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Abstract 

Many consequences in the human past can be traced back to that one well-written, well-presented 
speech. Speeches grasp the power to move nations or touch hearts as long as they are well-thought-out. 
This is why gaining the expertise of speech giving and speech writing is something we should all intent to 
gain. A copy-cat bot is a model that can learn the writing and talking style of a certain person and replicate 
it. The main objective of this research study is to apply simple Recurrent Neural Network (RNN), Long 
Short-Term Memory (LSTM) Recurrent Neural Networks and Gated Recurrent Unit (GRU) in developing 
a speech generation system that deep learns one text and then generates new text. This research looks into 
the generation of English transcripts of Narendra Modi’s speeches. The generated text using LSTM and 
GRU models has great potential. The output resulted by RNN is less realistic and pragmatic, but its 
variants LSTM and GRU performed better. Though the grammatical correctness and the sentence 
transitions were absent in generated text of LSTM and GRU, but their output is somewhat logical as 
compared to RNN. LSTM and GRU performed better as it generated more realistic text and training loss 
is small, perplexity is small and mean probability is high compared to RNN.  
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1. Introduction 

Political speeches are the pivotal event that connects the different parts of society as a united entity. 
The main intention of political speech is to get the corresponding end result through persuasion. Making 
speeches is a vital section of the politician’s role in declaring policy and persuading people to agree with 
it. 

Put in writing for the spoken word is a unique discipline. Congressional speechwriters’ products 
should be written primarily although not exclusively to be heard not read. Political speeches are preferable 
formed in simple, direct, and often short sentences that can be easily understood by listeners. 
Speechwriters should use rhetorical devices such as repetition, variation, cadence and balance. It is 
important for speechwriters to study audiences and the occasion for and purpose of the speech. Most 
effective speeches do not exceed 20 minutes in length. 

 
All literature is made up of words but the things that are said in plays expression of the ability to 

express thoughts and feelings differ one’s speech from the other. Copying the speech style and habits of 
well-known political figures or other celebrities is a complicated task. Imitation provides the actor another 
window into creating a character. Imitation has a long and noble tradition in art. Characters are brought to 
life by their language and manner. However, creating one’s speech that looks like his style is time-
consuming and the speechwriter needs to observe the character well. If the speechwriter is familiar with 
the subject and the positions and style of the executive only small changes may be required. In other cases, 
the executive may notice that the speech does not have the right tone or flow and the entire speech may 
have to be re-drafted. In these situations, the copy-cat bot plays a major role in making the work effective. 
The aim of this research is to develop a copy-cat bot to generate plausible new speeches which look like 
some other speeches using the remarkable patterns in text format. 

 
With powerful artificial Intelligence/machine learning libraries becoming readily available as open 

source, it seems obvious to apply them to speech writing.  
 

1.1. Copy-cat Bot Models 
 

Opinion summarization is the piece of work of automatically creating summaries that reflect 
subjective information transferred in multiple documents such as blogs, reviews, social media, or internet 
forums. Arthur Brazinskas et al. (Brazinskas, et al., 2020) introduced a simple end-to-end approach to 
unsupervised abstractive summarization of opinions which does not use any summaries in training. Human 
evaluation of the generated summaries (by considering their alignment with the reviews) shows that those 
created by the model better reflect the content of the input.  

 
The circulation of fake news has affected many interruptions in society and weakened the news 

ecosystem. Hence, fake news should be carefully examined and combated. Thai Le et al. (Le, et al., 2020) 
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formulated a novel problem of adversarial comment generation to fool fake news detectors. They 
introduced an end-to-end malicious comments generation framework that can generate realistic and 
relevant adversarial comments to fool five of the most popular neural fake news detectors to predict fake 
news as real news with attack success rates of 94% and 90% for a white box and black box settings. 

 
1.2. Political Speech Generation 
 

Valentin Kassarnig (Kassarnig, 2016) presented a novel approach to training a system on speech 
transcripts to generate new speeches. They showed that n-grams and Justeson Katz POS tag filter (JK 
POS) (Kassarnig, 2016) are very effective as language and topic model for this task. They used 6-grams, 
a simple statistical language model which helps to determine very quickly all words which can occur after 
the previous five ones and how likely each of them is. Justeson and Katz (JK) POS tag filter for two and 
three-word terms used as the topic model. This paper presents a manual and an automated approach to 
evaluate the quality of generated speeches. In an experimental assessment generated speeches have shown 
very high quality in terms of grammatical correctness and sentence transitions.  

 
Joseph Bullock et al. (Bullock & Luengo-Oroz, 2019) presented a proof-of-concept experiment to 

understand the complexity and illustrate the possibilities, of automatic text generation in the international 
political sphere. English language transcripts of speeches given by political leaders at the United Nations 
General Assembly (UNGA) between 1970 and 2015 inclusive, used as training data with little restriction 
on the content. They trained the Average-Stochastic Gradient Descent Weight-Dropped Long Short-Term 
Memory network (AWD-LSTM) language model that can generate text in the style of these speeches 
covering a variety of topics. Text is generated by ‘seeding’ the models with the starting point of a sentence 
or paragraph, then letting it predict the following text.  

 
A sequence generation framework, called Sequence Generative Adversarial Nets (SeqGAN), to 

effectively train generative adversarial nets was proposed by Lantao Yu et al. (Yu, et al., 2017). For text 
generation scenarios, they applied the proposed SeqGAN to generate Chinese poems and Barack Obama 
political speeches. They used an oracle evaluation mechanism to clearly demonstrate the superiority of 
SeqGAN over strong baselines. A bilingual evaluation understudy (BLEU) score was used as an 
evaluation metric to measure the similarity degree between the generated texts and the human-created 
texts. For three real-world scenarios, i.e., poems, speech-language, and music generation, SeqGAN 
showed excellent performance on generating the creative sequences comparable to real human data. 

 
1.3. Recurrent Neural Networks 

 
Political speeches using Recurrent Neural Networks (RNNs) as language models were generated 

by Valentin Kassarnig (Kassarnig, 2016). The RNN takes as input a sequence of words and outputs the 
next word. Words were represented by one-hot-encoded feature vectors. The RNN had 50 hidden layers 
and used tanh (hyperbolic tangent function) as an activation function. For assessing the error, they used 
the cross-entropy loss function. Furthermore, they used Stochastic Gradient Descent (SGD) to minimize 
the loss and Backpropagation Through Time (BPTT) to calculate the gradients. After training the network 
for 100-time epochs (14 h) the results were still pretty poor. The majority of the generated sentences were 
grammatically incorrect.  
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Ilya Sutskever et al. (Sutskever, et al., 2011) demonstrated the power of Recurrent Neural 
Networks (RNNs) trained with the new Hessian-Free optimizer (HF) by applying them to the task of 
predicting the next character in a stream of text. They introduced a new RNN variant that uses 
multiplicative connections which allow the current input character to determine the transition matrix from 
one hidden state vector to the next. After training the multiplicative RNN with the HF optimizer for five 
days on 8 high-end Graphics Processing Units, they were capable to surpass the achievement of the best 
previous single method for character-level language modeling.  

 
Partha Pratim Barman et al. (Barman & Boruah, 2018) presented a Long Short Term Memory 

network (LSTM) model for instant messaging. Their model goes through the data set of the transcripted 
Assamese words and predicts the next word using LSTM with an accuracy of 88.20% for Assamese text 
and 72.10% for phonetically transcripted Assamese language.  

 
A novel training algorithm that results in improved text generation compared to standard models, 

such as bilingual evaluation understudy (BLEU) or Recall-Oriented Understudy for Gisting Evaluation 
(ROUGE) was proposed by Marc’Aurelio Ranzato et al. (Ranzato, et al., 2016). Their work was motivated 
by two major deficiencies in training the current generative models for text generation: exposure bias and 
a loss that does not operate at the sequence level. They proposed the MIXER algorithm which enables 
successful training of reinforcement learning models for text generation. Their results showed that MIXER 
outperforms three strong baselines for greedy generation, and it is very competitive with beam search.  

 
Alex Graves (Graves, 2014) showed how Long Short-term Memory recurrent neural networks can 

be used to generate both discrete and real-valued sequences with complex, long-range structures using 
next-step prediction. The method is demonstrated for text (where the data are discrete) and online 
handwriting (where the data are real-valued). It had also introduced a novel convolutional mechanism that 
allows a recurrent network to condition its predictions on an auxiliary annotation sequence and used this 
approach to synthesize diverse and realistic samples of online handwriting. Comparison with real and 
generated text show that these regions are a fairly accurate reflection of the constitution of the real data 
although the generated versions tend to be somewhat shorter and more jumbled together. 

 
Recurrent neural networks (RNN) with three commonly used recurrent units; a traditional tanh 

(hyperbolic tangent function) unit, a long short-term memory (LSTM) unit, and a recently proposed gated 
recurrent unit (GRU) were empirically evaluated by Junyoung Chung et al. (Chung, et al., 2014). Their 
evaluation focused on the task of sequence modeling on several datasets including polyphonic music data 
and raw speech signal data. The evaluation clearly illustrated the excellence of the gated units; both the 
LSTM unit and GRU, over the traditional tanh (hyperbolic tangent function) unit. However, they could 
not make a concrete conclusion on which of the two gating units was superior.  
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Title Author  Algorithms Conclusion Year 

Generating 
Sequences with 
Recurrent Neural 
Networks (Graves, 
2014) 

Alex Graves Long 
Short-term 
Memory recurrent 
neural networks  

The 
resulting system is 
able to generate 
highly realistic 
cursive handwriting 
in a wide variety of 
styles.  

2014 

Generating 
Text with Recurrent 
Neural Networks 
(Sutskever, et al., 
2011) 

Ilya 
Sutskever, 

James 
Martens, 

Geoffrey 
Hinton 

RNNs 
trained with the 
new Hessian-Free 
optimizer (HF) by 
applying them to 
character-level 
language modeling 
tasks. 

Able to 
surpass the 
performance of the 
best previous single 
method for 
character-level 
language modeling. 

2011 

Political 
Speech Generation 
(Kassarnig, 2016) 

Valentin 
Kassarnig  

n-grams 
and Justeson & 
Katz POS tag filter 
(J&K POS) 

Generated 
speeches have 
shown very high 
quality in terms of 
grammatical 
correctness and 
sentence transitions. 

2016 

A RNN based 
Approach for next 
word prediction in 
Assamese Phonetic 
Transcription 
(Barman & Boruah, 
2018) 

Partha 
Pratim Barmana 
Abhijit Boruaha 

Long 
Short-Term 
Memory network 

Predicts the 
next word using 
LSTM with an 
accuracy of 88.20% 
for Assamese text 
and 72.10% for 
phonetically 
transcripted 
Assamese language 

2018 

Empirical 
Evaluation of Gated 
Recurrent Neural 
Networks on 
Sequence Modeling. 

(Chung, et al., 
2014) 

Junyoung 
Chung 

Caglar 
Gulcehre 

KyungHyun 
Cho 

Yoshua 
Bengio 

Long short-
term memory 

Recurrent 
neural networks 

Gated 
recurrent unit 

The 
evaluation clearly 
illustrated the 
excellence of the 
gated units; both the 
LSTM unit and 
GRU, over the 
traditional tanh 
(hyperbolic tangent 
function) unit. 

2014 
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Unsupervised 
Opinion 
Summarization as 
Copycat-Review 
Generation. 
(Brazinskas, et al., 
2020) 

Arthur 
Brazinskas 

Mirella 
Lapata 

Ivan Titov 

A simple 
end-to-end 
approach to 
unsupervised 
abstractive 
summarization 

Human 
evaluation of the 
generated 
summaries shows 
that those created by 
the model better 
reflect the content of 
the input. 

2020 

MALCOM: 
Generating 
Malicious Comments 
to Attack Neural 
Fake News Detection 
Models. 

(Le, et al., 
2020) 

Thai Le 
Suhang 

Wang 
Dongwon 

Lee 

Malcom, an 
end-to-end 
malicious 
comments 
generation 
framework 

94% and 
93.5% of the time on 
average Malcom 
can successfully 
mislead five of the 
latest neural 
detection models to 
always output 
targeted real and 
fake news labels. 

2020 

Automated 
Speech Generation 
from UN General 
Assembly 
Statements: Mapping 
Risks in AI 
Generated Texts. 
(Bullock & Luengo-
Oroz, 2019) 

Joseph 
Bullock, 

Miguel 
Luengo-Oroz 

Average-
Stochastic 
Gradient Descent 
Weight-
Dropped Long 
Short-Term 
Memory network 
(AWD-LSTM) 
language model 

Presented a 
proof-of-concept 
experiment to 
illustrate the ease 
with which a highly-
accurate model that 
generates politically 
sensitive text can be 
created and 
highlighted the 
potential dangers of 
automated text 
generation. 

2019 

SeqGAN: 
Sequence Generative 
Adversarial Nets 
with Policy Gradient  

(Yu, et al., 
2017) 

Lantao Yu, 
Weinan 

Zhang, 
Jun Wang,  
Yong Yu 

SeqGAN 
used to generate 
Chinese poems and 
Barack Obama 
political speeches.  

For three 
real-world 
scenarios, i.e., 
poems, speech-
language, and music 
generation, 
SeqGAN showed 
excellent 
performance on 
generating the 
creative sequences 

2017 
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comparable to real 
human data. 

 
In summary, these papers pointed out the wide range of different methodologies that had been 

employed successfully in the domain of text generation. Novelty of this research is the generation of 
speeches based on the given keyword using RNN, LSTM and GRU. 

 
Training a computer to be able to think like a human being has been studied for decades. For any 

system to be able to learn, it must be programmed to learn to perform a task. Research work presented in 
this paper is focused on the generation of language models from the given keyword or headword by 
training different machine learning models. 

 
1) Recurrent Neural Network: Recurrent neural networks are designed with associated data 

processing elements that are approximately designed to function like the human brain. They 
are constructed from layers of network nodes that have the potential to process input and 
forward output to other nodes in the network. In this way, it can acquire knowledge of the 
sequences of a problem and then generate absolutely new plausible sequences for the problem 
domain. RNN has a memory that takes care of information about early calculated results. Like 
feed-forward neural networks, RNNs can operate on data from initial input to final output. 
Unlike feedforward neural networks, RNNs use feedback loops, such as backpropagation 
throughout the time, through the computational process to loop information back into the 
network. This link inputs and is what enables RNNs to process sequential and temporal data. 
The most popular issues with RNNS are gradient vanishing and exploding problems. The 
gradients refer to the errors built as to the neural network trains. If the gradients start to explode, 
the neural network will come to unstable and unable to learn from training data (Laskowski, 
2018). 
 

2) Long Short-Term Memory: One drawback to standard RNNs is the vanishing gradient problem, 
in which the performance of the neural network suffers because it can’t be trained properly and 
accurately. This occurs with deeply layered neural networks, which are applied to process 
complex data. Standard RNNs that use a gradient-based learning method demean as they grow 
bigger and more complex. Tuning the parameters productively at the earliest layers becomes 
too time-consuming, cumbersome and computationally expensive [15].  

 
 

One solution to the issue is called long short-term memory (LSTM) networks, which computer    
scientists Sepp Hochreiter and Jurgen Schmidhuber invented in 1997. RNNs made with LSTM units 
categorize data into short-term and long-term memory cells. Doing so allow RNNs to figure out which 
data is dominant and should be remembered and looped back into the network. It also allows RNNs to 
figure out what data can be abandoned (Laskowski, 2018).  

 
3) Gated Recurrent Unit: The Gated Recurrent Unit (GRU) is the younger sibling of the more 

ordinary Long Short-Term Memory (LSTM) network, and also a type of Recurrent Neural 
Network (RNN). Just like its sibling, GRUs are able to effectively keep long-term 
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dependencies in sequential data. In addition, they can direct the “short-term memory” issue 
plaguing vanilla RNNs. The composition of the GRU permits it to adaptively take captive 
dependencies from large sequences of data without discarding information from earlier parts 
of the sequence. This is accomplished through its gating units, similar to the ones in LSTMs, 
which find a/the solution to the vanishing/exploding gradient problem of traditional RNNs. 
These gates are in control of synchronizing the information to be kept or discarded at each time 
step (Loye, 2022).  

 
2. Methodology 

 
Copy- cat bot for Narendra Modi which generates plausible new text which looks like some other 

text. In this research different machine learning algorithms are trained on preprocessed English transcript 
of Narendra Modi speeches. The proposed method is CRISP-DM methodology. First, the model data are 
fed. Models on the collected text are trained next. Then the model which automatically generates new 
speeches in the vein of Modhi’s previous speeches is tested. 

 
 
2.1. CRISP-DM Methodology 
 

CRISP-DM stands for the cross-industry process for data mining that encourages best practices 
and allows projects to replicate. The CRISP-DM methodology provides an organized approach to planning 
a data mining project. This model represents the sequence of events. The tasks can be executed in a 
different order and it will often be required to backtrack to previous tasks and recurrent certain actions 
(Simmons, 2022). It is a model with six phases: business understanding, data understanding, data 
preparation, modeling, evaluation, deployment. 
 
2.2. Data Understanding 
 

The data source of this research is the English transcript of Narendra Modi which is available from 
a free resource. Dataset focus on English transcript of Modhi speeches, date place and title text. Data is 
complete and relevant. There are 467 speeches available in text format and manually labeled to access the 
ground truth. The reason behind taking the text format speeches are: -  

• Number of features that can be stored is high.  
• Amount of processing time to extract features is fast.  
• Amount of processing time for analysis is fast.  
• Required storage capacity is low.  
• Availability of existing sources for data extraction is normal. 
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Figure1. Flow diagram of speech generation. 
 
 

2.3. Data Preparation  
 

Pre-processing the text is an action that turn the input document to a different output format. The 
main aim is to simplify, normalize the text so the ambiguities from the point of view of the model are 
removed. These kinds of operations are usually simple, rule-based operations, which are removing 
features. There is another type of pre-processing operation, which is adding features, so the texts are 
getting richer. From the implementation point of view, it is to insert or remove steps. 
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Figure 2. A sample of pre-process text. 
 

2.4. Building Batches 
 
To process the number of sentences in parallel in the network, batches are formed. The input in 

any feed-forward network is a matrix of shape [x*y] where x is batch size and y is feature size. The 
vocabulary is divided into sentences and from these sentences, the batch is formed. The first word of each 
sentence of the batch is processed in parallel then the second word of sentence of each batch and so on 
(Taneja, 2017). 

 
2.5. Encodings 

 
It is important to prepare the incoming data in a way that the computer can understand it. Two 

main encoding methods are one-hot encoding and word embedding. In this research, one-hot encoding is 
used. 

 
2.6. Modelling 

 
After preprocessing of input text RNN, LSTM and GRU are trained to build a language model. 

The language model deep learns the input text format speeches to automatically generate new speeches in 
the vein of Modhi’s previous speeches on the given topic. First the parameters of network are set and the 
variables of TensorFlow are initialized for training. Then forward propagation is implemented for 
predicting word probabilities. After that loss is calculated. Training the algorithms with stochastic gradient 
descent, back-propagation through time and then to verify implementation gradient checking is done. 
Finally, text is generated. Set the success technical metrics and choose the best model(s) viable for solving 
the business question. 

 
2.7. Evaluation 

 
Loss is calculated to know how well the model behaves after each iteration or optimization. 

Minimizing the loss function with respect to parameters of the model using different optimization 
techniques like backpropagation is an objective in the learning model.  

Perplexity =	9 ((
)%&  1/PLm  (x(t+1)|x(t),…,x(1)))(1/T) 

Here T is the total words in the sentences. 
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Perplexity, an often-used metric for evaluating the effectiveness of generative models, is used as a 
measure of probability for a sentence to be produced by the model trained on a dataset. Lower the 
perplexity value, the better the model. It is normalized on the length of sentences. Generally, we want our 
probabilities to be high, which means the perplexity is low. When all the probabilities were 1, then the 
perplexity would be 1 and the model would perfectly, faultlessly predict the text. Conversely, for poor 
language models, the perplexity will be higher (Charan, 2020). 

 
2.8. Deployment 

 
Deploying the model, monitoring the result and maintaining the model quality is done. An 

investigation is done to determine if the research needs more iteration or only needs frequent maintenance. 
 

3. Results And Discussion 
 

3.1. Results 
 

RNN, LSTM and GRU were trained with TensorFlow to develop language model. The dataset 
with 467 speeches available in text format and manually labeled was divided into train, validation and test 
splits. 80% for training, 10% for validation and 10% for testing. Train set for training the model, validation 
set used to tune the hypo-parameters and test set to know how well the model is performed. Each algorithm 
is trained using same topic in order to compare each of them. 

 
 

3.1.1. Training, Validation Loss And Perplexity Curves 
 

 
Figure 3. Training, validation loss and perplexity curves of RNN. 
 



Abeysekera et al/ Current Scientia 25 No. 02 (2022) 62-80 
 

73 
 
 __________________________________________________  
*Correspondence: gamini@sjp.ac.lk 

 
© University of Sri Jayewardenepura 
 

 
Figure 4. Training, validation loss and perplexity curves of LSTM. 
 

 
Figure 5. Training, validation loss and perplexity curves of GRU. 
 
The plot between training, validation loss, training, validation perplexity of training the RNN, 

LSTM, GRU on dataset with 1000 epochs are shown in the above figures. It could be seen that training 
loss goes down, validation loss goes down and then it goes up. Training, validation perplexity curve is 
also monotonically decreasing and is algebraically equivalent to the inverse of the geometric mean per-
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word likelihood. A lower perplexity score specifies better generalization performance. The validation loss 
of LSTM is higher than the training loss, but it is not much high as in RNN. The highest variation between 
the validation loss and the training loss is found in GRU which means the model is not generalized to be 
able to work on the real-life datasets. This is because GRU uses less training parameters and it executes 
faster and trains faster than LSTM. LSTM is more accurate on datasets with longer sequences. 

 
3.1.2. Loss Curves 

 
Figure 6. RNN model Loss vs Number of Epochs. 
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Figure 7. LSTM model Loss vs Number of Epochs. 
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Figure 8. GRU model Loss vs Number of Epochs. 
Above figures give a summary on how each model loss varies with the number of epochs up to 

1000. 
 

3.1.3. Text Generated Outputs 
 

Table 1: Mean probability, entropy and perplexity of generated outputs. 
 
Algorithm Mean 

probability 
Entropy Perplexity 

RNN 0.5192999 1.456018 4.2888471663700685 
LSTM 0.57575107 1.2644945 3.5413022909956346 
GRU 0.5536837 1.4388195 4.1157163418303725 

 
Mean Probability is high in LSTM and GRU. Entropy, perplexity are lower in LSTM and GRU. 
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Text Generated Outputs for The Keyword Independence Day. 
 
 

 
 
Figure 9. Generated outputs of Recurrent Neural Network. 
 

 
 
Figure 10. Generated outputs of Long Short-Term Memory. 
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Fig. 11. Generated outputs of Gated Recurrent Unit. 

 
 
3.2. Discussion  
 

Figs 3 and 5 suggest that the generated text using LSTM and GRU models has great potential. The 
output resulted by RNN is less realistic and pragmatic. But its variants LSTM and GRU performed better. 
Though the grammatical correctness and the sentence transitions were absent in generated text of LSTM 
and GRU, but their output is somewhat logical as compared to RNN.  

Input dataset was trained with 1000 epochs, the plots between training and validation loss, training 
and validation perplexity curves are given in above. It could be seen that loss is smallest in case of GRU 
and largest in RNN. GRU uses less training parameters and it executes faster and trains faster than LSTM. 
LSTM is more accurate on dataset with longer sequences. LSTM is more generalized to be able to work 
on real life dataset.  

 
Google coLab was used in this research which is a product from Google Research. It allows to 

write arbitrary Python code through the browser and is well suited to machine learning. All most all 
modules needed for data science technologies are already installed in it. It is hosted entirely on the Google 
cloud and provides two hardware accelerators such as GPU (Graphical Processing Unit), TPU (Tensor 
Processing Unit) (Charan, 2020). 

 
One hot encoding was used for vector representation. It was used since the categorical feature is 

not ordinal and the number of categorical features is less so one hot encoding can be effectively applied 
(Purgato, 2021). It creates a new binary feature for each possible category and assigns a value of 1 to the 
feature of each sample that corresponds to its original category. Generated text does not show a very high 
quality in terms of grammatical correctness and sentence transitions since the dataset contains some text 
in Hindi alphabet.  
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Conclusions 
 
Legitimately call that the research objectives have been successfully met. In summary, the 

following research objectives were accomplished with success: 
 
A speech generation system that deep learns one text and then generates new text using machine 

learning approaches was developed. Different RNNs like simple RNN, LSTM and GRU were trained on 
English transcript of Narendra Modi which is available from free resources. Based on experimental results, 
LSTM and GRU performed better as it generated more realistic text and training loss is small, perplexity 
is small and mean probability is high compared to RNN.  

 
The validation loss of LSTM is higher than the training loss, but it is not much high as in RNN. 

The highest variation between the validation loss and training loss is found in GRU which means the 
model is not generalized to able to work on real life dataset. This is because GRU uses less training 
parameters and it executes faster and trains faster than LSTM. LSTM is more accurate on dataset with 
longer sequences.  

 
From the generated speeches LSTM and GRU models has great potential. The output resulted by 

RNN is less realistic and pragmatic. But its variants LSTM and GRU performed better. Though the 
grammatical correctness and the sentence transition were absent in generated text in LSTM and GRU, but 
their output is somewhat logical as compared to RNN.  
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