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Some New Results on Iterative Learning Control of  
Noninteger Order 

Mihailo Lazarević 1) 

Iterative learning control (ILC) is one of the recent topics in control theories and it is a powerful control concept that 
iteratively improves the behavior of processes repetitive in their nature. ILC is suitable for controlling a wider class of 
mechatronic systems - it is especially suitable for the motion control of robotic systems that attract and hold an important 
position in technical systems involving control applications, military industry, etc. This paper addresses the problem of 
iterative learning control (ILC) for fractional nonlinear time delay systems. Particularly, we study fractional order time 
delay systems in the state space form with unknown bounded constant time delay as well as time-varying delay. Sufficient 
conditions for the convergence of a proposed PDα  type of a learning control algorithm for a class of fractional state space 
time delay systems are presented in the time domain. Also, a feedback-feedforward PDα  type robust iterative learning 
control (ILC) of the given fractional order uncertain time delay system is considered. We consider fractional order time 
delay systems in the state space form with uncertain bounded constant time delay in particular. Sufficient conditions for 
the convergence in the time domain of the proposed PDα ILC are given by the corresponding theorem together with its 
proof.Finally, a simulation example shows the feasibility and effectiveness of the proposed approach 

Key words: theory of control, iterative control, learning control, fractional order, nonlinear system, time delay, robotic 
system. 
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Introduction 
TERATIVE learning control (ILC) is one of the recent 
topics in control theories and it is a powerful intelligent 

control concept that iteratively improves the behavior of 
processes that are repetitive in their nature,[1-3]. Since the 
early 80s, ILC [4, 5] has been one of very effective control 
strategies in dealing with repeated tracking control with the 
aim of improving tracking performance for systems that 
work in a repetitive mode. In 1978, the concept of ILC was 
originally proposed by Uchiyama when he presented the 
initial explicit formulation of ILC in Japanese [4]. In 1984, 
Arimoto et al. first introduced this method in English [5] 
where they proposed ILC for accurate tracking of robot 
trajectories. One motivation for the development of ILC is 
the industrial robot which repeats the same task from trial 
to trial. To overcome this problem, Arimoto, one of the 
inventors of ILC, [4-6] suggested that both the information 
from the previous tasks or “trials” and the current task 
should be used to improve the control action during the 
current trial. In other words, the controller should learn 
iteratively the correct control actions in order to minimize 
the difference between the output of the system and the 
given reference signal. He called this method “betterment 
process” [5]. Regarding the past of ILC, it is clear that the 
pioneering work of Arimoto and his colleagues stimulated a 
new approach to controlling certain types of repetitive 
systems. The concept of iterative learning is quite natural 
but had not been expressed in the algorithmic form of ILC 
until the early 1980s. In many practical control systems, the 
tasks are executed within a finite time interval while the 
same tasks are repeatedly operated. Examples for such 

systems are, more generally, the class of repetitive tracking 
systems such as process plants, robotic systems, etc. It is 
well known that conventional control algorithms do not 
take advantage of the repetitiveness. As opposed to 
tradicional controllers, ILC is a simple and effective control 
and can progressively reduce tracking errors and improve 
system performance from iteration to iteration, [5, 7]. The 
ILC approach is more or less an imitation of the learning 
process of every intelligent being. Intelligent beings tend to 
learn by performing a trial (i.e. selecting a control input) 
and observing what was the end result of this control input 
selection. After that, they try to change their behavior in 
order to get an improved performance during the next trial. 
By emulating human learning, ILC uses the knowledge 
obtained from the previous trial to adjust the control input 
for the current trial so that a better performance can be 
achieved. In that way, ILC incorporates past control 
information, such as tracking errors and their corresponding 
control input signals, into constructing the present control 
action. Also, there has been a great deal of study to 
overcome limitations of conventional controllers against 
uncertainty due to inaccurate modeling and/or parameter 
variations.The first ILC approaches used only the error 
from the previous run and thus could only handle repetitive 
disturbances,[1, 5, 7-9].The addition of current cycle 
feedback has been proposed to handle non-repetitive 
disturbances [10]. Therefore, ILC is a recursive control 
method that relies on less calculation and requires less a 
priori knowledge about the controlled system than many 
other kinds of control. Owing to its simplicity and 
effectiveness, ILC has been found to be a good alternative in 
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many areas and applications, e.g. see recent surveys [3, 11] 
for detailed results. 

Besides, in terms of how to use  the tracking error signal 
of the previous iteration to form the control signal of the 
current iteration, ILC updating schemes can be classified as 
P-type, D-type, PD-type, and PID type. The ILC system 
operates in two dimensions; one is in the time domain and 
the other is in the iteration domain. The conventional ILC is 
an open-loop strategy, which refines the current iteration 
control input by only employing information from the 
previous iterations and, hence, cannot improve the tracking 
performance along the time axis within a single cycle. 
Moreover, a typical ILC in the time domain is  a simple 
open-loop control (off-line ILC) and it cannot suppress 
unanticipated, non-repeating disturbances.  

In real applications, to overcome such drawbacks, an 
ILC scheme is usually performed together with a proper 
feedback controller for compensation, where we often 
design a learning operator for the closed-loop (on-line ILC) 
systems that have achieved a good performance. 
Algorithms that only use information of the past trial are 
called first order algorithms, and can be distinguished from 
higher order algorithms that use multiple past trials or 
current trial algorithms, which incorporate a feedback loop. 

Therefore, ILC is a technique of controling systems 
operating in a repetitive mode with the additional 
requirement that a specified output trajectory )(tyd  in an 
interval [ ]T,0  be followed to a high precision and through 
improving the performance from trial to trial in the sense 
that the tracking error is sequentially reduced. The basic 
strategy is to use an iteration of the form 

1( ) ( ( ), ( )), ( ) ( ) ( )i i i i d iu t f u t e t e t y t y t+ = = − , where (.,.)f  
defines the learning algorithm and remains to be specified, 

( )iy t  is the output at the i-th operation resulting from an 
input ( )iu t , and ( )dy t  represents the desired output. The 
new control input 1( )iu t+  should make the system closer to 
the desired result in the next execution cycle. Namely, the 
intuitive notion of “improving performance progressively” 
can be refined to a convergence condition on the error, i.e.,  
(in some norm topology) lim (.) 0,i ie→∞ =  

( ) ( )( )i d ie t y t y t= − . The original ILC scheme in English is 
proposed by [5] for a better control of systems performing 
repetitive tasks as D-type, i.e., 1( ) ( ) ( / )i i iu t u t de dt+ = + Π . 

Recently, increasing attentions have been paid to 
fractional calculus (FC) and its application in various 
science and engineering fields, [12-14]. Fractional calculus 
is a mathematical topic with more than 300- year old 
history, but its application to physics, mathematics, and 
engineering has been reported only in the recent years  
[13, 15-17]. The fractional integro-differential operators are 
a generalization of integration and derivation to non-integer 
order (fractional) operators [12, 14, 18, 19]. All fractional 
operators consider the entire history of the process being 
considered, thus being able to model the nonlocal and 
distributed effects often encountered in natural and 
technical phenomena.The theory of FC is a well-adapted 
tool for modeling many physical phenomena, allowing the 
description to take into accounts some peculiarities that 
classical integer-order models simply neglect, [14]. For 
example, wide and fruitful applications can be found in 
rheology, viscoelasticity, acoustics, optics, chemical and 
statistical physics, robotics, control theory, electrical and 
mechanical engineering, bioengineering, etc. As important 

applications of FC, fractional-order control systems [20, 21] 
and fractional-order modeling [22, 23] have attracted more 
and more interests in the last several years to enhance the 
robustness and performance of the proposed systems. 

Particularly, the application of ILC to the fractional-
order system has become a new topic, where authors [24] 
were the first to propose the fractional order D-type 
iterative learning control algorithm and the convergence 
was proved in the frequency domain. Then, the time 
domain analyses of fractional-order ILC are obtained and 
presented in the papers, [25-30], as well as for a class of 
fractional-order nonlinear time-delay systems [31, 32] and 
in a survey/overview [33-35]. 

Motivated by the mentioned investigations of ILC 
algorithms for ILC fractional order control in the tracking 
problems of these systems,  a new robust iterative learning 
feedforward control as well as feedback ILC control for a 
particular class of fractional order uncertain time delay 
systems are suggested in this paper.This paper extends the 
results obtained in papers [27, 34] to consider more general 
systems i.e. fractional order uncertain  time delay systems 
(including constant but unknown delay as well as time-
varying delay) described in the form of state space and 
output equations. Sufficient convergent conditions of the 
proposed ILC will be derived in time-domain and 
formulated by the theorems. Finally, the simulation results 
are presented to illustrate the performance of the proposed 
robust PDα  ILC scheme. 

Preliminaries and basics of fractional calculus  

The λ -norm, maximum norm, induced norm 

For a later use in proving the convergence of the 
proposed learning control, the following norms are 
introduced [35] for the n -dimensional Euclidean space 

nR : the sup-norm 
1
sup ,k

k n
x x∞

≤ ≤
=  [ ]1 2, , ... T

nx x x x= , kx -

absolute value; the maximum norm ( )
0
max ,s t T

x x t
≤ ≤

=  

( ) ( ) ( ) ( )[ ]1 2, ,..., T
nx t x t x t x t= ; the matrix norm as 

1
1
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n

kk m
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A g∞ ≤ ≤
=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
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A useful property associated with the λ-norm is the 
following inequality.  

Property 1: λ  norm has the next property 
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The induced norm of the matrix A is defined as: 

 sup : with 0
Ax

A x X xx
⎧ ⎫= ∈ ≠⎨ ⎬
⎩ ⎭

 with, (3) 

where ( ).  denotes an arbitrary vector norm. In case ( ).
∞

 
it follows that  

 Ax A x∞ ∞ ∞≤ , (4) 

where A ∞  denotes the maximum value of the matrix A. 
For the previous norms, note that  

 ( ) ( ) ( )Th t h t e h tλ
λ λ∞
≤ ≤ . (5) 

The λ  - norm is thus equivalent to the ∞ - norm. For 
simplicity, in applying the norm ( ). ∞

 the index ∞  will be 
omitted. Before giving the main results, we first give the 
following Lemma 1, [21]. 

Lemma 1. Suppose a real positive series { }1na ∞  satisfies  

 ( )
1 1 2 2 ...

1, 2, ...,
n n n N n Na a a a
n N N

ρ ρ ρ ε− − −≤ + + + +
= + +  (6) 

where ( )1 0 1, 2,..., 0i Nρ ε≥ = =  and 
1

1
N

i
i

ρ ρ
=

= <∑ . Then 

the following holds: 

 ( )lim / 1nn
a ε ρ

→∞
≤ − . (7) 

Basics of fractional calculus 
Fractional calculus (FC) is a generalization of classical 

calculus concerned with the operations of integration and the 
differentiation of non-integer (fractional) order. The concept 
of fractional operators has been introduced almost 
simultaneously with the development of the classical ones. 
This question consequently attracted the interest of many 
well- known mathematicians, including Euler, Liouville, 
Laplace, Riemann, Grünwald, Letnikov and many others. 
Since the 19th century, the theory of fractional calculus 
developed rapidly, mostly as a foundation for a number of 
applied disciplines, including fractional geometry, fractional 
differential equations (FDE) and fractional dynamics. The 
applications of FC are very wide nowadays, [11-13], [22-25]. 
It is safe to say that almost no discipline of modern 
engineering and science in general remains untouched by the 
tools and techniques of fractional calculus. For example, 
wide and fruitful applications can be found in rheology, 
viscoelasticity, acoustics, optics, chemical and statistical 
physics, robotics, control theory, electrical and mechanical 
engineering, bioengineering, etc. The main reason for the 
success of FC applications is that these new fractional-order 
models are often more accurate than integer-order ones, i.e. 
there are more degrees of freedom in the fractional order 
model than in the corresponding classical one. All fractional 
operators consider the entire history of the process being 
considered, thus being able to model the non-local and 
distributed effects often encountered in natural and technical 
phenomena. 

There exist today many different forms of fractional 
integral operators, ranging from divided-difference types to 
infinite-sum types, Riemann-Liouville fractional derivative, 
Grunwald–Letnikov fractional derivative, Caputo’s, Weyl’s 

and Erdely-Kober left and right fractional derivatives, etc. 
[12]. The three most frequently used definitions for the 
general fractional differintegral are: the Grunwald-Letnikov 
(GL) definition, the Riemann-Liouville (RL) and the Caputo 
definitions, [11, 12]. Also, fractional order dynamic 
systems and controllers have been increasing in interest in 
many areas of science and engineering in the last few years. 
In most cases, our objective of using fractional calculus is 
to apply the fractional order controller to enhance the 
system control performance, [13, 25]. 

Here, we review some basic properties of fractional 
integrals and derivatives, which we will need later in the 
obtaining ILC algorithms schemes. Sets of natural, real, 
integer real and complex numbers are denoted, respectively, 
by , , ,N R Z C . Also ( )( ) [ ]( ), , ,p pL a b L a b= 1,p ≥  is the 
space of the measurable functions for which 

( )
1/ pb

p

a

f x dx
⎛ ⎞
⎜ ⎟ < ∞
⎜ ⎟
⎝ ⎠
∫ . 

Definition 1. The left Riemann-Liouville fractional 
integral of the order Cα ∈  is given by  

 ( ) ( ) ( )

[ ]

11( ) ,

, , Re 0.

t

a t

a

I f t t f d

t a b

αα τ τ τ
α

α

−= −
Γ

∈ >

∫  (8) 

In the special case of a positive real ( )Rα α +∈  and 

( )1 ,f L a b∈ , the integral a tI fα  exists for almost all 

[ ],t a b∈  as well as ( )1 ,a tI f L a bα ∈ , [26,37]. 

Defintion 2. The left RL fractional derivatives a tD fα , 
of the order ,Cα ∈  Re 0,α ≥  1 Re ,n nα− ≤ <  ,n N∈ is 
defined as 
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Also, for the special case 0 1α≤ <  where t a>  we have 

 ( )
( )

( )
1( ) ,

1

t
RL

a t

a

fdD f t ddt t
α

α
τ

τ
α τ

=
Γ − −∫   (10) 

Definition 3. The left Caputo fractional derivative of a 
function of the order α, denoted by C

a tD fα , is given, [36] 

 ( ) ( )
nC n

a t a t n
dD f t I f t
dt

α α− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (11) 

where n
a tI α−  is the left RL fractional integral (8) or in the 

explicit form as follows: 

( ) ( )
( ) ( )
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, ,
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The Riemann-Liouville fractional derivatives and the 
Caputo fractional derivatives are connected with each other 
by the following relations: 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

1

0

1
1

kn k
kRL C

a t a t
k

f a
D f t D f t t a

k
αα α

α

−
−

=

−
= + −

Γ − +∑ , (13) 

   ( ) ( ) ( ) ( ) ( )
( ) ( )

1
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1
1
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kRL C

t b t b
k

f b
D f t D f t b t

k
αα α
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−
−

=

−
= + −

Γ − +∑ , (14) 

The Caputo and Riemann-Liouville formulations 
coincide when the initial conditions are zero, [13]. 

Lemma 2. If the function ( ),f t x  is continuous, then the 
initial value problem  

 ( ) ( )( )
( ) ( )

0

0

, , 0 1
0

C
tt D x t f t x t

x t x

α α⎧ = < <⎪
⎨

=⎪⎩
 (15) 

is the equivalent to the following nonlinear Volterra 
integral equation:  

 ( ) ( ) ( ) ( ) ( )
0

110 , ( )
t

t

x t x t s f s x s dsα
α

−= + −
Γ ∫  (16) 

and its solutions are continuous, [38]. 

PDα  - type iterative learning control for the 
fractional order uncertain time delay system 

System description  
The non-integer (fractional) order uncertain system with 

time delay described in the form of state space and output 
equations is considered here. In his Phd. Matignon [39], 
gives the model of pressure wave transmission through an 
air-filled tube with viscothermic perturbation and discusses 
the stability of the transfer function as an example of a 
fractional delay system. In their paper, authors [40] 
considered finite-dimensional fractional time delay 
systems. This description is convenient for simple models 
of systems with only one Caputo fractional-order derivation 

    ( )0 0 1( ) ( ) ( ) ( ) ,
( ) ( ), 0 1

C
t i i i i i

i i

D (t) A t A t B t f x t
t C t

α τ
α

= + − + +
= < <
x x x u

y x
 (17) 

and with the associated function of the initial state 

 ( ) ( ), 0.x Mx t t tψ τ= − ≤ ≤  (18) 

where t is the time in the operation interval 
[ ]0, ,J T J R= ⊂ , as well as 0 1α< <  fractional order 

derivative, 0 1, ,A A B  and C are the matrices with 
appropriate dimensions and τ  denotes a pure time delay. 
Moreover, τ is an unknown time delay but a bounded 
parameter which satisfies  

 [ ]0 < T, , 0, ,M t J J T J Rτ τ≤ ≤ ∀ ∈ = ⊂  (19) 

Also, the initial conditions of fractional differential 
equations which were compared to the given fractional 
derivatives were considered by authors [41], and it is 
assumed that there is no difficulty with questions of 
existence, uniqueness, and continuity of solutions with 

respect to the initial data. The following assumptions on the 
system (17, 18) are imposed. 

A1. The desired trajectories ( )dy t , dx (t) are 
continuously differentiable on [ ]0,T . 

A2. The system (17) is causal and when 0t <  it is 
assumed [ ]( ) ( ), ,0d Mt t tψ ψ τ= ∀ ∈ −i , where 

( ) ( ),ix t tψ=i  [ ],0Mt τ∀ ∈ −  is the initial function of the 
system (17). 

A3. The input-output coupling matrix CB is of full 
column rank. 

A4. The vector function f presents the nonlinear 
parameter perturbation of the system in respect to ( )tx  and 
it is  uniformly globally Lipschitz in terms of x  in [ ]0,T , 
i.e. 

( )( ) ( )( ) ( ) ( ) [ ]0 1 0 2 1 2 , 0,ff x t f x t k x t x t t t− ≤ − ∈  (20) 

where 0fk >  is some finite constant. 

PDα  - type iterative learning control 
In ILC, the convergence aspects have always been a key 

issue, i.e. guaranteeing that the systems output trajectory is 
converging to the desired one within a prescribed desired 
accuracy as the number of ILC iterations increases. Here, it 
is suggested the learning control scheme PDα  - type ILC 
updates the law for the given system (17) such as:  

 1 0( ) ( ) ( ) ( )C
i i i t iu t u t e t D e tα
+ = + Γ +Π , (21) 

where Γ , Π  are the gain matrices appropriate dimensions. 
A sufficient condition for the convergence of a proposed 
ILC is given by Theorem 1 and proved as follows.  

Theorem 1: Suppose that the updated law (21) is 
applied to the system (17) and  that the initial function (18) 
at each iteration satisfies [ ]( ) ( ), ,0dt t tψ ψ τ= ∀ ∈ −i . If 
the matrix Π  exists such that 

 [ ] ,1<≤Π− ρCBI  (22) 

then, when ∞→i  the bounds of the tracking errors 
( ) ( ) , ( ) ( ) ,d i d ix t x t y t y t− − ,)t(u)t(u id −  converge 

asymptotically to zero. 

Proof. Let  
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, , , ,
i d i i id

d d

h h t h t h h t h t

h x x u u f

α α αδ = − = −

=
 (23) 

The tracking error can be obtained as follows:  

 
( ) ( )

( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )0 1

d ii i

i i i i

de t y t y t C x t
dt
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αα α
α δ

δ δ τ δ

= − =

= + − + +
, (24) 

Taking the proposed control law gives: 

 
( )

( )
1 1i d i d i i i

i i i

u u u u u e e

u e e

α

α

δ

δ

+ += − = − −Π −Γ =

= −Π −Γ
 (25) 

or, taking (24) it yields: 
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Estimating the norms of (26) with (.)  and using the 
condition of Theorem 1 implies: 
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Also, one can write the solutions of (17) in the form of 
the equivalent Volterra integral equations,[13] using 
assumption A2, as: 
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or  
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Applying the norms and using the Lipschitz condition 
with respect to x  (20), if it is the uniqueness solution [13], 
it yields:  
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 (30) 

Moreover, applying the λ -norm to both sides of the 
previous equation (30), it follows  
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⎧ ⎫+ +⎡ ⎤⎪ ⎪≤ ⎨ ⎬⎢ ⎥− +Γ ⎣ ⎦⎪ ⎪⎩ ⎭
∫

 

 ( )

1
( )

0
0

0

0 1 0

( )
sup

( ) ( )
sup

( ) ( )

t
t s

t T

f is

t T i M i

t s
e

a k x s
e ds

a x s b u s

α
λ

λ

α

δ
δ τ δ

−
− −

≤ ≤

−

≤ ≤

−
≤ ⋅

Γ

+ +⎛ ⎞⎡ ⎤⋅⎜ ⎟⎢ ⎥− +⎣ ⎦⎝ ⎠

∫
  

 

( )

1

0

1 0

( )

0 0
0 0

( ) ( )
( ) ( )

( )
sup sup )

f i

i M i
t t

t s

t T t T

a k x s
a e x s b u s

t s
e ds ds

α

λ
λτ

λ λ

λ

δ
δ τ δ

α

−

−

− −

≤ ≤ ≤ ≤

+ +⎛ ⎞
≤ ⋅⎜ ⎟− +⎝ ⎠
⎛ ⎞−⎜ ⎟

Γ⎜ ⎟
⎝ ⎠

∫ ∫
 (31) 

Due to the fact that ( ) ( )Mx t x tλ λτ− ≤ ,one can find 
that (31) 

( )

( )
( )

1

0 1

0

( )

0 0
0 0

0 1

0

( ) ( )
( )

( )

( )
sup sup

1( ) ( )
1( )

M

M

f i
i

i
t t

t s

t T t T

T
f i

i

a a e k x s
x t

b u s

t s
e ds ds

ea a e k x s T
b u s

α

λτ
λ

λ
λ

λ

λλτ α
λ

λ

δ
δ

δ

α

δ
λ αδ

−

−

− −

≤ ≤ ≤ ≤

−−

⎛ ⎞+ + +
≤ ⎜ ⎟+⎝ ⎠

⎛ ⎞−⎜ ⎟⋅
Γ⎜ ⎟

⎝ ⎠
−⎛ ⎞+ + +

= ⎜ ⎟ Γ ++⎝ ⎠

∫ ∫ (32) 

Defining ( )1O λ− , as 

 ( ) ( )
( )

1 1
1

Te TO
λ

α
λ λ α

−
−

−
=

Γ +
 (33) 

where (32) simplifies to  

  ( )0 1 1

0

( ) ( )
( )

( )

M
f i

i
i

a a e k x s
x t O

b u s

λτ
λ

λ
λ

δ
δ λ

δ

−
−⎛ ⎞+ + +

≤ ⎜ ⎟+⎝ ⎠
 (34) 

or, one may conclude  

  
( )

( ) ( )( )
( )

1
0

1
0 1
1

( ) ( )
1

( )

i i
f

i

b O
x t u t

a a e k O

O u t

λ λλτ

η λ

λ
δ δ

λ

λ δ

−

− −

−

≤ ≤
− + +

≤

 (35) 

where, if a sufficiently large λ is used, one can obtain that: 

 ( )( )0 1( 1) 1 0M T
fa a e k e Tλτ λ αλ α − −Γ + − + + − >  (36) 

Taking the λ -norm of (27) with the substitution of (35) 
simply yields: 

 1 0

1 2( ) ,
i i i

i M f i

u u x
e x t k x

λ λ
λτ

λ λ

δ ρ δ λ β δ
β δ τ β δ

+
−

≤ + +
+ − +

 (37) 

 1i i iu u xλ λ λδ ρ δ β δ+ ≤ +  (38) 

where is  

 0 1 2
M

fe kλτβ β β β−⎡ ⎤= + +⎣ ⎦  (39) 

or  

 ( )( )1
1i iu O uηλ λδ ρ β λ ρ δ−
+ ′≤ + =  (40) 

So that there exists a sufficient large λ  satisfying 
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 ( )1
0 1,Oηρ ρ β λ−⎡ ⎤′ = + <⎣ ⎦   (41) 

Therefore, according to Lemma1 Moore,[1] it can be 
concluded that: 

 lim 0i
i

u λδ
→∞

→  (42) 

This completes the proof of Theorem 1.Moreover, due to 
 the uniqueness and existence theorem for fractional order 
time delay systems,V.Lakshmikantham [42], one can 
conclude that 

 lim ( ) ( )i d
i

x t x t
→∞

= , lim ( ) ( )i d
i

y t y t
→∞

=  (43) 

The case of the fractional order time delay system with 
time-varying delay is also discussed here: 

 
( ) ( ) ( )0 1( ) ( ) ( ) ( ) ( ) ,
( ) ( ), 0 1

i i i i i

i i

t A t A t t B t f x t
t C t

α τ
α

= + − + +
= < <

x x x u
y x

(44) 

with the associated function of the initial state 

 ( ) ( ), 0.x Mx t t tψ τ= − ≤ ≤  (45) 

In the case of the time varying time delay ( )tτ  we 
introduce the next assumption A5.  

A5: ( ) [ ]0 , , , 0, ,M Mt T t J J Tτ τ τ≤ ≤ < ∀ ∈ =  (46) 

Theorem 2. For the fractional order time-varying delay 
system (44) and the given initial function (45), with the 

αPD -type ILC scheme (21), and the assumptions A1-A5 
where the convergence condition is given by (22), then we 
have 

 lim ( ) ( )i di
y t y t

→∞
=  (47) 

Proof: The proof immediately follows from the proof 
ofTheorem 1 and (46). 

Remark 1. By comparing it with [34], the author extends 
the main results of [34]. 

Remark 2. If the time delay constτ =  is known, one 
may obtain similar results as formulated in Theorems 1,2.  

Remark 3. In the case of the non-perturbed system 
( )( ) 0,if x t = and a known time delay τ , one may obtain 

the results which are obtained and presented in papers 
[27,34]. 

Remark 4. In the case of the non-perturbed system 
( )( ) 0,if x t = and without the time delay τ , one may obtain 

the results which are obtained and presented in papers [26,30]. 

Feedback-feedforward PDα  type iterative learning 
control 

Here, the feedback-feedforward fractional order PDα  
learning algorithm which comprises two types of control 
laws: a feed-forward PDα  control law and a PDα  
feedback law for given system (17) is assumed. In the feed-
forward control loop it is proposed that a PDα  - type ILC 
updating law for the given system is:  

 ( ) ( ) ( ) ( )( )1 2 0, 2fi i C t i iu t u t D e t e tα
+ = + Γ +Π . (48) 

where ( ) ( ) ( )i d ie t y t y t= −  is the trajectory tracking error 

in the i − th iteration and ( ) ( )d dy t Cx t=  denotes a desired 

output trajectory. In the feedback loop, the PDα  controller 
provides stability of the system and keeps its state errors 
within uniform bounds. Besides, the introduced feedback 
control is as follows:  

 1 1 0, 1 1 1( ) ( ( ) ( ))fbi C t i iu t D e t e tα
+ + += Γ +Π

, (49) 

where , , 1,2i i iΓ Π =  are the gain matrices of appropriate 
dimensions. Moreover, it was shown in [29] that the 
tracking speed was the fastest when the system order and 
the order of  ILC PDα  are of the same order i.e. α . In that 
way, the open-closed-loop fractional order PDα  learning 
algorithm takes the form  

 
( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )( )

1 1 1

1 0. 1 1 1

2 0, 2

i fi fbi i

C t i i

C t i i

u t u t u t u t
D e t e t
D e t e t

α

α

+ + +

+ +

= + = +
+Γ +Π +

+Γ +Π

 (50) 

A sufficient condition for the convergence of the 
proposed feedback ILC is given by Theorem 3 and proved 
as follows.  

Theorem 3. Suppose that the update law (50) is applied 
to the system (17) and that the initial function (18) at each 
iteration satisfies [ )( ) ( ), ,0dt t tψ ψ τ= ∀ ∈ −i . If there exist 
the matrices , 1,2i iΓ = such that 

 [ ] [ ]1
1 2 1,I CB I CB ρ−+ Γ −Γ ≤ <  (51) 

then, if i →∞ , the bounds of the tracking errors 
( ) ( ) , ( ) ( ) ,d i d ix t x t y t y t− −  ( ) ( )d iu t u t−  converge 

asymptotically to zero. 
Proof. The fractional derivative order α  of ( )ie t  is 

obtained as follows: 

 

( ) ( )

( ) ( ) ( )

0 1

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

d ii i

i i

i i

de t y t y t C x t
dt
CA x t CA x t
CB u t C f t

αα α
α δ

δ δ τ
δ δ

= − =

= + − +
+ +

 (52) 

Taking the proposed control law gives: 

 ( )
( )

1 1
( )

1 1 11
( )

2 2

( ) ( )

( )

i d i

i ii

ii

u u u
u e t e t

e e t

α

α

δ
δ

+ +

++

= − =
= −Γ +Π −

−Γ +Π

, (53) 

or, taking (52) it yields: 

 
[ ] [ ]

[ ]
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( )[ ]

[ ]
[ ]
[ ] [ ]

1
1 1 2

1 0 1 1

2 0 2
1

1 1 1 1

2 1

1 1 2
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( )
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( )
( )
( ) ( )

i i

i

i

i

i

i i

u t I CB I CB u t

CA C x t
CA C x t

I CB CA x t
CA x t
C f t C f t

δ δ

δ
δ

δ τ
δ τ

δ δ

−
+

+

−
+

+

= + Γ −Γ −

Γ +Π +⎛ ⎞
⎜ ⎟Γ +Π +⎜ ⎟

− + Γ Γ − +⎜ ⎟
⎜ ⎟Γ − +
⎜ ⎟⎜ ⎟Γ + Γ⎝ ⎠

 (54) 

Estimating the norms of (54) with (.)  and using the 
condition of Theorem 1 implies: 
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 ( ) ( )
1 0 1 1

2 1 3

4 1 5 ,

i i i i

i i

i i

u u x x
x t x t
f f

δ ρ δ β δ β δ
β δ τ β δ τ
β δ β δ

+ +

+

+

≤ + +
+ − + −
+ +

 (55) 

where are 

 

[ ] ( )[ ]
[ ] ( )[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

1
0 1 1 0 1

1
1 1 2 0 2

1
2 1 1 1

1
3 1 1

1
4 1 1 1

1
5 1 2

,

,

,

2 ,

,

I CB SA C

I CB SA C

I CB SA

I CB SA

I CB SA

I CB C

β

β

β

β

β

β

−

−

−

−

−

−

= + Γ Γ +Π

= + Γ Γ +Π

= + Γ Γ

= +Γ Γ

= + Γ Γ

= + Γ Γ

 (56) 

Further, applying the same procedure as in the proof of 
Theorem 3, one can also conclude that: 

 lim 0ii
u λδ

→∞
→ , (57) 

and taking into account the uniqueness and existence 
theorem for fractional order time delay system, 
V.Lakshmikantham [42], it follows 

 lim ( ) ( )i di
x t x t

→∞
= , lim ( ) ( )i di

y t y t
→∞

= . (58) 

Simulation example 
In this section, an example is presented to show the 

effectiveness of the proposed PDα  iterative learning 
feedback-feedforward controller. Consider the following 
fractional order uncertain time delay system in the state 
space form described by 

 
( )0.5

2
( ) ( ) ( )

0.15sin( ( ) 0.05)
i i i i

i

(t)= 0.1x t 0.1x t u t
x t

τ+ − + +
+ +

x   

 ( ) ( ),i it t=y x  (59) 

where [ ]0,1 , 0.5, 0.1Mt α τ τ∈ = ≤ =  and ( ) 0.1,d tψ =  
0.1 0t− ≤ < . The desired output trajectory is given by 

( )( ) 2dy t t 1- t=  and the parameter perturbation 

( )20.15sin 0.05i if x= + . We apply the PDα -type ILC 
updating law  

 ( )
( )

0.5
1 1 1

0.5

( ) ( ) 0.7 ( ) 0.7 ( )
0.5 ( ) 0.5 ( )

i i i i

i i

u t u t e t e t
e t e t

+ + += + + +

+ +
 (60) 

with the initial control ( )0 0u t = . 

The simulation results in Figures 1 and 2 show the 
effectiveness of the developed ILC control scheme for the 
system (59). The ILC rule (50) is used and Fig.1 shows the 
tracking performance of the ILC system outputs on the 
interval [ ]0,1t∈ . Also, we can find, (see Fig.2), that the 
proposed requirement of the tracking performance is 
achieved at the ninth iteration. 
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Figure 1. The tracking performance of the system output (y/(t)): solid line, 
yd(t): bold line) 
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Figure 2. The sup-norm of the tracking error ( )e t  in each iteration  

Conclusion 
Iterative learning control, which can be categorized as an 

intelligent control methodology, is an approach for improving 
the transient performance of systems that operate repetitively 
over a fixed time interval such as motion control of robotic 
systems, etc. In this paper, a PDα  type of robust ILC is 
proposed for a given class of fractional order uncertain 
unknown and bounded time delay systems. Particularly, we 
considered two cases of time delay: unknown bounded 
constant time delay as well as time-varying delay. Sufficient 
conditions for the convergence in the time domain of a 
proposed ILC were given by the corresponding theorems and 
proved. In the second part of this paper, the applications of the 
feedback-feedforward PDα  type of ILC are proposed for the 
given class of fractional order uncertain time delay systems. 
Finally, the sufficient conditions for the convergence in the 
time domain of the proposed ILC were given by the 
corresponding theorem together with its proof. The theoretical 
results have also been verified through a numerical simulation. 
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Neki novi rezultati iterativnog upravljanja učenjem necelog reda 
Iterativno upravljanje putem učenja (ILC) predstavlja jedno od važnih oblasti u teoriji upravljanja i ono je moćan koncept 
upravljanja koji na iterativan način poboljšava ponašanje procesa koji su po prirodi ponovljivi. ILC je pogodno za 
upravljanje šire klase mehatroničkih sistema i posebno su pogodni za upravljanje na primer kretanja robotskih sistema koji 
imaju važnu ulogu u tehničkim sistemima koji uključuju sisteme upravljanja, primenu u vojnoj industriji itd. Ovaj se rad 
bavi problemom ILC upravljanja za nelinearne sisteme necelog reda sa vremenskim kašnjenjem. Posebno, ovde se 
proučavaju  sistemi necelog reda sa nepoznatim ograničenim vremenskim kašnjenjem u prostoru stanja kao i slučaj 
vremenski promenljivog kašnjenja. Pri tome, dovoljni uslovi za konvergenciju u vremenskom domenu predloženog PDα  
ILC upravljanja za datu klasu necelog reda sistema sa kašnjenjem su prezentovani i dati u vremenskom domenu.Takođe, 
robusno PDα  ILC upravljanje u direktnoj-povratnoj sprezi za dati sistem sa kašnjenjem je razmatrano.Posebno, razmatra 
se sistem necelog reda sa nepoznatim ali ograničenim konstantnim vremenskim kašnjenjem. Dovoljni uslovi za 
konvergenciju u vremenskom domenu predloženog PDα  ILC upravljanja su dati odgovarajućom teoremom sa pratećim 
dokazom. Konačno, simulacioni primer pokazuje izvodljivost i efikasnost predloženog pristupa. 

Ključne reči: teorija upravljanja, iterativno upravljanje, upravljanje učenjem, necelobrojni red, nelinearni sistem, 
vremensko kašnjenje, robotski sistem. 

Некоторые новые результаты итеративного управления 
обучением дробного порядка 

Итеративное управление процессом обучения (ИУПО) является одним из важных направлений в теории 
управления, и это мощная концепция управления, которая при помощи итеративного метода улучшает 
поведение процессов, которые по своей природе повторяются. ИУПО идеально подходит для управления 
широких класс мехатронных систем и особенно подходит для управления, например, движения 
роботизированных систем, которые играют важную роль в технических системах, которые включают в себя 
системы управления, применение в военной промышленности и так далее. Эта статья имеет дело с ИУПО 
управлением нелинейными системами дробного порядка с запаздыванием. В частности, здесь изучаются 
системы дробного порядка с неизвестной ограниченного периода задержки времени в пространстве состояний, а 
также и при изменяющихся во времени задержек. При этом, достаточные условия для сходимости во временной 
области предлагаемой PDα  ИУПО управления для данного класса дробного порядка систем с запаздыванием 
времени заказа представлены и даны во временной области. Также рассматривано надёжное PDα  ИУПО 
управление в прямой и обратной связи для даной системы с задержкой времени. Отдельно рассматривается 
система дробного порядка с неизвестным, но ограниченным постоянным запаздыванием. Достаточные условия 
для сходимости во временной области предлагаемого PDα  ИУПО управления получили и соответствующую 
теорему с подтверждающими доказательствами. Наконец, пример моделирования показывает целесообразность 
и эффективность предложенного подхода. 

Ключевые слова: Теория управления, итеративное управление, управления обучением, дробной порядок, 
нелинейная система, время задержки, роботизированная система. 

Quelques nouveaux résultats du contrôle itératif par l’étude de 
l’ordre fractionnel 

Le contrôle itératif par l’étude (CIE) est un domaine important dans la théorie de contrôle. C’est un concept puissant qui 
à la façon itérative améliore le comportement des processus itératifs par leur nature. Le contrôle itératif par l’étude est 
convenable pour le contrôle d’une large classe des systèmes mécatroniques notamment pour le contrôle des mouvement 
des systèmes robotiques qui jouent un rôle important dans les systèmes techniques comprenant les systèmes de contrôle, 
l’application dans l’industrie militaire, etc. Ce travail considère le problème du contrôle CIE chez les systèmes de l’ordre 
fractionnel à délai temporel. On étudie ici en particulier les systèmes de l’ordre fractionnel à délai temporel limités et 
inconnus dans l’espace d’état ainsi que le cas du délai temporel variable. Les conditions suffisantes pour la convergence 
dans le domaine temporel PDª du contrôle CIE pour la classe donnée de l’ordre fractionnel du système à délai ont été 
présentées et donnée dans le domaine temporel. Le contrôle CIE PDª robuste aux réactions directes pour le système à 
délai a été traité aussi. On a considéré surtout le système de l’ordre fractionnel à délai temporel inconnu et limité 
constamment. Les conditions suffisantes pour la convergence dans le domaine temporel du CIE PDª contrôle proposé ici 
ont été présentés par la théorème accompagnée de preuve. Finalement l’exemple simulé démontre l’efficacité et la 
réalisabilité de l’approche proposée. 

Mots clé: théorie de contrôle , contrôle itératif, contrôle par étude, ordre fractionnel, système non linéaire, délai temporel, 
système robotique. 


