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Fixed point theorems for mappings satisfying Geraghty-type contractive conditions are proved in
the frame of partial metric spaces, ordered partial metric spaces, and metric-type spaces. Examples
are given showing that these results are proper extensions of the existing ones.

1. Introduction

Let S denote the class of real functions β : [0,+∞) → [0, 1) satisfying the condition

β(tn) −→ 1 implies tn −→ 0. (1.1)

An example of a function in S may be given by β(t) = e−2t for t > 0 and β(0) ∈ [0, 1). In
an attempt to generalize the Banach contraction principle, M. Geraghty proved in 1973 the
following.

Theorem 1.1 (see [1]). Let (X, d) be a complete metric space, and let f : X → X be a self-map.
Suppose that there exists β ∈ S such that

d
(
fx, fy

) ≤ β(d(x, y))d(x, y) (1.2)

holds for all x, y ∈ X. Then f has a unique fixed point z ∈ X and for each x ∈ X the Picard sequence
{fnx} converges to z when n → ∞.
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Recently, A. Amini-Harandi and H. Emami extended this result to partially ordered
metric spaces as follows.

Theorem 1.2 (see [2]). Let (X, d,�) be a complete partially ordered metric space. Let f : X → X be
an increasing self-map such that there exists x0 ∈ X with x0 � fx0. Suppose that there exists β ∈ S
such that (1.2) holds for all x, y ∈ X with x � y. Assume that either f is continuous orX is such that

if an increasing sequence {xn} in X converges to x ∈ X, then xn � x ∀n. (1.3)

Then, f has a fixed point in X. If, moreover,

for each x, y ∈ X there exists z ∈ X comparable with x, y, (1.4)

then the fixed point of f is unique.

Similar results were also obtained in [3, 4].
In recent years several authors have worked on domain theory in order to equip

semantics domainwith a notion of distance. In particular, Matthews [5] introduced the notion
of a partial metric space as a part of the study of denotational semantics of dataflow networks,
and obtained, among other results, a nice relationship between partial metric spaces and
so-called weightable quasimetric spaces. He showed that the Banach contraction principle
can be generalized to the partial metric context for applications in program verification.
Subsequently, several authors (see, e.g., [6, 7]) studied fixed point theorems in partial metric
spaces, as well as ordered partial metric spaces (see, e.g., [8, 9]).

Huang and Zhang introduced cone metric spaces in [10], replacing the set of real
numbers by an ordered Banach space as the codomain for a metric. Cone metric spaces over
normal cones inspired another generalization of metric spaces that were called metric-type
spaces by Khamsi [11] (see also [12]; note that, in fact, spaces of this kind were used earlier
under the name of b-spaces by Czerwik [13]).

In the present paper, we extend Theorems 1.1 and 1.2 to the frame of partial metric
spaces, ordered partial metric spaces, and metric type spaces. Examples are given to
distinguish new results from the existing ones.

2. Notation and Preliminary Results

2.1. Partial Metric Spaces

The following definitions and details can be seen in [5–9, 14, 15].

Definition 2.1. A partial metric on a nonempty set X is a function p : X × X → R
+ such that,

for all x, y, z ∈ X

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).
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A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X.

It is clear that, if p(x, y) = 0, then from (p1) and (p2) x = y. But if x = y, p(x, y) may
not be 0.

Each partial metric p on X generates a T0 topology τp on X which has as a base the
family of open p-balls {Bp(x, ε) : x ∈ X,ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > 0. A sequence {xn} in (X, p) converges to a point x ∈ X, with respect to
τp, if limn→∞p(x, xn) = p(x, x). This will be denoted as xn → x, n → ∞ or limn→∞xn = x.

If p is a partial metric on X, then the function ps : X ×X → R
+ given by

ps
(
x, y

)
= 2p

(
x, y

) − p(x, x) − p(y, y) (2.1)

is a metric on X. Furthermore, limn→∞ps(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm). (2.2)

Example 2.2. (1) A basic example of a partial metric space is the pair (R+, p), where p(x, y) =
max{x, y} for all x, y ∈ R

+. The corresponding metric is

ps
(
x, y

)
= 2max

{
x, y

} − x − y =
∣∣x − y∣∣. (2.3)

(2) If (X, d) is a metric space and c ≥ 0 is arbitrary, then

p
(
x, y

)
= d

(
x, y

)
+ c (2.4)

defines a partial metric on X and the corresponding metric is ps(x, y) = 2d(x, y).

Other examples of partial metric spaces which are interesting from a computational
point of view may be found in [5, 15].

Remark 2.3. Clearly, a limit of a sequence in a partial metric space need not be unique.
Moreover, the function p(·, ·) need not be continuous in the sense that xn → x and yn → y
implies p(xn, yn) → p(x, y). For example, ifX = [0,+∞) and p(x, y) = max{x, y} for x, y ∈ X,
then for {xn} = {1}, p(xn, x) = x = p(x, x) for each x ≥ 1 and so, for example, xn → 2 and
xn → 3 when n → ∞.

Definition 2.4 (see [8]). Let (X, p) be a partial metric space. Then one has the following

(1) A sequence {xn} in (X, p) is called a Cauchy sequence if limn,m→∞p(xn, xm) exists
(and is finite).

(2) The space (X, p) is said to be complete if every Cauchy sequence {xn} in
X converges, with respect to τp, to a point x ∈ X such that p(x, x) =
limn,m→∞p(xn, xm).
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Lemma 2.5 (see [5, 6]). Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric
space (X, ps).

(b) The space (X, p) is complete if and only if the metric space (X, ps) is complete.

Definition 2.6. Let X be a nonempty set. Then (X, p,�) is called an ordered partial metric
space if:

(i) (X, p) is a partial metric space and (ii) (X,�) is a partially ordered set.

The space (X, p,�) is called regular if the following holds: if {xn} is a nondecreasing
sequence in X with respect to � such that xn → x ∈ X as n → ∞, then xn � x for all n ∈ N.

2.2. Some Auxiliary Results

Assertions similar to the following lemma (see, e.g., [16]) were used (and proved) in the
course of proofs of several fixed point results in various papers.

Lemma 2.7. Let (X, d) be a metric space, and let {xn} be a sequence in X such that

lim
n→∞

d(xn+1, xn) = 0. (2.5)

If {x2n} is not a Cauchy sequence, then there exist ε > 0 and two sequences {mk} and {nk} of positive
integers such that the following four sequences tend to ε when k → ∞:

d(x2mk , x2nk), d(x2mk , x2nk+1), d(x2mk−1, x2nk), d(x2mk−1, x2nk+1). (2.6)

As a corollary we obtain the following.

Lemma 2.8. Let (X, p) be a partial metric space, and let {xn} be a sequence in X such that

lim
n→∞

p(xn+1, xn) = 0. (2.7)

If {x2n} is not a Cauchy sequence in (X, p), then there exist ε > 0 and two sequences {mk} and {nk}
of positive integers such that the following four sequences tend to ε when k → ∞:

p(x2mk , x2nk), p(x2mk , x2nk+1), p(x2mk−1, x2nk), p(x2mk−1, x2nk+1). (2.8)

Proof. Suppose that {xn} is a sequence in (X, p) satisfying (2.7) such that {x2n} is not Cauchy.
According to Lemma 2.5, it is not a Cauchy sequence in the metric space (X, ps), either.
Applying Lemma 2.7 we get the sequences

ps(x2mk , x2nk), ps(x2mk , x2nk+1), ps(x2mk−1, x2nk), ps(x2mk−1, x2nk+1) (2.9)

tending to some 2ε > 0 when k → ∞. Using definition (2.1) of the associated metric and (2.7)
(which by (p2) implies that also limn→∞p(xn, xn) = 0), we get that the sequences (2.8) tend
to ε when k → ∞.
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2.3. Property (P)

Let X be a nonempty set and f : X → X a self-map. As usual, we denote by F(f) the set of
fixed points of f . Following Jeong and Rhoades [17], we say that the map f has property (P)
if it satisfies F(f) = F(fn) for each n ∈ N. The proof of the following lemma is the same as in
the metric case [17, Theorem 1.1].

Lemma 2.9. Let (X, p) be a partial metric space, and let f : X → X be a selfmap such that F(f)/= ∅.
Then f has property (P ) if

p
(
fx, f2x

)
≤ λp(x, fx) (2.10)

holds for some λ ∈ (0, 1) and either (i) for all x ∈ X or (ii) for all x /= fx.

2.4. Metric Type Spaces

Definition 2.10 (see [11]). Let X be a nonempty set, K ≥ 1 a real number, and let a func-
tion D : X ×X → R satisfy the following properties:

(a) D(x, y) = 0 if and only if x = y;

(b) D(x, y) = D(y, x) for all x, y ∈ X;

(c) D(x, z) ≤ K(D(x, y) +D(y, z)) for all x, y, z ∈ X.

Then (X,D,K) is called a metric type space.

Obviously, for K = 1, metric type space is simply a metric space.
The notions such as convergent sequence, Cauchy sequence, and complete space are defined

in an obvious way.
A metric type space may satisfy some of the following additional properties:

(d) D(x, z) ≤ K(D(x, y1) + D(y1, y2) + · · · + D(yn, z)) for arbitrary points x, y1, y2, . . . ,
yn, z ∈ X;

(e) function D is continuous in two variables, that is,

xn −→ x and yn −→ y (in (X,D,K)) implies D
(
xn, yn

) −→ D
(
x, y

)
. (2.11)

(The last condition is in the theory of symmetric spaces usually called “property (HE)”.)
Condition (d) was used instead of (c) in the original definition of a metric type space

by Khamsi [11].
Note that weaker version of property (e):

(e′) xn → x and yn → x (in (X,D,K)) implies that D(xn, yn) → 0

is satisfied in an arbitrary metric type space. It can also be proved easily that the limit of a
sequence in a metric type space is unique. Indeed, if xn → x and xn → y (in (X,D,K)) and
D(x, y) = ε > 0, then

0 ≤ D(
x, y

) ≤ K(
D(x, xn) +D

(
xn, y

))
< K

( ε

2K
+

ε

2K

)
= ε (2.12)

for sufficiently large n, which is impossible.
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3. Results

3.1. Results in Partial Metric Spaces

Theorem 3.1. Let (X, p) be a complete partial metric space, and let f : X → X be a self-map.
Suppose that there exists β ∈ S such that

p
(
fx, fy

) ≤ β(p(x, y))p(x, y) (3.1)

holds for all x, y ∈ X. Then f has a unique fixed point z ∈ X and for each x ∈ X the Picard sequence
{fnx} converges to z when n → ∞.

Proof. Let x1 ∈ X be arbitrary, and let xn+1 = fxn for n ∈ N. Consider the following two cases:

(1) p(xn0+1, xn0) = 0 for some n0 ∈ N;

(2) p(xn+1, xn) > 0 for each n ∈ N.

Case 1. Under this assumption we get that

p(xn0+2, xn0+1) = p
(
fxn0+1, fxn0

) ≤ β(p(xn0+1, xn0)
)
p(xn0+1, xn0) = β(0) · 0 = 0, (3.2)

and it follows that p(xn0+2, xn0+1) = 0. By induction, we obtain that p(xn+1, xn) = 0 for all n ≥ n0
and so xn = xn0 for all n ≥ n0. Hence, {xn} is a Cauchy sequence, converging to xn0 which is a
fixed point of f .

Case 2. Wewill prove first that in this case the sequence p(xn+1, xn) is decreasing and tends to
0 as n → ∞.

For each n ∈ N we have that

0 < p(xn+2, xn+1) = p
(
fxn+1, fxn

) ≤ β(p(xn+1, xn)
)
p(xn+1, xn) < p(xn+1, xn). (3.3)

Hence, p(xn+1, xn) is decreasing and bounded from below, thus converging to some q ≥ 0.
Suppose that q > 0. Then, it follows from (3.3) that

p(xn+2, xn+1)
p(xn+1, xn)

≤ β(p(xn+1, xn)
)
< 1, (3.4)

where from, passing to the limit when n → ∞, we get that limn→∞β(p(xn+1, xn)) = 1. Using
property (1.1) of the function β, we conclude that limn→∞p(xn+1, xn) = 0, that is, q = 0, a
contradiction. Hence, limn→∞p(xn+1, xn) = 0 is proved.

In order to prove that {xn} is a Cauchy sequence in (X, p), suppose the contrary. As
was already proved, p(xn+1, xn) → 0 as n → ∞, and so, using (p2), p(xn, xn) → 0 as n → ∞.
Hence, using (2.1), we get that ps(xn+1, xn) → 0 as n → ∞. Using Lemma 2.8, we obtain that
there exist ε > 0 and two sequences {mk} and {nk} of positive integers such that the following
four sequences tend to ε when k → ∞:

p(x2mk , x2nk), p(x2mk , x2nk+1), p(x2mk−1, x2nk), p(x2mk−1, x2nk+1). (3.5)
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Putting in the contractive condition x = x2mk−1 and y = x2nk , it follows that

p(x2mk , x2nk+1) ≤ β
(
p(x2mk−1, x2nk)

)
p(x2mk−1, x2nk) < p(x2mk−1, x2nk). (3.6)

Hence,

p(x2mk , x2nk+1)
p(x2mk−1, x2nk)

≤ β(p(x2mk−1, x2nk)
)
< 1 (3.7)

and limk→∞β(p(x2mk−1, x2nk)) = 1. Since β ∈ S, it follows that limk→∞p(x2mk−1, x2nk) = 0,
which is in contradiction with ε > 0.

Thus {xn} is a Cauchy sequence, both in (X, p) and in (X, ps). Since these spaces
are complete, it follows that sequence {xn} converges in the metric space (X, ps), say
limn→∞ps(xn, z) = 0. Again from Lemma 2.5, we have

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (3.8)

Moreover since {xn} is a Cauchy sequence in the metric space (X, ps), we have
limn,m→∞ps(xn, xm) = 0 and so, by the definition of ps, we have limn,m→∞p(xn, xm) = 0.
Then (3.8) implies that p(z, z) = 0 and

lim
n→∞

p(xn, z) = p(z, z) = 0. (3.9)

We will prove that z is a fixed point of f .
By (p4), and using the contractive condition, we get that

p
(
z, fz

) ≤ p(z, xn+1) + p
(
xn+1, fz

) − p(xn+1, xn+1)

≤ p(z, xn+1) + p
(
fxn, fz

)

≤ p(z, xn+1) + β
(
p(xn, z)

)
p(xn, z)

≤ p(z, xn+1) + p(xn, z) −→ 0 + 0 = 0.

(3.10)

Thus, p(z, fz) = 0 and fz = z.
Assume that u/=v are two fixed points of f . Then

0 < p(u, v) = p
(
fu, fv

) ≤ β(p(u, v))p(u, v) < p(u, v), (3.11)

a contradiction. Hence the fixed point of f is unique. The theorem is proved.

Remark 3.2. It follows from Lemma 1, (viii) ⇔ (x) of the paper [18] of Jachymski, that
under conditions of Theorem 3.1 there exists a continuous and nondecreasing function
ϕ : [0,+∞) → [0,+∞) such that ϕ(t) < t for all t > 0 and p(fx, fy) ≤ ϕ(p(x, y)) for all
x, y ∈ X.
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On the other hand, Romaguera [19] recently obtained a partial metric extension of
the celebrated Boyd and Wong fixed point theorem, from which it follows that if (X, p) is a
complete partial metric space and f : X → X is a map satisfying p(fx, fy) ≤ ϕ(p(x, y))
for all x, y ∈ X, with a function ϕ with the aforementioned properties, then f has a unique
fixed point. Hence, combining Jachymski’s and Romaguera’s results, an alternative proof of
Theorem 3.1 is obtained.

Theorem 3.3. If f : X → X satisfies conditions of Theorem 3.1, then it has property (P).

Proof. By Theorem 3.1, the set of fixed points of f is a singleton, F(f) = {z}. Then also z ∈
F(fn) for all n ∈ N. Let v ∈ F(fn) for some n > 1, and suppose that z/=v, that is, p(z, v) > 0.
Then

0 < p(z, v)

= p
(
ffn−1z, ffn−1v

)

≤ β
(
p
(
fn−1z, fn−1v

))
p
(
fn−1z, fn−1v

)

< p
(
fn−1z, fn−1v

)
.

(3.12)

We have that fn−1z/= fn−1v (otherwise z = fnz = fnv = v, which is excluded). It follows that

0 < p(z, v)

< p
(
ffn−2z, ffn−2v

)

≤ β
(
p
(
fn−2z, fn−2v

))
p
(
fn−2z, fn−2v

)

< p
(
fn−2z, fn−2v

)
.

(3.13)

Continuing, we obtain that

0 < p(z, v) < p
(
fn−1x, fn−1v

)
< · · · < p(z, v), (3.14)

a contradiction. Hence, p(z, v) = 0 and z = v, that is, F(f) = F(fn) for each n ∈ N.

Example 3.4. Let X = [0, 1], d(x, y) = 2|x − y|, p(x, y) = max{x, y}, β(t) = e−t/(t + 1) for t > 0
and β(0) ∈ [0, 1). The mapping f : (X, d) → (X, d) defined by fx = (1/6)x does not satisfy
conditions of Theorem 1.1. Indeed, take x = 1, y = 0 and obtain that

d
(
f1, f0

)
= 2d

(
1
6
, 0
)

= 2
∣∣∣∣
1
6
− 0

∣∣∣∣ =
1
3
,

β(d(1, 0))d(1, 0) = β(2) · 2 =
e−2

2 + 1
· 2 =

2e−2

3
<

1
3
.

(3.15)
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On the other hand, take x, y ∈ X with, for example, x ≥ y. Then

p
(
fx, fy

)
= p

(
1
6
x,

1
6
y

)
=

1
6
x,

β
(
p
(
x, y

))
p
(
x, y

)
= β(x) · x =

e−x

x + 1
· x ≥ 1

6
x,

(3.16)

since e−x/(x + 1) ≥ 1/2e > 1/6 for x ∈ [0, 1]. Hence, f satisfies conditions of Theorem 3.1 and
thus has a unique fixed point (z = 0).

3.2. Results in Ordered Partial Metric Spaces

Theorem 3.5. Let (X, p,�) be a complete ordered partial metric space. Let f : X → X be an
increasing self-map (with respect to. �) such that there exists x0 ∈ X with x0 � fx0. Suppose that there
exists β ∈ S such that (3.1) holds for all comparable x, y ∈ X. Assume that either f is continuous or
X is regular. Then, f has a fixed point in X. The set F(f) of fixed points of f is a singleton if and only
if it is well ordered.

Proof. Take x0 ∈ X with x0 � fx0 and, using monotonicity of f , form the sequence xn = fxn−1
with

x0 � x1 � x2 � · · · � xn � · · · . (3.17)

Since xn−1 and xn are comparable we can apply contractive condition to obtain

p(xn+1, xn) = p
(
fxn, fxn−1

) ≤ β(p(xn−1, xn)
)
p(xn−1, xn) ≤ p(xn−1, xn). (3.18)

Proceeding as in the proof of Theorem 3.1 we obtain that limn→∞p(xn+1, xn) = 0, that {xn}
is a Cauchy sequence in (X, p) (and in (X, ps)). Thus, it converges (in p and in ps) to a point
z ∈ X such that

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm). (3.19)

Also, it follows as in the proof of Theorem 3.1 that

lim
n→∞

p(xn, z) = p(z, z) = 0. (3.20)

We will prove that z is a fixed point of f .

(i) Suppose that f : (X, p) → (X, p) is continuous. We have, by (p4),

p
(
z, fz

) ≤ p(z, xn+1) + p
(
fxn, fz

)
. (3.21)

Passing to the limit when n → ∞ and using continuity of f we get that

p
(
z, fz

) ≤ p(z, z) + p(fz, fz) = p
(
fz, fz

) ≤ p(z, fz) (
by

(
p2

))
. (3.22)
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It follows that p(z, fz) = p(fz, fz). Since z � z, using contractive condition, we get
that

p
(
fz, fz

) ≤ β(p(z, z))p(z, z) = 0 (3.23)

and so p(z, fz) = 0 and fz = z.

(ii) If (X, p) is regular, since {xn} is an increasing sequence tending to z, we have that
xn � z for each n ∈ N. So we can apply (p4) and contractive condition to obtain

p
(
z, fz

) ≤ p(z, xn+1) + p
(
fxn, fz

)

≤ p(z, xn+1) + β
(
p(xn, z)

)
p(xn, z)

≤ p(z, xn+1) + p(xn, z).

(3.24)

Letting n → ∞we get

p
(
z, fz

) ≤ p(z, z) + p(z, z) = 0. (3.25)

Hence, we again obtain that fz = z.

Let the set F(f) of fixed points of f be well ordered, and suppose that there exist
two distinct points u, v ∈ F(f). Then these points are comparable, and we can apply the
contractive condition to obtain

0 < p(u, v) = p
(
fu, fv

) ≤ β(p(u, v))p(u, v) < p(u, v), (3.26)

a contradiction. Hence, the set F(f) is a singleton. The converse is trivial.

Example 3.6. Let X = {1, 2, 3}, and define the partial order � on X by

� = {(1, 1), (2, 2), (3, 3), (1, 3), (3, 2), (1, 2)}. (3.27)

Consider the function f : X → X given as f =
(
1 2 3
3 2 2

)
, which is increasing with respect to �.

Define first the metric d on X by d(1, 2) = d(1, 3) = 1, d(2, 3) = 1/2, d(x, x) = 0 for
x ∈ X and d(y, x) = d(x, y) for x, y ∈ X. Then (X, d) is a complete partially ordered metric
space. The function β : [0,+∞) → [0, 1), defined by β(t) = e−t, t > 0, and β(0) ∈ [0, 1), belongs
to the class S.

Take x = 1 and y = 3. Then

d
(
f1, f3

)
= d(3, 2) =

1
2
>

1
e
= β(1) · 1 = β(d(1, 3))d(1, 3). (3.28)

Hence, conditions of Theorem 1.2 are not fulfilled and this theorem cannot be used to prove
the existence of a fixed point of f .
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Define now the partial metric p on X by p(1, 2) = p(1, 3) = 1, p(2, 3) = 1/9, p(x, y) =
p(y, x) for x, y ∈ X; further p(1, 1) = 1, p(2, 2) = 0, and p(3, 3) = 1/10 (it is easy to check
conditions (p1)–(p4)). Let us check contractive condition (3.1) of Theorem 3.5:

p
(
f1, f1

)
= p(3, 3) =

1
10

<
1
e
= β(1) · 1 = β

(
p(1, 1)

)
p(1, 1),

p
(
f1, f2

)
= p(3, 2) =

1
9
<

1
e
= β(1) · 1 = β

(
p(1, 2)

)
p(1, 2),

p
(
f1, f3

)
= p(3, 2) =

1
9
<

1
e
= β(1) · 1 = β

(
p(1, 3)

)
p(1, 3),

p
(
f2, f2

)
= p(2, 2) = 0 = 0 = β(0) · 0 = β

(
p(2, 2)

)
p(2, 2),

p
(
f2, f3

)
= p(2, 2) = 0 <

1
9
e−1/9 = β

(
1
9

)
· 1
9
= β

(
p(2, 3)

)
p(2, 3),

p
(
f3, f3

)
= p(2, 2) = 0 <

1
10
e−1/10 = β

(
1
10

)
· 1
10

= β
(
p(3, 3)

)
p(3, 3).

(3.29)

Hence, we can apply Theorem 3.5 to conclude that there is a unique fixed point of f (which
is z = 2).

A variant of Theorem 1.2 which uses an altering function was obtained in [3,
Theorems 2.2, 2.3]. Recall that ψ : [0,+∞) → [0,+∞) is called an altering function if it is
continuous, increasing and ψ−1(0) = {0}. We state a partial metric version of this result. The
proof is omitted since it is similar to the previous one.

Theorem 3.7. Let (X, p,�) be a complete ordered partial metric space. Let f : X → X be an
increasing self-map (w.r.t. �) such that there exists x0 ∈ X with x0 � fx0. Suppose that there exist
β ∈ S and an altering function ψ such that

ψ
(
p
(
fx, fy

)) ≤ β(p(x, y))ψ(p(x, y)) (3.30)

holds for all comparable x, y ∈ X. Assume that either f is continuous or X is regular. Then, f has a
fixed point in X. The set F(f) of fixed points of f is a singleton if and only if it is well ordered.

3.3. Results in Metric Type Spaces

For the use inmetric type spaces (with the givenK > 1)wewill consider the class of functions
SK, where β ∈ SK if β : [0,+∞) → [0, 1/K) and has the property

β(tn) −→ 1
K

implies tn −→ 0. (3.31)

An example of a function in SK is given by β(t) = (1/K)e−t for t > 0 and β(0) ∈ [0, 1/K).
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Theorem 3.8. LetK > 1, and let (X,D,K) be a complete metric type space. Suppose that a mapping
f : X → X satisfies the condition

D
(
fx, fy

) ≤ β(D(
x, y

))
D
(
x, y

)
(3.32)

for all x, y ∈ X and some β ∈ SK. Then f has a unique fixed point z ∈ X, and for each x ∈ X the
Picard sequence {fnx} converges to z in (X,D,K).

Proof. Using condition (3.32) it is easy to show that the fixed point of f in (X,D,K) is unique
(if it exists) and that f is D-continuous in the sense that xn → x implies that fxn → fx in
(X,D,K) (for details see [12]).

Let x0 ∈ X be arbitrary and xn = fxn−1 for n ∈ N. If xn0+1 = xn0 for some n0, then it is
easy to show that xn = xn0 for n ≥ n0, and the proof is complete. Suppose that xn /=xn+1 for all
n ≥ 0. Then, using (3.32), we get that

D(xn+1, xn) = D
(
fxn, fxn−1

) ≤ β(D(xn, xn−1))D(xn, xn−1) <
1
K
D(xn, xn−1). (3.33)

By [12, Lemma 3.1], {xn} is a Cauchy sequence in (X,D,K). As this space is complete, {xn}
converges to some z ∈ X as n → ∞. Obviously, also fxn−1 = xn → z and continuity of f
implies that fxn−1 → fz. Since the limit of a sequence in a metric type space is unique, it
follows that fz = z.

Example 3.9. LetX = {0, 1, 3} be equipped with the metric type functionD given byD(x, y) =
(x − y)2 with K = 2. Consider the mapping f : X → X defined by f(0) = 1, f1 = 1, f3 = 0,
and the function β ∈ SK given by β(t) = (1/2)e−t/9, t > 0, and β(0) ∈ [0, 1/2). Then

D
(
f0, f1

)
= D(1, 1) = 0 <

1
2
e−1/9 = β(1) · 1 = β(D(0, 1))D(0, 1),

D
(
f0, f3

)
= D(1, 0) = 1 <

9
2e

= β(9) · 9 = β(D(0, 3))D(0, 3),

D
(
f1, f3

)
= D(1, 0) = 1 < 2e−4/9 = β(4) · 4 = β(D(1, 3))D(1, 3).

(3.34)

Hence, f satisfies all the assumptions of Theorem 3.8 and thus it has a unique fixed point
(which is z = 1).
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