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. INTRODUCTION

The System Order Reduction via
Balancing in View of the Method of
Singular Perturbation

This paper presents several techniques for system order reduction, known
from literature, all of them based on system balancing by employing the
method of singular perturbation. These techniques have the same
robustness accuracy evaluated with respect to the H,, norm of the reduced-
order system like two techniques known as the direct truncation and the
balancing residualization method. A modification of these techniques
preserves the exact DC gain as the original system, and produces from
very good to excellent accuracy at low and medium frequencies. To
illustrate the efficiency of the order-reduction techniques here presented, a
real simulation example is given.

Keywords: system balancing, robust order reduction, residualization,
singular perturbation, H,, method.

2. SYSTEM ORDER REDUCTION THROUGH

In the eighties a technique of robust order reduction was
developed for linear, time invariant systems, based on
the use of balancing transformation [1-3].

A linear, time invariant system is considered,
represented by a state space model:

dx(t)

T Ax(t)+Bu(t),  x(t))=xp

y(0)=Cx(t)+Du(r) (M

where x(f) is n — dimensional state vector, u(f) is m —
dimensional input vector, and )(f) is p — dimensional
output vector. A corresponding transfer function for the
open loop system is given by:

G(s)=C(sI-A)'B+D. )

It is assumed that the system (1) is
asymptotically stable and that G(s) is a minimal
realization.

Assumption 1: A system is asymptotically stable, a
pair (A, B) is controllable and a pair (A, C) is
observable.

The controllability and observability gramians of the
system (1) satisfy algebraic equations of the Lyapunov
asin [2,3]:

pAT + 4P+ BBT =0, 3)
o4+AT0+cTc=0. 4)

For a system that is controllable and observable,
both gramians, the one of controllability and the
observability gramian, are positive definite matrices, i.e.
P>0,0>0.
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BALANCING TRANSFORMATION

The balancing transformation is such transformation of
the state space vector that makes both the controllability
and the observability gramians become identical and
diagonal i.e.:

xp () =T x(2),
det(T) 2 0 = O
Wb () = Cp x, (1) + Dy u(t) = y(1) , Q)

Ay =TAT™', B,=TB, C,=CT"', D,=D (6)

= Ay, x, (1) + By u(?) ,

B, =0, =X =diag{oy,07,...,0,} .,
0'12622"‘20'n>0, (7)

where o; are Hankel singular values.

Assuming that the original system is controllable
and observable, a balanced system will be as well, both
controllable and observable, since the balancing
transformation preserves controllability and
observability of the system [2,3]. Hence, all o; are
positive. Furthermore, both original and balanced
system are of minimal realization.

The transfer function of the balanced system, given
by:

Gy (s)=Cy (sl — 4,) ' By + D =G(s), (8)

stays unchanged thanks to a coordinate change through
a nonsingular transformation. The balanced gramians of
controllability and observability are satisfying these
algebraic Lyapunov equations:

SAl+ 4, >+ BBl =0 =
< B AL+ 4R +B,BL =0 )

SAy+Alz+clc =0
o 04, + 40, +clc, =0. (10)
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The idea for the order reduction through balancing
transformation can be linked with the original paper of
Kalman in 1963 on the canonical system decomposition
[4]. It was shown there that the system modes that are
either uncontrollable or unobservable do not appear in the
system transfer function. Therefore, in [2,3] authors
deduce that the system modes both weakly controllable
and weakly observable have little influence on the system
dynamics, so they can be neglected. However, it was
noticed that those modes which are weakly controllable
and well observable can not be neglected, as well as those
which are well controllable and weakly observable modes
— they may become particularly important for the closed-
loop system performance. Let us assume that the balanced
system (5) — (7) is partitioned in such a way that:

Ay Ap By
Ab:|:A A s Bb: B 5

b1 4y 22

G =[C1 Cnl]. Dy=D,

Loa R ST { )
= S =diag{oy,09,...,0,},
0 22 1 £101,072 r

5, = diag{0,41,0,425-,0, (11)

where A4,; and A4,, are matrices of the dimension r x r
and (n — r) x (n — r), respectively, and other matrices
have dimensions that correspond to the system
dimensions defined as in (1).

Assuming that o, > o0,., a balanced truncation
produces a system of lower order r, defined by:

dx; (1)
dt
() =Cyx(0)+Du(t) . (12)

The corresponding transfer function of the reduced
order system is:

=4 x (D) + Byu(@),

Gy1(s)=Cyy(sI—4,) ' By +D. (13)

Reduced order system achieved this way is both
controllable and observable since all corresponding
Hankel singular values are positive. Furthermore, the
reduced order system is balanced and asymptotically
stable. It was shown in literature [1] that the A, norm for
the reduced order system, obtained through truncation
procedure given above, satisfies the condition:

IG($)= Gy 1 ()|, S 20y +0 g +-+0,) . (14)

It was noticed that the reduced order system
obtained through balanced truncation procedure gives
very good approximation of the original system in the
case of the impulse input (good spectra approximation
on higher frequencies) but shows considerable steady
state error in the case of step input (poor spectra
approximation on lower frequencies) [2,3,5]. This error
is due to a fact that the original system and the reduced
order system have different DC gains. Actually, after
the above described truncation through balancing
transformation, most of the spectra on lower frequencies
are kept and some of the spectra on the higher
frequencies also but some of the spectra on lower
frequencies are lost as well as most of the spectra on the
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higher frequencies. By eliminating the part of the
spectra on the lower frequencies (the neglected part of
the system — state variables x,(¢)), we produce gain that
differs from the gain of the original system that was
balanced. This discrepancy was removed in [2,3] where
a technique of balanced residualization was proposed
that produces an accurate (exact) DC gain and very
good spectra approximation on the lower frequencies
and middle frequencies. It should be noticed that in [1]
was also used a residualization technique. Improved
truncation method that preserves exact DC gain value as
in the original system is given by (37).

3. SYSTEM ORDER REDUCTION VIA BALANCED
RESIDUALIZATION

Let us describe in short the essence of the system order
reduction technique based on the balanced
residualization as in [1].

A balanced linear system given by (15) is under
consideration:

{%1(1)}={A11 Alz}[ﬁ(f)}[ﬁ’n}u(t)’
X0 | |4y Apn %@ ] | Bxn
y0=[C1 Culla® xu®] +Du@), (5)

where A4,; and A4,, are matrices of the dimension r x r
and (n — r) x (n — r), respectively, and other matrices
have dimensions that correspond to the system
dimensions defined as in (1).

Let us assume that corresponding Hankel singular
values are satisfying o, > 0,.;. Assuming that the state
space variable x, has reached its quasi-steady state value
(it should be noticed that x, is asymptotically stable fast
space variable) we can place zero instead of
corresponding time derivative, which leads to the next
approximation of the reduced order system:

[551(1)}:{1411 A12:||:xl(t):|+|:Bll:|u(t)’
0 Ayy Ay |[x2@®)] [ B
) =[C1 Cplla® x®] +Du@. (16)

A matrix Ay, is asymptotically stable — it has been
shown in [1] that this matrix has all eigenvalues in the
closed left half of the complex plane which makes it
invertible matrix. Hence, from the second line of the
(16) we can find x,(f) expressed as a function of x;(f)
and u(f) as in:

% (1) =—A33 (Ayy 3 () + Byy u(t))., (17)

which leads to the form of the residualized system of the
lower order:

X (1) =4, () + By u(?)
¥(t) = C, x,(£)+ Dy u(t) . (18)
A = Ay~ A Aoy Ay
B, =By — A 43 By,
Cr =G —Cpdyy Ay,
Dy = Dy = Cyp Ay By . (19)
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According to the theory of singular perturbation [6],
this system represents zero approximation of the
original system defined by (15). It is mentioned in [2,3]
that the transfer function of the residualized system:

G.(s)=C,(sI-4)'B. +D,, (20)

apart from having the same property as the one for the
reduced order system achieved through truncation, that is:

G($) =G, (5)],, S2(0,41 +0pyp +--+0,), (21)

also keeps true value of the DC gain as in the case of the
original system. It can be noticed from (13) that the DC
gain of the reduced order system is not the same as the
DC gain of the original system, i.e.:

Gy1(0)==Cy 41! By + D # G(0)
G(0)=—-CA'B+D =G, (0),

1
A A B
Gy (0)=—[Cp; sz][A; A;j {B;}LD‘ (22)

On the other hand, it was shown in control literature,
through several matrix algebraic operations, that the DC
gain of the residualized system is identical to the DC
gain of the original system, i.e.:

1 1
G (0)=-C. 4, B, + D, :_(Cll —C22A22A21) X

1
1 -
X(All —A12A22A21) (311 —A12A22322)+

-
+(D—C22A22322)=

1
A A12:| {311

=G(0)=-[Cy; sz]Lzl y

}+D. 23)

22

It was noticed that the residualized system of the
reduced order gives well the approximation of the system
spectrum on lower and middle frequencies. Hence, step
responses of the residualized systems of reduced order are
good approximation of the corresponding step responses of
the original system. It is interesting that the reduced order
system obtained through truncation have better spectra
approximation on higher frequencies than the reduced
order system obtained using balanced residualization.

In the next part a further generalization of the results
displayed above will be shown, as it was given in [2,3],
that will lead to alternative techniques development.
Techniques obtained will be based on the
transformation known from the theory of singular
perturbation by a name the Chang transformation.

4. GENERALIZED BALANCED RESIDUALIZATION
IN ORDER REDUCTION

The order reduction technique explained in previous
section actually represents the zero order approximation
obtained by using the theory of singular perturbation [6]. It
should be noticed that the theory of singular perturbation
was used for the order reduction through balancing in a
wide variety of papers — see the reference list in [2,3].

A singularly perturbed control linear system has
model of the form:
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EATPR et
ui (] A4 Ay ] [ B

=[G Cz][z((?)}rlju(t)» 24

where u is small positive parameter of the singular
perturbation that exhibits differing of the state space
variables in two groups — slowly varying variables x;(¢)
and fast varying variables x,(f).

This system is dual to the system (15), literally —
they are identical for g = 1. Actually, the balanced
system too has slow and fast modes: fast modes are
those corresponding to small Hankel singular values and
slow modes are those corresponding to relatively large
Hankel singular values. Hence, it is possible to express
the system (15) in a singularly perturbed form, e.g.
assuming that 4 = 0,4, / 0, or even u = 0,11 / oy and then
multiplying by u the second line in (15), the one
corresponding to fast state space variables x,(¢). This
procedure will scale appropriately the corresponding
matrices making their elements of the same size order as
elements in matrices corresponding to slow variables
x1(f). Matrices from (15) and (24) are satisfying:

Ay = Ay, Ay = A, Ay = 1Ay, Ay = pdy
By =By, By = uBy, C=C,C=Cp. (25)
By using Chang transformation a singularly

perturbed control system (24) can be partitioned
(decomposed) in two independent subsystems, slow and

fast:
71 (¢ 0 t B
i) |0 A j[z2@)] [Br
T
y(t) = [CS Cf][zl @ z (t)] +Du(t), (26)
where notation was introduced as in:
AS :AI_AZL’ Af :A4 +/,lLA2,
B, = By —MB, — uMLB,, By =B, + uLBj,
C,=C—-CL, Cp=Cy—uCy LM +uCiM . (27)
L and M are matrices satisfying algebraic equation:
A4L—A3 —,UL(A] —AzL) = 0,
MAy — Ay + i MLAy —(4 — 4 L)M |=0. (28)
These equations could be successfully solved for
small values of y, using either the fixed point method or
Newton’s method. For relatively large values of u a
method of eigenvectors can be used. Numerical methods
mentioned above could be found in literature — see
papers referenced in [2,3]. It should be noticed that in

the case of small u values an approximation of zero-
order for solution of the (28) is given by:

1O gluy, MO = 445 (29)

Output of the system (26) could be represented as:

) =[C Cel[a@®) 2] +Dut)=
=y +ye(0), (30)
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where outputs of the slow and fast subsystem are
defined respectively as:

Vs () =Cyz1 (1) + Du(r) ,
ye(0)=Crzy(1). (€2))

It is not important where the feed-forward loop
(direct output control branch) is included, whether it is
associated with fast or with slow subsystem, which
depends primarily upon the nature of the input signal of
the system. Respectively, transfer function for the fast
and the slow subsystem obtained from partitioning of
the system given above are:

Gy(s)=Cy(sI —A4) 'B,+D,
11

Ge(s)=Cp(sI —— Ap) ' — By =
H H

= Cy(usl — 4;)™ By . (32)

In order to obtain exact partitioning (30) of the
system in slow and fast subsystem, it is necessary to
solve L-M equations. For the small values of the u
parameter this could be easily achieved using, for
example, the fixed point algorithm. Several algorithms
for solving L-M equations are suggested in [2,3].

Using term O(u), from (28) and (29) we can deduce:

L=I9+0(u)= 4" 4+ 0(n) ,
M =MD +0(u) = 4,4, +O(u). (33)

These observations are suggesting that matrices
obtained through exact system partitioning to slow and
fast subsystem can be computed from matrices used in
residualization approximation via following relations:

-1
A=A — Ay &3 +0(u) =4, +0(u),
-1
By =By —AyAy By +O(p) = B, + O(p) ,
Co=C—CL=C = Cody 45+ O(u),
Af = A4 +,ULA2 = A4 "rO(IU) ,

By = By + uLBy = By + O(u),
Cr = Cy— uCoLM + uCiM = Co +0(1r) . (34)

Hence, the results known from the literature could
also be obtained by perturbing matrices from (33) and
(34) by adding the term O(u) and placing ¢ = 0 in the
transfer function of the fast subsystem that was defined
in (32), which can be fair enough approximation on
lower and middle frequencies (under assumption that u
is sufficiently small).

A generalization of  the  residualization
approximation can be obtained using slow subsystem
with approximation of the fast one with its DC gain

—Cp A7 By .
approximated with reduced order model is:

which  equals Transfer  function

G(s)~ Cy(sI —A) ' B+ D—Cp A7 By (35)

The DC gain in generalized residualization satisfies
following lemma given and proven in [2,3]. Here the
proof will be omitted.

Lemma: The procedure of generalized residualization
preserves original value of the DC gain, i.e.:

—~CA'B+D=-C,A;'B,+D-Cs 47'By . (36)

Finally, in [1,2] it was emphasized that the DC gain
for the model approximation using technique of
balanced order reduction based on truncation could be
improved if the transfer function of the truncated i.e.
selected slow subsystem is chosen in the modified form
as in:

G ()= Cy (5T — 4y) "By +

s, tru

+C 4B —CA7'B, (37)

which itself represents a correction of the truncation
method.

Simulations carried out for several examples have
shown that such approximation can become closer to the
approximation using balanced residualization.

Table 1. System matrices for the model of the power system consisting of two machines

0 -314.1590 3141590
0.0030  -01310  -0.0120
-0.2710  -03520  -2.7630

-0.1410 -0.0060 0
-0.1820 -0.3710 0

0 0

S O O

A=| 00050 -02900  -0.0080 -03730 -0.0050 314.1590 0
02900 -01270  -0.7240  0.0250 -1.2610 0 314.1500
0 0 0 0  -333300 0
|0 0 0 0 0 -33.3300 |
BT{O 0000 00620 0 }
00000 0 02010
0 10000 0 0 0
C=]00010 05070 00270 04720 00350 0
-01250 02250 01980 02580 01350 0 0

0 0
D={0 0
0 0

184 = VOL. 38, No 4, 2010
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5. EXAMPLE

Methods displayed here for the order reduction were
tested on several examples known from literature and
taken from [7,8]. A multivariable model of two machine
power system was simulated using Matlab. The example
contains the model of the system having two inputs and
three outputs. The value for the reduced order was
determined from Hankel singular values. Several
reduced order models were produced, using methods

described above. The efficiency of these approximations
was compared for typical input functions: impulse, step,
ramp and sine. In the open loop case a comparison with
the original model was made, for all frequency
characteristics (both magnitude and phase spectra) of all
available transfer functions.

A mathematical model of a part of Serbian power
system working in isolated regime is chosen for simulation
and taken from [7]. It is the two machine power system
having the system matrices given in the Table 1.

Impulse Response

From: In(1) From: In(2)
0.2 : ‘ ‘ ‘
)
3 0 ——-
®) \\ 7 [ g e
I9 \m.‘m-‘-—m.-_
-0.2
0.5
- @ \__“._
3 3 (0] . P=em——
5 O
3 =
2 — - — original model
—— — balanced
2 truncated
! — - — residualized
e I et general. rezidualized
@ 05 10 - .
5 /\/\\ —— — modified gen. rezid.
o
. ™
o OF N -——"-""""-""-"-"-"""""“"“"“"“"~-"-"-—-+ (-—-—-—-==
= \\“.-
-0.5 s s s s s s s s
0 2 4 6 8 10 0 2 4 6 8 10
time (sec)

Figure 1. Impulse responses: original and balanced systems are compared with four different reduced order approximations

Step Response

From: In(1) From: In(2)
1 : ‘ ‘ ‘
a 0 ——— . — o——— - —_—
5 --‘M.‘.‘. ””””””””””””””
© “‘w-.___ — - — original model
o -1t -
e balanced model
2 — - — truncated
05 —— — rezidualized
' /,—rﬂ"‘ - |- general. rezidualized
5 S —— — modified gen. rez.
3 3 0/ bmmm = -
5 O [ 1 -
°© &
|_
-0.5
1
/___,,.. ———
5 Teaa
o S
o -1t \\ 1 ,
[ ~
-2 s s s s s . . .
0 2 4 6 8 10 0 2 4 6 8 10
time (sec)

Figure 2. Step responses: original and balanced systems are compared with four different reduced order approximations

FME Transactions

VOL. 38, No 4, 2010 = 185



****** balanced
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o 0 N — rrerre
5 T L s
'_
-500
720 : ‘ ‘
i —————
T emmeme—e R N e — o o o o o _____——M.
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Figure 3. Magnitude and phase spectra: original and balanced systems are compared with four different reduced order

approximations

From matrix 4 dimensions (Table 1) it is clear that
the system has order » = 7, and from Hankel singular
values it was determined that the reduced order could be
r=15. System has two inputs and three outputs.

Each of the model approximations had reduced order
7 = 5, and each of them was tested, as well as the
original and balanced full order model, for typical input
functions: impulse, step, ramp and sine. In time domain
all of the approximations produce similar and good
performance.

From Figure 1 (at the end of the text) it could be
seen that impulse responses for the original system,
balanced model of order n and four reduced order
models of order r are quite close. All six models exhibit
similar performances in the open loop.

From Figure 2 it is obvious that step responses for
the original system, balanced model of order n and four
reduced order models of order r are similar. All six
models exhibit similar performances in the open loop.

Frequency responses were compared for all
available six transfer functions: from input 1 to all of
three outputs and from input 2 to all of three outputs.
For all six transfer functions, a magnitude and phase
spectra were shown for all reduced order
approximations, and for the original and balanced model
as well. A u value was 0.1173.

186 = VOL. 38, No 4, 2010

Figure 3 shows frequency responses — both
magnitude and phase spectra, of the original system, the
balanced system of order » and four reduced order
systems, all off order r = 5, obtained in different
manners described above.

The results show rather well behaviour of all
approximations. Substantial accuracy can be achieved,
better on lower frequency and worse on higher
frequencies. It was chosen that the upper frequency
bound for the open loop modelling is 34 rad/s.

6. CONCLUSION

It could be concluded that the generalized
residualization method as well as its versions is very
appropriate for the use on lower and middle frequencies.
In several papers, e.g. [2,3,9,10] was noticed that in the
closed loop controller design it is very important to take
into account the high frequency dynamics. Several ways
to overcome this problem are suggested in [2,3]. In the
process of the order reduction it stays unclear where the
boundary lies between linear systems with oscillatory
modes and linear systems with highly oscillatory modes.

Hence, it should be tried out both order reduction
based on slow subsystem and order reduction based on
fast subsystem, and depending on the results achieved
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for the system taken a decision should be made which
technique for the order reduction gives better
approximation. However, engineering experience will
be an advantage in the method application.
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PEAYKIIUJA PEJA CUCTEMA KPO3
YPABHOTEXEIE CA I'VIEJUIITA METOJE
CHUHI'YJIAPHUX ITEPTYPBAIINJA

Joopuaa llkarapuh, Hana ParkoBuh KoBayesuh

Y pagy je NpencTaBJbeHO HEKOJNMKO TEXHHKA 3a
pPeOyKIMjy pela CHUCTeMa, TO3HATHX M3 JIUTeparype,
KOje Cy CBE 3aCHOBAaHE Ha YPaBHOTEKEHY CHCTEMa Y3
NpUMEHY MeETOJe CHHIYJapHHX neprypbOanuja. Ose
TEXHHUKE MMajy HCTy POOYCHOCT TaYHOCTH H3padyHATy
y ckiamy ca H, HOPMOM CHCTeMa pEeIyKOBaHOT pena
Kao M [Be TEXHHKE IO3HATE IO HAa3HMBOM IHPEKTHO
OJICCIIAlbe W METOJ OanaHCUpaHEe pe3uIyaTn3aluje.
Momudukanmja OBHX TEXHHKA 3aJpKaBa TadHy
BPEIHOCT TOjayarma jeJHOCMEPHOI CUTHajla KakBa je
KOJl OPUTHHAITHOT CHCTEMa U [aje ampOKCHUMALHUjy Of
BeoMa J00pe 1O OUIMYHE TayHOCTH HA HIKUM |
cpenwbuM ydectaHocTuMa. EdukacHOCT mnpHKazaHuX
TeXHHUKA 33 PeAYKIHjy peaa MoJelna JaTa je Ha peaJHoM
pUMeEpy.
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