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Abstract: This paper describes and explains the synthesis of an astronomical clock mechanism which
displays the mean position of the Sun, the Moon, the lunar node and zodiac circle as well as the
Moon phases and their motion during the year as seen from the Earth. The clock face represents the
stereographic projection of the celestial equator, celestial tropics, zodiac circle (ecliptic) and horizon
for the latitude of Belgrade from the north celestial pole to the equator plane. The observed motions
of celestial objects are realized by a set of clock gear trains with properly calculated gear ratios. The
method of continued fraction is applied in the computation of proper and practically applicable gear
ratios of the clock gear trains. The fully operational 3D model of the astronomical clock is created
and the motion study of its operation is accomplished by using the SolidWorks 2016 application. The
simulation results are compared with the ephemeris data and the detected differences are used to
evaluate the long-term accuracy of the astronomical clock operation. The presented methods of the
clock mechanism synthesis can be useful for the design, maintenance and conservation of large-scale
city astronomical clocks since these clocks represent a precious historical and cultural heritage of
European civilization.

Keywords: astronomical clock; CAD; continued fractions; mechanisms; motion study; stereo-
graphic projection

1. Introduction

This paper describes the synthesis of an astronomical clock mechanism and explains
the design of its dial. This astronomical clock determines and displays the mean positions
of the Sun, the Moon, the lunar nodes and the zodiac circle as well as their motion during
the year as seen from the Earth. Moreover, its mechanism calculates the phases of the Moon
and demonstrates the evolution of its shape on an additional screen. The content of this
work is divided into several sections. After short historical considerations of the design of
some significant astronomical clocks which were installed in European cities during past
centuries, the features of the modeled astronomical clock are presented. The next section
explains the geometrical and astronomical characteristics of the astronomical clock face. It
is disclosed and visually demonstrated that its design is based on stereographic projection
of the celestial sphere. Astronomical data important for the design of the astronomical clock
mechanism and approximations of their ratios by the method of continued fractions are
presented in the succeeding sections. This is followed by the explanation of the modeling
of the clock gear trains and the assembly synthesis of the complete clock mechanism. The
next section gives insight into a process of determining the initial positions of the clock
pointers for the correct simulation and the motion study of the clock mechanism operation.
In the following section, the numerical data obtained by the simulation are tabulated,
analyzed and compared with the astronomical ephemeris data. In the penultimate section,
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the detected differences are used to inspect, evaluate and discuss the long-term accuracy
of astronomical clock operation. Furthermore, in the same section, the design of the
presented clock is compared with the famous Prague astronomical clock and it is disclosed
that the Prague clock is less accurate. Finally, in the last section, the importance of this
paper is briefly indicated. It is emphasized that the main contribution of this work lies in
disseminating and protecting knowledge, the loss of which risks making these precious
clocks no longer restorable.

2. Historical Background

Astronomical clocks appeared in Europe as a reflection of the cultural and scientific
revival during the period of the Renaissance. One of the earliest known astronomical clocks
is Le Gros Horloge in Rouen [1], shown in Figure 1, probably one of the oldest in France
whose movement was made in 1389. The mechanism of this astronomical clock is very
large but quite simple. It displays only the daily motion of the Sun and lunar phases.

Figure 1. Le Gros Horloge in Rouen, France [2].

The Strasbourg astronomical clock [1], in Figure 2, installed in the Cathédrale Notre-
Dame of Strasbourg in the 17th century, is the third in this location. The first clock had
been built in the 14th century and the second one in the 16th century. The current clock,
displayed in Figure 2, computes and demonstrates many astronomical data including the
correct dates of Easter.

The most famous astronomical clock in Europe is the Old Town Hall clock in Prague,
also known as the Prague Orloj [1], constructed in 1410. Its most recognizable character-
istic, clearly visible in Figure 3, is the dial designed as a stereographic projection of the
celestial sphere.
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Figure 2. The Strasbourg astronomical clock [3].

Figure 3. Prague Orloj, Czech Republic [4].

Interesting enough to be mentioned is another horologium in the Czech Republic,
the one in the city of Olomouc [1]. It is a rare example of a heliocentric astronomical
clock. Contrary to the fact that the vast majority of astronomical clocks were built in past
centuries, there are some examples of modern clocks of this type. One of the recently
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constructed astronomical clocks, shown in Figure 4, installed in 2009 in the municipality
of Stará Bystrica [1], is the only astronomical clock in Slovakia. Similarly to the face of
Prague Orloj, its display consists of an astrolabe but, unlike Prague Orloj, its mechanism is
controlled by a computer using a German longwave time signal.

Figure 4. The clock of Stará Bystrica, Czech Republic [5].

Astronomical clocks were important horological and astronomical instruments in past
centuries. Today, they represent the precious historical and cultural heritage of European
civilization. That is the main reason why the art of the astronomical clock design and the
skills for the maintenance and conservation of their mechanisms should not be forgotten.

3. Features of the Modeled Astronomical Clock

The astronomical clock whose design and motion study are presented in this paper
will be capable of determining the mean positions of the Sun, the Moon, the lunar nodes
and the zodiac circle as well as their motions during the year as seen from the Earth. This
means that the locations and movements of the previously mentioned celestial objects are
displayed on the astronomical clock face which represents the stereographic projection of
the celestial sphere from the north celestial pole to the equator plane. In particular, the clock
face indicates the celestial equator, meridian of a place, celestial tropics (Tropic of Cancer
and Tropic of Capricorn), zodiac circle (ecliptic) and the horizon and set of almucantars
above the horizon, as well as the almucantars of civil, nautical and astronomical twilights
for the latitude of Belgrade. Moreover, the clock mechanism determines the phases of the
Moon and displays them on an additional and separate screen.

Since the modeled astronomical clock indicates simultaneously the mean positions of
the Sun, the Moon and the zodiac circle during the year, the following data can be observed
straightaway on its dial: local mean solar time, local mean sidereal time, the position of the
Sun and the Moon on the ecliptic plane (in zodiac circle), the angular distance between the
Moon and the Sun which determines the phase of the Moon, the altitude of the Sun and the
local time of sunset, sunrise, dusk and dawn. The date of the winter and summer solstices,
as well as the date of vernal and autumnal equinoxes, can also be detected and shown on
the clock dial. Besides this, the date of lunar and solar eclipses can also be predicted and
determined sufficiently accurately because the clock mechanism indicates the position of
the lunar nodes.

4. The Face of the Astronomical Clock

The positions of the celestial objects on the celestial sphere are determined by angular
coordinates (altitude—azimuth, declination—right ascension or ecliptic latitude and lon-
gitude). Since the stereographic projection is conformal and thus preserves angles, it can
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be used for the design of the astronomical dial. The construction of the astronomical dial
for the latitude of Belgrade (44.80 N) will be presented and explained in this paper in all
necessary detail.

Since the celestial sphere rotates around the celestial axis NS, the dial of this astronom-
ical clock can be geometrically constructed by the stereographic projection of characteristic
circles on the celestial sphere from the celestial pole N or S to the plane of the celestial
equator e. Since Belgrade is located in the northern hemisphere, the stereographic projec-
tion is obtained from the North Pole N. As is shown on Figure 5, the zodiac circle (circle
of ecliptic) z, the celestial Tropic of Capricorn tS, the celestial Tropic of Cancer tN and the
horizon h for the latitude of Belgrade are stereographically projected from the pole N to
the plane of the celestial equator e. The circles of ecliptic z and celestial equator e intersect
at two points: one of them is the first point of Aries or the cusp of Aries γ and the second
one is the first point of Libra Ω. As usual, the astronomical dial is rimmed by the celestial
Tropic of Cancer tN since the Sun and the Moon, as observed from the Earth, never exceed
this circle. The zodiac circle (the circle of ecliptic) z just touches both celestial tropics and
intersects equator e and horizon h at the same pair of points—γ and Ω.

Figure 5. The stereographic projection of the celestial sphere.

Due to the fact that the positions of the Sun and the Moon are determined on this
astronomical dial by the ecliptic longitude, the representation of the ecliptic circle (zodiac)
is a crucial and inevitable part of its face. Thus, the zodiac circle must be geometrically
constructed as well. The stereographic projections of the zodiac circle and its division into
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12 equal segments from the pole N to the plane of the celestial equator are given in Figure 6.
The zodiac circle is stereographically divided into 12 equal segments each of which is
30 degrees of ecliptic longitude wide. These segments are named after the well-known
astrological signs: Aries , Taurus , Gemini , Cancer , Leo , Virgo , Libra , Scorpio

, Sagittarius , Capricorn , Aquarius , and Pisces . All segments are equally
graduated with six divisions of five degrees each. It is important to emphasize what can be
easily seen on the zodiac circle, namely that stereographic projections of these divisions are
unevenly distributed since the stereographic projection is not affine but central.

Figure 6. The stereographic projection of the zodiac and its division into 12 equal segments.

Figure 7 shows the model of an astronomical dial created by the SolidWorks applica-
tion. The Sun (4) and the Moon (16) symbols (icons) are attached to the clock hands which
rotate around the clock axis (13). The zodiac (ecliptic) circle (14) also rotates around the axis
(13) and supports the Sun and the Moon icons by the two circular grooves. By the position
of the Sun pointer, the local mean solar time can be read on the 24 numeral divisions placed
at the edge of the celestial Tropic of Cancer (3). By the position of the arrow mark (2) (γ) at
the zodiac (14), the local mean sidereal time can also be determined on the same division
(3) or on the equator circle (8) scale. The ring (12) is the celestial Tropic of Capricorn and
represents the inner border of the dial. The position of the Sun (4) on the ecliptic circle (14)
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indicates the current date of the year. The apparent angular distance between the Sun (4)
and the Moon (16) hands determines the Moon phase. This angular distance can be read
out directly in days on the tiny ring (17) attached to the Sun pointer. The Moon phases
can also be seen in a more pictorial and vivid way on a separate display equipped with
rotational sphere (9) which is painted half white and half dark blue. The astronomical dial
has the projection of the local horizon (6) and five almucantars (5) at the angular distance
of 12◦. The daytime period (1) and the astronomical night (10) are indicated by the position
of the Sun icon above and below the horizon, respectively.

Figure 7. The model of the astronomical dial.

The altitude of the Sun can be determined approximately correctly (with an error
of ±3◦) by the aforementioned almucantars. The Sun icon positioned on the horizon
determines the time of sunrise or sunset. Three almucantars (11) are also displayed below
the horizon, at the angular distance of 6◦, illustrating the periods of civil, nautical and
astronomical twilights (11). The interval between sunset and dusk is determined on the
right side of the dial, while the interval between dawn and sunrise is on its left side. The
astronomical dial is equipped with a lunar node pointer (15) and corresponding circular
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sectors (7) which play an important role in the prediction of lunar and solar eclipses. The
meaning of these sectors will be explained in the next section dedicated to the astronomical
data necessary for the proper construction of the astronomical clock mechanism.

5. The Astronomical Data

It is evident that all the intended features of the astronomical clock disclosed and
explained in Section 3 can be obtained not just by the proper construction of the dial, but
also by the correct design of the clock mechanism. The synthesis of the astronomical clock
mechanism is based on certain well-known astronomical facts and numerical data. The
ratio between these data will be interpreted and realized by the clock mechanism gear
ratios. Therefore, all astronomical data which are necessary for the design of the clock
mechanism must be carefully considered and properly selected.

First, the Earth rotates around its axis which is currently tilted 23.444 degrees from its
orbital axis [6]. From the viewpoint on the Earth, the Sun rotates from the east to the west
with the period known as a solar day with a mean length of 24 h. The apparent path of the
Sun during the year, as seen from the Earth, passes through the zodiac which is divided
into 12 signs and form the ecliptic coordinate system. The Sun’s position at the vernal
equinox is the origin of ecliptic longitude. From an observer on the Earth, the zodiac rotates
daily to the west within the period known as sidereal day whose mean length, determined
for the year 2019, is 23 h 56 min 4.09053 s or 23.934469592 h [7].

The period of the Moon’s orbit with respect to the line which connects the Earth
and the Sun, or the period of lunar phases, is called a synodic month. This period varies
over time but its mean value calculated for a long period of time is extremely stable.
Currently, the average duration of the synodic month is TPh = 29.530589 days [6,8] and
is decreasing in mean length by about 3.6 × 10−7 solar days per century [6] or by about
0.311 s per millennium.

Since the astronomical clock displays the daily motion of the Moon, the average period
of the Earth’s rotation relative to the Moon, or tidal lunar day, must be calculated. From the
fact that the angular distance between the Sun and the Moon determines the lunar phase,
the mean value of the tidal lunar day can be determined from Equation (1):

TL = 24
(

1
TS
− 1

TPh

)−1
= 24

(
1− 1

29.530588

)−1
= 24.8412024 h (1)

The orbit of the Moon is inclined to the ecliptic and crosses the ecliptic in two lunar
nodes: the ascending node and the descending node [9]. The lunar nodes revolve slowly
around the ecliptic [9] in the direction opposite to the direction of the Earth’s revolution.
The period of the lunar node cycle determined for the year 2019 is TN = 18.612952 years [8].
The mean interval of time between two successive conjunctions of the Sun with the same
lunar node is called the eclipse year and lasts TE = 346.620067 days [8]. It is a little bit
shorter than the solar year because the directions of nodal precession and the Earth’s
revolution are opposite. The lunar nodes play an important role in the explanation of the
phenomena called lunar and solar eclipses. From the viewpoint of an observer on the Earth,
a solar eclipse can occur only when the Moon and the Sun are both near the same node, and
a lunar eclipse can only happen when the Sun and the Moon are close to opposite lunar
nodes. If the angle between the line of nodes and the Moon or the Sun is less than 9◦30′, a
lunar eclipse must occur, while if it is greater than 12◦15′, a lunar eclipse is not possible
(lunar eclipse limit). If the abovementioned angle is less than 15◦23′, a solar eclipse must
happen, while if it is more than 18◦35′, a solar eclipse cannot occur (solar eclipse limit) [10].

All the astronomical data important for the synthesis of the astronomical clock mecha-
nism are given in Table 1.
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Table 1. The astronomical data.

Astronomical Data Duration Astronomical Data Duration

Solar day TS = 24 h Lunar tidal day TL = 24.8412024 h
Sidereal day TSID = 23.934469592 h Lunar nodal period TN = 18.612952 years

Synodic month TPh = 29.530588 days Eclipse year TE = 346.620067 days

6. Approximations of Astronomical Data

It is important to emphasize that the astronomical clock whose design is presented
in this work determines and displays geocentrically not the apparent or true position
but the mean position of the Sun, the Moon, the lunar nodes the zodiac circle and their
motion during the year. All irregularities of the Sun, the Moon and the lunar node celestial
motions are neglected for this mechanical model. In other words, it is presumed that the
observed movements of the aforementioned objects across the celestial sphere are circular
and uniform. These uniform circular motions are realized by a set of clock gear trains with
meticulously calculated gear ratios.

Since the number of gear teeth is an integer, the gear ratios must be approximated
by rational numbers. The proper gear ratios of the mechanism gear trains are determined
by the method of continued fractions since this calculation technique was mathematically
proven [11] to produce the best possible rational approximation of a real number [12].
(Given a number x, its best rational approximations of the first kind are those fractions
p/q such that x is closer to p/q than to any fraction with a smaller denominator. Given
a number x, its best rational approximations of the second kind are those fractions p/q
such that for any fraction p′/q′ with q′ < p, we have |q′x − p′| > |qx − p|.) However,
for this objective, the method of continued fractions is not sufficient. Since the diameter
of the gear cannot be arbitrarily large nor can the gear modulus be arbitrarily small, the
number of gear teeth is always limited by the clock dimensions and by the method of gear
production. Thus, it is necessary to introduce an additional criterion which will determine
the practically acceptable rational approximation obtained by the method of continued
fractions. Basically, this precaution can be formulated as the limitation of the number of
gear teeth and depends on gear production technology, gear modulus and dimensions of
the clock. In this case, we are planning to produce gears by ABS filament 3D printing and
since the clock face diameter is approximately 400 mm, the gear diameter should not be
greater than 150 mm and the modulus not less than 1 mm.

Briefly, the previous considerations can be summarized as follows:

• The proper gear ratio of the particular gear train must be determined by the method of
continued fractions. This method generates the set of convergents or semi-convergents
of the continued fraction representation of the real ratio [12,13].

• The error of the chosen rational approximation should be sufficiently small.
• The rational approximation should be selected in such a way that prime factors of

their numerators and denominators are less than 150.

The operational scheme of the astronomical clock mechanism, which consists of a set
of gear trains, is given in Figure 8. In this figure, C is the input hour shaft of the ordinary
clock, S is the Sun, M is the Moon, Z is the zodiac, Ph is the lunar phases and N represents
lunar nodes. In the same figure, RCS = 2 : 1 is the ratio between angular velocities of the
clock hour shaft and the astronomical clock’s Sun pointer. RSM is the ratio between angular
velocities of the Sun and the Moon pointers, RMZ is the Moon and the zodiac, RSPh is the
Sun and the lunar phases and RSN is the ratio between angular velocities of the Sun and the
lunar node pointers on the same astronomical dial. These ratios are approximated by the
set of continued fractions convergents (C) and semi-convergents (SC) and the prime factors
of their numerators and denominators are determined. To demonstrate these calculations
more concisely, not all convergents and semi-convergents are presented, but only the range
from the first to the one which is accepted as a sufficiently correct approximation. The set
of best rational approximations of the ratio RSPh =29.530589 is given in Table 2.
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Figure 8. The operational scheme of the astronomical clock mechanism.

Table 2. The best rational approximations of the ratio RSPh.

Type Approximation Type Approximation

C 29/1 SC 384/13 = 27 × 3/13
C 30/1 = (2× 3× 5)/1 C 443/15 = 443/(3× 5)
C 59/2 C 502/17 = 2× 251/17

SC 266/9 = 2× 7× 19/32 SC 945/32 = (33 × 5× 7)/25

SC 325/11 =
(
52 × 13

)
/11 C 1447/49 = 1447/72

The semi-convergent 945/32 is chosen to approximate the ratio RSPh = 29.530589.
The error of this approximation is 0.000662 days per lunation or less than 12 min per year.

The ratio RSM between angular velocities of the Sun and the Moon clock pointers is
determined by Equation (2):

RSM =
TL
TS

=
24.8412024

24
= 1.0350501 (2)

The set of best rational approximations of the ratio RSM is given in Table 3.
The semi-convergent 945/913 is selected as the approximation of the ratio RSM.

The absolute value of the error of this approximation is calculated from the following
expression (3): ∣∣∣∣24× 945

913
− 24.8412024

∣∣∣∣ = 1.949× 10−5 h ≈ 0.07 s (3)

This error denotes that the mean position of the Moon will be determined by the clock
mechanism with an error of approximately 0.07 s per day or less than 30 s per year.

Regarding the operational scheme of the astronomical clock mechanism given in
Figure 8, the ratio RMZ between the angular velocities of the Moon and the zodiac pointers
is calculated by the following expression (4):

RMZ =
TSID
TS
× RSM

−1 =
23.934469592

24
× 913

945
= 0.963499592 (4)
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Table 3. The best rational approximations of the ratio RSM.

Type Approximation Type Approximation

C 1/1 C 30/29 = (2× 3× 5)/
(
22 × 7

)
SC 16/15 = 24/(3× 5) C 59/57 = 59/(3× 19)
SC 17/16 = 17/24 SC 266/257 = (2× 7× 19)/257
SC 18/17 =

(
2× 32)/17 SC 325/314 =

(
52 × 13

)
/(2× 157)

SC . . . . . . . . . SC 384/371 =
(
27 × 3

)
/(7× 53)

SC 27/26 = 33/(2× 13) C 443/428 = 443/
(
22 × 107

)
SC 28/27 =

(
22 × 7

)
/33 C 502/485 = (2× 251)/(5× 97)

C 29/28 = 29/
(
22 × 7

)
SC 945/913 =

(
33 × 5× 7

)
/(11× 83)

The set of convergents (C) and semi-convergents (SC) by which the ratio RMZ is
approximately determined is given in Table 4. The convergent 26, 001/26, 986 is selected
as the approximation of the ratio RMZ. Since the ratio between this convergent and the
semi-convergent 913/945 produces the rational approximation TSID of the sidereal day by
the following expression (5),

TSID = 24× 26, 001/26, 986
913/945

= 23.93446961 h, (5)

the absolute value of the error obtained by this approximation can be calculated from the
expression (6) ∣∣TSID − 23.934469592

∣∣ = 2× 10−8 h = 7.2× 10−5 s (6)

This value means that the clock mechanism determines the mean sidereal day with an
error of approximately 7.2× 10−5 s per day or less than 0.03 s per year.

Table 4. The best rational approximations of the ratio RMZ.

Type Approximation Type Approximation

C 0/1 SC 1003/1041 = (17× 59)/(3× 347)
C 1/1 SC 1135/1178 = (5× 227)/(2× 19× 31)

SC 13/14 = 13/(2× 7) SC 1267/1315 = (7× 181)/(5× 263)
SC 14/15 = (2× 7)/(3× 5) SC 1399/1452 = 1399/

(
22 × 3× 112)

SC . . . . . . . . . SC 1531/1589 = 1531/(7× 227)
SC 24/25 = 23 × 3/52 C 1663/1729 = 1663/(7× 13× 19)
SC 25/26 = 52/(2× 13) C 1795/1863 = (5× 359)/

(
34 × 23

)
C 26/27 = (2× 13)/32 C 3458/3589 = (2× 7× 13× 19)/(37× 97)
C 53/55 = 53/(5× 11) SC 15, 627/16, 219 = (3× 5209)/

(
72 × 331

)
C 79/82 = 79/(2× 41) SC 19, 085/19808, 808 = (5× 11× 347)/

(
25 × 619

)
C 132/137 =

(
22 × 3× 11

)
/137 SC 22, 543/23, 395 = 22, 543/(5× 4679)

SC 871/904 = (13× 67)/
(
23 × 113

)
C 26, 001/26, 986 = (35 × 107)/(2× 103× 131)

In accordance with the operational scheme of the clock mechanism, astronomical data
given in Table 1 and the fact that the lunar nodal cycle is k = 18.612952 times longer than a
year, the ratio RSN between angular velocities of the Sun and the lunar node pointers can
be determined by the following expression (Equation (7)):

RSN =

[
TS

TSID
+

(
TS − TSID

TSID

)
× 1

k

]−1
= 0.997123293 (7)

The best rational approximations of the ratio RSN = 0.997123293 are given in Table 5.
The convergent 2773/2781 is chosen as the best applicable approximation of the ratio RSN .
Since the difference between angular velocities of the Sun and the lunar node pointers
represents the approximation of the lunar node angular velocity relative to the Sun, the
next Equation (8) determines the approximation of the eclipse year TE.
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TE =

(
2781
1773

− TS

)−1
=

(
2781
1773

− 1
)−1

= 346.6250162 days (8)

Thus, the mechanism of the astronomical clock approximates the eclipse year with an
error whose absolute value is determined by the following expression (9):∣∣TE − TE

∣∣ = |346.6250162− 346.620067 | = 0.0049492 days ≈ 7.13 min (9)

Table 5. The best rational approximations of the ratio RSN .

Type Approximation Type Approximation

C 0/1 C 346/347 = (2× 173)/347
C 1/1 C 347/348 = 347/

(
22 × 3× 29

)
SC 173/174 = 173/(2× 3× 29) C 693/695 = (32 × 7× 11)/(5× 139)
SC 174/175 C 1040/1043 =

(
24 × 5× 13

)
/(7× 149)

SC . . . . . . . . . C 1733/1738 = 1733/(2× 11× 79)
SC 345/346 = (3× 5× 23)/(2× 173) C 2773/2781 = (47× 59)/

(
33 × 103

)
The reciprocal value of the ratio (TS − TSID)/TSID which appears in Equation (7)

determines the number of days in the solar or tropical year. Consequently, the clock
mechanism produces an approximation of the mean tropical year of TT = 365.242189
days [6] with an error whose absolute value can be determined by Equation (10).∣∣∣∣ TT − TS

TSID

TS − TSID

∣∣∣∣ = |365.242189− 365.2422884| = 9.94× 10−5 days ≈ 8.6 s (10)

After all calculations and evaluations presented in this section, it can be concluded
that the rational approximations of real ratios RMZ, RSPh, RMZ and RSN are not perfect, but
are sufficiently good and practically applicable for the synthesis of the astronomical clock
mechanism. The next section is dedicated to this task.

7. The Clock Gear Trains

In accordance with the presented astronomical data and their approximated ratios, the
design of the astronomical clock mechanism is realized and a fully operational 3D model
of this mechanical device is created by using the SolidWorks 2016 application (Dassault
Systèmes, Dassault Group, Vélizy-Villacoublay, France).

As is shown in Figure 8, the mechanism of the clock consists of five gear trains. Each
gear train had its specific speed ratio determined in the previous section by the method of
continued fractions as the best rational and practically applicable approximation of the real
ratios. The prime factors of the numerator and denominator of these approximated ratios
are also calculated and the proper gear modulus and the number of teeth are determined.
These ratios, the number of gear teeth and gear modulus are given in Table 6. The problem
of selecting the best but practically applicable convergents or semi-convergents of the
continued fraction approximation for the construction of the clock gears must be empha-
sized again. Obviously, higher terms of this rational approximation produce smaller errors.
However, the higher terms have larger numerators and denominators and, very often,
their prime factors are also huge. Since these prime factors have to be realized directly
and precisely by the number of gear teeth, extremely high terms of continued fraction
approximations are not practical and useful. On the other hand, lower terms of rational
approximation are usable but produce larger errors. Thus, the problem of selecting the
best but practically applicable convergents or semi-convergents of the continued fraction
approximation must be solved as a compromise between two opposite demands.

The mechanism of the astronomical clock has four coaxial shafts which hold the lunar
nodes, the Sun, the zodiac and the Moon pointers. Additionally, the clock mechanism is
equipped with one separate shaft which controls the rotation of the sphere, which is painted
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half white and half dark blue and displays the lunar phase. As was already emphasized
and shown in the operational scheme of the clock mechanism in Figure 8, the shafts are
mutually connected by five previously mentioned gear trains. The clock mechanism has
two five-pointed frames which support the astronomical face, with all shafts and gear
trains as one functional block.

Table 6. The rational approximations of the gear train ratios of the clock mechanism.

Ratio between the Pointers’
Angular Velocities Approximated Ratio Approximated Ratio Indicated

by the Number of Gear Teeth Modulus (mm)

of the input clock hour pointer and the
Sun RCS

2
1

40
60
× 60

80
2

of the Sun and the lunar phases RSPh
945
32

=
33 × 5× 7

25

50
20
× 50

20
× 45

20
× 42

20
2

of the Sun and the Moon RSM
945
913

=
33 × 5× 7

11× 83
70
83
× 81

66

1.5–70, 83
1.56122–81, 66

of the Moon and the Zodiac RMZ
26, 001
26, 986

=
35 × 107

2× 103× 131
60

131
× 81

103
× 90

60
× 107

60
1

of the Sun and lunar nodes RSN
2773
2781

=
47× 59
33 × 103

59× 94
103× 54

1.5–59, 103
1.64189–94, 54

The gear trains which control the motion of the Sun pointer and the lunar phase’s
spherical display are shown in Figure 9 and the related gear numbers are given in Table 6.
The gear modules for both trains are 2 mm. The Sun gear train consists of three gears, the
first of which is connected to the hour shaft of the ordinary clock. This shaft holds the Sun
pointer equipped with a small gold-plated symbol of the Sun. The hour shaft of this clock
drives all gear trains of the astronomical clock. The lunar phase train has four pairs of
gears and takes the power from the Sun shaft. The last shaft of the lunar phase’s gear train
is connected to the small spherical pointer which displays the current Moon phase.

Figure 9. The Sun and the lunar phase gear trains.
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The Moon gear train is shown in Figure 10. It consists of two pairs of gears, the first of
which has a 2 mm modulus and the module of the second pair (1.56122 mm) is adjusted
in such a way that the shafts of the first and the last gear are coaxial. The first gear of
the Moon gear train is driven by the Sun shaft and the last gear drives the Moon pointer
equipped with a small silver-plated symbol of the Moon. The numbers of teeth for each
gear in the Moon gear train are given in Table 6. The support for this train is connected to
the main pair of the astronomical clock’s five-pointed frames.

Figure 10. The Moon gear train.

The zodiac gear train is shown in Figure 11. It consists of four pairs of gears whose
modulus is 1 mm. The number of teeth for each gear of this gear train is also given in
Table 6. The first gear of the zodiac train is driven by the Moon shaft and the last gear
drives the zodiac shaft to which the zodiac circle is attached. As was previously mentioned,
the zodiac circle is divided into twelve equal segments which are equally graduated with
six divisions of five degrees each. It measures the ecliptic longitudes of the Sun, the Moon
and the lunar nodes.

Figure 11. The zodiac gear train.
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The lunar node gear train is shown in Figure 12. It consists of two pairs of gears, the
first of which has a 1.5 mm modulus and the modulus of the second pair (1.64189 mm) is
adjusted in such a way that the shafts of the first and the last gear are coaxial. As is done
for the other gears, the numbers of teeth of the lunar node gear train are given in Table 6.
The first gear of the lunar node train is driven by the Sun shaft and the last gear drives
the lunar node pointer, shown in Figure 13. This pointer is equipped with two circular
sectors which have ±9◦30′ ±12◦15′ ±15◦23′ and ±18◦35′ marks, the meaning of which
was explained earlier. The angular span of this circular sector corresponds to a certain
interval of time called the eclipse season during which the conditions for the occurrence of
a solar or lunar eclipse are satisfied.

Figure 12. The lunar node gear train.

Figure 13. The lunar node and eclipse sector.

Figure 14 shows the complete assembly of the astronomical clock mechanism with
the position of all gears. In this figure, 1 is the input shaft driven by the hour arbor of
the ordinary clock, 2—the Sun gear train, 3—the Moon gear train, 4—the lunar phase
train, 5—the main shaft of the astronomical clock, 6—the zodiac gear train, 7—the clock
five-pointed frame and 8—the lunar node train.
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Figure 14. The assembly of the astronomical clock mechanism.

8. The Set-Up of the Clock Mechanism Motion Study

For the correct operation of the astronomical clock mechanism, the initial positions of
the Sun, the Moon, the zodiac, the lunar phase and the lunar node pointers must be chosen
first. The best way to accomplish this task is to adjust the pointers’ positions for the date on
which the Moon is located in its orbital perigee or apogee. This decision is reasonable since
the modeled clock mechanism exclusively determines the mean motions and positions of
the aforementioned astronomical objects and the true and mean position of the Moon in
its orbital apogee or perigee is approximately the same. The Moon was in apogee on 18
May 2020 [14] and this date has been chosen for the astronomical clock set-up. The ecliptic
longitudes for the Sun, the Moon and the lunar node are taken from ephemeris tables
for 2020 [15] which are calculated for each day at Greenwich Mean Midnight. On 18 May
2020 at midnight 00:00 UT, the ecliptic longitude of the Sun was 27.52◦, that of the Moon

5.13◦ and the mean longitude of the lunar node was S 0.93◦. If the clock is located in
Belgrade, latitude 20◦28′, it is necessary to calculate the local mean solar time for this place.
This is done by the following calculation [16]:

LSoT = LST + 4′(LL− LSTM) + ET = 1 + 4′(20.467− 15) + 0 = 1 : 21 : 52 (11)
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In Equation (11), LSoT is the local solar time, LST the local standard time, LL the
local longitude, LSTM the local standard time meridian measured in degrees which runs
through the center of each time zone and ET is the equation of time. Neglecting ET, the
local solar time becomes local mean solar time. In accordance with these data, the initial
positions of the Sun, the Moon, the zodiac, and the lunar node pointers are adjusted on
the astronomical clock face. The correct lunar phase is determined by the angular distance
between the Sun and the Moon pointers.

After the clock pointers have been adjusted, the parameters of the mechanism motion
study are also determined. A rotary motor with an angular velocity of 30 rpm is attached to
the clock input shaft and the kinematic simulation is performed with 36 steps per second.

9. Results of the Clock Mechanism Motion Study

The motion study of this mechanism is accomplished by the use of the SolidWorks 2016
application and the accuracy of its predictions is demonstrated, documented and inspected.
The simulation of the mechanism operation was performed continuously for 44 days, from
18 May to 30 June 2020. This particular period of 44 days was chosen because it contains
all the astronomical events important for the initialization and the inspection of the clock
operation. The longer simulation period will not reveal any essentially new characteristics
of the clock performances. Since the Sun pointer of the clock model accomplishes one
complete rotation in 4 s, 44 days take 176 s of simulation. The results of the clock mechanism
motion study were obtained by measuring the angular coordinates of the corresponding
pointers automatically every 4 s. All angular coordinates and the differences between
the ephemeris astronomical data and the data generated by the motion study of the
astronomical clock mechanism are collected and disclosed in Table 7. Columns -Eph, -Eph
and -Eph show ecliptic longitude for the Sun, the Moon and the lunar node, respectively,
taken from ephemeris data. Columns -S, -S and -S show the corresponding ecliptic
longitudes obtained by the clock mechanism motion study and columns ∆ , ∆ and ∆
show the differences between them.

Table 7. Differences between ephemeris astronomical data and data generated by the motion study of the astronomical
clock mechanism in angular degrees.

Date -Eph -S ∆ -Eph -S ∆ -Eph -S ∆

18.5 27.52 27.52 0 5.13 5.13 0 0.93 0.93 0
19.5 28.48 28.51 +0.03 17.00 18.31 +1.31 0.88 0.88 0
20.5 29.44 29.49 +0.05 28.92 1.48 +2.56 0.83 0.83 0
21.5 0.41 0.48 +0.07 10.92 14.66 +3.74 0.77 0.77 0
22.5 1.37 1.46 +0.09 23.07 27.83 +4.76 0.72 0.72 0
23.5 2.33 2.45 +0.12 5.35 11.01 +5.66 0.67 0.67 0
24.5 3.29 3.44 +0.15 17.80 24.19 +6.39 0.62 0.62 0
25.5 4.25 4.42 +0.17 0.45 7.36 +6.91 0.57 0.56 +0.01
26.5 5.22 5.41 +0.19 13.30 20.54 +7.24 0.50 0.51 +0.01
27.5 6.18 6.39 +0.21 26.38 3.71 +7.33 0.45 0.46 +0.01
28.5 7.14 7.38 +0.24 9.72 16.89 +7.17 0.40 0.40 0
29.5 8.09 8.37 +0.28 23.30 0.06 +6.76 0.35 0.35 0
30.5 9,05 9.35 +0.30 7.15 13.24 +6.09 0.30 0.30 0
31.5 10.01 10.34 +0.33 21.27 26.41 +5.14 0.25 0.24 −0.01
1.6 10.97 11.32 +0.35 5.63 9.59 +3.96 0.18 0.19 +0.01
2.6 11.93 12.30 +0.37 20.18 22.77 +2.59 0.13 0.14 +0.01
3.6 12.89 13.29 +0.40 4.83 5.95 +1.12 0.08 0.08 0
4.6 13.84 14.28 +0.44 19.50 19.17 −0.33 0.03 0.03 0
5.6 14.82 15.27 +0.45 4.07 2.30 −1.77 29.98 29.98 0
6.6 15.76 16.24 +0.48 18.42 15.48 −2.94 29.93 29.93 0
7.6 16.72 17.24 +0.52 2.47 28.65 −3.82 29.87 29.87 0
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Table 7. Cont.

Date -Eph -S ∆ -Eph -S ∆ -Eph -S ∆

8.6 17.67 18.22 +0.55 16.18 11.83 − 4.35 29.82 29.82 0
9.6 18.63 19.21 +0.58 29.50 25.00 − 4.5 29.77 29.77 0

10.6 19.58 20.19 +0.61 12.47 8.18 −4.29 29.72 29.71 −0.01
11.6 20.54 21.18 +0.64 25.08 21.36 −3.72 29.67 29.67 0
12.6 21.49 22.16 +0.67 7.40 4.53 −2.87 29.60 29.61 +0.01
13.6 22.01 23.15 +1.14 19.50 17.71 −0.79 29.55 29.55 0
14.6 23.41 24.14 +0.73 1.47 0.89 −0.58 29.50 29.50 0
15.6 24.36 25.12 +0.76 13.35 14.06 +0.71 29.45 29.45 0
16.6 25.32 26.11 +0.79 25.23 27.24 +2.01 29.40 29.40 0
17.6 26.27 27.01 +0.74 7.18 10.41 +3.23 29.35 29.34 +0.01
18.6 27.23 28.08 +0.85 19.28 23.59 +4.31 29.28 29.29 +0.01
19.6 28.18 29.06 +0.88 1.55 6.77 +5.22 29.23 29.24 +0.01
20.6 29.14 0.05 +0.91 14.03 19.94 +5.91 29.18 29.18 0
21.6 0.09 1.04 +0.95 26.77 3.12 +6.35 29.13 29.13 0
22.6 1.05 2.02 +0.97 9.75 16.29 +6.54 29.08 29.08 0
23.6 2.00 3.00 +1.00 22.98 29.47 +6.49 29.03 29.03 0
24.6 2.95 3.99 +1.04 6.45 12.65 +6.20 28.97 28.97 0
25.6 3.91 4.98 +1.07 20.13 25.82 +5.69 28.92 28.92 0
26.6 4.86 5.96 +1.10 4.02 9.00 +4.98 28.87 28.87 0
27.6 5.82 6.95 +1.13 18.05 22.17 +4.12 28.82 28.82 0
28.6 6.77 7.93 +1.16 2.20 5.35 +3.15 28.77 28.76 −0.01
29.6 7.72 8.92 +1.20 16.43 18.53 +2.10 28.70 28.71 +0.01
30.6. 8.68 9.91 +1.23 0.72 1.70 +0.98 28.65 28.66 +0.01

10. Discussion

Analyzing the data collected in Table 7 and regarding the features of the modeled
astronomical clock, the following remarks and conclusions can be drawn:

1. Throughout the duration of 44 days, the differences for the Sun longitudes between
the ephemeris data and the data obtained by the motion study of the clock mechanism
operation gradually grow from 0◦ to +1.23◦. This divergence occurs because the clock
mechanism neglects the equation of time and tracks only the mean motion of the Sun.
This error induces the difference between the true and the mean local time.

2. During the 44 days, the differences for the Moon longitudes between the ephemeris
data and the data obtained by the simulation have positive and negative signs and
their absolute values are larger than those calculated for the Sun. These errors are
expected since the orbit and the motion of the Moon have many irregularities and
the Moon gear train of the clock mechanism displays only its uniform motion and
determines its mean positions. Moreover, since the clock is adjusted for the date on
which the Moon is located in its orbital apogee, the Moon mean positions obtained by
the simulation “oscillate” around the correct positions on both sides, between −4.36◦

and +7.35◦.
3. The mean longitudes of the lunar node N determined by the mechanism motion study

are identical to those given in ephemeris tables. This means that the lunar nodes gear
train generates good approximation for the mean precession of the lunar nodes.

4. During June 2020, two significant and interesting astronomical events occurred, the
first of which was the lunar eclipse and the second one was the solar eclipse. The
eclipse of the Moon was penumbral and took place on 5–6 June 2020 [17] and the
solar eclipse was annular and occurred on 21 June 2020 [18]. Since it is equipped with
the lunar node pointer, the astronomical clock presented in this work was able to
predict these events with acceptable accuracy. In Belgrade, the lunar eclipse began on
5 June at 19:45:51 CET, reached its maximum at 21:24:55 CET and ended at 23:04:03
CET. The astronomical clock predicted the beginning of the lunar eclipse on 5 June
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2020 at approximately 16:42 when the Moon pointer entered the eclipse sector and
the maximum at 23:16 when the Moon pointer overlapped the Sun pointer inside
the eclipse sector, as is shown on Figure 15. (The clock tells local mean solar time
for Belgrade.) The end of the eclipse could not be determined by the positions of
the Sun, the Moon and the lunar node pointers of the clock. The error of the clock
prediction was visible but it was not too large. In Belgrade, the annular solar eclipse
reached its maximum on 21 June 2020 at 8:40:04 CET and, as is shown in Figure 16,
the astronomical clock predicted that this maximum would occur on 20 June 2020
at 17:58 when the Moon icon overlapped the Sun icon inside the eclipse sector and
almost overlapped the nodal pointer. The error was quite large, more than 12 h ahead,
but this was expected since the error range for the Moon longitude was also large
(−4.36◦, +7.35◦). Predictions of the lunar and solar eclipses with similar values of
error are obtained by an entirely different mechanical device described and explained
in [19].

Figure 15. Full Moon and penumbral lunar eclipse of 5–6 June 2020.
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Figure 16. New Moon and annular solar eclipse of 21 June 2020.

It will be interesting to compare the design of the astronomical clock presented in this
paper with the design of the famous Prague astronomical clock. Both clocks have similar
dials, designed as the stereographic projection of the celestial sphere, and both of them
display the motions and the mean positions of the Sun, Moon, zodiac circle and the Moon
phases. As for the difference, the presented clock has the lunar node pointer which enables
the prediction of lunar and solar eclipses. Moreover, this clock displays lunar phases in
a more vivid way on a separate dial equipped with a rotational sphere which is painted
half white and half dark blue. It is also significant to compare the accuracy of this clock
with the accuracy of the Prague astronomical clock. The main mechanism of the Prague
clock consists of three gears: one for the movement of the zodiac (365 teeth), one for the
Sun (366 teeth) and one for the Moon (379 teeth) [20]. Regarding these facts, the Prague
astronomical clock approximates the sidereal day as 23.93442623 h and tidal lunar day
as 24.852459 h. The lunar phase mechanism has 59 gears and rotates by advancing two
teeth per day [20]. Thus, this mechanism approximates the synodic month as 29.5 days.
All three approximations are less accurate than equivalent approximations obtained by
the astronomical clock whose design is presented in this paper. Thus, in comparison
with the designed clock, the Prague astronomical clock has a much simpler mechanism
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and consequently produces less accurate approximations of the motions and positions of
celestial objects.

11. Final Remarks and Conclusions

This work presents the design of an astronomical clock which displays the mean
position of the Sun, the Moon, the lunar nodes and the zodiac circle and their motions
during the year geocentrically. Since the mean periods of motions are approximated by the
method of continued fractions and realized by a set of gear trains with great accuracy, the
clock mechanism determines the mean positions of the aforementioned astronomical object
correctly. Nevertheless, the accuracy of the presented astronomical clock can be improved
by a more advanced and delicate mechanism which considers non-uniform motions of the
Moon and the Earth. For this purpose, the paper [21] is of great interest, since it shows the
kinematic structure of Dondi’s astronomical clock, whose gear trains are equipped with
non-circular gears for tracking the motion of the Moon and the planet Mercury. For similar
reasons, the paper [22] is also interesting since it presents a concept of an epicyclical gear
train able to generate a variable gear ratio law. The authors of this paper have already
examined and prepared several epicyclical mechanisms that take into account the equation
of time as well as the first and the second lunar anomalies. By the use of these mechanical
devices, the novel astronomical clock will be capable of simulating and displaying the
visible motions of the Earth and the Moon more accurately.

It must be emphasized again that the astronomical dial of this clock is constructed for
the latitude of Belgrade (44.8◦ N). Since the stereographic projection of the celestial sphere
is altered only by a change of latitude, this clock can be installed in any place on the Earth
with the latitude 44.8◦ N. For places with different latitudes, the clock mechanism stays
unchanged and only the astronomical dial should be adjusted by the principles given in
this work.

This paper could be important, mostly for education in the field of mathematics,
geometry, the theory of mechanisms, 3D modeling and motion study, as well as for teaching
courses in astronomy. Moreover, the presented methods of the clock mechanism synthesis
can be useful for the design, maintenance and conservation of large-scale city astronomical
clocks since these clocks represent a precious historical and cultural heritage of European
civilization. The main contribution of this work lies in disseminating and protecting
knowledge, the loss of which risks making these precious clocks no longer restorable.
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