
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Electrical and Computer
Engineering Faculty Publications

Department of Electrical and Computer
Engineering

2022

Reflections on Software Failure Analysis Reflections on Software Failure Analysis

Paschal C. Amusuo
Purdue University, pamusuo@purdue.edu

Aishwarya Sharma
Purdue University, sharm234@purdue.edu

Siddharth R. Rao
Purdue University, rao147@purdue.edu

Abbey Vincent
Purdue University, vincen17@purdue.edu

James C. Davis
Purdue University, davisjam@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecepubs

 Part of the Other Computer Engineering Commons, and the Software Engineering Commons

Amusuo, Paschal C.; Sharma, Aishwarya; Rao, Siddharth R.; Vincent, Abbey; and Davis, James C.,
"Reflections on Software Failure Analysis" (2022). Department of Electrical and Computer Engineering
Faculty Publications. Paper 166.
https://docs.lib.purdue.edu/ecepubs/166

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ecepubs
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=docs.lib.purdue.edu%2Fecepubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=docs.lib.purdue.edu%2Fecepubs%2F166&utm_medium=PDF&utm_campaign=PDFCoverPages

18

16

I!!
14

GI 12
a. .,, 10
a. 8
0 - 6
C
::I 4
0
0 2

0

'1,'->i;:Ji) '1,'->'->&. '1,'->r;)'t> '1,'->,,_,.,, '1,'->\lo '1,'->'1,'->

Publication Year

©
a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Reflections on Sofware Failure Analysis
Paschal C. Amusuo Aishwarya Sharma Siddharth R. Rao
Purdue University, USA Purdue University, USA Purdue University, USA
pamusuo@purdue.edu sharm234@purdue.edu rao147@purdue.edu

Abbey Vincent James C. Davis
Purdue University, USA Purdue University, USA
vincen17@purdue.edu davisjam@purdue.edu

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3560879

ABSTRACT
Failure studies are important in revealing the root causes, behaviors,
and life cycle of defects in software systems. These studies either
focus on understanding the characteristics of defects in specifc
classes of systems or the characteristics of a specifc type of defect in
the systems it manifests in. Failure studies have infuenced various
software engineering research directions, especially in the area of
software evolution, defect detection, and program repair.

In this paper, we refect on the conduct of failure studies in soft-
ware engineering. We reviewed a sample of 52 failure study papers.
We identifed several recurring problems in these studies, some of
which hinder the ability of the engineering community to trust
or replicate the results. Based on our fndings, we suggest future
research directions, including identifying and analyzing failure
causal chains, standardizing the conduct of failure studies, and tool
support for faster defect analysis.

CCS CONCEPTS
· Software and its engineering ! Software defect analysis.

KEYWORDS
Failure analysis, software defects, empirical software engineering

ACM Reference Format:
Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent,
and James C. Davis. 2022. Refections on Software Failure Analysis. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),
November 14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3540250.3560879

1 INTRODUCTION
The study of failures is integral to the success of engineered sys-
tems [27]. In software engineering, failure studies describe the char-
acteristics of defects in software systems. These studies, otherwise
known as bug studies, are either tailored toward understanding the
characteristics of defects in specifc classes of systems (e.g., web
systems [5], Android apps [17], or embedded systems [19]) or the
characteristics of specifc classes of defects (e.g., performance [15],

Figure 1: The distribution of failure studies by year published.

concurrency [7], or security [20]). These studies are designed to
reveal the root causes of these defects, their manifestation, impact,
fx characteristics, and life-cycle.

Over the last decade, the number of failure studies has steadily in-
creased (Figure 1). These studies have infuenced research into soft-
ware testing [12], defect detection [6], and repair techniques [24].

In this paper, we refect on the conduct of software failure anal-
ysis research over the last 20 years. Using a systematic literature
review, we identifed several faws and challenges that afect this
research direction. Following the faws and challenges we iden-
tifed, we discussed future research directions that the software
engineering community can embark on, to aid the conduct of these
failure studies. Our research directions are focused on attempting
to answer various questions relevant to the efcient conduct and
impact of failure studies.

2 IDEALIZED FAILURE STUDY MODEL
Failure studies are research focused on understanding the charac-
teristics and causes of failures in engineered systems [16] [39]. In
software engineering, these studies commonly consider defects.

This section presents an idealized model of the failure study pro-
cess in software engineering. We derived this model by reviewing
steps currently taken to conduct software failure studies, comple-

mented with failure studies conducted in other engineering disci-
plines [8]. We used this model to analyze and review various failure
studies reported in the software engineering literature.

Figure 2 shows the various stages of this idealized model, which
is applied across engineering disciplines. First, the project scope is
defned. This usually involves identifying what class of defects to

1615

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1001-525X
https://orcid.org/0000-0003-4033-3224
https://orcid.org/0000-0001-9512-2593
https://orcid.org/0000-0003-1922-0276
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3540250.3560879
https://doi.org/10.1145/3540250.3560879
mailto:davisjam@purdue.edu
mailto:vincen17@purdue.edu

1. Defne Problem Scope 2. Collect Defect Reports & 3. Analyze Bug Characteristics
Supplementary Data

- Understudied classes of systems ~ ~ - Inconsistent taxonomies &
- Difculty

t---
identifying target term defnitons

- Bias towards open-source defect reports
software systems - Absence of quality measures

6. Impact & Recommendations 5. Report Results 4. Perform Root Cause Analysis
for Industry

~
.,._ - Root causes are arbitrarily defned ~

- Not tailored towards - Missing replication data
- causal-chainoving Absence of impr engineering practice
data to analyze

Figure 2: Idealized model of software engineering failure study that our study identifed faws in.

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent, and James C. Davis

study, the system to study, and how the target defects and system
would be identifed. Then the defect reports and other relevant data
are collected and reviewed. The investigators use the information
extracted to analyze the characteristics of the various defects, such
as how they manifest, their impact, their life cycle, etc. In addition
to this, the investigators can also perform a root cause analysis
to determine the probable root cause and contributing causes of
the defects. Once the study is completed, investigators report their
results and discuss their implications. This report should also con-
tain their analyzed data to aid replicability by other investigators.
To ensure that practitioners learn from the results of the study, it
behooves the investigators to provide recommendations to these
practitioners while also working with them to validate the impact
of their results and recommendations.

The fgure also depicts common shortcomings of the existing
studies in software engineering literature at various stages. We
discuss these shortcomings in the next section.

3 FLAWS IN FAILURE STUDY METHODS
This section presents the faws we identifed in this research direc-
tion, as practiced in software engineering.

3.1 Methodology
We frst searched the proceedings of prominent software engineer-
ing conferences (ICSE, ESEC/FSE, ASE) and journals (IEEE TSE,
ESEM, JSS) and manually identifed failure study papers. The results
helped us defne our search phrase.1 We used this phrase to search
scholarly databases (Google Scholar, IEEE Xplore, ACM Digital Li-
brary). This search yielded 92 candidate papers. Working in teams
of 2, we manually reviewed the abstract of these papers, identifed
and selected 52 papers that studied and characterized defects in
software, and were published in peer review venues.

We reviewed the selected papers and collected data related to the
various stages outlined in Figure 2. We analyzed the data extracted
and identifed the faws discussed in the next subsection.

To ensure the quality of our results, we had multiple authors
independently perform data extraction on a sample of 20 papers.
We computed the Cohen kappa score on this sample as 0.763, which

1Our fnal search query was "(empirical OR comprehensive OR taxonomy OR char-
acteristics) AND (bug OR bugs OR faults OR defects OR failures OR vulnerabilities)
AND (study OR review)"

shows substantial agreement [13]. Subsequently, the authors contin-
ued the data extraction independently while one more experienced
author reviewed the data extracted by the other authors.

Threat to validity: We sampled only 52 failure studies, which
may not have included all relevant failure studies. But we believe
this sample is representative, and our fndings are valid and rele-
vant. The sample was selected through a methodological process, as
discussed above. We also included recent papers published in promi-

nent venues to ensure our fndings were relevant to the current
peer-reviewed conduct. Also, each of the faws we identifed was
prevalent in over half of the sample of papers studied. Finally, while
some of the faws identifed may seem obvious, we are the frst
to present empirical evidence of their existence while suggesting
research directions to manage them.

3.2 Recurring Flaws
3.2.1 Bias towards Open-source Sofware: Investigators conduct-
ing failure studies are biased toward studying defects in open-source
software (frst row of Table 1). This is usually because open-source
software has publicly available code, documentation, and complete
evolution history. Unfortunately, focusing on only open-source soft-
ware may be inconsistent with the investigator’s goal, ultimately
aiding software engineering practice beyond open-source.

Prior research has investigated and reported diferences between
open-source and commercial software [22] [26] [3]. Mockus et
al. [22] showed that the post-release defect density for Apache was
signifcantly diferent compared to 4 commercial projects. Paul-
son et al. [26] reported that more defects are being found and fxed
in open-source software, which may have contributed to the high
defect density reported in [22]. Boulanger [3] identifed diferences
between the software development practices for open-source and
commercial software projects. In open-source software, defects are
usually reported by customers, unlike in commercial software. This
could also afect the kinds of defects analyzed by failure studies.
As a result, the results from these failure studies that studied open-
source software may not generalize to commercial environments.

3.2.2 Root Causes are Subjectively Identified: Root cause analysis
is the most common aspect of defects considered by failure studies
(Figure 3). However, only one paper [19] reported using a root cause
analysis methodology to identify these root causes. According to
Paradies et al. [25], root causes should be basic causes that are within

1616

f
GI
12.

"' 12.

0
c
:::,
0
0

30

20

10

Bug Study Dimension

20

15

1:10
:::,

8 5

0

Reflections on Sofware Failure Analysis ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Table showing further failure study analysis.

Analysis Yes No

Papers that studied defects in proprietary software 3 49
Papers that reused taxonomies from literature 10 42
Papers that reported the use of any tool 12 40
Papers that made practitioner-relevant contributions 14 38

Figure 3: Research questions investigated by failure studies.

the ambit of management to fx. Gangidi [9] also explained that a
systematic root cause analysis methodology should reveal deeper
systemic causes (e.g., policies, practices, management decisions).

The root causes identifed by the failure studies we reviewed
mostly represent technical faws and do not correspond with any
of these defnitions. Wang [40] identifed root causes such as mis-

use of mathematical formulas, inconsistency between hardware
and software, and improper handling of parameters. While these
are the immediate causes of the reported defects, they are neither
‘basic’ nor systemic. Deeper investigations into defects caused by
hardware/software inconsistency may reveal underlying causes
such as poor documentation, which may also have been attributed
to the absence of documentation guidelines. As another example,
Gunawi et al. [10] identifed data races as one of the root causes
of data inconsistency in cloud systems, but deeper analysis might
have also revealed other underlying factors that led to these data
races. If papers conducted a deeper root cause analysis, their results
could be more helpful to practitioners and engineering teams.

3.2.3 Inconsistent Defect Taxonomies: Failure studies attempt to
characterize the defects in software systems to aid their analysis.
Our results, as shown in the second row of Table 1, show that most
failure studies invent the taxonomies they use for this characteriza-
tion, even when they study the same class of defects. For example,
Cao et al. [4] characterized performance bugs in deep learning
systems using a self-generated taxonomy but could have adapted
taxonomies from prior research on performance bugs [18] [21]
[41]. As a result, it becomes difcult to compare the distribution of
performance defects in [4] and earlier works such as [21].

We also found disagreement in the interpretation of terms in
the taxonomy when investigators choose to reuse taxonomies from

Figure 4: Distribution of failure studies by system type.

earlier studies. For example, Tan et al. [38] reported they reused the
taxonomy defned by Sullivan et al. [36] but acknowledged that the
defnition of semantic bugs between the two studies may be diferent,
accounting for the huge discrepancy between the percentage of
semantic bugs found by the two papers.

3.2.4 Non-integration of Practicing Sofware Engineers in the Study:
Our review of failure study papers shows that practitioners are
not included during the conduct of these studies. Investigating
the perspectives of the software engineers who create or fx these
defects can be helpful in providing insights into the causes and
characteristics of these defects.

Furthermore, failure study papers are focused on enabling soft-
ware engineering research but fail to make contributions that are
relevant to software engineers. According to the fourth row of
Table 1, only 27% of reviewed papers proposed recommendations
pertinent to current software engineering practices. Mantyla [23]
provided guidelines for conducting code and documentation re-
views. Sun [37] made recommendations for generating test cases
for compilers. Others only discussed the research implications of
their work. This is contrary to failure studies in other disciplines
whose results recommended changes in practitioners’ practices
[8] [27] [31] [32]. With an increased focus on improving engineer-
ing practice, the results and recommendations from these studies
could reduce the occurrence of defects, which would signifcantly
increase software engineers’ productivity..

3.2.5 Defects in Embedded/IoT Systems are Understudied: From our
results, we observed that the software engineering community is
biased towards failure studies on web-based and desktop-based sys-
tems, while embedded/IoT systems are still understudied. As shown
in Figure 4, embedded/IoT systems accounted for only two papers,
while web-based systems (e.g., browsers) had 16 and desktop-based
systems (e.g., compilers) had 12. Embedded systems power our
airplanes, vehicles, and industries and deserve additional attention.

3.2.6 Miscellaneous Flaws: In addition to the primary faws dis-
cussed above, we summarize three more issues.

Inconsistent quality measures: Defect analysis is subjective, and
single-author investigation methods are untrustworthy. Of the 52
papers reviewed, only 19 studies had multiple authors indepen-
dently analyze the data. Hence, the results of most studies are
untrustworthy without the use of quality control measures.

Absence of replicability data: Only 11 papers included links to
their replication package; 3 of these were inaccessible.

1617

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent, and James C. Davis

Missing tool support: Failure studies are time-consuming and
lack tool support. Leesatapornwongsa et al. [14] and Shen et al. [35]
reported that it took them 15 and 24 months to conduct their study.
Yet, according to the third row of Table 1, only 23% of failure stud-
ies reported using any tool in their study. These studies require
investigators to analyze and categorize hundreds of defect reports
manually. When studying a specifc class of defects, these investi-
gators rely on only keyword matching to flter prospective defect
reports and need to go through each fltered report to identify and
remove false positives. Mazuera-rozo et al. [21] identifed 1,010
commits using keyword matching, and after manual analysis by
two authors, only 20% (204 commits) were true positives.

4 A RESEARCH AGENDA

4.1 Defect Causal Chains
To efectively identify the root causes of defects, as discussed in
ğ3.2.2, we suggest investigators use additional sources that pro-
vide more information about the causal chain of the defect. It is
uncertain if analysis of pull request comments, meeting logs, design
documents, or other artifacts will be helpful. Still, these documents
can provide more insights into the reason behind the codes written
by the developers. The research community can conduct further
research to determine which artifacts would be more helpful and
how investigators can adequately analyze them to identify the root
causes of defects.

In addition, software engineers have no standard approach to
documenting design or implementation decisions or eforts. While
standards such as ISO/IEC/IEE 12207 require detailed documenta-

tion by the software engineers, Agile methodologies [1] [2] rec-
ommend less comprehensive documentation. Hence, this presents
another challenge as there is no guarantee that these documents
will be available for analysis. The research results can also inform
engineering teams what documentation needs to be maintained if
they want to learn from their failures.

4.2 Standardizing the Conduct of Failure Studies
As we discussed in ğ3.2.3, there are inconsistencies in the con-
duct of failure studies. We suggest two ways to standardize the
conduct of these studies. First, add a standard for failure analysis
to the SIGSOFT empirical standards [28] to note the quality mea-

sures, replication packages, and expected general guidelines for
conducting a failure study. Second, we suggest the development
of a defect-type taxonomy map for software defects, similar to the
Common Weakness Enumeration (CWE) used for categorizing se-
curity vulnerabilities. Such a map would contain a taxonomy of
common defect types. It can be extensible that investigators con-
ducting failure studies for a specifc system or defect classes can
build upon existing taxonomies with defect type categories particu-
lar to the class of system being investigated rather than inventing a
new taxonomy. This map would ensure that the results of all failure
studies are comparable, which will improve the generalizability of
research infuenced by the results.

4.3 Increased Impact on Engineering Practices
Following the bias reported in ğ3.2.1, we propose increased research
emphasis on replicability studies to verify if failure studies con-
ducted on open-source software also hold for commercial software.
We also suggest increased collaboration between investigators of
failure studies and software engineering companies, which would
provide these investigators access to defect reports of commer-

cial software. This collaboration would ensure that failure studies’
results infuence research, which would also be relevant to practi-
tioners in these companies.

We also recommend that, in addition to providing research di-
rections, software failure studies provide recommendations to en-
gineering teams that will reduce the occurrence of defects and the
time to debug and fx reported defects. This is akin to failure analysis
in other engineering disciplines, such as in the NTSB, where such
studies have led to various changes in engineering, management,
and regulatory practices [8].

4.4 Tool Support for Faster Defect Analysis
With the challenge of missing tool support discussed in ğ3.2.6, we
recommend the research and development of tools that would aid
the conduct of these studies. Natural Language Processing (NLP)
techniques have become increasingly helpful in understanding the
semantic meaning of documents, summarizing, and extracting use-
ful information from documents. They have successfully been used
to identify defects in requirement documents [33], identify dupli-
cate defect reports [34], extract tasks and user stories from app store
reviews [11], and summarize defect reports [30] [29]. Hence, the
research community can easily explore the use of NLP to identify
target defect reports, characterize the defects in them and extract
other relevant information about the defect (e.g., consequence, man-

ifestation behavior, component afected) from these reports. While
using NLP can not replace the need for expertise-based human anal-
ysis, automating the above-listed tasks would signifcantly reduce
the time the investigators spend conducting manual analysis.

5 CONCLUSION
In this paper, we refect on the conduct of failure studies in software
engineering by surveying 52 published failure study papers. We
identifed eight recurring faws that have marred the conduct of
failure studies. These faws impede the correctness, reliability, and
impact of the reported results of these studies.

Motivated by these challenges, we identify various ways the
research community can support the conduct of these failure studies.
We encourage further research on identifying and analyzing causal
chains for defects and tool support to simplify defect analysis while
recommending eforts to standardize the conduct of failure studies.
With these steps, software failure studies may improve software
engineering quality.

DATA AVAILABILITY
Our artifact can be found at https://doi.org/10.5281/zenodo.7041931.
This spreadsheet contains our analysis of the failure study papers
we surveyed.

1618

https://doi.org/10.5281/zenodo.7041931

Reflections on Sofware Failure Analysis ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] Kent Beck. 2001. Manifesto for Agile Software Development. https://

agilemanifesto.org/
[2] Kent Beck. 2005. Extreme Programming explained. John Wait.
[3] A. Boulanger. 2005. Open-source versus proprietary software: Is one more

reliable and secure than the other? IBM Systems Journal 44, 2 (2005), 239ś248.
https://doi.org/10.1147/sj.442.0239 Conference Name: IBM Systems Journal.

[4] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, and Xin Peng. 2021. Charac-
terizing Performance Bugs in Deep Learning Systems. arXiv:2112.01771 [cs] (Dec.
2021). http://arxiv.org/abs/2112.01771 arXiv: 2112.01771.

[5] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. 2019. Under-
standing Exception-Related Bugs in Large-Scale Cloud Systems. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
339ś351. https://doi.org/10.1109/ASE.2019.00040 ISSN: 2643-1572.

[6] Nicolas Dilley and Julien Lange. 2020. Bounded verifcation of message-passing
concurrency in Go using Promela and Spin. Electronic Proceedings in Theoretical
Computer Science 314 (April 2020), 34ś45. https://doi.org/10.4204/EPTCS.314.4
arXiv: 2004.01323.

[7] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010. A
study of the internal and external efects of concurrency bugs. In 2010 IEEE/I-
FIP International Conference on Dependable Systems Networks (DSN). 221ś230.
https://doi.org/10.1109/DSN.2010.5544315 ISSN: 2158-3927.

[8] Matthew R. Fox. 2001. Failure analysis at the National Transportation Safety
Board - Journal of Failure Analysis and Prevention. https://link.springer.com/
article/10.1007/s11668-006-5004-5

[9] Prashant Gangidi. 2018. A systematic approach to root cause analysis using 3 ×
5 why’s technique. International Journal of Lean Six Sigma 10, 1 (Jan. 2018), 295ś
310. https://doi.org/10.1108/IJLSS-10-2017-0114 Publisher: Emerald Publishing
Limited.

[10] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Jefry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jefrey F.
Lukman, Vincentius Martin, and Anang D. Satria. 2014. What Bugs Live in
the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC ’14). Association for Computing
Machinery, New York, NY, USA, 1ś14. https://doi.org/10.1145/2670979.2670986

[11] Hui Guo and Munindar P. Singh. 2020. Caspar: Extracting and Synthesizing User
Stories of Problems from App Reviews. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 628ś640. ISSN: 1558-1225.

[12] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime:
mutation testing of deep learning systems based on real faults. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2021). Association for Computing Machinery, New York, NY, USA, 67ś78.
https://doi.org/10.1145/3460319.3464825

[13] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159ś174. https:
//doi.org/10.2307/2529310 Publisher: [Wiley, International Biometric Society].

[14] Tanakorn Leesatapornwongsa, Jefrey F. Lukman, Shan Lu, and Haryadi S. Gu-
nawi. 2016. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Data-
center Distributed Systems. In Proceedings of the Twenty-First International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
ACM, Atlanta Georgia USA, 517ś530. https://doi.org/10.1145/2872362.2872374

[15] Penghui Li, Yinxi Liu, and Wei Meng. 2021. Understanding and Detecting
Performance Bugs in Markdown Compilers. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 892ś904. https:
//doi.org/10.1109/ASE51524.2021.9678611 ISSN: 2643-1572.

[16] Benjamin Liblit and Alexander Aiken. 2002. Building a better backtrace: Techniques
for postmortem program analysis. Computer Science Division, University of
California.

[17] Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-Velásquez. 2017.
An Empirical Study on Android-Related Vulnerabilities. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). 2ś13. https:
//doi.org/10.1109/MSR.2017.60

[18] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and
detecting performance bugs for smartphone applications. In Proceedings of
the 36th International Conference on Software Engineering (ICSE 2014). Asso-
ciation for Computing Machinery, New York, NY, USA, 1013ś1024. https:
//doi.org/10.1145/2568225.2568229

[19] Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, Madrid, ES, 460ś472. https://doi.org/10.1109/ICSE43902.2021.00051

[20] Alejandro Mazuera-Rozo, Jairo Bautista-Mora, Mario Linares-Vásquez, Sandra
Rueda, and Gabriele Bavota. 2019. The Android OS stack and its vulnerabilities:
an empirical study. Empirical Software Engineering 24, 4 (Aug. 2019), 2056ś2101.
https://doi.org/10.1007/s10664-019-09689-7

[21] Alejandro Mazuera-Rozo, Catia Trubiani, Mario Linares-Vásquez, and Gabriele
Bavota. 2020. Investigating types and survivability of performance bugs in
mobile apps. Empirical Software Engineering 25, 3 (May 2020), 1644ś1686. https:

//doi.org/10.1007/s10664-019-09795-6
[22] Audris Mockus, Roy T. Fielding, and James Herbsleb. 2000. A case study of

open source software development: the Apache server. In Proceedings of the
22nd international conference on Software engineering (ICSE ’00). Association for
Computing Machinery, New York, NY, USA, 263ś272. https://doi.org/10.1145/
337180.337209

[23] Mika V. Mäntylä and Casper Lassenius. 2009. What Types of Defects Are Really
Discovered in Code Reviews? IEEE Transactions on Software Engineering 35, 3
(May 2009), 430ś448. https://doi.org/10.1109/TSE.2008.71 Conference Name:
IEEE Transactions on Software Engineering.

[24] Frolin S. Ocariza, Jr., Karthik Pattabiraman, and Ali Mesbah. 2014. Vejovis: suggest-
ing fxes for JavaScript faults. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014). Association for Computing Machinery, New
York, NY, USA, 837ś847. https://doi.org/10.1145/2568225.2568257

[25] M. Paradies and D. Busch. 1988. Root cause analysis at Savannah River plant
(nuclear power station). In Conference Record for 1988 IEEE Fourth Conference on
Human Factors and Power Plants,. 479ś483. https://doi.org/10.1109/HFPP.1988.
27547

[26] James W Paulson, Giancarlo Succi, and Armin Eberlein. 2004. An empirical study
of open-source and closed-source software products. IEEE transactions on software
engineering 30, 4 (2004), 246ś256. https://doi.org/10.1109/TSE.2004.1274044

[27] Henry Petroski. 1994. Design Paradigms: Case Histories of Error and Judgment in
Engineering. Cambridge University Press. Google-Books-ID: C_ZroS6rY54C.

[28] Paul Ralph, Sebastian Baltes, Domenico Bianculli, Yvonne Dittrich, Michael
Felderer, Robert Feldt, Antonio Filieri, Carlo Alberto Furia, Daniel Graziotin,
Pinjia He, Rashina Hoda, Natalia Juristo, Barbara Kitchenham, Romain Robbes,
Daniel Mendez, Jeferson Molleri, Diomidis Spinellis, Miroslaw Staron, Klaas Stol,
Damian Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan, and Sira
Vegas. 2020. ACM SIGSOFT Empirical Standards. https://onikle.com/articles/
288927

[29] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2010. Summarizing software
artifacts: a case study of bug reports. In 2010 ACM/IEEE 32nd International Con-
ference on Software Engineering, Vol. 1. 505ś514. https://doi.org/10.1145/1806799.
1806872 ISSN: 1558-1225.

[30] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2014. Automatic Summa-
rization of Bug Reports. IEEE Transactions on Software Engineering 40, 4 (April
2014), 366ś380. https://doi.org/10.1109/TSE.2013.2297712 Conference Name:
IEEE Transactions on Software Engineering.

[31] James Reason. 1990. Human Error. Cambridge University Press. Google-Books-
ID: WJL8NZc8lZ8C.

[32] J Reason. 1997. Organizational accidents: the management of human and organi-
zational factors in hazardous technologies. England: Cambridge University Press,
Cambridge (1997).

[33] Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi, Stefania
Gnesi, Iacopo Trotta, and Stefano Bacherini. 2017. Using NLP to Detect Require-
ments Defects: An Industrial Experience in the Railway Domain. In Requirements
Engineering: Foundation for Software Quality (Lecture Notes in Computer Science),
Paul Grünbacher and Anna Perini (Eds.). Springer International Publishing, Cham,
344ś360. https://doi.org/10.1007/978-3-319-54045-0_24

[34] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection
of Duplicate Defect Reports Using Natural Language Processing. In 29th In-
ternational Conference on Software Engineering (ICSE’07). 499ś510. https:
//doi.org/10.1109/ICSE.2007.32 ISSN: 1558-1225.

[35] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 968ś980.
https://doi.org/10.1145/3468264.3468591

[36] M. Sullivan and R. Chillarege. 1992. A comparison of software defects in database
management systems and operating systems. In [1992] Digest of Papers. FTCS-
22: The Twenty-Second International Symposium on Fault-Tolerant Computing.
475ś484. https://doi.org/10.1109/FTCS.1992.243586

[37] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA 2016). Association for Com-
puting Machinery, New York, NY, USA, 294ś305. https://doi.org/10.1145/2931037.
2931074

[38] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical Software
Engineering 19, 6 (Dec. 2014), 1665ś1705. https://doi.org/10.1007/s10664-013-
9258-8

[39] E. Ubani and C. Ononuju. 2013. A study of failure and abandonment of public
sector-driven civil engineering projects in Nigeria: An empirical review. American
Journal of Scientifc and Industrial Research 4, 1 (Feb. 2013), 75ś82. https://doi.
org/10.5251/ajsir.2013.4.1.75.82

[40] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021.
An exploratory study of autopilot software bugs in unmanned aerial vehicles.

1619

https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1147/sj.442.0239
http://arxiv.org/abs/2112.01771
https://doi.org/10.1109/ASE.2019.00040
https://doi.org/10.4204/EPTCS.314.4
https://doi.org/10.1109/DSN.2010.5544315
https://link.springer.com/article/10.1007/s11668-006-5004-5
https://link.springer.com/article/10.1007/s11668-006-5004-5
https://doi.org/10.1108/IJLSS-10-2017-0114
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1109/ASE51524.2021.9678611
https://doi.org/10.1109/ASE51524.2021.9678611
https://doi.org/10.1109/MSR.2017.60
https://doi.org/10.1109/MSR.2017.60
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1007/s10664-019-09689-7
https://doi.org/10.1007/s10664-019-09795-6
https://doi.org/10.1007/s10664-019-09795-6
https://doi.org/10.1145/337180.337209
https://doi.org/10.1145/337180.337209
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1145/2568225.2568257
https://doi.org/10.1109/HFPP.1988.27547
https://doi.org/10.1109/HFPP.1988.27547
https://doi.org/10.1109/TSE.2004.1274044
https://onikle.com/articles/288927
https://onikle.com/articles/288927
https://doi.org/10.1145/1806799.1806872
https://doi.org/10.1145/1806799.1806872
https://doi.org/10.1109/TSE.2013.2297712
https://doi.org/10.1007/978-3-319-54045-0_24
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1109/ICSE.2007.32
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1109/FTCS.1992.243586
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.5251/ajsir.2013.4.1.75.82
https://doi.org/10.5251/ajsir.2013.4.1.75.82

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent, and James C. Davis

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 20ś31. https:
//doi.org/10.1145/3468264.3468559

[41] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. 2012. A qualitative study
on performance bugs. In 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR). 199ś208. https://doi.org/10.1109/MSR.2012.6224281 ISSN:
2160-1860.

1620

https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1109/MSR.2012.6224281

	Reflections on Software Failure Analysis
	

	Abstract
	1 Introduction
	2 Idealized Failure Study Model
	3 Flaws in Failure Study Methods
	3.1 Methodology
	3.2 Recurring Flaws

	4 A Research Agenda
	4.1 Defect Causal Chains
	4.2 Standardizing the Conduct of Failure Studies
	4.3 Increased Impact on Engineering Practices
	4.4 Tool Support for Faster Defect Analysis

	5 Conclusion
	References

