played at moments.
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Chapter 6

CONCLUSION

In the conclusion we go over possible future improvements to our approaches, and

leave off with a summary of what we have done.

6.1 Future Work

Different signal transformations have shown the ability to encode the frequencies of

a signal more precisely than what we use in our approach: pure magnitude frequency

spectra [20]. For our NMF approach, we could learn noise basis vectors in more

accurate ways, which could allow more piano to come through in the results. Some

ideas are providing a more accurate noise source to learn from such as made by

learning a filter that can synthesize noise alike to that in the Brahms recording.

Our DL approach missed the high quality piano sound potential exploited in our NMF

approach. We explored ways of incorporating the high quality piano frequency spectra

that the NMF piano basis vectors are made of, into the DNN. This included ideas of

concatenating the same piano basis vectors used in NMF, to each DNN sample which

could possibly give the model components of high quality piano sound with which it

can use to synthesize high-quality sounding piano in the output. These experiments

failed, but the potential for successful incorporation is still there. Although DL

allows modeling of phase in addition to magnitude of frequencies (unlike NMF), it

is a grey area on if the addition of phase features can increase source separation

model performance [22]. Recent research is optimistic of this possibility if simpler

features such as either complex-valued frequencies or waveforms are model input [19].
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Lastly, audio denoising models also show competitive results with only one output,

as opposed to source separation models that give one output per source [19].

6.2 Summary

In summary, we explored two machine learning approaches to restoring the damaged

1889 recording of Johannes Brahms playing a piano arrangement of his piece titled

”Hungarian Dance no. 1”. This involved DSP in pairing with with an NMF approach

which uses high quality piano basis vectors, and a DL approach built upon a founded

source separation model. Our benchmark to match was the restoration of the same

recording by Berger et al. at CCRMA, which wasn’t met. Our best approaches

can’t be compared to our benchmark, because they remove too much piano in the

Brahms recording, whereas the benchmark preserves it all. That said, an advantage

in our best approach brought by NMF, is the high-quality piano sound providing the

ability to better observe the note onsets of Brahms’ piano playing. If the application

is to observe some clearer timing in a historic music recording, our approach offers

a solution. Lastly, in terms of the overhead involved in our approach to restoring

the Brahms recording, it is far less than processes of classical restoration. Because

of this, our best approach also offers to enable slight but quicker restoration on the

many historic music recordings still waiting to be uncovered.
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i n p u t l a y e r = Input ( shape=(sequences , f e a t u r e s ) )

x = SimpleRNN( f ea tu r e s , a c t i v a t i o n=’ r e l u ’ ,

r e tu rn s equence s=True ) ( i n p u t l a y e r )

x = SimpleRNN( f ea tu r e s , a c t i v a t i o n=’ r e l u ’ ,

r e tu rn s equence s=True ) ( x )

p iano hat = TimeDistr ibuted ( Dense ( f e a t u r e s ) ) ( x )

n o i s e h a t = TimeDistr ibuted ( Dense ( f e a t u r e s ) ) ( x )

p iano pred = ( TimeFreqMasking ( e p s i l o n )

( ( piano hat , no i s e hat , i n p u t l a y e r ) ) )

no i s e p r ed = ( TimeFreqMasking ( e p s i l o n )

( ( no i s e hat , p iano hat , i n p u t l a y e r ) ) )

class TimeFreqMasking ( Layer ) :

def i n i t ( s e l f , ep s i l on , ∗∗kwargs ) :

super ( TimeFreqMasking , s e l f ) . i n i t (∗∗ kwargs )

s e l f . e p s i l o n = e p s i l o n

def c a l l ( s e l f , inputs ) :

y h a t s e l f , y hat other , x mixed = inputs

mask = ( t f . abs ( y h a t s e l f ) /

( t f . abs ( y h a t s e l f ) + t f . abs ( y ha t o the r ) +

s e l f . e p s i l o n ) )

y t i l d e s e l f = mask ∗ x mixed

return y t i l d e s e l f
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