
TRAFFIC PRIVACY STUDY ON INTERNET OF THINGS – SMART HOME

APPLICATIONS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Ayan Patel

2August 2020

c© 2020

Ayan Patel

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Traffic Privacy Study on Internet of Things

– Smart Home Applications

AUTHOR: Ayan Patel

DATE SUBMITTED: August 2020

COMMITTEE CHAIR: DongFeng Fang

Professor of Computer Science

COMMITTEE MEMBER: Bruce DeBruhl

Professor of Computer Science

COMMITTEE MEMBER: Foaad Khosmood

Professor of Computer Science

iii

ABSTRACT

Traffic Privacy Study on Internet of Things – Smart Home Applications

Ayan Patel

Internet of Things (IoT) devices have been widely adopted in many different applica-

tions in recent years, such as smart home applications. An adversary can capture the

network traffic of IoT devices and analyze it to reveal user activities even if the traffic

is encrypted. Therefore, traffic privacy is a major concern, especially in smart home

applications. Traffic shaping can be used to obfuscate the traffic so that no meaning-

ful predictions can be drawn through traffic analysis. Current traffic shaping methods

have many tunable variables that are difficult to optimize to balance bandwidth over-

heads and latencies. In this thesis, we study current traffic shaping algorithms in

terms of computational requirements, bandwidth overhead, latency, and privacy pro-

tection based on captured traffic data from a mimic smart home network. A new

traffic shaping method - Dynamic Traffic Padding is proposed to balance bandwidth

overheads and delays according to the type of devices and desired privacy. We use

previous device traffic to adjust the padding rate to reduce the bandwidth overhead.

Based on the mimic smart home application data, we verify our proposed method

can preserve privacy while minimizing bandwidth overheads and latencies.

iv

ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Professor Dongfeng Fang, for her guidance

at every stage of the process. I would like to acknowledge Dr. Khosmood for giving

me access to the IoT dataset as well as serving on my committee. I would like to

acknowledge Dr. DeBruhl for serving on my committee. I would like to acknowl-

edge all the professors in the Computer Science department at Cal Poly who were

instrumental in my educational experience and research path. I would like to thank

our computer science lab technicians and my peers who supported me through my

journey to obtain a degree.

I would like to thank my parents for encouraging me and giving me the opportunity

to study at Cal Poly. I would like to thank my sister and family friends for supporting

me through this journey.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

1.1 Internet of Things Background . 1

1.1.1 IoT Architecture and Security 2

1.2 Motivation . 3

1.3 Preventing Traffic Analysis . 5

1.4 Thesis Contributions . 6

1.5 Thesis Organization . 6

2 Literature Review . 8

2.1 Privacy Vulnerabilities in IoT Traffic 8

2.2 Communications Security Protocols 9

2.2.1 IPSec with TFC . 9

2.2.2 TLS . 10

2.2.3 DNS-over-TLS and DNS-over-HTTPS 10

2.3 Traffic Shaping Algorithms . 11

2.3.1 Independent Link Padding . 12

2.3.2 Dependent Link Padding . 12

2.3.3 On-demand Link Padding . 13

2.3.4 Stochastic Traffic Padding . 13

3 Privacy vs Overhead . 15

vi

3.1 Adversary Confidence . 15

3.2 Bandwidth Overhead . 16

3.3 Privacy vs Overhead Trade-off . 16

4 System Model . 17

4.1 The IoT Network Architecture . 17

4.2 Threat Model . 17

4.2.1 Eavesdropping . 18

4.2.2 Traffic analysis . 18

4.3 Security Objectives . 19

4.3.1 Confidentiality . 20

4.3.2 Privacy . 20

5 Data-set . 21

5.1 Overview . 21

5.2 Characteristics of Data-set . 22

5.3 Pre-processing Data . 22

5.4 Data Visualization . 23

5.4.1 Google Chromecast . 23

5.4.2 Google Home . 24

5.4.3 Microsoft Xbox One . 24

5.4.4 Ipad Tablet . 26

5.4.5 Samsung Smart TV . 26

5.4.6 IP Camera . 26

6 Current Solutions for Traffic Privacy 29

6.1 Firewall . 29

6.2 VPN . 29

vii

6.3 Dependent Link Padding . 30

6.4 Independent Link Padding . 30

6.5 Stochastic Traffic Padding . 31

7 Evaluation of Current Traffic Shaping Algorithms 33

7.1 Independent Link Padding . 33

7.1.1 Computational Requirements 34

7.1.2 Bandwidth Overhead and Latency 34

7.1.3 Privacy Protection . 34

7.2 Stochastic Traffic Padding . 35

7.2.1 Computational Requirements 35

7.2.2 Bandwidth Overhead and Latency 38

7.2.3 Privacy Protection . 39

8 Dynamic Traffic Padding . 41

8.1 Tunable Variables . 41

8.2 Input Variables . 42

8.3 Algorithm . 42

8.4 Evaluation . 45

8.4.1 Computational Requirements 45

8.4.2 Bandwidth Overhead and Latency 45

8.4.3 Privacy Protection . 46

8.4.4 Data Visualization . 46

8.4.4.1 Chromecast . 47

8.4.4.2 Google Home . 48

8.4.5 Privacy vs Overhead Trade-off 51

9 Conclusion & Future Work . 54

viii

9.1 Conclusion . 54

9.2 Future Work . 54

BIBLIOGRAPHY . 55

APPENDICES

A Data-set Background . 60

B Code . 63

B.1 Pre-Processing Data . 63

B.2 ILP-Const Algorithm . 64

B.3 ILP-Var Algorithm . 65

B.4 STP Algorithm . 67

B.5 DTP/STP-Var Algorithm . 69

ix

LIST OF TABLES

Table Page

1.1 Thesis Organization Chart . 7

4.1 IoT Devices Breakdown . 19

7.1 Comparing Traffic Shaping Algorithms, where q is the padding prob-
ability in STP . 33

7.2 Comparing Bandwidth Overhead and Latency, where latency is the
maximum delay of a packet . 33

8.1 DTP Variables . 43

8.2 Comparing DTP with different variables 47

8.3 Comparing STP with different variables 47

x

LIST OF FIGURES

Figure Page

4.1 IoT Devices Network Diagram . 18

5.1 Network Usage of All Devices Reconnecting from 5:37pm to 5:40pm 23

5.2 Network Usage of Multiple Devices from 5:50pm to 6:50pm 24

5.3 Chromecast Network Usage During Setup from 12:38pm to 12:48pm 25

5.4 Google Home Network Usage from 7:22pm to 7:32pm 25

5.5 Xbox Network Usage from 5:40pm to 6:00pm 26

5.6 Ipad Tablet Network Usage from 7:04pm to 7:20pm 27

5.7 Samsung Smart TV Network Usage from 11:36am to 11:46am . . . 27

5.8 IP Camera Network Usage from 4:35pm to 4:45pm 28

7.1 Google Home ILP Constant . 35

7.2 Chromecast ILP Constant . 36

7.3 Xbox ILP Constant . 36

7.4 Chromecast ILP Variable . 37

7.5 Google Home ILP Variable . 37

7.6 Xbox ILP Variable . 38

7.7 Chromecast STP . 39

7.8 Google Home STP . 40

7.9 Xbox STP . 40

8.1 Chromecast Throughput 2 . 48

8.2 Chromecast STP vs DTP 1 . 49

xi

8.3 Chromecast STP vs DTP 2 . 49

8.4 Chromecast STP vs DTP 3 . 50

8.5 Chromecast STP vs DTP 4 . 50

8.6 Google Home Throughput 2 . 51

8.7 Google Home DTP3 . 52

8.8 Google Home DTP4 . 52

8.9 Google Home DTP5 . 53

8.10 Chromecast Traffic Adversary Confidence vs Bandwidth Overhead . 53

A.1 ip table columns . 61

A.2 power table columns . 61

A.3 ip table rows . 62

A.4 processed ip table . 62

xii

Chapter 1

INTRODUCTION

This chapter first introduces the Internet of Things including their architecture and

security issues. Then the motivation of the work is given which includes device

identification and traffic analysis attacks. Finally, it introduces methods to prevent

traffic analysis on IoT network traffic.

1.1 Internet of Things Background

The Internet of Things (IoT) is a system of connected computing devices that can

communicate over the internet [1]. Prior to IoT most communication was human

to human or human to machine, but IoT introduces machine to machine learning

[2]. IoT devices for smart homes include speakers, TV’s, game consoles, cameras,

assistants, smart plugs, and more. All of these devices communicate over the home

network constantly, whether it is with the cloud, other devices, or an individual. These

devices have become very popular over the past few years. In 2018, 17 billion devices

were connected to the internet worldwide, 7 billion of which were IoT devices [3]. The

number of IoT devices connected to the internet by the end of 2020 is expected to

be 10 billion, approaching 22 billion by 2025 [3]. McKinsey Global Institute predicts

massive value growth for the Internet of Things in the U.S. reaching more than $11

trillion annually by 2025 [4].

IoT devices are not only applicable to smart homes. They are widely used in smart

cities, healthcare, energy grids and utilities, manufacturing, transportation, and agri-

culture [5]. IoT devices are prevalent in healthcare services including health monitors,

energy meters, and x-ray devices [5]. In industry, IoT robots have taken the place of

1

humans in manufacturing [5]. IoT devices add automation to tasks which improves

efficiency as well as allows monitoring and control from remote locations [6]. IoT

devices in a smart home provide convenience, safety, and efficiency for the users [7].

Some of these devices are connected to physical aspects of a home like locks. If an

attacker is able to get into a smart lock, they will have access to the home itself [7].

1.1.1 IoT Architecture and Security

The Internet of Things architecture has three main layers: Cloud, Edge, and Things

[7]. The Things layer consists of sensors and actuators connecting the cyber world to

the physical world. Most devices in this layer are resource limited and cannot perform

heavy computation [7]. Unlike the Things layer, the Cloud layer has enough resources

to perform these heavy computations and run algorithms on large data-sets [7]. The

Edge layer bridges the gap between the cloud and the things devices. The Edge

devices have more computational power than the Things devices and can connect to

the cloud more efficiently [7]. Sensitive data is constantly being sent between these

layers to accomplish the ultimate goal of the IoT devices [8]. The nature of IoT devices

including connection to the physical world, different operating systems and limited

resources, and different communication methods and protocols make security more

challenging than traditional devices [7]. Due to the vast number of IoT devices on

the market, many of the low-end devices do not support strong security measures [9].

However, the majority of the consumers expect security to be built in to these devices

and regard security as one of their top priorities [10]. As of January 2020, California

has set into effect a law requiring all IoT devices to have ‘reasonable security features’

[11]. What this entails is still open-ended, but a step in the right direction.

There are three main levels at which security issues exist in an IoT network: com-

puter attacks, software vulnerabilities, and data interception [8]. Computer attacks

2

include Distributed Denial-of-Service (DDoS) attacks, malware exploits, or modify-

ing physical components of a device [8]. Software vulnerabilities are vulnerabilities

in the IoT applications. Data interception has to do with the network traffic and

hijacking a session or eavesdropping. Any security breach in any device can give an

attacker access to the whole network. If an attacker gets access to the network traffic

of these devices, there is a lot of private information the attacker can infer or predict.

Capturing network packets can be done fairly easily with a network adapter in mon-

itor mode and a tool such as Wireshark [12] or airodump-ng [13]. Since IoT devices

communicate private information on the network, this data should not be read by

third-parties [9]. A strong encryption scheme must be used to ensure confidentiality

[9]. However, encrypting the data does not ensure privacy as malicious adversaries

can still obtain sensitive information by capturing the encrypted network traffic.

1.2 Motivation

Even if the data is encrypted on the network, the metadata of the packets can re-

veal a lot of information that compromises user privacy, such as behavior patterns.

Metadata is data about data [14]. In network packets, this includes the source and

destination addresses, timestamp, size, and protocol [14]. The source addresses can

be used to identify traffic streams of individual devices [15]. Queries are made to a

Domain Name Server (DNS) to request the IP address of a server. The destination

addresses in network packets can then be used to identify devices based on their DNS

queries [16]. Smart speakers such as Google Home or Amazon Alexa are constantly

communicating with the cloud to send information back and forth. The cloud end-

points usually have the device manufacturer’s name it. For example, the Amazon

Echo makes a DNS query to ‘softwareupdates.amazon.com’ for its software updates

[15]. Based on this we can identify specific devices on the network. A Virtual Private

3

Network, VPN, creates a secure connection masking the true source or destination of

a network packet [17]. The use of DNS queries to identify devices on a network can

be prevented using a VPN. However, this does not prevent an attacker from looking

at the pattern of the traffic.

The timestamp and the packet size is sufficient to plot time-series data and identify

traffic patterns to determine user’s activities. Time analysis and traffic burst corre-

lation might allow the adversary to identify the relationship between devices on the

network [18]. Traffic shape analysis can be used to infer the function of some devices.

One study is able to identify websites that are accessed on the network by classifying

and matching the traffic data using k-Nearest Neighbors algorithms, Support Vector

Machines, and Fisher’s Least Square Linear Discriminant classifiers [18]. Another

study is able to classify new IoT devices using traffic analysis techniques [19]. The

authors were able to classify new devices based on the fact that their traffic rate pat-

terns are distinct and can be identified using machine learning [19]. Machine Learning

classifiers can be trained using supervised learning to be able to classify certain types

of IoT devices based on traffic patterns [20].

Once a specific device is identified, traffic patterns of that device can correlate to user

activity [15]. Based on the network usage of a device, private user activities can be

revealed or inferred [21]. A study shows that user presence in a smart home can be

identified based on wireless camera’s encrypted network traffic [22]. It was found that

the camera’s network usage increased and varied when there was movement in the

home [22]. Extending this logic, attackers can use different IoT devices infer if a user

is at home, watching tv, or even where in the home they may be. This compromises

privacy of the user. To protect user privacy, there are many traffic shaping methods

that attempt to obfuscate the network data by adding noise in cover traffic [23]. By

doing so, it becomes more difficult to identify the user behavior.

4

1.3 Preventing Traffic Analysis

To prevent traffic analysis attacks, the traffic should not be able to correlate to user

activity. A firewall can be used to block all traffic from IoT devices, but this would

limit functionality of those devices [23]. A VPN connection can be used to hide

the original IP header of packets. This would prevent some device identification

techniques using DNS queries, but does not prevent analyzing the time and size

patterns that would still correlate to user activity [23].

To prevent attackers from using traffic analysis techniques, the shape of the traffic

can be altered so that it does not accurately correlate to user activity. This can be

done by using traffic shaping algorithms. There are two methods widely used to add

cover traffic. In one method, each individual device can produce random traffic using

dummy packets. This method requires that the destination or the router be able to

filter dummy packets out based on a flag in an encrypted header, which would require

a change in the network protocol [24]. Another method uses an additional device on

the network that produces cover traffic, or dummy packets, that is just dropped by

the router [23]. This method requires the use of a VPN in order to prevent adversaries

from separating out individual device traffic. Most existing traffic shaping methods

require the use of a VPN connection.

There are different types of traffic shaping algorithms including Independent Link

Padding (ILP) in which cover traffic is independent of the user device traffic and

Dependent Link Padding (DLP) in which the cover traffic is dependent on the user

device traffic [23]. A newer algorithm called Stochastic Traffic Padding (STP) in-

troduces randomness into when to pad the traffic [25]. This paper will look into

existing traffic shaping algorithms and identify their strengths and weaknesses based

on computational requirements, bandwidth overhead, latency, and privacy protection.

5

Computational requirements are what additional processing or storage must go into

padding traffic. Bandwidth overhead is the additional network usage due to dummy

packets being sent across the network. Latency is the average amount of time that a

packet is delayed. Privacy protection is a measure of how well user activity data is

masked. Based on this, we will propose a new method of traffic shaping called Dy-

namic Traffic Padding that improves the balance of these metrics based on different

requirements of devices. We will be testing these algorithms on captured network

data from a list of IoT devices over several days.

1.4 Thesis Contributions

• Culmination of previous work on traffic shaping

• Evaluation of current traffic shaping algorithms

• Applying traffic shaping algorithms to a large IoT data-set

• Proposing a new traffic shaping algorithm called Dynamic Traffic Padding

1.5 Thesis Organization

The organization of the thesis is as follows:

6

Chapter Title Overview

1 Introduction Background on IoT devices and their security issues. The
motivation of the work which includes device identification
and traffic analysis attacks. Introduction to methods that
prevent traffic analysis on IoT network traffic.

2 Literature Review Privacy vulnerabilities in traffic including lack of en-
cryption, device identification, and traffic pattern analy-
sis. Communications security protocols including IPSec
with TFC, TLS, and DNS-over-HTTPS and DNS-over-
TLS. Traffic shaping algorithms including Independent
Link Padding, Dependent Link Padding, On-demand Link
Padding, and Stochastic Traffic Padding.

3 Privacy vs Over-
head

Metrics that influence an adversary’s confidence that traffic
patterns correlate to user activity. Metrics that influence
bandwidth overhead for traffic padding. Introducing the
privacy vs overhead trade-off.

4 System Model Overview of our IoT network architecture and device list.
Threat model including eavesdropping and traffic analysis
attacks. Security objectives including confidentiality and
privacy.

5 Data-set Overview of our data-set containing captured network
traffic from IoT devices. Data visualization of device’s
throughput vs time and how they correlate to user activity.

6 Current Solutions
for Traffic Privacy

Solutions include Firewall, VPN, Dependent Link Padding,
Independent Link Padding, and Stochastic Traffic Padding.
More in-depth look into the algorithms for ILP and STP.

7 Evaluation of Cur-
rent Traffic Shap-
ing Algorithms

Evaluation of Independent Link Padding with a constant
padding rate and a variable padding rate, and Stochastic
Traffic Padding with a constant rate based on computa-
tional requirements, bandwidth overhead and latency, and
privacy protection, using IoT device data.

8 Dynamic Traffic
Padding

Introduction of new traffic shaping algorithm, DTP, that
takes the type of device and privacy preference as input and
determines tunable variables based on the input variables
and previous traffic data. Overview of algorithm and eval-
uation based on computational requirements, bandwidth
overhead and latency, and privacy protection.

9 Conclusion & Fu-
ture Work

Summary of work and proposed future work including ma-
chine learning techniques and privacy vs overhead trade-off
for different implementations of the algorithm.

Table 1.1: Thesis Organization Chart

7

Chapter 2

LITERATURE REVIEW

This thesis is based on a number of previous research papers looking into traffic shap-

ing and how it can help to prevent network traffic analysis to predict user activities.

Rate-shaping and traffic-injection are among other mitigations against traffic analysis

including blocking with a firewall and tunneling with a VPN [15]. This section will

start in a broader sense with privacy vulnerabilities in traffic. Next it will introduce

security protocols and different traffic shaping algorithms that attempt to solve this

problem.

2.1 Privacy Vulnerabilities in IoT Traffic

Since IoT devices are used for sensistive tasks, it means that private user data is

stored and transmitted from and to these devices, especially in the medical field.

A study was done to obtain sensitive data presented in cleartext in some medical

devices [26]. In 2017, a paper was published by Princeton University researchers on

the privacy vulnerabilities of encrypted IoT traffic [15]. They monitored the traffic

of four smart home devices including Sense Sleep Monitor, Nest Security Camera,

Amazon Echo, and WeMo Switch [15]. By utilizing DNS queries they were able to

identify the devices on the network. They separated out the traffic to analyze traffic

rate patterns on each device. Based on these patterns they were able to infer user

activity. For example, spikes of traffic in the sleep monitor correlated to the user

being awake or asleep. In addition, the Nest camera had higher network usage if the

video was being streamed to a user’s device. Therefore, it is possible to identify if

the user is actively watching the video stream or not. For the Amazon Echo, there

8

is a network spike every time the user asks a question, therefore they were able to

determine when the user interacts with their smart speaker [15]. This shows that

traffic rate analysis is a major privacy and security risk that needs to be overcome,

especially with the new age of smart homes. The majority of smart homes do not

have any additional security mechanisms in place to combat traffic analysis attacks.

To be able to prevent traffic analysis, we must obfuscate the traffic pattern and hide

the original IP header of packets on the network.

2.2 Communications Security Protocols

There are several protocols that attempt to hide information in the IP layer or create

a secure tunnel to prevent useful eavesdropping. We will look at IPSec for security at

the IP layer and TLS for encrypting the payload. We will also look at two methods

that encrypt DNS look-ups including DNS-over-TLS and DNS-over-HTTPS.

2.2.1 IPSec with TFC

Internet Protocol Security (IPSec) is a framework of open standards that provides

data confidentiality, data integrity, and data authentication at the IP layer [27]. IPSec

consists of two main protocols: Authentication Header (AH) and Encapsulating Secu-

rity Payload (ESP) [27]. In a paper from 2008, a Traffic Flow Confidentiality (TFC)

protocol was introduced as a sub-layer security protocol in the IPsec ESP protocol

[24]. The TFC encapsulation will pad the payload to mask the actual size of the

payload. In addition, it will perform packet aggregation and multiplexing which can

combine packets into a larger data frame. It will also alter the timing pattern of the

data which will add latency to the packet delivery. They also create dummy packets

where packets would be generated and thrown away at the destination. Knowing if

the packet it a dummy packet can be set using the next header field in the TFC pro-

9

tocol header [24]. The main overhead has to do with performance and cost. Adding

dummy packets can increase network usage. Also, delaying packets add latency to

packet delivery. In addition, the TFC module must be incorporated as a part of the

IPSec protocol on every device in the network including the router. The TFC mod-

ule hides packet sizes and packet inter-arrival times and therefore can prevent traffic

analysis attacks [24]. The control logic must use a traffic shaping algorithm to be

able to decide when and how much to pad traffic. Different traffic shaping algorithms

have their benefits and drawbacks.

2.2.2 TLS

Transport Layer Security (TLS) is a successor of Secure Socket Layer (SSL) and pro-

vides data privacy, authentication, and data integrity [28]. It does this by encrypting

traffic between the client and the server using a key derived from a handshake [29].

A data integrity check is applied to the data and authentication of the server can be

done through a certificate [29]. TLS is used over a TCP connection while Datagram

Transport Layer Security (DTLS) is used over UDP [29]. TLS encrypts the actual

payload or data that is being sent over the network, but metadata of the IP header

is still visible for traffic analysis attacks.

2.2.3 DNS-over-TLS and DNS-over-HTTPS

DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH) both aim to encrypt and hide

DNS look-up queries [30]. DNS queries can be used to identify devices on a network

so encrypting the DNS look-up adds privacy as it prevents an adversary from using

the DNS requests to identify devices. DoT and DoH work by encrypting the messages

between the client and the DNS resolver as well as hiding the metadata including the

time and size by padding traffic and multiplexing with other HTTPS traffic using the

10

same TLS tunnel [30]. However, DoT or DoH traffic analysis attacks can still be used

to identify devices on the network [30]. Therefore, DoT and DoH do not fully provide

privacy.

2.3 Traffic Shaping Algorithms

To prevent traffic analysis, the same group from Princeton evaluated current defenses

[23]. One strategy to prevent traffic analysis is to prevent an adversary from collecting

traffic in the first place. This can be done by using a firewall to block traffic [23].

However, blocking traffic may limit the functionality of the smart devices. Another

strategy is tunneling traffic using a VPN connection. VPN can wrap all traffic in

an additional transport layer, similar to IPsec, that can prevent device identification

[23]. A VPN connection may mask the devices and their DNS queries, but it does

not mask the network usage at a given time. Therefore, traffic analysis can still be

done on the traffic rates. The proposed defense is using a traffic shaping algorithm.

Traffic shaping algorithms can be implemented at a device level or can be imple-

mented on a separate box or router. If it is implemented on a box or router and a

VPN connection is used, then the VPN endpoints can drop dummy packets based on

encrypted bytes in the packet header [25]. A library exists for some traffic shaping

methods and requires the router or access point to run a padding script and a custom

VPN endpoint [31]. The receiving endpoint can be based on an AWS server that takes

care of dropping packets [31]. This method does not require each device to change

their implementations and it gives the central box access to all the different device

streams. If each device implements these algorithms, they would be sending dummy

packets to their manufacturer’s cloud endpoints, which need to drop the packets [25].

IPSec with TFC can be used to hide metadata and identify dummy packets [24].

The manufacturer would need to make changes in the code to accommodate for this

11

method. This method allows for a little more flexibility in shaping traffic based on

the device requirements and can vary per device. However, to run traffic shaping

algorithms on current IoT devices, a user can implement this on a router or middle

box without waiting for device manufacturer’s to update their systems.

2.3.1 Independent Link Padding

The group from Princeton propose a method of traffic shaping based on Independent

Link Padding (ILP) in which cover traffic is injected into the network independent

of device traffic [23]. In their implementation, they used constant rate shaping that

shaped traffic to a constant rate. To do so, they implemented a queue with device

traffic having higher priority than cover traffic. At a given time a fixed amount

of data was sent from the queue. This method required a 40 KB/s network usage

overhead and added a 10-15 second latency to some device traffic [23]. Another paper

proposed a variant link padding algorithm for bursty traffic [32]. In this case, there is

a constant length buffer and a traffic buffer. The constant length buffer is padded if

not full and packets are sent out based on a heavy tail distribution [32]. Independent

Link Padding can be accomplished with a constant rate or a variable rate based on a

distribution, both independent of the user traffic rates.

2.3.2 Dependent Link Padding

There is another traffic shaping method called Dependent Link Padding (DLP) that

is implemented in a ACM Conference Paper [33]. The DLP algorithm uses the packet

arrival timing information to generate a matched schedule with the minimum sending

rate for a given set of incoming packet flows [33]. DLP also requires the use of dummy

packets to pad the actual packets. Due to the fact that DLP is based on incoming

packet flows, the more flows that are incoming requires a greater overhead and delay

12

and drop rates increase. This means that an increase in network traffic from devices

can increase network usage due to traffic pattern matching. This can be compared

to constant rate shaping, where the overhead rate does not change or increase.

2.3.3 On-demand Link Padding

Another type of traffic shaping was proposed by a group from Harvard called On-

Demand Link Padding [34]. On-demand Link Padding is based on providing cover

traffic based on previous real traffic and only when traffic is present. There are two

types of on-demand link padding proposed. On-demand Link Padding with Delay

creates a traffic pattern based on the real traffic, once the padding is added to cover

the traffic, the real traffic is sent out [34]. This method incurs a significant delay

but has a reduced peak of usage. On-demand Link Padding with Headroom does not

delay the packets but added enough headroom with padding and cover traffic for the

real traffic to be masked [34]. This method predicts the usage of the next time period

based on the previous time period. This method has a higher peak usage. However,

this method does not hide the fact that devices are being used on the network.

2.3.4 Stochastic Traffic Padding

In 2019, another Princeton paper was published proposing an improved method of

traffic shaping called Stochastic Traffic Padding (STP) [25]. STP shapes traffic based

on a previously determined traffic pattern. Traffic is padded and sent out whenever

it arrives so there is very little latency. A threshold is identified to only mask high

peaks and not noise in traffic rates. In addition, if there is no traffic, dummy traffic

will be created and sent out at random intervals that match a pre-defined pattern.

This method hides peak activity by adding other peaks, which lowers the adversary’s

confidence in pulling useful information from the traffic rates [25]. This method does

13

require an overhead of network usage in order to send/receive dummy packets. STP

was implemented using middle-boxes and a VPN connection. Both VPN end points

can generate and drop cover traffic [25]. Alternatively, it could be implemented on

each device, using an encrypted flag in the IPSec protocol to drop cover traffic [24].

14

Chapter 3

PRIVACY VS OVERHEAD

To be able to evaluate traffic shaping algorithms, we must understand what com-

ponents affect privacy and overhead. We will first introduce what an adversary’s

confidence means, which correlates to privacy. Then, we will define bandwidth over-

head. Lastly, we will show the privacy vs overhead trade-off.

3.1 Adversary Confidence

An adversary that is analyzing captured traffic aims to correlate time periods to user

activities. Traffic shaping introduces additional traffic even when there is no user

activity, which lowers the adversary’s confidence in their correlation [25]. Given a

time period, T , let p be the probability that user activity is occurring. Additionally,

let q be the probability that a decision function chooses to pad traffic during no user

activity. Given n time periods, let np represents the number of time periods with user

activity. After using a padding algorithm, the expected number of padded periods is

np + n(1 − p)q. The adversary cannot distinguish between user activity traffic and

padded traffic. Therefore, the adversary’s confidence is

c =
np

np + n(1− p)q
= (1 +

(1− p)q

p
)−1 (3.1)

[25]. If the frequency of user activity is high, higher p, then a time period is more

likely to correspond to user activity. If the frequency of user activity is low and more

non-activity padding occurs, higher q, then a time period is less likely to correspond

to user activity.

15

3.2 Bandwidth Overhead

Traffic shaping adds additional padding to the traffic, so there is going to be greater

bandwidth usage. We can quantify bandwidth overhead using the following metrics.

Let R be the padding rate. Let p and q be the probabilities introduced in the previous

section. Let A be the average throughput during periods of user activity and let B

be the average throughput of background traffic without user activity. The expected

bandwidth overhead of a padding algorithm is

b =
pR + (1− p)qR + (1− p)(1− q)A

pA + (1− p)B
(3.2)

[25]. Increasing q will increase overhead as more padding is required.

3.3 Privacy vs Overhead Trade-off

Increasing q will decrease the adversary’s confidence in user activity correlation ac-

cording to the power law, but will also increase bandwidth overhead linearly. The

ratio of adversary confidence to bandwidth overhead is also a power law,

c

b
= O(q−2) (3.3)

This means that just a little overhead can provide a drastic reduction in adversary

confidence [25].

16

Chapter 4

SYSTEM MODEL

In this section, we introduce our system model in terms of the IoT network architec-

ture, threat model, and security objectives.

4.1 The IoT Network Architecture

The IoT network architecture has multiple layers to it at shown in Figure 4.1. At the

top of the IoT Test-bed, we have all the devices connecting to a Wemo Smart Plug to

be able to monitor power usage. At the next level, we have all the IoT devices that

we classify based on their functions shown in Table 4.1. All of these IoT devices are

very common in any smart home. At the next level, all the devices are connected to

the wireless access point. This access point functions as a router but also allows for

the packets to be monitored. In the next layer, we have a PC connected to the same

access point with its wireless card in monitor mode. This allows us to capture all the

packets on the network produced by the IoT devices. A python script runs on the

PC that captures network packets from the devices as well as the power usage from

the smart plugs in real time and stores then into a MySQL database in an Amazon

Web Services (AWS) cloud instance.

4.2 Threat Model

Based on the IoT network, we consider eavesdropping and traffic analysis attacks as

follows.

17

Figure 4.1: IoT Devices Network Diagram

4.2.1 Eavesdropping

An eavesdropping attack is the act of intercepting private information transmitted

over a network by a connected device [35]. The adversary should be able to capture

the network packets, which can be done by eavesdropping. The adversary does not

need internal access to the wireless network to be able to capture metadata of network

packets. A wireless card in monitor mode can accomplish this. Captured network

packets can be stored in a pcap file using WireShark, a network analyzer, or in a

MySQL Database using a custom Python script.

4.2.2 Traffic analysis

A traffic analysis attack consists of reviewing captured network packets to identify

patterns correlating to user activity. We assume that the adversary has the necessary

18

Type Function Device

Tablets
Browse internet,
stream/cast videos

Ipad

Galaxy Tablet

Smart Camera
Record/stream video,
send alerts

IP Camera

Gaming Consoles
Play online games,
stream video

Microsoft Xbox One

Nintendo Switch

Smart Speakers
Stream audio, search
assistant, voice
command

Eufy Genie

Amazon Echo Dot

Google Home

Casting Devices
Stream video/audio
from the internet or
another device

Google Chromecast

Amazon Firestick

Roku Express

Smart TV

Stream audio/video
from the internet or
another device

Samsung Smart TV

Smart Plugs
monitor power usage
of plugged in device

Wemo Smart Plug

Table 4.1: IoT Devices Breakdown

computational power and knowledge to perform traffic analysis using machine learning

techniques to identify user activity. In addition, we assume that an adversary has

enough general knowledge to determine some user activities based on time of day.

For example, it would be more likely for a TV turning off to mean a user is sleeping

at night, but may mean the user is leaving the house in the morning.

4.3 Security Objectives

We consider confidentiality and privacy objectives for the traffic protection in this

study.

19

4.3.1 Confidentiality

All the traffic is encrypted. Therefore, the attacker can not directly monitor the traffic

details of each IoT device such as the payload. However, the metadata including the

time, destination addresses, and size of the packets can still be obtained.

4.3.2 Privacy

Not only traffic details, but traffic patterns can be used to reveal user behavior pat-

terns. Traditional encrypted traffic can still reveal the traffic pattern. To fully pro-

tect the privacy of the user, the network throughput cannot reveal network usage

over time. In addition, the source and destination addresses can reveal information

about what devices are on the network. These need to be masked as well. This can

be done by using a VPN connection and shaping the traffic by adding padding to

obfuscate the data. However, our goal is to shape the traffic to keep privacy intact

while minimizing network overhead and computational resources.

20

Chapter 5

DATA-SET

This chapter goes over our data-set starting with an overview. Next, we outline

some of its characteristics. Then we explain how and why we pre-processed the data.

Finally, we visualize the data with respect to each IoT device captured.

5.1 Overview

The data-set we captured is based on network traffic of these IoT devices being

used on the network. We have two tables stored in a My-SQL Database. The ‘ip’

table consists 116,830,878 rows of network packets captured over time on the network

from these devices. The network packets contain meta data including the source,

destination, size, timestamp, and the encrypted payload. The ‘power’ table consists

of 61,240,223 rows including power usage in MW at a given time for each device. We

can utilize the time stamp and size of each network packet to plot traffic rates over

time. All the columns in the two tables are shown in Figure A.1 and Figure A.2 in

Appendix A.

We compare these traffic rates to a spreadsheet containing user events at a given time

on the network. Since this data was captured in a lab, it may not represent real smart

home functionality. However, if separated by device, it shows clearly what normal

user activity would look like on the network, interacting with an individual device

from the list above. Since only certain devices were used over a few hours of the day,

we should look at traffic rates within minutes or hours rather than looking at entire

days or weeks.

21

5.2 Characteristics of Data-set

The data-set of captured traffic used to run traffic shaping algorithms is very impor-

tant. There needs to be a variety of IoT devices that are being used on the network

over a long period of time. Many of the previous papers introducing traffic shaping

for IoT networks lack a strong data set to use for analysis of their algorithms. Our

data-set consists of many different types of IoT devices as well as captured traffic

based on events where a user uses one or multiple devices. Since this testbed was

setup as a simulation, it may not reflect a smart home’s usage throughout the day.

However, we can still use the traffic in shorter increments and disregard the time that

devices were being used.

5.3 Pre-processing Data

For both network packets and power usage captured, some of the fields of the meta

data were missing so not all the data could be used as shown in Figure A.3 in Appendix

A. For device identification, we would need the source and destination addresses. To

identify network usage we need the time stamp and the size of each packet. By

identifying the size grouped by time in ms, we can plot data throughput as a function

of time. In order to manipulate the data, we imported the data from My-SQL into

a Python Data frame using the Pandas module. Each entry in the data frame would

represent a packet with its timestamp and size as shown in Figure A.4 in Appendix A.

We can pull the packets from a 15-20 minute period where a couple events occurred

for a given device. After running this data through a traffic shaping algorithm, we

can group the data by time in ms and plot it against the size and compare our two

graphs.

22

Figure 5.1: Network Usage of All Devices Reconnecting from 5:37pm to
5:40pm

5.4 Data Visualization

By plotting traffic rates we can discover user activity on the network. Spikes in traffic

correlate to user activity and therefore privacy is not preserved. Figure 5.1 shows

all devices on the network being disconnected and reconnected to the network. The

spike at 5:38 correlates to all the devices reconnecting to the network. Figure 5.2

shows the network usage for an hour while multiple devices where being used on the

network. As shown in the graph, the peak usage for our network is always less that

20 kB/s. The following graphs have different time periods based on the length of an

event consisting of user activity.

5.4.1 Google Chromecast

Figure 5.3 shows data throughput plotted against time for the Chromecast device.

The 10 minutes that are plotted were captured during the initial setup of the device.

23

Figure 5.2: Network Usage of Multiple Devices from 5:50pm to 6:50pm

Between 12:39 and 12:42, there is a spike in network usage. This can be correlated

to the minute long intro video and the device updating followed by two reboots.

5.4.2 Google Home

Figure 5.4 shows the the data throughput against time for the Google Home device.

The spikes in usage correlate to the user asking ‘what’s the weather?’ to the google

home device. In other words, this can show that the user is home, awake, and

interacting with the device.

5.4.3 Microsoft Xbox One

Figure 5.5 shows the data throughput against time for the Xbox. The spikes in usage

correlate to the Xbox being used. In this instance, the user was playing a game on

the Xbox. This can also show that the user is home, awake, and sitting in front of

the TV.

24

Figure 5.3: Chromecast Network Usage During Setup from 12:38pm to
12:48pm

Figure 5.4: Google Home Network Usage from 7:22pm to 7:32pm

25

Figure 5.5: Xbox Network Usage from 5:40pm to 6:00pm

5.4.4 Ipad Tablet

Figure 5.6 shows the data throughput against time for an Ipad tablet. During this

period in time, the user was updating apps on the Ipad tablet. The spikes correlate

to downloading updates for different apps.

5.4.5 Samsung Smart TV

Figure 5.7 shows the data throughput of a Samsung Smart TV begin used. At 11:38,

smart features were being setup on the TV. At 11:41, the spikes correlate to streaming

YouTube on the TV. This can be used to infer that the user is using the TV to stream

a show or movie and is sitting in front of the TV.

5.4.6 IP Camera

Figure 5.8 shows the data throughput of an IP Camera recording video and streaming

it. The camera was restarted at 4:40. The spike at 4:42 is the camera reconnecting

26

Figure 5.6: Ipad Tablet Network Usage from 7:04pm to 7:20pm

Figure 5.7: Samsung Smart TV Network Usage from 11:36am to 11:46am

27

Figure 5.8: IP Camera Network Usage from 4:35pm to 4:45pm

to the internet and streaming video. This can be used to identify if the camera is on

and if it is recording and streaming live video.

28

Chapter 6

CURRENT SOLUTIONS FOR TRAFFIC PRIVACY

To prevent an adversary from inferring user activities from traffic rate analysis, the

traffic can be obfuscated by using a method called traffic shaping. There exists traffic

shaping algorithms which add padding to user traffic. If the padded rate is less than

the user activity rate, latency is introduced. It is important to note that in addition

to these algorithms, to prevent identification of devices, a VPN should be used. We

will give an overview of 3 padding algorithms: Dependent Link Padding, Independent

Link Padding, and Stochastic Traffic Padding.

6.1 Firewall

A firewall is used to block incoming or outgoing traffic from a particular source or

destination [23]. To prevent an adversary from analyzing IoT traffic, one could simply

block outgoing traffic from the smart home devices. However, this is a very naive

approach as it drastically reduces functionality of the devices as many IoT devices

communicate with cloud servers for computations [23].

6.2 VPN

A Virtual Private Network (VPN) can be deployed which hides all traffic under a

VPN header, masking the original header including source and destination and type

of packet [17]. A VPN can help prevent device identification through DNS queries

[25]. However, a VPN alone does not prevent against traffic analysis attacks to infer

user activities because the time and size of the packet remain known and no padding

29

is added [23]. Therefore, a VPN must be paired with a traffic shaping algorithm to

provide the desired privacy.

6.3 Dependent Link Padding

Dependent Link Padding (DLP) [33] adds cover traffic only when there is user activity.

In addition, the traffic shape is based on the incoming traffic flows. A higher traffic

rate incurs a greater overhead, delay, and dropped packet rates increase. DLP does

not protect the privacy of a user because different user activities can be correlated

to traffic patterns revealed by DLP. In addition, an adversary can still identify if no

user activity is occurring. Therefore, we will not be evaluating DLP as a solution in

our model.

6.4 Independent Link Padding

Independent Link Padding (ILP) adds cover traffic at a pre-determined rate, indepen-

dent of the device traffic [25]. The simplest ILP algorithm, Constant Interval Timing

(CIT), matches the traffic to a constant rate. This protects privacy of user activity

because there is no changes in traffic rates to infer any information. However, this

method adds latency to some device traffic as well as imposes a bandwidth overhead.

A modification of this method, Variable Interval Timing (VIT), uses a varying rate,

still independent of the device traffic. The overhead and latency is still similar to the

previous ILP method.

Taking a look at the ILP algorithm, we must check and pad traffic constantly. For

each time interval, we send user packets until we reach the pre-determined rate, the

rest of the user packets must be delayed. We then find the difference between the sent

packet sizes and the pre-determined rate. This is the amount of padding we must

30

add through a dummy packet. In this algorithm, the constant rate or the variable

rate must be pre-determined, but can vary based on the device.

Algorithm 1 Independent Link Padding

Input: constantRate, userPackets
currentSize← 0
for each time interval do

while currentSize < constantRate do
if userPackets is not empty then
p← userPackets.next()
len← p.size
if len + currentSize < constantRate then
currentSize← currentSize + len
sendPacket(p)

else
padLen← constantRate− currentSize
padding ← dummyPacket(padLen)
currentSize← currentSize + padLen
sendPacket(padding)

end if
else
padLen← constantRate− currentSize
padding ← dummyPacket(padLen)
currentSize← currentSize + padLen
sendPacket(padding)

end if
end while
currentSize← 0

end for

6.5 Stochastic Traffic Padding

A newer method of traffic shaping is called Stochastic Traffic Padding (STP) was

introduced in a 2019 Princeton paper [25]. STP adds cover traffic with randomness,

based on existing traffic rate patterns, and based on the peak rates of the particular

device. This method has been shown to be slightly better than ILP and DLP algo-

rithms. STP still requires the use of a VPN in order to prevent device identification.

STP sets a peak rate to pad to and always pads user traffic to that rate. It will only

31

pad user traffic above a given threshold to prevent padding noise in traffic and focus

on peak traffic rates. If no user activity is occurring it will randomly pad traffic to

that rate based on the padding probability q. A constant rate can be set or rates can

be pulled from previous traffic patterns.

Algorithm 2 Stochastic Traffic Padding

Input: rate R, userPackets, padProbability q, timePeriod T
padStart← 0
padEnd← 0
padOffset← 0
if tmodT = 0 and decisionFunc(q) then
padOffset← rand(0, T)
if t + padOffset > padEnd then
padStart← t + padOffset
padEnd← padStart + T

else
padEnd← padEnd + T

end if
end if
if padStart ≤ t ≤ padEnd then
padTraffic(R)

else
if userActivityOccuring then
padStart← t
padEnd← t + T
padTraffic(R)

end if
end if

Taking a look at the STP algorithm [25], we take the rate R, probability q, and time

period T as pre-determined inputs. We call the STP function at every time interval

with current time, t. If we choose to pad, we set our padding period to the size of

T . A decision function based on q determines if we should pad while there is no user

activity. If there is user activity, then we pad regardless. The traffic is padded to

the rate R, which is set to the peak usage of a device, so that we do not delay any

packets.

32

Chapter 7

EVALUATION OF CURRENT TRAFFIC SHAPING ALGORITHMS

We analyzed both constant and variable independent link padding, as well as stochas-

tic traffic padding to identify how well they preserve privacy. We can identify if privacy

is preserved based on if peak rates are identifiable and if these peaks actually correlate

to user activity. We also looked at how plausible they were to be implemented based

on computational requirements, bandwidth overhead, and latency.

Algorithm Bandwidth Overhead Latency Privacy

ILP-CIT ConstPadRate/AvgUserRate Varies w/ ConstPadRate max

ILP-VIT AvgPadRate/AvgUserRate Varies w/ AvgPadRate max

STP Varies w/ q none Varies w/ q−1

Table 7.1: Comparing Traffic Shaping Algorithms, where q is the padding
probability in STP

Device ILP-CIT ILP-VIT STP (q=0.15)

Overhead Latency Overhead Latency Overhead Latency

Chromecast 138.67% 87s 149.88% 79s 95.90% 0s

Google Home 40.73% 600s 32.15% 253s 239.5% 1s

Xbox 919.07% 0s 958.22% 0s 192.04% 0s

Table 7.2: Comparing Bandwidth Overhead and Latency, where latency
is the maximum delay of a packet

7.1 Independent Link Padding

Both constant interval timing and variable interval timing have the same average pre-

determined rate. Therefore, the overhead and latency between them are very similar,

if not the same. For VIT, an additional tunable variable is how much to deviate from

this average rate.

33

7.1.1 Computational Requirements

For ILP, traffic needs to either be padded or delayed at every time step. Delayed pack-

ets need to be stored in a queue. If the padding rate is variable, the pre-determined

shape needs to be stored as well. ILP can either run at a device level or router level.

7.1.2 Bandwidth Overhead and Latency

ILP shapes traffic to a pre-determined rate. The average rate to pad to can be

determined in several ways. The chosen rate could be the average rate of prior user

activity traffic. However, this may vary based on the amount of time the user is on the

network. Constantly changing the rate would reveal when a user is on the network. If

the chosen rate is too low, as shown by using the average user activity rate in Figure

7.1 for the Google Home, then it increases the latency when there is user activity. A

high latency would result in some devices not working, especially during streaming

or playing a video game. On the contrary, if the rate is too high such as Figure

7.3, then it requires a higher bandwidth overhead when there is no user activity, but

latency is minimized. Latency is a bigger problem compared to bandwidth overhead.

Therefore, a slight increase in overhead is acceptable if it lowers latency. In VIT, to

be able to provide no latency, it requires the minimum padding to always be above

the peak usage of a device, which requires greater bandwidth overhead.

7.1.3 Privacy Protection

Since ILP always pads to a pre-determined rate that is either constant or varies

randomly, there are no user activity patterns revealed. In addition, the peaks of user

traffic are hidden and an ILP peak does not correlate to user activity. If the padded

rate is the peak rate of a device, the peak usage may be obtained but it cannot

34

Figure 7.1: Google Home ILP Constant

correlate to user activity occurring at a given time. Therefore, ILP has maximum

privacy protection. In terms of adversary confidence, this will vary based on p. For

example, Chromecast has a c value for ILP of 0.375 while Xbox has a c value of 0.175

due to less user activity.

7.2 Stochastic Traffic Padding

7.2.1 Computational Requirements

STP pads traffic based on the probability, q. At each time step, the algorithm checks

for user activity, and if there is no activity, makes a decision to pad or not based on q.

If padding is required, then it must send cover traffic. There are no delayed packets,

so there is no queue to be stored. However, if a variable rate is set, the shape of the

pre-determined rate must be stored.

35

Figure 7.2: Chromecast ILP Constant

Figure 7.3: Xbox ILP Constant

36

Figure 7.4: Chromecast ILP Variable

Figure 7.5: Google Home ILP Variable

37

Figure 7.6: Xbox ILP Variable

7.2.2 Bandwidth Overhead and Latency

For STP, we used a peak padding rate of the maximum usage of that device as shown

in Figure 7.7. STP is intended to provide no latency by setting a higher peak rate,

however if a lower rate is chosen like in Figure 7.8, there can be delayed packets.

In addition, it adds cover traffic at random intervals. The bandwidth overhead of

STP is related to the frequency of cover traffic, dependent on padding probability q.

If q is increased, then more padding is required increasing the bandwidth overhead.

However, the bandwidth overhead does not exceed that of Independent Link Padding

Algorithms such as constant rate padding at the peak usage rate. In other words, if q

is set to 1, then it is equivalent to ILP with a constant rate of the peak usage, which

will require the most bandwidth.

38

Figure 7.7: Chromecast STP

7.2.3 Privacy Protection

Since STP provides minimal to no latency, this means that a time period with high

traffic rates would be based on high user traffic. Privacy protection increases as q

increases because it increases the chance of non-user activity to be padded. Privacy

is fully protected if q is set to 1, and will be equivalent to ILP. Lowering q to 0, will

provide the lowest protection as all peaks will correlate to user activity. However, it

still reveals the peak usage rate because that is what it is padded to. In addition,

setting the variables q, R, and T , in STP, changes the overhead and privacy protection

drastically and is difficult to optimize. For example, Chromecast with q of 0.15 has a

c value of 0.8 while Xbox with a q value of 0.15 has a c value of 0.59.

39

Figure 7.8: Google Home STP

Figure 7.9: Xbox STP

40

Chapter 8

DYNAMIC TRAFFIC PADDING

We are proposing a dynamic traffic padding algorithm, DTP, that determines tunable

variables for STP using device information such as the type of device and how much

latency it can tolerate, prior traffic rates and patterns, and desired privacy level or

overhead. Our goals include maximizing privacy, minimizing overhead, and minimiz-

ing latency. As additional input we need to know the level of latency tolerable by a

device. In addition, we need to know user preference of privacy vs overhead. With

these variables, and previous user activity patterns, we can tune the variables for

STP.

The previous algorithms, ILP and STP, have the following issues: optimizing variables

is not user-friendly and they do not allow for changing the variables based previous

traffic and different days of the week. Our proposed algorithm is based on STP, but

makes improvements to the user input variables so that they are more user friendly

and saves bandwidth by adjusting the variables based on previous traffic.

8.1 Tunable Variables

The padding algorithm requires the following three parameters, which can be dynam-

ically set using DTP.

• q is the padding probability when there is no user activity. The higher we set q,

the greater overhead we have, but the more privacy we obtain. We can use the

amount of user activity per day to determine this. If there is not much activity,

we can lower q, to lower overhead.

41

• R is the padding rate. We will use a variable STP algorithm, which means the

padding rate will be set to a pre-determined pattern based on peak user activity

rates and tolerable latency. A gaming console streaming a game would need

close to no latency, so a R greater than the peak rate would be set. However,

a tablet browsing the web may tolerate some latency and so the R can be set

slightly below the peak rate, lowering the overhead.

• T is the time period for padding. This can be adjusted based on the average

duration of user activity from previous traffic. The pattern that we shape

to must be longer than T . Also, T must be long enough so that we cannot

distinguish user traffic and cover traffic.

8.2 Input Variables

We propose two user input variables to the DTP algorithm: device type, dT , privacy

preference, pP .

• dT : Level of Latency tolerance; (Ex: highLatency, lowLatency)

• pP : Level of Privacy; (Ex: 0, 1, 2, 3; where 0 is minimum privacy prioritizing

minimizing overhead, and 3 is maximum privacy)

8.3 Algorithm

In Dynamic Traffic Padding, we have two main input variables: dT and pP . In

addition, we can use the previous day’s activity to identify the peak rate, average

activity duration, and activity frequency. These metrics can then be used to determine

q, T , R, for STP. In DTP, we use the previous day’s metrics to set variables for the

current day’s STP algorithm, while simultaneously keeping track of the current days

activity for the next day.

42

A low-latency device such as streaming devices or gaming consoles, require close to

no delay in packets. Therefore, we set the padding rate R to be the peak rate from

the previous day. However, a high-latency device such as smart plugs or tablets, can

withstand a slight delay in packets. We can set the padding rate to be slightly lower

than the previous day’s peak rate to save bandwidth. The value of decR can be

adjusted based on the time interval t and the average size of a packet.

The privacy preference adjusts the overhead vs privacy trade-off. A higher pP will

increase the padding probability q. To save some bandwidth, we can adjust this

padding probability q based on the previous day’s activity frequency. If there is

minimal activity, we do not need to constantly send packets when there is no activity.

We can do this by slightly lowering the padding probability by decQ if the activity

frequency is under a certain threshold.

For the DTP algorithm, the variables are represented in Table 8.1.

Variable Definition

pR previous day’s category’s peak rate

pD previous day’s category’s average user activity duration

pF previous day’s category’s user activity frequency

cR current user activity rate

D duration total

t time interval (1 second)

decR size in bytes to reduce the padding rate pR based on dT

decQ float between 0 and 1 to reduce q based on pF

dayCategories Categories for day classification; (Ex: Weekday, Weekend)

Table 8.1: DTP Variables

43

Algorithm 3 Dynamic Traffic Padding

INPUT: userPackets, dT , pP
pR, pD, pF ← 0
for each day do
peakRate, duration,D, activity, count← 0
T ← pD
R← setR(pR, dT, decR)
q ← setq(pF, pP, decQ)
STP (userPackets, q, R, T) {Run STP in separate thread}
for each t do

if cR > peakRate then
peakRate← cR

end if
if userActivityOccuring then
duration← duration + 1
activity ← activity + 1

else
if duration 6= 0 then
D ← D + duration
count← count + 1
duration← 0

end if
end if

end for
pR← peakRate
pD ← D/count
pF ← activity/(t per day)

end for

44

8.4 Evaluation

8.4.1 Computational Requirements

Since DTP uses prior user activity to determine tunable variables for the padding

algorithm, it does require slightly more memory or storage, as well as additional

computations on each time interval to keep track of the peak rate and duration. The

padding algorithm needs to run in parallel with the DTP algorithm, keeping track of

each day’s category, updating the metrics based on user activity while simultaneously

padding the current user traffic. We are using a variable rate padding algorithm based

on STP. Using a random rate between the set rate R and the actual activity rate,

can remove the need for storing a fixed pattern to shape to.

DTP requires more computational power and memory than previous methods like

ILP and STP, especially if machine learning is implemented using previous traffic.

However, this is an acceptable amount as in return we lower overhead and optimize

tunable variables in STP.

8.4.2 Bandwidth Overhead and Latency

In DTP, the type of device and privacy preference are taken as input to the algorithm.

The padding rate R can be set slightly lower if the device can withstand latency,

lowering the bandwidth overhead. Lowering the padding probability q if there is

minimal user activity will also save bandwidth while providing the same privacy

level. Since we use a variable padding rate, if the peak rate is higher than the user

activity rate, we can pad to a random rate between the actual user activity rate and

the peak rate R. This will also lower overhead, as we are not constantly padding to

the highest rate.

45

Since DTP uses the same underlying STP algorithm, it is difficult to compare them.

STP can achieve similar overhead if the same variables are set. But the difficulty is

setting these variables based on previous device traffic. DTP makes this easier and

can optimize variables while the algorithm is running over time. DTP does lower

overhead and is definitely better than ILP. Latency may be introduced based on the

type of device which will also lower overhead.

8.4.3 Privacy Protection

DTP has a privacy preference that can either prioritize privacy or overhead. The q

variable in STP relates to privacy protection and can be tuned based on preference.

Lowering the q value would decrease privacy but would also decrease the overhead.

We can also use the previous day’s activity frequency and the given preference to de-

termine the q value. Setting the privacy preference to the highest setting is equivalent

to the ILP algorithm, where traffic is constantly padded. Prioritizing privacy over

bandwidth is highly recommended, as the bandwidth overhead is not as significant.

DTP and STP can have the same privacy protection based on the q value that is set.

However, determining this value is difficult and varies based on desired privacy and

the frequency of user activity. Based on these metrics, DTP can adjust q to provide

the desired privacy level and adversary confidence while minimizing overhead.

8.4.4 Data Visualization

Since DTP can tune the variables in the STP algorithm, it is unfair to directly

compare DTP to STP. However, we can compare different settings of DTP and how

it affects overhead, latency, and privacy. There are several cases that can occur when

shaping the traffic. First, the privacy level can be low or high. Next, the peak rate

46

of the previous day’s traffic can either be higher or lower than the current peak rate.

The time period, T , can either be less than or greater than the user activity time

period. We can simulate the occurrence of each of these and their effects on overhead,

latency, and privacy.

Fig dT pP p q c R T TH A B b OH%

8.2 loL 1 0.393 0.25 0.72 19188 15 5000 8718 1055 3.55 241.9

8.3 loL 3 0.393 1.0 0.393 19188 15 5000 8718 1055 4.72 548.3

8.4 loL 2 0.393 0.647 0.5 13230 15 5000 8718 1055 3.02 245.5

8.5 hiL 2 0.393 0.647 0.5 12718 15 5000 8718 1055 2.53 277.4

8.7 loL 1 0.3 0.25 0.63 13780 15 4000 6486 604 4.20 296.6

8.8 loL 2 0.3 0.5 0.46 13780 10 4000 6486 604 4.74 573.3

8.9 loL 3 0.3 1.0 0.3 13780 10 4000 6486 604 5.82 881.6

Table 8.2: Comparing DTP with different variables

Fig p q c R T TH A B b OH%

8.2 0.393 0.0 1.0 20000 15 5000 8718 1055 3.23 310.2

8.3 0.393 1.0 0.393 20000 15 5000 8718 1055 4.92 1004.6

8.4 0.393 0.5 0.564 14000 15 5000 8718 1055 3.05 430.1

8.5 0.393 0.5 0.564 12000 15 5000 8718 1055 2.71 366.5

Table 8.3: Comparing STP with different variables

8.4.4.1 Chromecast

Here we use the Chromecast throughput from Figure 5.3 to shape the traffic for

Chromecast in Figure 8.1. It is important to note than the peak rate from Figure

5.3 is higher than the peak rate of Figure 8.1. Padding traffic to a higher rate results

in no latency because packets are not delayed, only padding is added. Chromecast

DTP1 in Figure 8.2 shows minimum privacy protection with adversary confidence of

0.72 while Figure 8.3 shows maximum privacy protection with adversary confidence

of 0.393, which is similar to using ILP with a variable rate. Chromecast DTP 3 and

4 pad to a peak rate of the current traffic to show optimal rate settings. They show

47

Figure 8.1: Chromecast Throughput 2

what q value is required for a desired adversary confidence of 0.5, which varies based

on p. Figure 8.5 has slightly lower overhead than Figure 8.4 as changing the device

type from low to high latency tolerance can lower the peak rate. A slight latency

is introduced, in this case only for one packet for one time step. In all four of the

graphs, STP is run with similar variables that a user may input, not fully optimized.

The privacy protection or adversary confidence may not be what the user intends.

Additionally, STP shows a higher bandwidth overhead overall than DTP due to fine

tuning variables and using a variable rate. In the case of this Chromecast traffic, we

were able to reduce overhead on average by 200%.

8.4.4.2 Google Home

Next, we use the Google Home 2 throughput from Figure 8.6 to shape the Google

Home throughput shown earlier in Figure 5.4. The peak rate of the previous traffic is

higher than the traffic being shaped so there is no latency. Google Home DTP3 shows

minimum privacy in Figure 8.7. As we increase the q value for DTP 4 and 5 we can

see that privacy and overhead both increase. In this case, the overhead is higher due

48

Figure 8.2: Chromecast STP vs DTP 1

Figure 8.3: Chromecast STP vs DTP 2

49

Figure 8.4: Chromecast STP vs DTP 3

Figure 8.5: Chromecast STP vs DTP 4

50

Figure 8.6: Google Home Throughput 2

to the fact that the frequency of user activity was relatively low. The actual overhead

is slightly different than the b value as these are derived through averages.

8.4.5 Privacy vs Overhead Trade-off

Figure 8.10 shows adversary confidence and bandwidth overhead for different values

of q. This graph is based on the Chromecast traffic in Figure 8.1 with a p value of

0.393. As shown, increasing q will increase b linearly, but will decrease c based on

a power law. This means that initially, small changes in q will lower c significantly,

but towards the end, it takes a bigger change in q to make small decreases to c. The

value of p and the desired level of privacy or adversary confidence can help determine

the q value to set with minimum overhead.

51

Figure 8.7: Google Home DTP3

Figure 8.8: Google Home DTP4

52

Figure 8.9: Google Home DTP5

Figure 8.10: Chromecast Traffic Adversary Confidence vs Bandwidth
Overhead

53

Chapter 9

CONCLUSION & FUTURE WORK

9.1 Conclusion

We examined traffic rates from different IoT devices in a smart home to analyze their

privacy. We found that privacy is not entirely preserved due to the fact that even

encrypted traffic metadata can be used to plot time series data and infer user activ-

ity. Traffic shaping preserves privacy by obfuscating the traffic rates. We evaluated

current solutions including Independent Link Padding algorithms and the Stochastic

Traffic Padding algorithm.

STP can also be tuned based on the padding probability and the padding rate, which

in turn correlate with overhead and adversary confidence [25], but these are difficult

to determine. We introduced Dynamic Traffic Padding, which uses latency tolerance

and privacy preference to tune variables set in the STP algorithm making it more

user-friendly. We were able to reduce bandwidth overhead, for Chromecast by 200%

on average, while maintaining privacy.

9.2 Future Work

Future work would need to be done to improve the machine learning aspect to achieve

an optimal set of values for the tunable variables. In addition, running these algo-

rithms in a live IoT network would be beneficial to achieve more accurate results

based on previous week’s traffic. Next, there needs to be work done to identify the

trade-off between using a single box or router to shape traffic or to run the algorithms

on a device level.

54

BIBLIOGRAPHY

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer networks, vol. 54, no. 15, 2010.

[2] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet

of things architecture, possible applications and key challenges,” in 2012

10th International Conference on Frontiers of Information Technology,

2012, pp. 257–260.

[3] K. L. Lueth, “State of the iot 2018: Number of iot devices now at 7b – market

accelerating,” 2018.

[4] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and

D. Aharon, “The internet of things: Mapping the value beyond the hype,”

Tech. Rep., 2015.

[5] S. Cook, “60+ iot statistics and facts,” 2020.

[6] (2019) Iot smart home automation. [Online]. Available:

https://www.digiteum.com/iot-smart-home-automation

[7] K. Sha, W. Wei, T. Andrew Yang, Z. Wang, and W. Shi, “On security

challenges and open issues in internet of things,” Future Generation

Computer Systems, vol. 83, pp. 326 – 337, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X17324883

[8] A. MERELLA, “Iot security issues and risks,” 2018.

[9] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella, “Iot:

Internet of threats? a survey of practical security vulnerabilities in real iot

55

https://www.digiteum.com/iot-smart-home-automation
http://www.sciencedirect.com/science/article/pii/S0167739X17324883

devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8182–8201,

2019.

[10] L. Mukherjee, “The owasp iot top 10 list of vulnerabilities,” 2020.

[11] R. Lemos, “California’s iot security law causing confusion,” 2019.

[12] C. Maynard. (2019) Wireshark capture setup: Wlan. [Online]. Available:

https://wiki.wireshark.org/CaptureSetup/WLAN

[13] (2020) Airodump-ng. [Online]. Available:

https://www.aircrack-ng.org/∼∼V:/doku.php?id=airodump-ng

[14] J. McDermott, “What are traffic analysis and metadata?” 2016.

[15] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no castle:

Privacy vulnerabilities of encrypted iot traffic,” arXiv preprint

arXiv:1705.06805, 2017.

[16] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake,

A. Vishwanath, and V. Sivaraman, “Characterizing and classifying iot

traffic in smart cities and campuses,” in 2017 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), 2017, pp.

559–564.

[17] “Virtual private networking: An overview,” Microsoft, Tech. Rep., 2009.

[18] I. Sanchez, R. Satta, I. N. Fovino, G. Baldini, G. Steri, D. Shaw, and

A. Ciardulli, “Privacy leakages in smart home wireless technologies,” in

2014 International Carnahan Conference on Security Technology (ICCST),

2014.

56

https://wiki.wireshark.org/CaptureSetup/WLAN
https://www.aircrack-ng.org/~~V:/doku.php?id=airodump-ng

[19] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic device

classification from network traffic streams of internet of things,” in 2018

IEEE 43rd Conference on Local Computer Networks (LCN), 2018.

[20] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.

Tippenhauer, and Y. Elovici, “Profiliot: A machine learning approach for

iot device identification based on network traffic analysis,” in Proceedings of

the Symposium on Applied Computing, ser. SAC ’17. Association for

Computing Machinery, 2017, p. 506–509.

[21] A. Sivanathan, “Iot behavioral monitoring via network traffic analysis,” arXiv

preprint arXiv:2001.10632, 2020.

[22] W. Li, X. Ji, Y. Cheng, W. Xu, and X. Zhou, “User presence inference via

encrypted traffic of wireless camera in smart homes,” Security and

Communication Networks, 2018.

[23] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feamster,

“Spying on the smart home: Privacy attacks and defenses on encrypted iot

traffic,” arXiv preprint arXiv:1708.05044, 2017.

[24] C. Kiraly, S. Teofili, G. Bianchi, R. Lo Cigno, M. Nardelli, and E. Delzeri,

Traffic Flow Confidentiality in IPsec: Protocol and Implementation, 2008,

vol. 262.

[25] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster,

“Keeping the smart home private with smart (er) iot traffic shaping,”

Proceedings on Privacy Enhancing Technologies, vol. 2019, 2019.

[26] D. Wood, N. Apthorpe, and N. Feamster, “Cleartext data transmissions in

consumer iot medical devices,” in Proceedings of the 2017 Workshop on

57

Internet of Things Security and Privacy, ser. IoTSP ’17. Association for

Computing Machinery, 2017, p. 7–12. [Online]. Available:

https://doi.org/10.1145/3139937.3139939

[27] “Internet protocol security (ipsec).”

[28] “What is transport layer security (tls)?” [Online]. Available:

https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/

[29] A. Hussein, I. Elhajj, A. Chehab, and A. Kayssi, “Securing diameter:

Comparing tls, dtls, and ipsec,” 11 2016, pp. 1–8.

[30] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and C. Troncoso,

“Encrypted dns–¿ privacy? a traffic analysis perspective,” arXiv preprint

arXiv:1906.09682, 2019.

[31] T. Datta, N. Apthorpe, and N. Feamster, “A developer-friendly library for

smart home iot privacy-preserving traffic obfuscation,” in Proceedings of the

2018 Workshop on IoT Security and Privacy, ser. IoT SP ’18. New York,

NY, USA: Association for Computing Machinery, 2018, p. 43–48. [Online].

Available: https://doi.org/10.1145/3229565.3229567

[32] W. Yan, E. Hou, and N. Ansari, “Defending against traffic analysis attacks

with link padding for bursty traffics,” in Proceedings from the Fifth Annual

IEEE SMC Information Assurance Workshop, 2004., 2004, pp. 46–51.

[33] W. Wang, M. Motani, and V. Srinivasan, “Dependent link padding algorithms

for low latency anonymity systems,” 2008.

[34] C.-M. Cheng, H. Kung, and K.-S. Tan, “On-demand link padding in traffic

anonymizing,” vol. 6, 2005.

58

https://doi.org/10.1145/3139937.3139939
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://doi.org/10.1145/3229565.3229567

[35] J. Frankenfield. (2020) Eavesdropping attack. [Online]. Available:

https://www.investopedia.com/terms/e/eavesdropping-attack.asp

[36] “Cal Poly Github,” http://www.github.com/CalPoly.

[37] M. binti Mohamad Noor and W. H. Hassan, “Current research on internet of

things (iot) security: A survey,” Computer Networks, vol. 148, pp. 283 –

294, 2019. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128618307035

[38] A. Capossele, V. Cervo, G. De Cicco, and C. Petrioli, “Security as a coap

resource: An optimized dtls implementation for the iot,” in 2015 IEEE

International Conference on Communications (ICC), 2015, pp. 549–554.

[39] R. Hummen, J. Hiller, M. Henze, and K. Wehrle, “Slimfit — a hip dex

compression layer for the ip-based internet of things,” 10 2013.

[40] Tokyoneon, “Stealthfully sniff wi-fi activity without connecting to a target

router,” 2019. [Online]. Available:

https://null-byte.wonderhowto.com/how-to/stealthfully-sniff-wi-fi-activity-

without-connecting-target-router-0183444/

[41] F. Le, J. Ortiz, D. Verma, and D. Kandlur, Policy-Based Identification of IoT

Devices’ Vendor and Type by DNS Traffic Analysis. Cham: Springer

International Publishing, 2019, pp. 180–201. [Online]. Available:

https://doi.org/10.1007/978-3-030-17277-0 10

[42] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods for

encrypted traffic classification and analysis,” International Journal of

Network Management, vol. 25, no. 5, pp. 355–374, 2015. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1901

59

https://www.investopedia.com/terms/e/eavesdropping-attack.asp
http://www.github.com/CalPoly
http://www.sciencedirect.com/science/article/pii/S1389128618307035
https://null-byte.wonderhowto.com/how-to/stealthfully-sniff-wi-fi-activity-without-connecting-target-router-0183444/
https://null-byte.wonderhowto.com/how-to/stealthfully-sniff-wi-fi-activity-without-connecting-target-router-0183444/
https://doi.org/10.1007/978-3-030-17277-0_10
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.1901

APPENDICES

Appendix A

DATA-SET BACKGROUND

The data-set we used in our thesis came from a previous group that captured both

network packets and power usage of each IoT device connected to their network. They

recorded user events in a spreadsheet that correlated what device was being used,

for what reason, and at what time. They began plotting graphs of data throughput

against time to show what user activity information can be drawn. The events ranged

from using a single device or multiple devices for short periods of time like 20-30

minutes. Several events took place within a couple hours and there was hours if not

days breaks in between these events due to the fact that a student used the devices

at certain times of the week.

The data-set consisted of an ip table and a power table. Figure A.1 shows the columns

for the ip table and Figure A.2 shows the columns for the power table.

This work uses the ip table as it consists of captured network packets from the IoT

devices on the network. Some of the fields in the ip table were not filled out for

several of the packets. Figure A.3 shows a few rows from the ip table.

For traffic analysis and traffic shaping, only the timestamp and size are required to

be able to plot a time-series graph of data throughput against time. Therefore, in

our pre-processing of the data we removed all the other columns so our dataframe

consisted of only time and size as shown in Figure A.4.

60

Figure A.1: ip table columns

Figure A.2: power table columns

61

Figure A.3: ip table rows

Figure A.4: processed ip table

62

Appendix B

CODE

B.1 Pre-Processing Data

1 #connect to MySQL database

2 conn = MySQLdb.connect(host="localhost", user="root", passwd="", db=

"iot")

3 cursor = conn.cursor ()

4 #fetch chromecast packets time and size

5 cursor.execute(’SELECT time , size FROM ip WHERE time >="2018 -05 -11

1:25:00" AND time <"2018-05-11 1:32:00" ’)

6 rows = cursor.fetchall ()

7 #create a dataframe of packets

8 df = pd.DataFrame([[ij for ij in i] for i in rows])

9 df.rename(columns ={0: ’Time’, 1: ’Size’}, inplace=True)

10 df[’Size’] = pd.to_numeric(df[’Size’])

11 #this is the individual packets

12 chromecast_packets_df = df

13 #these are packets grouped by time

14 df = df.groupby ([’Time’]).sum().reset_index ()

15 #plotting time series graph

16 plt.rcParams.update ({’font.size’: 16})

17 ax = df.plot(x=’Time’, y=’Size’, kind=’line’, grid=True , title=’

Chromecast Network Usage ’, figsize =(10 ,5))

18 ax.set_xlabel(’Time’)

19 ax.set_ylabel(’Data Throughput (Bytes)’)

20 plt.savefig(’figures/chromecast_throughput.png’)

21 plt.show()

63

B.2 ILP-Const Algorithm

1 def ilp_constant_alg(input_df , constant_rate):

2 output_df = pd.DataFrame(columns =[’Time’, ’Size’])

3 stats = {’max_delay ’ : 0, ’num_packets_delayed ’ : 0, ’

total_padding ’ : 0, ’num_times_padded ’ : 0}

4 padding = 0

5 delayed_time = 0

6 current_size = 0

7 current_time = 0

8 delayed_packets = []

9 for index in range(len(input_df)):

10 t = input_df[’Time’].iloc[index]

11 s = input_df[’Size’].iloc[index]

12 if t != current_time:

13 if current_size < constant_rate and current_time != 0:

14 padding = constant_rate - current_size

15 output_df = output_df.append ({’Time’: current_time ,

’Size’: padding}, ignore_index=True)

16 stats[’total_padding ’] += padding

17 stats[’num_times_padded ’] += 1

18 current_time = t

19 current_size = 0

20 pop_count = 0

21 for dt , ds in delayed_packets:

22 if ds + current_size <= constant_rate:

23 current_size += ds

24 output_df = output_df.append ({’Time’: current_time ,

’Size’: ds}, ignore_index=True)

25 delayed_time = (current_time - dt).total_seconds ()

26 if delayed_time > stats[’max_delay ’]:

27 stats[’max_delay ’] = delayed_time

64

28 pop_count += 1

29 else:

30 break

31 for i in range(pop_count):

32 delayed_packets.pop(0)

33 if s + current_size <= constant_rate:

34 output_df = output_df.append ({’Time’: t, ’Size’: s},

ignore_index=True)

35 current_size += s

36 else:

37 delayed_packets.append ((t,s))

38 stats[’num_packets_delayed ’] += 1

39 if current_size < constant_rate and current_time != 0:

40 padding = constant_rate - current_size

41 output_df = output_df.append ({’Time’: current_time , ’

Size’: padding}, ignore_index=True)

42 stats[’total_padding ’] += padding

43 stats[’num_times_padded ’] += 1

44 return output_df , stats

45 #running ILP -Const on the chromecast packets

46 chromecast_ilp_const_df , chromecast_ilp_const_stats =

ilp_constant_alg(chromecast_packets_df , 10000)

47 chromecast_ilp_const_df = chromecast_ilp_const_df.groupby ([’Time’]).

sum().reset_index ()

B.3 ILP-Var Algorithm

1 def ilp_variable_alg(input_df , min_rate , max_rate):

2 output_df = pd.DataFrame(columns =[’Time’, ’Size’])

3 stats = {’max_delay ’ : 0, ’num_packets_delayed ’ : 0, ’

total_padding ’ : 0, ’num_times_padded ’ : 0}

65

4 padding = 0

5 delayed_time = 0

6 current_size = 0

7 current_time = 0

8 delayed_packets = []

9 current_rate = 0

10 for index in range(len(input_df)):

11 t = input_df[’Time’].iloc[index]

12 s = input_df[’Size’].iloc[index]

13 if t != current_time:

14 if current_size < current_rate and current_time != 0:

15 padding = current_rate - current_size

16 output_df = output_df.append ({’Time’: current_time ,

’Size’: padding}, ignore_index=True)

17 stats[’total_padding ’] += padding

18 stats[’num_times_padded ’] += 1

19 current_time = t

20 current_size = 0

21 current_rate = random.randint(min_rate , max_rate)

22 pop_count = 0

23 for dt , ds in delayed_packets:

24 if ds + current_size <= current_rate:

25 current_size += ds

26 output_df = output_df.append ({’Time’: current_time ,

’Size’: ds}, ignore_index=True)

27 delayed_time = (current_time - dt).total_seconds ()

28 if delayed_time > stats[’max_delay ’]:

29 stats[’max_delay ’] = delayed_time

30 pop_count += 1

31 else:

32 break

33 for i in range(pop_count):

66

34 delayed_packets.pop(0)

35 if s + current_size <= current_rate:

36 output_df = output_df.append ({’Time’: t, ’Size’: s},

ignore_index=True)

37 current_size += s

38 else:

39 delayed_packets.append ((t,s))

40 stats[’num_packets_delayed ’] += 1

41 if current_size < current_rate and current_time != 0:

42 padding = current_rate - current_size

43 output_df = output_df.append ({’Time’: current_time , ’

Size’: padding}, ignore_index=True)

44 stats[’total_padding ’] += padding

45 stats[’num_times_padded ’] += 1

46 return output_df , stats

47 #running ILP -Var on chromecast packets

48 chromecast_ilp_var_df , chromecast_ilp_var_stats = ilp_variable_alg(

chromecast_packets_df , 1000, 20000)

49 chromecast_ilp_var_df = chromecast_ilp_var_df.groupby ([’Time’]).sum

().reset_index ()

B.4 STP Algorithm

1 def stp_alg(input_df , R, q, threshold):

2 output_df = pd.DataFrame(columns =[’Time’, ’Size’])

3 stats = {’max_delay ’ : 0, ’num_packets_delayed ’ : 0, ’

total_padding ’ : 0, ’num_times_padded ’ : 0}

4 T = 10 #Time period length in sec

5 padStart = 0

6 padEnd = 0

7 padOffset = 0

67

8 current_time = input_df[’Time’].iloc [0]

9 totalTime = int((input_df[’Time’].iloc[len(input_df) -1] -

current_time).total_seconds ())

10 for t in range(totalTime):

11 if t % T == 0 and random.random () < q:

12 padOffset = random.randint(0, T)

13 if t + padOffset > padEnd:

14 padStart = t + padOffset

15 padEnd = padStart + T

16 else:

17 padEnd = padEnd + T

18 temp_df = input_df[input_df[’Time’]== current_time][’Size’]

19 if t >= padStart and t <= padEnd:

20 stats[’num_times_padded ’] += 1

21 if temp_df.size > 0:

22 s = temp_df.iloc [0]

23 stats[’total_padding ’] += R - s

24 else:

25 stats[’total_padding ’] += R

26 output_df = output_df.append ({’Time’: current_time , ’

Size’: R}, ignore_index=True)

27 elif temp_df.size > 0:

28 s = temp_df.iloc [0]

29 if s > threshold:

30 padStart = t

31 padEnd = t + T

32 stats[’num_times_padded ’] += 1

33 stats[’total_padding ’] += R - s

34 output_df = output_df.append ({’Time’: current_time ,

’Size’: R}, ignore_index=True)

35 else:

68

36 output_df = output_df.append ({’Time’: current_time ,

’Size’: s}, ignore_index=True)

37 current_time = current_time + datetime.timedelta(seconds =1)

38 return output_df , stats

39 #running STP on chromecast packets

40 chromecast_stp_df , chromecast_stp_stats = stp_alg(df , int(df[’Size’

].max()), 0.15, 7500)

B.5 DTP/STP-Var Algorithm

1 def dtp_stp_var_alg(input_df , R, q, threshold):

2 output_df = pd.DataFrame(columns =[’Time’, ’Size’])

3 stats = {’max_delay ’ : 0, ’num_packets_delayed ’ : 0, ’

total_padding ’ : 0, ’num_times_padded ’ : 0}

4 T = 15 #Time period length in sec

5 padStart = 0

6 padEnd = 0

7 padOffset = 0

8 current_time = input_df[’Time’].iloc [0]

9 totalTime = int((input_df[’Time’].iloc[len(input_df) -1] -

current_time).total_seconds ())

10 min_rate = R - 1000

11 for t in range(totalTime):

12 if t % T == 0 and random.random () < q:

13 padOffset = random.randint(0, T)

14 if t + padOffset > padEnd:

15 padStart = t + padOffset

16 padEnd = padStart + T

17 else:

18 padEnd = padEnd + T

19 temp_df = input_df[input_df[’Time’]== current_time][’Size’]

69

20 if t >= padStart and t <= padEnd:

21 stats[’num_times_padded ’] += 1

22 if temp_df.size > 0:

23 s = temp_df.iloc [0]

24 current_rate = random.randint(s, R)

25 stats[’total_padding ’] += current_rate - s

26 else:

27 current_rate = random.randint(min_rate , R)

28 stats[’total_padding ’] += current_rate

29 output_df = output_df.append ({’Time’: current_time , ’

Size’: current_rate}, ignore_index=True)

30 elif temp_df.size > 0:

31 s = temp_df.iloc [0]

32 if s > threshold:

33 padStart = t

34 padEnd = t + T

35 stats[’num_times_padded ’] += 1

36 current_rate = random.randint(s, R)

37 stats[’total_padding ’] += current_rate - s

38 output_df = output_df.append ({’Time’: current_time ,

’Size’: current_rate}, ignore_index=True)

39 else:

40 output_df = output_df.append ({’Time’: current_time ,

’Size’: s}, ignore_index=True)

41 current_time = current_time + datetime.timedelta(seconds =1)

42 return output_df , stats

70

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Internet of Things Background
	1.1.1 IoT Architecture and Security

	1.2 Motivation
	1.3 Preventing Traffic Analysis
	1.4 Thesis Contributions
	1.5 Thesis Organization

	2 Literature Review
	2.1 Privacy Vulnerabilities in IoT Traffic
	2.2 Communications Security Protocols
	2.2.1 IPSec with TFC
	2.2.2 TLS
	2.2.3 DNS-over-TLS and DNS-over-HTTPS

	2.3 Traffic Shaping Algorithms
	2.3.1 Independent Link Padding
	2.3.2 Dependent Link Padding
	2.3.3 On-demand Link Padding
	2.3.4 Stochastic Traffic Padding

	3 Privacy vs Overhead
	3.1 Adversary Confidence
	3.2 Bandwidth Overhead
	3.3 Privacy vs Overhead Trade-off

	4 System Model
	4.1 The IoT Network Architecture
	4.2 Threat Model
	4.2.1 Eavesdropping
	4.2.2 Traffic analysis

	4.3 Security Objectives
	4.3.1 Confidentiality
	4.3.2 Privacy

	5 Data-set
	5.1 Overview
	5.2 Characteristics of Data-set
	5.3 Pre-processing Data
	5.4 Data Visualization
	5.4.1 Google Chromecast
	5.4.2 Google Home
	5.4.3 Microsoft Xbox One
	5.4.4 Ipad Tablet
	5.4.5 Samsung Smart TV
	5.4.6 IP Camera

	6 Current Solutions for Traffic Privacy
	6.1 Firewall
	6.2 VPN
	6.3 Dependent Link Padding
	6.4 Independent Link Padding
	6.5 Stochastic Traffic Padding

	7 Evaluation of Current Traffic Shaping Algorithms
	7.1 Independent Link Padding
	7.1.1 Computational Requirements
	7.1.2 Bandwidth Overhead and Latency
	7.1.3 Privacy Protection

	7.2 Stochastic Traffic Padding
	7.2.1 Computational Requirements
	7.2.2 Bandwidth Overhead and Latency
	7.2.3 Privacy Protection

	8 Dynamic Traffic Padding
	8.1 Tunable Variables
	8.2 Input Variables
	8.3 Algorithm
	8.4 Evaluation
	8.4.1 Computational Requirements
	8.4.2 Bandwidth Overhead and Latency
	8.4.3 Privacy Protection
	8.4.4 Data Visualization
	8.4.4.1 Chromecast
	8.4.4.2 Google Home

	8.4.5 Privacy vs Overhead Trade-off

	9 Conclusion & Future Work
	9.1 Conclusion
	9.2 Future Work

	BIBLIOGRAPHY
	A Data-set Background
	B Code
	B.1 Pre-Processing Data
	B.2 ILP-Const Algorithm
	B.3 ILP-Var Algorithm
	B.4 STP Algorithm
	B.5 DTP/STP-Var Algorithm

