
FACTA UNIVERSITATIS
Series: Mechanics, Automatic Control and Robotics Vol.3, No 11, 2001, pp. 231 - 241

FURTHER RESULTS ON NON - LYAPUNOV STABILITY
OF THE LINEAR NONAUTONOMOUS SYSTEMS

WITH DELAYED STATE     
UDC 681.511.2(045)

D. Lj. Debeljković1, M. P. Lazarević1, Dj. Koruga1,
S. A. Milinković2, M. B. Jovanović2, Lj. A. Jacić3

1Faculty of Mechanical Engineering, Department of Control Engineering, 27. marta 80,
11000 Belgrade, Yugoslavia

2Faculty of Technology and Metallurgy, System Control Group, Karnegijeva 4,
11000 Belgrade, Yugoslavia

3High Technical School, Nemanjina 2, 12000 Požarevac, Yugoslavia

Abstract. Paper extends some basic results from the area of finite time and practical
stability to linear, continuous, time invariant nonautonomous time-delay systems.
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are derived.
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1. INTRODUCTION

The problem of investigation of time delay system has been exploited over many
years. Delay is very often encountered in different technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. The
existence of pure time delay, regardless if it is present in the control or/and state, may
cause undesirable system transient response, or generally, even an instability.
Consequently, the problem of stability analysis of this class of systems has been one of
the main interest of many researchers. In general, the introduction of time lag factors
makes the analysis much more complicated. In the existing stability criteria, mainly two
ways of approach have been adopted. Namely, one direction is to contrive the stability
condition which does not include information on the delay, and the other is the method
which takes it into account. The former case is often called the delay-independent criteria
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and generally provides nice algebraic conditions. Numerous reports have been published
on this matter, with particular emphasis on the application of Lyapunov’s second method,
or on using idea of matrix measure, Lee and Diant (1981), Mori et al. (1981), Mori
(1985), Hmamed (1986), Lee et al. (1986).

In practice one is not only interested in system stability (e.g. in the sense of
Lyapunov), but also in bounds of system trajectories. A system could be stable but still
completely useless because it possesses undesirable transient performances. Thus, it may
be useful to consider the stability of such systems with respect to certain subsets of state-
space which are defined a priori in a given problem. Besides that, it is of particular
significance to concern the behavior of dynamical systems only over a finite time
interval.

These boundedness properties of system responses, i.e. the solution of system models,
are very important from the engineering point of view. Realizing this fact, numerous
definitions of the so-called technical and practical stability were introduced. Roughly
speaking, these definitions are essentially based on the predefined boundaries for the
perturbation of initial conditions and allowable perturbation of system response. In the
engineering applications of control systems, this fact becomes very important and
sometimes crucial, for the purpose of characterizing in advance, in quantitative manner,
possible deviations of system response. Thus, the analysis of these particular
boundedness properties of solutions is an important step, which precedes the design of
control signals, when finite time or practical stability control is concern.

Motivated by "brief discussion" on practical stability in the monograph of La Salle
and Lefschet (1961), Weiss and Infante (1965, 1967) have introduced various notations
of stability over finite time interval for continuous-time systems and constant set
trajectory bounds. Further development of these results were due to many other authors,
Michel (1970), Grujic (1971), Lashirer and Story (1972). Practical stability of simple and
interconnected systems with respect to time-varying subsets was considered by Michel
(1970) and Grujic (1975.a). A more general type of stability ("practical stability with
settling time", practical exponential stability, etc.) which includes many previous
definitions of finite stability was introduced and considered by Grujic (1971, 1975.b,
1975.c). Concept of finite-time stability, called "final stability", was introduced by
Lashirer and Story (1972) and further development of these results was due to Lam and
Weiss (1974).

In the context of practical stability for linear generalized state-space systems, various
results were first obtained in Debeljkovic and Owens (1985) and Owens and Debeljkovic
(1986). Analysis of nonlinear singular and implicit dynamic systems in terms of the
generic qualitative and quantitative concepts, which contain technical and practical
stability types as special cases, have been introduced and studied in Bajic (1988, 1992).

In this short overview, the results in the area of finite and practical stability were only
concerned for continuous time systems.

Here we examine the problem of sufficient conditions that enable system trajectories
to stay within the a priori given sets for the particular class of nonautonomous time-delay
systems. To the best knowledge of authors, these problems, using this approach, are not
yet analyzed for the time-delay systems and this class of systems.
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2. NOTATION AND PRELIMINARIES

A linear, multivariable time-delay system can be represented by differential equation:
),()()()()( 1010 τ−++τ−+= tBtBtAtAt uuxxx!  (1)

and with associated function of initial state:
x(t) = ψψψψx(t) ,
–τ ≤ t ≤ 0 ,  (2)

u(t) = ψψψψu(t) .
Equation (1) is referred to as nonhomogenous or the unforced state equation, x(t) is

the state vector, u(t) control vector), A0, A1, B0 and B1 are constant system matrices of
appropriate dimensions, and τ is pure time delay, τ = const. (τ > 0).

Dynamical behavior system (1) with initial functions (2) is defined over time interval J
= {t0, t0 + T}, where quantity T may be either a positive real number or symbol +∞, so finite
time stability and practical stability can be treated simultaneously. It is obvious that J ∈  R.

Time invariant sets, used as a bounds of system trajectories, are assumed to be open,
connected and bounded. Let index β  stands for the set of all allowable states of system
and index α for the set of all initial states of the system, such that the set Sα ⊆  Sβ. In
general, one may write:

}||||:{ 2
Q ρ<=ρ xxS , ],[ βαρ ∈  (3)

where Q will be assumed to be symmetric, positive-definite, real matrix.
Sε denotes the set of all allowable control actions.
Let |x|(⋅) be any vector norm (e.g., ⋅ = 1, 2, ∞) and ||(⋅)|| the matrix norm induced by

this vector. Here, we use | | ( ) /x x x2
1 2∆

= T  and =⋅ 2||)(|| )( *2/1
max AAλ . Upper indices * and T

denote transpose conjugate and transpose, respectively.
Matrix measure has been widely used in the literature when dealing with stability of

time delay systems. The matrix measure µ for any matrix A ∈  Cn×n is defined as follows

ε
−ε+=µ

→ε

∆ 1||||lim)(
0

AIA .  (4)

The matrix measure defined in (4) can be subdefined in three different ways,
depending on the norm utilized in its definitions.
















+=µ ∑

≠
=

n

ki
i

ikkkk
aaA

1
1 ||)Re(max)( ,  (5)

)*(max
2
1)(2 AAA i

i
+λ=µ ,  (6)

and
















+=µ ∑

≠
=

∞

n

ik
k

kiiii
aaA

1
||)Re(max)( ,  (7)

Coppel (1965), or Desoer and Vidysagar (1975).
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3. PREVIOUS RESULTS

Definition 1: System given by (1) satisfying initial condition (2) is finite time stable
w.r.t. [ζ(t), β, τ, T] if and only if:

| ( )|ψψψψ x t 2 < ζ(t),  (8)

implies: |x(t)|2 < β ,  (9)

ζ(t) being scalar function with the property 0 < ζ(t) ≤ α, – τ ≤ t ≤ 0, where α is a real
positive number and β ∈  R and β > α, with ].0,[,)()( τ−∈∀= tttx xΨΨΨΨ

0 τ 2τ T t-τ

|x(t)|2

|ψψψψx(t)|2
ζ (t)

β

α

Fig. 1. Illustration of preceding definition.

Theorem 1: The system given by (1) with the initial function (2) is finite time stable
with respect to {α, β, τ, T}, if the following condition is satisfied:

],0[,
||||1

/
||||

21
2 Tt

A
∈∀

τ+
αβ

<Φ ,  (10)

where ||(⋅)|| is Euclidean norm and Φ(t) is fundamental matrix of system (1), Nenadic et
al. (1997), Debeljkovic et al. (1997a).

Theorem 2: The system given by (1) with initial function (2) is finite time stable
w.r.t. {α, β, τ, T } if the following condition is satisfied

],0[,
||||1

/

21

)( 02 Tt
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e tA ∈∀
τ+

αβ
<µ   (11)

where ||(⋅)|| denotes Euclidean norm, Debeljkovic et al. (1997b).
Theorem 3: The autonomous system given by (1) with the initial function (2) is finite

time stable with respect to {α, β, τ, T}, if the following condition is satisfied:
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−µ+
αβ< τµ−−

µ  Debeljkovic et al. (1997.c). (12)

Theorem 4: The autonomous system given by (1) with the initial function (2) is finite
time stable with respect to }0)(,,,,{ 0 ≠µτβα AT if the following condition is satisfied:

,/||||1 21 αβ<τ+ A  (13)
Debeljkovic et al. (1997.c).
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Definition 2: System given by (1), with u(t – τ) ≡ 0, ∀ t, satisfying initial condition (2)
is finite time stable w.r.t. {ζ(t), β, ε, τ, J, µ(A0) ≠ 0} if and only if:

ψx(t) ∈  Sα , ∀ t ∈  [–τ, 0] ,  (14)
and

u(t) ∈  Sε    ∀ t ∈  J,  (15)
imply:

x(t; t0, x0) ∈  Sβ , ∀ t ∈  [0, T]  (16)

Theorem 5: System given by (1), with initial function (2) is finite time stable w.r.t.
{ζ(t), β, ε, τ, J, µ(A0) ≠ 0, B1 = 0} if the following condition is satisfied:

θ
αβ

<µ /)( 02 tAe

.,)1(||||)())1(||||)()(( )(
200

1)(
2100

1 0202 JteBAeAAA tAA ∈∀−γµ+−+µµ=θ µ−−τµ−− (17)

where:
)(5.0)(,/ 00max02

TAAA +λ=µαε=γ ,  (18)
Debeljkovic et al. (1997.d).

Theorem 6: System given by (1), with u(t – τ) ≡ 0, ∀ t, satisfying initial condition (2)
is finite time stable w.r.t. {ζ(t), β, ε, τ, J, µ(A0) ≠ 0}, if following condition is satisfied:

αβ<γ+τ+ /||||)||||1( 2021 tBA , ∀ t ∈  J,  (19)

where γ is given with (18), Debeljkovic et al. (1997.d).
Definition 3: System given by (1) satisfying initial condition (2) is finite time stable

w.r.t. {α, β, εψ, ε, τ, J, µ(A0) ≠ 0} if and only if

 ψx(t) ∈  Sα , ∀ t ∈  [−τ, 0],  (20)

 ψu(t) ∈  Sεψ , ∀ t ∈  [−τ, 0],  (21)

u(t) ∈  Sε , ∀ t ∈  J,  (22)
imply:

x(t, t0, x0, u(t)) ∈  Sβ, ∀ t ∈  J.  (23)

Theorem 7: System given by (1), with initial function (2) is finite time stable w.r.t.
{α, β, εψ, ε, τ, J, µ(A0) ≠ 0} if the following condition is satisfied:
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c1 = 1 + b1(γ + γψ)  (26)

c2 = γ(b0 + b1)  (27)
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α
ε

=γ
α
ε=γ ψ

ψ, ,  (29)

Debeljkovic et al. (1998).

4. MAIN RESULTS

Equation (2) can be rewritten in it’s general form as:

0,)()( 000 ≤θ≤τ−θ+=θ+ ttt xψψψψx ,  (30)

0,)()( 000 ≤θ≤τ−θ+=θ+ ttt uψψψψu ,  (31)
with:

]0,[)( 00 τ−∈θ+ tCtxψψψψ ,  (32)

]0,[)( 00 τ−∈θ+ tCtuψψψψ ,  (33)

where t0 is observation initial time of the system, given by (1), and C[(⋅)] is a Banach
space of continuous functions over a time interval [t – τ, t] into R n with the norm defined
in the following manner:

||)(||max|||| 0
00

θ+=
≤θ≤τ−

t
tt

C ψψψψψψψψ .  (34)

It is assumed that the usual smoothness condition are present so there is no difficulty
with questions of existence, uniqueness and continuity of solutions with respect to initial
data.

Definition 4: System given by (1) satisfying initial conditions (30) and (31) is finite
time stable w.r.t. {α, β, ε0, ε, t0, J), α < β, if and only if:

0||||,|||| ε<α< CuCx ψψψψψψψψ ,  (35)

Jtt ∈∀ε< ,||)(|| u ,  (36)
imply:

Jtt ∈∀β< ,||)(|| x .  (37)

Theorem 8: System given by (1) satisfying initial conditions (30) and (31) is finite
time stable w.r.t. {α, β, ε0, ε, t0, J), α < β, if the following condition is satisfied:
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Proof: In accordance with the property of the norm, one can immediately write:
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Employing the following inequality:
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equation (40) can be written in the following manner:
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where σmax(Ai) denotes maximal sigular value of matrix Ai, i = 1, 2.
To obtain the final result, one has to integrate equation (1), so:
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or
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Since:
  Cxxt ||||||)0(||||)(|| 0 ψψψψψψψψ ≤=x ,  (48)
it yields:
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Obviously:
))(1(||||)( 0max ttt A

Cx −σ+⋅=ρ ψψψψ  (50)

is nondecreasing function, so one can write:
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If one applies very well known Bellman-Gronwall lemma, Hale (1971), it is easy to
show that:

)( 0max

*
)(||)(||sup||)(|| tt
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A
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≤≤τ−
ρ≤≤ xx  (52)

and:

.)()()())(1(||)(|| 10001
)(
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0max τε−ε+−ε++σ−+α≤ −σ bttbbettt ttA A

x (53)

Finally, if one use the basic condition of Theorem 8, namely equation (38), it yields:

Jtt ∈∀< ,||)(|| βx , (54)
what had to be proved.

Prior to our another main result, we present the following lemma.
Lemma 1. Let Q(t) be a n × n characteristic matrix for the system given by (1) with

initial function (2), also continuous and differentiable in [0, τ] and zero elsewhere. Define
the following vector:

∫
τ

θθ−θ+=
0

)()()()( dtQtt xxy ,  (55)

where matrix Q(t) satisfy the following matrix equation:

],0[),())0(()( 0 τ∈θθ⋅+=θ QQAQ! , (56)
with boundary value:

 1)( AQ =τ . (57)
If:

 )()())(( tttV T yyy =   (58)

is aggregation function for system given by (1), then:
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)())(())(( tRttV T yyy −=! ,  (59)
where:
 ))0(())0(( 00 QAQAR T +++=− ,  (60)

The proof is omitted, for the sake of brevity and can be found in Lee and Diant
(1981).

Now, we can state our another main result.
Theorem 8. If λM is maximal eigenvalue of matrix (–R) being defined by (60), then:
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T
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If one integrate the previous inequality we get:
)(),(),(),(),( ptTT Meppppptpt −λ≤ qqqq .  (63*)

It follows:
 )(22 ||),(||||),(|| ptMepppt −λ≤ qq .  (64*)

)()0()()()(),(),( pQpppQpppQpp xxxq =−== .  (65*)

Finally if one make square root on both sides of eq. (44), one can get:
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,)(||)(||||)0(||||)(||||)0(||||)()(||
0

2
)(

2 ∫∫∫
τ

θλ

τ−

−λ

τ−
θ−θ−=≤− detQepQdppptQ

MMt

t

ptt

t
xxx (67)

and:

 ∫∫
τ θλτ

θθ−≤θθ−θ
0

2

0
||)(||||)0(||)()(|| detQdtQ

M

xx ,  (68)

what ends the proof.

5. CONCLUSION

The matrix measure has been widely used in the literature dealing with stability and
asymptotic stability of time-delay systems. This approach and Bellman-Gronwall lemma
have been used here in order to develop some results which have an evident advantage to
those derived earlier, since they overcome need of computing fundamental matrix for
time-delay systems. In that sense, delay dependent criteria expressed by a simple
inequalities, have been derived yielding sufficient conditions of non-Lyapunov stability
of system considered. These results have been obtained using quite different techniques
from approaches used by some other authors working in the area of finite and practical
stability.These results can be directly applied to all chemical processes that posseses pure
time delay, nuber of which is realy graet.

To the best knowledge of authors, these problems have not yet been analyzed for this
class of nonautonomous linear time-delay systems, and represent natural extension of
results presented earlier in Lazarevic et al. (2000). Moreover, a new theorem has been
proved that enables one to apply very well Bellman-Gronwall lemma for the time delay
systems.
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NOVI REZULTATI O NE-LJAPUNOVSKOJ STABILNOSTI
LINEARNIH NEAUTONOMNIH SISTEMA SA KAŠNJENJEM

D. Lj. Debeljković, M. P. Lazarević, Dj. Koruga,
S. A. Milinković, M. B. Jovanović, Lj. A. Jacić

Ovaj rad predstavlja dalji rad na osnovnim rezultatima u oblasti ograničenog vremena i
praktične stabilnosti linearnih, kontinualnih stacionarnih, neautonomnih sistema sa kašnjenjem.
Izdvojeni su dovoljni uslovi ovog tipa stabilnosti za određenju klasu sistema sa kašnjenjem.


