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A B S T R A C T

This paper presents an investigation of the accident which occurred during startup of the

extending structure from the transport position. In order to clarify the causes of crack

occurrence along almost the entire surface of the lever cross-section, the authors

performed visual, experimental (chemical composition, tensile properties, microhardness)

as well as metallographic examinations. Stress states in the critical zone are defined by

applying the finite element method (FEM). Based on the investigation results it was

concluded that the lever breakdown is predominantly caused by both the ‘operating-in’

defect (the malfunction of the limit switch) and the ‘manufacturing-in’ defect (poor weld

quality). The investigation results presented in this paper are important because same or

similar problems could arise in supporting structures of various types of transportation,

construction and mining machines.

� 2015 Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The mobile elevating work platforms (MEWPs) are widely spread machines used for performing miscellaneous work at
heights. During exploitation they are exposed to various loads, from deterministic to stochastic [1–3]. Despite the use of
powerful design software [4] as well as new materials and technologies, accidents could not be avoided [5–7].

The extending structure of MEWP HP 13 is of a telescopic articulated type, Fig. 1. Failure of lever 3 occurred during startup
of the extending structure from the transport position and at that along almost the entire surface of the cross-section in the
vicinity of the end eye girder used for hydraulic cylinder connection, Fig. 2.

In order to identify the reasons behind the failure of lever 3, the following had to be performed:
� V
h

2

isual examinations.

� A
n experimental procedure which, given the nature of the failure, includes: chemical composition analysis, tests of

mechanical properties and microstructure examinations.

� C
alculation of the stress state.

According to the design documentation, lever 3 was supposed to be made from steel quality grade S355JR [8] thickness of
4 mm.
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Fig. 1. Extending structure of the MEWP HP 13.

Fig. 2. Failure of lever 3.
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Fig. 3. Undercuts of weld 1.

Fig. 4. Crack path vs. undercut zones of weld 2.
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The investigation results presented in this paper are important because same or similar problems could arise in the
supporting structures of various types of transportation, construction and mining machines. Besides that, they underline the
importance of the position limiting devices for avoiding overloads of the structures with changeable geometry configuration.

2. Visual examinations

Visual examination [9] revealed that the thickness of weld metal 1, Fig. 2(detail A, view B) is from 2.5 to 5.5 mm which is
different from the design requirements of 3 mm. The weld face shows spattering and irregular width of weld metal with
partly continuous and partly intermittent undercuts along the full length of the weldment.

Generally, all weldments on the lever and eye girder, no matter what type (butt or filet) are made with unacceptable
quality. Particularly dangerous are filet welds with spotted continuous undercuts that connect the eye girder with the lever.
The marked undercuts, Figs. 3 and 4, were significant stress raisers on the lever material with factor Kt higher than 3
[10]. Moreover, a closer look at the fracture zone reveals that the crack path follows the welding undercut zones, Fig. 4.

Two characteristic zones are observed on the crack surface, Fig. 5: zone 1 (detail A) cracked first, the conclusion based on
obvious corrosion due to exposure to atmospheric conditions, and light zone 2 (detail B), light colored which indicates recent
fracturing.

Plastic deformations of the limiting bumper yokes as well as failure of the welded connection between limiting bumper
and auxiliary chassis were determined during visual examination, Fig. 2(detail C). Apart from that, observation disclosed that
the limiting switch had suffered mechanical damage thus causing malfunction.

3. Experimental procedure

Due to the fact that the undamaged eye girder was mounted on the reconstructed lever 3, Fig. 6, all examinations were
performed on specimens sampled from the damaged part of lever 3, Fig. 7.

Chemical analysis, Table 1, was conducted by the spectrometric method using the optical emission spectrometer ARL 360.
Tensile tests, Table 2, were carried out in a universal A.J. Amsler testing machine, according to the requirements of code

[11].



Fig. 5. Crack surface.

Fig. 6. Detail of the reconstructed lever 3.
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The determination of hardness was carried out by microhardness (HV1) testing of specimens for metallographic
examinations. The mentioned testing was performed as per [12] by means of the semiautomatic optical instrument HAUSER
249 A, Table 3.

A macro examination of the polished specimen revealed incomplete welding, an undercut and sagging, i.e. an
incompletely filled groove, Fig. 8.

Microstructure examinations were made using the LM METAVAL, Figs. 9 and 10.

4. Calculation of the stress state

The external load analysis is performed for the following two cases:
� L
oad case (LC) 1 – MEWP in normal operation. According to the code [3] the following loads are taken into account: the
rated load, structural loads, wind loads and manual forces.

� L
C 2 – lever 3 is leaning against the limiting bumper. Besides the rated and structural loads, lever 3 is also exposed to the

maximum retraction force (86.2 kN) of the hydraulic cylinder 3, which is the consequence of the malfunction of the limit
switch (see Section 2) used for deactivation of the hydraulic system once lever 3 reaches the transportation position.



Fig. 7. Part of the damaged lever 3 used for sampling.

Fig. 8. Multiple weld defects of weld 2.

Fig. 9. Micrograph of the incomplete root fusion (squared detail shown in Fig. 8).
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The identification of the stress state is done by applying the linear finite element method (LFEM). In LC 1 for the complete
working envelope of lever 3, Fig. 11a, the maximum von Mises stress values in the zone of crack occurrence do not exceed
sLC1

vM;max ¼ 108 MPa, Fig. 11b. That value is obtained when the hydraulic cylinder 3 is completely extended, Fig. 11c, i.e. for
a = amax = 958. For LC 2 the maximum von Mises stress value in the critical zone is sLC2

vM;max ¼ 418 MPa, Fig. 12.



Fig. 10. Ferrite–pearlite microstructure of the base metal (common for general structure steel).

Fig. 11. von Mises stress state of lever 3 in LC 1: (a) working envelope (amin = 08, amax = 958); (b) stress field for amax; (c) dependence of the maximum von

Mises stress in the critical zone on the angle between lever 2 and lever 3.
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Fig. 12. Von Mises stress state of lever 3 in LC 2.

Table 1

Chemical analysis (wt.%) of lever 3 material and chemical composition of S355JR [8].

Material C Si S P Mn

Specimen 0.156 0.174 0.019 0.15 1.408

S355JR max. 0.24 max. 0.55 max. 0.035 max. 0.035 max. 1.6

Table 2

Tension test [11] results and tensile properties of S355JR [8].

Material sYS (MPa) sUTS (MPa) Elongation A5 (%)

Specimen 1 389 539 28.2

Specimen 2 380 534 28.2

Specimen 3 369 531 30.0

S355JR min. 355 470–630 min. 22

Table 3

Microhardness test [12] results.

Location Microhardness (HV1)

Base metal 182 – 178 – 182

Heat affected zone 210 – 257 – 223 – 253

Weld metal 240 – 234 – 229
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5. Conclusion

Conclusions arrived at herein are based on the results presented in Sections 2–4 and are listed below:
� T
he lever 3 material meets the requirements of code [8] defined for steel grade S355JR, Tables 1–3.

� P
oor manufacturing practice led to multiple welding defects on the base plate of the eye girder (weld 1), Figs. 2 and 3. Such

defects significantly accelerate premature crack initiation by playing a role, from the welding point of view, as the local
HAZ based weak link, as shown in Figs. 8 and 9. The paper [10] shows that the magnitude of stress considerably increases in
the presence of welding defects.

� B
utt welds on lever 3 have many defects, such as incomplete welding, the undercut and sagging, Figs. 8 and 9.

� T
he location of the maximum calculated stress values corresponds to the crack location, Figs. 2, 11 and 12.
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� T
he calculated stress value in the critical zone for LC 2 (sLC2
vM;max ¼ 418 MPa, Fig. 12) is higher for 7.5% than the maximum

yield stress value obtained by testing (sYS = 389 MPa, Table 2). Furthermore, the finite element model does not include
unfavorable influence of the welding defects observed during visual examinations (Section 2), which substantially, more
than three times [10], multiplies the local level of stress states. Accordingly, we can conclude that even for intensities of the
retraction force of the hydraulic cylinder 3 that are lower than its maximum value, stress values higher than the ultimate
tension stress values (obtained by testing, Table 2) are certain to appear.

� T
he overload caused by the effect of the retraction force of the hydraulic cylinder 3 (LC2) is unambiguously testified by the

appearance of plastic deformations of the limiting bumper yokes, Fig. 2 (detail C).

� T
he results of visual examination lead to the conclusion that initial cracking occurred in HAZ in close vicinity of the

undercuts (zone 1, Fig. 5, detail A), due to the overload as a result of the limiting switch failure. The propagation of the
crack, due to repeated overloads, led to final failure by cracking of lever 3 near the eye girder (zone 2, Fig. 5, detail B).

The presented results of the numerical-experimental analyses led to the conclusion that the main causes of the extending
structure breakdown were:
� M
alfunction of the limit switch (‘operating-in’ defect [13,14]) which caused the unforeseen loading, not predicted by the
project documentation.

� P
oor weld quality [15] (‘manufacturing-in’ defect [13]).
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