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Consideration of Moving Oscillator 
Problem in Dynamic Responses of 
Bridge Cranes 
 
The dynamics of an overhead crane system with the suspended payload on 
the trolley moving at a specified constant speed is considered in this paper. 
The beam is discretizied by 10 elements, while the trolley is modeled as 
particle along with payload suspended with rope system modeled as 
spring. The overall mass, damping and stiffness matrix is calculated at 
each time interval, along with finite element formulation of equivalent 
force vector. Equations of motion of MDOF system are given for oscillator 
moving on beam structure. Dynamic responses in the vertical direction for 
all DOFS are obtained by solving the governing equations with direct 
integration method. For validation purposes, the technique is first applied 
to a simple beam subjected to a force moving along the beam with constant 
velocity. The influence of moving velocity and spring stiffness are 
investigated. 
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1. INTRODUCTION 
 

The moving load problem is a fundamental problem in 
structural dynamics. In contrast to other dynamic loads 
these loads vary not only in magnitude but also in 
position. The importance of this problem is manifested in 
numerous applications in the field of transportation. 
Bridges, guideways, cranes, cableways, rails, roadways, 
runways and pipelines are examples of structural 
elements to be designed to support moving masses. 
Interest in analysis of moving load problems originated in 
civil engineering (from observation that when an elastic 
structure is subjected to moving loads, its dynamic 
displacements and stresses can be significantly higher 
than those due to equivalent static loads) for the design of 
rail-road bridges and highway structures. Applications of 
the moving load problem have been presented in 
mechanical engineering studies for the past 30 years. Its 
solution requires appropriate modeling of the structure 
and a trolley. Typical structure under a moving load 
(trolley) in mechanical engineering are overhead cranes, 
gantry cranes, unloading bridges, slewing tower cranes, 
cableways, guideways, shipunloaders or e.g. quayside 
container cranes considered in [1-4]. The application of 
moving load problem in cranes dynamics has obtained 
special attention on the engineering researchers in the last 
years, but unfortunately little literature on the subject is 
available. The following two features distinguish the 
moving load problem in crane industry from that in civil 
engineering. The first is that the structure on which the 
moving load moves always has traveling or rotating 
motion. The second is that the payload of a crane is 
attached via cables to a carriage moving along the 

structure. Thus the dynamics of a crane includes both 
vibrations of the structure and dynamics of the payload 
pendulum. 

The basic approaches in trolley modeling are: the 
moving force model; the moving mass model and the 
trolley suspension model – moving oscillator model 
existing in some special structures of gantry cranes and 
unloading bridges. The simplest dynamic trolley models 
are moving force models. A review of moving force 
models is given in [5]. The consequences of neglecting 
the structure-trolley interaction in these models may 
sometimes be minor. In most moving force models the 
magnitudes of the contact forces are constant in time. A 
constant force magnitude implies that the inertia forces 
of the trolley are much smaller than the dead weight of 
the structure. Thus the structure is affected dynamically 
through the moving character of the trolley only. All 
common features of all moving force models are that 
the forces are known in advance. Thus structure-trolley 
interaction cannot be considered. On the other hand the 
moving force models are very simple to use and yield 
reasonable structural results in some cases [2]. Moving 
mass as suspension model is an interactive model. 
Moving mass model, as well as moving force model, is 
the simplification of suspension model, but it includes 
transverse inertia effects between the beam and the 
mass, see e.g. [6]. Interaction force between the moving 
mass and the structure during the time the mass travels 
along the structure considers contribution from the 
inertia of the mass, the centrifugal force, the Coriolis 
force and the time-varying velocity-dependent forces. 
These inertia effects are mainly caused by structural 
deformations (structure-trolley interaction) and 
structural irregularities. Factors that contribute in 
creating trolley inertia effects include: high trolley 
speed, flexible structure, large vehicle mass, small 
structural mass, stiff trolley suspension system and large 
structural irregularities. Finally, the trolley speed is 
assumed to be known in advance and thus was not 
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depend on structural deformations. For moving mass 
models the entire trolley mass is in direct contact with 
the structure. In general, the dynamic structure-trolley 
interaction predicted by such models is very strong [2]. 
The detailed review of previous researches, including 
comprehensive references list, can be found in a 
dedicated excellent monograph written by Frýba [7] on 
the subject of moving load problems, where most of the 
analytical methods previously used are described. The 
trolley suspension models are representing physical 
reality of the system more closely, because, often, the 
vehicle mass is suspended by means of springs and 
dampers in such models – moving oscillator problem. 
An overview of vibration analysis of bridges including 
the moving oscillator problem between the moving 
vehicles and the bridge structures is given in [8]. 

Since the mid 1980s many authors have investigated 
the application of finite element method (FEM) for 
solving the moving load problem as an alternative to 
analytical approaches, e.g. [9-12], etc. 

The paper [13] is according to the authors’ best 
knowledge the first attempt to increase the 
understanding of the dynamics of cranes due to the 
moving load. The overhead crane trolley, modeled as a 
simply supported beam according to Euler-Bernoulli 
beam theory, traverses the beam at a known prescribed 
uniform speed and that the pendulum may be adequately 
modeled as a rigid massless bar. The motion of the 
pendulum is assumed to be planar with small angular 
displacements and displacement rates from the vertical. 
A set of coupled, non-linear equations of motion is 
derived via Hamilton’s principle. The paper [14] 
presents a technique developed for using standard finite 
element packages for analyzing the dynamic response of 
structures to time-variant moving loads. Computer 
program has been written which calculates the time-
variant external nodal forces on a whole structure, 
which provide the equivalent load to point forces that 
move around the structure. The calculation of the 
equivalent nodal forces to represent the moving loads 
has been performed by three approximate methods. 
Dynamic response of structures to moving loads using 
combined finite element and analytical methods is given 
in [15]. The authors have developed a technique that 
includes inertia effects in the analysis. Natural 
frequencies and mode shapes are first calculated using a 
standard FEM package. Forced response of the structure 
is calculated using separate code developed in the paper. 
Rotary inertia of moving bodies is ignored as 
unimportant for particular mobile crane problem. In the 
paper [16] the three-dimensional responses of a crane 
structure due to the moving loads is analyzed. The axial, 
vertical and horizontal dynamic responses of the three-
dimensional framework of a tyred overhead crane under 
the action of a moving trolley hoisting a swinging object 
were calculated using the finite element method and the 
direct integration method. Instead of the conventional 
moving force problem, where only the vertical inertia 
effect of the moving trolley is considered, the three-
dimensional inertial effects due to the masses of both 
the moving trolley and the swinging object have been 
considered in this paper. Wu [17] has developed a finite 
element model for a scale crane rig in the laboratory 

such that the dynamic characteristics of the scale crane 
rig can be predicted from the relevant features of the 
developed finite element model. Finite element 
modeling and experimental modal testing for the scale 
crane rig are carried out. Two kinds of coupling 
connecting the load cell and the tested structure for 
achieving the better experimental outcome are 
proposed. Then, the finite element model is modified, 
according to the experimental results, using various 
techniques. Also, Wu has presented in [18] a technique 
to replace the moving load by an equivalent moving 
finite element so that both the transverse and the 
longitudinal inertial effects due to the moving mass may 
easily be taken into account simultaneously. The mass, 
damping and stiffness matrices of the moving finite 
element are determined by the transverse inertia force, 
Coriolis force and centrifugal force of the moving mass, 
respectively. As it is conclusive from the recent 
references [17,18] considerations of the moving load 
problem by using and developing FEM is actual because 
modern FEM packages are not suited for the moving 
load problem, especially when the structure-vehicle 
interaction is to be considered. 

 
2. DYNAMICS OF BRIDGE CRANE 

 
Three-dimensional (3D) bridge cranes are widely used 
to transport heavy payloads in factories of different 
industries and becoming larger and faster. In order to 
improve the efficiency of payload transportation, the 
trolley of a crane should move to its destination as 
quickly and as precisely as possible. A crane consists of 
a hoisting mechanism (traditionally a hoisting line and a 
hook) and a support mechanism (e.g. trolley-girder for 
overhead cranes). The support mechanism moves the 
suspension point around the crane workspace, while the 
hoisting mechanism lifts and lowers the payload. The 
support mechanism in a bridge crane is composed of a 
trolley moving over a girder. The bridge is mounted on 
orthogonal railings in the horizontal plane, Fig. 1. 

 
Figure 1. Bridge crane 

In the past 50 years we have seen mounting interest in 
research of modeling and control of cranes [19], and 
many standard models have been already investigated. 
These models can be distinguished by different 
complexity in modeling and by the nature of neglected 
parameters. However, most of the presented models are 
very simple ones. Most of the standard commercial FEM 
softwares are fully capable to simulate such models. The 
most common modeling approaches are the lumped-mass 
and distributed mass approach, as well as the combination 
of the first two approaches [3]. A relatively recent review 
on cranes dynamics, modeling and control is given in 
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[19], but without considering the problems of the moving 
load influence on the dynamic response of cranes. 

Following current trends in structural dynamics, 
followed by strong computational/software support, one 
can set up a model including more dynamic effects 
resulting in higher accuracy of obtained results. The 
goal of this paper is to present such model, with FEM 
simulation and solution by direct integration method. 
Having in mind that the speed of the entire bridge in 
horizontal plane (transverse direction) is usually low or 
the cranes do not travel in the transverse direction, and, 
therefore it is assumed that two space dimensions are 
sufficient to describe the payload movement. 

For analyzing the responses of the crane model, the 
general approach is to divide the whole structure into two 
sections: fixed structure and the moving sub-structure. In 
the simplest model shown in Figure 2, we have moving 
force approach where uniform simply supported beam-
framework is subjected to a constant vertical force-
substructure moving with speed v. Analytical solutions 
for such a problem is given in [7], while FEM can be 
introduced for e.g. non-uniform beams by applying a 
technique which considers moving loads as functions of 
time [20]. This approach has two important roles. At first, 
for initial design process it gives satisfactory data for 
describing dynamic behavior of cranes. Moreover, it can 
be used for verification of advanced models and 
algorithms for obtaining desired responses. 

 
Figure 2. Uniform, simply supported beam subjected to a 
constant vertical force P moving at constant speed v 

Generally, the moving mass includes in itself the 
hoisting object and trolley and is often larger than the 
 

mass of the bridge crane structure, which implies the 
moving mass approach. This also implies structure-
trolley interaction, thus forces between the structure and 
the substructure depend on the motions of both of them. 

 
3. MODEL FORMULATION 

 
Schematic presentation of the dynamic model is shown 
in Figure 3. The entire crane is first divided into two 
parts: the stationary beam structure and the moving 
substructure. The relation between the beam and the 
moving substructure is simplified into one moving load 
due to the assumption that a loading is symmetrically 
distributed on the bridge rail(s). The global position of 
the moving substructure on the beam is defined by 
coordinate xm (t). 

The mass of the moving substructure (ms) is 
composed of the mass of trolley m2 and the mass of 
payload m1, which are modeled as lumped masses. They 
are connected by a rope system of equivalent spring 
stiffness k. The trolley is assumed to be always in contact 
with the crane structure. Variable w0 denotes the vertical 
deflection of m2 and is equal to the dynamic deflection of 
the support beam at the position of contact. Vertical 
displacement of the suspended payload is denoted as y. 

The beam structure is simply a supported uniform 
beam and its properties are Young’s modulus E, volume 
density ρ, cross-sectional area A (box section), length L 
and sectional moment of inertia I. The model is done 
with discretization in 10 identical beam elements 
connected with nodes. The nodes between the supports 
of the beam structure represent places for obtaining the 
dynamic responses of the structure. Nodal displacements 
are ui (i = 1, 2, 3 … 9). The whole system has 10 DOF’s. 

 
4. OVERALL PROPERTY MATRICES AND 

FORMULATION OF PROBLEM 
 

The governing equation of motion of multi-degree-of-
freedom (MDOF) structural system is written as [21]: 

 [ ]{ } [ ]{ } [ ]{ } { ( )}M q C q K q F t+ + =  (1) 

where [M], [C], [K] are the mass, damping and stiffness

 
Figure 3. Dynamic model of the system 
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matrices of the system, respectively; { },{ },{ }q q q  are 
the acceleration, velocity and displacement vectors for 
the whole system, respectively, while {F(t)} is the 
external force vector. 

 
4.1 Overall stiffness and mass matrices of the beam 

 
As it was mentioned above, in order to take the inertial 
effects of moving load into consideration, one must add 
the contribution of the equivalent moving mass matrix 
to the overall mass matrix of the beam itself [Mst]. It is 
assumed that the entire structure mass is concentrated at 
the beam nodes, Fig. 4a. So, the mass matrix of the 
beam is formulated here throughout the lumped system 
model, and is given by 

 st 9 9 bi[ ] [ ]xM m I=  (2) 

where point mass is mbi = mst/10 (i = 1 – 9), mst is mass 
of the beam structure calculated from beam parameters 
and [I] is the square identity matrix with size of 9. 

 
Figure 4. (a) lumping of the mass at nodes and (b) influence 
coefficients of the beam 

The procedure for defining the stiffness properties of 
the beam structure is done by flexibility influence 
coefficient fij, noting the deflection of coordinate i due 
to unit load applied at coordinate j, Fig. 4b. Here, for the 
beam divided into 10 identical segments, where nodal 
translational displacements are being considered, the 
flexibility coefficients fij (i, j = 1 – 9) are given by 

• for i ≤ j 

 
31 1

6 10 10ij
L j if
EI

⎧⎛ ⎞⎛ ⎞= − ⋅⎨⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎩

  

 
2 2

 1 1
10 10
j i ⎫⎡ ⎤⎪⎛ ⎞ ⎛ ⎞⋅ ⎢ − − − ⎥⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎪⎣ ⎦⎭
, (3) 

 

• for i > j 

 
31 1

6 10 10ij
L j if
EI

⎧⎛ ⎞⎛ ⎞= − ⋅⎨⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎩

  

 
2 2 3

 1 1
10 10 10
j i i j ⎫⎡ ⎤ − ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ ⎢ − − − ⎥ + ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎪⎣ ⎦ ⎭
. (4) 

The flexibility matrix of the structure, [ f ]9x9 is 
obtained by using (3) and (4). With inversion of the 
flexibility matrix, one can obtain the stiffness matrix of 
the beam as 

 1
st 9 9[ ] [ ]xK f −= . (5) 

It is obvious that this formulation can be used for 
beams with other types of end supports like clamped-
clamped, pin-clamped etc. 

Overall damping matrix of beam structure is 
neglected here, because it is usually unobtainable. It can 
be only determined with known damping ratios [22]. 

 
4.2 Equivalent nodal forces and external force 

vector 
 

The beam is subjected to a concentrated vertical force P, 
thus external forces on all the nodes are equal to zero 
except on the nodes of element s, Fig. 5, which is 
subjected to the concentrated force. According to [23], 
the external force vector takes the following form: 

 ( ) ( ) ( ) ( )
1 2 3 4{ ( )} {0 0 0.... ....0 0 0}   s s s sF t f f f f=  (6) 

where ( ) ( ), ( 1, 2,3, 4)s
if t i = , represent the equivalent 

nodal forces. 

 
Figure 5. Nodal forces of the element s for a beam 
subjected to a concentrated vertical force 

Nodal forces are determined with expression 

 ( ){ ( )} { }sf t P N=  (7) 

where P is the magnitude of the vertical force acting 
upon structure, and 

 1 2 3 4{ } [ ]   TN N N N N=  (8) 

represent shape functions [21,23] 

 2 3
1 1 3 2N ξ ξ= − +  (9) 

 2 3
2 ( 2 )N l ξ ξ ξ= − +  (10) 

 2 3
3 3 2N ξ ξ= −  (11) 

 2 3
4 ( )N l ξ ξ= − +  (12) 

 x
l

ξ =  (13) 

noting that l is the element length and x is distance 
along the element to the point of application of P, 
Fig.5. 
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Considering m time steps and choosing a time 
interval ∆t, the total time is then given by 

 m tτ = ⋅ ∆  (14) 

At any time t = r ∆t (r = 1 to m), the position of the 
moving force, relative to the left end of the beam, is 
given by 

 ( )mx t v r t= ⋅ ⋅ ∆ . (15) 

One can find the element number s, which the 
moving mass is applied to at any time t, as 

 m ( )
s Int 1

x t
l

⎡ ⎤= +⎢ ⎥⎣ ⎦
. (16) 

The two nodes of the sth beam elements are s – 1 and s. 
Therefore, the following equations for nodal forces and 
moments are formed when the moving force P is on the sth 
beam element (s = 1 to n) at any time t = r ∆t (r = 1 to m): 

 ( )
  1 1 1 s

sF P N f− = =  (17) 

 ( )
3 3 s

sF P N f= =  (18) 

 0iF =  (i = 1 to n – 1, except s – 1 and s) (19) 

 ( )
  1 2 2 s

sM P N f− = =  (20) 

 ( )
4 4 s

sM P N f= =  (21) 

 0iM =  (i = 1 to n – 1, except s – 1 and s) (22) 

where N1, N2, N3, N4 are given by (9) – (12). 
Equation (13) can be rewritten in terms of the global 

xm (t) instead of the local x (t): 

 
( ) ( 1)mx t s l

l
ξ

− −
= . (23) 

So, [N]T is a vector with zero entries except for those 
corresponding to the nodal displacement of the element 
on which the load is acting, i.e. for beam element with 4 
DOF, the number of non-zero entries within vector will 
be four. This sub-vector is time dependent as the load 
moves from one position to another. The study brought 
in this paper uses the “simple/no moment” method [14], 
thus N2 = N4 = 0, which agrees with the accepted 
translational displacement of the beam. The procedure 
described above is done for a beam with 10 elements 
and 9 nodes (i = 1 – 9). 

 
4.3 Moving mass formulation 

 
As postulated, moving substructure consists of two 
masses, sprung mass m1 and the unsprung mass m2, 
which is assumed to be always in contact with the 
support beam structure. Following the procedure 
presented in [10] and by using FEM, it can be obtained 
the equations governing the dynamic systems as 

 1 0( ) 0m y k y w+ − =  (24) 

 [ ]{ } [ ]{ } [ ]{ } [ ]TM u C u K u N P+ + =  (25) 

where interaction force is given by 

 1 2 0( ) ( )P m g y m g w= − + − . (26) 

The function w (x,t) can be obtained from the shape 
functions and nodal displacement of the beam as 

 [ ]{ }w N u= . (27) 

The variable w0 denotes the vertical dynamic 
deflection of m2 and is equal to the dynamic deflection 
of the support beam in the contact position. 

The time derivates of w0 are 

 0
w ww x
x t

∂ ∂
= +

∂ ∂
 (28) 

 
2 2 2

2
0 2 22w w w ww x x x

x t xx t
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂∂ ∂

. (29) 

Substituting (28) and (29) into (27), yields the 
following 

                  
2

''
2 [ ] { }x
w N u
x

∂
=

∂
    '[ ] { }x

w N u
x

∂
=

∂
  

 
2

[ ] { }x
w N u

x t
∂

=
∂ ∂

    
2

2 [ ] { }x
w N u
t

∂
=

∂
. (30) 

Substituting (26) – (29) into (24) and (25) yields, in 
matrix form, 

 [ ] [ ] { } [ ] { }st 1 1

1

0 0
0 0 0

M M u uC
m y y

⎡ ⎤+ ⎡ ⎤⎧ ⎫ ⎧ ⎫
+ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦
  

 [ ] [ ] [ ] [ ]
[ ]

{ }st 1 2
T uK K K k N

yk N k

⎡ ⎤ ⎧ ⎫+ + −+ =⎢ ⎥ ⎨ ⎬
−⎢ ⎥ ⎩ ⎭⎣ ⎦

  

 [ ] 1 2( )
0

TN m m g⎧ ⎫⎪ ⎪+= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (31) 

where 

 [ ] [ ] [ ]1 2
TM m N N=   

 [ ] [ ] [ ]'1 22 T
xC m x N N=   

 [ ] [ ] [ ]1
TK k N N=   

 [ ] [ ] [ ] [ ] [ ]'' '2
2 2 2

T T
x xK m x N N m x N N= + . (32) 

One can see that symbols [M], [C], [K] in (1) are 
called instantaneous matrices because they are time-
dependent matrices composed of constant matrices due 
to the structure itself and time-dependent matrices due 
to the moving oscillator. 

 
5. NUMERICAL RESULTS 

 
The equation (31) is used for studying the dynamic 
response of a crane structure due to a moving oscillator 
and is solved by means of the direct step-by-step-
integration method based on Newmark algorithm [24]. 

The characteristics of the steel-made structure of 
bridge crane are mass density ρ = 7850 kg/m3 and 
Young modulus E = 2.1 · 1011 N/m2. It is used push-to-
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limit span of girder L = 40 m, with box tube cross-
section with area A = 0.04 m2 and sectional moment of 
inertia I = 0.00667 m4. The beam is subjected to an 
overall nominal mass of 10000 kg which includes the 
mass of payload and trolley, moving with constant 
velocity. 

Dynamic responses are investigated within this 
range of mass, with variation of hoist speed v and spring 
parameter k. Original in-house software MovMass is 
created to investigate this dynamic problem. The 
maximum interval for direct integration is ∆t = 0.05 s. 
Structural damping is not included in the model. 
Dynamic deflections of all DOF are gained, but here are 
only presented the middle span deflection as main 
parameter in crane design. 

 
5.1 Case 1: Moving force effect 

 
At first, the problem is investigated by a moving force 
approach which is a common practice for verification of 
the given algorithm. The software is adjusted to find the 
responses (qi, i = 1 – 9) for moving force approach by 
neglecting instantaneous matrices, with defined external 
force vector. The beam parameters are defined above, 
and force is 100000 N. 

The dynamic responses at the mid-span of the beam 
are evaluated for various speed values, i.e. for various 
values of ratio T1/τ. The symbol T1 denotes the 
fundamental period of the beam and τ = L/v represents 
the travel time of the force from left end to the right end 
of the beam. The dynamic deflections for qi = ui, (i = 1 – 
9) are obtained. The results for mid-span of the beam 
are shown in Figure 6 and are presented as the ratio of 
maximum dynamic deflection and maximum static 
deflection at the beam mid-span through 
nondimensional time. 

0.0 0.5 1.0
0.0

0.5

1.0

1.5

[ q
5,

dy
n / 

q 5,
st

at
 ]

[ t /τ ]

  T1 / τ

0,02

0,24

0,60

0,12

 
Figure 6. Response in the mid-span of a simply supported 
beam subjected to a concentrated force moving with a 
constant velocity 

These results can be compared with analytical 
solution [7,9]. Moreover, first curve corresponding to 
T1/τ = 0.02, which refers to the speed of trolley 2 m/s 
and structural input data, is compared and validated by 
the exact solution given in [20]. For this case the 
dynamic response is close to the static deflection. It is 
obvious that for further increase of the speed the 

dynamic deflection is also increasing. For T1/τ = 0.12, it 
is obtained that dynamic deflection is 1.45 times larger 
than the static one. However, such a large dynamic 
amplification factor (DAF) applies for speeds of crane 
trolleys that are not likely achievable. But, this fact can 
be used for problems in transportation engineering. 

 
5.2 Case 2: Moving mass approach 

 
In further examples are investigated two characteristic 
boundary velocities: 2 m/s, which is a real parameter 
and speed of 5 m/s which is a maximum speed for 
bridge cranes. Here, the masses are m2 = 10 t, m1 = 0. In 
this example the dynamic deflections for each of 9 
adopted DOFs are obtained (qi, i = 1 – 9). The inertial 
effects of the moving load are taken into account. 

The typical presentation of moving mass on simple 
beam structure is shown in Figure 7. 

 
Figure 7. A simple beam subjected to moving mass 

The dynamic responses for given travel speeds in the 
beam mid-span are shown in Figure 8, as the ratio of 
dynamic and static deflection. It is interesting to note 
that when the travel speed is relatively low – 2 m/s, the 
dynamic response resembles a static case. However, for 
the speed of 5 m/s we have DAF of 1.085 which comes 
from inertial effect of moving mass. Thus, vertical 
central displacement increases with the increase of the 
moving speed. 

0.0 0.5 1.0
0.6

0.7

0.8

0.9

1.0

1.1

[ t /τ ]

[ q
5,

dy
n / 

q 5,
st

at
 ]

  v=2 m/s
  v=5 m/2

 
Figure 8. Central response due to moving mass 

 
5.3 Effect of sprung mass 

 
For this case a complete postulated algorithm is used, 
(30), which requires calculation of all the instantaneous 
matrices. Here, the masses of the moving substructure 
are m2 = 0 and m1 = 10 t. The substructure is moving 
with real maximum speed of 5 m/s. 

Different coefficients are studied in order to 
investigate the influence of reeving system on the 
dynamic responses of the top beam. 

Spring stiffness variation is included in parametric 
form as 
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 1k k= β , (33) 

where β is ratio and 

 1 3
48EIk

L
=  (34) 

is stiffness of structure at middle span observed as 
single DOF (SDOF) system [25]. Three different 
coefficients are studied: β = 0.10, 1, and 10. Figure 9 
shows the vertical central displacement of the beam for 
this case. For the coefficient β = 0.10, one can find that 
vertical central displacement resembles the static case. 
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Figure 9. Mid-span displacement with variation of spring 
stiffness 

Results for the coefficient β = 1 show higher 
vibration amplitude of the central point with the 
maximum value of deflection 11.5 cm. This increasment 
of 12 % from the static deflection is related to the 
natural frequency of the beam. The coefficient β = 10 
assumes high stiffness reeving system which resembles 
the results from the moving mass approach. 

 
6. CONCLUSION 

 
This paper deals with the moving oscillator problem in 
dynamic responses at bridge cranes. Equations of 
motion for a given mathematical model are shown, and 
direct integration is used here with developed 
subroutines based on Newmark’s method, because of 
the time variant nature of all system matrices. 

The dynamic response is shown for the middle span 
beam. Numerical calculus indicates that deflection of 
the beam depends on trolley speed and masses. The 
beam deflection for given masses is increasing by 
increasing trolley speed. The influence of moving mass 
for trolley velocity of 5 m/s shows additional 
increasment of middle span displacement due to inertial 
effect. Moreover, the spring stiffness has influences on 
the vertical response of the structure. All of this, for the 
crane model with maximal realistic performances, can 
bring DAF to 1.12. However, for relatively low speeds 
(≤ 2 m/s) the beam behaves in a quasi-static manner 
with maximum beam deflection close to the middle of 
the beam. 

The aim of this work is to emphasize the moving 
oscillator problem in crane structures. The algorithm 
can be applied to models of material handling machines 
with various structural types. Also, it can be applied to 
transportation engineering problems. 
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NOMENCLATURE 

[M] structural mass matrix 
[C] structural damping matrix 
[K] structural stiffness matrix 
{ }q  displacement vector 

{ }u  velocity vector 
{ }u  acceleration vector 
{F(t)} external force vector 
Ni shape functions (i = 1 – 4) 
v velocity of moving system 

xm distance of the moving system from the left 
node of a beam structure 

x distance between the contact position of 
moving load and left end of beam element 

l beam element lenght 
m1 payload mass 
m2 trolley mass 
w(x,t) vertical displacement of a beam 
w0 vertical displacement at the contact position 
x  travel velocity of a moving system 
x  travel acceleration of a moving system 
k spring stiffness 
T1 fundamental period of beam 

τ time required for moving system to travel 
from left end to right end of beam 

A cross-sectional area of a beam 
I sectional moment of inertia 
E Young’s modulus 
ρ mass density of beam 
L length of a beam structure 
g gravitational constant 

 

 
РАЗМАТРАЊЕ УТИЦАЈА ПОКРЕТНОГ 

ОСЦИЛАТОРА НА ДИНАМИЧКО 
ПОНАШАЊЕ МОСНЕ ДИЗАЛИЦЕ 

 
Влада Гашић, Ненад Зрнић, Александар 

Обрадовић, Срђан Бошњак 
 
У раду је разматрано динамичко понашање носеће 
конструкције мосне дизалице услед дејства 
овешеног терета на колицима која се крећу 
детерминисаном брзином. Главни носач је 
моделиран као греда подељена на 10 елемената, 
колица као покретна маса и терет као маса, која је 
овешена на колица системом ужади моделираним 
опругом. Матрице инерције, пригушења и крутости 
се рачунају за сваки временски интервал, а 
еквивалентно спољашње оптерећење греде је 
формулисано кроз коначноелементни приступ 
проблему. Једначине кретања система са коначним 
бројем степена слободе су приказане за модел 
покретног осцилатора који се креће детерминисаном 
брзином по гредном носачу. Динамички одзив 
(угиб, брзине, убрзања) за све степене слободе је 
добијен решавањем једначина нумерички, методом 
директне интеграције. Верификација целог 
алгоритма је дата кроз поређење решења за 
динамички угиб просте греде под дејством покретне 
силе која се креће константном брзином. У раду је 
разматран утицај брзине кретања колица и крутости 
опруге на динамичко понашање носеће 
конструкције дизалице. 

 


