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Abstract: The main purpose of this article is to improve, generalize and complement some recently
established results for Perov’s type F-contractions. In our approach, we use only the property (F1) of
Wardowski while other authors employed all three conditions. Working only with the fact that the
function F is strictly increasing on (0,+∞)m, we obtain as a consequence new families of contractive
conditions in the realm of vector-valued metric spaces of Perov’s type. At the end of the article,
we present an example that supports obtained theoretical results and genuinely generalizes several
known results in existing literature.
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1. Introduction and Preliminaries

Since Banach [1] proved his famous theorem in 1922, many hundreds of researchers
have tried generalizing this result. The generalization went primarily in two main direc-
tions. One is to generalize the contractive condition and the other is to alter the axioms of
metric space. Thanks to the second condition, new classes of so-called generalized metric
spaces (vector-valued metric spaces) have emerged, such as, cone metric spaces (d(x, y) is
a vector), then b-metric spaces, partial metric spaces, metric–like spaces, and many others.
Some researchers have combined these two directions. Such is the recent work of Altun
and Olgun [2] in which they combine Wardowski’s approach from 2012 [3] and the cone of
metric space introduced by Ð. Kurepa [4] in 1933. On the other hand, in 1964, A. I. Perov [5]
introduced special cone metric spaces called generalized metric space or vector-valued
metric space. For more details on this subject, see ([6–26]), and regarding some recent
results pertinent to F-contraction mappings, see [27–30].

The definitions of Kurepa and Perov are in fact the same, except that, in the Perov
case, the vector space Rm is taken as the Banach space where m is a given natural number.
The axioms of the cone metric and the vector-valued metric space are based on three well-
known conditions, present also in the case of ordinary metric space of Frechét, but imposed
on cone metric and vector-valued distance, respectively.

It should be noted, as it is useful for young researchers, that, according to many results,
vector-valued metric spaces, i.e., cones of metric spaces in the sense of Perov, do not differ
from ordinary metric spaces. Moreover, many results of fixed point theorems in relation to
known contractive conditions are equivalent to those in ordinary metric spaces. For details,
see [10,12,17].

Thus, for example, it is easy to see that, for each contractive condition of the Banach,
Kannan, Chatterjee, Zamfirescu, or Hardy–Rogers type, the generalized metric space of
Perov’s type corresponds to the contractive conditions in ordinary metric space. Using this
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fact, in this section, we will show that the recent results of Altun and Olgun are equivalent
to the corresponding results in ordinary metric space.

Recently, in 2020, Altun and Olgun introduced and proved the following:

Definition 1 ([2], Definition 1). Let (X, d) be a vector-valued metric space and T : X → X be a
map. If there exist F ∈ Fm and τ = (τi)

m
i=1 ∈ Rm

+, such that:

τ + F(d(Tu, Tv)) � F(d(u, v)), (1)

for all u, v ∈ X with d(Tu, Tv) � θ, then T is called a Perov type F-contraction.

From [2], it follows that F ∈ Fm if it satisfies the next properties.
(F1) F is strictly increasing in each variable, i.e., for all (−∞,+∞)m = Rm 3 u =

(ui)
m
i=1, (−∞,+∞)m = Rm 3 v = (vi)

m
i=1, such that u ≺ v, and, then, F(u) ≺ F(v),

(F2) For each sequence, {un} =
{(

u(1)
n , u(2)

n , . . . , u(m)
n

)}
of Rm

+ = (0,+∞)m

lim
n→+∞

u(i)
n = 0 if and only if lim

n→+∞
v(i)n = −∞ (2)

for each i ∈ {1, 2, . . . , m}, where:

F
((

u(1)
n , u(2)

n , . . . , u(m)
n

))
=
(

v(1)n , v(2)n , . . . , v(m)
n

)
. (3)

(F3) There exists k ∈ (0, 1), such that limui→0+ uk
i vi = 0 for each i ∈ {1, 2, . . . , m},

where:
F((u1, u2, . . . , um)) = (v1, v2, . . . , vm). (4)

Authors in [2] denote by Fm the set of all functions F satisfying (F1)–(F3).

Theorem 1 ([2], Theorem 3). Let (X, d) be a complete vector-valued metric space and T : X → X
be a Perov type F-contraction. Then, T has a unique fixed point.

Remark 1. It is not difficult to notice that, in the case m = 1, the vector valued metric space (X, d)
is actually an ordinary metric space, while the properties (F1)–(F3) are equal to those introduced
by Wardowski in his work of 2012 [3]. Note also that it is sufficient to consider only the case
m = 2, i.e., Banach space

(
R2, ‖.‖e

)
where the norm ‖.‖e is Euclidean, and it is ordered by the

cone P = {(a, b) : a ≥ 0 and b ≥ 0}. Cases m = 3, 4, . . . add only the burden of writing but
do not change the essence of the results. Thus, in all announced articles for vector-valued metric
spaces of Perov’s type, d(u, v) can be written as an ordered pair d(u, v) = (d1(u, v), d2(u, v)) of
non-negative real numbers d1(u, v) and d2(u, v). The functions di : X2 → [0,+∞) are in fact
pseudometrics defined on the non-empty set X (for more details, see [16], Proposition 2.1).

Hence, if X 6= ∅ and d : X2 → Rm is a generalized metric i.e., vector–valued
metric, then d(u, v) = (di(u, v))m

i=1, where all di : X2 → [0,+∞), i ∈ {1, 2, . . . , m} are
pseudometrics. In addition, it is worth knowing that at least one di is an ordinary
metric (see [16], Proposition 2.1). Furthermore, if F ∈ Fm, then F = (Fi)

m
i=1, where

Fi : [0,+∞)→ (−∞,+∞) for all i ∈ {1, 2, . . . , m}.
It is well known that vector space Rm is ordered by: u = (ui)

m
i=1, v = (vi)

m
i=1 ∈

Rm, u � v if and only if ui ≤ vi for all i ∈ {1, 2, . . . , m}. In addition, in Rm, the following
three standard norms are given with u = (ui)

m
i=1 :

‖u‖1 :=
m

∑
i=1
|ui|, ‖u‖2 :=

(
m

∑
i=1

u2
i

) 1
2

, and ‖u‖∞ := max
1≤i≤m

|ui|. (5)
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It is easily seen that each of these norms is monotone with respect to the partial
ordering defined by u � v if and only if ui ≤ vi for all i ∈ {1, 2, . . . , m} if we restrict to
vectors in Rm with non-negative coordinates, i.e.,

if u, v ∈ Rm and θ � u � v then ‖u‖k ≤ ‖v‖k for k ∈ {1, 2,+∞}. (6)

Hence, we may infer that, if (X, d) is a vector-valued metric spaces, and, for u, v ∈ X
and k ∈ {1, 2,+∞},

ρ(k)(u, v) = ‖d(u, v)‖k, (7)

then each ρ(k) is a metric in X.

2. Main Results

Now, according to the previous results, the contractive condition (1.1) from [2] became:

τi + Fi(di(Tu, Tv)) ≤ Fi(di(u, v)), (8)

where τi > 0, di(T(u), T(v)) > 0, Fi : (0,+∞)→ (−∞,+∞) for all i = 1, 2, . . . , m. It is clear
that Fi satisfies (F1)–(F3) from [3] for all i = 1, 2, . . . , m.

Since at least one of di, i ∈ {1, 2, . . . , m} is an ordinary metric on X, the proof of
Theorem 3 from [2] follows.

However, Theorem 3 from [2] is true if F ∈ Fm satisfies only the property (F1). Indeed,
this follows from ([18], Corollary 2) or from ([22], Theorem 2.1).

In the sequel of this section, we will try to generalize, complement, unify, enrich, and
extend all results recently established in [2]. First, we introduce and prove the following:

Definition 2. Let (X, d) be a generalized metric space. A mapping T : X → X is called an
F-contraction of the Hardy–Rogers type if there exists τ � θ and strictly increasing mapping
F : (0,+∞)m → (−∞,+∞)m such that

τ + F(d(T(u), T(v))) � F(A((u), (v))) (9)

holds for any u, v ∈ X with d(T(u), T(v)) � θ, where A(u, v) = a · d(u, v) + b · d(u, T(u)) + c ·
d(v, T(v)) + δ · d(u, T(v)) + e · d(v, T(u)), a, b, c, δ, e are non-negative numbers, δ < 1

2 , c < 1,
a + b + c + 2δ = 1 and 0 < a + δ + e ≤ 1.

Theorem 2. Let (X, d) be a complete vector-valued metric space. Then, each F-contraction of
Hardy–Rogers type defined in it has a unique fixed point u∗ ∈ X and, for every u ∈ X, the sequence
{Tn(u)}n∈N converges to u∗.

Proof. Since τ = (τ1, · · · , τm), F = (F1, · · · , Fm), A = (A1, · · · , Am) and d = (d1, · · · , dm),
then the inequality (9) became

τi + Fi(di(T(u), T(v))) ≤ Fi(Ai(u, v)), (10)

where Ai(u, v) = a · di(u, v)+ b · di(u, T(u))+ c · di(v, T(v))+ δ · di(u, T(v))+ e · di(v, T(u)),
i ∈ {1, 2, · · · , m}. According to Proposition 2.1 from [16], it follows that there exists
i0 ∈ {1, 2, · · · , m} such that the mapping di0 : X2 → [0,+∞) is the ordinary metric.
Hence, now we have obtained

τi0 + Fi0
(
di0(T(u), T(v))

)
≤ Fi0

(
Ai0(u, v)

)
, (11)

where
(
X, di0

)
is a complete metric space, Ai0(u, v) = a · di0(u, v) + b · di0(u, T(u)) + c ·

di0(v, T(v)) + δ · di0(u, T(v)) + e · di0(v, T(u)), a, b, c, δ, e are non-negative numbers, δ <
1
2 , c < 1, a + b + c + 2δ = 1 and 0 < a + δ + e ≤ 1. Furthermore, by Theorem 5 from [18],
the condition (11) yields that T has a unique fixed point in X. The theorem is proved.
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Remark 2. It is obvious that Theorem 2 and Theorem 5 from [18] are equivalent. In addition,
our Theorem 2 is a proper generalization of main results (Theorem 3) from [2]. Indeed, putting in
(9) a = 1, b = c = δ = e = 0, Theorem 3 follows from [2]. Furthermore, since we use only the
property (F1) in Theorem 2, we get a second direction of generalization of main results from [2].
In our approach, the method of the system of inequalities (11) shows that many (and maybe all)
well-known results in the setting of ordinary metric spaces with known contractive conditions
(see [31–33]) are equivalent to the corresponding ones in generalized metric spaces of Perov’s type.

In the sequel, we shall consider the main result of A. I. Perov ([5], Theorem 3). In 1964,
A. I. Perov proved the following result:

Theorem 3. Let (X, d) be a complete generalized metric space, f : X → X and A ∈ Mm×m(R+)
a matrix convergent to zero. If, for any u, v ∈ X, we have

d( f (u), f (v)) � A(d(u, v)). (12)

Then, the following statements hold:

1. f has a unique fixed point u∗ ∈ X;
2. The Picard iterative sequence un = f n(u), n ∈ N converges to u∗ for all u ∈ X;
3. d(un, u∗) � An(Im − A)−1(d(u0, u1)), n ∈ N;
4. if g : X → X satisfies the condition d( f (u), g(u)) � c for all u ∈ X and some

c ∈ Rm, then, for the sequence vn = gn(u0), n ∈ N, the following inequality

d(vn, u∗) � (Im − A)−1(c) + An(Im − A)−1(d(u0, u1)) (13)

is valid for all n ∈ N.
It is worth mentioning that the statements 3. and 4. are not given in [5]. For details,

see [7].
Now, we give our proof of Perov’s famous theorem. We will use the following:

Proof. Each matrix A ∈ Mm×m(R+) is in fact a bounded linear operator on the Banach
space (Rm, ||.||), where ||.|| is one of all equivalent norms on a finite-dimensional vector
space Rm. Otherwise, on Rm, all norms are equivalent. Thus, we take the matrix A as a
bounded linear operator in space (Rm, ||.||). Using its coordinate notation having the form
A = (A1, . . . , Am), we have that

A((u1, . . . , um)) = (A1(u1), . . . , Am(um)), (14)

and because ‖A‖ < 1, Ai(ui) = λiui, i = 1, 2, . . . , m with λi ∈ [0, 1). Therefore, the condi-
tion (12) reduces to a system of m inequalities of the form

di(T(u), T(v)) ≤ Ai(di(u, v)) = λi · di(u, v), i = 1, 2, . . . , m. (15)

Since, there exists i0 ∈ {1, 2, . . . , m} such that the mapping di0 : X2 → [0,+∞) is the
ordinary metric, then

(
X, di0

)
is a complete metric space. The results are further yielded by

the Banach contraction principle for the mapping T : X → X, i.e., there is a unique fixed
point u∗ ∈ X for the mapping T. The proof of Perov’s theorem is finished. �

The proofs of points 2, 3, and 4 are immediate consequences of the proof for 1.
As our first significant applications of Theorem 1 and our new Theorems 2 and 3 are

new contractive conditions in the setting of generalized metric spaces in Perov’s sense,
they complement some very well known contractive conditions in the setting of ordinary
metric spaces as well as cone metric spaces ([6–26,31–33]).
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Corollary 1. Let (X, d) be a complete generalized metric space in the sense of Perov and T : X → X
be a self mapping. Suppose that there exists Ck � θ, k = 1, 6 such that, for all x, y ∈ X, the
following inequalities hold true:

C1 + d(T(u), T(v)) � d(u, v) (16)

C2 + exp(d(T(u), T(v))) � exp(d(u, v)) (17)

C3 −
1

d(T(u), T(v))
� − 1

d(u, v)
(18)

C4 −
1

d(T(u), T(v))
+ d(T(u), T(v)) � − 1

d(u, v)
+ d(u, v) (19)

C5 +
1

1− exp(d(T(u), T(v)))
� 1

1− exp(d(u, v))
(20)

C6 +
1

exp(−d(T(u), T(v)))− exp(d(T(u), T(v)))
� 1

exp(−d(u, v))− exp(d(u, v))
. (21)

Then, in each of these cases, there exists u ∈ X such that Tu = u and, for every u ∈ X, the sequence
{Tn(u)}n∈N converges to u.

Proof. Since all of the functions r 7→ r, r 7→ exp r, r 7→ − 1
r , r 7→ − 1

r + r, r 7→ 1
1−exp r ,

r 7→ 1
exp(−r)−exp r are strictly increasing on (0,+∞), the proof immediately follows by

Theorem 1. In addition, it yields that the proofs for (18), (19), (20) and (21) are corollaries of
Theorem 1. In the end, it is worth to noticing that, in all cases (16)–(21), we have:

Ck =
(

C(k)
1 , . . . , C(k)

m

)
, where C(k)

i > 0 for k = 1, 6, i = 1, m

d = (d1, . . . , dm), where di are pseudometrics for i = 1, m
F = (F1, . . . , Fm), where Fi are strictly increasing on (0,+∞) for i = 1, m
For example, for the left-hand side of (16), we have:

C1 + F(d(T(u), T(v))) =
(

C(1)
1 , . . . , C(1)

m

)
+ F(d1(T(u), T(v)), . . . , dm(T(u), T(v)))

=
(

C(1)
1 , . . . , C(1)

m

)
+ (F1(d1(T(u), T(v))), . . . , Fm(dm(T(u), T(v))))

=
(

C(1)
1 , . . . , C(1)

m

)
+ (d1(T(u), T(v)), . . . , dm(T(u), T(v)))

=
(

C(1)
1 + d1(T(u), T(v)), . . . , C(1)

m + dm(T(u), T(v))
)

= C1 + d(T(u), T(v)),

while, for its right-hand side, it yields

d(u, v) = (d1(u, v), . . . , dm(u, v))

= (F1(d1(u, v)), . . . , Fm(dm(u, v)))

= F(d1(u, v), . . . , dm(u, v))

= d(u, v),

because F = (F1, . . . , Fm) where Fi(r) = r for i = 1, m. Therefore, F(d(u, v)) = d(u, v). �

Our second new corollary of Theorems 2 and 3 are the following contractive conditions
in the setting of generalized metric spaces of the Perov type:
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Corollary 2. Let (X, d) be a complete generalized metric space in the sense of Perov and T : X → X
be a self mapping. Suppose that there exists Dk � θ, k = 1, 6 such that, for all u, v ∈ X, the
following inequalities hold true:

D1 + d(T(u), T(v)) � A(u, v), (22)

D2 + exp(d(T(u), T(v))) � exp(A(u, v)), (23)

D3 −
1

d(T(u), T(v))
� − 1

A(u, v)
, (24)

D4 −
1

d(T(u), T(v))
+ d(T(u), T(v)) � − 1

A(u, v)
+ A(u, v), (25)

D5 +
1

1− exp(d(T(u), T(v)))
� 1

1− exp(A(u, v))
, (26)

D6 +
1

exp(−d(T(u), T(v)))− exp(d(T(u), T(v)))
� 1

exp(−A(u, v))− exp(A(u, v))
,

(27)
where A(u, v) = a · d(u, v) + b · d(u, T(u)) + c · d(v, T(v)) + δ · d(u, T(v)) + e · d(v, T(u)),
while a, b, c, δ, e are non-negative numbers: δ < 1

2 , c < 1, a+ b+ c+ 2δ+ e = 1, 0 < a+ δ+ e ≤
1. Then, in each of these cases, there exists u∗ ∈ X such that Tu∗ = u∗ and, for every u ∈ X, the
sequence {Tn(u)}n∈N converges to u∗.

Proof. Take in Theorem 2. F(ξ) = ξ, F(ξ) = exp ξ, F(ξ) = − 1
ξ , F(ξ) = − 1

ξ + ξ, F(ξ) =
1

1−exp ξ , F(ξ) = 1
exp(−ξ)−exp ξ

, respectively. Because every F is strictly increasing on (0,+∞),
the result follows according to Theorem 2.

In the sequel, we present an example, supporting our results. This example shows
that Theorem 3 from [2] cannot be applied. In addition, the mapping T in this example is
not a Perov type contraction.

Example 1. Let (X, d) be a complete vector-valued metric space where X =
{

un = 1
n : n ∈ N

}
∪

{0} and d : X× X → R2 is given by:

d(u, v) = (|u− v|, |u− v|). (28)

Define T : X → X as

T(u) =
{

0, u = 0
un+1, u = un

(29)

and F : (0,+∞)2 → (−∞,+∞)2 by:

F(r1, r2) =

(
− 1

r1
,− 1

r2

)
= (F1(r1), F2(r2)). (30)

It is evident that F is strictly increasing mapping, but F /∈ F 2 in the sense of [2]. Now, we claim
that T is a Perov type F−contraction with τ = (1, 1) ∈ R2. For this, we have to show that

τ + F(d(T(u), T(v))) � F(d(u, v)) (31)

for all u, v ∈ X. Two cases are possible:

Case 1. u = 0, v = un. Then, (31) became:

(1, 1) +
(
− 1
|T(0)− T(un)|

,− 1
|T(0)− T(un)|

)
�
(
− 1
|0− un|

,− 1
|0− un|

)
, (32)



Axioms 2021, 10, 127 7 of 12

or equivalently

1 +
(
− 1

un+1

)
≤
(
− 1

un

)
, (33)

i.e., 1− (n + 1) ≤ −n, which holds true.
Case 2. u = un, v = um, n < m. In this case, (31) became:

(1, 1) +
(
− 1
|un+1 − um+1|

,− 1
|un+1 − um+1|

)
�
(
− 1
(|un − um|, |un − um|)

)
, (34)

or equivalently

1 +

(
− 1

1
n+1 −

1
m+1

)
≤
(
− 1

1
n −

1
m

)
, (35)

that is,

1 ≤ (n + 1)(m + 1)
m− n

− mn
m− n

=
n + m + 1

m− n.
. (36)

The last condition is evidently true for all n, m ∈ N, n < m.

Remark 3. The function F =
(
− 1

r1
,− 1

r2

)
= (F1, F2) does not satisfy (F3) from ([2], p. 3).

Indeed, limri→0+ rk
i ·
(
− 1

ri

)
= − limri→0+ rk−1

i 6= 0 for all k ∈ (0, 1) and i = 1, 2. This shows
that our result is a genuine generalization of Theorem 3 from [2]. In addition, it is easy to check that
the mapping T in the above example is not a Perov contraction. Moreover, it is not also a Banach
contraction in the sense of [15]. On the other hand, each result in the setting of vector-valued metric
space is equivalent to the corresponding one in ordinary metric space.

The next remark is maybe the most significant for results in the vector-valued metric
spaces. Namely, in fact, results are the same for each m ≥ 2. This means that we can
suppose that m = 2. In this case, F−contraction T : X → X in Perov’s sense has the
following form: there exists τ = (τ1, τ2) � θ = (0, 0) such that, for F ∈ F 2,

τ + F(d(T(u), T(v))) � F(d(u, v)), (37)

or equivalently
τi + Fi(di(T(u), T(v))) ≤ Fi(di(u, v)), (38)

is yielded, where i ∈ {1, 2}.
If (X , d) is a generalized metric space (or vector-valued metric space), then one could

join to the same group the following new classes of generalized metric spaces as well:

• generalized partial metric space;
• generalized metric like space;
• generalized b-metric space;
• generalized partial b-metric space;
• generalized b-metric like space.

How do these arise? Take a natural number m ≥ 2, and some of the following spaces:

• partial metric space;
• metric like space;
• b-metric space;
• partial b-metric space;
• b-metric like space.

if we denote with d the distance of any of above spaces and with D:

D(x, y) =
(

α1d(x, y), α2d(x, y), . . . , αmd(x, y)
)

where αi ≥ 0, i = 1, 2, . . . , m is such that at least one of them is different from 0.
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Then, D(x, y) is called generalized partial metric (resp. generalized metric like gener-
alized b-metric, generalized partial b-metric, and, eventually, generalized b-metric like).

Example 2. Let
(
X , d

ml
)

, where X = (C[0, 1],R) is the set of real continuous functions on [0, 1]

and d
ml
(u, v) = sup

t∈[0,1]
(|u(t)|+ |v(t)|) for all u, v ∈ (C[0, 1],R). This is an example of metric-like

space that is not a partial metric space.

Let m = 3. Then, (X ,D) where D(u, v) =
(

2d
ml
(u, v), 1

10 d
ml
(u, v), 3d

ml
(u, v)

)
is an

example of generalized metric like space (with m = 3) and α1 = 2, α2 = 1
10 , α3 = 3.

In order to show some application of a generalized metric space, we actually have to
do the following: on some given generalized metric space, we should formulate (or find) a
theorem, then use it to determine whether, for instance, a fractional differential equation or
an ordinary algebraic equation or similar have solutions.

Definition 3. Let T be a map of b-metric like space
(
X , dbml

)
onto itself. Then, it is called

generalized (s, q)−Jaggi F−contraction if there exists a strictly increasing map F : (0,+∞)→
(−∞,+∞) and τ > 0 such that, for all x, y ∈ X with dbml(T x, T y) > 0 and dbml(x, y) > 0
holds

τ +F
(

sq · dbml
(T x, T y)

)
≤ F

(
Mα,β,γ

bml (x, y)
)

,

where

Mα,β,γ
bml (x, y) = A · d

bml
(x, T x) · dbml

(y, T y)

d
bml

(x, y)
+ B · dbml

(x, y) + C · dbml
(x, T y)

with A + B + 2Cs < 1, and q > 1.

Now, we have obtained a positive result whose proof is performed routinely.

Theorem 4. Let
(
X , d

bml
)

be a 0-complete b-metric like space and T : X → X a generalized Jaggi

F -contraction map. Then, T has a unique fixed point, say σ ∈ X , and, if T is a d
bml

-continuous
map, then, for any κ ∈ X , the sequence T nκ converges to σ.

With the help of the previous definition and its corresponding theorem, we will
show the application of a generalized metric space to the solution of some fractional
differential equations.

3. Applications in Nonlinear Fractional Differential Equations

Given the function h : [0,+∞) → R, we say that its Caputo derivative (see [34–36])
CD β(h(t)) of order β > 0 is defined as

CD β(h(t)) =
1

Γ(n− β)

t∫
0

(t− s)n−β−1h(n)(s)ds (n− 1 < β < n, n = [β] + 1),

where [β] denotes the integer part of the positive real number β, and Γ is the gamma
function. For recent examples of fractional order differential equations involving Caputo
derivatives, see [37,38].

The scope of this section is to apply the previous theorem to prove the existence of
solutions for nonlinear fractional differential equations of the form

CD(ν(t) + g(t, ν(t))) = 0 (0 ≤ t ≤ 1, β < 1)
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with boundary conditions ν(0) = 0 = ν(1), where ν ∈ C([0, 1],R) and ξ : R×R→ R is
the set of all continuous functions on [0, 1] in R, while g : [0, 1]×R→ R is a continuous
function. The associated Green’s function to ([34–36,39]) is given by

G(t, s) =

{
(t(1− s))α−1 − (t− s)α−1, if 0 ≤ s ≤ t ≤ 1
(t(1−s))α−1

Γ(α) , if 0 ≤ t ≤ s ≤ 1.

We shall now state and prove the main result of this section.

Theorem 5. Consider the nonlinear fractional differential equation ([34–36,39]). Let ξ : R×R→ R
be a given map and g : [0, 1]×R→ R a continuous function.

Suppose also that all the following statements hold true:

(i) There exists ν0 ∈ (C[0, 1],R) such that ξ

(
ν0(t),

t∫
0
T ν0(t)

)
≥ 0 for all t ∈ [0, 1],

where the map T : C([0, 1],R)→ C([0, 1],R) is defined as:

T ν(t) =
t∫

0

G(t, s)g(s, ν(s))ds.

(ii) There exists τ > 0 such that for all µ, ν ∈ X

d
bml

(T µ, T ν) > 0 and d
bml

(µ, ν) > 0 yields

|g(t, a) + g(t, b)| ≤ 1

s
q
2
Mα,β,γ

bml (µ, ν)e−τ ,

for all t ∈ [0, 1] and a, b ∈ R with ν(a, b) > 0, where

Mα,β,γ
bml (µ, ν) = A · d

bml
(µ, gµ) · dbml

(ν, gν)

d
bml

(µ, ν)
+ B · dbml

(µ, ν) + C · dbml
(ν, gµ)

A, B, C ≥ 0 with A + B + 2Cs < 1 and q > 1.
(iii) For each t ∈ [0, 1] and µ, ν ∈ C([0, 1],R), ξ(ν(t), µ(t)) ≥ 0 yields ξ(T µ(t), T (ν)) ≥

0;
(iv) For each t ∈ [0, 1], if {νn} is a sequence in C([0, 1],R) such that νn → ν in

C([0, 1],R) and ξ(νn(t), νn−1(t)) ≥ 0 for all n ∈ N, then ξ(νn(t), ν(t)) ≥ 0 for all n ∈ N.
Then, problem ([34–36,39]) has at least one solution.

Proof. Let
(

Ξ, dbml , s ≥ 1
)
= C([0, 1],R) be endowed with a b-metric like

dbml(ν, µ) = sup
t∈[0,1]

(|ν(t)|+ |µ(t)|)2,

for all ν, µ ∈ Ξ.
Now, define a generalized b-metric like on Ξ with

Dbml(ν, µ) =:

dbml(ν, µ), . . . , dbml(ν, µ)︸ ︷︷ ︸
m

,

where m is a given natural number larger than or equal to 2.
It is easy to show that (Ξ,Dbml , s ≥ 1) is a 0-complete generalized b-metric like space

with parameter s = 2.
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It is obvious that ν∗ ∈ Ξ is a solution of ([34–36,39]) if and only if ν∗ ∈ Ξ is a solution

of ν(t) =
t∫

0
G(t, s)g(s, ν(s))ds for all t ∈ [0, 1]. Therefore, the problem ([34–36,39]) can be

considered as the problem of finding an element ν∗ ∈ Ξ that is the fixed point of operator
(map T ). To that end, let ν, µ ∈ Ξ such that ξ(ν(t), µ(t)) ≥ 0 for all t ∈ [0, 1]. According
to (iii), we have that ξ(T ν, T µ) > 0. Then, using hypotheses (i) and (ii), we obtain the
following inequalities:

|T ν(t) + T µ(t)| =

∣∣∣∣∣∣
t∫

0

G(t, s)g(s, ν(s))ds +
t∫

0

G(t, s)g(s, µ(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

0

G(t, s)|g(s, ν(s))|ds

∣∣∣∣∣∣+
∣∣∣∣∣∣

t∫
0

G(t, s)|g(s, µ(s))|ds

∣∣∣∣∣∣
≤ sup

t∈[0,1]
|g(s, ν(s)) + g(s, µ(s))|

t∫
0

G(t, s)ds

≤ 1
√

ms
q
2

sup
t∈[0,1]

√
Mα,β,γ

bml (ν, µ)e−τ · sup
t∈[0,1]

t∫
0

G(t, s)ds

≤ 1
√

ms
q
2

sup
t∈[0,1]

√
Mα,β,γ

bml (ν, µ)e−τ .

This means that

|T ν(t) + T µ(t)|2 ≤ 1
m · sqM

α,β,γ
bml (ν, µ)e−τ .

Then, we have
sqdbml(ν, µ) ≤Mα,β,γ

bml (ν, µ)e−τ .

If we now take F (ω) = ln ω for any ω > 0, then F satisfies all conditions of the
theorem, and we obtain

ln
(

sqdbml(ν, µ)
)
≤ ln

(
Mα,β,γ

bml (ν, µ)e−τ
)

,

that is,
τ + ln

(
sqdbml(ν, µ)

)
≤ ln

(
Mα,β,γ

bml (ν, µ)
)

.

The above is clearly equivalent to

τ + ln
(

sqdbml(ν, µ)
)
≤ F

(
A · d

bml
(µ, gµ) · dbml

(ν, gν)

d
bml

(µ, ν)
+ B · dbml

(µ, ν) + C · dbml
(ν, gµ)

)
,

where A, B, C ≥ 0 with A + B + 2Cs < 1 and q > 1.
Applying the above theorem now with q = 2, we conclude that map T has a fixed

point, which in turn shows that problem ([34–36,39]) has at least one solution. �

4. Conclusions

In this article, we considered F-contraction mappings in the setting of Perov type cone
metric space. Among other things, we have proved that recently established results for
F-contractions of Perov’s type are in fact equivalent to the corresponding ones in ordinary
metric spaces. We have also provided an example application of proposed results for
fractional differential equations in generalized b-metric-like spaces.
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