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Sliding Mode Control of a Three-DOF Robotic System Driven  
by DC Motors 
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This paper proposes a sliding mode control of a 3-DOF robotic system driven by DC motors. Primarily, a conventional sliding 
mode controller based on a PD  sliding surface is designed. Numerical simulations have been carried out to show the proposed 
control system's robustness properties as well as the significance of the proposed control which resulted in reducing output 
oscillations (chattering-free) of the given robot. Finally, a simulation example shows the feasibility and effectiveness of the 
proposed approach. 
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Introduction 
N recent years, the use of robotic systems in industrial and 
non-industrial applications has significantly been increased. 

Due to highly coupled nonlinear and time varying dynamics, 
the robot motion tracking control is one of the challenging 
problems, [1-3]. Generally, nonlinear system model 
imprecision may come from an actual uncertainty about the 
plant (e.g., unknown plant parameters), or from the purposeful 
choice of a simplified representation of the system’s 
dynamics. Modeling inaccuracies can be classified into two 
major kinds: structured (or parametric) uncertainties and 
unstructured uncertainties (or unmodeled dynamics). The first 
kind corresponds to inaccuracies on the terms actually 
included in the model, while the second kind corresponds to 
inaccuracies on the system order. Modeling inaccuracies can 
have strong adverse effects on nonlinear control systems, [4]. 

One of the most important approaches to dealing with 
model uncertainty is robust control. Robust design techniques 
are essential in any field of engineering design because the 
working and durability of their pieces of work is always 
jeopardized by mutable and unpredictable environments,[5,6]. 
There are several approaches in this direction, for example 
optimal control, H-infinity control, high gain feedback, 
variable structure, etc. [4,7,8]. One of the novel ideas in this 
field is sliding mode control (SMC), which is a subset of 
variable structure control, [8,9]. Variable structure control 
(VSC) with sliding mode control was first proposed and 
elaborated in early 1950 in the USSR by Emelyanov and 
several co-researchers, [10-12]. In their pioneer works, the 
plant considered was a linear second-order system modeled in 
a phase variable form. Since then, VSC has developed into a 
general design method for a wide spectrum of system types 
including nonlinear systems, MIMO systems, discrete time 
models, and large scale and infinite dimensional systems,[13-
15]. The most distinguished feature of VSC is its ability to 
result in very robust control systems. Loosely speaking, the 
term “invariant” means that the system is completely 

insensitive to parametric uncertainty and external 
disturbances. 

The SMC is a very popular strategy for the control of 
nonlinear uncertain systems, with a very large frame of 
application fields [5-8]. The sliding mode control 
methodology is one such robust control technique which has 
its roots in relay control. SMC has many attractive features 
such as invariance to matched uncertainties, model order 
reduction, simplicity in design, robustness against 
perturbations and some others [9,16,17]. 

One of the most intriguing aspects of the sliding mode is 
the discontinuous nature of the control action whose primary 
function is to switch between two distinctively different 
structures about some predefined manifold (sliding surface), 
such that a new type of system motion called a sliding mode 
exists in a manifold. The sliding mode contains two phases 
a) reaching phase in which the system states are driven from 

any initial state to reach the switching manifolds (the 
anticipated sliding modes) in finite time, and  

b) sliding phase in which the system is induced into the 
sliding motion on the switching manifolds, i.e., the 
switching manifolds become attractors. 
After sliding has been achieved, the system dynamics 

matches that of the sliding surface. The robustness and the 
order reduction property of the sliding mode control come 
into picture only after the occurrence of the sliding mode. Due 
to the use of the discontinuous function, its main features are 
the robustness of the closed-loop system and the finite-time 
convergence. However, its design requires the knowledge of 
the bound on the uncertainties, which could be, from a 
practical point of view, a hard task: it often follows that this 
bound is overestimated, which yields excessive gain.  

While, in theory, infinitely fast switching can provide 
asymptotically perfect tracking, in practice it implies a trade-
off between tracking performance and control signal chatter, 
which is either undesirable due to noise considerations or 
impossible to achieve with real actuators.  

I 



4 LAZAREVIĆ,M.,BATALOV,S.: SLIDING MODE CONTROL OF A THREE-DOF ROBOTIC SYSTEM DRIVEN BY DC MOTORS  

So, the main drawback of the sliding mode control, the 
well-known chattering phenomenon (for its analysis, see 
[18,19]) is important and could damage actuators and systems. 
Chattering is undesirable in the control of mechanical 
systems, since it causes an excessive control action leading to 
increased wear on the actuators and to excitation of the high 
order nonmodeled dynamics. Consequently, the demanded 
performance cannot be achieved, or even worse – the 
mechanical parts of the servo system can be destroyed. 
Therefore, chattering must be eliminated from the SMC 
system. Since chattering is caused by the discontinuous 
control, there exist several techniques to reduce a high 
switching amplitude, [20]. The first way to reduce chattering 
is the use of a boundary layer: in this case, many approaches 
have proposed adequate controller gains tuning [6]. The 
second way to decrease the effect of the chattering 
phenomenon is the use of a higher order sliding mode 
controller [21-23]. However, in both these control approaches, 
the knowledge of the bound on the uncertainties is required.  

On the other hand, studies on the control of chain-like 
mechanical systems have been a subject of intensive and 
profitable research over the last three decades. Robotic 
systems, as dynamically coupled non-linear MIMO systems, 
have attracted the attention of many control scientists and 
engineers. The control of robotic systems is vital due to a 
wide range of their applications because these systems are 
multi-input multi-output, nonlinear and uncertain. 
Consequently, it is difficult to design accurately mathematical 
models for multiple degrees of freedom robot manipulators. 
As a significant tool for performing dangerous tasks, military 
robot systems can replace people in work in dangerous zones, 
so the controller designing military robot systems has become 
the focus in the field of automation. During the control 
process of robot systems, the presence of disturbances, model 
uncertainties, and nonlinear model parts is inevitable [24,25]. 

In addition, uncertainty in the parameters of both 
mechanical  parts of robotic systems  and actuating systems 
would cause more complexity. Therefore, strong 
mathematical tools are used in new control methodologies to 
design a controller with acceptable performance. It is obvious 
that stability is the minimum requirement in any control 
system; however, the proof of stability is not trivial especially 
in the case of nonlinear systems. One of the best nonlinear 
robust controls of robot  manipulators is a sliding mode 
controller.The main reason to select this controller in a wide 
range area is to have acceptable control performance and 
solve two most important challenging topics in control, 
namely stability and robustness [26-28]. Here, because of 
nonlinear dynamics in robot manipulators, SMC is developed 
to control a three DOF robotic system with DC motors. 

Introduction to classical sliding mode control 

Problem statement 
The control of robot manipulators using the sliding mode 

technique has a rather long history. Here, we briefly outline 
the basic theoretical concepts of sliding mode control, as it is 
done in [16, 26,29] and then the principle of the synthesis of 
control, firstly for SISO systems, then for MIMO systems.  

First we define the sliding surface for a system defined by 

 ( ), ( ) 0
( ), ( ) 0

f x s xx =
f x s x

+

−
⎧ >
⎨ <⎩

 (1)  

we say that the sliding surface is the set of all x  such that 

( ) 0s x = , and the functions ( )f x+  and ( )f x−  tend towards 
that surface, for some x  from its neighborhood, wherein the 
valid 

 ( ) ( )( ) 0, ( ) 0,s x s xf x f xx x
+ −∂ ∂< >

∂ ∂
 (2) 

Mathematically, ( )s x  is often defined with 

 ( ) [ ] ( )
1 2 ... ... 0

Tn
ns x p p p x x x⎡ ⎤= =⎣ ⎦  (3) 

where ip  coefficients of the surface and dx x x= −  is  the 
deviation or as follows, [26]: 

 ( ) ( )( )1
0, 0

nds x xdt λ λ
−

= + = >  (4) 

The requirement that ( )f x+  and ( )f x−  tend towards the 
surface ( ) 0s x =  is crucial because it means that the 
trajectories of the system from the environmental surfaces in 
its "pooled", when the sliding mode occurs and the setpoint 
continues to move along the hypersurface with an infinite 
oscillating frequency and an infinitely small amplitude, while 
in the opposite trajectories of the system passed through the 
surface, without keeping on it. The following figures illustrate 
well how to modify the value of the function ( )f x  near and 
on the sliding surface, as well as where  the sliding mode 
occurs: 

 
Figure 1. Value of the function f (.) in the neighborhood, and on the sliding 
surface. 

 
Figure 2. Illustration when in systemsthe sliding operating mode occurs. 

In a general case, the control algorithm in which a sliding 
operating mode appears, can be written in the form 

 ( ) ( ), 0
( ), 0

u x s(x)u x
u x s(x)

+

−
⎧ >= ⎨ <⎩

. (5) 

A condition that generally appears  in sliding regime  it given 
as  

 
0 0

lim 0, lim 0.
s s

s s
− +→ →

> <  (6) 
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When the system finds itself in a sliding operating mode, 
the question is how to describe its motions when the pre-
defined control is undetermined on a hyperplane. Sliding 
dynamics can be described by introducing an equivalent 
control- fictitional continuous control that keeps the motion of 
the system on the sliding surface. Let us consider the 
nonlinear system described by:  

 ( ) ( )x f x g x u= +  (7) 

From the condition of staying on the sliding surface 

 ( ) ( )0, 0s x s x= =  (8)  

we can easily obtain the equivalent control and sliding 
dynamics 

 ( ) ( ) ( ) ( ) ( )
1

eq
s x s x

u x g x f xx x

−∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠
 (9) 

 ( ) ( ) ( ) ( ) ( )
1s x s x

x I g x g x f xx x

−⎡ ⎤∂ ∂⎛ ⎞= −⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
 (10) 

Theoretically, in the ideal case, switching from ( ) 0u x+ =  

to ( ) 0u x− =  and vice versa takes place with an infinite 
frequency so that the actual behavior of the system is similar 
to the behavior of the system for the case when, instead of the 
proposed control, equivalent continuous control is used. 

The object has greater time constants than the time 
constants of the correctional device, and higher harmonics, 
which appear in the slide operating mode, which arise from  
the  discontinuous action of the relay, and which do not have a 
significant impact on the behavior of the whole system of 
automatic control, while the lower harmonics of the 
correctional device have only an impact on the behavior of the 
object and these harmonics are in fact equivalent control.  

The dynamic characteristics of the system in the sliding 
operating mode depend on the position of the sliding 
hyperplane, and the desired behavior can be obtained by a 
suitable choice of the coefficients hypersurface. Besides the 
problem of describing the system in the sliding operating 
mode, a special problem is how to design a control system the 
states of which are led to the sliding hypersurface, possibly 
for the final time for each initial state. Generally, there are 
two main approaches to the synthesis of the sliding mode 
control. The first is that the control law consists only of  the 
discontinuous control  

 ( ) ( ) ( )1 sgnu x k x x= −  (11) 

and the second approach is that the proposed control is 
separated to the continuous and discontinuous part of the 
control, 

 ( ) ( ) ( )2 sgnequ x u k x x= −  (12) 

Of course, there are other algorithms of the sliding mode 
control; as an example, we consider the algorithm which is 
introduced by [30] 

 ( ) ( ) ( )3 4s k ( )equ x u k x x sgn x= − −  (13) 

But, here, we will explain the main idea in the case of the 
first two control laws. We have already mentioned that the 
sliding mode control has a discontinuous nature, and on the 
sliding plane there are infinitely fast changes of  the control 

signal. In practice, these oscillations have the final frequency 
as well as the limited accuracy of the calculation function 

( ) 0s x = , which leads to an undesirable effect called 
chattering- oscillation output signals as well as problems to 
physically realize such control by the actuator. 

The complete elimination of this phenomenon can be 
achieved by approximating the discontinuous function ( )sgn x  
with the symmetric saturation function sat(x)  or the 
hyperbolic tangent tanh(x) . 

 
/ ,

sgn( ) sgn(s),
s s

x s
ε ε

ε
<⎧≈ ⎨ >⎩

 (14) 

 sgn( )x tanh(ks)≈  (15) 

whose similarity with the function sgn( )x can be seen in the 
following Figures 3,4 for   1,0.5,0.1ε = and 1, 2,10k = . 
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Figure 3. Saturation function ( )sat x  
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Figure 4. Function hyperbolic tangent tanh( )x  

Mathematical model of a three DOF robotic 
system with DC motors 

A robotic system is considered as an open linkage 
consisting of 1n +  rigid bodies [ ]iV  interconnected by n  
one-degree-of–freedom joints forming kinematical pairs of 
the fifth class, Fig.5, where the robotic system possesses n  
degrees of freedom. Here, the Rodriguez` method [31], is 
proposed for modeling the kinematics and dynamics of the 
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robotic system. The configuration of the robot mechanical 
model can be defined by the vector of the joint (internal) 
generalized coordinates q  of the dimension ,n  

( )q =(q1,q2,…,qn)T, with the relative angles of rotation (in the 
case of revolute joints) and relative displacements (in the case 
of prismatic joints). The geometry of the system has been 
defined by the unit vectors , 1,2,..., ,..,ie i j n=  where the unit 
vectors ie  describe the axis of rotation (translation) of the i -
th segment with respect to the previous segment as well as the 
position vectors iρ  and iiρ   usually expressed in local 

coordinate systems connected with the bodies ( ) ( )( ) ( ),i i
i iiρ ρ . 

The parameters , 1i iiξ ξ ξ= −  denote the parameters for 

recognizing the joints , 1i iiξ ξ ξ= − , 1iξ = -prismatic, 0-
revolute. For the entire determination of this mechanical 
system, it is necessary to specify the masses im  and the 
tensors of inertia CiJ  expressed in local coordinate systems. 
In order that the kinematics of the robotic system may be 
described, the points ,i iO O′  are noticed somewhere at the 
axis of the corresponding joint ( )i  such that they coincide in 
the reference configuration. The point iO  is immobile with 
respect to the ( 1i − )-th segment and iO′  does so with respect 
to the i − th one; obviously, for a revolute joint ( )i , the points 

iO  and iO′  will coincide all the time during robotic motion. 
For example, the position vector of the end-effector Hr  can 
be written as a multiplication of the matrices of 
transformation [ ]1,j jA − , the vectors iiρ  and i

i iq eξ ,and it is 
expressed by  

 

( )

[ ] ( ) ( )( )
1

( ) ( )
1,

1 1

( )
n

i
H ii i i

i
in

i ii
j j iii i

i j

r q q e

A q e

ρ ξ

ρ ξ

=

−
= =

= + =

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑

∑∏
 (16) 

where the appropriate Rodriguez’ matrices of transformation 
are  

  [ ] [ ] ( ) ( )2( ) ( )
1, 1 cos sind j d jj j

j j j jA I e q e q− ⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦  (17) 

and 

  

( ) ( )( ) ( )
0

, , , 0
0

j j
Tj d j

j j j j jj j

j j

e e
e e e e e e e

e e

ζ η

ξ η ζ ζ ξ

η ξ

−⎡ ⎤
⎢ ⎥⎡ ⎤= = −⎣ ⎦ ⎢ ⎥
−⎣ ⎦

 (18) 

It is also shown [31], regardless of the chosen theoretical 
approach, that we could start from different theoretical aspects 
(e.g. general theorems of dynamic, d`Alembert`s principle, 
Langrange`s equation of the second kind, Appell`s equations, 
etc.) and get the equations of motion of the robotic system 
which can be expressed in the identical covariant form as 
follows 

 

,
1 1 1

( ) ( )

1,2,..., .

n n n

i i ia q q q q q Q

i n

βα α
α αβ

α α β= = =

+ Γ =

=

∑ ∑∑
 (19) 

The kinetic energy of the given robotic system is given by 

 ( ) [ ]( )
1 1

1 1 ,2 2
, 1,2,..., ,

n n
T

kE a q q q a q

n

α β
αβ αβ

α β

α β
= =

= =

=

∑∑  (20) 

where the coefficients aαβ  are the covariant coordinates of 

the basic metric tensor [ ] n na Rαβ
×∈  and ,αβ γΓ  

, , 1, 2,...,nα β γ =  presents Christoffel symbols of the first 
kind defined as:  

 ,
1
2

aa a

q q q
αγβγ αβ

αβ γ α β γ

∂∂ ∂⎛ ⎞
Γ = + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (21) 

The generalized forces iQ  can be presented in the 

following expression (22) where , , , ,gc w a
i i ii iQ Q Q Q Qβ  denote 

the generalized spring forces, gravitational forces, viscous 
forces, semi-dry friction and generalized control forces, 
respectively. 

 , ,...,gc w a
i i i ii iQ Q Q Q Q Q i 1,2 nβ= + + + + =  (22) 

 
Figure 5. Open-chain structure of a robotic multi-body system  

Fig.6 shows the equivalent circuit of a DC motor 
represented. 

 
Figure 6. The equivalent circuit of a DC motor 

In this paper, we considered a robotic system with three 
degrees of freedom, see Fig. 7. The next equation describes 
the given circuit 

 ( )( ) ( ) ( ), 1, 2,3i
i i i i vi

di tR i t L ems t u t idt+ + = =  (23)  

where iR , iL , ii  and viu  are resistance, inductivity, electrical 
current and voltage, respectively. The electromotive force is 
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 ( ) /i e mems t k dq dt=  (24) 

where ek const=  and ( )mq t  is the generalized coordinate of 
a DC motor. If there is a reductor with a degree of reduction 

iN  then ( ) ( ), 1, 2,3mi i iq t N q t i= = . It can be assumed that  

 
Figure 7. A 3 DOF robotic system 

 ( ) ( )u
i i m iQ t N k i t=  (25) 

where mk const=  is the torque constant. If the equation of a 
robotic system is combined with (25), the next equation can 
be written 

 
[ ] [ ]1 1

( )
(

m

m m

A q q C(q,q) NK i
i NK A q)q NK C(q,q)− −

+ = ⇒
= +

 (26) 

this in a combination with (24) becomes (27)  

 [ ] ( )1 ( )m e vR NK A(q)q+C(q,q + K Nq = u t−+  (27) 

In the state space, equation (28) is given with 

 
1

1

0
0 ( )

) ( )) ( ( ))

1 2

2 3 v
•-1

3 1

x (t) x (t)
x (t) x (t) u t
x ( t A (x (t))n(x t A x t•−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ = +
⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(28) 

where  

 
[ ]
[ ] [ ]

[ ] ( )

1

1 1

1

( ) ( )
(

m

m m

m e

A q L NK A q
n(q,q,q) L NK A q)q L NK C(q,q)

R NK A(q)q+C(q,q + K Nq

−•

− −

−

=

= + +

+

 (29) 

and 

 3( ) [ )] [ ( )]T n
1 2 3x t x (t),x (t),x (t q(t),q(t),q t R= = ∈  (30) 

One can observe that a mathematical model of a robotic 
system with actuators is more complex in comparison to 
robotic systems without motors and the number of equations 
of the system is increased for three. In practical applications 
with these actuators (DC motors), it is possible to neglect the 
impact of inductance L  of motors, i.e 0L ≈ , [32]. 
Combining and rearranging the previous equations, it yields 

 [ ] ( )1 ( )m e vR NK A(q)q +C(q,q + K Nq = u t− , (31) 

or, as follows 

 A(q)q +C(q,q)+ Fq =τ , (32) 

where are  

 1 1,m e m vF NK R K N NK R uτ− −= = , (33) 

Equation (32) can be presented more concisely as (35), 
taking into account that 

 n(q,q)= C(q,q)+ Fq , (34) 

 A(q)q + n(q,q)=τ , (35) 

In order to prove the previous aproximation, the following 
simulations are obtainedwith the following values adopted  

 
(1,1,1)

L (0.01, 0.01, 0.01)
K (2, 2, 2)

m

e

R K N diag
diag

diag

= = =

=
=

  (36) 

Using a MATLAB software simulation, the results are 
obtained as in Figures 8 and 9. Figures 8 and 9 present a 
comparative overview of the response of the system  
with actuators in the open-loop, with and without 
inductance L . Here, we considered two excitations signals: 
unit step excitation and time duration of 10 sec as well as 
sinusoid excitation with ( 1, 1 / secA radω= = ). 

step response of the system 
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Figure 8. Step response ( ) , 1, 2,3iq t i =  

sinusoidal response 
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Figure 9. Sinusoidal response  ( ) , 1, 2,3iq t i =  

We can see in Figures 8 and 9 that the step response of 
( ) , 1, 2,3iq t i =  is practically identical, while in the case of the 

sinusoidal response it is slightly different. As stated above, we 
conclude that it is fully justified to use the proposed model of 
robots with actuators and neglected inductance. 

Sliding mode control of a three DOF robotic 
system 

In the case of Multi Input – Multi Output (MIMO) systems, 
in the sliding mode control algorithm synthesis, one should 
conduct a procedure similar to that for SISO systems, but with 
certain specific differences and a higher level of complexity. 
Here, we briefly describe a synthesis of the sliding mode 
control law for MIMO robot systems analog to the second 
type algorithm related to SISO systems as it was explained in 
[33].  

Consider a general dynamic system described by 

 ( ) ( ) ( ) ( )[ ]( )
,

1

1, 2,...,

i
m

r
i i ij ij ji

j

x f x f x g x g x u

i n
=

= + + +

=

∑  (37) 

Where 

 ( 1) ( 1) ( 1)
1 1 2 21 2... , ... , ..., ...

Tn n n
n n nx x x x x x x x x− − −⎡ ⎤= ⎣ ⎦x  (38) 

is the state vector of the entire system, ir  is the order of the 
i th subsystem, ( )if x  and ( )ijg x  are the scalar functions of 
the state vector describing the nominal (known) part of the 
dynamics, ( )if x  and ( )ijg x  are the bounded uncertainties on 
these functions and the inputs ju  are the manipulated 
variables. This system of equations can be rewritten 
compactly as 

 ( ) ( ) ( ) ( )x f x f x G x G x u⎡ ⎤= + + +⎣ ⎦  (39) 

where ( )f x  and ( )f x  are 
1

1n
ii

r
=

×∑  dimensional vectors 

and ( )G x  and ( )G x  are 
1

n
ii

r n
=

×∑  dimensional matrices, 

having the control vector given with [ ]1 2 ... T
nu u u u= . The 

designer has the nominal process dynamics given by 

 ( ) ( )[ ]x f x G x u= +  (40) 

The standard approach for the design of a sliding mode 
controller entails a switching function defined as 

 [ ] ( )1 2 ... T
n ds s s s x x= = Λ −  (41) 

Where 

 ( 1) ( 1) ( 1)
1 1 2 21 2... , ... ,..., ...

Tn n n
d d d d d dn dnd d dnx x x x x x x x x− − −⎡ ⎤= ⎣ ⎦x  (42) 

is the vector of desired states and the locus described by 0s =  
corresponds to the sliding manifold or the switching 
hypersurface. The entries of Λ  are chosen such that the i th 
component of the switching manifold has the structure 

 ( )( )
( )

1
, 1, 2,...

ir

i i i di
ds x x i ndt λ

−
= + − =  (43) 

where 0iλ > . Setting the control vector as  
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 ( )[ ] ( )[ ] ( )[ ] ( )1 1 sgndu G x f x x G x Q s− −= − Λ Λ − − Λ  (44) 

where Q  is a positive-definite diagonal matrix chosen by the 

designer provided that the inverse ( )[ ] 1G x −Λ  exists. 
Choosing a the Lyapunov function candidate as  

 ( ) 1
2

TV s s s=  (45) 

we get the equality 

 ( ) ( )[ ] ( )sgn(s) ds PQ P I x f x f x= − + − Λ − − Λ  (46) 

with ( )( ) 1:P G G G −= Λ + Λ  which is very close to the identity 

matrix. If one sets SMCU u=  then the system enters the sliding 
mode after a reaching phase. The expression in (43) can be 
interpreted as follows: 
- If there are no uncertainties, parameter perturbations, i.e. 

when 0f =  and 0G = , then (s)s Qsgn= − , and 0Ts s <  
is satisfied for any positive-definite Q . In this case,  
P I=  and this result is straightforward. 

- If only 0G =  we obtain ( )sgn(s)s Q f x= − + Λ  and 

0Ts s <  is satisfied if Q  is a positive-definite diagonal 
matrix and the i th entry in the diagonal of Q  is greater 

than the supremum value of the i th row of fΛ . In this 

case, P I= , too. 
- In the most general case, where neither 0f =  nor 0G = , 

the expression in (43) is obtained. In this case, depending 
on the uncertainties influencing the input gains ( G ), the 

matrix P  is very close to the identity matrix, and utilizing 
the uncertainty bounds, the matrix Q  can be chosen such 

that the sign of s  is preserved and 0Ts s < is satisfied.  
It could be therefore concluded that in the case of MIMO 

systems, with an appropriate choice of the matrix Q , 0Ts s <  
can be obtained for 0s >  and this result indicates that the 
error vector defined by the difference dx x−  is attracted by 
the subspace characterized by 0s =  and moves towards the 
origin according to what is prescribed by 0s = . 

The motion during 0≠s  is called the reaching mode, 
whereas the motion when 0s =  is called the sliding mode. 
During the latter, dynamic mode, the closed loop system 
exhibits certain degrees of robustness against the modeling 
uncertainties; yet, the system is sensitive to noise as the sign 
of a quantity that is very close to zero determines the control 
action heavily. It is straightforward to show that a hitting time 
for the i -th subsystem satisfies the inequality 

(0) /di i iit s Q≤ . 

Example of the application of the sliding mode 
control law on a given robotic system  

Here we present the results of the application of a recently 
considered algorithm (44). The robotic system in the 
necessary form can be described as  

 ( ) ( ) ( )[ ] ( )1 1
0

,, ( )
q

f x G xA q C q q Fq A q− −
⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦

 (47) 

where T T Tx q q⎡ ⎤= ⎣ ⎦  is adopted for the state vector and the 
block diagram for the considered system becomes [34,35].  

 

Figure 10. Block diagram for a sliding mode control system – classic approach 
 
Choosing the λ  parameters of a sliding surface, we can 

adjust (tune) the system performance in the sliding mode, as 
well as the hitting time (speed of convergence).  

Although arbitrarily large values of λ  are allowed, 
application practice is much different since the actuator 
presence causes some constraints on a possible choice of 
parameters. The best practice shows that above some critical 
λ  values, the system response becomes much worse.  

The conducted experiments on the perturbed system 
dynamic model resulted in the maximum values of 

1 28, 3λ λ= = , and 3 3λ = , provided that the system keeps 
the desired response characteristics. It is decided to set the 
following values of parameters  
 1 2 35, 3, 3λ λ λ= = = , (48) 

to achieve a higher degree of robustness against the parameter 
perturbations and modeling uncertainties. Taking the most 
general case where 0f ≠  and 0G ≠ , we vary (perturb) 
model parameters from 5% to 50% depending on real values 
expectations, and obtain the following estimation (close 
approximation) for the required matrix Q  (done in MATLAB 
by an appropriate software code) 

 (50.8917 51.4562 61.1698)Q diag=  (49) 

Moreover, it is chosen to set Q  as  

 (100 100 100)Q diag=  (50) 

to be able to compensate the maximum parameter 
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perturbations and potential disturbances at the input of the 
object. The related simulation results are presented as follows. 
First, there are  the nominal object responses with a relay type 
switching part of the control algorithm. 

response of the nominal system 
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Figure 11. Nominal system response using the sgn(s) function for a switching 
part of the control law 

Taking a look into the plots reveals that the chattering 
problem occurs as expected using the function (.)sgn . It 
happens although small gains (5 5 5)Q diag=  were used, 
which is possible because in this case we conduct experiments 
on the nominal system. There is a noticeable presence of fast 
variations in the control signal and output signal oscillations. 
For larger coefficient values, there are worse (lower quality) 
responses. Hence it is decided to use the function (.)sat  as 
an approximation of the function (.)sgn  for a switching part 
of the control algorithm. For the same gains as previously and 
the boundary layer 0.1ε = , the results are as follows  

response of the nominal system 
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Figure 12. Nominal system response using the sat(.) function for a switching 
part of the control algorithm 

It can be observed from figures that, in this case, output 
signals do not oscillate anymore, there is no previously 
present steady state error and the control signal is no more fast 
varying (alternating).  

In Fig.13 we have shown the perturbed system responses 
with added disturbances on the process input. The following 
values were chosen 0.5ε =  and (100 100 400)Q diag=  as a 
result of a compromise (trade-off) between obtaining a small 
steady state error and avoiding high magnitudes of the control 
signal. The disturbances [ ]8 8 8Td = −

 
are set as 20%  of 

the allowed control signal amplitudes and their duration of 
application is [ ]4 6 6Tt s s s= . 

response of the perturbed system 
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Figure 13. Perturbed system response in the presence of input disturbance  

Considering the response graphics, it can be concluded that 
the transition phase quality is not degraded despite huge input 
disturbance and parameter perturbations. The steady state 
error of 1.5 permille of a desired value for the first output, 8 
permille for the second and 16 for the third are considerably 
decreased comparing to the PD control law of the feedback 
lineralized system (see [34]). It can be observed also that the 
control signals have certain oscillations which could not be 
avoided providing that the accuracy requirement is still 
satisfied.  

Finally, we present the results of the reference tracking 
task. The reference is of a sinusoidal type and the system 
again perturbed with the presence of input disturbances of the 
same type as a desired value but with an amplitude of 10% of 
the maximum control signal magnitude, and a frequency of 

5 /rad sω =  five times bigger than the frequency of the 
reference signal.  

The chosen controller parameters are 0.2ε =  and 
(50 50 100)Q diag= .  

response of the perturbed system in the presence of distrubance 
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Figure 14. Perturbed system. Reference tracking in the presence of input 
disturbance  

From the graphics, (response of the perturbed system in the 
presence of distrubance,Fig.14) we can observe very good 
reference tracking with overshoots in the amplitudes of 1 to 5 
permille and negligible delay time, with in the same time 
control signals without fast oscillations.  

In the end, one can observe that the considered control 
algorithm has successfully managed to compensate both input 
disturbances and parameter perturbations.  

Conclusion 
In this paper, the problem of designing robust variable 

structure control and sliding mode planes has been considered 
for three DOF robotic systems driven by DC motors. It is 
particularly proved, using the simulation results, that it is fully 

justified to use the proposed model of robots with actuators 
and neglected inductance. Primarily, a conventional sliding 
mode controller based on a PD sliding surface is designed. 
There are shown the nominal object responses with the 
function sgn(.)) as a relay type switching part of the control 
algorithm and then with the function (.)sat . 

The simulation procedure has been carried out to show the 
proposed control system's robustness properties as well as the 
significance of the proposed control which resulted in 
reducing output oscillations (chattering-free) of the given 
robot.  Also, the numerical simulations are obtained and they 
presented the robustness of the proposed sliding mode control 
opposite the parameter perturbations, modeling uncertainties 
and the external perturbation signals. 

Finally, the simulation results discussed in the paper 
confirm the feasibility and effectiveness of the proposed 
approach - sliding mode control for MIMO nonlinear 
uncertain systems. 
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Upravljanje u režimu klizanja kretanjem robotskog sistema sa tri 
stepena slobode pogonjen jednosmernim motorima 

U ovom radu, predloženo je upravljanje u kliznom režimu kretanjem  robotskog sistema sa 3 stepena slobode pogonjen 
jednosmernim motorima. Prvenstveno je projektovan  kontroler u kliznom režimu i koji je baziran na PD kliznoj površi. 
Numeričke simulacije su sprovedene  sa ciljem ilustrovanja osobina robusnosti predloženog sistema upravljanja kao i značaja 
smanjenja izlaznih oscilacija chattering-free datog robotskog sistema. Konačno, simulacioni primer pokazuje  izvodljivost i 
efikasnost  predloženog pristupa. 

Ključne reči: roboti, robotizovani sistem, teorija upravljanja, upravljanje u režimu klizanja, nelinearni sistem. 

Управление в скользящем режиме движением роботизированной 
системы с тремя степенями свободы с приводом двигателями 

постоянного тока 
В данной работе предлагается, чтобы управлять в скользящем режиме движением роботизированной системы с 3 
степенями свободы с приводом двигателями постоянного тока. Это в первую очередь значит, что предназначен 
контроллер в скользящем режиме и он основан на ПД поверхности скольжения. Численное моделирование 
проводилось для иллюстрации надёжности характеристик предлагаемой системы управления, а также и важности 
сокращения выходных колебаний chattering-free данной роботизированной системы. Наконец, пример 
моделирования показывает целесообразность и эффективность предложенного подхода. 

Ключевые слова: роботы, роботизированная система, теория управления, управление в скользящем режиме, 
нелинейная система. 

Contrôle dans le régime de glissement chez le système robotique à 
trois degrés de liberté propulsé par les moteurs à courant continu  

Dans ce papier on propose le contrôle dans le régime de glissement chez le système robotique à trois degrés de liberté propulsé 
par les moteurs à courant continu. On a conçu principalement le contrôleur dans le régime de glissement qui est basé sur la 
surface glissante PD. Les simulations numériques ont été réalisées dans le but d’illustrer les propriétés de robustesse chez le 
système proposé de contrôle ainsi que pour la signification des réductions des oscillations sortantes «chattering-free» du 
système robotique donné. Finalement l’exemple de simulation démontre la faisabilité et l’efficacité de l’approche proposée.  

Mots clés: robots, système robotisé, théorie de contrôle, contrôle dans le régime de glissement, système non linéaire. 
 


