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We discuss dynamic system performance evaluation in the river port utilizing queuing models
with batch arrivals. The general models of the system are developed. This system is modelled
by MX/M/n/m queue with finite waiting areas and identical and independent cargo-handling
capacities. The models are considered with whole and part batch acceptance (or whole and part
batch rejections) and the interarrival and service times are exponentially distributed. Results
related to the batch blocking probability and the blocking probability of an arbitrary vessel in
nonstationary and stationary states have been obtained. Numerical results and computational
experiments are reported to evaluate the efficiency of the models for the real system.

1. Introduction

Batch arrival queues with a finite waiting areas or finite-buffer space have wide range
of applications in computer networks, telecommunications, transportation, manufacturing,
banks, management and logistics systems, and so forth. Many results in queuing theory have
been obtained by considering models, where customers arrive one by one and are served
individually. However, in numerous real-world situations such as previous; mentioned
various practical areas, it is frequently observed that the customers arrive in groups.
Consequently, their operation processes can be adequately modelled by batch arrival queue.

Models of this type have also applications in modelling the port systems, showing that
initial Markovian models are very accurate in determining a port performance. At seaport
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and river port terminals such as bulk material port handling systems, the situations where
vessels arrive in groups are naturally common.

In a port queuing system that does not serve each vessel immediately upon arrival,
a vessel will attempt to arrive at a time that will minimize the expected queue length.
The consequences of such behavior are analyzed for a queue with finite waiting areas. The
characteristics of such a system are then compared for two possible vessel batch acceptance
models: whole batch acceptance and part batch acceptance. Closed-form expressions for
the state probabilities for whole batch acceptance model described by the nonstationary
multiserver queuing system related to the uniform random variable X with the distribution
given by ak = P(X = k), k ≥ 1, (k is a number of vessels in group), where a1 = a2 = · · · =
am+n = a, are obtained in [1]. This paper extends earlier work on the nonstationary queue
length distribution of a batch arrival into the system with finite waiting area by considering
multiserver queuing systems [1]. This is a Markovian type of finite batch queue and whole
batch acceptance. The whole batch acceptance model when X has the geometric probability
distribution function and part batch acceptance model (with the uniform and geometric
random variable X) does not seem to be possible to obtain closed-form expressions for the
state probabilities or even the generating function of these probabilities.

Consequently, this paper considers a finite waiting areas batch arrival queue with
identical and independent cargo-handling capacities: MX/M/n/m, where m denotes the
number of waiting areas. The main aim of this paper is to discuss the analytic and
computational aspects of these models with whole and part batch acceptance. After putting
our study into context, in Section 2, we give the background in modelling and port terminal
operations. Section 3 presents models formulation and analytical models applied to blocking
probability calculations with batch arrivals and finite waiting areas. Examples of numerical
results are presented in Section 4 with different results for analysis of the real system. Finally,
Section 5 concludes the paper.

2. Background in Modelling and Port Terminal Operations

This paper analyses theMX/M/n/m queue, where vessels arrive in batches of random size.
Unlike the other batch arrival queue with finite waiting areas (anchorage), batches which
upon arrival find not enough area at the anchorage are either fully or partially rejected.
Some queuing protocols are based on the whole and part batch acceptance models, and
it is also known as the total or part batch rejection policy. The stochastic characteristics of
the port operation are as follows: time of arrival of single vessel or in batch (barge tows)
in the port cannot be precisely given; the service time is a random variable depending on
handling capacities of berths, carriage of barges, the size of an arriving group, and so forth,
and the berths are not always occupied (in some periods there are no barges—the capacities
are underutilized, and there are the time intervals of high utilization when the queues are
formed).

The port operation and vessel movement include the following: waiting in the
anchorage areas (if all anchorages are occupied, the vessels or the barge tows are rejected,
or if the vessels or the barge tows are larger in size than the number of available free waiting
areas fills the free positions and the remaining vessels of the group are rejected and have to
go to another waiting area), vessels move from anchorage to berth, loading or unloading at
the berth, and towing of barges after the loading/unloading to the anchorage area or leaving
the port. This cycle is called the turnaround time for the vessels in the port.
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The ports or, more precisely, the anchorage-ship-berth (ASB) links are considered as
queuing models with batch arrivals, single service, and limited queues at an anchorage. In
the port, the ASB link is assumed as follows: the applied queuing system is nonstationary
and stationary, with finite waiting area at anchorage; the sources of arriving pattern are
not integral parts of ASB link; the service channels are berths with similar or identical
and independent cargo-handling capacities; the units arrivals can be single vessels and
groups as barge tows; all barge tows and single vessels at anchorage are waiting to
be serviced; the service time is a continuous random variable; the size of an arriving
group is a random variable; the queue length or the number of waiting anchorage areas
are finite and given; interarrival times, the batch sizes, and service times are mutually
independent.

The past 30 years show rising interest in the research of port and terminals systems
modelling as well as their subsystems involving port equipment. Earlier research related to
a bulk port, particularly to the ASB link modelling, using simulation and queuing theory, is
summarized in [2–5]. Problems in modelling and simulation in the field of port equipment
are shown for instance in [6, 7].

There are numerous articles dealing with infinite and finite batch arrivals and service
queues. For example, in [8] the sojourn time distribution, loss probability of an arbitrary flow,
and arbitrary admitted flow in a multiserver loss queue with a flow arrival of customers is
analyzed. In the case of the waiting line as a whole, which has a limited capacity, specified by
a fixed maximum number of customers or finite-buffer space, queues have been analysed by
several researchers in the past. Apart from the classical references [9–12] used for describing
the models here, it was necessary to review the following articles. In [13], the ergodic
queue length distribution of a batch service system with finite waiting space by the method
of the embedded Markov chain is discussed. The analysis of the MX/GY/1/N queue is
given in [14]. In [15], the MX/GY/1/K queue by Cohen’s methods is investigated. The
MX/M/m/s queue has been analysed in [16], where several results related to blocking
probabilities, the distribution of the number of customers in the system, the cumulative
distribution function of the waiting time in the queue, and some numerical results for the
single-server system are presented. In [17], two different methods to study the behavior of
a finite queue with batch Poisson inputs, and synchronous server in a computer network
are proposed. The analysis M(n)/G(n)/1/K queue is given in [18], while in [19], the
M/G/1/K queue with push-out scheme is analyzed. In [20], the performance analysis
of a discrete-time finite-buffer queue with batch input, general interarrival, and geometric
service times (GIX/Geom/1/N) is presented. In [21], the GIX/M/c/N queue through a
combination of the supplementary variable and the embedded Markov chain techniques
is proposed and analyzed. The MX/GY/1/K + B queue with a finite-buffer batch-arrival
and batch service queue with variable server capacity has been considered and analysed
in [22]. In [23], a performance analysis of finite-buffer batch-arrival and batch-service
GeomX/GY/1/K + B queue is presented. The analysis GIX/MSP/1/N queue is given in
[24]. In [25], theGI/BMSP/1/N queue with a finite-buffer single-server queue with renewal
input, where the service is provided in batches of random size according to batch Markovian
service process is analyzed. The batch arrival batch service MX/GY/1/N queue with finite
buffer under server’s vacation is analysed in [26]. In [27], the blocking probability in a finite-
buffer queue whose arrival process is given by the batch Markovian arrival process was
investigated.

One can conclude that the ASB link, as a main port link, has been adequately analyzed
and modelled by using different modelling approaches. Various operations research models
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Figure 1: Graph of state of system for whole batch acceptance.

and methods in the field of optimizing ASB link modelling are applied more and more in
world terminals. In this paper, two models are described by the nonstationary and stationary,
multiserver queuing system with finite waiting areas and batch arrival vessels or barge tows
into the port system.

3. Mathematical Models Development

We consider a finite waiting areas batch arrival multiserver queue with identical and
independent cargo-handling capacities: MX/M/n/m, where m denotes the number of
waiting areas. The vessels or the barge tows arrive at the terminal according to a time-
homogeneous Poisson process with mean arrival rate λ. The port terminal has the n berths
for the service. The n berths have independent, exponentially distributed service times with
common average service time 1/μ (the mean cargo-handling rate per berth is μ). The queue
discipline is first come first served by tows batch and random within the tow batch. Apart
from the possible arrival of n vessels for service, there are m spaces in the waiting queue.
The number of vessels X that arrive for service at the same time is a random variable with
distribution given by ak = P(X = k), k ≥ 1 (whereas k = number of vessels in group)
and mean E(X) = a. The interarrival times, the batch sizes, and service times are mutually
independent. The maximum number of vessels allowed in the system at any time is n + m.
The service times of service batches (vessels) are independent of the arrival process and the
number served. The traffic intensity of the system is θ = λa/nμ.

For convenience, three different forms for the distribution ofX are considered: uniform
distribution with ak = 1/(n +m), 1 ≤ k ≤ n +m, geometric distribution with ak = (1 − a)ak−1,
k = 1, 2, . . ., and 0 < a < 1, and shifted Poisson distribution with ak = (ak−1/(k − 1)!)e−a,
k = 1, 2, . . ., and a > 0. Since the waiting area (anchorage) is finite, the following two batch
acceptance models are defined.

(I) If the group of vessels arriving into the system finds s vessels there, then in the case
that k ≤ (n +m) − s, the whole group will be accepted into the system. Otherwise, that is, if
k > (n + m) − s, the group is totally rejected. This is called the whole batch acceptance model
related to Figure 1.
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Figure 2: Graph of state of system for part batch acceptance.

(II) In the case when group of k vessels arriving into the system finds s vessels there,
then if k ≤ (n+m)− s, the whole group will be accepted. If k > (n+m)− s, the system accepts
any (n+m)−s vessels from the group, while the rest of k−((n+m)−s) vessels will be rejected.
This is the part batch acceptancemodel related to Figure 2.

The state probabilities of the systems for Model (I) should be determined by the
number of vessels within the system, shown in graph in Figure 1, and then, the following
system of differential equations for whole batch acceptancemodel at the moment t are given by

p′0(t) =
(
−λ

∑n+m

i=1
ai

)
p0(t) + μp1(t),

...

p′r(t) = −
(
λ
∑n+m−r

i=1
ai + rμ

)
pr(t) + λ

∑r−1
k=0

ar−kpk(t) + (r + 1)μpr+1(t), for 1 ≤ r ≤ n − 1,

...

p′n(t) = −
(
λ
∑m

i=1
ai + nμ

)
pn(t) + λ

∑n−1
k=0

an−kpk(t) + nμpn+1(t),

...

p′n+r(t) = −
(
λ
∑m−r

i=1
ai + nμ

)
pn+r(t) + λ

∑n+r−1
k=0

an+r−k · pk(t) + nμpn+r+1(t), for 1 ≤ r < m,

...

p′n+m(t) = −nμpn+m(t) + λ
∑n+m−1

k=0
an+m−1pk(t).

(3.1)
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Analogously, the state probabilities of the systems forModel (II) should be determined
by the number of vessels within the system, shown in graph in Figure 2, and hence, the
system of differential equations for part batch acceptancemodel at t is as follows:

p′0(t) = −λp0(t) + μp1(t),

...

p′r(t) = −(λ + rμ
)
pr(t) + λ

∑r−1
k=0

ar−kpk(t) + (r + 1)μpr+1(t), for 1 ≤ r ≤ n − 1,

...

p′n(t) = −(λ + nμ
)
pn(t) + λ

∑n−1
k=0

an−kpk(t) + nμpn+1(t),

...

p′n+r(t) = −(λ + nμ
)
pn+r(t) + λ

∑n+r−1
k=0

an+r−kpk(t) + nμpn+r+1(t), for 1 ≤ r < m,

...

p′n+m(t) = −nμpn+m(t) + λ
∑n+m−1

k=0

(
1 −

∑n+m−k−1
i=1

ai

)
pk(t).

(3.2)

One of the complexities in the analysis of the models is nonstationary state of work of
the systems. The analysis becomes further complicated in the case of multiserver queues as a
port systems. The queuing systems for the models are Markovian, and the state probabilities
are described by a set of differential equations in the steady state. The first requirement is to
determine the state probabilities pk(t), k = 0, 1, . . . , n +m.

Consider the system (3.1) of n+m+1 first-order linear differential equations related to
the “uniform” random variable X, that is, when a1 = a2 = · · · = am+n = a (the values ai, with
i > m+n, must be different of a and 0). By using the normalized condition

∑n+m
k=0 pk(t) = 1, the

last equation of (3.1) becomes

p′n+m(t) = −nμpn+m(t) + λa
(
1 − pn+m(t)

)
. (3.3)

The solution of this differential equation is

pn+m(t) = C
(n+m)
0 + C

(n+m)
1 e−(nμ+λa)t, (3.4)

where C(n+m)
0 = λa/(nμ + λa) and C

(n+m)
1 are real constants.
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Further by induction based on the recursive method, it can be proved [1] that the solution of
system (3.1) is given in the form

pn+m−s(t) = C
(n+m−s)
0 +

∑s+1

q=1
C

(n+m−s)
q e−(qλa+nμ)t, ∀s, 0 ≤ s ≤ m ,

pn−l(t) = C
(n−l)
0 +

∑l

j=1
C

(n−l)
m+1+je

−(λa(m+j+1)+(n−j)μ)t

+
∑m+1

k=1
C

(n−l)
k

e−(λak+nμ)t, ∀l, 1 ≤ l ≤ n − 1,

p0(t) = C
(0)
0 +

∑n

j=1
C

(0)
m+1+je

−(λa(m+j+1)+(n−j)μ)t +
∑m+1

k=1
C

(0)
k e−(λak+nμ)t,

(3.5)

where C(l)
k are suitable real constants.

By substituting the expressions for pi(t), 0 ≤ i ≤ m + n, given by (3.5) in system
(3.1) with a1 = a2 = · · · = am+n = a, and using the initial conditions p0(0) = 1, pi(0) = 0 for
i = 1, 2, . . . , m + n, we can obtain the recurrence relations between the coefficients C(s)

k
. These

recurrence relations give the values of each coefficient C(s)
k . Obviously, pn−l = C

(n−l)
0 for all l,

0 ≤ l ≤ n and pn+m−s = C
(n+m−s)
0 for all s, 0 ≤ s ≤ m are in fact solutions of the system of linear

equations which is stationary analogue to the system (3.1) (see in detail [1]). Observe that
any functions pi(t), 0 ≤ i ≤ m + n can be written as a linear combination of finite number of
exponential functions of the form e−ct, with C > 0.

Unfortunately, the system (3.2) related to the uniform random variable X (i.e., a1 =
a2 = · · · = am+n = a) cannot be solved using recursive method. Further, if the random variable
X has the geometric probability distribution function, with ak = (1−a)ak−1, where k = 1, 2, . . .,
and 0 < a < 1, or shifted Poisson distribution with ak = (ak−1/(k − 1)!)e−a, k = 1, 2, . . ., and
a > 0, the systems (3.1) and (3.2) also cannot be solved using recursive method as done in
the previous case related to the mentioned random variable X. Hence, MATLAB program is
used for solving the corresponding systems (3.1) and (3.2).

3.1. Blocking Probability for Both Models

In order to calculate the blocking probability at the moment t for any considered models
in transient (nonstationary) regime, it is necessary to determine the solutions pk(t), k =
0, 1, . . . , n + m, of the corresponding system of differential equations (3.1) or (3.2). As
previously noticed, it is outlined that closed-form expressions for time-dependent state
probabilities for whole batch acceptance model of multiserver queuing system related to
the uniform random variable X are obtained in [1]. However, the considered systems (3.1)
and (3.2) cannot be solved in the closed-form expressions with respect to other batch size
distributions (geometric and shifted Poisson distribution for both models and the uniform
distribution for Model (II)).

The batch blocking probability at the moment t is the same for both models, and it is
given by the following.

Proposition 3.1. The batch blocking probability at the moment t for models (I) and (II) is

PB(t) =
∑n+m

k=0
pk(t)

∑∞
i=n+m−k+1ai. (3.6)
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Proof. Given the batch finds exactly k, 0 ≤ k ≤ n + m, vessels in the system the batch will
be blocked at arbitrary moment t if this batch is bigger than n + m − k in size. Since P(X >
n + m − k) =

∑∞
i=n+m−k+1pi(t), then by the total probability formula, we immediately obtain

(3.6).

Similarly, it can be shown (see [16, 20] related to stationary blocking probability) the
following result.

Proposition 3.2. The blocking probability of an arbitrary vessel at the moment t is given

(a) for Model (I):

P
(1)
V (t) =

1
a

∑n+m

k=0
pk(t)

∑∞
i=n+m−k+1iai, (3.7)

(b) for Model (II):

P
(2)
V =

1
a

∑n+m

k=0
pk(t)

∑∞
i=n+m−k+1(i + k − n −m)ai, (3.8)

where a is the mean batch size.

In the stationary state of work of the system (as t → ∞), using the systems
of differential equations (3.1) and (3.2), the corresponding set of Chapman-Kolmogorov
equations can be easily obtained. Note that as t → ∞, the stationary blocking probabilities
for Models (I) and (II) are pk = limt→∞pk(t), k = 0, 1, . . ., where pk, k = 0, 1, . . . , n + m are
solutions of the system (3.1) or (3.2) in the stationary state of work of the system, respectively.
Hence, substituting this into (3.6), (3.7), and (3.8), one obtains the corresponding formulae
for stationary blocking probabilities as follows:

PB =
∑n+m

k=0
pk
∑∞

i=n+m−k+1ai,

P
(1)
V =

1
a

∑n+m

k=0
pk
∑∞

i=n+m−k+1iai,

P
(2)
V =

1
a

∑n+m

k=0
pk
∑∞

i=n+m−k+1(i + k − n −m)ai.

(3.9)

For example, in the case of uniform distributionXwith a1 = a2 = · · · = am+n = 1/(n+m)
and hence ai = 0 for each i > n+m, the first formula of (3.9) becomes PB = 1/(n+m)

∑n+m
k=1 kpk =

Nws/(n +m), where Nws is the average number of vessels in port.
On the other hand, in the case of geometric distribution X with ak = (1 − a)ak−1,

k = 1, 2, . . ., and 0 < a < 1, after routine calculation the first formula of (3.9) yields PB =∑n+m
k=0 a

n+m−kpk.
For example, in the case of uniform distribution X with a1 = a2 = · · · = am+n = 1/(n +

m), and hence, ai = 0 for each i > n +m, the second and third formula of (3.9) become P (1)
V =

1/((n+m)(n+m+1))
∑n+m

k=0 k(2n+2m−k+1)pk and P
(2)
V = 1/((n+m)(n+m+1))

∑n+m
k=0 k(k+1)pk,

respectively.
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On the other hand, in the case of geometric distribution X with ak = (1 − a)ak−1,
k = 1, 2, . . ., and 0 < a < 1, after routine calculations the second and third formula of (3.9)
imply P

(1)
V =

∑n+m
k=0 (n+m−k+1−a(n+m−k))pkan+m−k and P

(2)
V =

∑n+m
k=0 a

n+m−kpk, respectively.
It is interesting to note that PB = P

(2)
V for the Model (II).

4. Port Performance Measures

Performance measures are the means to analyse the efficiency of the port queuing system
under consideration. When state probabilities are known, performance measures can be
easily obtained. In this section, some performance measures are explained, such as the
probability that all the berths are occupied—Pob =

∑m
k=0pn+k, average number of occupied

berths—noc =
∑n

k=0k ·pk+n ·
∑n+m

k=n+1pk, probability that berth is busy—Pbus = 1−p0, probability
of existing vessels in queue (vessels at anchor)—Peq =

∑m
k=1pn+k, average number of vessels

at anchor—Nw =
∑m

k=1k · pn+k, average time that vessels spends at anchor—tw = Nw/λ
∗,

where λ∗ is the effective arrival rate of vessel [9], given by λ∗ = λ
∑n+m

k=0 pk
∑n+m−k

i=0 iai for Model
(I) and λ∗ = λ

∑n+m
k=0 pk(

∑n+m−k
i=1 iai + (n +m − k)

∑∞
i=n+m−k+1ai) for Model (II).

Recall that the all previous formulae except those on tw and λ∗ are valid in the same
forms for nonstationary state (with pk(t) instead of pk).

4.1. Numerical Results and Discussion

The efficiency of operations and processes on anchorage-ship-berth (ASB) link has been
analyzed through the basic operating parameters such as batch blocking probability,
blocking probability of an arbitrary vessel, expected number of occupied berths, probability
that all the berths are occupied, probability of existence of vessels in queue (vessels at
anchor), expected number of vessels at anchor, and expected time at anchor. The basic
characteristics of the system with the batch arrival of units and the limited waiting queue
are shown in previous sections. To demonstrate the applicability of the models presented
in this paper, a variety of numerical results have been showed for a combination of
various parameters and various performance measures are given for the multiple server
port system. All the calculations on probabilities and means were done by MATLAB
program, but the results are presented after rounding up after the fourth decimal
point.

Recall that both systems (3.1) and (3.2) are first order systems of m + n + 1 linear
homogeneous differential equations with constant coefficients, and so, theymay be expressed
in matrix notation as dY/dt = AY , where Y (t) = (p0(t), p1(t), . . . , pn+m(t)) is a vector-
valued function and A is a square matrix (with constant coefficients). Moreover, if λ1 is an
eigenvalue for A (i.e., det(A − λ1I) = 0) with associated eigenvector V1 (i.e., AV1 = λ1V1),
then Y (t) = eλ1tV1 is a solution of the considered system. We used MATLAB to compute the
eigenvalues and eigenvectors of a given matrix A and therefore to calculate the solutions of
the corresponding systems.

The first step is to enter the givenmatrixA: this is done by enclosing in square brackets
the rows of A, separated by semicolons. For determining eigenvalues and eigenvectors of
A, we enter [V,D] = eig(A) in order to get two matrices: the matrix V has (unit length)
eigenvectors of A as column vectors, and D is a diagonal matrix with the eigenvalues of A
on the diagonal.
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Figure 3: Impact of the nonstationary work order on operating parameters’ changes for MX/M/2/12
queue with different distribution of batch size.

In our computations it is used MATLAB’s numerical procedure “ode45” which is a
souped up Runge-Kutta method and it is applied using the syntax

[t, y] = ode45(“diffeqn”, [t0, tf], y0), (4.1)

where t0 is the initial time, tf is the final time and y0 is the initial condition y(t0 = y0).
In Figures 3(a) and 3(b), the parameters on the ASB link of multiple server systems

(PB, P
(1)
V and P

(2)
V ) are presented, as a function of time (t = 0−50 h), and values λ = 0.2 and

μ = 0.65 for the MX/M/2/12 queue with a = 6 and a = 4, and different forms for the
distribution of X(uniform distribution—ak = 1/(n + m), where 1 ≤ k ≤ n + m, geometric
distribution—ak = (1 − a)ak−1, where k = 1, 2, . . ., and 0 < a < 1, and shifted Poisson
distribution—ak = (ak−1/(k − 1)!)e−a, where k = 1, 2, . . ., and a > 0). Dimensioning curves
are given in Figures 3(a) and 3(b) and show the impact of the nonstationary work order on
operating parameters’ changes for batch acceptance strategy in relation toModels (I) and (II).
It can be seen that while acceptance strategy makes some appreciable differences for different
values of a, their effect diminishes with decreasing a. Model (I) (accept only whole batches)
has always lower batch blocking probability (Figure 3(a)) and has always higher blocking
probability of an arbitrary vessel (Figure 3(b)) and hence lower vessel throughput.

Figures 4(a)–4(d) show performance curves for theMX/M/2/12 queue. These curves
give the effect of batch distribution on the batch blocking probability (PB) and blocking
probability of an arbitrary vessel (P (1)

V and P
(2)
V ), average number of vessels (Nw), and

average time at anchor (tw) as a function of traffic intensity, θ = λa/nμ. Further, the sensitivity
to the batch parameters is noted. Figures 4(a) and 4(b) have a revealing comparison between
the PB, P

(1)
V and P

(2)
V for each model. The relation of the Model (II) curves to the Model (I)

curves may be understood by noting that at low traffic equal numbers of batches tend to
be affected by blocking, whereas at high traffic, it is the case for equal numbers of vessels.
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Figure 4: Impact of the traffic intensity on operating parameters’ changes for MX/M/2/12 queue with
different distribution of batch size.

Figures 4(c) and 4(d) show Nw and tw as a function of θ for the MX/M/2/12 queue with
a = 4.

In addition, Table 1 gives the numerical results of parameters on the ASB link of
multiple-server systems (PB, P

(1)
V , and P

(2)
V , Nw and tw) depending on θ (0-1) for the

MX/M/2/8 queue with a = 4. All of the calculations have been done in MATLAB program.

Figures 5(a) and 5(b) express PB, P
(1)
V , and P

(2)
V as a function of anchorage size (number

of waiting areas) for both models. These figures include a family of curves for different forms
of the distribution of X. The constant parameters for these curves are (θ = 0.61 and a = 4) for
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Table 1: Impact of the traffic intensity on operating parameters’ changes for MX/M/2/8 queue with
different distribution of batch size.

θ PB P
(1)
V , P (2)

V Nw tw

Model I
with geometric
distribution of
batch size

0.10000E + 00 0.66136E − 01 0.21422E + 00 0.11383E + 00 0.90541E + 00

0.20000E + 00 0.76822E − 01 0.23219E + 00 0.12871E + 00 0.98151E + 00

0.30000E + 00 0.88320E − 01 0.25090E + 00 0.38076E + 00 0.10589E + 01

0.40000E + 00 0.10056E + 00 0.27020E + 00 0.53126E + 00 0.11374E + 01

0.50000E + 00 0.11347E + 00 0.28998E + 00 0.69112E + 00 0.12167E + 01

0.60000E + 00 0.12696E + 00 0.31008E + 00 0.85871E + 00 0.12965E + 01

0.70000E + 00 0.14094E + 00 0.33036E + 00 0.10324E + 01 0.13765E + 01

0.80000E + 00 0.15531E + 00 0.35070E + 00 0.12106E + 01 0.14566E + 01

0.90000E + 00 0.16997E + 00 0.37097E + 00 0.13916E + 01 0.15363E + 01

0.10000E + 01 0.18483E + 00 0.39105E + 00 0.15741E + 01 0.16156E + 01

Model II
with geometric
distribution of
batch size

0.10000E + 00 0.71410E − 01 0.71410E − 01 0.17223E + 00 0.11592E + 01

0.20000E + 00 0.88853E − 01 0.88853E − 01 0.37323E + 00 0.12801E + 01

0.30000E + 00 0.10859E + 00 0.10859E + 00 0.60094E + 00 0.14045E + 01

0.40000E + 00 0.13046E + 00 0.13046E + 00 0.85224E + 00 0.15314E + 01

0.50000E + 00 0.15424E + 00 0.15424E + 00 0.11232E + 01 0.16600E + 01

0.60000E + 00 0.17961E + 00 0.17961E + 00 0.14092E + 01 0.17893E + 01

0.70000E + 00 0.20624E + 00 0.20624E + 00 0.17055E + 01 0.19184E + 01

0.80000E + 00 0.23374E + 00 0.23374E + 00 0.20071E + 01 0.20464E + 01

0.90000E + 00 0.26173E + 00 0.26173E + 00 0.23096E + 01 0.21725E + 01

0.10000E + 01 0.28986E + 00 0.28986E + 00 0.26087E + 01 0.22959E + 01

Model I
with Poisson
distribution of
batch size

0.10000E + 00 0.10806E − 01 0.17879E − 01 0.12990E + 00 0.82666E + 00

0.20000E + 00 0.24559E − 01 0.37420E − 01 0.29459E + 00 0.95639E + 00

0.30000E + 00 0.42030E − 01 0.61200E − 01 0.48891E + 00 0.10850E + 01

0.40000E + 00 0.62714E − 01 0.88491E − 01 0.70668E + 00 0.12114E + 01

0.50000E + 00 0.85999E − 01 0.11847E + 00 0.94137E + 00 0.13349E + 01

0.60000E + 00 0.11124E + 00 0.15032E + 00 0.11866E + 01 0.14548E + 01

0.70000E + 00 0.13779E + 00 0.18325E + 00 0.14367E + 01 0.15706E + 01

0.80000E + 00 0.16508E + 00 0.21659E + 00 0.16867E + 01 0.16821E + 01

0.90000E + 00 0.19261E + 00 0.24975E + 00 0.19327E + 01 0.17890E + 01

0.10000E + 01 0.21996E + 00 0.28229E + 00 0.21717E + 01 0.18912E + 01

Model II
with Poisson
distribution of
batch size

0.10000E + 00 0.11680E − 01 0.60364E − 02 0.13703E + 00 0.86164E + 00

0.20000E + 00 0.28326E − 01 0.15983E − 01 0.32461E + 00 0.10309E + 01

0.30000E + 00 0.51272E − 01 0.30638E − 01 0.56128E + 00 0.12063E + 01

0.40000E + 00 0.80271E − 01 0.50069E − 01 0.84209E + 00 0.13851E + 01

0.50000E + 00 0.11463E + 00 0.73989E − 01 0.11591E + 01 0.15647E + 01

0.60000E + 00 0.15332E + 00 0.10180E + 00 0.15026E + 01 0.17426E + 01

0.70000E + 00 0.19512E + 00 0.13270E + 00 0.18620E + 01 0.19169E + 01

0.80000E + 00 0.23876E + 00 0.16579E + 00 0.22271E + 01 0.20857E + 01

0.90000E + 00 0.28304E + 00 0.20016E + 00 0.25890E + 01 0.22478E + 01

0.10000E + 01 0.32695E + 00 0.23499E + 00 0.29404E + 01 0.24023E + 01
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Figure 5: Impact of waiting area size on PB and PV for the MX/M/2/12 queue with different distribution
of batch size.

the MX/M/2/12 queue in Figure 5(a). As can be seen in Figure 5(a), blocking probabilities
asymptotically approach to zero when the number of waiting areas increase (m = 30).
Figure 5(b) shows PB, P

(1)
V and P

(2)
V as a function of anchorage size (θ = 0.92 and a = 6)

for the MX/M/2/12 queue.

4.2. Experimental Study

This subsection discusses how the developed models can be applied to solve some related
problems in river port. In particular, we look at numerical example from [1] in which
Model (I) has been considered to analyze the system performance of bulk cargo terminal in
Smederevo (city at Danube river in Serbia) in the context of nonstationary work order of the
ASB link in the port for a long period of time. Because the given models have been developed
for analysis of the real system (new bulk cargo terminal in Smederevo has been redesigned in
2005 and two new gantries were installed to unload the ore crude materials from barges into
trucks), the nonstationary and stationarymodels, as well as its influence on the characteristics
of the system, will be evaluated for the real states of the unloading terminal. The current
capacity of the bulk cargo terminal is 2.4 million tons. The plan is to enlarge capacity of
the bulk cargo terminal in order to satisfy the increased needs of production for ore crude
materials. The purpose of giving models is to show the power of this methodology especially
with respect to the various form of number of vessels in a batch distribution. The intent is to
show how these models can be used to port performance evaluation.

Duration times of the nonstationary and stationary regimes were defined for the
following parameters of the system: the number of berths n = 3, the number of areas in
the waiting queue (anchorage size) m = 36, and the number of units in a group is given as
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Figure 6: Impact of the nonstationary work order on operating parameters’ changes: PB and PV as a
function of t forMX/M/3/36 queue with different distribution of batch size.

a random variable X under geometric and shifted Poisson distributions in accordance with
systems (3.1) and (3.2), and the assumption is made that the system is empty at the beginning
(p0(0) = 1, pi(0) = 0 for i = 1, 2, 3, . . . , 39, 40). This does not diminish the generality of the
conclusions.

The results of the analysis are presented in Figures 6, 7, and 8, and Table 2. Figure 6
presents the changes of operating parameters at ASB link in the river port for multiple server
(PB, P

(1)
V , and P

(2)
V , resp.) for the MX/M/3/36 queue with geometric and shifted Poisson

batch size distribution. The curves on Figure 6 are function of time (t = 0−50 h) with values
λ = 0.25 and μ = 0.75 and a = 6. The characteristics of both models yield lower values of PB,
P
(1)
V , and P

(2)
V for shifted Poisson batch size distribution than those on geometric distribution

with the same parameters.

Furthermore, in Figures 7(a)–7(d), we have plotted PB, P
(1)
V , and P

(2)
V , Nw, and tw,

respectively, as a function of traffic intensity (θ = 0–2) with a = 6. Clearly, the blocking
probabilities are sensitive by orders of magnitude to the batch size parameters, so the
characteristics of the input traffic must be carefully modelled. Geometrically distributed
batches which have a high dispersion perform worse than the shifted Poisson distributed
batches (see Figure 7(a)), except in the cases of short queues and high mean batch size,
which may be attributed to the relatively large number of short batches from the geometric
distribution as compared to the shifted Poisson for large mean batch size. This is due to the
fact that for traffic intensity between 0.1 and 0.6 both models are similar under the same batch
size distribution; see especially Figures 7(c) and 7(d).

Finally, in Figure 8 are shown PB, P
(1)
V , and P

(2)
V , Nw, and tw as a function of the

anchorage size with the constant parameters (θ = 0.67 and a = 6) for theMX/M/3/36 queue.
There are several interesting observations as can be seen in Figures 8(a)–8(d). Considering
different blocking models and various batch size distributions, we note that the batch
blocking probability for Model (I) is smaller than PB for Model (II) up to m = 32. Also,
Nw and tw have lower values for Model (I)with geometric batch size distribution form < 32.
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Figure 7: Impact of the traffic intensity on operating parameters’ changes for MX/M/3/36 queue with
different distribution of batch size.

Asm is increased above 32 each model for the same batch size distribution becomes constant
with further increase of the anchorage size.

The results presented here support the argument that port operating parameters under
the nonstationary working regime have been obtained in the same range as results from
stationary state of the port system. Various curves from all figures as a function of constant
values of traffic intensity (θ = 0.67) and mean batch size (a = 6) for both working regime
present always very close results, as can be seen in Table 2. The attained agreement of the
results obtained from Table 2 has been also used for validation and verification of considered
models. In accordance with that, this correspondence between results gives, in full, the
validity both models to be used for port performance evaluation.
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Figure 8: Impact of waiting area size on operating parameters’ changes for MX/M/3/36 queue with
different distribution of batch size.
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Table 2: Port performance parameters forMX/M/3/36 queue (nonstationary and stationary regime) and
forMX/M/2/32 queue (stationary regime)with different distributions of batch size.

MX/M/3/36 queue PB P
(1)
V , P (2)

V noc Pob Peq Nw

Nonstationary working regime at t = 50

Model I, g 0.0223 0.0635 1.869 0.553 0.515 5.844

Model II, g 0.0387 0.0387 1.913 0.570 0.534 6.759

Model I, P 0.0091 0.0115 1.967 0.587 0.543 5.136

Model II, P 0.0138 0.0083 1.970 0.588 0.544 5.270

Stationary working regime

Model I, g 0.0227 0.0645 1, 880 0.556 0.519 5.919

Model II, g 0.0399 0.0399 1.929 0.576 0.540 6.902

Model I, P 0.0097 0.0123 1.985 0.594 0.549 5.291

Model II, P 0.0151 0.0092 1.990 0.596 0.552 5.470

MX/M/2/32 queue

Stationary working regime

Model I, g 0.0311 0.0878 1.223 0.572 0.530 5.546

Model II, g 0.0537 0.0537 1.267 0.597 0.558 6.656

Model I, P 0.0157 0.0198 1.313 0.622 0.580 5.386

Model II, P 0.0243 0.0146 1.320 0.626 0.584 5.634

5. Conclusions

Unlike previous studies, this paper is based on real river port systems were presented, and
a significant improvement is demonstrated in the operational performance as a result of the
MX/M/n/m queue. A real problem of dynamic system performance evaluation at a port has
driven the development of these models. Closed-form expressions for state probabilities and
blocking probabilities for the whole batch acceptancemodel are presented. As the problem gets
complicated, a closed-form solution may not be possible to derive for the part batch acceptance
model.

Contribution of this paper is twofold: analytical models development and analysis
of dynamic performance measures and the blocking probability PB(t) for an arbitrary batch
and the blocking probability PV (t) of an arbitrary vessel at the moment t are expressed.
It is evident that the influence of the nonstationary work order on operating parameters,
expressed by the function Pi(t), makes use of the queuing theory models to describe the
operation of ASB link possible.

The results have revealed that analytical modelling is a very effective method to
examine the impact of introducing priority, for certain class of vessels, on the ASB link
performance and show that Model (I) has always lower batch blocking probability and has
always higher blocking probability of an arbitrary vessel and hence lower vessel throughput.
It was shown that this conclusion does depend on the different distribution of batch size
too.
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