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Microcalcifications and masses, as breast tissue anomalies (deviations from observed back-
ground regularity), may be viewed as statistically rare occurrences in a mammogram image.
After recognizing their principal common features - bright image parts not belonging to the
surrounding tissue, with significant local contrast just around the edges - several modifica-
tions to multifractal image analysis have been introduced. Starting from a mammogram im-
age, the proposed method creates corresponding multifractal images. Additional post-pro-
cessing, based on mathematical morphology, refines the procedure by selecting and outlining
only regions with possible microcalcifications and masses. The proposed method was tested
through referent mammograms from the MiniMIAS database. In all cases involving the said
database, the method has successfully enhanced declared anomalies: microcalcifications and
masses. The results obtained have shown that the described procedure may provide visual as-
sistance to radiologists in clinical mammogram examinations or be used as a preprocessing
step for further mammogram processing, such as segmentation, classification, and automatic
detection of suspected bright breast tissue lesions.
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INTRODUCTION

Breast cancer isthemost frequent malignant dis-
ease in women in Europe causing one in six of all
deaths from cancers in the female population [1]. In
the United States, according to the American Cancer
Society reports [2], only lung cancer accounts for
more cancer deaths in women.

Mammography is currently the most effective
tool for the detection of breast cancer before clinical
symptoms appear, since it offers high sensitivity and
high specificity at low cost [2-5]. The older technique,
screen-film mammography, records the breast image
onaconventional X-ray film. After theacquisition, ra-
diologists examine the X-ray films. The newest tech-
nology, full-field digital mammography, comprisesdi-
rect conversion of the radiology image to the digital
image without using the film. A clinica study involv-
ing 387 women and 1548 mammograms, has shown
that digital mammography is superior both in terms of
image quality and radiation dose over screen-film
mammography [6].
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Amongst others, two important radiological fea-
tures in a mammogram are microcalcifications and
masses as common early signs of possible breast can-
cer [2, 3]. Dueto ahigher attenuation of X-raysinrela
tion to their surrounding, microcalcifications and
masses are perceived as bright mammogram parts.
Microcalcifications are small mineral deposits in the
breast tissue[7]. Duetotheir small size(from50umto
1.0 mm, typicaly 0.3 mm) [3, 7] the detection of
microcalcificationsisadifficult task [8, 9]. Masses or
nodul esare breast tissue anomaliescomposed of dense
breast tissue [9]. In order to properly characterize a
mass, radiologists generally rely on its contour [9].
The main reasons that hinder the detection of masses
are changing shapes, size and density; poor contrast
between masses and surrounding tissue; background
tissuewhichisnot uniform and often has similar char-
acteristics to the masses [7, 9].

Mammograms are often considered as medical
images with poor contrast. Conventional contrast en-
hancement algorithms and thresholding [10] are not
quite appropriate methods since they globally change
the entireimage, not solely the particular details of in-
terest. Themain premiseinthisstudy isthat humantis-
sue, as many natural structures, is characterized by a
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high degree of self-similarity, also referred to as
fractality [11, 12]. Inthiscontext, self-similarity refers
toimagesthat have several partslooking asthe whole
image. The tissue anomalies are then considered as
structural “defects’, i. e., asdeviationsfrom the global
regularity of the background [12, 13].

A method for the segmentetion of microcacifications
only, using properly adapted conventiond multifractd im-
ageandlyss isproposed in [13]. Compared to other fractal
methodsthat consider theirregularities of the measure only
onaglobd scae, the procedures dways ending with asn-
glevaueor spectrum per analyzed image, thismethod con-
Sders each point of the image separately.

In this manner, one can establish a one-by-one
correspondence between each image pixel and appro-
priate multifractal parameters. This also means that,
after applying the method [13], one can find and seg-
ment only those image pixelswith particul ar values of
the multifractal exponent (usually denoted as o) and
its global distribution, commonly denoted as f().
Therefore, the multifractal analysis may be performed
inaninverseway: find partsin the image having par-
ticular valuesof a or f(a). Thiskind of processing may
be defined as inverse multifractal analysis. The
method aso has the advantage of not being too
computationally complex or too demanding in sam-
pling statistics. The efficiency and usefulness of this
approach in image segmentation was recognized by
Levy Vehel [12, 14, 15], from INRIA, France, and a
corresponding program was embedded in the
well-known Fraclab software [14].

The author has also proposed a method for the
segmentation of clusters with microcalcifications
based on modern mathematical morphology [8, 16].
Both approaches, multifractal and morphology, are
presented in brief in [16] and certain comparisons be-
tween the methods considered.

In this paper, the basic multifractal algorithmfor
the segmentation of microcalcifications only [13] is
extended to include the visual enhancement of masses
too. The basic premise is that masses, as well as
microcalcifications, may be considered as defects or
rareanomaliesof thebreast tissue. An additional simi-
larity is that both types of anomalies are observed as
parts of mammograms brighter than their surround-
ingsdueto the higher attenuation of X-rays. Addition-
ally, by introducing noisefiltering at the preprocessing
level and proper morphological operations at the
post-processing level, the visua enhancement of
masses is improved. The newly proposed method
could beused for the visual enhancement and segmen-
tation of both masses and microcalcifications. The ef-
ficiency of the proposed method has been tested
through referent mammograms from the mammo-
graphic image analysis society (MiniMIAYS) referent
database[17] and someresultspresentedin thiswork.

METHOD DESCRIPTION
Multifractal image analysis basics

Artificidly  generated fractd  structures
(monofractals) are described by the samefracta dimen-
sion in whole scales [11, 18]. Natura objects also ex-
hibit self-similarity, but only in a statistical sense. The
fractal dimension of these structures(mulltifractals) var-
ies with the observed scale [18-22].

The quantitative description of a multifractal
property can be derived in several ways. Due to its
simplicity, the box-counting method is very often
used. Let the structure Sbe divided into non-overlap-
ping boxes S of size¢ suchthat S=;S. Each S box is
characterized by a specific measure, 1(S), and the
boxesmay beassumed asmeasuredomains. Thequan-
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isknown asthe coarse Hoelder exponent of the subset
S. If ¢ tendsto zero, the coarse Hoelder exponent ap-
proaches the limiting value a at the observed point
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Parameter « describesthe local regularity of the
structure. In the structure as a whole there are many
points with the same value of parameter o. The next
step isto find the distribution of «, i. e. determine the
function f(a), known as the multifractal (MF) spec-
trum. Function f(«) describes the global regularity of
the observed structure[11, 18]. The multifractal spec-
trum can be viewed as the fractal dimension over the

subsets characterized by o
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where, N;(«;) isthe number of boxes S containing the
particular value of «;. From expression (3) one can ob-
tain the limiting value

f(@)=lin{ f, (@) @

TheMF spectrumf(e) calculated asaboveisalso
known as the Hausdorff dimension of the a distribu-
tion.

Upon finding the values of « one may create an
“a-image” —amatrix of thesamedimensionsasanini-
tial image, but comprised of values of «(m, n) with
one-by-one correspondence to the image pixels. This
means that, at position (m, n), an “a-image” has the
valueof a(m, n) instead of the original pixel gray level.
From this matrix (or image), the MF spectrum f(«),
asoin matrix form, f (m, n) =f [a(m, n)], can be esti-
mated. First, continuos exponentsare discretized into
Rvalues of «,

o =Qpin +(r-DAa,, r=12...,R (59
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In[13] theuniform division is used with

Aa, =Aa _ (e ~in ) (5b)
R

If the actual valueof « is within the subranger,
i.e,if a;<a<(a;+Aa),itisreplaced by «,. Such an
a-imageiscovered by aregular grid of boxeswithin-
teger box sizesj =1, 2,... Theboxescontaining at | east
onevalue of a, are counted, giving the number Nj(ct,).
Boxes of different sizes are recursively taken into ac-
count and corresponding Hausdorff measures calcu-
lated for each image pixel according to expression (3)

fila)=—— 1" j=12.. (9

Finally, fromaset of discrete pointsinthebi-log-
arithmic diagram of In Nj(at;) vs. —Inj, the MF spec-
trum f(«r) isestimated from linear regression. The pro-
cedure is repeated for the entire a-matrix, thus
obtaining the “f(a)-image” — a matrix filled by
pixel-wise values of f(«). Asin the “a-image’, in an
“f(a)-image” at position (m, n), thef[a (m, n)] valueis
estimated instead of the pixel gray level [13].

Different measures u;(m, n), may be used for es-
timating . Some of the most frequently used mea-
suresare[12]

Maximum:  y;(mn)= (krw?gg alk,) (79

Minimum:  g; (mn) = (kT;QQg(k, 1) (7b)

Sum: i (mn)= > g(k,1) (70)
(k,he

wherei isthe size of ameasure domain around the ob-
served pixel (m, n), Qisaset of al pixels(k,|) withina
measure domain, and g(k, |) isagrayscale intensity at
point (k, I).

M odification of multifractal
analysisto visual enhancement of
microcalcifications and masses

Microcalcifications and masses, due to a higher
attenuation of X-rays than the immediate background
tissue, correspond to image parts brighter than their
surrounding [3, 23]. Microcalcifications are seen as
small bright spotsnot bel onging to the background tis-
sue. In geometrica interpretation, they are singular
sets of points. Sharp changes in the gray-level appear
just around the edges of microcalcifications [24, 25].
Masses are bright and relatively smooth surfacesin a
mammogram, significantly larger than microcal-
cifications. Masses are quite subtle, often occur inthe
dense areas of the breast tissue, with smoother bound-

ariesthan microcalcifications, and in different shapes:
circumscribed, speculated (or stellate), lobulated or
ill-defined [23, 26].

With the common features of micro-
calcifications and massesin mind, i. e.,: (1) that they
are image parts brighter than their immediate sur-
roundings, (2) not bel onging to the background tissue
(rare eventsin a statistical sense), with (3) significant
local contrast just around their edges, exhibiting (4)
different sizes and shapes, we can infer the guidelines
for the adaptation of multifractal analysis targeted to
the visual enhancement of microcalcifications and
masses. From multifractal images, « and f(«), upon
once established one-by-one pixel-wise correspon-
dence with the original image, one should be able to
select possible masses and microcalcifications as ob-
jects made of pixels having both high « (high local
contrast) and low f(a) (rare events) values.

The capacity measure* minimum”, relation 7(b),
applied to an inverted (negative) mammogram image,
iswell suited to emphasizelocal imageregularity [13].
Namely, in a negative image, bright lesions (possible
massesand microcal cifications) migratetothedark re-
gion where the local contrast, described by the ratio
Aln ulAu,isvery high. Inthisway, one can obtainthe
effect of the “logarithmic amplifier” which strongly
enhances just the small gray-level variations in the
dark zone of the inverted image (i. e., bright zone of
the original image). From the plot of In g, fig. 1, itis
evident that local contrast expressed by Aln u/Au is
very high in the dark-level domain (low ) and very
low in the light-level domain (high w), which is di-
rectly oppositeto the need of enhancing bright details.
However, if one considers the inverted image, de-
scribed as a complement of the original image, bright
anomalies (possible masses and microcal cifications)
will migrate to the dark region under the strong influ-
ence of the “logarithmic amplifier”. This procedure
does not reduce the sensitivity within regions in the
middle gray, while in the bright zone of the inverted
image (dark zone of an original image), the contrast
between anomalies and surrounding tissueisnaturally
high enough.

When enhancing a particular object, better re-
sultsareobtained if the shape of themeasuredomainis
well adapted to the object. Taking into consideration
the most common shape of masses and micro-
calcifications, one can find that the disk-shaped do-
main iswell suited [7, 10, 13].

The multifractal spectrum is determined by the
box-counting method according to (6). Since the goal
isto favor singularities, i. e., high frequency compo-
nentsinthea distribution, itis preferable to use small
boxessizedj =1toj =16 a-pixels[13]. If thebox size
islarge enough, the number of non-empty boxestends
to saturation: it may remain unchanged although the
box sizes increase. Further on, points on the bi-loga-
rithmic plot In Nj(a) vs. — Inj stay on the horizontal
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Figure 1. Plot of In pillustratesthe effect of the
“logarithmic amplifier” in the dark-level domain

line, significantly reducing theresolution of calcul ated
f(a) values. To the contrary, by using smaller boxes,
the number of non-empty boxes significantly varies
with the changes in the dimensions of the box, pre-
venting saturation and enabling a high resolution of
estimated f(«) values[13].

The number of a subranges, denoted asRin ex-
pression (5a), aso influences the accuracy of the MF
spectrum. A small number of a subranges yields a
smooth spectrum, but with a small resolution. Con-
versely, too many subranges produce a saw-toothed
(“erratic”) spectrum, albeit more detailed. In this re-
search, asacompromise solution, the value of R=100
is adopted.

Application of the modified
multifractal algorithm

Theéfficiency of the suggested algorithm hasbeen
verified through referent mammograms from the
MiniMIAS database[17]. All mammogramsin the data-
base havethe same, 1 MB size, same 200 microns spatial
resolution, same dimension (1024 x 1024 pixels) and
same 8-hit gray-level pixel depth. Only mammograms
with declared masses and microca cifications have been
selected from the whole set. For better visualization and
computational purposes, only parts(sized 256 x 256 pix-
€els) of the whole mammograms containing zones of de-
clared anomalies were under exanimation. Multifractal
quantities, & and f(«), were calculated by the previously
described procedure. Original imageswerefirst inverted
and then the capacity measure “minimum” used over
disk-shaped measure domains sized 1, 3, and 5 image
pixels. The number of subrangeswas R= 100, and the
coveringbox sizeswerej =1, 2,4,6, 8,10, 12, 14, and 16
o-pixels.

The mammograms in the MiniMIAS database,
as most other medical images, contain different types
of noises[27]. Any potentially suitable noise removal
technique must preserve small contrast changes just

around the edges of thelesions, because thevisual de-
tection of masses and microcalcifications generaly
relies on the existence of thisboundary contour. How-
ever, every filtering changesthe “fractality” of thefil-
tered image part. In [13] no filtering is used because
microcalcifications are usually so small that applying
even small-sized filters could completely remove or
degrade (attenuate) the contrast just around their
edges. Masses are significantly larger and intensive
simulations showed that noise removal by a
small-sized median filter is effective. The median fil-
ter is a simple and efficient tool in removing noise
while preserving the edges[10]. Additionally, median
filtering homogenizes the texture of the background
tissue and the mass itself without a significant degra-
dation of the grey-level contrast between them.

After theapplication of themodified multifractal
algorithm, some morphological postprocessing is
needed [28]. A successive morphological closing and
opening via a small disk- shaped structuring element
[8, 10] is suggested. By morphological closing (dila-
tion followed by erosion), the holes within the seg-
mented objects are filled and the unlinked contours
connected. Then, by applying opening (erosion fol-
lowed by dilation), objectssmaller than the used struc-
turing element are completely removed. Objects de-
leted in this way mostly correspond to the bright
artefacts generated by some internal and/or external
sources, such asfilm emulsion failures and X-ray de-
tector noise [13, 27]. Finally, the contour lines around
the segmented objects are obtained as lines at the
boundaries of the objects comprised of border pixels
only. By superimposing these borderlinesto the origi-
nal image, segmented details are strongly visually en-
hanced. Asfor masses, it issuitableto mark thelargest
suspiciousregion, possibly the suspiciousmassat first
and after that, if needed, to mark the subsequent ones.
Thiscan beeasily accomplished by pinpointing thein-
ner areaof the object bounded by itscontour line[10].

RESULTS
Mammogram with microcalcifications

Infig. 2(a) mammogram mdb256.pgm from the
MiniMIAS databaseis shown. Itspart (256 x 256 pix-
els) around the declared cluster of microcalcifications
is depicted in fig. 2(b). The MF spectrum f(«) of the
image in fig. 2(b) is plotted in fig. 2(c), and corre-
sponding a and f(a) images presented in figs. 2(d) and
(e), respectively.

Microcalcifications are loca tissue anomdlies,
parts of a mammogram not belonging to the back-
ground tissue. From the multifracta standpoint, they
have both higha andlow f(cr) val ues, because, they rep-
resent sharplocal changesandrareevents. Thisiseasily
noticeableinfigs. 2(d) and (€) —microcalcificationsare
represented as bright details (high values) in an a-im-
age and as dark ones (low values) in an f(cr) image.
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Figure 2. (a) Original mammogram mdb256.pgm from the miniM I AS database; (b) part of mammogram mdb256.pgm
correspondingtotheblack solid squarein (a) with declared cluster of microcalcifications; (c) multifractal spectrum of the
imagein (b); (d) an « image obtained from (b); (€) corresponding f(«) image of amammogram part in (b); (f) superim-
posed contour linesaround segmented objectsafter mor phological post-processing obtained from f(«) imageby selecting
pixelswith 0< fla) <1
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{d)

Figure3. (a) Original mammogram mdb005.pgm; (b) part of themammogram within awhite solid squarefrom (a) with a
mass; () fler) image; (d) contour linesuperimposed ontotheoriginal imageafter mor phology post-processing applied toa

segmented f(or) image within therange 0 < fla) < 1

Note that in the a-image the background is not
purely black, but our visual systemisnot abletodistin-
guish small gray-level variations in the dark domain.
Geometrically, microcalcifications are seen as singu-
lar sets of points not belonging to the more complex
structures (such asline, texture, surface), thus having
topologica dimension smaller than 1 [11, 20].

Onceobtaining a- and f(a) images, we can sel ect
the desired parts from an original image by extracting
pixels having particular values of o and f(«). Refer-
ring to the muiltifractal spectrum in fig. 2(c), we can
select image pixelsfrom the desired range of f(«) val-
ues, inthiscase 0 < f(a) < 1, and after refining the seg-
mentation by using successive morphol ogical closings
and openings, we can obtain contour lines around the
segmented details. These contour lines have been su-

perimposed onto the original image from fig. 2(b), as
displayed in fig. 2(f), pointing to a cluster of
microcalcifications. By changing the f(a) range, we
can interactively choose the appropriate segmentation
level for each particular case.

Mammograms with masses

Mammogram mdb005.pgmfromthe MiniMIAS
database with a clinically approved massis shown in
fig. 3(a). A part of thismammogram (256 x 256 pixels)
corresponding to the white square in fig. 3(a) is de-
picted in fig. 3(b) and the f(«’) image in fig. 3(c).

Before applying the proposed algorithm, the
mammogram part from fig. 3(b) was preprocessed us-
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ing amedian filter with awindow size of 5 x 5 pixels.
Multifractal images, « and f(ct), were cal cul ated using
the same procedure and parameters asin the previous
case with microcalcifications.

As already noted, masses are regions of dense
breast tissue, brighter than their surroundings, with
sharp gray-level changesjust around the edges. Statis-
tically, masses are rare events in an mammogram im-
age, thus having a low f(a) value. In fig. 3(d), a
mammogram part with a superimposed contour line
obtained fromaf(e) imageinfig. 3(c) by selecting pix-
elswith 0 <f(xx) < 1isshown. Additionally, after mor-
phological post-processing (closings followed by
openings), only the contour line around the largest
segmented object (amass) is depicted.

The last case refers to  mammogram
mdb010.pgm with amass approved by the MiniMIAS
database, as showninfig. 4(a). Infig. 4(b), acropped
mammogram part within a white square (256 x 256
pixels) with asuperimposed contour around thelargest
segmented object is depicted. Before analysis, the
cropped part was preprocessed using amedian filter
(5% 5pixels). Thesegmentationwascarried out froma
f(a) image by selecting pixelswith 0 < f(er) < 1. After
segmentation, amorphological closing followed by an
opening was applied.

Although the calculation of the multifractal
spectrumistime-consuming, particularly for largeim-
ages, from aonce obtained multifractal imageradiol o-
gistsgainthefreedomto changethelevel of segmenta-
tion by setting the range of f(a) values, thus
pinpointing the desired regions which may contain
microcalcifications and masses.

This paper considersthe application of the same
multifractal algorithm for enhancing two essentially
different breast tissue anomalies: microcalcifications
and masses. It has shown that, with minor modifica-
tions, the multifractal algorithm for the segmentation
of microcal cifications can be extended to enhance the
masses of interest. The basic premise is that the
masses, aswell as microcal cifications, may be consid-
ered as defects, anomalies of the breast tissue and,
hence, rare eventsin a statistical sense. An additiona
similarity isthe fact that, dueto the higher attenuation
of X-rays, both types of anomalies are observed as
mammogram parts brighter than their surroundings.
In order to improve the segmentation of the contour
line around the mass, some additional morphological
post-processing is needed. After contour line segmen-
tation, it is quite possible to determine certain proper-
ties of the selected object, such as spatial properties
(size, different shape parameters, etc.), texture (kind
and quality of textures) or fractal properties (local and
global regularity of the object structure). Adding
fractal parameters to existing feature vectors may im-
prove algorithmsfor automatic classification in mam-
mography, such as the classification of masses and
clusterswith benign or malignant microcalcifications.

(a}

by

Figure 4. (a) Original mammogram mdb010.pgm from
theMiniMIASdatabaseand (b) contour linearound the
segmented mass superimposed onto the mammogram
part corresponding to the white squarein (a)

CONCLUSIONS

In the domain of visual enhancement,
microcalcifications are small bright spots not belong-
ing to the background tissue, usually in the form of
clusters, characterized by a sharp change of local con-
trast at their very edges. In multifractal terminology,
these features are defined by the high vaues of the
Hoelder exponent (high local changes) and low val-
ues of its distribution f(e) (rare events in a global
sense).

Consideringthemassesasbright irregularimage
parts differing from the surrounding tissue, statisti-
cally representing rare events, the method for the vi-
sual enhancement of microcalcifications has been ex-
tended to include the enhancement of the said masses.
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By introducing median noise filtering at the prepro-
cessing level, as well as morphologica closing and
opening followed by object boundary extraction at the
post-processing level, the segmentation of masses is
significantly improved.

Notethat the cal cul ation of themultifractal spec-
trumistime-consuming, particularly for largeimages.
But, from a once obtained multifractal image radiolo-
gistsgainthefreedomto changethelevel of segmenta-
tion by setting the range of « and/or f(e) valuesin or-
der to find the desired regions containing bright ano-
malies, i. e. possible microcalcifications and masses.
Objects enhanced in this way are not only
microcalcifications and masses, but also, details
brighter than the surroundings which can be consid-
ered asstructural “defects’, i. e. asdeviationsfromthe
global regularity of the background. By introducing
morphological post-processing, we may remove iso-
lated details which, most likely, should not be classi-
fied astissue anomalies.

The efficiency of the proposed method was
tested via mammograms from the MiniMIAS data-
base. In al instances, the method successfully en-
hanced the declared anomalies, masses and
microcalcifications.

The method proposed here may be used as a vi-
sual assistance in mammogram analysis or embedded
as part of a more complex expert system for
mammogram examination or automatic detection of
masses and microcal cifications aimed at obtaining in-
formation about local and global regularity/fractality
of the segmented objects.
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Tomucaas M. CTOJUh

BU3YEIHO UCTNHAILE MUKPOKAJIIIN®UKAIINIA U MACA Y
AUTUTATHOM MAMOIPAMY KOPUITKREWKBEM MOIN®UKOBAHE
MYJITU®PAKTAIHE AHAJ/IUN3E

Muxkpoxanmudukanmje ¥ Mace, Kao aHOMaldje TKWBAa MOjke (OmcTymama Off yOueHe
IPABIJTHOCTH OKOJHOT TKWBA) MOTY C€ cCMaTpaTH PETKUM jorabajuMa y CTaTHCTHYKOM CMHUCIY Ha
MamorpackoM cHMMKY. HakoH npeno3HaBama HHXOBHX 3aje[JHNUYKUX KapaKTepUCTHKa (CBETIHjH
00jeKTH KOju He TPUINajiajy OKOJIHOM TKHBY Ca 3HAYajHUM JIOKAJIHUM KOHTPACTOM CaMO OKO WMBHIIE), ¥
OCHOBHU MyJITH(paKTaTIHU METOJ YBEAEHO je HEeKOJIUKOo Mmopucukaunuja. ITomazehm op murumramHor
MaMorpama, MpeyIoXkeHu METOJ] cTBapa oiroBapajyhe Mmyntudgpakransae cnuke. [1onaTHo MOpgOIOIIKO
HOCTIpOLeCHpamke MOOobIIaBa MYITH(MPAKTATHI METO/ UCTUIIAEM CAMO PErHOHa ca MOTEHI]aTHIM
MEKpoKanudukanujama u macama. [Ipeanoxkenn MeTop je TecTUpaH Ha pepepeHTHUM MaMoTpaMuMa u3
MiniMIAS 6a3e. Y cBUM TeCTHpaHNM CITydajeBAMa, METOJ] je YCIEeITHO NCTaKao AeKIIapiucane aHOMalnje:
MUKpoKanupukanmje u mace. Onucat METOJ] MOKE Ce CaMOCTaTHO KOPUCTUTH Kao BU3YyeJIHA aCUCTEHIIUja
y KIIMHIYKOM HCHUTHBAaKY MaMOIpaMa, U Kao MPEeTHpolecupamke Y Aakoj 00pafn MaMorpama y by
cerMeHranyje, Kiiacuukanyje 1 ayroMaTcKe fIeTeKIMje CYMIbUBUX CBETIINX Jie3uja y TKUBY JI0jKe.

Kmwyune peuu: mamozpagpuja, myaitiughpaxitiaana anaiuda, MUKpoxasyugukayuja, maca, oopaoa cauke




