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Abstract 
Micromechanical modelling of ductile fracture by using the local approach has 

been presented as the review of previously obtained results for welded joints made of low 

alloyed high strength steel. Experimental work was performed on 3PB specimens and 

tensile panels, which were then modelled by finite element method, using two- and three-

dimensional meshes, respectively. The local approach was used to simulate both for crack 

initiation and growth during ductile fracture process.  

 

Keywords: micromechanical modelling; ductile fracture; local approach; welded 

joints. 

Introduction 
Fracture is the most important phenomenon when considering material behaviour 

and structural integrity. The most common fracture mechanisms in metals are brittle 

(trans- or intergranular cleavage), Fig. 1a-b, ductile, Fig. 1c and fatigue. Although brittle 

fracture can be preceded by plastic deformation, its main feature is the absence of, and 

sudden appearance, at least in the final stage. Contrary to that, ductile fracture is 

characterised by slow process of initiation, growth and coalesce of voids, followed by 

large plastic deformation before the final failure, Fig. 2. Fatigue fracture is not in the 

scope of this paper. 

Following differences in two basic fracture mechanisms for metallic materials, 

namely cleavage and ductile fracture, two different micromechanical models were 

developed by using the local approach. On one hand side, it was relatively simple to 

model brittle fracture, i.e. cleavage [1], whereas modelling of the more complex 
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mechanism of ductile fracture has to include void nucleation, growth and coalescence [2], 

Fig. 3. In this paper, micromechanical modelling of ductile fracture is presented as a 

compilation of previously accomplished research [3-15], based on the so-called local 

approach.  

 

Fig. 1. Fracture types: (a) ductile, (b) transgranular cleavage, (c) intergranular 

cleavage. 

 

Fig. 2. Ductile stress-strain material behaviour [16]. 
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a)    b)  

Fig. 3. Process of ductile fracture (a) without and (b) with initial crack [16]. 

The local approach to fracture combines a detailed experimental analysis, 

modelling of fracture mechanisms and implementation of models into a numerical 

simulation. It was developed in the early ’80s, as described in the first MECAMAT 

International Conference [17]. During these early efforts, significant advances have been 

achieved in the understanding and modelling of the relationships between microscopic 

mechanisms and the macroscopic fracture behaviour, not only for brittle and ductile 

fracture but also for fatigue, creep, stress-induced corrosion and corrosion cracking, 

including oxidation-crack growth interaction. New topics and new methods have been 

investigated with promising results including brittle-ductile transition, anisotropy, non-

proportional, thermomechanical and dynamic loadings [17-19]. Applications have been 

developed for pressure pipelines, including pipe ring specimen testing and numerical 

simulation [20-24], steam turbines [25-28] and welded joints [10-13, 29, 30]. Initially 

developed in the context of steel structures, e.g. pressure vessels [31], the local approach 

to fracture has been extended to other materials as well: metallic alloys, metallic foams, 

composites, polymers, elastomers, ceramics, concrete. 

Significant progress has been made to transfer research results into standards and 

procedures, as provided by TC8 [32-36]. Also, some of the newest achievements have 

been presented during TC8 meetings in Paris and Cassino, and published previously, e.g. 

[37], as well as in doctoral theses, e.g. Yang Li [38]. Anyhow, we focus our attention here 

on micromechanical modelling of ductile fracture, especially in welded joints. 

Micromechanical modelling of ductile fracture 
Micromechanical modelling of round tensile specimens and notched tensile 

specimens with different notch radius, conducted in the early nineties, resulted in 

establishing the ESIS procedure [34], leading later on to the ESIS draft “Guidance on the 

local approach of rupture of metallic materials” [35]. More recent developments have 

been focused on voiding coalescence criterion, detailed microstructural analysis, and the 

effect of size, shape and distribution of voids [39, 40]. In any case, micromechanical 
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modelling is complex issue comprising microstructure observation, experimental 

research and numerical simulation based on finite element method (FEM). 

In the beginning, ductile fracture modelling, so-called uncoupled modelling, 

assumed that material behaviour is not affected by voids [41]. Such a simplified approach 

was based on the von Mises yield criterion only, without any damage parameter built into 

the constitutive equation. More complex, coupled models were developed soon 

afterwards [42], using constitutive equations developed by Gurson [43], based on damage 

parameter evaluated in the course of the finite elements (FE) analysis. Damage parameter 

was the void volume fraction, incorporated into the flow criterion, developed by 

Tvergaard and Needleman, establishing well-known Gurson-Tvergaard-Needleman 

(GTN) model [42], which can describe both damage development at a microscopic level 

and plastic strain at a macroscopic level. Finally, Zhiliang Zhang has developed the 

Complete Gurson Model (CG) [40], by incorporating the Thomason’s limit load criterion 

[44] into the GTN model enabling successful modelling deep into the plasticity. 

Uncoupled modelling 

Whichever relevant field in fracture mechanics one tackles, it is always James Rice 

at the beginning [41, 45]. Not different from that is the micromechanical modelling since 

it all started by the model of Rice–Tracey [30, 32], defining the void growth and 

indicating the strong effect of stress multiaxiality: 
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where R stands for the mean void radius, R0 is its initial value; m/eq represents 

the stress triaxiality, and d
p

eq  is the equivalent plastic strain increment. The critical value 

of void growth ratio, (R/R0)c, is the value at the crack initiation. Values of parameters 

α=0.283 and β=1.5 for Rice–Tracey model are given in the original reference [41] as the 

constants for given steel. Rice-Tracey model was improved by Beremin [46], Huang [47] 

and Chaouadi et al. [48], but still in the scope of uncoupled modelling. Thus, the damage 

was calculated by post-processing routines, after FE analysis of the stress and strain fields.  

Coupled modelling 

In the coupled model of ductile fracture material is porous, with voids affecting 

the stress-strain state and plastic flow, as defined by GTN [42]: 
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where  is the yield stress, 
'
ij  the stress deviator, m the mean stress, q1 and q2 

parameters introduced by Tvergaard [49]. Finally, f * is a function of the void volume 

fraction: 
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where fc is the critical value at which void coalescence occurs. For f * = 0, the 

plastic potential (2) is identical with that of von Mises. The parameter K defines the slope 

of a sudden drop of the force, defining the final stage of ductile fracture – void 

coalescence, which leads to complete loss of the material load-carrying capacity. 

In the initial phase of the ductile fracture, the voids nucleate mostly around the 

non-metallic inclusions. To quantify this micromechanism, the volume fraction of non-

metallic inclusions, fV, that can be determined using light microscopy, should be known 

[50]. There are two basic contributions to the increase of the void volume fraction, growth 

of existing voids and nucleation of new ones: 
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where 
p

ii  is the plastic part of the strain rate tensor. 

Growth of nucleated voids strongly depend on stress and strain state, showing a 

typically exponential increase with the stress triaxiality. Furthermore, Chu and 

Needleman [51] proposed a model for the initiation of secondary voids, using normal 

distribution: 
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where fN denotes the volume fraction of secondary-void forming particles, εN is the 

mean strain at void nucleation, and SN is the corresponding standard deviation. 

Finally, the GTN model had been modified by Zhang et al. [40], who applied the 

Thomason’s void coalescence criterion [44], to formulate the complete Gurson model 

(CGM), introducing new criterion for the onset of void coalescence: 
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where σ1 is the maximum principal stress, r the void space ratio, a and b parameters 

taken as constants, a = 0.1, b = 1.2 by Thomason [44], except that a was taken as linearly 

dependent on hardening exponent n, in the CGM [40]. The void space ratio from Eq. (6) 

is given by [40]: 
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ε1, ε2 and ε3 being principal strains. Therefore, the critical void volume fraction fc 

is not a material constant in the CGM, i.e. it should be calculated during the FE analysis. 

Since its value depends on the strain field, the critical void volume fraction fc differs even 

within one finite element, having different values in different integration points, being 

especially important in welded joints.  

ESIS round-robin – modelling of ductile fracture initiation and growth 
The ESIS round robin on ductile fracture initiation has been performed in the early 

nineties of XX century on the low-alloyed steel 22 NiMoCr 3 7 (applied mainly for 

pressure vessels), tested on specimens in forged and heat-treated condition [33]. This was 

done in the scope of ESIS Technical Committee 8 (TC8) activities, in two phases, first 

experimental, and then numerical, using FEM for micromechanical modelling. Basic 

tensile properties were as follows: Yield Strength Rp0.2 = 476 MPa, Ultimate Tensile 

Strength Rm = 620 MPa.  

Initial void volume fraction f0 is determined by quantitative light microscopy as 

the volume fraction of inclusions [50]: 

i
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T
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 8 

where: VV and AA are the volume and area fraction of detected inclusions, 

respectively; Ai is the area of the detected inclusions, and AT is the measurement field 

area. Volume fraction, f0, was determined as the mean value of area fraction for 100 

measurement fields, providing the value f0 = 0.00226 for the tested low alloyed steel, 22 

NiMoCr 3 7.  Typical optical micrographs of non-metallic inclusions in tested steel are 

shown in Figure 4. 

   

Fig. 4. Optical micrographs of non-metallic inclusions in tested steel [52]. 

The volume fraction of iron carbides is determined by using the lever rule on the 

metastable Fe – Fe3C diagram for known carbon content (0.22%): 
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where 6.67 is the weight % of C in Fe3C and 0.025 is the weight % of C in ferrite. 

Since densities of structural steel and Fe3C particles are similar, the volume fraction of 

iron carbides was taken as 0.03, as used later for fN in Chu-Needleman formulation. 

The mean free path between non-metallic inclusions was determined according to 

[50], using five horizontal measuring (scan) lines in each measurement field. Then the 

value of NL is determined, representing the number of interception of oxides or sulphides 

per measurement line unit (in mm). The mean free path λ, as the mean edge-to-edge 

distance between inclusions, is determined as follows: 
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where AA is the area fraction of inclusions. This procedure can is applicable if 

inclusions are located in each of the measurement fields since otherwise λ cannot be 

calculated by eq. (10). In our case, non-metallic inclusions were present in all 100 fields 

of measurement, so that the average value of mean free path λ is calculated as follows: 
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where n is the number of measurement fields. According to this procedure,   = 

219 μm was determined. 

 
Standard tension specimen, shown in Figure 5, is used for calculation with Rice-

Tracey and GTN  criteria of initiation of ductile fracture. Material nonlinearity is 

modelled using true stress – true (logarithmic) strain curve, and large strain (updated 

Lagrangian) FE formulation. All other relevant details are given in reference [7]. 

(a) (b)

   

Fig. 5. Standard round tensile specimen – dimensions (a)  

and simulation by FE mesh (b). 
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The GTN model was integrated into the FE software (ABAQUS – 

www.simulia.com) to perform elastic-plastic FE calculations. Tvergaard-Needleman 

parameter value q1=1.5 was used [42] for both cases, with and without secondary void 

nucleation, whereas parameter D according to the Chu-Needleman model was determined 

for εN=0.3, SN=0.1 and fN=0.04, as the reference values [51] for the latter case. 

Dependence between load, F, and reduction of cross-section, D, of a round 

specimen, is shown in Fig. 6, indicating that difference of FE calculation without 

nucleation of secondary voids and with traditional von Mises criterion are negligible 

almost to the point of the initiation of damage. Anyhow, calculation with secondary void 

nucleation predicts significant deviation from experimental data after the neck has been 

formed.  
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Fig. 6. Load, F, vs. reduction of cross-section, D, of the round tensile specimen [7]. 

Change of void volume fraction in the radial direction is shown in Fig. 7a for the 

prescribed displacements 3.5, 3.75 and 4 mm, indicating specimen centre as the location 

of most severe damage and crack initiation. Therefore, the critical values of model 

parameters have been determined for the finite element in the specimen centre. The last 

step of numerical calculation (prescribed displacement 4 mm) corresponds also to the 

specimen fracture, Fig. 7a. 

Critical void volume fraction, fc, is determined using the point of the sudden drop 

of force caused by coalescence of voids in the necking process [7], ΔD ≈ 2.63 mm, Fig. 

7b, being in good agreement with recommended values [7, 35] for this steel (fc = 0.05) 

and the similar steel according to the American standard A508Cl.2 (fc = 0.045) [53]. The 

critical value (R/R0)c = 3.045 is obtained in the same way, as shown in the literature [2]. 

http://www.simulia.com/
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Fig. 7. a) Distribution of void volume fraction, f, b) Critical void volume fraction, fc. 

In the second phase of the micromechanical analysis the onset of crack growth is 

determined on standard CT25 specimen (Figure 8a) [7], using six specimens to get curves 

to load – load line displacement and J-integral – crack growth. One half of the specimen 

is modelled by quadrilateral eight-noded isoparametric plain strain elements (Figure 8b), 

using the same true stress – true strain curve as for the tensile smooth specimen. Loading 

is introduced by prescribing displacements, in several steps. 
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Fig. 8. a) CT specimen b) FE mesh c) detail near the crack tip [45]. 

Refined mesh without singular elements was used to model crack tip, Figure 8c. 

According to numerous researches [7], element size at the crack tip has to match the mean 

free path between the non-metallic inclusions (   = 219 μm). Therefore, the size of 

elements at the crack tip was chosen to be 0.2 x 0.2 mm for both calculations: Rice–

Tracey void growth model with von Mises yield criterion, and GTN model with the same 

initial void volume fraction value as in the tensile smooth specimen. Subsequent void 

nucleation is not taken into account. 

Distribution of void volume fraction, f near the crack tip, at the onset of crack 

growth, is shown in Fig. 9, indicating concentration of large values (f > 0.09) close to the 

crack tip and large variation ahead of the crack tip.  
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Fig. 9. Distribution of void volume fraction, f, ahead of the crack tip [7]. 

 

Based on FE calculation, load F – load line displacement VLL curves are 

established. The value of J-integral at crack initiation, Ji, is obtained using the area below 

numerically determined curves, according to the standard expression: 
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where U is external work-area below F – VLL curve, W – a0 is ligament length and 

thickness Bn = 20 mm due to 20% side grooves (specimen nominal thickness B = 25 mm). 

Load line displacement VLL at the onset of crack growth is determined for critical values 

(R/R0)c = 3.045 and fc = 0.0611, obtained for the smooth specimen. Failure ahead of the 

crack tip is defined also for the same critical values, i.e. when R/R0≥(R/R0)c and f ≥ fc. In 

this paper, failure criterion is applied at the Gauss point nearest to the crack tip (GP1), to 

calculate Ji, as the more realistic option, following discussion in [7]. In this way, the 

experimental value Ji = 230 N/mm [7], was simulated closely, since GTN model produced 

Ji = 220.4 N/mm, whereas Rice-Tracey model produced Ji = 249.2 N/mm. 

Anyhow, it is of utmost importance to keep in mind significant differences of the 

results in different Gauss points, as shown in Figure 10, where increase of void volume 

fraction, f, vs. load line displacement VLL, is presented for all Gauss points (GP1 – GP4) 

in the element at the crack tip. Together with the issue of the finite element size, this 

remains to be investigated further in future analysis, while some aspect of the problem 

has been already tackled [7,45]. 
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Fig. 10. Void volume fraction in Gauss points of the first FE in the ligament [7]. 

Application OF MicroMechanical Modelling to welded joints  
Since welding is a complex process with abrupt structural and phase changes, one 

may not assume that welded joint has no cracks, even if non-destructive testing does not 

find any. Therefore, no wonder that welded joints attracted much attention in 

micromechanical modelling [10-13, 54-55], even though it has to be preceded by a 

detailed study of metallurgical and mechanical properties to ensure all necessary input 

data for different regions in heterogeneous material. Therefore, to start with, the 

quantitative microstructural analysis was performed to estimate the micromechanical 

material parameters: volume fraction of non-metallic inclusions (fv) and mean free path 

() between the non-metallic inclusions in base metal (BM), heat-affected zone (HAZ) 

and weld metal (WM) [52]. The initial porosity (f0) is assumed to be equal to the volume 

fraction of non-metallic inclusions (fv). Volume fraction of void nucleating particles (fN), 

was calculated from the content of carbon in tested materials, using the carbon content in 

BM and filler metal for HAZ and WM, respectively [52], as presented in Table 2, together 

with volume fraction of non-metallic inclusions (fv) and mean free path (). Typical 

micrographs of non-metallic inclusions in the tested steel are presented in Fig. 11. 

 
Table 2. Microstructural parameters of welded joint regions. 

Material Fv fN  (m) 

BM 0.0094 0.014748 578 

HAZ 0.0086 0.014748 497 

WM 0.0194 0.010685 202 
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Fig. 11. Two optical micrographs of non-metallic inclusions in: (a) HAZ and (b) WM. 

True stress – true strain curves in various zones of welded joint, especially the heat-

affected zone and its subzones (coarse grain - CGHAZ and fine grain - FGHAZ), are 

difficult to determine by conventional methods. Therefore, the iteration procedure based 

on the comparison of experimental and numerical results [56], was modified and applied 

to estimate true stress-true strain curves [52]. Toward this end, the smooth tensile plate 

was cut from welded plate to measure longitudinal strains at different load levels, in 

various regions of welded joints (WM, CGHAZ, FGHAZ and BM), using ARAMIS 

measuring system [57, 58] and then numerically modelled using ABAQUS 6.7 with three-

dimensional eight-node brick elements. According to differences in experimental and 

numerical results, parameters of true stress – true strain curves in all regions of the welded 

joint are corrected, until the agreement between the results becomes good enough, as 

shown in Fig. 12a, indicating good agreement after the 3rd iteration. Figure 12b presents 

the curves for all welded joint regions, whereas Figure 13 presents a comparison between 

the tested specimen and numerical true strain distribution. Material parameters obtained 

in this way are given in reference [52]. 

 

  

Fig. 12. a) Strain vs distance along the weldment, b) True stress‐true strain curves. 
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Fig. 13. Comparison between the tested specimen and longitudinal true strain 

distribution in numerical models for 3 iterations [52]. 

Testing and micromechanical modelling of welded joints were performed both for 

2D and 3D problems, the former one on SENB standard specimens, Fig. 14, and the later 

one on Tensile Panels with surface cracks, as explained in [52]. Here, the 2D problem is 

analysed in some details, both for crack tip positioned in the WM, Fig. 14a, and in the 

HAZ, Fig. 14b. 

a)  
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b)  

 

Fig. 14. Geometry and macrography of SENB specimen with pre-crack in a) WM,  

b) HAZ. 

 

Both specimens were fatigue pre-cracked in a standard procedure [59]. The single 

specimen method was used and the unloading compliance technique was applied for 

stable crack growth monitoring. J-integral critical value, a measure of fracture toughness 

JIc, is determined according to the ASTM E1820-08 [59] and given in Table 3. 

 

Table 3. JIc values for SENB specimens [52]. 

specimen Critical J-integral, JIc  

( kJ/m
2
) 

SENB-HAZ 84 

SENB-WM 64.7 

 

Both 2-D models were analysed as plane-strain problems using isoparametric 

quadrangular eight-noded elements with 2x2 Gauss integration used for simulating crack 

initiation, and four-noded elements with full Gauss integration used for crack 

propagation. In front of the crack tip, squared finite elements (0.2  0.2 mm for the 

specimen with a pre-crack in WM and 0.50.5 mm for the specimen with a pre-crack in 

FGHAZ) were used, Fig. 15, following the mean free path  between non-metallic 

inclusions in tested materials (see Table 2).  

file:///C:/Users/asedmak/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/Younise_%20Bashir%20PhD%20Thesis.docx%23_bookmark147
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a)  

b)  

Fig. 15. Finite element mesh, a) crack in WM with enlarged mesh around the crack tip, 

b) crack in HAZ [52]. 

More detailed analysis is given in [52], including verification of FEM results by 

comparing with experimental ones, using plots of crack mouth opening displacement 

(CMOD) versus force (F), as well as the effects of heterogeneity and constraint on ductile 

crack initiation and propagation. Here attention is focused only on crack growth, i.e. J-R 

curves.  

The crack growth (∆a) has been simulated by tracing the path of completely 

damaged elements, shown in Fig. 16. This pattern is also visible in Fig. 17, where plastic 

zones at both crack tips are shown. Crack growth has been estimated by multiplying the 

original length of an element (lc) with the number of completely damaged elements. The 

element is assumed to be completely damaged when the void volume fraction at final 

failure fF is reached according to the relation f
F 

=0.15+f
0
. Then, the corresponding value 

of J-integral is calculated to construct crack growth resistance curves, Figure 18. One 

should notice good agreement between experimental and numerical results if the mesh 

size is taken following recommendations given in [52], i.e. if the size of element lc is 

similar to the average value of mean free path λ. 

file:///C:/Users/asedmak/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/Younise_%20Bashir%20PhD%20Thesis.docx%23_bookmark251
file:///C:/Users/asedmak/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloads/Younise_%20Bashir%20PhD%20Thesis.docx%23_bookmark253
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a)   

b)  

Fig. 16. Distribution of void volume fraction for SENB specimen with the crack in: a) 

WM, b) FGHAZ [52]. 

 

a)    b)  

Fig. 17. Plastic strain zone size at the onset of crack growth for SENB specimens with 

the crack in: (a) HAZ, (b) WM. 
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Fig. 18. Experimental and numerical J-R curves obtained from SENB specimen with the 

crack in a) WM, b) FGHAZ. 
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Conclusion 

Based on the results presented in this paper, one can conclude that 

micromechanical modelling presents a powerful tool in ever-increasing efforts to simulate 

ductile fracture under static load. It is not only theoretically well-developed but also the 

practical technique of modelling complex problems, such as crack initiation and growth 

in welded joints.  

In respect to the material used in this research, i.e. HSLA steel welded joints, good 

agreement between experimental and numerical results has been obtained if the size of 

the element is similar to the average value of mean free path, both for two- and three-

dimensional problem. This phenomenon needs further elaboration. 
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