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a b s t r a c t

Micchelli and Sharma constructed in their paper [On a problem of Turán: multiple
node Gaussian quadrature, Rend. Mat. 3 (1983) 529–552] a quadrature formula for the
Fourier–Chebyshev coefficients, which has the highest possible precision. For analytic
functions the remainder term of this quadrature formula can be represented as a contour
integral with a complex kernel. We study the kernel, on elliptic contours with foci at the
points ∓1 and a sum of semi-axes ρ > 1, for the quoted quadrature formula. Starting
from the explicit expression of the kernel, we determine the location on the ellipses where
the maximummodulus of the kernel is attained, and derive effective error bounds for this
quadrature formula. Numerical examples are included.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and preliminary

Let ω be a weight function (integrable, non-negative function on [a, b] that vanishes only at isolated points). Recently,
Bojanov and Petrova [1] have considered quadrature formulas of the type b

a
ω(t)Pk(t)f (t) dt ≈

n
j=1

νj−1
i=0

cjif (i)(xj), a < x1 < · · · < xn < b, (1.1)

where νj are given natural numbers (multiplicities) and Pk(t) is a monic polynomial of degree k. A number ℓ is the algebraic
degree of precision (ADP) of (1.1) if (1.1) is exact for all polynomials of degree ℓ and there is a polynomial of degree ℓ+1 for
which this formula is not exact. By e(ν) is denoted the smallest non-negative even integer ≥ ν (clearly e(ν) = 0 for ν ≤ 0),
and by σ(Pk) the number of zeros of Pk in (a, b) with odd multiplicities. It is easy to see that the ADP (1.1) does not exceed

e(ν1 − τ1) + · · · + e(νn − τn) + σ(Pk) − 1,

since the formula is not exact for the polynomial

(t − x1)e(ν1−τ1) · · · (t − xn)e(νn−τn)(t − t1) · · · (t − tm),

where m = σ(Pk), t1, . . . , tm ∈ (a, b), are the zeros of Pk with odd multiplicities, τi := 1 if xi ∈ {t1, . . . , tm} and τi := 0
otherwise.
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In [1], for the sake of convenience, Bojanov and Petrova defined the formula (1.1) to be Gaussian if it has maximal ADP,
that is if

ADP(1.1) = e(ν1 − τ1) + · · · + e(νn − τn) + σ(Pk) − 1.

A complete characterization of the Gaussian formulas of form (1.1) and explicit construction of such formulas in several
particular cases are given in [1], and later in [2].

Let

πn(R) :=


P(t) : P(t) =

n
k=0

dktk, dk ∈ R


represent the space of all polynomials in one variable of degree at most n. Bojanov and Petrova [1, Section 2] discuss general
remarks concerning Gaussian quadrature formulas with multiple nodes, since the study of formulas of type (1.1) for Fourier
coefficients can be reduced to the study of standardmultiple node quadratures.We repeat the following theoremestablished
by Ghizzetti and Ossicini [3].

Theorem 1.1. For any given set of odd multiplicities ν1, . . . , νn(νj = 2sj + 1, sj ∈ N0, j = 1, . . . , n), there exists a unique
quadrature formula of the form b

a
ω(t)f (t) dt ≈

n
j=1

νj−1
i=0

ajif (i)(xj), a ≤ x1 < · · · < xn ≤ b, (1.2)

of ADP = ν1 + · · · + νn + n − 1, which is well known as the Chakalov–Popoviciu quadrature formula (see [4,5]). The nodes
x1, . . . , xn of this quadrature are determined uniquely by the orthogonal property b

a
ω(t)

n
k=1

(t − xk)νkQ (t) dt = 0, ∀Q ∈ πn−1(R).

The corresponding (monic) orthogonal polynomial
n

k=1(t − xk) is known as the σ -orthogonal polynomial, with σ =

(s1, . . . , sn).
Quadratures of type (1.2) with equal multiplicities ν1 = · · · = νn = ν, with ν being an odd number (ν = 2s+ 1, s ∈ N),

have been studied by Turán [6]. In this case, the Gaussian quadrature is called the Gauss–Turán quadrature of type ν (=
2s + 1), and the corresponding (monic) orthogonal polynomial

n
k=1(t − xk) is called the s-orthogonal polynomial.

Bojanov and Petrova [1] describe the connection between quadratures with multiple nodes and formulas of type (1.1).
For the system of nodes x := (x1, . . . , xn) with corresponding multiplicities ν̄ := (ν1, . . . , νn), they define the polynomials

Λ(t; x) :=

n
m=1

(t − xm), Λj(t; x) :=
Λ(t; x)
t − xj

, Λν̄(t; x) :=

n
m=1

(t − xm)νm ,

set x
νj
j := (xj, . . . , xj) [xj repeats νj times], j = 1, . . . , n, by g[xν1

1 , . . . , xνm
m ] denote the divided difference of g at the points

xν1
1 , . . . , xνm

m , and state and prove the following important theoremwhich reveals the relation between the standard quadra-
tures and the quadratures for Fourier coefficients.

Theorem 1.2. For any given sets of multiplicities µ̄ := (µ1, . . . , µk) and ν̄ := (ν1, . . . , νn), and nodes y1 < · · · < yk, x1 <
· · · < xn, there exists a quadrature formula of the form b

a
ω(t)Λµ̄(t; y)f (t) dt ≈

n
j=1

νj−1
i=0

cjif (i)(xj), (1.3)

with ADP = N if and only if there exists a quadrature formula of the form b

a
ω(t)f (t) dt ≈

k
m=1

µm−1
λ=0

bmλf (λ)(ym) +

n
j=1

νj−1
i=0

ajif (i)(xj), (1.4)

which has degree of precision N + µ1 + · · · + µk. In the case ym = xj for some m and j, the corresponding terms in both sums
combine in one term of the form

µm+νj−1
λ=0

dmλf (λ)(ym).
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1.1. Numerical construction

Let us suppose that the coefficients aji (j = 1, . . . , n; i = 0, . . . , νj − 1) in (1.4) are known. By acting as in the first
part of the proof of Theorem 2.1 in [1] we can determine the coefficients cji (j = 1, . . . , n; i = 0, . . . , νj − 1) in (1.3).
Namely, applying (1.4) to the polynomial Λµ̄(·; y)f , where f ∈ πN(R), the first sum in (1.4) vanishes and we can obtain (see
[1, Eq. (2.4)]) b

a
ω(t)Λµ̄(t; y)f (t) dt =

n
j=1


νj−1
i=0

aji

Λµ̄(t; y)f (t)

(i) t=xj


=

n
j=1

νj−1
i=0

cjif (i)(xj),

where

cji =

νj−1
s=i

ajs
 s
i

 
Λµ̄(t; y)

(s−i) t=xj (j = 1, 2, . . . , n; i = 0, 1, . . . , νj − 1). (1.5)

2. On the Micchelli–Sharma quadrature formula

In [7], for every s > 0, Micchelli and Sharma constructed amultiple node formula for the Fourier–Chebyshev coefficients
of a function f of the form 1

−1

1
√
1 − t2

Tn(t)f (t) dt ≈

s
j=0


Ajf (j)(−1) + Bjf (j)(1)


+

n−1
j=1

2s
i=0

ajif (i)(xj), (2.1)

with ADP (2.1) = (2s + 3)n − 1, which has the highest possible precision. The nodes of their formula are located at the
extremal points −1, η̃1, . . . , η̃n−1, 1 of the Chebyshev polynomial of first kind Tn. Note that {η̃j}

n−1
j=1 are also the zeros of the

Chebyshev polynomial of second kind Un−1. The uniqueness of the formula (2.1) has been proved by Bojanov and Petrova
(see [1, Th. 2.6]).

The Micchelli–Sharma quadrature formula (2.1) can be represented in the form (see [7,1]) 1

−1

1
√
1 − t2

Tn(t)f (t) dt ≈
π

2n


M1[f ] + 2

s
j=1

(−1)j jaj
j + 1

M2j+1[f ]


, (2.2)

where aj are defined by their generating function
∞
j=0

jajt j =
1
2


1 − 4−n+1t

−1/2
− 1


,

and

M1[f ] = f

−1, η̃1, . . . , η̃n−1, 1


,

M2j+1[f ] = f

(−1)j+1, η̃

j
1, . . . , η̃

j
n−1, 1

j+1

, j = 1, . . . , s.

By using the proposed numerical method in Section 1.1 theMicchelli–Sharma quadrature formula (2.1) can be calculated
from the quadrature formula (see [1, proof of Th. 2.6]) 1

−1
(1 − t2)1/2+s f (t) dt ≈

n−1
j=1

αjif (i)(xj) +

n
j=1

αjf (ξj).

Here, we use the form (2.2) of the Micchelli–Sharma quadrature formula and calculate it as follows.
Let

x0 := −1, xj := η̃j, j = 1, . . . , n − 1, xn := 1,

then we have (see [8])

M1[f ] = f [x0, x1, . . . , xn−1, xn] =

n
k=0

f (xk)
u′(xk)

,

where u(t) = (t − x0)(t − x1) · · · (t − xn), and

M2j+1[f ] = f

xj+1
0 , xj1, . . . , x

j
n−1, x

j+1
n


=

(Wf )

xj+1
0 , xj1, . . . , x

j
n−1, x

j+1
n


V

xj+1
0 , xj1, . . . , x

j
n−1, x

j+1
n

 , j = 1, . . . , s,
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where (M := (n + 1)j)

(Wf )

xj+1
0 , xj1, . . . , x

j
n−1, x

j+1
n



=



1 x0 . . . xj0 . . . xM−1
0 f (x0)

0 1 . . . jxj−1
0 . . . (M − 1)xM−2

0 f ′(x0)
...

0 0 . . . j! . . . (M − 1)(M − 2) · · · (M − j)xM−j−1
0 f (j)(x0)

1 x1 . . . xj−1
1 . . . xM−1

1 f (x1)
0 1 . . . (j − 1)xj−2

1 . . . (M − 1)xM−2
1 f ′(x1)

...

0 0 . . . (j − 1)! . . . (M − 1)(M − 2) · · · (M − j + 1)xM−j
1 f (j−1)(x1)

...

1 xn . . . xjn . . . xM−1
n f (xn)

0 1 . . . jxj−1
n . . . (M − 1)xM−2

n f ′(xn)
...

0 0 . . . j! . . . (M − 1)(M − 2) · · · (M − j)xM−j−1
n f (j)(xn)



,

and

V

xj+1
0 , xj1, . . . , x

j
n−1, x

j+1
n



=



1 x0 . . . xj0 . . . xM0
0 1 . . . jxj−1

0 . . . MxM−1
0

...

0 0 . . . j! . . . M(M − 1) · · · (M − j + 1)xM−j
0

1 x1 . . . xj−1
1 . . . xM1

0 1 . . . (j − 1)xj−2
1 . . . MxM−1

1
...

0 0 . . . (j − 1)! . . . M(M − 1) · · · (M − j + 2)xM−j+1
1

...

1 xn . . . xjn . . . xMn
0 1 . . . jxj−1

n . . . MxM−1
n

...

0 0 . . . j! . . . M(M − 1) · · · (M − j + 1)xM−j
n



.

3. The remainder term of Micchelli–Sharma quadrature formulas for analytic functions

Let Γ be a simple closed curve in the complex plane surrounding the interval [−1, 1] and D be its interior. Suppose f
is an analytic function in D and continuous on D . If we know values of the function f and of the first derivative f ′ of f in
the nodes −1, x1, x2, . . . , xn−1, 1 of the interval [−1, 1], then the residue of Hermite interpolation of the function f can be
written in the form (see Gončarov [9])

rn,s(f ; t) = f (t) −

s
j=0


aj(t)f (j)(−1) + bj(t)f (j)(1)


−

n−1
ν=1

2s
i=0

ℓi,ν(t)f (i)(xν)

=
1

2π i


Γ

f (z)Ωn,s(t)
(z − t)Ωn,s(z)

dz, (3.1)

where aj, bj, ℓi,ν are the fundamental functions of Hermite interpolation and

Ωn,s(z) = (1 − t2)s+1
n−1
ν=1

(z − xν)
2s+1

= (1 − t2)s+1 (Un−1(z))2s+1 .
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If we choose xν to be the zeros of the Chebyshev polynomial of the second kind, i. e., xν = ξν , by multiplying (3.1) with
ω(t)Tn(t), where ω(t) = 1/

√
1 − t2, and integrating in t over (−1, 1), we get a contour integral representation of the

remainder term in (2.1), i. e., (2.2),

Rn,s(fTn) =

 1

−1
rn,s(f ; t)ω(t)Tn(t)dt =

 1

−1
f (t)ω(t)Tn(t)dt −

s
j=0


Ajf (j)(−1) + Bjf (j)(1)


−

n−1
ν=1

2s
i=0

ai,ν f (i)(xν),

where

Aj =

 1

−1
aj(t)Tn(t)ω(t)dt, Bj =

 1

−1
bj(t)Tn(t)ω(t)dt, ai,ν =

 1

−1
ℓi,ν(t)Tn(t)ω(t)dt.

Finally, we get the representation

Rn,s(fTn) =
1

2π i


Γ

Kn,s(z)f (z)dz, (3.2)

where the kernel is given by

Kn,s(z) =
ρn,s(z)

(1 − z2)s+1U2s+1
n−1 (z)

, (3.3)

and

ρn,s(z) =

 1

−1

(1 − t2)s+1/2

z − t
U2s+1
n−1 (t)Tn(t)dt. (3.4)

The integral representation (3.2) leads to the error boundRn,s(fTn)
 ≤

ℓ(Γ )

2π


max
z∈Γ

|Kn,s(z)|


max
z∈Γ

|f (z)|


, (3.5)

where ℓ(Γ ) is the length of the contour Γ .
In many papers error bounds |R(f )| of interpolatory quadrature formulas, where f is an analytic function, are considered.

Two choices of the contour Γ have been widely used:

• a circle Cr with a center at the origin and a radius r (> 1), i. e., Cr = {z| |z| = r}, r > 1, and
• an ellipse Eρ with foci at the points ∓1 and a sum of semi-axes ρ > 1,

Eρ =


z ∈ C | z =

1
2


u + u−1 , 0 ≤ θ ≤ 2π


, u = ρ eiθ . (3.6)

When ρ → 1 the ellipse shrinks to the interval [−1, 1], while with increasing ρ it becomes more and more circle-like.
The advantage of the elliptical contours, compared to the circular ones, is that such a choice needs the analyticity of f in a
smaller region of the complex plane, especially when ρ is near 1.

In this paper we take Γ = Eρ .

4. Error bounds based on the analysis of maximum of the modulus of the kernel of the Micchelli–Sharma quadrature
formula

We have from (3.4), by substitution t = cos θ ,

ρn,s(z) =

 π

0


sin2s+1 nθ cos nθ sin θ


z − cos θ

dθ.

On the basis of the formula from [10], we deduce

ρn,s(z) =
1
22s

 π

0

s
k=0

(−1)s−k


2s+1
k


sin(2s + 1 − k)nθ

z − cos θ
cos nθ sin θdθ

=
1

22s+1

 π

0

s
k=0

(−1)s−k


2s+1
k


(sin(2s − 2k)nθ + sin(2s − 2k + 2)nθ)

z − cos θ
sin θdθ
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=
1

22s+1

 π

0

s−1
k=−1

(−1)s−k


2s+1
k


−


2s+1
k+1


sin(2s − 2k)nθ

z − cos θ
sin θdθ

=
1

22s+2

 π

0

1
z − cos θ

s−1
k=−1

(−1)s−k


2s + 1
k


−


2s + 1
k + 1


× (cos((2s − 2k)n − 1)θ − cos((2s − 2k)n + 1)θ) dθ

=
π

√
z2 − 1

1
22s+2

s−1
k=−1

(−1)s−k


2s + 1
k


−


2s + 1
k + 1


×


z −


z2 − 1

(2s−2k)n−1
−


z −


z2 − 1

(2s−2k)n+1


,

where we have used (see, for example, [11]) π

0

cosmθ

z − cos θ
dθ =

π
√
z2 − 1


z −


z2 − 1

m
, m ∈ N0.

Substituting z =
1
2 (u + u−1) (u = z +

√
z2 − 1), and using

Tn(z) =

un

+ u−n /2, Un−1(z) =
un

− u−n

u − u−1
, (4.1)

we get

Kn,s(z) =

π
1
2 (u−u−1)

1
22s+2

s−1
k=−1

(−1)s−k


2s+1
k


−


2s+1
k+1

 
u−(2s−2k)n+1

− u−(2s−2k)n−1


 1
2 (u − u−1)

2s+2


un−u−n

u−u−1

2s+1

=

2π
s−1

k=−1
(−1)s−k


2s+1
k


−


2s+1
k+1


u−(2s−2k)n

u − u−1

(un − u−n)2s+1 .

If we use the usual notation (see [11])

aj = aj(ρ) =
1
2
(ρ j

+ ρ−j), j ∈ N (ρ > 1),

when u = ρeiθ , we have s−1
k=−1

(−1)s−k


2s + 1
k


−


2s + 1
k + 1


u−(2s−2k)n


2

=


s−1

k=−1

(−1)s−k


2s + 1
k


−


2s + 1
k + 1


ρ−(2s−2k)n cos((2s − 2k)nθ)

2

+


s−1

k=−1

(−1)s−k


2s + 1
k


−


2s + 1
k + 1


ρ−(2s−2k)n sin((2s − 2k)nθ)

2

= a,

u − u−1
2 = 2b,

un
− u−n

2 = 2c,

where

b = a2 − cos 2θ, c = a2n − cos 2nθ,

and

|Kn(z)| =
π

2s
·


a

bc2s+1
. (4.2)

Now we can formulate the main statement.
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Theorem 4.1. For each fixed n, s ∈ N there exists ρ0 = ρ0(n, s) such that

max
z∈Eρ

Kn,s(z)
 =

Kn,s


1
2
(ρ + ρ−1)

 ,
for each ρ > ρ0.

Proof. Using (4.2), we need to show the inequality

a
bc2s+1

≤
A

BC2s+1
,

i. e.,

I = aBC2s+1
− Abc2s+1

≤ 0

for each ρ greater than some ρ0 = ρ0(n, s), where A, B, C are the values of a, b, c at θ = 0. The expression I = I(ρ) is a
rational expression of ρ and it will be negative for enough large ρ if and only if its coefficient which multiplies the highest
degree of ρ is negative. This coefficient is equal to

1
22s+1


2s + 1

s


−


2s + 1
s − 1

2

(cos 2θ − 1)

and it is obvious negative for θ ∈ (0, π). �

We are particularly interested in the cases when ρ0 is close to its actual value, which is close to 1. Numerical experiments
show that for all n, s the corresponding values of ρ0(n, s) are very close to 1, in the most cases they are less than 1.001.

In the expression I(ρ), the lowest degree of ρ, which it contains, is equal to −(4s + 3)n − 2. This means that J(ρ) =

ρ(4s+3)n+2I(ρ) is a polynomial of ρ, i.e.

J = J(ρ) =

d
i=0

ai(θ)ρ i, (4.3)

where d = deg(J) = (12s + 4)n + 2.
From the practical point of view we are interested in the precise determination of ρ0. If we want to get that J is non-

positive for each ρ greater than ρ∗
= ρ∗(n, s), we can rewrite this polynomial as a polynomial of ρ − ρ∗, i.e.

J(ρ) =

d
i=0

bi(θ)(ρ − ρ∗)i, (4.4)

for some other coefficients b0, b1, . . . , bd which are trigonometric functions of θ again, i. e., bi = bi(θ), i = 0, 1, . . . , d. It is
enough to show that they are non-positive whenever θ belongs to [0, 2π ]. It is obvious that those functions are π-periodic
because they are constructed by applying elementary arithmetic operations on functions of the form cos 2kθ , where k is
an integer. Moreover, the graphs of those functions are symmetric with respect to the line x = π/2. Because of that, it is
enough to consider the corresponding graphs on the interval (0, π/2).

In general, it is very complicate to express explicitly the coefficients ai(θ), i = 0, 1, . . . , d, from (4.3) (their expressions
are very long), especially the coefficients bi(θ), i = 0, 1, . . . , d, from (4.4). We can get the formulas for explicitly expressing
the coefficients bi(θ), i = 0, 1, . . . , d, in functions of the coefficients aj(θ), j = 0, 1, . . . , d, by using the binomial formula,
but for numerical calculation it is more practical to do it step by step by using the well known Horner scheme.

Using this method, we get that for all n, s all the coefficients bi(θ), i = 0, 1, . . . , d become non-positive for each ρ∗ > 1.
We have been calculating ρ0 with two significant decimal digits, so ρ0 = 1.01.

5. Numerical results

The length of the ellipse (3.6) can be estimated by (see [12, Eq. (2.2)],

ℓ(Eρ) ≤ 2πa1


1 −

1
4
a−2
1 −

3
64

a−4
1 −

5
256

a−6
1


, (5.1)

where a1 = (ρ + ρ−1)/2 and then (3.5) gets the form

Rn,s(fTn)
 ≤

π

2s
·


A

BC2s+1
· a1


1 −

1
4
a−2
1 −

3
64

a−4
1 −

5
256

a−6
1


max
z∈Eρ

|f (z)|


. (5.2)
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Table 5.1
The values of e3,s(f1T3), e3,s(f2T3) for s = 1, 2, 3.

s Error e3,s(f1T3) Error e3,s(f2T3)

1 6.562(−1) 7.715(+0) 1.489(−16) 1.458(−15)
2 4.449(−4) 5.700(−3) 1.483(−25) 1.712(−24)
3 7.253(−8) 1.011(−6) 3.036(−35) 3.970(−34)

Table 5.2
The values of e7,s(f0T7), e7,s(f1T7), e7,s(f1T7) for s = 1, 2.

s Error e7,s(f0T7) Error e7,s(f1T7) Error e7,s(f1T7)

1 8.891(−4) 1.530(−2) 3.521(−15) 5.443(−14) 1.782(−50) 2.650(−49)
2 1.839(−12) 3.491(−11) 7.545(−28) 1.354(−26) 4.610(−77) 8.105(−76)

Since Eρ (ρ > 1) shrinks to the interval [−1, 1] as ρ tends to 1+, there exists a maximal parameter ρmax such that f is
analytic inside Eρ for ρ0 < ρ < ρmax. Now, from (5.2) one can obtain the error boundRn,s(fTn)

 ≤ en,s(fTn), (5.3)

where

en,s(fTn) = inf
ρ0<ρ<ρmax


π

2s
·


A

BC2s+1
· a1


1 −

1
4
a−2
1 −

3
64

a−4
1 −

5
256

a−6
1


max
z∈Eρ

|f (z)|


.

Example 1. Let us consider the integral

I(f ) =

 1

−1

1
√
1 − t2

f (t) T3(t) dt,

in which we have fixed n = 3, where T3(t) = 4t3 − 3t .
In the case when f (t) = f1(t) = e10t its exact value is equal to

I(f1) = 5524.115941518612650 . . . (+0),

and in the case when f (t) = f2(t) = et its exact value is equal to

I(f2) = 0.6964416088393797288074950433986415366353 . . . (−1).

By ‘‘Error’’ we denote the actual (sharp) error of calculating the corresponding integral by the quadrature formula (2.2).
In Table 5.1 the error bounds of type (5.3), when s = 1, 2, 3, are displayed.

Example 2. Let us consider the integral

I(f ) =

 1

−1

1
√
1 − t2

f (t) T7(t) dt,

in which we have fixed n = 7, where T7(t) = 64t7 − 112t5 + 56t3 − 7t .
In the case when f (t) = f0(t) = e20t its exact value is equal to

I(f0) = 39467431.6804759993964555 . . . (+0),

in the case when f (t) = f1(t) = e10t its exact value is equal to

I(f1) = 747.7794284980112467528680420352411 . . . (+0),

and in the case when f (t) = f2(t) = et its exact value is equal to

I(f2) = 0.50240922466279101524873837 . . . (−5).

In Table 5.2 the error bounds of type (5.3), when s = 1, 2, are displayed.
In the examples we have done numerical experiments with increased accuracy. This includes symbolic versions of OPQ

routines currently available in the toolbox from Gautschi [13] (see also [14]). The exact values of I(f ) were evaluated by the
Gauss–Chebyshev quadrature formula of the first kind for the integrands fT3 and fT7.
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