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A B S T R A C T   

Na0.25K0.25Bi0.5TiO3 (NKBT) perovskite particles are synthesized by solid-state method and used as a filler for 
polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) co-polymer. X-ray diffraction analysis of NKBT 
powders shows that the particles have a rhombohedral perovskite crystal structure (R3c symmetry). Raman 
spectroscopy reveals that the co-polymer crystallizes predominantly into the mixture of polar β- and γ-crystals, 
while there is also a contribution of the non-polar α-crystal phase. The introduction of the NKBT into the PVDF- 
HFP results with an increase in effective dielectric permittivity and this effect depends on the inorganic content 
in the composite. The most interesting result of the present study is that the introduction of NKBT particles 
induces the appearance of an additional transition peak in the dielectric spectra of the co-polymer matrix. At the 
fixed frequency of ~2 kHz, the observed process appears at ~10 ◦C (about 45◦ above the glass transition 
temperature) and its magnitude strongly depends on the amount of the NKBT in the composite. Dielectric 
spectroscopy measurements of the composites are carried out in the wide range of frequencies (from 0.1 Hz to 1 
MHz) and temperatures (from − 100 to 100 ◦C). They reveal that the novel process can be clearly distinguished in 
the frequency range between 160 Hz and ~50 kHz.   

1. Introduction 

The design and development of novel piezoelectric polymer-ceramic 
composites for specific applications are the subjects of intensive research 
[1–4]. In these heterostructural materials, the excellent dielectric 
properties of ceramics are combined with beneficial properties of 

polymers such as easy processing, high breakdown strength and flexi
bility. The resulting composite material may also exhibit additional 
synergetic properties that are not present in either of the single-phase 
materials observed separately. Typically, PZT (PbZrxTi1-xO3), BaTiO3, 
ZnO and TiO2 were used as fillers for ferroelectric polymers such as 
polyvinylidene fluoride (PVDF) and its copolymers with trifluorethylene 
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(PVDF-TrFE) and hexafluoropropylene (PVDF-HFP) [1–20]. Recent 
studies involved various other high dielectric constant particles such as 
SrTiO3, CaTiO3, Ba0.5Sr0.5TiO3, K2CO3, KxTiyNi1− x− yO, as an inorganic 
phase in PVDF based composites [21–25]. Taking into account current 
trends towards replacing Pb-based with environmentally more benign 
piezoelectric ceramics, we decide to use Na0.25K0.25Bi0.5TiO3 (NKBT) as 
filler for PVDF-HFP copolymer and to investigate the dielectric proper
ties of the obtained composites. 

Na0.5Bi0.5TiO3 (NBT) is a lead-free ferroelectric material extensively 
studied due to favourable properties such as high Curie temperature (Tc 
~320 ◦C) coupled with a large remnant polarization and a large 
piezoelectric strain constant (d33) [26]. On the other hand, relatively 
high coercive field (Ec) and high conductivity are the drawbacks for its 
wide-spread applications [27]. It was shown that the introduction of a 
certain amount of potassium under specific processing conditions can 
improve the remnant polarization and lower the coercive field [28–33]. 
In the present study, Na0.25K0.25Bi0.5TiO3 (NKBT) ceramics were syn
thesized by solid-state reaction. The obtained NKBT powder was solu
tion mixed with PVDF-HFP and the obtained composite films were 
investigated by means of the dielectric spectroscopy in the temperature 
range from − 100 to 100 ◦C at various frequencies. It was found that the 
introduction of the ceramic particles induces the appearance of the 
additional relaxation peak in the spectra of the composite, which is not 
present in the pure co-polymer. From the fundamental point of view, this 
was an interesting result and the study is focused on the properties of the 
observed relaxation transition. The intensity of the relaxation peak 
strongly depends on the amount of the inorganic particles in the matrix. 
Also, the transition is dependent on the frequency of the external field 
and starts to disappear as a separate peak at the frequencies above 100 
kHz. 

2. Experimental 

2.1. Materials 

Polyvinylidene fluoride-co-hexafluoropropylene (Mw~455000 and 
Mñ110000) and the precursor materials for the preparation of NKBT 
(TiO2, Bi2O3, Na2CO3 and K2CO3) were purchased from Aldrich. 

Na0.25K0.25Bi0.5TiO3 (NKBT) powder was fabricated via solid-state 
reaction of the precursors. TiO2, Bi2O3, Na2CO3 and K2CO3 powders 
were ball milled in ethanol for 12 h, dried and calcinated at 850 ◦C for 2 
h. After that, the obtained powders were additionally milled in ethanol 
for 12 h and finally sintered at 850 ◦C for 4 h. 

PVDF-HFP/NKBT composites were prepared by solution mixing at 
room temeprature. PVDF-HFP solution (2 wt%) was prepared by dis
solving 3 g of polymer in 150 ml dimethylformamide (DMF). NKBT 
powders were dispersed in 50 ml DMF and sonicated in a BransonW-450 
D Digital Sonifier for 20 min at 80 W amplitude. The obtained dispersion 
was mixed in specific ratios with the co-polymer solution in order to 
obtain the composites with 2.5, 5, and 10 wt% of inorganic content. The 
pristine polymer and composite films (~80 μm thick) were prepared by 
casting the mixtures into Petri dishes. The films were first dried at room 
temeperature (20 ◦C) for 24 h and then in the oven at 90 ◦C for 1 h. 

2.2. Methods 

Morphology of NKBT powders, PVDF-HFP co-polymer and PVDF- 
HFP/NKBT nanocomposite films were investigated by a field emission 
gun TESCAN MIRA3 scanning electron microscope. For SEM (Scanning 
electron microscopy) analyses, the films were fractured after immersion 
in liquid nitrogen. The samples were covered with gold by sputtering 

Fig. 1. SEM micrographs of a) NKBT powder, b) pure PVDF-HFP co-polymer, c) PVDF HFP/NKBT composite (10 wt% of NKBT) films; d) X-ray diffraction pattern of 
the NKBT powder; e) Diffuse reflectance spectrum of the NKBT ceramic. 
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(Polaron SC502 - Fison Instruments, UK) and investigated at 3.5 kV 
(films) and 20 kV (powder). 

X-ray diffraction (XRD) measurements were carried out on a Rigaku 
SmartLab diffractometer using Cu-Ka radiation (λ = 0.15405 nm). 
Diffraction patterns were recorded with a step size of 0.02◦ over the 2θ 
angular range from 10◦ to 120◦. 

Diffuse reflection spectra measurements were recorded with 1 nm 
resolution on a Shimadzu UV–Visible UV-2600 (Shimadzu Corporation, 
Japan) spectrophotometer equipped with an integrated sphere [ISR- 
2600 Plus (for UV-2600)] in the range from 220 nm to 1300 nm. 
Teflon was used as a reflectance standard. 

Raman spectroscopy measurements of the composite films were 
performed on a Horiba Jobin Yvon Lab Ram ARAMIS Raman micro
scope. The samples were excited by using the He–Ne laser at 633 nm (1 
mW at the sample) and the data were collected in a Raman shift range 
from 100 to 1500 cm− 1 by using a 100 × objective. The acquisition time 
was 10 s with 5 averaging cycles. 

Dielectric spectra of the pure co-polymer and the composite films 
were acquired over a broad frequency (10–106 Hz) and temperature 
(100–110 ◦C) ranges using a Hewlett Packard 4284A LCR meter in 
conjunction with a Delta Design oven model 2300. Heating rate was 5 
◦Cmin-1. Gold electrodes with an average thickness of 60 nm were 
sputtered on both sides of the films for the electrical measurements. 

Differential scanning calorimetry measurements were performed on 
a Setaram DSC 151R thermal analyzer in the nitrogen atmosphere. The 
samples were heated from 25 to 160 ◦C at 10 Cmin-1. 

3. Results and discussion 

3.1. Morphology and structure 

SEM micrographs of the NKBT powder, pure PVDF-HFP co-polymer 
and PVDF-HFP/NKBT composite (with 10 wt% of inorganic content) are 
shown in Fig. 1a,b,c. SEM image of the powder in Fig. 1a shows the 
agglomerated ceramic particles with a diameter of ~100 nm. It can also 
be seen that the fracture surface of the pure PVDF-HFP film is relatively 
smooth (Fig. 1b). SEM image of PVDF-HFP/NKBT composite (Fig. 1c) 
reveals that the particles are well dispersed in the matrix. 

Fig. 1d shows the XRD pattern of NKBT powder. The observed (100), 
(110), (111), (200), (210), (112) (220) peaks correspond to the rhom
bohedral perovskite crystal structure of NKBT with R3c symmetry 
[29–32]. The tetragonal phase, which is sometimes present in NKBT 
system, was not observed, since there was no splitting of the peak related 
to the (200) reflection. 

The diffuse reflectance spectrum of the NKBT sample is shown in 
Fig. 1e. A high reflectance of 99% was observed in the wide range of 
wavelengths from 450 to 1200 nm. The linear part of the reflectance 
curve prior to plateau value provides information about the onset of the 
optical absorption. The linear fit (the straight line in Fig. 1e) intersects 
the x-axis at 345 nm, which corresponds to the value of energy bandgap 
of 3.6 eV. The result is in agreement with literature data [34,35], that 
report NKBT as a semiconductor with the direct optical bandgap of 3.6 
eV. 

Fig. 2 shows the Raman spectra of the pure PVDF-HFP co-polymer 
and PVDF-HFP/NKBT composites (with 2.5, 5, and 10 wt% of inorganic 
content). The Raman spectrum of the pure co-polymer suggests that the 
film contains the mixture of typical crystal phases of PVDF i.e. α, β and γ. 
The analysis of the Raman shift region from 780 to 900 cm− 1 revealed 
that the crystallization of the co-polymer is directed towards the for
mation of polar, β and γ, crystals. This crystallization behavior is typical 
for the PVDF based co- and ter-polymers [36] and it is confirmed by the 
appearance of the pronounced Raman peaks at ~837 cm− 1 (attributed 
to very strong Raman modes of β and γ crystal phases) and at ~810 cm− 1 

(attributed to very strong mode of γ phase) [36,37]. It can also be seen 
that the Raman peak at the ~800 cm− 1, which corresponds to the 
strongest line in the spectra of the pure α-crystal phase, is present as a 

shoulder in the spectrum of PVDF-HFP. A comparison of the spectra in 
Fig. 2 implies also that the introduction of the filler particles promotes 
the crystallization of the γ-phase. As the concentration of the filler in
creases, an increase in the intensity of the peak at ~1130 cm− 1 was 
observed, which is attributed to the enhancement of C–C and/or –CF2 
stretching vibrations [38,39]. 

Fig. 2. Raman spectra of 1) pure PVDF-HFP co polymer and PVDF-HFP/NKBT 
composites with 2) 2.5 wt%, 3) 5 wt% and 4) 10 wt% of inorganic content. 

Fig. 3. DSC melting curves of 1) pure PVDF-HFP co polymer and PVDF-HFP/ 
NKBT composites with 2) 2.5 wt%, 3) 5 wt% and 4) 10 wt% of inor
ganic content. 
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In the spectra of the composites with a higher percentage of the filler, 
one can also notice a decrease in the intensities of the peaks in the 780- 
900 cm− 1 range. This might be a consequence of reduced thickness of 
the crystals. On the other hand, the Raman peaks in the range below 750 
cm− 1 become more pronounced. The observed increase in the intensity 
of the peaks originates probably from the contribution of the broad 
Raman peaks of the NKBT filler, which generally appear in that part of 
the spectrum and originate from the convolution of a large number of 
the Raman modes [33]. A disorder in the A position of the perovskite 
might additionally contribute to the widening of the Raman peaks [33]. 

DSC endotherms of the pure PVDF-HFP co-polymer and its com
posites with NKBT are shown in Fig. 3. 

DSC results suggest that the overall crystallinity of the matrix is not 
significantly affected by the presence of filler. On the other hand, there is 
a shift of the melting peak towards the lower temperatures with an in
crease in inorganic content. This implies that the introduction of the 
inorganic particles reduces the thickness of the crystals in the host 
matrix. 

3.2. Electrical properties 

Fig. 4 shows dielectric constant (ε′) and dielectric loss (ε′′) curves of 
the pure PVDF-HFP co-polymer and its composites as a function of fre
quency at a constant temperature of 20 ◦C. It can be seen that the 
composites have higher values of dielectric constant than the pure ma
trix (at fixed temperature and frequency). 

All four materials show similar dependence of dielectric constant on 
frequency i.e. dielectric constant increases with decreasing in frequency 

from 106 to 10− 1 Hz. An increase in ε′ is especially pronounced in the 
region of low frequencies (0.1–10 Hz) due to polarization effects. In the 
case of composite materials, the both components contribute to the 
effective dielectric constant of the composite. However, the polymer 
matrix contributes more to the effective dielectric permittivity, due to 
the much higher dielectric permittivity of perovskite particles [19]. 
Typically, to increase the permittivity of the composite, one needs a 
higher concentration of the filler. For this reason, we consider that an 
increase in effective dielectric constant of the composite (Fig. 4a) orig
inates from the synergetic effects of a high dielectric constant of NKBT 
particles and reduced mobility of the chains after their introduction into 
copolymer matrix. Dielectric loss vs. frequency curves of the PVDF-HFP 
co-polymer and the PVDF-HFP/NKBT composites obtained at room 
temperature are shown in Fig. 4b. 

As can be seen, the dielectric losses are high at low frequencies 
(0.1–10 Hz) due to polarization effects and decrease with increasing 
frequency (up to 104 Hz). At frequencies above 104 Hz another process is 
observed in ε′′ curves, which is usually associated with dipole re
laxations [20]. 

It should be noted that the dielectric relaxation measurements as a 
function of frequency were performed at different temperatures (in the 
range from − 100 to 100 ◦C). In the main text, we decided to present the 
most interesting dielectric spectra. The complete sets of the results were 
included in the Supporting information and the figures were referred in 
the discussion as S1, S2, etc. The ε′(f) and ε′′(f) curves of the pure PVDF- 

Fig. 4. a) Dielectric constant and b) dielectric loss vs. frequency for the pure (1) 
PVDF-HFP copolymer and PVDF-HFP/NKBT composites with (2) 2.5, (3) 5, (4) 
10 wt% of filler. The legend is given. 

Fig. 5. Conductivity (σAC) vs. frequency curves at various temperatures for the 
a) pure PVDF-HFP copolymer and b) PVDF HFP/NKBT composite with 10 wt% 
of filler. 
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HFP and its composite with 10 wt% of NKBT filler at various tempera
tures are shown in Figs. S1 and S2, respectively. Dielectric spectra of the 
pressed tablet of NKBT powder are also included (Fig. S3). In the low- 
frequency/high-temperature intervals, dielectric loss curves of PVDF- 
HFP and PVDF-HFP/NKBT composite (Figs. S1b and S2b) show the 
linear dependence on frequency, which is typical for conductivity re
laxations [40]. In the lowest-frequency/highest-temperature intervals 
the frequency dependences of ε′′ deviates slightly from the linear 
behavior, which is attributed to the accumulation of charges at the 
electrode-sample interfaces [41]. In order to study the mechanism of 
conduction, in Fig. 5, the specific conductivities (σAC) curves of the pure 
PVDF-HFP and PVDF-HFP/NKBT composite (with 10 wt% of filler) at 
fixed temperatures (t > 70 ◦C) were given as a function of frequency. At 
low frequencies, the specific conductivities have constant values and the 
plateaus in σAC curves in Fig. 5 correspond to the DC conductivities 
(σDC). 

The dependence of the obtained σDC values from inverse temperature 
can be described by empirical Vogel-Tammann-Fulche (VTF) equation 

σDC = σDC0exp
[

−
B

T − T0

]

(1)  

where σDC0, B and T0 are fitting parameters [42]. 
In Fig. 6, logσDC values of the neat PVDF-HFP and PVDF-HFP/NKBT 

composites were plotted against 1/T and fitted to equation (1). It should 
be noticed that the composites with lower concentration of NKBT filler 
(2.5 and 5 wt%) has lower DC conductivity values than that of the neat 
copolymer. At the highest concentration of the filler (10 wt%), DC 
conductivity values of the composite exceeds the conductivity of pure 
matrix probably due to decrease in the average distances between the 
particles. According to Lewis’s model, there is accumulation of the 
charges at the particles surfaces due to differences in Fermi levels or 
chemical potentials of the particles and the host polymer [1,43]. This, in 
turn, results in formation of counter charge in the polymer chains at the 
interface layers. Eventually, due to Coulomb interaction, the charged 
particles form electrical double layer that consists of a Stern layer and a 
Gouy− Chapman diffused layer [43]. Diffused layer contains trapped 
positive and negative ions and it significantly affects the dielectric 
properties of the composite [44]. Conduction via diffuse layers becomes 
increasingly important at higher filler concentrations and near the 
percolation threshold, as the particles get closer together. It can also be 
seen that the VTF equation describes well the dependence of logσDC from 

inverse temperature, which suggests that the conductivity of the films in 
low frequency/high-temperature ranges is controlled by the segmental 
mobility of chains [41]. 

Of course, this effect is far less important at low temperatures, while 
below the glass transition temperature, when segmental mobility is 
reduced, the dependences logσDC from 1/T becomes linear [40]. The 
VTF parameters obtained by fitting the experimental data to Eq. (1) are 
presented in Table 1. 

Fig. 7 shows dielectric spectra (ε′ and ε′′) as function of temperature 
at fixed frequency of ~2 kHz. As can be seen, ε′ of PVDF-HFP and PVDF- 
HFP/NKBT composites increases with temperature, which is typical 
dielectric behaviour of ferroelectric polymers at constant frequency of 
external field (Fig. 7a) [45–47]. 

An increase in dielectric constant with an increase in temperature is a 
consequence of activation of the molecular dipoles i.e. the dipole seg
ments, which are frozen in glassy state start to contribute to dielectric 

Fig. 6. Dependence of log σdc on reciprocal temperature for (1) PVDF-HFP 
copolymer and PVDF-HFP/NKBT composites with (2) 2.5, (3) 5, (4) 10 wt% 
of filler. Solid lines are fits of Eq. (1) to the experimental data. 

Table 1 
Parameters obtained by fitting Eq. (1) to experimental log σdc (1/T) curves in 
Fig. 8.  

Sample log σdc (S/m) T0(K) B 

PVDF-HFP/NKBT 0 wt% − 2.01 251.51 794.40 
PVDF-HFP/NKBT 2.5 wt% − 1.82 243.56 929.75 
PVDF-HFP/NKBT 5 wt% − 1.80 245.79 921.36 
PVDF-HFP/NKBT 10 wt% − 0.53 206.20 1608.67  

Fig. 7. a) Dielectric constant and b) dielectric loss vs. temperature for the pure 
(1) PVDF-HFP copolymer and PVDF-HFP/NKBT composites with (2) 2.5, (3) 5, 
(4) 10 wt% of filler. In the inset of Fig. 7, dielectric loss curves are presented in 
the range from − 75 to 50 ◦C in order to emphasize the appearance of the 
additional relaxation peak at ~10 ◦C in the spectra of composites. 
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spectra after the transition of the material into the rubbery state. Model 
suggested by Tanaka assumes that introduction of spherical particles 
into polymer matrix is followed by formation of a specific interface layer 
at the boundary of the phases [43]. This interface layer consists of 
bonded layer (~1 nm), bound layer (2–9 nm) and loose layer (several 
tens of nm). The mobility and conformation of the chains as well as the 
crystallinity and free volume of the polymer in these regions are 
different then in the bulk matrix [43]. Due to changes in distribution and 
orientation of the dipoles in the interfacial layers, the broad dielectric 
constant peak of the co-polymer becomes more pronounced as filler 
content increases (Fig. 7a). 

Dielectric loss spectra of PVDF-HFP and its composites exhibit peak 
at − 35 ◦C, which corresponds to the glass transition (Fig. 7b) [45–47]. 
The position of the glass transition peak is not significantly affected by 
the presence of the filler. On the other hand, in the loss spectra of the 
composites, one can also notice the additional peak positioned at 
~10 ◦C. This process is also a result of the changes in packing density of 
the matrix chains in the vicinities of the NKBT particles. It can be seen in 
Fig. 7b that the intensity of this peak strongly depends on the composite 
inorganic content. To our best knowledge, the appearance of the addi
tional transition in the spectra of the PVDF-HFP composite has not been 
reported yet. For this reason, we paid a special attention to this effect. 
ε′′(T) curves of all four materials obtained at different frequencies (in the 
interval between 0.15 and 500 kHz) are given in Fig. 8. As can be seen in 
Fig. 8a, the dielectric loss curves of PVDF HFP have a single transition 
peak, which shifts toward higher temperature with increasing in fre
quency. The ε′′(T) curves of the composites, in contrast, exhibit an 
additional peak, clearly distinguishable in the narrow frequency range 
from 158 Hz to ~100 kHz (the endpoints of the intervals depended 
slightly on the NKBT content in the composite). For example, in the 
sample with 10 wt% of NKBT (Fig. 8d), the mentioned peak appears at 
158 Hz and it shifts towards lower temperature as frequency increases. 

At the frequencies of ~25 kHz, the transition can be recognized as a 
shoulder, while at the frequencies above 100 kHz, it merges with (in that 
temperature range) a more pronounced glass transition peak. 

The origin of the additional process in the ε′′(T) spectra of the 
composites is yet to be explained. However, it should be noted that 
increasing the amount of the polar β-crystals by co-polymerization of 
VDF with HFP also resulted in the appearance of the process at higher 
temperature (at about 35 ◦C), which was not observed in the spectra of 
the pure PVDF [46]. It was also shown that the intensity of this partic
ular process depends of the content of HFP co-monomer [47]. Recently, 
similar effect was observed in dielectric loss spectra of poly 
(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF- 
TrFE-CFE)) terpolymer films by Venkatesan et al. [48]. After introduc
tion of CFE monomer, the ε′′(T) spectra recorded at low constant fre
quencies exhibited additional transition at ~20 ◦C. At higher 
frequencies (~104 Hz), this peak merges with glass transition peak. The 
authors argue that the steric effects of the bulky chlorine atoms in the 
third monomer affect the crystallization process and reduce the size of 
ferroelectric domains to a few nanometers. For this reason, this 
terpolymer exhibits specific dielectric and piezoelectric properties. It is 
possible that the introduction of the NKBT particles induce similar effect 
in PVDF-HFP matrix. The segmental motions in the particle-chain 
interface regions will be different from the segmental motions of the 
chains in the bulk of the matrix (Tanaka model suggests that the size of 
the interfacial regions is up to tens of nanometers). 

4. Conclusions 

NKBT perovskite particles with R3c crystal symmetry were synthe
sized by sol-gel method. When used as filler, the obtained ceramic 
particles induce an increase in dielectric constant of PVDF-HFP matrix in 
the whole range of investigated frequencies (at fixed temperatures). 

Fig. 8. Dielectric loss versus temperature curves for the pure a) PVDF-HFP and PVDF-HFP/NKBT composites with b) 2.5, c) 5, d) 10 wt% of filler. The spectra are 
recorded at 1) 0,16 Hz, 2) 1 Hz, 3) 25 Hz, 4) 158 Hz, 5) 1 kHz, 6) 10 kHz, 7) 25 kHz, 8) 50 kHz, 9) 100 kHz, 10) 251 kHz, and 501 kHz. 
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Dielectric loss (ε′′(T)) spectra of the composite materials exhibited the 
additional relaxation peak, which was not present in the spectrum of the 
pure co-polymer. The observed relaxation transition occurred above the 
glass transition temperature and its intensity (at fixed frequency) 
increased with increasing in amount of NKBT. This novel process is 
frequency dependent and it can be clearly resolved in the ε′′(T) spectra 
measured at frequencies between 160 Hz and 50 kHz. The dielectric 
spectra at low frequencies (0.1–10 Hz) and high temperatures (T >
70 ◦C) show strong increase in dielectric constant, which is attributed to 
conductivity relaxations. 
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