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Abstract. Every public-key encryption/decryption algorithm where the
set of possible plain-texts is identical to the set of possible cipher-texts
may be converted into a digital signature algorithm. That is quite differ-
ent in the lattice (code)-based public-key cryptography. The decryption
algorithm on a random input produces a valid plain-text, that is a signa-
ture, with a negligible probability. That explains why it is so difficult to
construct a new secure and efficient lattice-based digital signature sys-
tem. Though several solutions are known and taking part in the NIST
Post Quantum Standardisation Process there is still a need to construct
digital signature algorithms based on new principles. In this work, a new
and efficient digital signature algorithm is suggested. Its design is simple
and transparent. Its security is based on the hardness of an approximate
closest vector problem in the maximum norm for some g-ary lattices.
The signature is several times shorter than that provided by the NIST
Selected Digital Signature Algorithms with comparable security level,
while the public key size is larger.
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1 Introduction

Digital signatures are an important area of applications for public-key cryptogra-
phy. Every public-key encryption/decryption algorithm, where the set of possible
plain-texts is identical to the set of possible cipher-texts, may be converted into
a digital signature algorithm. The most notable examples are RSA and Rabin
crypto-systems. That is quite different in lattice(code)-based and multivariate
cryptography. The cipher-text is there larger than the plain-text as in NTRU
and Regev’s LWE based crypto-systems. The decryption algorithm on a random
input produces a valid plain-text, that is a signature, with a negligible proba-
bility. That explains why it is so difficult to construct a new secure and efficient
lattice-based digital signature system. Though several algorithms as GGH and
some of NTRU-based were broken in [17, 5], yet another NTRU-based signature
algorithm variation Falcon is among the finalists of the NIST Post Quantum
Standardisation Process, [15]. Similarly, several variations of multivariate algo-
rithms as HFE and TTM were broken [12, 10], and another multivariate signature
algorithm Rainbow is among the finalists of the NIST competition. The history
of the attacks and relevant countermeasures provides a better understanding



of the security of the cryptographic algorithms. However, the countermeasures
make the resulting algorithms patchy and non-transparent, one may not feel
certain about their security. So there is still a need to construct new digital sig-
nature algorithms. A new construction may improve the efficiency parameters
compared with known solutions.

In the present work, a new and efficient digital signature primitive (hash-
and-sign) is suggested. The design of the signature algorithm is simple and
transparent. The security is based on the hardness of an approximate closest
vector problem (CVP) for some specific g-ary lattices in the maximum norm.
One proves that the signature is uniformly distributed if the hashing algorithm
provides a uniform distribution on its outputs. The signature is several times
shorter than that provided by the NIST Selected Digital Signature Algorithms
with comparable security level, while the public key size is larger.

There are three approaches to the cryptanalysis of the new algorithm. First,
find the private key given a public key only. Second, forge signatures without
the knowledge of the private key. Third, find the private key or forge a new
signature by analysing a number of valid signatures. We claim that it is hard to
forge a valid signature for any given message as one will need to solve a hard
CVC problem for some specific g-ary lattice. The cryptanalysis is presented in
Section 5.

Published digital signature lattice-based constructions typically make use of
short lattice bases as private keys and their random non-short perturbations as
public keys. That is true for GGH [6], some its modifications as DRS, see [20], and
NTRU-based signature algorithms as NTRUSign in [4]. Another approach based
on the hardness of the SIS (Short Integer Solution) problem was implemented in
[11],[16]. The present construction does not use neither short bases of relevant
lattices, nor the hardness of the SIS problem.

The new digital signature algorithm does not have so far a so-called security
proof, the proof that it stands all attacks by a reduction to an NP-hard problem
or some hard computational problem in general lattices, etc. That is not un-
common in the field. The most notable example is the RSA crypto-system. We
do not know if breaking the RSA results in fast integer factorisation. Another
example is a multivariate signature algorithm Rainbow, a round 3 NIST candi-
date, which does not have a security proof. One of the NIST selected algorithms
Falcon provides a reduction to the NTRU problem, which is the shortest vector
problem for a very particular lattice. The NTRU problem was around for more
than 25 years. Only recently a reduction-based evidence of its hardness was pub-
lished in [19]. Similarly, a reduction-based security argument for the underlying
problem of the new digital algorithm may require more time and effort.

The new digital signature algorithm has some similarity with the crypto-
system EHT in [2]. It is impossible to use this crypto-system directly to generate
signatures as the length of the cipher-text is larger than the length of the plain-
text. Nevertheless, we call the new digital signature algorithm EHT too.



2 Signature Algorithm

In this section a basic version of the new signature algorithm is explained. The
algorithm consists of private and public key generating algorithms, signature
generating and verifying algorithms. They all are presented in this section along
with the signature verification proof. Let ¢, n, k, d be positive integers. Suppose
M is a message to sign and let h = HASH(M) € Z’;” denote a hash of M.

The signature for M is x € ZZ‘M such that h = Ax+ e for some public matrix

Ac Z’;"X(”er) and a vector e € ZK". The entries of e represented as integers
are bounded in absolute values. A detailed description of the algorithm is in this
section below.

To forge a signature for a message M without knowledge of the private key
one has to solve the following problem. Given h € Z’;", where h = HASH(M),
find x € Z;”d such that the entries of h — Ax taken as integers are bounded
in absolute values. We have not found an efficient method to solve the problem
without inverting the hash function.

In Section 3, we prove that the signature x is uniformly distributed if the
hash function provides a uniform distribution on Z’;". So in the random oracle
model (the hash function is a random oracle) the signature algorithm itself is a
random oracle.

2.1 Parameters

Let g,n, k,d, c be positive integers, where ¢, k, d, c are relatively small and n is
up to several hundreds. Also, h = HASH(M) is a hash value of the message M,
encoded by a vector in Z’;”. The integer g defines the arithmetic of the scheme
while n, d affect its security and efficiency.

2.2 Private Key
The private key consists of three matrices R, B, C'.
1. The matrix R is an integer (kn + d) X (n + d) matrix as

T 0
n= (i m)
where
t11 0 ... 0
toy 0 ... 0
t,y 0 ... 0
* tlg... 0
T = * t22... 0 s (1)
* tkg... 0
* tln
* tgn
* tin



is a matrix of size kn x n, and the entries ¢1;,%2;, ..., t;; are called diagonal.
The entries of T" below and to the left of the diagonal are denoted by *, they
are secret and may be chosen randomly.

Each tuple [t1;,t25,...,1k;] has to satisfy the following property. All entries
are non-zero residues modulo ¢ and at least one is coprime to ¢g. For any
integer by, bs, ..., by there is an integer u such that

[(b1 —t1j u)mod q| <,
|(by — toj u) mod ¢| < c,

(2)

|(bk — tij u) mod g| < c.

For ¢ and k used to construct signatures in this work all such tuples may
be found by brute force. Let, for instance, ¢ = 61,k = 3,¢ = 8. There is
only one tuple [t1,ta,t3] = [1,4, 15] modulo ¢ up to a permutation of entries,
multiplication the tuple by a residue coprime to ¢ and changing the sign
of the entries such that for any integers by, bo, b3 the system of inequalities
|(by — t1u) mod 61| < 8, |(ba — tau) mod 61| < 8, |(by — tzu) mod 61] < 8 has a
solution u.

The matrix R;, Ry are arbitrary matrices of size d x n and of size d x d
respectively. The matrix Ry is invertible modulo q.

2. The matrix C'is a kn x (kn + d) -matrix with integer entries as

1 0...0%...x%
C— 01...0*...% ' 3)
00...1%x...x%

The first kn columns of C' contain the unity matrix of size kn x kn. The
entries of the right d columns are secret and may be randomly generated.
3. The matrix B is an arbitrary integer (n + d) x (n + d) -matrix invertible

modulo q.
Theorem 1. For every integer vector a = (a1, az, ..., ak,) there exist an integer
vector § = (Y1, Y2, - - -, Yn) and an integer vector Z = (21, 22, . .., 2kn ), where

lzil <e¢, i=1,...,kn,
such that a =Ty + z mod q.

Proof. First, we show how to compute iteratively y; and 2= k415 -+ > Zjk for
g=1,...,n. For j =1 we set



and y; = u, where u is a solution to the system of inequalities (2). Then

21 b t11
2 | _ | b2 to1

= — y1 mod q.
2k b 1751

The entries of the left hand side vector are bounded by ¢ in absolute value by
(2). Let T; be a sub-matrix of T of size k x j in the rows jk+1,jk+2,...,jk+k
and columns 1,...,7, where 1 < j < n — 1. The entries of T are denoted by *
in the definition of T'. For j > 1 we set

by a(j—1)k+1 "
b2 = | YG-Dk+2 | Ti | ... mod gq.
b ak Yi-1

Then y; = u, where u is a solution to the system of inequalities (2). So

Z(j—1)k+1 by t1;
Zg-vkt2 | — | 02 | |tz y; mod g
Zjk bi ti;

and the entries of the left hand side vector are bounded by c¢ in absolute value.
Therefore for every 1 < j <mn,

(i —1)k+1 okt % A(G—1k+1
agG-nk+2 | — * ..ok o SRR Z(j—1)k+2 mod g.
X Lok L. Yj—1 ..
Qjk * ...k tkj Yj Zjk
Soa=Ty+ 2z mod g, where Z = (21, 29, ..., 2kn) and |z;| < c¢. The statement
is proved.
Theorem 2. For every integer vector a = (a1,az,...,0kn+d) there exist an
integer vectory = (Y1,Y2, - - - s Yn+d) and an integer vector z = (21, 22, - -, Zkntd)s
where
|zi] <e, i=1,...,kn, (4)
z;=0, i=kn+1,...,kn+d, (5)
such that a = Ry + z mod gq.
Proof. Let a = (a1,as,...,ax,) and @’ = (agps1,-- - Akntd)- By Theorem 1, we

have @ = Ty + Z mod ¢, where § = (y1,¥Y2,.-.,Yn), and Z = (21,22, ..., Zkn),
and (4) holds.
Let ' = (Yknt1,- - - Yknta) satisfy the system of linear equations

a =Rey+ R3y mod q.
That implies a = Ry + 2z mod ¢, such that both (4) and (5) hold.



2.3 Public Key

The public key is an integer kn x (n + d) -matrix A = CRB~! mod q.

2.4 Signature Generation

To sign the message M one computes h = HASH(M) € Z’;”. One takes secret

Gknt1,- - -, Oknt+d from Z, and computes ai, ..., ag, such that Ca = h mod g,
where a = (a1, .., Qkny Qkntl - - - Ckntd) € Z’;”+d. The vectors
y:(ylayQa"'ayn—i—d); Z:(217223"'7zk’n+d)7

such that a = Ry + z mod ¢, and (4) and (5) hold, are computed according
to Theorem 2. The signature for M is x = By mod ¢, so = € Z;H‘d. Given h,
the vector y is generally not unique. There may exist messages M which admit
several valid signatures. We call e = (21, 22, . .., 2k ) of size kn the error vector
for M, x.

2.5 Signature Verification

To verify the signature = for M one computes h = HASH(M) and Az. One
computes e = h — Ar mod ¢, where e € Z’;” and such that the entries of
e = (e1,€a,...,€k,) are at most (¢ — 1)/2 in absolute value. The signature is
accepted if |e;| < ¢ for every 1 <i < kn.

2.6 Verification Proof

We have
Ca = h, a=Ry+z modgq,

where z = (21, 22,..., 2kn,0,...,0), |2;] < ¢, and x = By. Then
a=Ry+z2=RB 242 modgq, so h=Ax+Cz modq, (6)

where the entries of e = Cz = (21, 22,...,2kn) are bounded by ¢ in absolute
value. So the signature is accepted.

3 Signature distribution

In this section we prove that if h = HASH(M) is distributed uniformly on Z’;”,
then the signature x is uniformly distributed on ZJ%9¢. Recall that (2) has a
solution for every b1, ...,b;. We can there put t; =t1; = 1,1y = to; ..., tx = ti;
to simplify the notation below. So (2) is equivalent to the following statement.
For every tuple of residues by, ..., by modulo g there exist u and i1, ..., %k, where
li1] < e, ..., lix] < ¢, and u is a residue modulo ¢, such that by = u + 41,by =
ute + 49, ..., bp = uty + ik. Let A(by,...,bx) denote the set of such w.



In order to prove that the signature x = By is uniformly distributed it is
enough to prove that y is uniformly distributed. According to Theorem 1 and
Theorem 2, it is enough to prove that if by,..., b are generated independently
and uniformly at random on residues modulo g and the solution u to (2) is taken
uniformly from A(by, ..., bx), then u is uniformly distributed on residues modulo
q. The probability of u is equal to

! 1
D D —
I u€A(b1,...,bx,) |A(by, ..., b

where the sum runs over all by, ..., b such that u € A(by,...,bx). The following
lemma implies that this probability is 1/q.

1 _ k-1
Lemma 1. ZuEA(bl,...,bk) AGL..0n] 4 -

Proof. The inequalities (2) are equivalent to by — u = 41 ,by — taby = iy —

toiy, ..., by — tgby = ik — txi; modulo g, where |i1| < ¢,...,|ig] < c Let s =
s(ag,...,ax) be the number of solutions iy, ..., to
li1] < e ..., lik] <e, ag =g —teiymodg,...,ar =i — tgiymodgq. (7)
Then
|A(b1, ceey bk)| = s(a27 N ,ak),
where as = by —taby, ..., ar = by — tgb1. Moreover, u € A(by,...,b) if and only
if by = w+ 11, where 4q,. .., i is a solution to (7). Since as, ..., ar may take any

values, we get

R S - =g
Z |A(by, ..., bk M;ak ilz’ s(ag, ... ax) %;akl q -,

u€A(b,...,bx) yeeesth

where the last sum is over all the solutions i1, ..., to (7).

4 Complexity

The linear system Ca = h mod g is easy to solve for any chosen agn41, .-, Gkntd-

In signature generating the vector y may be computed in around kn?/2 mul-
tiplications modulo ¢ for small d. The complexity of computing x = By is n?
multiplications. The signature size is [(n + d)log, ¢] bits. The complexity of
verification is essentially kn? multiplications modulo ¢ to compute Az. Remark,
that ¢ may be taken relatively small compared with digital signature algorithms
from the NIST competition. So the computation is very fast in that case.

For the public key one has to keep the matrix A, that is kn? residues modulo
q. For the private key one keeps the matrix C and the matrices B,T. Instead,
one may keep a seed and generate C, B and R with this seed if necessary. That
can be done easily as all the entries of T' except zeros and diagonal are random.
The entries of B are random providing B is invertible modulo ¢ which holds
with high probability. So, the size of the private key may be made negligible.



5 Cryptanalysis

There are three approaches to the cryptanalysis: find private key given public
key only, find private key by analysing a number of valid signatures, and forge
signatures without the knowledge of the private key.

5.1 Private Key Recovery

We have not found any efficient method to recover the matrices C, R, B from
A = CRB™! besides searching over C' or B according to their definitions which
is not efficient.

5.2 Existential Forgery by Guessing

Given h, one may try small values (< ¢ in absolute value) of some n + d entries
of e = h — Ax mod ¢, compute = by solving a system of linear equations and
check if all other (kK — 1)n — d entries of e are at most ¢ in absolute value. The
success probability is (%)(k’l)"’d. So, on the average, one needs to solve

around (#’H)(k’l)”*d linear systems of n equations in n variables modulo ¢ in
order forge a signature for the hash value h.

5.3 Existential Forgery by Solving CVP

To forge the signature for a hash value h one is to find a vector e whose entries are
bounded by c¢ in absolute value and h = Ax + e for some vector x. This problem
always has a solution for the parameters defining the signature algorithm. Let
L be a lattice of rank kn and of volume ¢*"~"~¢ generated by the columns of A
modulo g. Thus it is enough to solve an approximate CVP-instance for L in the
maximum norm.

The solution of this problem implies a vector in L at the Euclidean distance
< ¢vkn from h. By Gaussian heuristic, see [18], the minimum distance between
any h and L is O(\/ﬁql_l/k) for average h and small d. Therefore, to forge
signatures one has to solve a CVP-instance for L with a small approximation
factor O(ﬁ). The approximate CVP is hard for general lattices of large rank
if the approximation factor is small [14]. It is an open question how to use the
structure of A to accelerate the solution.

One may also apply an exact CVP algorithm as in [1] or [7]. It is claimed in
[7] that the CVP may be solved in heuristic time 20-2927+°(") by a lattice sieving
algorithm with the same amount of memory, where r is the rank of the lattice.
That is not efficient for » = kn.

5.4 Key Recovery under Known Message Attack

Let r messages M;, ¢ = 1,...,r be signed with the same private key and x; be
theirs signatures respectively. Let h; = HASH(M;) and so e¢; = h; — Az; mod ¢



is an error vector for M;. As Ca; = h;, one may write
a; = RB_l.L“i + e;.
This equation does not seem to leak significant information about the matrix

RB~! as a;, and therefore z;, depend on d secret randomly chosen residues
modulo ¢ and d secret right most columns of C.

5.5 Adaptive forgery

A message M with a hash value h may have several valid signatures x1, o, ...
So, the equations

h= Az +e,h=Axs +eq,...
are available. Let a signature x( for another message My with a hash value hg
be available and so hg = Axg + €g. One may try to modify xg to yet another
valid signature xg + x1 — x2 for My and get

ho = A(xg + 21 —x2) +eg + €1 — ea.

However, the probability to accept x¢g + x1 — x2, that is the probability that
every entry of eg + e; — es is bounded by c¢ in absolute value, is very low. For
instance, if ¢ = 2 and ¢ > 9 this probability is

(1 —40/125)k".

So this method is not efficient.

5.6 Matrix A

In this section we show, with an heuristic argument, that if d is large enough,
then the public key matrix A = CRB™! is uniformly distributed, where the
matrices C, R, B are chosen according to the definitions in Section 2.2.

Let R, B be defined by Section 2.2. We neglect that the matrices R3, B have
to be invertible modulo g, which holds with high probability. Then the matrix
R depends on kn(n —1)/2 + d(n + d) free variables, and the matrix B depends
on (n + d)? free variables, residues modulo q.

It is easy to prove that the values of n(n — 1)/2 + d(n + d) variables in R
determine pairs of matrices Ry, By, also as in Section 2.2, such that RB~! =
By ! and the diagonal entries in R; are as in R.

The matrix C' depends on knd free variables. We take into account the equiv-
alence above and get that the matrix A = CRB~! depends on

knd+kn(n —1)/2+d(n+d) + (n+d)* —n(n —1)/2 — d(n + d)
=knd+ (k—1D)nn—1)/2+ (n+d)?
free variables. Since the matrix A is of size kn x (n + d), the inequality
knd + (k— 1)n(n —1)/2+ (n + d)* > kn(n + d)
would heuristically imply that A is thus generated uniformly. This inequality

holds for d = n(y/(k + 1)/2—1)+0(n) when n is growing. In particular, for k = 2
we have d = (1/3/2—1)n+o(n). Similarly, for k = 3 we have d = (v2—1)n+o(n).



6 Proposed parameters

In this section we propose parameter sets. They are chosen to approximately
security level 2'20 bit operations to break the system. The parameters are op-
timised to balance the complexity of so far best attacks. They are a guessing
algorithm in Section 5.2 and a lattice sieving algorithm to solve a relevant in-
stance of CVP in Section 5.3. Also, the parameters are chosen to minimise the
size of the signature and the size of the public key: k = 3,c =2 and ¢ = 9. We
take the parameter d = (v/2 — 1)n + o(n) thus providing the public matrix A of
size kn x (n+d) depends on more than kn(n+d) free variables, residues modulo
g. The entries of A = CRB~! are complicated cubic polynomials in the variables
of C, R, B~!. This, at least heuristically, implies that A is taken uniformly.

For ¢ =9,k = 3,c = 2 there is only one tuple [1,2,4], up to the equivalence,
which satisfy the condition in Section 2.2. For ¢ = 7,k = 3,¢ = 2 there are
several such tuples, for instance [1,1,1].

6.1 Security level 2120

We set (n, k,d, q,c) = (135, 3,57,9,2). The signature size is 609 bits (77 bytes)
and the public key size is 30.81 Kbytes. In order to forge a signature x given a
hash value h one may apply the attack in Section 5.2, where the probability to
find x such that every entry of e = h— Az mod ¢ is bounded by ¢ in absolute value

kn—n—d
is (% ~ 271806 Therefore, one has to solve 2!80-6 linear systems

modulo ¢ = 9 to forge the signature with this method on the average. The
algorithm in [1] solves an instance of CVP in Section 5.3 and therefore forges
signature in 2118-3+0(118:3) gherations with memory size of the same magnitude.
This choice fits security level 2120,

Alternatively, a similar security level is provided by taking (n,k,d,q,c) =
(140, 3,59,7,2). The signature size is 70 bytes and the public key size is 33.7
Kbytes.

6.2 New Algorithm versus NIST Selected Digital Signature
Algorithms

We summarise the security and some complexity parameters of the new algo-
rithm in the first line of Table 1 and put them against those of the NIST Se-
lected Digital Signature Algorithms with approximately matching security 2'2°,
see [15]. In Table 1 bits, bytes and kilobytes are abbreviated by b, B and kB
respectively. The signatures generated with the new algorithm are several times
shorter than those of the NIST algorithms though the public key size is signifi-
cantly larger. A similar holds for higher security levels.
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