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Iterative Learning Control of Integer and Noninteger Order:  
an Overview 

Mihailo Lazarević1) 

This paper provides an overview of the recently presented and published results relating to the use of iterative learning 
control (ILC) based on and integer and fractional order. ILC is one of the recent topics in control theories and it is a powerful 
control concept that iteratively improves the behavior of processes that are repetitive in nature. ILC is suitable for controlling 
a wider class of mechatronic systems - it is especially suitable for motion control of robotic systems that attract and hold an 
important position in biomechatronical, technical systems involving the application, military industry, etc. The first part of the 
paper presents the results relating to the application of higher integer order PD type ILC with numerical simulation. Also, 
another integer order ILC scheme is proposed for a given robotic system with three degrees of freedom for task-space 
trajectory tracking where the effectiveness of the suggested control is demonstrated through a simulation procedure. In the 
second part, the results related to the application of the fractional order of ILC are presented where PDα type of ILC is 
proposed firstly, for a fractional order linear time invariant system. It is shown that under some sufficient conditions which 
include  the learning operators, convergence of the learning system can be guaranteed. Also, PI Dβ α  type of ILC is suggested 
for a fractional order linear time delay system. Finally, sufficient conditions for the convergence in the time domain of the 
proposed ILC were given by the corresponding theorem together with its proof. 

Key words: theory of control, iterative learning control, learning control, integer order, fractional order, robotic system, 
overview. 
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Introduction 
N the classical control theory, state feedback and output 
feedback are two important techniques in system control. In 

recent years, there has been a great deal of study to overcome 
limitations of conventional controllers against uncertainty due 
to inaccurate modeling and/or parameter variations. 
Particularly, in many motion control tasks, it is usually 
required to follow a trajectory repeatedly where conventional 
control algorithms do not take advantage of the repetitiveness. 
Iterative learning control (ILC) is one of the recent topics in 
control theories and it is a powerful control concept that 
iteratively improves the behavior of processes that are 
repetitive in nature[1, 2]. ILC is an effective technique that 
attempts to achieve a perfect output tracking of systems with 
repetitive nature over a finite time interval. ILC is a simple 
and effective control technique and can progressively reduce 
tracking errors and improve system performance from 
iteration to iteration. The ILC approach is more or less an 
imitation of the learning process of every intelligent being. 
Intelligent beings tend to learn by performing a trial (i.e. 
selecting a control input) and observing what was the end 
result of this control input selection. After that, they try to 
change their behavior in order to get an improved 
performance during the next trial. Emulating human learning, 
ILC uses knowledge obtained from the previous trial to adjust 
the control input for the current trial so that a better 
performance can be achieved. Namely, ILC is a trajectory 
tracking improvement technique for control systems, which 
can perform the same task repetitively in a finite time interval 
to improve the transient response of a system using the 
previous motion. ILC incorporates past control information 

such as tracking errors and their corresponding control input 
signals into constructing the present control action. Therefore, 
ILC requires less a priori knowledge about the controlled 
system in the controller design phase and also less 
computational effort than many other kinds of control. Owing 
to its simplicity and effectiveness, ILC has been found to be a 
good alternative in many areas and applications, e.g., see 
recent surveys [3, 4] for detailed results. For an example, 
mechatronic systems, such as production machines or 
industrial robots, often perform the same task repeatedly. In 
many applications the task is represented by a reference signal 

dy  that needs to be tracked by the system's output iy . 
Traditional controllers provide the same performance each 
time the motion is repeated, even if that performance is 
suboptimal, for example due to model plant mismatch or 
repeating disturbances. Moreover, many factors can reduce 
the performance over time, such as slowly changing operating 
conditions or dynamics. During the past decades, ILC has 
been shown to be one of the most effective control strategies 
in dealing with repeated tracking control or periodic 
disturbance rejection for nonlinear dynamic systems. ILC is a 
trajectory-tracking improvement technique for systems 
performing a prescribed task. The ILC system improves its 
control performance by a self-tuning process without using an 
accurate system model. The advantages of the ILC algorithm 
are shown in its applications to the nonlinear systems and the 
systems with uncertainty or unknown structure information. 

In 1978, the concept of ILC was originally proposed by 
Uchiyama when he presented the initial explicit formulation 
of ILC in Japanese [5]. In 1984, Arimoto et al. first introduced 
this method in English [6] where they proposed ILC for 
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accurate tracking of robot trajectories. These contributions are 
widely considered to be the origins of ILC. One motivation 
for the development of ILC is the industrial robot, which 
repeats the same task from trial to trial. To overcome this 
problem, Arimoto, one of the inventors of ILC, [5-7] 
suggested that both the information from the previous tasks or 
“trials” and the current task should be used to improve the 
control action during the current trial. In other words, the 
controller should learn iteratively the correct control actions 
in order to minimize the difference between the output of the 
system and the given reference signal. He called this method 
“betterment process” [6]. Regarding the past of ILC, it is clear 
that the pioneering work of Arimoto and his colleagues 
stimulated a new approach to controlling certain types of 
repetitive systems. The concept of iterative learning is quite 
natural but had not been expressed in the algorithmic form of 
ILC until the early 1980’s. 

 
Figure 1. The basic scheme of iterative learning control 

The basic idea of ILC is illustrated in Fig.1, where ( )iu t  

and ( )iy t  are, respectively, the system input and output in the 

thi iteration, ( )1iu t+  is the system input of the ( )1 thi +  trial, 

and ( )dy t  is the given desired trajectory. The goal of ILC is 

that ( ) ( )limi i dy t y t→∞ =  for all [ ]0,t T∈ , where T is a fixed 

constant. All in the sense, ( )iu t  is a function that is 
adaptively tuned. That is, we seek a sequence 

( ) ( ) ( )( ) [ ]1 , , ( ), 0,i i i du t f u t y t y t t t T+ = ∀ ∈ . Namely, the 
intuitive notion of “improving performance progressively” 
can be refined to a convergence condition on the error, i.e.,  
(in some norm topology) lim (.) 0,i ie→∞ =  

( ) ( )( )i d ie t y t y t= − . 
The ILC system operates in two dimensions, one is in the 

time domain and the other is in the iteration domain.A typical 
ILC, in the time domain, is under a simple open-loop 
(feedforward) control (off-line ILC) and/or closed-loop 
(feedback) (on-line ILC). The conventional ILC is an open-
loop strategy, which refines the current iteration control input 
by only employing information from the previous iterations 
and, hence, cannot improve the tracking performance along 
the time axis within a single cycle. To overcome such 
drawbacks, an ILC scheme is usually performed together with 
a feedback controller for compensation. For example, the ILC 
design and analysis has been addressed from the viewpoints 
of both high-gain feedback [8] and fixed-gain feedback [9], 
whereas in most cases, the feedback controller is directly 
incorporated into the ILC schemes design, resulting in the so-
called feedback ILC. With respect to the learning controller 
(learning update law), ILC can be categorized as to the type 
(P, I, D, PD, PI, PID) [1, 10]. In a similar way, a closed-loop 
ILC can be classified applying a corresponding combination 

of previous types. Algorithms that only use information of the 
past trial are called first order algorithms, and can be 
distinguished from higher order algorithms that use multiple 
past trials or current trial algorithms, which incorporate a 
feedback loop. Since theories and learning algorithms on ILC 
were firstly proposed, ILC has attracted considerable interests 
[2, 10] due to its simplicity and effectiveness of the learning 
algorithm and its ability to deal with problems with nonlinear, 
time-delay, uncertainties and recently singular systems.  

Recently, increasing attentions have been paid to fractional 
calculus (FC) and its application in various science and 
engineering fields, [11-13]. As an important application of 
FC, fractional-order control systems [13] have attracted more 
and more interests in the last several years. Particularly, the 
application of ILC to the fractional-order system has become 
a new topic, where authors [14] were the first to propose the 
fractional order D-type iterative learning control algorithm 
and the convergence was proved in the frequency domain. 
Then, the time domain analyses of fractional-order ILC are 
obtained and presented in the papers, [15-17], as well as in 
[18-20]. 

Preliminaries and basics of fractional calculus  

The λ -norm, maximum norm, induced norm 
For later use in proving the convergence of the proposed 

learning control, the following norms are introduced [4] for 
n -dimensional Euclidean space nR : the sup-norm 

1
sup ,k

k n
x x∞

≤ ≤
=  [ ]1 2, , ... T
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A useful property associated with the λ-norm the following 
inequality. 

Property 1: λ norm has the next property 
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The induced norm of a matrix A is defined as: 

 sup : with 0
Ax

A x X xx
⎧ ⎫= ∈ ≠⎨ ⎬
⎩ ⎭

 with, (3) 

where ( ).  denotes an arbitrary vector norm. In case ( ).
∞

 it 
follows that  

 Ax A x∞ ∞ ∞≤ , (4) 
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where A ∞  denotes the maximum value of the matrix A. For 
the previous norms, note that  

 ( ) ( ) ( )Th t h t e h tλ
λ λ∞
≤ ≤ . (5) 

The λ  - norm is thus equivalent to the ∞ - norm. For 
simplicity, in applying the norm ( ). ∞

 the index ∞  will be 
omitted. Before giving the main results, we first give the 
following Lemma 1, [21]. 

Lemma 1. Suppose a real positive series { }1na ∞  satisfies  

 ( )
1 1 2 2 ...

1, 2, ...,
n n n N n Na a a a
n N N

ρ ρ ρ ε− − −≤ + + + +
= + +  (6) 

where ( )1 0 1, 2,..., 0i Nρ ε≥ = =  and 
1

1
N

i
i

ρ ρ
=

= <∑ . Then 

the following holds: 

 ( )lim / 1nn
a ε ρ

→∞
≤ − . (7) 

Basics of fractional calculus 
Fractional calculus (FC) is a generalization of classical 

calculus concerned with operations of integration and 
differentiation of non-integer (fractional) order. The concept of 
fractional operators has been introduced almost simultaneously 
with the development of the classical ones. This question 
consequently attracted the interest of many well- known 
mathematicians, including Euler, Liouville, Laplace, Riemann, 
Grünwald, Letnikov and many others. Since the 19th century, 
the theory of fractional calculus developed rapidly, mostly as a 
foundation for a number of applied disciplines, including 
fractional geometry, fractional differential equations (FDE) and 
fractional dynamics. The applications of FC are very wide 
nowadays,[11-13], [22-25]. It is safe to say that almost no 
discipline of modern engineering and science in general, 
remains untouched by the tools and techniques of fractional 
calculus. For example, wide and fruitful applications can be 
found in rheology, viscoelasticity, acoustics, optics, chemical 
and statistical physics, robotics, control theory, electrical and 
mechanical engineering, bioengineering, etc. The main reason 
for the success of FC applications is that these new fractional-
order models are often more accurate than integer-order ones, 
i.e. there are more degrees of freedom in the fractional order 
model than in the corresponding classical one. All fractional 
operators consider the entire history of the process being 
considered, thus being able to model the non-local and 
distributed effects often encountered in natural and technical 
phenomena. 

There exist today many different forms of fractional 
integral operators, ranging from divided-difference types to 
infinite-sum types, Riemann-Liouville fractional derivative, 
Grunwald–Letnikov fractional derivative, Caputo’s, Weyl’s 
and Erdely-Kober left and right fractional derivatives, etc. 
[12]. The three most frequently used definitions for the 
general fractional differintegral are: the Grunwald-Letnikov 
(GL) definition, the Riemann-Liouville (RL) and the Caputo 
definitions, [11, 12]. Also, fractional order dynamic systems 
and controllers have been increasing in interest in many areas 
of science and engineering in the last few years. In most 
cases, our objective of using fractional calculus is to apply the 
fractional order controller to enhance the system control 
performance, [13, 25]. 

Here, we review some basic properties of fractional 

integrals and derivatives, which we will need later in the 
obtaining ILC algorithms schemes. Sets of natural, real, 
integer real and complex numbers are denoted, respectively, 
by , , , . Also ( )( ) [ ]( ), , ,p pL a b L a b= 1,p ≥  is the 
space of the measurable functions for which 

( )
1/ pb

p

a
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⎜ ⎟ < ∞
⎜ ⎟
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∫ . 

Definition 1. The left Riemann-Liouville fractional 
integral of order α ∈  is given by  
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In the special case of a positive real ( )α α +∈  and 

( )1 ,f L a b∈ , the integral a tI fα  exists for almost all 

[ ],t a b∈  as well as ( )1 ,a tI f L a bα ∈ , [26]. 
Definition 2. The right Riemann-Liouville fractional 

integral of order α ∈  is given by  
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The existence is the same as in the case of the left RL 
fractional integral given above. 

Defintion 3. The left and right RL fractional derivatives 
a tD fα , and t bD fα  of the order ,α ∈  Re 0,α ≥  

1 Re ,n nα− ≤ <  ,n∈  are defined as 
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Also, for the special case 0 1α≤ <  where t a>  and t b< , 
we have 
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Definition 4. The left Caputo fractional derivative of a 
function of order α, denoted by C

a tD fα , is given, [27] 

 ( ) ( )
nC n

a t a t n
dD f t I f t
dt
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 (13) 
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where n
a tI α−  is the left RL fractional integral (8) or in the 

explicit form as follows: 
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Definition 5. The right Caputo fractional derivative of a 
function of order α , denoted by C

t bD fα , is defined as 
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where n
t bI α−  is the right RL fractional integral (9), or in the 

explicit form as follows: 
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Also, for the special case 0 1α≤ <  where t a>  and t b< , 
we have 
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The Riemann-Liouville fractional derivatives and the 
Caputo fractional derivatives are connected with each other 
by the following relations: 
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The Caputo and Riemann-Liouville formulations coincide 
when the initial conditions are zero, [11, 12]. 

Lemma 2. If the function ( ),f t x  is continuous, then the 
initial value problem  

 ( ) ( )( )
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0

0

, , 0 1
0

C
tt D x t f t x t
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is the equivalent to the following nonlinear Volterra integral 
equation: 

 ( ) ( ) ( ) ( ) ( )
0

110 , ( )
t

t

x t x t s f s x s dsα
α

−= + −
Γ ∫  (22) 

and its solutions are continuous, [28]. 

Higher integer order PD -type iterative learning 
control for LTI systems 

ILC is a relatively recent but well-established area of study 
in control theory. ILC, which can be categorized as an 
intelligent control methodology, is an approach for improving 
the transient performance of systems that operate repetitively 
over a fixed time interval. Although control theory provides 
numerous design tools for improving the response of a 
dynamic system, it is not always possible to achieve desired 
performance requirements, due to the presence of unmodeled 
dynamics or parametric uncertainties that are exhibited during 
actual system operation or to the lack of suitable design 
techniques [29, 30]. Thus, it is not easy to achieve perfect 
tracking using traditional control theories. ILC is a design tool 
that can be used to overcome the shortcomings of traditional 
controller design, especially for obtaining a desired transient 
response, for the special case when the system of interest 
operates repetitively. For such systems, ILC can often be used 
to achieve perfect tracking, even when the model is uncertain 
or unknown and we have no information about the system 
structure and nonlinearity. Various definitions of ILC have 
been given in the literature and common emphasis of these 
definitions is the idea of “repetition”. For an example, it is 
well known that robot manipulators are generally used in 
repetitive tasks (e.g., automotive manufacturing industries). 
Therefore, it is interesting to take advantage of the fact that 
the reference trajectory is repeated over a given operation 
time. In this context, ILC techniques can be applied in order 
to enhance the tracking performance from operation to 
operation. In [6], the input update utilizes the derivative 
signals of the previous error signal and the learning law is 
termed D-type ILC, 

 ( ) ( )1 ( )i i iu t u t e t+ = + Γ  (23) 

where Γ  is the learning gain designed based on partial 
knowledge of the system under investigation; 1( )iu t+  is the 
control input at the iteration 1i +  while ( ) y ( ) ( )i d ie t t y t= −  is 
the tracking error between the actual output ( )iy t  and the 
desired trajectory ( )dy t  at the iteration i . Time [ ]0,t T∈  
where T is finite and fixed. D-type ILC is a simple but 
effective law. Besides, high-order ILC schemes can be used to 
improve the transient learning behavior along the learning 
iteration number direction, [4, 29]. By using the difference 

1( ) ( )i ie t e t−−  as the derivative approximation along the i -
direction, the PID controller in the i -direction will result in 
the following form of the ILC updating law, [4] 

 ( ) ( ) ( ) ( )1 1 1 2 2( )i i i i iu t u t e t e t e t+ − −= + Γ + Γ + Γ  (24) 

In this section, we present basic as well as higher integer 
order ILC algorithms, continuous time, and their convergence 
 properties. The linear system described in the form of state 
space and output equation is considered here. 

 ( )( ) ( )i i ix t Ax t Bu t= +  (25) 
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 ( )( )i iy t Cx t=  (26) 

In these equations [ ]0, ,t T t +∈ ∈ , where T presents 

terminal time which is known; , ,n m r
i i ix R u R y R∈ ∈ ∈ ,  and 

i  denotes the i-th repetitive operation of the system. A, B and 
C are matrices with appropriate dimensions and it is assumed 
that CB is a full rank matrix. Let ( )dx t  be the desired state 

trajectory and ( )dy t  be the corresponding output trajectory. 

The control task is to servo the output ( )iy t  to track the 

desired output ( )dy t  on a fixed interval [ ]0, ,t T∈ as the 
iteration i  increases. In classical ILC, the following basic 
postulates are required, although in recent ILC research some 
of these postulations have been relaxed:  
a) every trial (pass, cycle, batch, iteration, repetition) ends in 

a fixed time of duration; 
b) repetition of the initial setting is satisfied, i.e the initial 

state ( )0ix of the objective system can be set to the same 
point at the beginning of each iteration;  

c) invariance of the system dynamics is ensured throughout 
the repetition;  

d) ( ) ( ),d dy t x t , (t) are continuously differentiable on [ ]0,T . 
Also tracking error and their first and second derivative are 

defined as: 

   
( ) y ( ) ( ), ( ) y ( ) ( ),

( ) y ( ) ( ),

i d i i i d i

i d i

e t t y t e t de (t) / dt t y t

e t t y t

= − = = −

= −
 (27) 

The original ILC scheme proposed in [6] is a D-type, i.e., 
(23) where Γ  is a diagonal learning gain matrix, ensures that 

( ) ( )lim i di
y t y t

→∞
→ for all [ ]0, ,t T∈  if 1

i
I CB− Γ <  where 

( )..
i
is an operator norm and { }1, 2,...,i∈ ∞ . One can notice 

that the basic formula for selecting the learning gain does not 
require information about the system matrix A, which implies 
that ILC can be effective for model-uncertain systems, which 
is a key characteristic of ILC. Also, for instance, a “PID-like” 
update law can be given as [30] 

 ( ) ( ) ( )1( ) ( )i i i i iu t u t e t e t e t dt+ = +Π + Γ +Η∫  (28) 

A higher order ILC (HOILC) meaning information from 
more than one previous trial is used in the ILC algorithm PID-
like update rule [31] can be formulated as 

  
( ) ( )

( ) ( ) ( )( )
1 1 0

1

1 1 1
1

( ) ( )
N

i k i k
k
N

k i k k i k k i k
k

u t I P u t u t

e t e t e t dt

+ − +
=

− + − + − +
=

= − Λ + Λ +

+ Π + Γ +Η

∑

∑ ∫
 (29) 

where 1N ≥  is the order of the ILC algorithm; Λ  is a 
weighting parameter to restrain the large fluctuation of the 
control input at the beginning of ILC iterations. Moreover, 
paper [32] proposed a new PD- type ILC (HOILC) which 
contains a higher order derivative of ( )ie t  and ( )iu t such as:  

 ( ) ( ) ( ) ( ) ( ) ( )( )1i i i i i iu t u t CBu t e t Qe t Re t+ = + Γ + Γ + + (30) 

where Γ  and Q, R are gain learning matrices. The  
P - component in a continuous-time D - type ILC scheme, 
with properly chosen learning gains, enables robustness to 
non-zero initialization errors. Also, the following assumption 
is imposed: initial state error at each iteration is an a 
neighbourhood of 0x  such that ( ) 0 00ix x h− ≤ . Introducing 

iu , ie  in (30) and consequently a matrix A in the 
convergence condition, one can obtain more flexible ILC 
updating law with three gain learning matrices.  

Convergence analysis  
In ILC, a fundamental problem is to guarantee the ILC 

convergence property, i.e. to guarantee the system is output 
trajectory converging to the desired one within a prescribed 
desired accuracy as the number of ILC iterations increases. 
The sufficient condition will be presented which guarantees 
the convergence of the proposed algorithm. 

Theorem 1: Suppose that the update law (30), is applied to 
the system (25,26) and the initial state at each iteration 
satisfies. If matrices Q,Γ , exist such that 

 ( )[ ] ,BQCCAI 1<ρ≤+Γ−  (31) 

then, when ∞→i  the bounds of the tracking errors 
( ) ( ) ,d ix t x t−  ( ) ( ) ,d iy t y t−  ( ) ( )d iu t u t−  converge 

asymptotically to a residual ball cantered at the origin. 
Proof: Let 

 ( ) ( ) ( ) ( ),i d i i d ix x t x t x x t x tδ δ= − = −  (32) 

( ) ( ) ( ) ( ),i d i i d iu u t u t u u t u tδ δ= − = −  

Also, the tracking error can be presented as: 

 iiii uCBxCAxCe δ+δ=δ=  (33) 

 ( ) iiiiii uCBuCABxCAxCdt/ede δ+δ+δ=δ== 2  (34) 

Taking the proposed control law and (30, 32-34),gives: 

 ( ) (
)

1
2

i i i i i

i i i i

u u CBu t CA x CAB u
CB u QCA x QCB u RC x

δ δ δ δ
δ δ δ δ

+ = −Γ −Γ + +
+ + + +

 (35) 

or 

 
( )[ ]

( )( )
1 1 i

i d

u I CA QC B u
CA QC A RC x CBu

δ δ
δ

+ = −Γ + −
− Γ + + −Γ⎡ ⎤⎣ ⎦

 (36) 

Estimating the norms of (36) with (.)  and using the 
condition of  Theorem 1 gives  

 γ+δβ+δρ≤δ + iii xuu 1  (37) 

where  

 ( )( )CA QC A RCβ = Γ + +⎡ ⎤⎣ ⎦  (38a) 

and 

 [ ] ( )0,sup dt T u t CBγ ∈= ⋅ Γ  (38b) 
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Also, 

 ( ) ( ) ( )( )
0

0
t

i i i ix x A x B u dδ δ δ τ δ τ τ= + +∫  (39) 

For any function ( ) ,n
ix t R∈  [ ]0,t T∈  the λ -norm form 

( )
0

t

ix s ds∫ is, (Eq.4)  

 ( ) ( ) ( )1

0

sup
t

t
i ie x s ds x t Oλ

λ

δ λ− −≤∫ , (40a) 

 where  

 ( ) ( )1 1 / 1/TO e λλ λ λ− −= − ≤  (40b) 

New performing the λ - norm operation for (39) and using 
(40) one obtains 

 ( )1
i ix O uηλ λδ η λ δ−≤ +  (41) 

where 

 ( )( )1
0 / 1 ,Ah h Oη λ−= −  (42a) 

 ( ) ( ) ( )( )1 1 1/ 1B AO h O h Oη λ λ λ− − −= −  (42b) 

If a sufficiently large λ  is used, one can obtain that 
( )1 1Ah O λ− < . Taking the λ -norm of (37) with the 

substitution of (41) simply yields 

 1 0i iu uλ λδ ρ δ ε+ ′≤ +  (43) 

where also one can make by using a sufficiently large λ  

 ( )1 1Oηρ ρ β λ−′ = + < , 0ε βη γ= + . (44) 

According to Lemma 1 [30], it can be concluded that 

 ( )1 0lim / 1ii
u λδ ε ρ+→∞

′≤ −  (45a) 

and 

 ( ) ( )( )1
0lim / 1 ,i ci

C

e h O
h C

ηλδ η ε λ ρ−

→∞

∞

′≤ + −

=
, (45b) 

This completes the proof of Theorem 1. To demonstrate the 
benefits from using the proposed PD type ILC algorithm, the 
following example is used for the simulation study. The 
dynamics of the system is described by: 

 ( ) ( ) ( )0 1 0
1 2 1x t x t u t⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

, ( ) [ ] ( )0 1y t x t=  (46) 

The desired output trajectory and the initial state are given 
as follows. 

 ( ) ( )0.03 20dy t t t= − , 0 20t≤ ≤ , ( ) [ ]00 1 1 T
ix x= =  (47) 

According to Theorem 1 and condition that 

  [ ] ( ) [ ] ( )0, 0,sup sup 0d dt T t Ty u t CB u t∈ ∈= ⋅ Γ = ⋅ Γ → (48) 

the Γ can be chosen as 040.  and 127 == R,Q . Fig.2 shows 
the output trajectories at the 50th iteration and Fig.3 presents 
the iteration histories of control and error trajectory.  

 
Figure 2. The output and desired output 

 

Figure 3. The trend of ( )ie t , ( )iu t  

Feedforward-feedback PD type ILC for a robotic 
system with three degrees of freedom  

Here, we are interested in a PD type ILC control of robotic 
system with 3n =  DOFs. The robotic system is considered as 
an open linkage consisting of n+1 rigid bodies [ ]iV  
interconnected by n one-degree-of–freedom joints formed 
kinematical pairs of the fifth class, where the robotic system 
possesses n degrees of freedom. Specially, the Rodriguez` 
method, [33, 34] is proposed for modelling the kinematics and 
dynamics of the robotic system. The configuration of the 
mechanical model of robot can be defined by the vector of 
joint (internal) generalized coordinates q of the dimension n, 

( ) ( )1 2, ,...,
Tnq q q q= with relative angles of rotation (in the 

case of revolute joints) and relative displacements (in the case 
of prismatic joints). The equations of motion of the robotic 
system can be expressed in a covariant form of  Langrange`s 
equation of the second kind as follows [34] 
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( ) ( ),
1 1 1

1,2,...

n n n

a q q q q q Q

n

γα α αβ γ α β γ
α α β

γ

= = =

+ Γ =

=

∑ ∑∑
 (49) 

where the coefficients aαβ  are the covariant coordinates of 

the basic metric tensor [ ] n na Rγα
×∈  and ,αβ γΓ  

, , 1, 2,..., nα β γ =  presents Christoffel symbols of the first 
kind and , 1, 2,...,Q nγ γ =  generalized forces.The generalized 
forces Qγ  can be presented in the following expression (50) 

where ,g uQ Qγ γ  denote the generalized gravitational and 
control forces, respectively. 

 , 1,2,...g uQ Q Q nγ γ γ γ= + =  (50) 

where are vector of generalized gravitational forces 
, 1,2,...gQ nγ γ =  are bounded , 1,2,...gQ g nγ γ γ≤ =  as well 

as the vector of generalized control forces, , 1,2,...uQ nγ γ =  

as follows , 1,2,...uQ h nγ γ γ≤ = . In a condensed form, eq. 
(49) can be presented as 

 ( ) ( , ) ua q q C q q Q+ =  (51) 

The following assumptions on system (51) are imposed. 

A1. The desired trajectories ( ) ( )1 2, ,...,
Tn

d d d dq t q q q=  are 

continuously differentiable on [ ]0,T  which are obtained on 
higher tactical level of planning trajectories (e.g. solving the 
inverse kinematics task). 

A2. For the given desired  trajectory ( )dq t , there exists a 

control input ( )du t such that  

 ( ) ( , ) u
d d d d d da q q C q q Q u+ = =  (52) 

A3. Robotic system is completely controllable i.e. they 
satisfy the following inequalities, [35]  

 sup ,gg Q h 1,2,...nγ γ γ γ= < =  (53) 

A4. The initial resetting conditionsholds for all iterations, 
i.e. (0) (0), (0) (0) 0,1, 2...i d i dq q q q i= = =    

A5. It is possible to determine the vector ( )( )0g
dQ q  in 

the initial moment when the robot is in the referent 
configuration.  

Given a desired trajectory ( ) [ ], 0,dq t t T∈ , our objective 

is to know whether the error ( ) ( ) ,dq t q t−  can converge to 

zero for all [ ]0,t T∈  as i →∞ , i.e. to determine the control 

of the vector ( )uQ t so that the robotic system follows the 

predefined trajectory ( )dq t . Here, the feedforward-feedback 
fractional order PD  learning algorithm is suggested which 
comprises two types of control laws: a feed-forward PD  
control law and a PD  feedback law, see Fig.4. 

 ( ) ( ) ( )i fi fbiu t u t u t= +  (54) 

In the feedback control loop, it is proposed that a PD - type 

ILC updating law for the given system is:  

 ( ) ( ) ( ) ( )0fbi d di iu t Q q Kq t Lq t= − −  (55) 

taking into account assumption A5. In the feed-forward 
control loop, a PD - type ILC updating law is given 

 ( )( )1( ) ( ) ( )fi fi d i d iu t u t K q q L q q−= + Γ − + −  (56) 

In the first iteration 1i =  we can choose  

 1( ) ( ) ( )f d du t Kq t Lq t= +  (57) 

The value of learning gain Γ  needs to satisfy the condition 
0 1< Γ ≤  which is obtained from the condition of 
convergence of the ILC, [36, 37].Also, the analysis in the 
i − th iteration of the linearized time-varying systems along 

( )dq t  can show that the choice of the elements of the 
diagonal positive definite matrices ,K L  are large enough to 
ensure the stability of the desired trajectory. Therefore, as it 
was previously pointed out, precise knowledge of the vector 

( )gQ q  is not necessary and it seems an interesting and 
important application of this type of ILC control. 

 

Figure 4. Block diagram of the feedforward-feedback PDα type of ILC for a 
robotic system 

Simulation results 
Using a suitable example of a robotic manipulator with 

three DOF, Fig.5, a simulation is performed in proving the 
efficiency of the proposed algorithm of ILC. In Table 1 there 
are listed salient features of the robotic system. 

 
Figure 5. The robotic system with 3 DOF in the reference configuration 
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Table 1. 

segment 1 2 3 
m[kg] 2 5 3 
L [m] 0.8 0.6 0.6 

2
CI kgm⎡ ⎤⎣ ⎦  

0.279 0 0
0 0.279 0
0 0 0.1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 0.241 0 0
0 0.239 0
0 0 0.15

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 0.241 0 0
0 0.239 0
0 0 0.15

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The equations of motion of the robotic system are 
determined by the basic metric tensor ( )a q , ,αβ γΓ  

, , 1, 2,..., nα β γ =  Christoffel symbols of the first kind as well 

as the vector of generalized gravitational forces ( )gQ q , and 
one can find in [38]. Particularly, for later discussion, we can 
determine 0g

1Q = ,  20, 21.582sing g
3 2Q = Q q= . The desired 

trajectories are given as  

 
[ ]

1 2

3

( ) 0.5sin , ( ) 0.1sin 0.1,

( ) 1 , 0,3

d d

t
d

q t t q t t

q t e t−

= = +

= − ∀ ∈
 (58) 

and for the elements of learning matrices K, L, the following 
values are adopted: 

 { } { }30,30,30 10,10,10K diag L diag= =  (59) 

and the learning gainΓ is 0.6Γ = . 

 

 
Figure 6. The tracking performance of the system trajectory 
( ( ) , 1, 2,3q t k = : solid line, ( ) , 1, 2,3dq t k = : bold line) 

It is shown that it is possible to achieve control of a robotic 
system with three degrees of freedom using the proposed ILC. 
Reaching within the prescribed accuracy, the desired trajectory is 
achieved after 8 iterations. In doing so, the maximum deviation is 
observed for 2 2dq q→  in the first iteration because 

2 0gQ ≠ ( 22 21.582singQ q= ) contrary to 1 0,gQ =  3 0gQ = .  

PDα -Type iterative learning control for a 
fractional LTI system 

In recent years, the application of ILC to the fractional-
order system has become a new topic. The development of 
fractional-order ILC algorithms, which belong to a branch of 
fractional-order control [7–9], is urgently needed for 
advanced control systems. In this section, a PDα  type of ILC 
is proposed for fractional linear time invariant systems. It is 
shown that under some sufficient conditions which include 
the learning operators, convergence of the learning system can 
be guaranteed. The proportional component in the ILC updating 
law do not affect the ILC stability but the P learning operator can 
be used as a design factor to make better ILC performance, [16]. 
The case of a Dα  type of ILC is proposed for the fractional order 
LTI system obtained and presented in [15].  

System description: fractional–order pseudo state space 

Applying FC [11, 13] to dynamic systems control is a 
recent topic of interest. The real objects are generally 
fractional, but for many of them the fractionality is very low. 
Here, we considered the non-integer (fractional) linear system 
[39, 40] described in the form of pseudo state space and 
output equations. This description is convenient for simple 
models of systems with only one fractional-order derivation. 

  
( ) ( ) ( ) ( ), (0) (0), 0 1
( ) ( ),

i i i i d

i i

t A t B t x x
t C t

α α= + = ≤ <
=

x x u
y x

 (60) 

where is 0 1α≤ <  fractional order derivative, A, B and C are 
matrices with appropriate dimensions. Also, it is assumed that 
CB is a full rank matrix. Here, Riemann-Liouville definition 
for the fractional derivative is used, (12) where in short, it can 
be written ( ), ( )RL C

a tD f t f αα = . 
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PDα  - type ILC updating law 
Now, we introduce the PDα - type ILC updating law for 

given system (60) such as:  

 

( )

( )
( )

1
( )( ) ( ) ( )

( ) ( ) ( )

i
i i i

i i

d tt t t
dt

t t t

α

α

α

+ = + Γ +Π =

= + Γ +Π i

eu u e

u e e
, (61) 

where ,Γ Π  are the gain matrices appropriate dimensions. A 
sufficient condition for convergence of a proposed ILC is 
given by Theorem 2 and proved as follows.  

Theorem 2: Suppose that the update law (61), is applied to 
the system (60) and the initial state at each iteration satisfies 

(0) (0)i dx x= . If matrix Π  exists such that 

 [ ] 1,I CB ρ−Π ≤ <  (62) 

then, when ∞→i  the bounds of the tracking errors 
( ) ( ) ,d ix t x t−  ( ) ( ) ,d iy t y t− ( ) ( ) ,d iu t u t−  converge 

asymptotically to zero. 
Proof: Let 

 ( ) ( ) ( )
( ) ( ),

( ) ( ),
, , ,

i d i

i id

d d

h h t h t
h h t h t

h x x u u

α α α
δ
δ

= −
= −

=
 (63)  

Tracking error can be obtained as follows: 

 
( )

( ) ( )
( )

( )

( ) ( )
( )

i
d ii

i ii

d e de y y
dt dt

C x CA x CB u

α αα
α α

αδ δ δ

= = − =

= = +
 (64) 

Taking the proposed control law gives: 

 
( )

( )
1 1i d i d i ii

i ii

u u u u u e e
u e e

α

α
δ

δ
+ += − = − −Π −Γ =
= −Π −Γ

 (65)  

or, taking (64) it yields: 

 [ ] [ ]1i i iu I CB u CA C xδ δ δ+ = −Π − Π +Γ  (66) 

Estimating the norms of (66) with (.)  and using the 
condition of  Theorem 2 implies  

 1 ,i i iu u x C CAδ ρ δ γ δ γ+ ≤ + = Γ +Π  (67) 

Also, one can write the solutions of (60) in the form of the 
equivalent Volterra integral equations, [11]:  

 
( ) ( ) ( )

( ) ( ) ( )

1

0

1

0

1( ) (0) ( ) ( )

1( ) (0) ( ) ( )

t

i i i i

t

d d d d

x t x t s Ax s Bu s ds

x t x t s Ax s Bu s ds

α

α

α

α

−

−

= + − +
Γ

= + − +
Γ

∫

∫
 (68) 

or  

 ( ) ( ) ( )1

0

1( ) ( ) ( )
t

i i ix t t s A x s B u s dsαδ δ δ
α

−= − +
Γ ∫  (69) 

Applying the norms and by taking into account uniqueness 
of solution [11], it yields: 

 

( ) ( )

( ) ( )

( )

( )

1

0

1

0

1

0

1

0

1( ) ( )

1 ( )

1 ( ) ( )

1 ( ) ( )

t

i i

t

i

t

A i

t

B i

x t t s A x s ds

t s B u s ds

k t s x s ds

k t s u s ds

α

α

α

α

δ δ
α

δ
α

δ
α

δ
α

−

−

−

−

≤ − +
Γ

+ −
Γ

≤ − +
Γ

+ −
Γ

∫

∫

∫

∫

 (70) 

Moreover, applying the λ  norm to both sides of previous 
(70), it follows  

 ( )

( )

1

0 |
0

1

0

( ) sup ( ) ( )

( ) ( )

t
t A

i i
t T

t
B

i

kx t e t s x s ds

k t s u s ds

λ α
λ

α

λ

δ δ
α

δ
α

− −

≤ ≤

−

⎧⎪≤ − +⎨Γ⎪⎩
⎫⎪+ − ⎬Γ ⎪⎭

∫

∫
, (71) 

 ( )
[ ]

1
( )

0 0
0

( )
sup sup

( ) ( )

t
t s s

t T t T

A i B i

t s
e e

k x s k u s ds

α
λ λ

α

δ δ

−
− − −

≤ ≤ ≤ ≤

−
≤ ⋅

Γ

+

∫   

 
( )

( )

1

( )

0 0
0 0

( ) ( )

( )
sup sup

A i B i
t t

t s

t T t T

k x t k u t

t s
e ds ds

α
λ λ

λ

δ δ

α

−

− −

≤ ≤ ≤ ≤

≤ + ⋅

−
⋅

Γ∫ ∫
. (72) 

 
or, 

 ( ) ( )
( )

1
( ) ( ) ( )

1

T

i A i B i
e Tx t k x t k u t

λ
α

λ λ λδ δ δ λ α

−−
≤ + ⋅

Γ +
 (73) 

Introducing ( )1O λ− , as 

 ( ) ( )
( )

1
1

1

Te TO
λ α

λ
λ α

−
−

−
=

Γ +
, (74) 

where (73) simplifies to 

 ( ) ( )1( ) ( ) ( )i A i B ix t k x t k u t Oλ λ λδ δ δ λ−≤ +  (75) 

or, one may conclude 

 
( )
( )( )

( )

1

1

1

( ) ( )
1

( )

B
i i

A

i

k O
x t u t

k O

O u t

λ λ

η λ

λ
δ δ

λ

λ δ

−

−

−

≤ ≤
−

≤

, (76) 

then, if it is used a sufficiently large λ , one can obtain that: 

 1( ) / ( 1) 1A oT k Oα λ α− Γ + <  (77) 

where is ( )1
0 (1 ) /TO e λλ λ− −= − . Taking the λ -norm of (67) 

with the substitution of (76) simply yields 

 1i iu uλ λδ ρ δ+ ′≤  (78) 

where, also one can make by using a sufficiently large λ  
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 1( ) 1,Oηρ ρ γ λ−′ = + <  (79) 

According to Lemma1 [30] it can be concluded that 

 1lim 0ii
u λδ +→∞

→  and lim 0ii
e λδ

→∞
→ , (80) 

This completes the proof of  Theorem 2. 

ILC for fractional order linear time delay system: 
PI Dβ α  type  

Further, a PI Dβ α  type of iterative learning control is 
proposed for a fractional order linear time delay system, [41]. 
Some examples of fractional order time delay systems are 
presented in [42-45]. For example, in their paper [43], the 
authors considered finite-dimensional fractional time delay 
systems. Fractional order (non)linear time delay systems also 
can be presented in the form of the pseudo state space and 
output equation. This description is convenient for simple 
linear models of systems with only one fractional-order 
derivation: 

 
( )

0 1( ) ( ) ( ) ( ),
( ) ( ), (0) (0) 0, 0 1

i i i i

i i i d

t A t A t B t
t C t x x

α τ
α

= + − +
= = = < <

x x x u
y x

, (81) 

where is 0 1α≤ <  fractional order derivative, 0 1, ,A A B  and 
C are the matrices with appropriate dimensions and Tτ ≤  
denotes the known pure time-delay. The following 
assumptions on system (81) are imposed. 

A1. The desired trajectories ( )dy t , dx (t) are continuously 
differentiable on [ ]0,T . 

A2. The system (81) is causal and when 0t <  it is assumed 
( ) 0ix t = . 
A3. The input-output coupling matrix CB is of full column 

rank. 

β αPI D - type ILC updating law 
Now, we introduce the PI Dβ α -type ILC updating law for 

given system (81) such as:  

 1 0 0( ) ( ) ( ) ( ) ( )i i i t i tu t u t e t D e t D e tα β−
+ = + Γ +Π +Η i , (82) 

where , , HΓ Π are the gain matrices appropriate dimensions. 
A sufficient condition for convergence of a proposed ILC is 
given by Theorem 3 and proved as follows.  

Theorem 3: Let system (81) satisfy assumptions (A1-A3) 
as well as the initial state at each iteration satisfies 

(0) (0) 0i dx x= = . If updating law (82) is applied with the 
learning gain matrix Π  being designed such that 

 [ ] 1,I CB ρ−Π ≤ <  (83) 

then, when ∞→i  the bounds of the tracking errors 
( ) ( ) ,d ix t x t−  ( ) ( ) ,d iy t y t− ( ) ( ) ,d iu t u t−  converge 

asymptotically to zero. 
Proof. Let  

( ) ( ) ( )( ) ( ), ( ) ( ), , , ,i d i d di idh h t h t h h t h t h x x u uα α αδ = − = − =  

 

Tracking error can be obtained as follows: 

 
( ) ( )

( ) ( ) ( )

0 1

( ) ( ) ( ) ( )

( ) ( ) ( )

d ii i

i i i

de t y t y t C x t
dt
CA x t CA x t CB u t

αα α
α δ

δ δ τ δ

= − = =

= + − +
, (84) 

Taking the proposed control law and (84) gives: 

 
[ ] [ ]
[ ] ( )

1 0
( )

1

( ) ( ) ( )
( ) ( )

i i i

i i

u t I CB u t C CA x t
CA x t HC x t β

δ δ δ
δ τ δ

+
−

= −Π − Γ +Π −

− Π − −
(85), 

Estimating the norms of (85) with (.)  and using the 
condition of Theorem 3 implies: 

 

1 0 1
( )

2

0 0

1 1

2

( )
( ) ,

,
,

i i i i

i

u u x x t
x

C CA
CA

HC

β
δ ρ δ β δ β δ τ
β δ

β
β
β

+
−

≤ + + − +
+

= Γ +Π
= Π
=

 (86) 

where, taking into account  (8) one can get:  

 

1
0

0

0

1
( )

( )( 1)

t

t i i

t

i

D x t s x ds

T x s ds

ββ

β

δ δβ

δβ

−− = − ≤
Γ

≤
Γ +

∫

∫
 (87) 

Also, one can obtain the solution of (81) in the form of the 
equivalent Volterra integral equations, [11] using assumption 
A2 and conditions of Theorem 3, as: 

 ( ) ( ) (

)

1
0 1

0

1( ) ( ) ( )

( )

t

i i i

i

x t t s A x s A x s

B u s ds

αδ δ δ τ
α

δ

−= − + − +
Γ

+

∫ , (88) 

By applying the norms (.)  on equation (88), and by 
taking into account the uniqueness of solution of (81), it 
yields 

  

( )

( )

( )

( )

( ) ( )

1
0

0

1
1

0

1
0

0

0

0

1 0

0 0

1( ) ( ) ( )

1 ( ) ( )

1 ( ) ( )

( )
1

( ) ( )
1 1

t

i i

t

i

t

i

t

i

t t

i i

x t A t s x s ds

A t s x s ds

B t s u s ds

T a x s ds

T Ta x s ds b u s ds

α

α

α

α

α α

δ δ
α

δ τ
α

δ
α
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For any function [ ]( ) , 0,n
ix t R t T∈ ∈  the λ  - norm for 

0

( )
t

ix dτ τ∫  is: 
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where is 1( ) (1 ) / 1 /TO e λλ λ λ− −= − ≤ . Due to the fact that 
( ) ( )x t x tλ λτ− ≤  by referring (90), one can find that:  
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0

sup ( ) ( ) ( )
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t
te x s ds x t O e

t T
λ λτ

λτ λ− − −− ≤
∈⎡ ⎤⎣ ⎦

∫ , (91) 

New performing the λ -norm operation for (89) one 
obtains:  
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or 

 1( ) ( ) ( )i ix t O u tηλ λδ λ δ−≤  (93) 

 ( )
1 1

0
1 1

0 1

( ) ( ) /
( 1) / ( ) ( )

O b O
T a O a e O

η
α λτ

λ λ
α λ λ

− −

− − −

=
Γ + − −

, (94) 

If a sufficiently large λ  is used, one can obtain that:  

 1 1
0 1( 1) / ( ) ( ) 0T a O a e Oα λτα λ λ− − −Γ + − − >  (95) 

Taking the λ -norm of (86) with the substitution of (93) 
simply yields: 
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or: 

 1i iu uλ λδ ρ δ+ ′≤ , (97) 

where, also one can make by using a sufficiently large λ :  
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 (98) 

According to Lemma 1 [30] it can be concluded that: 

 1lim 0, and lim 0i ii i
u eλ λδ δ+→∞ →∞

→ →  (99) 

This completes the proof of Theorem 3. 

Conclusions 
An overview of the recently presented and published 

results  relating to the use of ILC based on and integer and 
non-integer (fractional) order are presented. ILC, which can 
be categorized as an intelligent control methodology, is an 

approach for improving the transient performance of systems 
that operate repetitively over a fixed time interval such as 
motion control of robotic systems, etc. First, the results 
relating to the application of higher integer order PD type ILC 
with suitable numerical simulation are considered and 
presented. Also, another integer order ILC scheme is 
presented for a given robotic system with three degrees of 
freedom for task-space trajectory tracking where the 
effectiveness of the suggested control is demonstrated through 
a simulation procedure. In the second part of this paper the 
applications of fractional order of ILC to the fractional order 
system are exposed. The PDα - type of ILC  is proposed for a 
given class of fractional order linear systems. It is shown that 
under some sufficient conditions which include the learning 
operators, convergence of the learning system can be 
guaranteed. The proportional component in the ILC updating 
law do not affect the ILC stability but the P learning operator 
can be used as a design factor to make better ILC 
performance. Also, a PI Dβ α  ILC scheme for a class of 
fractional order time delay systems is suggested and proved. 
In the same manner, sufficient conditions for the convergence 
in time domain of the proposed ILC are given by the 
corresponding theorem together with its proof.  
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Iterativno upravljanje putem učenja celog i necelog reda:  
pregledni prikaz 

Apstrakt: Ovaj rad daje pregledni prikaz nedavno prezentiranih i objavljenih rezultata autora koji se odnose na primenu 
iterativnog upravljanja putem učenja (ILC) i to celog reda kao i necelog reda. ILC predstavlja jedno od važnih oblasti u 
teoriji upravljanja i ono je moćan koncept upravljanja koji na iterativan način poboljšava ponašanje procesa koji su po 
prirodi ponovljivi. ILC je pogodno za upravljanje šire klase mehatroničkih sistema i posebno su pogodni za upravljanje 
kretanja robotskih sistema koji imaju važnu ulogu u biomehatroničkim, tehničkim sistemima koji uključuju primenu i vojnoj 
industriju itd. U prvom delu rada predstavljeni su rezultati koji se odnose na primenu višeg celobrojnog reda PD tipa sa 
pratećom numeričkom simulacijom. Takođe, još jedna druga ILC šema celobrojnog reda je predložena za dati robotski 
sistem sa tri stepena slobode u rešavanju zadatka praćenja što je i verifikovano kroz simulacioni primer. U drugom delu, 
predstavljeni su rezultati koji se odnose na primenu ILC frakcionog reda gde je prvo PDα  tip predložen za linearni sistem  
frakcionog reda. Pokazano je da se pod odredjenim dovoljnim uslovima koji uključuju operatore učenja konvergencija  datog 
sistema  može biti garantovana. Takodje, PI Dβ α  tip ILC upravljanja je predložen za linearni sistem frakcionog reda sa 
kašnjenjem. Konačno, dovoljni uslovi za konvergenciju u vremenskom domenu predloženog ILC upravljanja su dati 
odgovarajućom teoremom sa pratećim dokazom. 

Ključne reči: teorija upravljanja, iterativno upravljanje, upravljanje učenjem, celobrojni red, necelobrojni red, robotski 
sistem, pregledni prikaz. 
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Итерационный контроль обучения через целый и дробный 
порядок: обзор 

Эта статья представляет собой обзор недавно представленных и опубликованных результатов по виду 
использования итерационного контроля обучения (ИКО) и то целого и дробного порядка. ИКО является одним из 
важных направлений в теории управления, и это является мощной концепцией управления на постоянной основе 
улучшающей поведение процессов, которые по своей сути повторяются. ИКО подходит для более широкого 
управления класса мехатронных систем и особенно подходят для управления движением робототехнических систем, 
которые играют важную роль в биомехатронических, технических системах, включающий и применение в  военной 
промышленности и.т.д. В первой части статьи представлены результаты, связанные с использованием высшего 
целого порядка PD-типа с соответствующим численным моделированием. Кроме того, ещё одна ИКО схема целого 
порядка предлагается для данной роботизированной системы с тремя степенями свободы в решении задачи 
мониторинга, которая проверена через пример моделирования. Во второй части представлены результаты, 
касающиеся использования дробного порядка ИКО, где первый тип PDα  предлагается для линейной системы 
дробного порядка. Показано, что при определённых достаточных условиях, связанных с операторамы обучения, 
сходимость данной системы может быть гарантирована. Кроме того, PI Dβ α  тип ИКО управления предлагается для 
линейных систем дробного порядка с запаздыванием. Наконец, достаточные условия сходимости в временной 
области предлагаемого ИКО управления приведены соответствующей теоремой с подтверждающими 
доказательствами. 

Ключевые слова: теория управления, итеративное управление, обучение управления, целый порядок, дробный 
порядок, роботизированная система, обзор. 

Contrôle itératif par la théorie de l’ordre entier et de l’ordre 
fractionnel: une vue d’ensemble  

Ce papier présente une vue d’ensemble des résultats présentés et publiés récemment qui se rapportent à l’application du 
contrôle itératif par la théorie basée sur l’ordre entier et sur l’ordre fractionnel. Cette théorie représente un domaine 
important dans la théorie de contrôle et c’est un concept puissant de contrôle qui de façon itérative améliore le comportement 
des processus itératifs par la nature. La théorie citée est commode pour le contrôle de nombreuses classes des systèmes 
mécatroniques en particulier pour le contrôle des mouvements chez les systèmes robotiques qui jouent un rôle signifiant dans 
les systèmes bio mécatroniques et techniques y compris l’emploi dans l’industrie militaire etc. Dans la première partie de ce 
travail on a présenté les résultats concernant l’application de l’ordre entier supérieur du type PD accompagné par la 
simulation numérique. On a proposé également un autre schéma de l’ordre entier pour le système robotique donné à trois 
degrés de liberté pour résoudre les taches de suivi ce qui a été vérifié par l’exemple de simulation. Dans la seconde partie on a 
donné les résultats liés a l’application de l’ordre fractionnel où on propose le type PDα pour le système linéaire de cet ordre. 
On a démontré que sous les conditions suffisantes déterminées y compris les opérateurs de la théorie la convergence du 
système donné peut être garantie. Pour le système linéaire de l’ordre fractionnel on a proposé Piβ Dα du contrôle à retard. 
Enfin les conditions nécessaires pour la convergence dans le domaine temporel du contrôle ont été exposées avec le théorème 
correspondant accompagné par la preuve.  

Mots clés: théorie de contrôle, contrôle itératif, contrôle par l’étude, ordre entier, ordre fractionnel, système robotisé, vue 
d’ensemble 
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