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Tolerance of modern resistors typically ranges from 0.1% to 1%. From the 
probabilstic viewpoint, this is taken to mean that the corresponding 
resistance can be treated as a random variable, with an appropriate 
probability density function (PDF). We derive an expression for the PDF 
of a two-resistor voltage divider's transfer ratio, when the resistances in 
the divider are assigned uniform distributions. Plots of the obtained 
analytical expression, for various combinations of nominal resistances and 
tolerances of the two resistors, are compared to those produced by 
numerical (Monte Carlo) simulations. The asymmetrical character of the 
obtained resultant PDF, caused by non-linearity of the divider's circuit 
function, implies that the nominal, the mean and the most probable value 
of the divider's ratio can all differ. For normally distributed resistances in 
the two-resistor divider, analytical approach becomes complex, while 
Monte Carlo simulations readily provide the plots of voltage ratio PDFs 
and calculate the values of their parameters. 
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1. INTRODUCTION 
 

Manufacturing tolerance of an electrical component is 
the limit of unintended deviation from a nominal value 
of the component's characteristic quantity. Thick film 
resistors, when first manufactured, had resistance tole-
rances of 5%, but standard tolerances have improved to 
about 1%. Thin film resistors are usually specified with 
tolerances between 0.1 and 1%. Certain resistor types, 
such as ultra-precision foil resistors, have tolerances 
tighter than these, on the order of 0.005%. From the 
probabilistic viewpoint, this is taken to mean that the 
corresponding resistance can be treated as a random 
variable, with an appropriate probability density func-
tion (PDF) assigned to it [1]. 

A defining parameter of a resistive circuit, such as 
its equivalent resistance or transfer ratio, is generally a 
non-linear function of the resistances that make up the 
circuit, the only exception being the equivalent resis-
tance of a serial connection of resistors. Even if distri-
butions with symmetrical PDFs, such as uniform or 
normal, are adopted for the parameters of the compo-
nents the circuit comprises, non-linearity of the circuit 
function gives rise to asymmetry in the PDF of the 
circuit's parameter. The asymmetry of the PDF causes 
the nominal, the mean and the most probable value of 
the circuit parameter to differ [2]. 

This paper examines the voltage ratio of a resistive 
voltage divider from the probabilistic point of view. 
Percentage tolerances of the resistors constituting the 
divider are treated as maximum relative uncertainties 

that define the boundaries of PDFs assigned to them. 
For the case of a two-resistor divider with uniformly 
distributed resistances, an expression for the PDF of the 
divider's voltage transfer ratio is derived analytically 
and compared to plots produced by numerical (Monte 
Carlo) simulations. For normally distributed resistances, 
analytical approach becomes cumbersome, wherefore 
analysis of these circuits relies on simulations to plot 
voltage ratio PDFs and calculate the values of its 
parameters. 

Investigation conducted in this paper is akin to 
statistical tolerance analysis and propagation of uncer-
tainty in measurement. Voltage divider ratios are stu-
died using both statistical methods of random sampling 
and the theoretical approach of probability theory. 

 
2. PROBABILISTIC TREATMENT OF RESISTOR 

TOLERANCE MAIN HEADING 
 

The tolerance of a resistor expresses the maximum devi-
ation of its resistance from a nominal value. This devi-
ation is stochastic, and therefore the resistance can be 
treated as a random quantity, with a PDF that has non-
zero values within an interval defined by the tolerance. 
This interval encompasses the nominal value, and its 
bounds are obtained from percentage tolerance, which 
has the meaning of maximum relative uncertainty with 
regard to the nominal value [2,3,4,5]. 

If no additional information is available as to how 
the possible values of resistance are expected to be 
distributed inside the said interval, random resistance is 
assigned a uniform distribution, centred on the nominal 
value, with a half-width equal to the maximum relative 
uncertainty multiplied by the nominal value. Uniform 
distribution expresses equal probability for the resis-
tance to take any single value from the tolerance inter-
val. Denoting the nominal resistance R0, and the resistor 
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tolerance (i.e. maximum relative uncertainty) ∆R/R0, 
resistance R has a uniform distribution (R ~ Unif(R0 − 
∆R, R0 + ∆R)) with a PDF fR equal to: 
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If the lower and the upper bound of resistance are 
renamed R' = R0 − ∆R and R'' = R0 + ∆R, the distribution 
is R ~ Unif(R', R'') and its PDF: 

 
[ ]

[ ]

1 ', ''
'' '

  0   ', ''

R

R R R
R R

f

R R R

⎧ ∈⎪ −⎪= ⎨
⎪

∉⎪⎩

 (2) 

A different approach would be to assign a normal 
(Gaussian) distribution to the resistor, centered around 
the nominal resistance R0, with ∆R equal to triple 
standard uncertainty. In this case, resistance PDF is: 
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In order to bound possible values of resistance to a 
finite range, with lower and upper bounds being R' = R0 
− ∆R and R'' = R0 + ∆R, respectively, the so called 
truncated normal distribution is often used [1,6,7]. The 
PDF for the truncated distribution has to be renor-
malized over the [R', R''] range. With ∆R still equal to 
triple standard uncertainty, this is accomplished by 
dividing the right-hand side of equation (3) by: 
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where Φ(x) is the standard normal cumulative distri-
bution function (CDF): 
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After expressions for R' and R'' are inserted into (5) 
it becomes Φ(3) − Φ(−3) ≈ 0.9973. The PDF of the 
resistance distributed according to the truncated normal 
distribution is: 
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If a random variable X follows the truncated normal 
distribution we write X ~ TN(μ, σ2, a, b), where μ and σ 
are the expectation value and standard deviations of the 
original normal distribution, while a and b are the 
bounds of the range it is truncated to. For resistance, this 
becomes R ~ TN(R0, (∆R/3)2, R', R''), where ∆R = 3σ is 
assumed [20,21]. 

Considerations in this paper disregard resistance 
temperature drift, another important property commonly 
stated by resistor manufacturers. The whole analysis is 
performed under the assumption that the temperature of 
the resistor, resulting from self-heating and thermal 
interaction with environment, is constant for the time 
interval of interest. 

 
3. THEORETICAL PDF OF A TWO-RESISTOR VOL-

TAGE DIVIDER RATIO 
 

There are many roles that a voltage divider can assume 
in a larger electronic circuit. The most common use of a 
divider is for attenuating a voltage by a desired ratio. 
Another widespread use of voltage dividers is for arms 
in quarter-, half- and full-bridges, in which case at least 
one resistor in one of the two arms of the bridge is a 
sensor (e.g. a strain gauge, piezoresistor, thermoresistive 
sensor or photoresistor). Nominal values of the resistors 
in a bridge are usually set equal, for the purposes of 
maximum measuring sensitivity and temperature 
compensation. At the very least, the voltage ratios of the 
two arms in a bridge need to be equal for the bridge to 
be balanced and provide zero output voltage at zero 
value of the measured quantity. In the most general 
case, however, the two resistors in a divider differ in 
both nominal value and tolerance [1,2]. 

A scheme of a two-resistor voltage divider is shown 
in figure 1. Either a DC or an AC input voltage can be 
fed to the divider. The parameter characterizing a 
voltage divider circuit is the voltage ratio, defined as the 
output-to-input voltage ratio α = vo/vi. If the input 
voltage is assumed to be obtained from an ideal voltage 
source, with negligible internal resistance, voltage ratio 
for a two-resistor divider is: 

  1

1 2
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R R
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 (7) 

Expression (7) is a non-linear circuit function, 
dependent on two input quantities, namely the two 
resistances. It is strictly valid only when the divider is 
not loaded by other circuits connected to its output ter-
minals. This is practically achieved by making the 
output resistance of the divider Rout = R1R2 / (R1 + R2) 
significantly lower than the input resistance of the next 
stage circuit. If the next stage input resistance is com-
parable to Rout, for the purposes of the present analysis it 
will suffice to assume that its effect is included in both 
the nominal resistance and tolerance of resistor R1. 

 
Figure 1. Scheme of a two-resistor voltage divider  
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Following considerations in section 2, resistors in the 
voltage divider presented in figure 1 can be assigned eit-
her uniform distributions R1 ~ Unif(R1', R1'') and R2 ~ 
Unif(R2', R2''), or truncated normal distributions R1 ~ TN 
(R01, (∆R1/3)2, R1', R1'') and R2 ~ TN(R02, (∆R2/3)2, R2', 
R2''). 

Let us first examine the denominator of expression 
(3) for these two cases. PDF of the sum of two 
independent random variables is found as a convolution 
of their PDFs. For independent uniformly distributed 
resistances R1 and R2, their sum R1 + R2 has either a 
trapezoidal or a triangular PDF, depending on the 
widths of the two uniform distributions [1]. The sum of 
two independent normally distributed resistances R1 ~ 
N(R01, (∆R1/3)2) and R2 ~ N(R02, (∆R2/3)2) is also a 
normal random variable (R1 + R2) ~ N(R01 + R02, 
(∆R1/3)2 + (∆R2/3)2). 

For uniformly distributed resistances, PDF of the 
voltage divider ratio α can be derived analytically in the 
following manner. An auxiliary variable β is introduced 
as β = R2, so that there is a scalar function relating 
random vectors (R1, R2) and (α, β), defined by the 
equations: 

 1
αβR

1 α
=

−
 (8) 

 2R β=  (9) 

The PDFs of R1 and R2 are:  
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where R1', R1'', R2' and R2'' are all positive. 
Assuming that resistances R1 and R2 are 

independent, the joint (bivariate) PDF of the (R1, R2) 
vector is equal to the product of marginal PDFs fR1 and 
fR2 given by equations (10) and (11): 
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  (12)  

The support of the joint PDF, i.e. the subregion of 
the R1-R2 domain where the function is not zero-valued, 
is indicated in equation (12). 

  Probability that the value of the random vector (R1, 
R2) falls within an elementary area dR1.dR2 in the R1-R2 
domain is equal to the probability that the value of the 
random vector (α, β) is within a corresponding ele-
mentary area dα.dβ in the α-β domain. When switching 
from one set of coordinates to another, elementary areas 
in the two domains are related through the Jacobian 
determinant as: 

 1 2dR dR dαdβJ=  (13) 
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The said equality of probabilities, expressed through 
joint probability densities of the two random vectors, gives: 

 (α,β) (R ,R ) 1 21 2f dαdβ f dR dR=  (15) 

Using equations (12), (14), and (15), the joint PDF 
of the (α, β) vector is obtained as: 
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The support of this joint PDF, i.e. the subregion of 
the α-β domain where f(α,β) ≠ 0, is defined by the 
following intervals: 
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The minimum and maximum values of α in expre-
ssion (17) can be obtained by inserting the limiting 
values of R1 and R2 into relation (7), considering that 
these limits (R1', R1'', R2' and R2'') are all positive. The 
strict derivation that follows will shortly yield the same 
result for these limits. Using equation (8), the range in 
relation (19) produces another interval that β has to be 
in for  f(α,β) to be non-zero: 
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The marginal PDF of the voltage ratio fα is obtained 
by integrating the joint PDF f(α,β) with respect to β over 
all possible values, i.e. from −∞ to +∞: 

 ( )α,β dβf fα
+∞

−∞
= ∫  (21) 

The solution of this definite integral depends on the 
limiting values of β for which f(α,β) is non-zero, which 
again, according to relation (20), depend also on α. This 
means that fα is different for various ranges of α. β has to 
satisfy both (18) and (20) for f(α,β) to be non-zero. Which of 
these two intervals imposes a more stringent limit on the 
lower or upper bound of β depends on the value of α. The 
two ranges of β are presented on the β-versus-α graphs in 
figure 2. Limits expressed by (18) are shown as horizontal 
lines at β = R2' and β = R2'', while the limits in (20) are the 
two hyperbolas β = R1'(1/α − 1) and β = R1' '(1/α − 1). The 
upper and lower bounds to be used in the solution of 
integral (21) can now be deduced from the graph. 

The minimum possible vsalue of α, below which 
f(α,β) is zero, corresponds to the intersection of curves β = 
R2'' and β = R1'(1/α − 1), which gives αmin = R1'/(R1' + 
R2''). For values of α lower than this the two intervals of 
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a) 

a)  
b) 

Figure 2. Graphs showing the limiting values of β for which f(α,β) is non-zero in various ranges of α, for the two distinct cases: 
a) R1''/(R1'' + R2'') < R1'/(R1' + R2') and b) R1''/(R1'' + R2'') > R1'/(R1' + R2'). Thick double-arrow vertical lines denote the upper and 
lower bound for β in specific ranges of α.

β do not overlap, the upper bound of one is lower than 
the lower bound of the other, and hence f(α,β) = 0. By 
the same reasoning, maximum value of α above which 
f(α,β) = 0 is at the section of curves β = R2' and β = 
R1''(1/α − 1), which yields αmax = R1''/(R1'' + R2'). 

There are two distinct cases that may arise, one for 
which R1''/(R1'' + R2'') < R1'/(R1' + R2'), shown in 
figure 2.a), and another for which the opposite holds, 
presented in figure 2.b). In each case, the solution of 
integral (21) has five different formats in five adjacent 
ranges of α. A general solution to (21) is: 
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where βupper and βlower are the upper and lower bound 
for β in any specific range of α, denoted by thick 
double-arrow vertical lines in figures 2.a) and 2.b). 

The final solution for the PDF of α when resis-
tances are uniformly distributed becomes (23). 
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a)  

b)  
Figure 3. Plots for dividers whose resistors have equal tolerances and uniformly distributed resistances. 

a) Volage ratio PDFs detemined from the analytical expression (23) for dividers with ΔR1/R01 = ΔR2/R02 = 50%. The central plot 
is for a divider with R01 = R02 = 100 Ω (nominal ratio of α0 = 0.5), the left plot for R01 = 20 Ω, R02 = 80 Ω (α0 = 0.2), and the right ne 
for R01 = 70 Ω, R02 = 30 Ω (α0 = 0.7). Nominal (α0) and mean (α ) value of the voltage ratio for each divider are indicated by the 
solid and dashed vertical lines, respectively. Dotted vertical lines that correspond to most probable values (αm) are not visible 
because they overlap with solid lines representing the α0 values.  
b) Scaled relative frequency histograms of voltage ratio values for the previously considered dividers with α0 = 0.2 and α0 = 
0.7, determined by the Monte Carlo method with 108 trials. Bin sizes are 0.0001 and 0.01 for the left and the right histogram, 
respectively. Voltage ratio PDFs are approximated by the envelopes of the histograms. Analytical PDF curves for the two 
dividers are shown as dashed plots. 
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When X and Y are random variables with zero-mean 
normal distributions, their ratio X/Y has a Cauchy 
distribution [8,9,10,11]. However, when the two normal 
distributions have non-zero means, as in the case of 
normally distributed divider resistances, distribution of 
the ratio is much more complicated [12,13,14]. It is 
therefore more convenient to use numerical simulation 
in this case, assuming that resistances have truncated 
normal distributions [15,16,17,18,19]. 
 
4. PLOTS FOR A DIVIDER WITH UNIFORMLY 

DISTRIBUTED RESISTANCES 
 

Various cases of a two-resistor divider with uniformly 
distributed resistances are distinguished by the nominal 
resistances and the associated tolerances (maximum 
relative uncertainties). Both the nominal resistances of the 
two resistors and their tolerances can either be equal or 
different, with one being larger or smaller than the other. 

Plots in figure 3.a) present voltage ratio PDFs 
determined from the analytical expression (23) for divi-
ders whose resistors have equal tolerances ΔR1/R01 = 
ΔR2/R02 = 50%. The tolerances have been purposely 
exaggerated, compared to typical resistor tolerances 
found in practice (~ 1%), to make the effect of the circuit 
function's non-linearity (equation (7)) on the shape of the 
voltage ratio's PDF visible. The central plot is for a 
divider with R01 = R02 = 100 Ω (i.e. nominal ratio of α0 = 
0.5), the left plot for R01 = 20 Ω, R02 = 80 Ω (α0 = 0.2), 
and the right one for R01 = 70 Ω, R02 = 30 Ω (α0 = 0.7). 
Nominal (α0), mean ( ) and most probable (αm) value of 
the voltage ratio for each divider, calculated numerically 
from expression (23), are indicated by the solid, dashed, 
and dotted vertical lines, respectively. 

For a divider with equal resistances and equal tole-
rances (central plot in figure 3.a) the PDF of the ratio is 
symmetrical around the 0.5 value. Nominal, mean and 
most probable value of the ratio all coincide (α0 = α = 
αm = 0.5). The PDF has a shape of a curvilinear triangle, 
with sides that have one inflection point each. Dividers 
with nominal ratios other than 0.5 (side plots in figure 
3.a) have markedly asymmetrical voltage ratio PDFs, 
which results in a deviation of the mean value of the 
ratio from α0. In all three cases, however, PDFs are 
shaped as curvilinear triangles, with α0 = αm. Dotted 
vertical lines that correspond to values of αm are not 
visible because they overlap with solid lines 
representing the α0 values. The equality of resistor 
tolerances (ΔR1/R01 = ΔR2/R02) gives: 
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which reduces to: 
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Equation (26) shows that the limits of the central 
region in expression (23) are equal, which means that 
this segment of fα is missing, and this makes the PDFs 
curved-triangle. 

Histograms of voltage ratio values for the previously 
considered dividers with α0 = 0.2 and α0 = 0.7, 
determined by the Monte Carlo method (MCM), are 
shown in figure 3.b). MCM is a numerical simulation 
that uses randomly generated values of resistances to 
calculate the value of the voltage ratio. Values are 
repeatedly sampled from corresponding distributions, 
which in this case are uniform distributions over the 
intervals determined by resistor tolerances (R1 ~ 
Unif(R01 − ∆R1, R01 + ∆R1), R2 ~ Unif(R02 − ∆R2, R02 + 
∆R2)).  

In each trial, values of R1 and R2 are sampled 
independently, and the value of α calculated according 
to equation (7). The obtained values of the ratio are then 
tallied into a histogram with a specified interval width 
(i.e. bin size). For comparison with PDF plots, scaled 
relative frequency histograms are used, in which bar 
hight over each bin is obtained by dividing the relative 
frequency of that bin by the bin size. This kind of 
histogram is also known as the relative frequency 
density histogram. The total area of a scaled relative 
frequency histogram is unity. 

Histograms in figure 3.b) have each been produced 
with 108 trials. Voltage ratio PDFs are approximated by 
the envelopes of the histograms. The bin size of the left 
histogram is 0.0001. For the number of trials this high, 
and for bins this narrow, the histogram appears smooth 
and its envelope is easy to observe. Thin histogram bars 
cannot be delineated separately and instead form a joint 
gray area.  

To illustrate the discrete nature of histograms, a 
larger bin size of 0.01 has been chosen for the one on 
the right. This has resulted in a ragged upper edge of the 
histogram, which nevertheless gives a good idea about 
the shape of the PDF. Analytical PDF curves for the two 
dividers are shown again as dashed plots in figure 3.b). 
It is evident that there is excellent agreement between 
analytical plots and histogram envelopes. 

Plots in figure 4.a) show voltage ratio PDFs 
obtained from expression (23) for dividers whose 
resistor tolerances differ. Nominal resistances, and 
therefore also nominal voltage ratios, are the same as 
for the three dividers in figure 3.a) (α0 is 0.2, 0.5 and 
0.7 from left to right). The left plot is for a divider 
with R01 = 20 Ω, R02 = 80 Ω, ΔR1/R01 = 25%, and 
ΔR2/R02 = 50%. The central plot is for R01 = R02 = 100 
Ω, ΔR1/R01 = 50%, and ΔR2/R02 = 30%. The right plot 
is for R01 = 70 Ω, R02 = 30 Ω, ΔR1/R01 ≈ 14.3%, and 
ΔR2/R02 = 50%. Since equality (26) no longer holds, 
each of these PDFs has all five segments predicted by 
expression (23). Voltage ratio PDFs are all shaped as 
irregular curvilinear quadrilaterals, with marked 
asymmetry which stems from the non-linearity of the 
circuit function. The asymmetry of the PDFs gives rise 
to differences between nominal, mean and most 
probable values of the voltage ratio in all three 
dividers. The tolerances have again been exaggerated 
on purpose, to make the divergence of   and αm from α0 
visible. 
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a)

b) 
Figure 4. Plots for dividers whose resistors have different tolerances and uniformly distributed resistances. 

a) Voltage ratio PDFs determined from the analytical expression (23). The left plot is for a divider with R01 = 20 Ω, R02 = 80 Ω (α0 
= 0.2), ΔR1/R01 =25%, ΔR2/R02 = 50%. The central plot is for R01 = R02 = 100 Ω (α0 = 0.5), ΔR1/R01 =50%, ΔR2/R02 = 30%. The right 
plot is for R01 = 70 Ω, R02 = 30 Ω (α0 = 0.7), ΔR1/R01 ≈ 14.3%, ΔR2/R02 = 50%. Nominal (α0), mean (α ), and most probable (αm) 
value of the voltage ratio for each divider are indicated by the solid, dashed and dotted vertical lines, respectively. 
b) Scaled relative frequency histograms of voltage ratio values for the previously considered dividers with α0 = 0.2 and α0 = 
0.7, determined by the Monte Carlo method with 108 trials. Bin sizes are 0.001 for both histograms. Voltage ratio PDFs are 
approximated by the envelopes of the histograms.  

Analytical PDF curves for the two dividers are shown as dashed plots. 

Figure 4.b) shows scaled relative frequency his-
tograms of voltage ratio values for the previously con-
sidered dividers with α0 = 0.2 and α0 = 0.7, determined 
by the MCM. Histograms have each been produced with 
108 trials, and with a bin size of 0.001. Analytical PDF 
curves for the two dividers, shown as dashed plots, fit 
the envelopes of the histograms almost perfectly. 

For realistic resistor tolerances, on the order of 1%, 
voltage ratio PDFs are much narrower. Assuming uni-
formly distributed resistances, PDF plots appear less 
asymmetrical and with sides that seem straight, resem-
bling triangular and trapezoidal distributions. Diver-
gence of and αm from α0 is, nevertheless, still present, 
albeit to a lesser degree. 
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5. PLOTS FOR A DIVIDER WITH NORMALLY 
DISTRIBUTED RESISTANCES 

 
Figures 5 and 6 show the scaled relative frequency 
histograms of voltage ratios determined by the MCM 
for two dividers: one with R01 = 100 Ω (50% tolerance), 
R02 = 100 Ω (5% tolerance), and the other with R01 = 20 
Ω (10% tolerance), R02 = 100 Ω (50% tolerance). As 
suggested in section 2, the values of resistances have 
been sampled from truncated normal distributions. For 
the first of the two dividers these are R1 ~ TN(100, 
(50/3)2, 50, 150), R2 ~ TN(100, (5/3)2, 95, 105), and for 
the second R1 ~ TN(20, (2/3)2, 18, 22), R2 ~ TN(100, 

(50/3)2, 50, 150). Histograms have each been produced 
with 108 trials, with a bin size of 0.001. Smoothness of 
the histograms allows the shapes of voltage ratio PDFs, 
approximated by histogram envelopes, to be easily 
observed. Even though the overall shape of the PDFs is 
bell-like, similar to that of a normal distribution, there is 
also a marked asymmetry of PDFs in both cases. No-
minal, mean and most probable values of voltage ratios 
are indicated by the solid, dashed, and dotted vertical 
lines, respectively. Here too resistance tolerances have 
been overstated to make the asymmetry of the plots and 
the divergence of α  and αm from α0 noticeable.

 

 
Figure 5. Scaled relative frequency histogram of voltage ratio values for a two-resistor divider with normally distributed 
resistances (R1 ~ TN(100, (50/3)2, 50, 150), R2 ~ TN(100, (5/3)2, 95, 105)), determined by the Monte Carlo method with 108 trials. 
Bin size is 0.001. Nominal (α0), mean (α ), and most probable (αm) value of the voltage ratio are indicated by the solid, dashed 
and dotted vertical lines, respectively. 

 
Figure 6. Scaled relative frequency histogram of voltage ratio values for a two-resistor divider with normally distributed 
resistances (R1 ~ TN(20, (2/3)2, 18, 22), R2 ~ TN(100, (50/3)2, 50, 150)), determined by the Monte Carlo method with 108 trials. Bin 
size is 0.001. Nominal (α0), mean (α ) and most probable (αm) value of the voltage ratio are indicated by the solid, dashed and 
dotted vertical lines, respectively. 
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6. CONCLUSION 
 

Within the framework of mathematical theory of proba-
bility, the fact that resistors are manufactured with a 
certain tolerance is taken to mean that the corresponding 
resistance can be treated as a random variable, with a 
probability density function (PDF) assigned to it. An 
analytical expression for the PDF of the voltage ratio for 
a two-resistor divider with uniformly distributed resis-
tances has been derived in this paper. Plots of this 
theoretical PDF show excellent agreement with corres-
ponding results obtained by numerical (Monte Carlo) 
simulations, which use randomly generated values of 
resistances to calculate the value of the voltage ratio. 
This agreement suggests that Monte Carlo simulation 
can be used in cases when the resistances have 
distributions other than uniform, which are hard to treat 
analytically. Assuming that the resistances follow 
truncated normal distributions, Monte Carlo simulations 
have been used for obtaining plots of the voltage ratio 
PDF, which is represented by the envelope to the scaled 
histogram of voltage ratio values. 

Whether resistances are assigned uniform or normal 
distributions, the resulting PDF of the divider's voltage 
ratio is asymmetrical, with the exception of the case when 
resistances have equal nominal values and eqaul 
tolerances. This asymmetry is caused by the non-linearity 
of the divider's circuit function. It gives rise to a deviation 
of the mean and the most probable value from the nomi-
nal value of the voltage ratio. The degree of asymmetry 
of the resultant PDF and the difference between the 
nominal, mean and most probable values depend on spe-
cific nominal resistances, as well as on their tolerances. 
Relative deviation of the mean from the nominal value 
can generally be either positive or negative. 
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ПРОБАБИЛИСТИЧКА АНАЛИЗА УРЕЂАЈА ЗА 

РАЗДВАЈАЊЕ ОДНОСА НАПОНСКОГ 
РАЗДЕЛНИКА 

 
Д. Арбутина, А. Васић-Миловановић,  

У. Коваћевић 
 

Толеранција модерних отпорника обично варира од 
0.1% до 1 %. Са пробабилистичке тачке гледишта то 
значи да се одговарајући отпор може посматрати као 
случајна променљива са одговарајућом функцијом 
густине расподеле вероватноће (PDF). Добијен је из-
раз за PDF за однос преноса дво-отпорничког раздел-
ничког напона, када је отпорима у разделнику доде-
љена униформна расподела. Графикони добијени ана-
литичким изразима, за различите комбинације 
номиналних отпора и толеранције двају отпорника, 
упоређени су са онима добијеним нумеричким симу-
лацијама. Асиметрични карактер добијеног резултан-
тног PDF-а, узрокован нелинеарношћу функције раз-
делничког кола, имплицира да се номинална, средња 
и највероватнија вредност разделничког односа могу 
разликовати. За нормалну расподелу отпора у дво-
отпорничком разделнику, аналитички приступ пос-
таје сложен, док Монте Карло симулације лако дају 
графиконе напонских односа PDF-а и израчунавају 
вредности њихових параметара. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
 


