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1. Introduction  

  

Fractals are used in many engineering applications such as porous media modelling, nano fluids, 

fracture mechanics and many other applications in nanoscale [1,2] where various transport phenomena 

cannot be described by smooth continuum approach and need the fractal nature of the objects to be 

taken into account. For the transport phenomena performed in fractal objects the local temperature 

depends on the fractal dimensions where adequate physical results can be achived by the application 

of local fractional models and relevant solution approaches. For example, in [3] heat diffusion problem 

is analyzed in fractal geometry cooling surface and in [4] fractal heat conduction problem is solved by 

using the local fractional variation iteration method.  

The decomposition method introduced by Adomian [5, 6] was broadly applied to solve a wide 

class of linear and nonlinear problems described by ordinary, partial differential equations and integral 

equations[7-9]. There are exist some other analytical methods widely applied to solve non-linear 

problems, among them: the variational iteration method [10, 11], the homotopy perturbation method 

[12, 13], the heat-balance integral method [14, 15], the complex transform method [16, 17], the 
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homotopy analysis method [18], the fractional sub-equation method [19] and the fractional variational 

iteration method [20-22] and more details seen in [23].   

The local fractional derivative is a relatively new tool to investigate local fractal behaviors of 

differential equations with fractal conditions [24-28]. Several works have been published on efficient 

methods for solving such local fractional differential equations with non-differential functions [29, 31, 

39, 40]. The integral equations via local fractional calculus theory [27, 28] were first proposed in [29] 

and developed in the case of local fractional Fredholm and Volterra integral equations [30]. For the 

differential and integral equations with local fractional derivative and integral operators, there are exist 

some analytical methods, such as: the local fractional variational iteration method [31, 32], the local 

fractional decomposition method [33, 34], the local fractional Fourier series method [4, 35], the local 

fractional Fourier transform method [12, 36], the local fractional Laplace transform method [12], the 

local fractional Z transform method [37], etc.  

Taking into account the existing background in solution of fractal boundary problems the 

present communication addresses analytical solutions performed by the local fractional decomposition 

method to two problems: the local fractional integral equations and the local fractional wave equation. 

The manuscript is organized as follows: Section 2 is devoted to the local fractional decomposition 

method. The four illustrative examples are shown in Section 3. Finally, conclusions are given in 

Section 4. 

 

2. Analytical method  

 

For seek of clarity of the explanation, the local fractional decomposition method will be briefly 

outlined. For integral equations a compact recurrence scheme has been developed [7-30]. The initial 

(zeroth) approximation in this case is  

 

   0u x f x ,                                    (1) 

 

and 

 

 
 

    1 , ,
1

b

n n
a

u x K x t u x dt n N





  

   .                     (2) 

 

Local fractional integral of  f x  of order   0 1   in the interval  ,a b is denoted by [23-35] 

  

   
 

  
 

  
1

0
0

1 1
lim ,

1 1

j N
b

a b j j
a t

j

I f x f t dt f t t


 

 

 


  
   

          (3) 

 

with a partition of the interval  ,a b , which is defined through  1,j jt t   with 
 1j j jt t t   , 

 1 2max , , ,...jt t t t     , 0,..., 1j N  , 0t a  and Nt b . 
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Hence, we can determine a few terms in the series such as    
0 nn

u x u x



  by truncating 

the series at certain term. The local fractional Volterra integral equation is written in the form [26, 30] 

 

   
 

    
0

,
1

x

u x f x K x t u t dt





 

   ,                (4) 

 

and hence 

 

   0u x f x .                                (5) 

 

Substituting    
0

n

n

u x u x




  into eq. (4) implies  

 

    
 

     
0

0 0

,
1

x

n n

n n

u x f x K x t u x dt






 

 

 
   

   
  .            (6) 

 

The components        0 1 2, , , , ,nu x u x u x u x  of the function  u x  can be completely 

determined if we set     

   

    

   

 
 

    

 
 

    

 
 

    

0

1 0
0

2 1
0

1
0

,
1

,
1

,
1

x

x

x

n n

u x f x

u x K x t u x dt

u x K x t u x dt

u x K x t u x dt


























 


 


 







                 (7) 

 

and so on. The set of above equations can be written in compact recurrence scheme as 

 

   0u x f x ,                               (8) 

 

and 

 

 
 

    1
0

, ,
1

x

n nu x K x t u x dt n N





  

   .               (9) 
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Hence, we give the local fractional series solution    
0 nn

u x u x



 . The above processes 

were discussed in [37, 38].  

Let us consider the local fractional Volterra integral equation given through  

 

   
 

    
0

,
1

a

u x f x K x t u t dt





 

   ,              (10) 

 

where a  is a constant. We can set up on an iteration formula based on the decomposition method 

 

 
 

    1 , ,
1

b

n n
a

u x K x t u x dt n N





  

   .             (11) 

 

An initial condition can be expressed as 

 

   0u x f x .                              (12) 

 
Thus, we arrive at a local fractional series solution, namely: 

 

   
0

n

n

u x u x




 .                            (13) 

 
Moreover, we can write the general local fractional differential equation in a local fractional 

differential operator form  

 

       2

x xL u x R u x f x
   ,                       (14) 

 

In eq. (14) 
 2

xL


 is local fractional 2α
th

 order differential operator [27, 28], which by the definition 

reads 

 

     2

x

d d
L s x s x

dx dx

 


 

 
  

 

,                         (15) 

and 

 

 
      

 0
0

0

0

limx x x
x x

s x s xd s x
R s x

dx x x





 


 
 



,                     (16)  

      

is local fractional α
th
 order differential operator ( 0 1  ) and  s x  is local fractional continuous 
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[27-33].  

Applying the inverse operator 
 2

xL


 to both sides of (14) yields 

 

             2 2 2 2

x x x x xL L u x L R u x L f x
     

   .                    (17) 

 

If the inverse differential operator 
 2

xL


 exists, according to the local fractional 

decomposition method mentioned above, we have 

 

     

   

2

1

0

n x x nu x L R u x

u x r x

 


  




,                       (18) 

 

where      2

xr x L f x


  and 

 

   
 

    
2

2

2

1 1 2

0 0

1

1

tx

xL u x u t dt dt
 




 

     
  .            (19) 

 

Proof of the existence of the inverse differential operator 
 2

xL


 as local fractional integral 

operator one can find in [28]. Finally, we can find a solution in the form 

 

   
0

n

n

u x u x




 .                               (20) 

 

Hence, we can obtain that [27-28, 34] the following condition is obeyed  

 

   0f x f x   ,                              (21) 

 

where fractal dimension of  f x  is equal to   for any  ,x a b .   

 

3. Illustrative examples  

 

Several illustrative examples demonstrating the efficiency of the of the suggested local 

fractional decomposition method are present next 

 

Example 1. 

First, we solve the local fractional Fredholm integral equation 
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 
   

 

 
  

1

0

11

1 1 1

tx
u x u t dt




  


 
      .               (22) 

 

The zeroth approximation is as follows:  

 

 
 0
1

x
u x





 

.                                (23) 

 

The first approximation is expressed through 

  

 

 

 

   
 

 

1

1

0

11

1 1 1

1

1 3

u x

t t
dt

 


  





     

 
 

 .                     (24) 

 

Proceeding in this manner, we can find the second approximation as 

 

 

 

 

 
  

 

 

   
 

   

2

1

1
0

1

0

11

1 1

11 1

1 1 1 3

1 1

1 3 1 2

u x

t
u t dt

t
dt









 

  

 



   


 

     


   




.                   (25) 

 

Finally, we get   

 

   

1

1 1
,

1 3 1 2

n

nu n N
 



 
        

.                   (26) 

 
Hence, we arrive at the solution  
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 

 

     

   

 

 

      

0

1

1

lim

1 1
lim

1 1 3 1 2

1

1 21

11 1 3
1

1 2

1

1 1 3 1 2 1

n
n

n

n

n
n

u x

u x

x

x

x







  



 



  














  
              

 
 
   


 

 
      



                (27) 

 

If n . 

 

Example 2. 

Similarly, for the solution of the local fractional Volterra integral equation 

 

 
 

 

 
  

0

1
1

1 1

x x t
u x u t dt





 


 

    .                   (28) 

 

the zeroth approximation is suggested as  

 

 0 1u x  .                                       (29) 

 

Then, the second approximation is   

 

 

 

 

 
 

 

1

0

2

1

1 1

1 2

x

u x

x t
dt

x







 





   


 

                          (30) 

 

Proceeding in this manner, the third approximation is 
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 

 

 

 
  

 

 

   
 

 

2

1
0

2

0

4

1

1 1

1

1 1 1 2

1 4

x

x

u x

x t
u t dt

x t t
dt

x





 




 

  





   

 
         


 




              (31) 

 

Therefore, we have 

 

 

2

,
1 2

n

n

x
u n N

n




 
 

.                             (32) 

 

In conclusion, when n  we arrive at  

 

 

 

 

 

0

2

0

lim

lim
1 2

cosh

n
n

n

n

n
n

u x

u x

x

n

x





















 
     






                              (33) 

 

where  2

0
cosh / 1 2k

k
x x k 

 



    is a hyperbolic cosine function defined on a Cantor set 

[27-28, 34].  

 

Example 3.  

Let us consider the local fractional heat conduction equation with no heat generation in fractal 

media and dimensionless variables [4], which reads  

  

   2

2

, ,u x t u x t

t x

 

 

 


 
,                               (34) 

 

subject to the following fractal initial boundary conditions    

 

   ,0 0xu x


 ,      ,0 , 0u x E x x l

   ,              (35) 

 

where in eq. (34)    , ,u x t T x t  is the temperature field.   
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Hence, the recurrence formula takes the form  

 

       

   

2

1

0

, ,

,

n t xx nu x t L L u x t

u x t E x

 








 




.                        (36) 

 

We can develop a solution in a form of local fractional series, namely 

 

 

 

 
 

  

   

0

2 1

0

,

lim ,

lim
1 2 1

sinh

i
i

i

in

i
i

u x t

u x t

t
E x

i

E x t






 

 















 
  

    






                      (37) 

 

where 
    2 1

0
sinh / 1 2 1

k

k
t t k



 
 


     is a hyperbolic cosine function defined on a Cantor 

set [27, 28, 34], and    
0

/ 1k

k

E x x k 

 




   is the Mittag-Leffler function defined on a Cantor set 

[27, 28, 34-35].  

 

Example 4.  

Consider the local fractional wave equation [41]   

 

     2 2

2

2 2

, , ,u x t u x t u x t
a

t x x

  



  

  
 

  
,
 
                    (38) 

 

with fractal initial boundary conditions   

   

   ,0 0tu x


 ,  
 

 
2

,0 0
1 2

x
u x x l




  
 

.                 (39) 

 

Hence, the structure of the recurrence formula is:  
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             

 
 

2 2 22

1

2

0

, , ,

,
1 2

n tt xx n tt x nu x t a L L u x t L L u x t

x
u x t

   





 


  




 

.               (40) 

 

Then, the solution can be expressed as  

 

 
       

2 2
2,

1 2 1 1 1 2

x x t t
u x t a

   


   
  
       

.           (41) 

 

The examples of using Adomian decomposition method in solving the integral and differential 

equations and in heat transfer problems can be seen in [6, 7] and [9]. For examples presented there, 

one can easily implement local fractional calculus when fractal boundary value problems are 

considered.   

    

4. Conclusions  

 

Presented integral and differential equations play a very important role in heat conduction 

problems. Some initial boundary problems for some differential partial equations in physics are 

reducible to the above integral equation. The development of the investigation for dynamics of the 

complex systems requires new methods and techniques to be developed. On the other hand many of 

the classical methods were generalized within the local fractional calculus environment but still the 

hidden behaviors cannot be revealed properly. In the work, we investigated the fractal initial boundary 

value problems for local fractional equations with local fractional operators, which are set up on 

fractals. For these reasons, based on the local fractional operators, the local fractional decomposition 

method to solve local fractional equations has been applied. The method focuses especially on the 

approximation methodology for processing local fractional equations. The methodology has been 

exemplified by four illustrative problems demonstrating the accuracy and the reliabilities of the local 

fractional decomposition method. 
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Nomenclature 

t     time [s] 

x     space co-ordinate, [m] 
 

a bI


 local fractional integral  
 
xL


  local fractional order differential operator 

E    Mittag-Leffler function defined on fractal set  
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Greek symbols 

   fractal dimension 

    gamma function 
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