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2 Hochschule Darmstadt, Schöfferstraße 3, 64295 Darmstadt, Germany

Abstract. Detecting morphed face images has become critical for main-
taining trust in automated facial biometric verification systems. It is well
demonstrated that better biometric performance of the Face Recognition
System (FRS) results in higher vulnerability to face morphing attacks.
Morphing can be understood as a technique to combine two or more
look-alike facial images corresponding to the attacker and an accomplice,
who could apply for a valid passport by exploiting the accomplice’s iden-
tity. Morphing Attack Detection (MAD), with the help of Convolutional
Neural Networks (CNN), has demonstrated good performance in detect-
ing morphed images. However, they lack transparency, and it is unclear
how they differentiate between bona fide and morphed facial images.
As a result, this phenomenon needs careful consideration for safety and
security-related applications. This paper will explore Layer-wise Rele-
vance Propagation (LRP) to determine the most relevant features. We
fine-tune a VGG pre-trained network for face morphing attack detection
and LRP is then used to investigate the decision-making processes to
understand what input pixels take part in the attack detection. This pa-
per shows that CNN considers only a small part of the image, usually
around the eyes, nose, and mouth.
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1 Introduction

Face recognition systems (FRS) is a technology that enables an individual to be
recognized based on their unique biological traits, which are often represented in
an identity document (e.g. passport) by means of a facial image [15]. Given the
strong verification performance of such systems, an adversary can execute tar-
geted attacks against FRS that use morphed face images, as presented by Ferrara
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et al. [2]. Face morphing is the smooth transformation of two facial pictures into
one. Morphing attacks have developed as a severe threat to enrolment in recent
years, undermining facial recognition systems’ capabilities. The most common
scenario of face morphing attacks is automatic border control. In many contries,
the enrolment of passport photos is not conducted by live-capturing [7] and
hence the enrolled images may be manipulated by the attackers. To effectively
address the face morphing attack problem, researchers have devised several face
Morphing Attack Detection (MAD) algorithms based on both hand-crafted and
deep learning techniques [15].

With the advancement of deep learning algorithms, biometric-based identi-
fication and verification have become a commonly utilized methodology for a
variety of secure access control applications [15]. Classification of images has
become a critical component of a wide variety of computer vision applications,
with nonlinear methods such as convolutional neural networks (CNNs) serv-
ing as the gold standard [4]. While approaches based on learned features can
reach a high level of accuracy, they act like black boxes [11]. As neural networks
become more widely used, the topic of how these models’ conclusions may be
interpreted becomes increasingly important [8]. While precision is necessary for
network performance, generality and robustness are equally critical. One aspect
of neural networks is that they frequently employ only the data necessary to per-
form their task and reject additional helpful information. Worst case, a neural
network learns to make correct decisions for the wrong reasons [13].

The discipline of explainable artificial intelligence has seen the development
of a plethora of methodologies. Bach et al. [1] proposed the concept of layer-
wise relevance propagation, which has established itself as a notable method for
enhancing the interpretability of CNNs. This explanatory approach generally
examines the model’s interpretability from a black-box perspective and will be
utilized in this paper concerning MAD networks.

2 Background

Morphing can be understood as a technique to combine two or more look-alike
facial images from one subject and an accomplice, who could apply for a valid
passport by exploiting the accomplice’s identity [15]. This technique can be used
to construct manipulated biometric samples that represent biometric information
from both contributing subjects, as seen in Figure 2. Such face morphing attacks
have implications on identity verification procedures, like those conducted at
country borders [11].

Since the morphing process alters the pixel positions, some mismatched pix-
els may result in noise-generating artefacts and ghost-like pictures, giving the
photos an unrealisitic appearance [15]. After creating the morphed face image,
it can be further processed and manipulated to remove or minimize these un-
natural aspects. Automatically created morphs may introduce artefacts, which
can be avoided if the attacker creates a single high-quality morph and manually
optimizes the final image [9]. In general, it is anticipated that mechanically cre-
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Fig. 1. Face morph illustrated in the middle getting a high similarity score against two
bona fide samples from different individuals. Illustration is adapted from [15]

ated databases of morphed face photos will have a lower quality than real-world
attack scenarios [9].

2.1 Morphing Attack Detection

The MAD algorithms proposed thus far have been trained and evaluated on
datasets with constrained distributions of image features and technological va-
riety [10]. The recent NIST FRVT MORPH results [5] indicate that most MAD
algorithms submitted lack resilience and performance when applied to unknown
datasets [10].

Single Image Based MAD (S-MAD) approaches are designed to detect a face
morphing attack effectively using a single image supplied to the algorithm. The
morphed image might be digital or re-digitized [15]. S-MAD is a difficult task
since it is supposed to be robust against differences in sample quality, multiple
types of cameras, morph creation tools, and various print-scan procedures [15]
[14].

Researchers have successfully used deep learning S-MAD algorithms to clas-
sify bona fide and morphed images. Most previously published work uses pre-
trained networks and transfer learning to cope up with small datasets. Although
deep CNNs outperform hand-crafted texture descriptor-based MAD algorithms
on both digital and print-scan data, their generalizability and robustness are
restricted [15].

2.2 Explainability of deep learning models

Since deep learning is doing an excellent job in detecting morphing attacks,
it is desired to explain what information the algorithm uses in its decision-
making. Visualization techniques are a common approach. Most approaches for
face morph detection are trained and evaluated on a single database utilizing a
single morph generation algorithm [9] [14]. As a result, the training data must
have a high degree of variance to avoid overfitting on database-specific artefacts
[10].

Layer-wise Relevance Propagation Introduced by Bach et al. [1], the Layer-
wise Relevance Propagation (LRP) interpretability approach assigns significance
to each pixel in the input image [11]. The LRP’s mathematical foundation is built
on a deep Taylor decomposition. It assigns relevance layer by layer, starting with
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a single selected neuron representing a single class and ending with the image via
the CNN. Each layer’s relevance is communicated backwards into the preceding
one by a set of rules. We follow the rules currently regarded as best practice
for LRP [12]. These are epsilon-decomposition for the fully connected layers.
Alpha-beta - decomposition with a = 2, b = −1 and flat decomposition for the
convolutions layer [12]. These criteria are intended to direct attention to the
neurons in the prior layer that are required for each neuron in the current layer
to fire [12].

LRP considers the CNN’s overall structure, the classification component,
and the convolutional layer activations and weights. The relevance is assigned so
that regions that considerably contribute to the activation are given a positive
value, illustrated in Figure 2 with red colour. In contrast, areas that significantly
inhibit its activation are assigned a negative value, presented with blue colour.
This enables the production of finer heatmaps and assigning a relevance score to
each pixel, defining its ability to either contribute to or prevent activation [11].

3 Methodology

To study the explainability of deep-learning based S-MAD algorithms, we first
train a VGG19 network to classify morphed and bona fide images and then use
LRP to interpret what has been learned by the model to make the classification.
Due to the effort needed for manual post-processing for high-quality morphs,
the size of the morphing dataset is usually limited. Hence, the VGG19 network
in this work is fine-tuned based on weights pre-trained on ImageNet-1k dataset.

For the explanation of the model, we employ LRP 3 to gain insight into
the decision-making process to interpret the MAD accuracy and robustness [13].
More specifically, we use LRP to determine the input relevance in the bona fide
and morphed images. Different kinds of explanatory photos are computed and
visualized for discussions.

The dataset used in this paper is a subset of the database presented by Zhang
et al. [16]. The data originates from the FRGC-v2 dataset and consists of 140
unique participants from the FRGC-v2 collection based on the high-quality facial
photos, where images similar to passport pictures were chosen. 47 of the 140 data
individuals are female, whereas 93 are male. Each subject has a sample size of 7
to 21 images. The images are cropped by utilizing MTCNN presented by Zhang
et al. [17]. Finally, in total 9971 morphs are generated using landmark-based
morphing algorithm [6] and 8176 bona fide images are included in the dataset.

4 Experiments & Results

Since MAD can be considered a binary classification problem, the following
metrics are widely used to benchmark MAD algorithms. The performance of the
detection algorithms is reported according to metrics defined in ISO/IEC 30107-
3 [3]. The Attack Presentation Classification Error Rate (APCER) is defined as

3 https://github.com/fhvilshoj/TorchLRP
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the proportion of attack samples incorrectly classified as bona fide images [15].
The Bona fide Presentation Classification Error Rate (BPCER) is defined as the
proportion of bona fide images incorrectly classified as morphed images in the
system [14].

The fine-tuned neural network that yielded the best results got a training
accuracy of 0.995 and a validation accuracy of 0.892. Based on the results of this
fine-tuned MAD algorithm, we used LRP to visualize what the neural network
had used in its decision-making process. The bona fide images are presented in
Figure 2 top, and the morphed images are presented in Figure 2 Bottom. Table
1 contains the models performance metrics.

Table 1. Overview of APCER and BPCER and the values used to calculate them for
the validation phase. Sorted by the 10 epochs with the highest accuracy score.

Epoch TP TN FP FN APCER BPCER Accuracy

1 5288 4183 116 1034 0.027 0.164 0.892
2 5260 4109 144 1108 0.034 0.174 0.882
3 4400 4864 1004 353 0.171 0.074 0.872
4 5356 3903 48 1314 0.012 0.197 0.872
5 5192 4024 212 1193 0.050 0.187 0.868
6 4900 4198 504 1019 0.107 0.172 0.857
7 3988 4954 1416 263 0.222 0.062 0.842
8 4368 4541 1036 676 0.186 0.134 0.839
9 5400 3497 4 1720 0.001 0.242 0.838
10 5376 3509 28 1708 0.008 0.241 0.837

Figures 2 shows a small sub-sample of twelve bona fide and morphed pictures
from the overall dataset. Using LRP, we see what went into the decision of the
MAD algorithm with the highest accuracy when classifying the images as bona
fide or morphs.

The visual results show that the neural network primarily focuses on the
eyes, nose, and mouth. This is best illustrated in the patternnet explanations.
The algorithm also takes into account some of the hair features, as well as the
edges of the faces. The patterned explanation shows a pattern where most of the
image negatively influences its decision, while some areas in the forehead and
cheek positively influence its decision.

5 Discussion

It should be mentioned that reliable detection of face morphing attacks contin-
ues to be a challenge, and numerous open issues exist in the research field of
MAD algorithms [9]. One of these issues is the absence of large-scale publicly
available datasets with more individual variation and a technological variation
to reflect the real world [15]. In addition, generating high-quality face morphs
automatically continues to be complicated. The dataset used in this paper ar-
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Fig. 2. Visualisation using the patternnet explanation. Top: bona fide images. Bottom:
Morph images.

guably has more artefacts and ghosting in the morphed images than an attacker
would achieve manually for a specific purpose.

From Table 1, the validation accuracy during the top ten epochs during
fine-tuning is relatively high. However, the APCER and BPCER values show
the algorithm is still inconsistent in its classification. The calculations indicate
that the model cannot be used for any meaningful classification of bona fide or
morphed images without more optimization and training.

We discovered using LRP that our fine-tuned neural network, with the high-
est accuracy, concentrates on the eyes, nose, and mouth areas while detecting
morphed facial images. In most cases, the rest of the image is ignored. While fo-
cusing on these areas may be adequate to achieve relatively high accuracy, it has
limitations. There is a high degree of inconsistency in what the algorithm deems
relevant between the different ways of visualizing the input relevance. This could
have unforeseen problems, which is especially serious for security-related appli-
cations. In critical systems, the algorithm should consider data from all image
locations during the classification process to achieve robustness.

Due to the complexity of the behaviour of a CNN’s fully connected lay-
ers, the relevance scores generated by LRP are not immediately interpretable,
demanding additional research to comprehend the network’s overall behaviour
completely. Seibold et al. [12] found that LRP commonly assigns high relevance
scores to artefact-free regions in morphed face shots, implying that these regions
are critical for the decision to classify the images as morphs. This aligns with our
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results where we see that the neural network assigns relevance to areas without
any visible artefacts and fails to detect other areas with clearly visible artefacts.
In Figure 2 Bottom, this is visible where the hairline of multiple morphed images
has artefacts that the algorithm does not detect very well.

Using LRP to visualize the decision-making process of convolutional neural
networks fine-tuned for morph attack detection has been shown to be inconsis-
tent. Problems with limited high-quality large datasets are an issue that makes
the results of LRP challenging to assess and necessitates further research.

6 Conclusion

Given the strong generalization capabilities of face recognition systems, an adver-
sary can execute targeted attacks that use morphed face images, as presented by
Ferrara et al. [2]. Face morphing attacks are a significant security concern, given
that several countries enable residents to provide a picture for passports or na-
tional identification cards. Without requiring specialist knowledge, these photos
can be forged utilizing readily available tools or websites [13]. Advances in deep
learning and machine learning approaches have enabled the development of rela-
tively good-quality morphs through various novel techniques. Generalizing mor-
phing attack detection is still a long way off, given the fundamental difficulty of
gathering large-scale public databases with a variety of morph production strate-
gies [15]. Robust MAD algorithms must account for the vast diversity of picture
post-processing, printing, and scanning technologies. The observed accuracy for
detecting face image morphing attacks does not yet represent generalization to
datasets containing a range of real-world capture situations [9].

We discovered through LRP that a fine-tuned neural network focuses mainly
on the eyes, nose, and mouth to detect morphed images. Though neural network
analysis is still in its infancy, we demonstrated how methods such as LRP may be
utilized to get valuable insights into a neural network’s decision-making process.
Future strategies for modifying the training process, particularly the training
data, to increase resilience can be developed from this knowledge. Through the
experiments, we got insights into how to train a network specifically for detecting
face morphs and, more broadly, visual results on what the neural network used in
its decision-making. High accuracy does not always imply robustness, implying
the necessity for additional quality measures. We presented relatively high train-
ing and validation accuracy metrics for our MAD algorithm. LRP showed that
most of the input images got ignored, implying a lack of robustness. In addition,
our results show inconsistency in the algorithm’s ability to detect artefacts and
other features of morphed images.

Future work could improve the used dataset and codebase, trying to decrease
the computational cost of training the neural network while still being able to
calculate essential performance metrics for the MAD algorithm. Also, the applied
experiments could also be extended for explaining the detection of other type
of attacks against face recognition system. Meanwhile, it would be interesting
to study on applying the explainability technique for monitoring CNN-based
systems and detecting abnormal behaviours caused by general input attacks.
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