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In this paper a temperature control system for an automated educational class-
room is optimized with several advanced computationally intelligent methods. Con-
troller development and optimization has been based on developed and extensively 
tested mathematical and simulation model of the observed object. For the observed 
object cascade P-PI temperature controller has been designed and conventionally 
tuned. To improve performance and energy efficiency of the system, several meta-
heuristic optimizations of the controller have been attempted, namely genetic algo-
rithm optimization, simulated annealing optimization, particle swarm optimization 
and ant colony optimization. Efficiency of the best results obtained with proposed 
computationally intelligent optimization methods has been compared with conven-
tional controller tuning. Results presented in this paper demonstrate that heuristic 
optimization of advanced temperature controller can provide improved energy effi-
ciency along with other performance improvements and improvements regarding 
equipment wear. Not only that presented methodology provides for determination 
and tuning of the core controller, but it also allows that advanced control concepts 
such as anti-windup controller gain are optimized simultaneously, which is of sig-
nificant importance since interrelation of all control system parameters has im-
portant influence on the stability and performance of the system as a whole. Based 
on the results obtained, general conclusions are presented indicating that meta-
heuristic computationally intelligent optimization of heating, ventilation, and air 
conditioning control systems is a feasible concept with strong potential in provid-
ing improved performance, comfort and energy efficiency. 
Key words: thermal system, temperature control, controller optimization, 

computational intelligence 

Introduction 

It is very common nowadays that public buildings (business centres, schools, uni-
versity buildings, etc.) are equipped with several or even large number of different systems 
such as surveillance systems, energy management systems, air conditioning, security systems, 
fire protection systems, and even systems for protection against earthquakes or wind gusts. 
Those systems are nowadays realized as integral part of individual buildings and are common-
ly integrated at the level of harmonization of all functional aspects of executing global strate-
gy of the so called intelligent buildings [1]. 
–––––––––––––– 
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In order to have a rational energy consumption, one typical classroom in higher edu-
cation institution building has been equipped in such manner to ensure high comfort for users 
by controlling of heating, ventilation, and air conditioning (HVAC). This representative class-
room of 40 m2, used primarily for university lectures, has been constructed with three inner 
walls and one outer wall. The radiators preheat the classroom, while an air-handling unit 
(AHU) compensates heat loses. Objective of the control system is to control the temperature 
in the classroom by means of air from the AHU. Components taken into consideration for 
creating a mathematical model of the observed temperature control system are electrical pre 
heater, boiler heater, heat recovery unit, valve and room itself. All impacts for temperature 
changes have also been taken into consideration. 

In contemporary HVAC systems various control techniques are used, from classical to 
contemporary [2-4]. However, in commercial applications cascade proportional-integral-de-
rivative (PID) [5] controllers are largely dominant, where instead of a single conventional PID 
controller two cascade PID controllers are interconnected and used together in order to obtain 
superior dynamic performance.  

Regarding application of computational intelligence in HVAC systems control, an 
adaptive learning algorithm based on genetic algorithms (GA) for automatic tuning of PID con-
trollers applied to enhance the HVAC systems has been studied in [6]. The use of genetic algo-
rithms to tune fuzzy logic controllers dedicated to HVAC systems is presented in [7, 8]. Opti-
mization of control strategies using genetic algorithms in air conditioning system is treated in 
[9]. An overview of different control techniques in HVAC systems can be found in [4], while a 
variety of intelligent control methodologies applied to HVAC systems were reviewed in [10]. 

In this paper, computational intelligence is used for optimization of the temperature 
control system. For that purpose, a mathematical and simulation model have been developed, 
and several meta-heuristic methodologies have been considered, namely genetic optimization, 
simulated annealing, particle swarm optimization, and ant colony optimization.  

Obtained results have been compared with advanced manual tuning of the controller, 
which has been done on the basis of vast experience and theoretical recommendations. Sub- 
-problem of heating in winter regime is considered regarding control for which cascade P-PI 
controller has been designed. Optimal parameters of system have been searched in terms of 
energy efficiency, dynamic characteristics and equipment wear. 

Mathematical model of the system 

The design of successful controllers for HVAC systems primarily depends on the 
availability of proper dynamic models of the systems and mathematical equations that de-
scribe its behaviour [11-13]. The complexity of a HVAC system with distributed parameters, 
interactions, and multivariable quantities makes it difficult to obtain an exact mathematical 
model in order to improve control quality [14-16]. Therefore, mathematical modelling of the 
HVAC system and simulation of the presented model are considered first. 

The major components considered in the system can be divided in two groups: a 
zone model (classroom) and components of the HVAC system [17]. The functional schemat-
ics of the AHU with considered components is presented in fig. 1. Detailed mathematical de-
scriptions of every component are given further in this paper. 

First, mathematical model of all AHU components is given and then model of the 
classroom. HVAC system components that have been taken into consideration for system mod-
elling are: electrical preheater, water heater, recovery unit, mix valve and classroom itself [18].  
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Figure 1. Schematic representation of air 
conditioning system 

 
Mathematical description of the electrical preheater can be written: 

 1 1 1 0p p p grm c T mc T mc T Q+ = + 

   (1) 

where m1 is the mass of air in the preheater (GR1, fig. 1), cp – the specific heat capacity of the 
air, T1(t) – the temperature of the air after the preheater, T0(t) – the temperature of the outside 
air, ṁ – the mass flow of the air through the AHU, and grQ – the power of the electrical pre-
heater. 

Mathematical model of the heat recovery unit is based on assumption that the air 
flow through the AHU is constant. Hence, only the law of energy conservation is needed to 
find the mathematical model of the temperature changes through the heat recovery unit. From 
this law the following equations can be derived [11]: 

 r 2 1 2 r r wa 1( ) ( )p pm c T mc T T H A T T= − + −

  (2) 

 r wa wa r r wa 1(( ) )p p im c T mc T T H A T T= − + −

  (3) 

where mr is the mass of the air in the heat recovery unit, T2(t) – the temperature of the recu-
perated air, Ti(t) is temperature of the room air (returned air), Twa(t) – the temperature of the 
waste air, and HrAr is the resulting heat transmission number of heat recovery unit. 

By combining (2) and (3) it is obtained: 
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 (4) 

where T  is the second time derivative of the temperature T2(t). 
Mathematical model of the heating coil (GR2, fig. 1) describes the temperature 

change both in the water and the air passing through this component. The mathematical model 
is based on the assumption that both the airflow and the water flow through heating coil are 
constant. The following equation is dynamic heat balance for the air in the heating coil: 

 w0 w w w w0 w0 2( () )g g p i g gm c T m c T T H A T T= − + −

  (5) 

and the corresponding heat balance equation for the water is: 

 4 2 4 w 2( ) ( )vg p p g g om c T mc T T H A T T= − + −

  (6) 

where mg is the total mass of the heating coil (including water), mvg – the mass of air in the 
heating coil, ṁw – the mass flow of the water through coil, cpw – the specific heat capacity of 
water, cg – the resulting specific heat capacity of the heating coil, Two(t) – the water tempera-
ture from the coil exit, Twi(t) – the water temperature from the coil entrance, T3(t) – the tem-
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perature of air after heating coil, and HgAg – the resulting heat transmission number of the 
heating coil. 

By rearranging (1) it is obtained: 

 w w w w w w 2( )g g o g g p wo p i g gm c T H A m c T m c T H A T+ + = +

   (7) 

and further by combining (6) and (7):  
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Temperature of the supply air is controlled by the three port valve with continuous 
drive (Y3, fig. 1). The heat balance for the water in the three-way valve can be written: 

 w w(1 )i o cT x T xT= − +  (9) 

where x is the relative valve position and Tc – the central heating flow temperature. 
The classroom is an integral part of the higher education institution, and it is designed 

for teaching purposes of the area of 40 m2. One side of the classroom is exposed to an open 
space and other three sides are bounded with offices. The envelope of the building has been 
made of a porous brick with thickness of 200 mm. Windows are double glazed, thus the overall 
ratio of glass to the exterior walls is 50%, where the total area of exterior walls is 20 m2. 

Controlled variable is the room air temperature. It assumed that the air pressure is 
constant and the room air temperature field is homogenous. Disturbances affecting the tem-
perature are taken also into account, such as people, lights, walls and windows loses, etc. 
With these assumptions energy balance equation is: 

 4u u s s p d u u u s s o p
i i

z p z p

H A H A mc Q H A T H A T mc T
T T

m c m c
+ + + + +

+ =


 

  (10) 

where Ti is the current air temperature, HuAu and HsAs are the heat transfer through inner and 
outer walls, respectively, mz is the mass of air in the room, dQ  – the disturbances originating 
from lights, people, etc. and Tu – the temperature in areas surrounding room. 

Temperature controller concept and modelling 

Cascade control strategy 

Cascade control is used when there are several measurement signals and one control 
value. Cascade control is especially useful when there is a large time delay between the con-
trol signal and the output or for plants with large time constants. It is thus considered a good 
choice for control of temperature and humidity at the air systems. Cascade control is particu-
larly suitable in cases where it is desirable to control quickly the building, e. g. in a large hall 
that fills or empties with users in the short terms. Big thermal fluctuations are not desirable, 
thus due to the large volume of rooms in such cases, there is a small number of air exchanges. 
Control of these facilities is very difficult for the main reason that control system only works 
on fresh air.  
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In cascade control, there are two interconnected PID controllers, where the first one 
controls the input of the second PID controller. Outer PID controller controls the primary 
physical parameters such as water level, or speed. The other controller acts as a regulator of 
the inner loop, which reads the output from the controller on the outer feedback loop, that can 
receive changes that occur much faster, such as flow velocity and acceleration.  

It can be proven mathematically that the system responds faster and better when 
cascade PID controllers are used [1]. In addition, by means of the cascade controller a limita-
tion thermostat of the supply air temperature can be omitted. Therefore, in the considered 
HVAC system cascade PID controller has been applied. Figure 2 shows the structural differ-
ence between ordinary and cascade PID controller. 

 

 
Figure 2. (a) classical PI controller, (b) cascade P-PI controller 

The most common additional (inner) controller is PI controller which controls sup-
ply air temperature. The main (outer) controller, which controls temperature in the room 
space, is most often selected to be a simple P controller. Such control system is called P-PI 
cascade control system. Cascade control operates in such manner that in case of the occur-
rence of deviations of controlled values, they are not controlled directly but rather the desired 
value of the additional controller is changed instead. The main reason for applying cascade 
controller is faster internal feedback loop, which detects disturbances much faster than exter-
nal feedback. The result of such strategy is that it causes very quick action of the executive 
device.  

The equation of the outer (master) P controller is: 
 ( )uz un p un p z iT T K T K T Tε= + = + −  (11) 

where Tuz is the desired inlet air temperature i. e. desired value for inner (slave) controller,  
Ti – the room air temperature, and Tz – the desired value of room temperature.  

With previous elaborations, energy balance equation is: 

 ( )z v i v sz sz uz uz p p i v um c T mc K A K A K A T mc T+ + + + = +

   

 0  sz sz uz uz uz p p pK A T K A T K A T Z+ + + +  (12) 

where mz is the mass of the air in the classroom, Ti(t) – the current temperature of the room 
air, KuzAuz – the resulting heat transmission number of the inner walls, KszAsz – the resulting 
heat transmission number of the outside wall, KpAp – the the resulting heat transmission num-
ber of the floor, Tu(t) – the supply air temperature, Tus(t) – the temperature of the surrounding 
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rooms, Tp(t) – the temperature of the floor, and Z(t) – the disturbance which is caused by peo-
ple inside the classroom, lights, etc. 

Inner (slave) PI controller is described with: 

 3d ,p i uzY K K t T Tε ε ε= + = −∫  (13) 

where Υ is the control voltage for three port valve. 

Anti-windup control 

Problem of switching control modes from one to another mode arises in situations 
when the practical requirements of the management of the process have to be taken into ac-
count as well as physical limitations.  

For example, when actuator has been saturated i. e. the regulator valve is completely 
opened (or closed), controller should stop sending control signals to the valve because it can-
not deliver to the process more than the maximum value which is achieved. If this is not done, 
the calculated value of the controller output will continue to grow. The controller/regulator 
sends a signal to the process that constantly increases (or decreases), while the process re-
ceives the signal that is constant, because the valve is in saturation. That occurrence is called 
reset windup and has to be stopped. There are a several different methods which are used to 
remove windup, and are called anti-windup strategies [19].  

Anti-windup control strategy has been implemented in observed system, for the 
mentioned reason. That further complicates controller tuning since anti-windup gain needs to 
be set along with other cascade controller gains. Nevertheless, computationally intelligent op-
timization allows that anti-windup gain is adjusted along with other controller parameters, 
which is important step towards complete automated tuning of the controller in such manner 
that wider set of demands is fulfilled. 

Simulation of system behaviour and  
initial controller tuning 

The components of thermal systems described in the previous section were used to 
build simulation model [20], which is shown in fig. 3. 

 
Figure 3. Simulation model 
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Developed mathematical and simulation models have been used to verify parameters 
of the real system, for initial suboptimal setting of the controller and finally for the optimiza-
tion of all controller parameters. It could also be used to further develop and test others poten-
tially more sophisticated control algorithms and for further development of the model as to 
include more working regimes. 

Parameters that have been adopted in the simulation model are summarized in tab. 1. 
Parameters of the pre-heater, heat recovery unit and heater have been defined by the manufac-
turer, while the other have been calculated by constructive characteristics of the room.  

Table 1. Parameters adopted in the simulation model  

Characteristics of the 
pre-heater 

m1 = 0.37 
cv = 1012 

T0 = 273+5 
ṁ = 1.33/4 

Mass of air in the preheater [kg] 
Specific heat capacity of air [JkgK–1] 

Input temperature of air chamber (output temp.) [K] 
Mass flow of air through air chamber (max. 1.33 kg/s) 

Heat recovery unit 
parameters 

KrAr = 337 
 

mr = 1 

Coefficient of through passage×surface of heat recovery 
unit [WK–1]  

Air mass in heat recovery unit (assumption) 

Heater parameters 

KgAg = 2.5×80 
mvg = 0.5 
mw = 2 
mc = 5 

mg = mw + mc  
cw = 4181.3  

cc = 385 
cg = (mw×cw+mc×cc)/mg 

ṁw = 0.311 

Coefficient of through passage×surface of heater [WK–1] 
Mass of air into the heater 
Water mass into the heater 
Mass of the heater (metal) 

Mass of heater including mass of water 
Specific heat capacity of water 

Specific heat capacity of heater (just metal) 
Specific heat capacity of heater including water 
Mass flow of water through the heater [kgs–1] 

Room parameters 

KszAsz = 86 
 

KuzAuz = 75 
 

KpAp = 78 
mz = 226 
Tuz = 291 
Tp = 283 

Coefficient of through passage×surface of  
outer barrier/wall [WK–1]  

Coefficient of through passage×surface of  
inner barrier/wall [WK–1] 

Coefficient of through passage×surface of floor [WK–1] 
Mass of air in the room [kg] 

Temperature in surrounding rooms [K] 
Floor temperature [K] 

Controller parameters 

a = ṁcv + KuzAuz + 
KszAsz + KpAp   

b = ṁcv 
q = KuzAuzTuz + KszAszT0 

+ KpApTp   
Tswitch = 2500 

Coefficients for calculation depending of added air from 
desired temperature of room, which have also been used for 

initial setup of P operation of “master" regulator 
 
 

Moment when PID controller is switched on 

Based on previous elaboration, vast experience with similar systems and also 
based on extensive numerical simulation experiments with the developed mathematical 
model, initial parameters of P-PI controller have been selected. Best results have been ob-
tained for the values of parameters Kp = 7 for proportional P gain of P master controller, and 
Kp = 0.5 K–1, and Ki = 0.01 K–1s–1 for proportional and integral gains of PI (slave) of regula-
tor. Figure 4. shows time changes of desired (reference) temperature in the classroom and 
response of system with cascade P-PI controller. Control signal of cascade regulator is 
shown in fig. 5. 
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Figure 4. System response with experimentally 
suboptimally tuned cascade control 

 
Figure 5. Control signal of cascade controller 
 

Computationally intelligent optimization  
of temperature controller  

As it has been demonstrated in this case and well documented in everyday practice 
reports, tuning of PID controllers is often difficult and long lasting procedure, while widely 
accepted Ziegler-Nichols procedure does not guarantee optimal closed loop performance 
which makes its application being fairly limited. Therefore, the computationally intelligent 
meta-heuristic optimization techniques have been proposed as an alternative mean of tuning 
HVAC controllers, providing simple and robust approach, so it was used here as an alterna-
tive to the experimental controller parameter adjustment.  

Offline controller optimization has been performed, as it is presented in fig. 6. To 
perform computationally intelligent controller optimization, fitness function has been defined 
which minimizes cumulative absolute controller error: 

 
1 1

N N

i i i
i i

J e r y
= =

= = −∑ ∑  (14) 

where r is the reference variable – desired room temperature, y – the controlled output – 
measured room temperature, e – the control error, and N – the number of patterns.  

Several alternative meta-heuristic methodologies have been considered: genetic al-
gorithms, simulated annealing, particle swarm optimization and ant colony optimization. 

Genetic algorithms (GA) [21] are one of the evolutionary computational intelligence 
techniques, inspired by Darwin’s theory of biological evolution. GA provide solutions using 
randomly generated bit strings (chromosomes) for different types of problems, searching the 
most suitable among chromosomes that make the population in the potential solutions space. 
Genetic optimization is an alternative to the traditional optimal search approaches which 
make difficult finding the global optimum for nonlinear and multi-modal optimization prob-
lems. Thus, GA have been successful in solving combinatorial problems as well as in many 
control applications such as parameter identification and control structure design. 

Simulated annealing (SA) [22] is a probabilistic technique for approximating the 
global optimum of a given function. It is an optimization method similar to the physical pro-
cess of heating up a solid until it melts, followed by cooling it down until it crystallizes into a 
perfect lattice. Specifically, it is a meta-heuristic method for approximate global optimization 
in a large search space. It is often used when the search space is discrete (e. g., all tours that 
visit a given set of cities). As with other optimization methods used, with the SA the solutions 
were chosen randomly and evaluated by the same fitness function as in the case of the GA al-
gorithm and adopted if the fitness of the new solution was less than the previous one. 
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Figure 6. Computationally intelligent optimization of cascade temperature P-PI controller 

Particle swarm optimization (PSO) [23] shares many similarities with evolutionary 
computation techniques such as GA. The technique is derived from research on swarms such 
as bird flocks and fish schools. System is initialized with a population of random solutions 
and searches for optima by updating generations. However, unlike GA, PSO has no evolution 
operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly 
through the problem space by following the current optimum particles. Each particle keeps 
track of its coordinates in the problem space which are associated with the best solution (fit-
ness) that has been achieved so far. The fitness value is also stored. Best fitness value is taken 
as final solution. 

Ant colony optimization (ACO) [24] is suited for finding solutions to different opti-
mization problems. Colony of artificial ants co-operates to find good solutions, which are an 
emergent property of the ant’s co-operative interaction. Based on their similarities with ant 
colonies in nature, ant algorithms are adaptive and robust and can be applied to different ver-
sions of the same problem as well as to different optimization problems. The main traits of ar-
tificial ants are taken from their natural model. These main traits are that artificial ants exist in 
colonies of co-operating individuals, they communicate indirectly by depositing pheromone, 
they use a sequence of local moves to find the shortest path from a starting position to a desti-
nation point, they apply a stochastic decision policy using local information only to find the 
best solution, etc. Since the optimal solution can only be found through the global co-
operation of all the ants in a colony, it is an emergent result of such co-operation.  

In considered case, performances of all computationally intelligent meta-heuristic 
methods have been dependent on selection of parameters, which have been carefully selected 
by performing several consecutive simulation experiments for each of them. For example, for 
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applied genetic algorithm with real coding population of 50 has been selected and elitism of 5, 
while range of gains i. e. search space has been determined on the basis of experience.  

 

Figure 7. Comparison of performance of 
HVAC control system with 
experimentally suboptimally tuned 
parameters and after computationally 
intelligent optimisation, where Kprn is 
the proportional gain of master 
controller, Kps – proportional gain of 
slave controller, and Kis – integral gain 
of slave controller 

Also, scattered crossover function has been applied and all individuals except for 
elite has been subject to adaptive feasible mutation. Individuals have been randomly selected 
by roulette wheel selection. Genetic algorithm has demonstrated good convergence with se-
lected parameters.  

By comparing the results of all applied methods, each of them executed in several 
consecutive runs over the same search space, the overall best solution has been selected. All 
of the optimization methods were well suited for the problem and managed to improve initial 
tuning, but there were no significant differences among them regarding suitability for this par-
ticular problem. Values of proportional gains of outer (master) and inner (slave) controllers 
and value of integral gain of slave controller before computationally intelligent optimization 
(initial suboptimal experimentally tuned values) and values obtained as best outcome of sev-
eral advanced optimization techniques have been presented in tab. 2. Also, corresponding val-
ues of fitness function have been shown representing cumulative absolute error.  

Table 2. Controller parameters before and after computationally intelligent optimization  

 KP  
master 

KP  
slave [K–1] 

KI  
slave [K–1s–1] 

Cumulative absolute  
error (fitness) 

Initial (experimentally, suboptimal)  7.0 0.5 0.01  3034 

Computationally intelligent optimized 17.0 0.61  0.031 2778 

Comparison of performance of initially tuned control system, which has been ob-
tained by experimental-simulation tuning by using expert experience on the performance of 
similar systems, and performance of optimized system by computationally intelligent meth-
odologies, is presented in fig. 7. Peak performance presented in fig. 7 by parameters listed in 
tab. 2 has been obtained by GA methodology, while all other computationally intelligent 
methods obtained similar but slightly worse results. It is easily noticeable that although initial-
ly suboptimally tuned system obtains very good performance, computationally optimized con-
trollers demonstrated clearly improved performance. It is worth mentioning that anti-windup 
gain has been optimized along with main gains of cascade controller, and set to optimized 
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value of 0.1. The behaviour of all controllers, after the adjustment and optimisation, have 
been additionally validated in order to be compliant with appropriate norms [25]. 

Conclusions  

Mathematical model of air conditioning system in winter regime of a classroom is 
presented, which was used as a basis to develop and validate reliable simulation model. On 
the basis of theoretical recommendations cascade temperature P-PI controller has been devel-
oped with anti windup component. Initial controller parameters have been selected using care-
ful experimental tuning process and by exploiting vast experience in HVAC controller ad-
justments, as to obtain good dynamic characteristics, settling time and precision, and with aim 
to provide control signal that provides minimal energy consumption. Obtained result has been 
very good and its further improvement was a challenging task. 

Basic conclusion that can be drawn from the results is that application of advanced 
computationally intelligent optimization provided controller gains that ensure superior per-
formance which also leads to energy efficiency increase, while at the same time component 
wear is reduced since aperiodic response without overshoot is provided with remark that fault 
detection could also be researched [26]. 

It is worth mentioning that computationally intelligent optimization is capable of 
simultaneous attainment of other goals since optimization criterion could be almost arbitrary 
complex, and could include multicriteria optimization. Results obtained here indicate that 
computationally intelligent optimization is a very feasible concept for HVAC controller opti-
mization, even when requirements are demanding and initial tuning is extremely good, while 
on the other hand in our case several advanced meta-heuristic optimization methods (SA, 
PSO, ACO) did not demonstrated significant difference in comparison to performance refer-
ent real coded genetic algorithms. 
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