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Iterative learning control (ILC) is one of the recent topics in control theories and it is a powerful control concept that
iteratively improves the behavior of processes repetitive in their nature. ILC is suitable for controlling a wider class of
mechatronic systems - it is especially suitable for the motion control of robotic systems that attract and hold an important
position in technical systems involving control applications, military industry, etc. This paper addresses the problem of
iterative learning control (ILC) for fractional nonlinear time delay systems. Particularly, we study fractional order time
delay systems in the state space form with unknown bounded constant time delay as well as time-varying delay. Sufficient
conditions for the convergence of a proposed PD“ type of a learning control algorithm for a class of fractional state space
time delay systems are presented in the time domain. Also, a feedback-feedforward PD“ type robust iterative learning
control (ILC) of the given fractional order uncertain time delay system is considered. We consider fractional order time
delay systems in the state space form with uncertain bounded constant time delay in particular. Sufficient conditions for
the convergence in the time domain of the proposed pp* ILC are given by the corresponding theorem together with its
proof.Finally, a simulation example shows the feasibility and effectiveness of the proposed approach
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Introduction

TERATIVE learning control (ILC) is one of the recent

topics in control theories and it is a powerful intelligent
control concept that iteratively improves the behavior of
processes that are repetitive in their nature,[1-3]. Since the
early 80s, ILC [4, 5] has been one of very effective control
strategies in dealing with repeated tracking control with the
aim of improving tracking performance for systems that
work in a repetitive mode. In 1978, the concept of ILC was
originally proposed by Uchiyama when he presented the
initial explicit formulation of ILC in Japanese [4]. In 1984,
Arimoto et al. first introduced this method in English [5]
where they proposed ILC for accurate tracking of robot
trajectories. One motivation for the development of ILC is
the industrial robot which repeats the same task from trial
to trial. To overcome this problem, Arimoto, one of the
inventors of ILC, [4-6] suggested that both the information
from the previous tasks or “trials” and the current task
should be used to improve the control action during the
current trial. In other words, the controller should learn
iteratively the correct control actions in order to minimize
the difference between the output of the system and the
given reference signal. He called this method “betterment
process” [5]. Regarding the past of ILC, it is clear that the
pioneering work of Arimoto and his colleagues stimulated a
new approach to controlling certain types of repetitive
systems. The concept of iterative learning is quite natural
but had not been expressed in the algorithmic form of ILC
until the early 1980s. In many practical control systems, the
tasks are executed within a finite time interval while the
same tasks are repeatedly operated. Examples for such

systems are, more generally, the class of repetitive tracking
systems such as process plants, robotic systems, etc. It is
well known that conventional control algorithms do not
take advantage of the repetitiveness. As opposed to
tradicional controllers, ILC is a simple and effective control
and can progressively reduce tracking errors and improve
system performance from iteration to iteration, [5, 7]. The
ILC approach is more or less an imitation of the learning
process of every intelligent being. Intelligent beings tend to
learn by performing a trial (i.e. selecting a control input)
and observing what was the end result of this control input
selection. After that, they try to change their behavior in
order to get an improved performance during the next trial.
By emulating human learning, ILC uses the knowledge
obtained from the previous trial to adjust the control input
for the current trial so that a better performance can be
achieved. In that way, ILC incorporates past control
information, such as tracking errors and their corresponding
control input signals, into constructing the present control
action. Also, there has been a great deal of study to
overcome limitations of conventional controllers against
uncertainty due to inaccurate modeling and/or parameter
variations.The first ILC approaches used only the error
from the previous run and thus could only handle repetitive
disturbances,[1, 5, 7-9].The addition of current cycle
feedback has been proposed to handle non-repetitive
disturbances [10]. Therefore, ILC is a recursive control
method that relies on less calculation and requires less a
priori knowledge about the controlled system than many
other kinds of control. Owing to its simplicity and
effectiveness, ILC has been found to be a good alternative in
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many areas and applications, e.g. see recent surveys [3, 11]
for detailed results.

Besides, in terms of how to use the tracking error signal
of the previous iteration to form the control signal of the
current iteration, ILC updating schemes can be classified as
P-type, D-type, PD-type, and PID type. The ILC system
operates in two dimensions; one is in the time domain and
the other is in the iteration domain. The conventional ILC is
an open-loop strategy, which refines the current iteration
control input by only employing information from the
previous iterations and, hence, cannot improve the tracking
performance along the time axis within a single cycle.
Moreover, a typical ILC in the time domain is a simple
open-loop control (off-line ILC) and it cannot suppress
unanticipated, non-repeating disturbances.

In real applications, to overcome such drawbacks, an
ILC scheme is usually performed together with a proper
feedback controller for compensation, where we often
design a learning operator for the closed-loop (on-line ILC)
systems that have achieved a good performance.
Algorithms that only use information of the past trial are
called first order algorithms, and can be distinguished from
higher order algorithms that use multiple past trials or
current trial algorithms, which incorporate a feedback loop.

Therefore, ILC is a technique of controling systems
operating in a repetitive mode with the additional

requirement that a specified output trajectory y,(¢) in an

interval [O,T ] be followed to a high precision and through
improving the performance from trial to trial in the sense
that the tracking error is sequentially reduced. The basic
strategy is to use an iteration of the form

g () = [, (0),e,(0)), e(t)=y,()=y, (1), where f(.,.)
defines the learning algorithm and remains to be specified,
»,(t) is the output at the i-th operation resulting from an

input u,(¢), and y,(t) represents the desired output. The
new control input u,,,(t) should make the system closer to

the desired result in the next execution cycle. Namely, the
intuitive notion of “improving performance progressively”
can be refined to a convergence condition on the error, i.e.,
(in some norm  topology) lim; ., ||e;(.)| =0,
€ (t)=y,(t)—y:(¢) . The original ILC scheme in English is
proposed by [5] for a better control of systems performing
repetitive tasks as D-type, i.e., u,,, () =u,;(¢) + I1(de, / dt).
Recently, increasing attentions have been paid to
fractional calculus (FC) and its application in various
science and engineering fields, [12-14]. Fractional calculus
is a mathematical topic with more than 300- year old
history, but its application to physics, mathematics, and
engineering has been reported only in the recent years
[13, 15-17]. The fractional integro-differential operators are
a generalization of integration and derivation to non-integer
order (fractional) operators [12, 14, 18, 19]. All fractional
operators consider the entire history of the process being
considered, thus being able to model the nonlocal and
distributed effects often encountered in natural and
technical phenomena.The theory of FC is a well-adapted
tool for modeling many physical phenomena, allowing the
description to take into accounts some peculiarities that
classical integer-order models simply neglect, [14]. For
example, wide and fruitful applications can be found in
rheology, viscoelasticity, acoustics, optics, chemical and
statistical physics, robotics, control theory, electrical and
mechanical engineering, bioengineering, etc. As important

applications of FC, fractional-order control systems [20, 21]
and fractional-order modeling [22, 23] have attracted more
and more interests in the last several years to enhance the
robustness and performance of the proposed systems.

Particularly, the application of ILC to the fractional-
order system has become a new topic, where authors [24]
were the first to propose the fractional order D-type
iterative learning control algorithm and the convergence
was proved in the frequency domain. Then, the time
domain analyses of fractional-order ILC are obtained and
presented in the papers, [25-30], as well as for a class of
fractional-order nonlinear time-delay systems [31, 32] and
in a survey/overview [33-35].

Motivated by the mentioned investigations of ILC
algorithms for ILC fractional order control in the tracking
problems of these systems, a new robust iterative learning
feedforward control as well as feedback ILC control for a
particular class of fractional order uncertain time delay
systems are suggested in this paper.This paper extends the
results obtained in papers [27, 34] to consider more general
systems i.e. fractional order uncertain time delay systems
(including constant but unknown delay as well as time-
varying delay) described in the form of state space and
output equations. Sufficient convergent conditions of the
proposed ILC will be derived in time-domain and
formulated by the theorems. Finally, the simulation results
are presented to illustrate the performance of the proposed

robust PD* ILC scheme.

Preliminaries and basics of fractional calculus

The A -norm, maximum norm, induced norm

For a later use in proving the convergence of the
proposed learning control, the following norms are
introduced [35] for the n-dimensional Euclidean space

x=[x1,x2,... ] , ‘)Ck‘-

the maximum norm x| =max
0<t<T

: the sup-norm |x| =sup x|,

absolute value;

x(0Hx (1), % (6) s, (1)] 5 the  matrix norm  as

1<k<m

|4],, = max (ng ] =[ay], and the A -norm for a

real function:

h(@), (t€[0,T]), h:[0,T]>R"

(1)

|h(®)|, = sup e A>0

te[o,T

A useful property associated with the A-norm is the
following inequality.

Property 1: A norm has the next property

sup e j 1Ol dr =
te[O,T ]

2
sup J. ﬂ.tHf( )‘ka(t t)(a-1) d <

0,7 ]

Hf Ol
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The induced norm of the matrix A4 is defined as:

| 4] = sup {/ix :xe X with ||x]| = 0} with,  (3)

where ||()|| denotes an arbitrary vector norm. In case ||()|LO
it follows that

[l <[4l [*]... “)

where ||4]|, denotes the maximum value of the matrix A.
For the previous norms, note that

[, <A@, < e A, - )

The A - norm is thus equivalent to the o - norm. For
simplicity, in applying the norm ()] the index oo will be

omitted. Before giving the main results, we first give the
following Lemma 1, [21].

Lemma 1. Suppose a real positive series {a, };” satisfies

Ay S Py + Prlyy +oo+ PGy oy +E (6)
(n=N+1L,N+2,..,)

N
where p 20 (i=12,.,N) =0 and p:Zp,- <1. Then
i=1

the following holds:
lima, <e/(1-p). @)

Basics of fractional calculus

Fractional calculus (FC) is a generalization of classical
calculus concerned with the operations of integration and the
differentiation of non-integer (fractional) order. The concept
of fractional operators has been introduced almost
simultaneously with the development of the classical ones.
This question consequently attracted the interest of many
well- known mathematicians, including Euler, Liouville,
Laplace, Riemann, Griinwald, Letnikov and many others.
Since the 19th century, the theory of fractional calculus
developed rapidly, mostly as a foundation for a number of
applied disciplines, including fractional geometry, fractional
differential equations (FDE) and fractional dynamics. The
applications of F'C are very wide nowadays, [11-13], [22-25].
It is safe to say that almost no discipline of modern
engineering and science in general remains untouched by the
tools and techniques of fractional calculus. For example,
wide and fruitful applications can be found in rheology,
viscoelasticity, acoustics, optics, chemical and statistical
physics, robotics, control theory, electrical and mechanical
engineering, bioengineering, etc. The main reason for the
success of F'C applications is that these new fractional-order
models are often more accurate than integer-order ones, i.e.
there are more degrees of freedom in the fractional order
model than in the corresponding classical one. All fractional
operators consider the entire history of the process being
considered, thus being able to model the non-local and
distributed effects often encountered in natural and technical
phenomena.

There exist today many different forms of fractional
integral operators, ranging from divided-difference types to
infinite-sum types, Riemann-Liouville fractional derivative,
Grunwald-Letnikov fractional derivative, Caputo’s, Weyl’s

and Erdely-Kober left and right fractional derivatives, etc.
[12]. The three most frequently used definitions for the
general fractional differintegral are: the Grunwald-Letnikov
(GL) definition, the Riemann-Liouville (RL) and the Caputo
definitions, [11, 12]. Also, fractional order dynamic
systems and controllers have been increasing in interest in
many areas of science and engineering in the last few years.
In most cases, our objective of using fractional calculus is
to apply the fractional order controller to enhance the
system control performance, [13, 25].

Here, we review some basic properties of fractional
integrals and derivatives, which we will need later in the
obtaining /LC algorithms schemes. Sets of natural, real,
integer real and complex numbers are denoted, respectively,

by N,R,Z,C. Also L’ ((a,b))="L"([a,b]), p=1, is the

space of the nmeasurable functions for which

[I e dx] o

Definition 1. The left Riemann-Liouville fractional
integral of the order « € C is given by

A2 ()= ﬁj(l—r)ail S (z)dr, ®
tela,b], Rea >a0.

In the special case of a positive real o (o €R,) and
f eLl(a,b), the integral I f exists for almost all
tela,b] as wellas 17 f € L' (a,b), [26,37].

Defintion 2. The left RL fractional derivatives ,Df f,
of the order « e C, Rea >0, n—-1<Rea<n, neN,is
defined as

FLDEf(t) = d7

(271 (1) =
1 a2 S ©
" I'(n —Of)dt"-!(t— z')a_"ﬂdr’ re(ab).

Also, for the special case 0 <« <1 where ¢ >a we have

RL Mya _ 1 dt f(7)
D f(1) = F(l—a)% (t—r)ad‘[, (10)

Definition 3. The left Caputo fractional derivative of a
function of the order «, denoted by {DZ £, is given, [36]

Cna _ n-a dn
DS (1) = ol ( dtnf(t)j (1)

where ;7 is the left RL fractional integral (8) or in the
explicit form as follows:

N AN
SDtaf(t): F(n—a) ) (t_z_)aﬂ—n

dn
t), a=n,
dt" f( ) "

dr, n-1<a<n,

(12)
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The Riemann-Liouville fractional derivatives and the
Caputo fractional derivatives are connected with each other
by the following relations:

c n—1 _1 k (k) a o
RﬁD,“f(t)zaD,“f(t)+ZM(t—a) (13)

k=0

n—l1 (
+Z 0 b-1)", (14)

=0

KDy f(1)= Dy f

The Caputo and Riemann-Liouville formulations
coincide when the initial conditions are zero, [13].

Lemma 2. If the function f(#,x) is continuous, then the
initial value problem

C -

{tOD,‘Zx(t)—f(t,x(t)), O<a<l as)
x(10) = x(0)

is the equivalent to the following nonlinear Volterra

integral equation:
t

x(t):x(0)+1_(1a)J.(t—s)a71f(s,x(s))ds (16)

and its solutions are continuous, [38].

PD“ - type iterative learning control for the
fractional order uncertain time delay system

System description

The non-integer (fractional) order uncertain system with
time delay described in the form of state space and output
equations is considered here. In his Phd. Matignon [39],
gives the model of pressure wave transmission through an
air-filled tube with viscothermic perturbation and discusses
the stability of the transfer function as an example of a
fractional delay system. In their paper, authors [40]
considered finite-dimensional fractional time delay
systems. This description is convenient for simple models
of systems with only one Caputo fractional-order derivation

6 DEX(1) = AgXi (1) + 4, X;(t=7)+ Bu; (1) + [ (x;(1)),

Y (t) = CX;(¢), O<ax<l a7
and with the associated function of the initial state

x(t) =y, (1), -7, <t<0. (18)

where ¢ is the time in the operation interval

J=[0,T],J <R, as well as 0<a <1 fractional order

4y, 4, B
appropriate dimensions and 7 denotes a pure time delay.
Moreover, 7 is an unknown time delay but a bounded

derivative, and C are the matrices with

parameter which satisfies
0<z<7y, <T, VieJ, J=[0,T],J <R (19

Also, the initial conditions of fractional differential
equations which were compared to the given fractional
derivatives were considered by authors [41], and it is
assumed that there is no difficulty with questions of
existence, uniqueness, and continuity of solutions with

respect to the initial data. The following assumptions on the
system (17, 18) are imposed.
Al. The desired trajectories

continuously differentiable on [0,7].

Ya(t), x4 (1) are

A2. The system (17) is causal and when ¢<0 it is

assumed wi()=wa (1), Vie[-1y,0], where
x () =y,;(t), Vite[-1),0] is the initial function of the
system (17).

A3. The input-output coupling matrix CB is of full
column rank.
A4. The vector function f presents the nonlinear

parameter perturbation of the system in respect to X(¢#) and
it is uniformly globally Lipschitz in terms of x in [O,T ] ,
ie.

Hfo xl fo X2 f) H<kf ‘xl (t)—x(

where k > 0 is some finite constant.

te[0,7] (20)

PD“ - type iterative learning control

In ILC, the convergence aspects have always been a key
issue, i.e. guaranteeing that the systems output trajectory is
converging to the desired one within a prescribed desired
accuracy as the number of ILC iterations increases. Here, it

is suggested the learning control scheme PD“ - type ILC
updates the law for the given system (17) such as:

Ui (8) = u; (1) + Te; () + TG D (1) 1)

where I', IT are the gain matrices appropriate dimensions.
A sufficient condition for the convergence of a proposed
ILC is given by Theorem 1 and proved as follows.
Theorem 1: Suppose that the updated law (21) is
applied to the system (17) and that the initial function (18)

at each iteration satisfies v (t) =y, (1), Vie[-7,0].If
the matrix IT exists such that
[z -icB]| < p<1, (22)

then, when i—> o the bounds of the tracking errors

lxs )= x O, [ya@ =y, |ua(t)=uy(t)],  converge
asymptotically to zero.
Proof. Let
Sk =hg =k K = OB,
h=x,xz,uuy,f
The tracking error can be obtained as follows:
a d'“ a
f( )(t):dt(a) (yd (t)_yf(t)):C5xi( )(t) ’(24)

= CAyOx; () + CASx; (t—7)+ CBu; (1) +CS f; (t)
Taking the proposed control law gives:

Uppg =Uy —U; —He,-(a) -Te, =

Oy =uy — i

(25)
=0u; — Hei(a) —Te;

or, taking (24) it yields:
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Suj 1 (1) =[1 ~TICB|6u; (1) [ T C + TICA, |6x;(t)

. (26)
—[[1C4]6x;(t —7)-T1CS f; (1)
Estimating the norms of (26) with ”()” and using the

condition of Theorem 1 implies:

|6ui]| < pllow: |+ B [+
+5 Hﬁx, (¢ z’)H+ﬂ2 \
ﬂo =
B =[T1CA4|,
B> +[1C|

@7

Also, one can write the solutions of (17) in the form of
the equivalent Volterra integral equations,[13] using
assumption A2, as:

(1) =yi(0)+

st e (A

xq (1) =w,(t)+

t

] L R

(29)

or

t
1 el Ayox;(s)+ A 0x;(s—1)+ 29
50 _l"(a)-([ (=) (+B§u[(s)+5fi(x,-(s)) JdS( )

Applying the norms and using the Lipschitz condition
with respect to x (20), if it is the uniqueness solution [13],
it yields:

50 $ 03 \AOHJ (=97 loxi (o)l ds+
*r?mAllv—s)a*ffxxs—ﬂdw

+l"(1a)BO,([(t —5)*! ‘H5u,— (s)|ds +

I]EJ;)‘([(t—s)“léxi(s)ds

< ﬁ(ao +kf)J.‘(t —s)”’"l‘Hé‘xl» (s)|ds +

F( )J.‘(t s)“lwﬁx (s—7)|ds+ (30)

4o ( ) j (6= ) |6us(s)] ds

Moreover, applying the A -norm to both sides of the
previous equation (30), it follows

M) [ agth ) ()] +
H5x (f)H;L sup {J}l 1—~( ) |:a1 H5x = )H‘*bo H&‘ (S)H

t 1
< sup [ ‘(t_s)‘a )
0si<T 9 I'(a)

[ sup [(ao +kf)H5x (S)H+ Dd

0<<T a H5X (s— TM)H“‘bo Hé‘u (S)H

- (ao +kf)H§x,-(s)HA + .
gt Hﬁx,(s—rM)H/1 +by H§u,(s)Hl

t t a-1
[ sup | e *“ds sup J.(tl:S)dS)J
0<1<T 0<1<T (o)
0 0
Due to the fact that ||x(t—z'M )|| S ||x(t)|| , »one can find

that (31)

o, <[@rae ™ FkDlox o, +
ST b || 6w (9))),

-1
[sup “A) ds sup J.‘( J (32)
0<<T 0<<T

((ag + e +kf>uaxl-<s>ul (=) ga
B +b0H5u,.(s)Hi A T(a+l)

Defining 0(1’1) ,as

_ AT
0(1—1):(1 € ) T (33)

where (32) simplifies to

(ap +ae ™™ +k)|ox(s)|, + o
5xi(t)ﬂ£[+bo5ui(s)i 2Tlo(AT) (34)

or, one may conclude
bO(A™
0(27) Suy (1)), <

(1—(a0 +ae’" +ky)O(4 ))H (35)
<0, (A47")|ow ),

dei (t)Hi S

where, if a sufficiently large A is used, one can obtain that:
AM(a+1)— (ao +ae ™ 1k )(1—6’}”T)T“ >0 (36)

Taking the A -norm of (27) with the substitution of (35)
simply yields:

[usall, < plous| 2+ o o], + (37)
+ ﬂle%r Hé‘xi (t—7y )Hg + Poky ngi H/l ’
[6ual, < plows], + B0, %)
where is
B=[fo+fe ™ + poks | (39)
or
[Surl, < (p+ 50, (7)) = p'l6uil, (40)

So that there exists a sufficient large A satisfying
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o' =[p+,300,,(,1*')] <1, (41)

Therefore, according to Lemmal Moore,[1] it can be
concluded that:

tim o], 0 @)

This completes the proof of Theorem 1.Moreover, due to
the uniqueness and existence theorem for fractional order

time delay systems,V.Lakshmikantham [42], one can
conclude that
lim x;(£) = x4 (), lim y;(¢) =y, (?) (43)
[—® 1—0

The case of the fractional order time delay system with
time-varying delay is also discussed here:

X\ (0) = doX; (1) + A %; (1 =7 (1)) + Bu; () + £ (x,(2)), (44)
vi()=Cx(f), O<a<l

with the associated function of the initial state

x(t) =y, (), -1y <t<0. (45)

In the case of the time varying time delay 7(¢) we
introduce the next assumption AS.

AS: 0<z(t)<ty, ty <T, Vted, J=[0,T], (46)

Theorem 2. For the fractional order time-varying delay
system (44) and the given initial function (45), with the

PD*-type ILC scheme (21), and the assumptions Al-A5

where the convergence condition is given by (22), then we
have

lim v, (1) = v (¢) (47)

Proof: The proof immediately follows from the proof
ofTheorem 1 and (46).

Remark 1. By comparing it with [34], the author extends
the main results of [34].

Remark 2. If the time delay 7 =const is known, one
may obtain similar results as formulated in Theorems 1,2.

Remark 3. In the case of the non-perturbed system
f(x;(1))=0, and a known time delay 7, one may obtain
the results which are obtained and presented in papers
[27,34].

Remark 4. In the case of the non-perturbed system
f (x,- (t)) =0, and without the time delay 7, one may obtain

the results which are obtained and presented in papers [26,30].

Feedback-feedforward PD” type iterative learning
control

Here, the feedback-feedforward fractional order PD“
learning algorithm which comprises two types of control

laws: a feed-forward PD“ control law and a PD“
feedback law for given system (17) is assumed. In the feed-

forward control loop it is proposed that a PD“ - type ILC
updating law for the given system is:
uﬁ+1(l)=ul-(Z)+F2(CD&@,-([)+H261-(I)). (48)

where ¢, (¢)=y,(t)—y;(¢) is the trajectory tracking error

in the i - th iteration and y, () = Cx, (¢) denotes a desired

output trajectory. In the feedback loop, the PD® controller
provides stability of the system and keeps its state errors
within uniform bounds. Besides, the introduced feedback
control is as follows:

U1 (=T ( Dy ey () +T1; €, (1)) ’ (49)

where I';, I1;, i=1,2 are the gain matrices of appropriate

dimensions. Moreover, it was shown in [29] that the
tracking speed was the fastest when the system order and

the order of ILC PD“ are of the same order i.e. « . In that

way, the open-closed-loop fractional order PD“ learning
algorithm takes the form

Ui (1) =t (f)+uﬂm+1 (1) =u; (t)+
+F1 (CDO telJr] + Hl (t )+ (50)
+r2 (CDO,[e +H2€ t )

A sufficient condition for the convergence of the
proposed feedback ILC is given by Theorem 3 and proved
as follows.

Theorem 3. Suppose that the update law (50) is applied
to the system (17) and that the initial function (18) at each

iteration satisfies (1) =y, (¢), Vt €[-7,0). If there exist
the matrices T';, i =1,2 such that

[1+1CcB] ' [1-T,CB]| < p <1, (51)

then, if i—> o, the bounds of the tracking errors
lxa ) =@, [ya O =3O, [ua @ =)
asymptotically to zero.

Proof. The fractional derivative order a of ¢ (¢) is

converge

obtained as follows:

<>———4on ¥i(0)=Cox™ ()
= CAoéxi(t)+CA1§x,-(t—r)+ (52)
+CBou; (t)+ C3 f; (1)
Taking the proposed control law gives:
Ouiy =uy
=6u;~T, (%) )+ e (). (53)
- (e}a) +11,e (t))

—Uin =

or, taking (52) it yields:

Su;1(£) =1 +T,CB] ' [1 -T,CB]Su; (t) -
(54)
[T} (CAy +T1,C)] 8,1 (2) +
[T, (CA4y +11,C)]6x, (1) +
[C.CA 6%, (t—7) +
[T.CA4 |6x,(t—7)+
[T C]8 fi1 (1) +[T2C16 i (1)

~[1+T,CB]"

Estimating the norms of (54) with ”()” and using the

condition of Theorem 1 implies:
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|6, < Pl + o |55i] + A |0
+||6xi1 (=) + Bs |6x: (1 =) (55)
+04 Hé‘meJfﬂs H5ﬁHa

where are

>

Po = H[l +T\CB] [T (4, +T1,C)]
B =|[1+TCB] [T (84 +T1,0)]
b= H[1+F1CB]71 [T154]

B

>

5 (56)
By = H[1+F1CB] [r254,],
B = H[HFICBT1 [r.54],
ps =|[1+1mCBY ' [TC]

Further, applying the same procedure as in the proof of
Theorem 3, one can also conclude that:

lim |6, -0, 57)
1—0

and taking into account the uniqueness and existence

theorem for fractional order time delay system,
V.Lakshmikantham [42], it follows
lim x; (£) = x, (1) , lim y; (1) = y, (1) . (58)
i—owo 1o

Simulation example
In this section, an example is presented to show the
effectiveness of the proposed PD? iterative learning
feedback-feedforward controller. Consider the following
fractional order uncertain time delay system in the state
space form described by
X" (@)= 0.1x,(t) + 0. Ix,(t = 7) + u; (£) +
+0.15sin(x? (£) +0.05)

Yi(1) = X; (1), (39)

where 7€[0,1], =0.5, 7<7,, =0.1 and w,(¢)=0.1,
—0.1<¢t<0. The desired output trajectory is given by
va(t)=2t(1-t) and the
fi =0.15sin(x” +0.05). We apply the PD“-type ILC
updating law

parameter  perturbation

ua®)=uO+07(dIO+0Ten®)+ o0
+0.5(e)* (1) +0.5¢,(1))

with the initial control u, (1) =0.

The simulation results in Figures 1 and 2 show the
effectiveness of the developed ILC control scheme for the
system (59). The ILC rule (50) is used and Fig.1 shows the
tracking performance of the ILC system outputs on the
interval ¢€[0,1]. Also, we can find, (see Fig.2), that the

proposed requirement of the tracking performance is
achieved at the ninth iteration.

0 0.2 0.4 06 08 1
t[sec]

Figure 1. The tracking performance of the system output (y/(¢)): solid line,
v4(2): bold line)

15

maxE

6 7 8 9

4 5
Iteration number

Figure 2. The sup-norm of the tracking error e(t) in each iteration

Conclusion

Iterative learning control, which can be categorized as an
intelligent control methodology, is an approach for improving
the transient performance of systems that operate repetitively
over a fixed time interval such as motion control of robotic
systems, etc. In this paper, a PD* type of robust ILC is
proposed for a given class of fractional order uncertain
unknown and bounded time delay systems. Particularly, we
considered two cases of time delay: unknown bounded
constant time delay as well as time-varying delay. Sufficient
conditions for the convergence in the time domain of a
proposed ILC were given by the corresponding theorems and
proved. In the second part of this paper, the applications of the
feedback-feedforward ppD* type of ILC are proposed for the
given class of fractional order uncertain time delay systems.
Finally, the sufficient conditions for the convergence in the
time domain of the proposed ILC were given by the
corresponding theorem together with its proof. The theoretical
results have also been verified through a numerical simulation.
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Neki novi rezultati iterativnog upravljanja ucenjem necelog reda

Iterativno upravljanje putem ucenja (ILC) predstavlja jedno od vaznih oblasti u teoriji upravljanja i ono je moc¢an koncept
upravljanja koji na iterativan nacin poboljSava ponasanje procesa koji su po prirodi ponovljivi. ILC je pogodno za
upravljanje Sire klase mehatronickih sistema i posebno su pogodni za upravljanje na primer kretanja robotskih sistema koji
imaju vaZnu ulogu u tehnickim sistemima koji ukljucuju sisteme upravljanja, primenu u vojnoj industriji itd. Ovaj se rad
bavi problemom ILC upravljanja za nelinearne sisteme necelog reda sa vremenskim kaSnjenjem. Posebno, ovde se
proucavaju sistemi necelog reda sa nepoznatim ograni¢enim vremenskim kasnjenjem u prostoru stanja kao i slucaj
vremenski promenljivog kasnjenja. Pri tome, dovoljni uslovi za konvergenciju u vremenskom domenu predloZenog PD*
ILC upravljanja za datu klasu necelog reda sistema sa kaSnjenjem su prezentovani i dati u vremenskom domenu.Takode,
robusno PD” ILC upravljanje u direktnoj-povratnoj sprezi za dati sistem sa kaSnjenjem je razmatrano.Posebno, razmatra
se sistem necelog reda sa nepoznatim ali ograni¢enim konstantnim vremenskim kaSnjenjem. Dovoljni uslovi za
konvergenciju u vremenskom domenu predloZenog pPD“ ILC upravljanja su dati odgovaraju¢om teoremom sa prate¢im
dokazom. Konacno, simulacioni primer pokazuje izvodljivost i efikasnost predloZenog pristupa.

Kljucne reci: teorija upravljanja, iterativno upravljanje, upravljanje ucenjem, necelobrojni red, nelinearni sistem,
vremensko ka$njenje, robotski sistem.

HexoTopbie HOBbIE pe3yJIbTaThl MTEPATHBHOIO YIIPABJICHUS
o0yyeHreM APOOHOro MOpPsiAKA

HrepatuBHoe ynpasiieHue npoueccoM odydyenust (MYIIO) siBiisiercss OJHMM M3 Ba)KHBIX HANpaBJIeHUdl B Teopuu
YOpaBjieHUusl, M 3TO MOILHAS KOHLENIMS YNPaBJIeHUs, KOTOpasi NPH NOMOILIM HTEPATHBHOIO METOAA YJIy4llaer
NOBe/IeHUe IPOLEccoB, KOTOpPble 1Mo cBoell nmpupoae nopropsitorcsi. UYIIO uaeaabHO NMOAXOAUT sl YHPaBJIEHUS
IIMPOKHX KJIACC MEXAaTPOHHBIX CHCTeM H 0CO0EHHO NOAXOAMT /Jis YNpaBJieHHsl, HANPUMep, ABHKEHHUs
POGOTH3HPOBAHHBIX CHCTEM, KOTOPbIe HIPAIOT BAXKHYI0 POJIb B TEXHHYECKHX CHCTEMAX, KOTOpble BKJIIOYAIOT B cedst
cHCTeMbl YNpaBJieHUsl, IPHMEHeHHe B BOGHHON NPOMBINLIEHHOCTH M Tak Jajee. JTa craThs HMeeT geiao ¢ UYIIO
YHpaBJieHHEM HeJIHHEHHBIMH cHCTeMaMH APOOHOro Mopsiika ¢ 3amasibiBaHHeM. B 4YacTHocTH, 31ech H3y4aloTcs
cHcTeMbl JPOOHOIO MOPSiIKA ¢ HEH3BECTHOH OrpaHUYeHHOro epHoAAa 3a/IeP3KKU BpeMeHH B IIPOCTPAHCTBE COCTOSIHUIA, a
TaKyKe M IPH U3MEHSIOLIMXCsl BO BpeMeHM 3aziepskeK. IIpu 3ToM, 10cTaTouHbIe YCJOBHS Ui CXOAMMOCTH BO BpeMeHHOI
objactu npennaraemoii PD* UYIIO ynpasienusi JJisl JaAHHOTO KJacca APoOHOro MOpsiika CHCTeM € 3ama3/ibIBaHueM
BpPEMEHHM 3aKa3a MNpeACTaBJeHbl M JIaHbl BO BpeMeHHOil o0jactu. Takike paccmarpuBaHo HaaéxHoe PD* MYIIO
yHpaB/ieHue B NPsAMOH M 00paTHOM CBSI3U JJISl JAHOH CHCTeMbI € 3a/iep:KKoii BpeMeHH. OTIeJbHO paccMaTPUBAETCS
crcTeMa IPOOHOro MOpsiIKa ¢ HeM3BeCTHbIM, HO OTPAHHYEHHBIM NOCTOSIHHBIM 3ana3biBanueM. /locTaTouHble YCI0BHUS
JJIsl CXOAMMOCTH BO BpeMeHHOH o0JjacTu mpemaaraemoro PD* HUYIIO ynpapieHusi NOJTYYHIH H COOTBETCTBYIOLIYIO
TeopeMy ¢ HOATBeP:KAAI0LIMMH JI0Ka3aTeIbcTBaMH. Hakonen, npuMep MoieIMpOBaHus OKA3bIBAET 11e/1ec000pa3sHOCTh
H 3 (PEeKTHBHOCTD MPEIOKEHHOT0 MOIX0/1A.

Knouesvie cnosa: Teopusi ynpasieHHsl, UTePATHBHOE YNPABJIeHHe, YNPaBJIeHHs 00ydeHHeM, APOOHOI MOPSIOK,
HeJIMHeliHas cucTeMa, BpeMs 3a/1ePKKH, POOOTH3MPOBAaHHAs cHCTeMa.

Quelques nouveaux résultats du controle itératif par I’étude de
I’ordre fractionnel

Le controle itératif par ’étude (CIE) est un domaine important dans la théorie de contrdle. C’est un concept puissant qui
a la facon itérative améliore le comportement des processus itératifs par leur nature. Le contréle itératif par 1’étude est
convenable pour le contrdle d’une large classe des systémes mécatroniques notamment pour le contrdle des mouvement
des systémes robotiques qui jouent un role important dans les systémes techniques comprenant les systémes de controle,
I’application dans I’industrie militaire, etc. Ce travail considére le probléme du contrdle CIE chez les systémes de I’ordre
fractionnel a délai temporel. On étudie ici en particulier les systémes de ’ordre fractionnel a délai temporel limités et
inconnus dans I’espace d’état ainsi que le cas du délai temporel variable. Les conditions suffisantes pour la convergence
dans le domaine temporel PD“ du contrdle CIE pour la classe donnée de I’ordre fractionnel du systéme a délai ont été
présentées et donnée dans le domaine temporel. Le controle CIE PD robuste aux réactions directes pour le systéme a
délai a été traité aussi. On a considéré surtout le systétme de ’ordre fractionnel a délai temporel inconnu et limité
constamment. Les conditions suffisantes pour la convergence dans le domaine temporel du CIE PD“ contrdle proposé ici
ont été présentés par la théoréme accompagnée de preuve. Finalement ’exemple simulé démontre Defficacité et la
réalisabilité de I’approche proposée.

Motsclé théorie de contrdle , contrdle itératif, contrdle par étude, ordre fractionnel, systéme non linéaire, délai temporel,
systéme robotique.



