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Abstract: Irrational Systems (ISs) are transfer functions that include terms with irrational exponents.
Since such systems are ubiquitous and can be seen when solving partial differential equations,
fractional-order differential equations, or non-linear differential equations; their nature seems to be
strongly linked with a low-order description of distributed parameter systems. This makes ISs an
appealing option for model-reduction applications and controls. In this work, we review some of the
fundamental concepts behind a set of ISs that are of core importance in their stability analysis and
control design. Specifically, we introduce the notion of multivalued functions, branch points, time
response, and stability regions, as well as some practical applications where these systems can be
encountered. The theory is accompanied by some numerical examples or simulations.

Keywords: irrational systems; fractional-order control; model-reduction methods

1. Introduction

Irrational Systems (ISs) can be found when solving partial differential equations,
fractional-order differential equations, or non-linear differential equations [1]. ISs have
also been called implicit operators since they often come from solving a second-order
polynomial whose solution describes the total impedance of infinite linear lumped-element
networks (for further details, see [2]). In addition, fractional behavior or non-exponential
decay can also be associated with ISs due to their time-response, often related to special
functions such as Bessel or error functions [3]. Hence, ISs’ nature is strongly linked to a
low-order description of distributed parameter systems, making ISs an appealing option
for control and model-reduction applications.

In the literature, ISs have been applied as mathematical models in different scenarios.
For instance, ref. [4] uses fractances in a lumped model of the cardiovascular system,
leading to the description of different types of heart anomalous behaviors. In [3,5,6], ISs are
introduced to describe robotic formations in the form of tree-like networks and ladder-like
networks. Ref. [7] models pipeline-infinite networks that converge to an IS. Similarly,
ref. [8] shows an application of ISs to model electrical line transmissions.

When talking about control applications, in our previous work [9], we discuss the
stability and control for a type of IS driven by fractional-order controls. Then, in [10], we
formalize our analysis and apply the fractional-order controls of the type proportional-
integral (PI) and proportional-derivative (PD), including their fragility analysis.

As the conceptualisation and application of ISs to engineering are still under devel-
opment, in this work, we summarize the fundamental concepts, assumptions, and limits
of ISs. The summary aims to briefly explain IS stability analysis and control based on
our previous and undergoing investigations. The work is organized as follows: Section 2
defines the fundamental concepts and details the origins of ISs. It also discusses the intrinsic
connection between fractional calculus and ISs. Furthermore, it states the fundamental
hypothesis when applying ISs in system modeling. Section 3 describes the conditions of
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stability for ISs. Section 4 briefly explains how to design low-order controllers of the type
PD-µ (i.e., fractional-order proportional-derivative controls) for the kind of ISs that the
paper focuses on. Section 5 gives some examples of ISs’ control. Finally, Section 6 provides
concluding remarks and outlines future work.

2. Preliminaries

Before formally describing the set of ISs that this work will discuss, we need to
introduce the following concepts:

Definition 1 (Multivalued function [11,12]). A multivalued function is any complex function
F : C→ C satisfying

F[z(r, θ + 2π)] 6= F[z(r, θ)], (1)

where r and θ are the magnitude and argument of the complex variable z ∈ C.

Definition 2 (Branch points and branch cuts [13]). The Branch point (BP) or point of accu-
mulation is defined as the point with the smallest magnitude for which a function is multivalued.
Another definition would be: a branch point is a point such that the function is discontinuous when
going around an arbitrarily small circuit around this point.

It is now easier to understand the following definition of an IS:

Definition 3 (Irrational system). An irrational system is a multi-valued transfer function G(s)
with one or more terms raised to the power α ∈ Q.

In this work, we consider ISs described by

G(s) =
N(s) +

√
P(s)

D(s) +
√

Q(s)
, (2)

where N(s) = ∑m
k=0 bksk, D(s) = ∑n

k=0 aksk, ai, bi, an 6= 0 are arbitrary real numbers,
and n ≥ m. Moreover, P(s) and Q(s) are second-order polynomials with positive real
coefficients defined as P(s) = ∑N

k=0 βksN and Q(s) = ∑N
k=0 γksN , respectively.

Clearly, according to Definition 3, the open-loop system (2) and IS with α = 1
2 , and

branch points are located at the roots of P(s) and Q(s).

Origins and Connection with Fractional Calculus

Irrational transfer functions such as (2) are proven to appear when modeling infinite
networks of lumped elements (for a complete description, see [1,7]). The proof of such a
statement, omitted here for brevity, requires the following assumptions:

• The network should contain only linear lumped elements. For instance, viscous
dampers, springs, capacitors, or inductors.

• All initial conditions should be equal to zero.
• Elements in the network should have equal impedance value. For example, the tree-

like network shown in Figure 1 contains only two linear operators L1 and L2, which
have the same value throughout all the layers of the network.

• The network is one-dimensional and infinite.
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Figure 1. Tree-like network of N layers that can be described by an ISs transfer function. In the
network, it is necessary to have L∞ and L∈ to be linear operators. Note that all end-points xout are in
the same position. The movement is in one-dimension.

In spite of such necessary conditions, ISs can still be applied in many scenarios,
epecially when the following hypotheses are considered:

Hypothesis 1. The accuracy of 0-dimensional models of complex dynamical systems can increase
by adding “networks” as lumped elements in the model.

Hypothesis 2. ISs can be used as model reductions for large-scale dynamical systems.

The validity of Hypothesis 1 has been proved in scenarios such as the cardiovascular
system [4,14] or muscle/joint modeling [15].

On the other hand, Hypothesis 2 has been explored in robot formations and transmis-
sion lines (for further details, see [6,16–18]). Furthermore, in some cases the ISs description
leads to basic fractional-order transfer functions (for instance, see [18]).

For a better understanding of Hypotheses 1 and 2, consider the circuit-like description
of the cardiovascular system shown in Figure 2a and the graphical description of a forma-
tion of mobile robots in one dimension in Figure 2b. In the case of Figure 2a, we can assume
that one of the elements is itself an infinite network of linear elements with an impedance
equal to 1

Cα
Fsα (i.e., of fractional-order); then, its mathematical model is given by

0Dα
t Pa =

Qa

Cα
F
− Pa

RCα
F

. (3)

Furthermore, by using the Caputo definition of the fractional derivative operator 0Dα
t

of order 0 < α < 1, the time response of system (3) is given by

Pa(t) = Pa(0)tα−1Eα,α(− 1
RCα

F
tα) +

1
Cα

F

∫ t

0
Qa(t− τ)τα−1Eα,α(− 1

RCα
F

τα)dτ, (4)

where Eα,α(z) is the Mittag–Leffler function of the complex value z [19]. Equation (4)
describes the arterial pressure as a power law equation with a diffusive term. Even
though this kind of representation implies some physical challenges that have been recently
discussed through various works (for instance, see [20,21] and the references therein), it
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is clear that we can substitute any IS’s impedance instead of a simple lumped element to
expand the capabilities of 0-dimensional models, as discussed in Hypothesis 1.

R
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Q
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+

− −

+

P

Aorta

Right
Atrium

CF

α

α
CF

≈ . . .

R

C C

R
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. . .
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m1 m2 mlastf
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(b)
Figure 2. Examples of the application of Hypothesis 1 and 2 in realistic scenarios. (a) Model reduction
of the cardiovascular system by an electrical system using a fractance. (b) Ladder network description
of mobile robots described by mechanical elements and driven by PID controls [6].

Regarding Hypothesis 2, Figure 2b shows a PID-driven robotic formation in one-
dimension (for example, see [22]) where all robots are described as simple mechanical
elements. If we regard the network as infinite, the transfer function relating the leader’s
position and the last robot in the formation would be an IS [6]. Is this representation a good
approximation of the actual transfer function when the number of robots in the network is
finite? The answer is still not conclusive and requires further investigation (a preliminary
analysis is given in [3]).

3. Stability Analysis

One of the great advantages of ISs mathematical models is that we can easily study
their stability if the following Theorem is considered:

Theorem 1 ([8]). A given multivalued transfer function is stable if and only if it has no pole in C+

and no branch points in C−. Here, C+ and C− stand for the closed right half plane (RHP) and the
open RHP of the first Riemann sheet in the complex plane, respectively.

Briefly, Theorem 1 states that the BPs should not be located in the right-hand side of
the complex plane to achieve the IS’s stability. To grasp this conclusion, let us consider the
following simple examples:

Example 1. Consider the multivalued transfer function

G(s) =
1√

s + k
, (5)

where k ∈ R. The impulse response of (5) is given by (proof given in Appendix A)



Comput. Sci. Math. Forum 2022, 4, 5 5 of 11

y(t) = L −1
ï

1√
s + k

ò
=


e−kt
√

πt
k > 0

ekt
√

πt
k < 0

1√
πt

k = 0

. (6)

In Example 1, the IS (5) is stable iff k > 0. Note that as mentioned earlier, the BP is
located at the root of the radicand s + k.

Example 2. Consider the multivalued transfer function

G(s) =
1√

s2 + k
, (7)

where k ∈ R. The impulse response of (7) is given by (see Appendix B)

y(t) = L −1
ï

1√
s2 + k

ò
=


J0(
√

kt) k > 0
J0(i
√

kt) k < 0
1 k = 0

. (8)

Equation (7) is an example where the open-loop IS is stable as the BPs are located in
the imaginary-axis and not in the right-hand side of the complex plane.

4. Control Design
PDµ Control

Once the stability conditions for ISs are established, it is possible to design stabilis-
ing low-order controllers by following the D-composition method [23]. The following
summarizes the procedure, but a complete guide can be found at references [10,24,25].

First, consider a low-order controller, for instance, the fractional-order PD control
whose transfer function is well-known to be [9]

C(s) = kp + kdsµ. (9)

Then, compute the characteristic polynomial of (2). In this case defined as

∆(s) := D(s) +
√

Q(s) +
Ä

N(s) +
√

P(s)
ä(

kp + kdsµ
)
. (10)

Now, substitute the stability boundary of the complex plane s = iω in the characteristic
polynomial and solve for the control gains.

Remark 1. Note that the substitution of s = iω requires one to consider the cases ω = 0, ω → ∞
and ω 6= 0 separately [25]. In this manner, we create various sets of stability boundaries in the
controller’s parameter plane that permit us to enclose a stability region (See Figure 3).

kp

kd

mapping

controller parameters’ planecomplex plane

Im

Re

s = iω

s = 0

stability region

s = iω

s = 0

stable region

Figure 3. Example of the D-composition method. The method maps the complex plane stability
region to the controller parameters’ plane. In this case, the plane has not stability boundary at s→ ∞.
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5. Applications
5.1. Control of IS

We now apply the D-composition method to some specific ISs. Note that, in all
examples, the time response of the ISs closed-loop is obtained numerically using the
inverse numerical Laplace transform proposed in [26]. Furthermore, fixed parameters have
been selected randomly as the example’s purpose is to prove the results’ validity.

5.2. Bessel

Consider the Laplace transform of the Bessel function of order zero described as

1√
s2 + 1

. (11)

Therefore, the characteristic function is given by

∆(s) =
√

s2 + 1 + kp + kdsµ. (12)

Setting µ = 0.3 and solving (12) for kp and kd, we obtain two stability boundaries
shown in red and blue in Figure 4a. The red curve corresponds to the case where ω = 0
before solving ∆(iω) = 0, while the blue corresponds to the case where ω 6= 0. Figure 4b
shows the closed-loop response of a set of controller gains inside and outside of what is
found to be the IS’s stability region.
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(b)
Figure 4. Stability analysis of system (11). (a) Stability region (gray) of the closed-loop system with
µ = 0.3. (b) Time response for control gains inside different regions on the parameter’s plane.

5.3. First Order IS

Another example of an IS that can be controlled by a fractional-order PD control is
√

3s + 1
s +
√

2s + 1
. (13)

In this case, the characteristic equation is

∆(s) = s +
√

2s + 1 +
√

3s + 1. (14)

Likewise, in the previous application we set µ = 0.4 and solved (14) for kp and kd to
obtain the stability boundaries shown in Figure 5a. Again, the red curve corresponds to the
case where ω = 0 before solving ∆(iω) = 0, while the blue corresponds to the case where
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ω 6= 0. Figure 5b shows the closed-loop response of a set of controller gains inside and
outside of what is found to be the IS’s stability region.
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Figure 5. Stability analysis of system (13). (a) Stability region (gray) of the closed-loop system with
µ = 0.4. (b) Time response for control gains inside different regions on the parameter’s plane.

6. Conclusions

In this work, we have briefly described the concepts, hypotheses, and assumptions
behind the use of ISs. In addition, in our applications, we present the stability analysis and
control of ISs. As can be seen by the reader, future work may take various paths, including
the design of different low-order controls for ISs, the application of ISs to model other
complex phenomena, or the creation of irrational controls that could stabilize ISs whose
BPs are in the right-hand side of the complex plane.
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Appendix A. Example 1

To compute the time-response of the multivalued transfer function in (5), we consider
the following definition of the inverse Laplace transform:

y(t) = L −1
ï

1√
s + k

ò
=

1
2iπ

∫ c+∞

c−∞
G(s)estds. (A1)

To solve (A1), let the contour C be defined as the sum of Ci, i ∈ [1, 6], as shown in
Figure A1. Note that the election of the integration path should be one which avoids branch
points, namely, point −k in this scenario.

Im

Re

ρ

−k

C1

C2 C3

C4

C5

Br

R→ ∞

Figure A1. Integration path of Example 1.

According to the residue theorem∫
C

G(s)estds = 0. (A2)

Then, we can express (A1) as

∫
Br

G(s)estds = −
5

∑
i=1

∫
Ci

G(s)estds. (A3)

Observe that, for R→ ∞ ∫
C1

=
∫

C5

= 0, (A4)

and, on the other hand, for ρ→ 0 we have∫
C3

= 0. (A5)

Thus, it suffices to compute the integration along C2 and C4 to obtain y(t). In order to
perform such an operation, consider the parameterisation s + k = −r, which in polar form
can be rewritten as re±iπ , where the positive sign corresponds to C2 and the negative sign
corresponds to C4. This permits us describe the path r ∈ (k + ρ, ∞), with δ, ρ→ 0, i.e.,

∫
C2+C4

=
∫ ρ

∞

e−(r+k)teiπ
√

reiπ/2
dr +

∫ ∞

ρ

e−(r+k)te−iπ
√

re−iπ/2
dr, (A6)
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since ρ→ 0

∫
C2+C4

= (eiπ + e−iπ)
∫ ∞

0

e−(r+k)t
√

r
dr

= −2i sin
(
π/2

)
e−kt

∫ ∞

0

e−rt
√

r
dr

= −2i sin
(
π/2

)
e−ktt−1/2Γ(1/2).

Now, as we know that
Γ(x)Γ(1− x) =

π

sin(πx)
,

with x = 1/2, from (A1) we have,

L −1
ï

1√
s + k

ò
=

e−kt
√

tπ
. (A7)

This finishes the proof of statement (6).

Appendix B. Example 2

Following the ideas used to find the inverse Laplace Transform of 1√
s+k

shown in
Appendix A, we now perform the time-response of (7) (given in Equation (8)) by computing

y(t) = L −1
ï

1√
s2 + k

ò
=

1
2iπ

∫ c+∞

c−∞
G(s)estds. (A8)

Observe that for k > 0, we have a complex conjugate branch point, while for k < 0
we have two real points. Under these observations, we consider two different integration
paths, shown in Figure A2, where Figure A2a and Figure A2b correspond to the case of k
negative and positive, respectively.

Im

Re

ρ ρ

−
√

k
√

k

C1

C2
C3

C4

(a)

Im

Re

ρ
−j
√

k

j
√

k

C3

C4

C2

Br

C1

C6

C5

ρ

C7

C8C9

C10

(b)
Figure A2. Integration path of Example 2. (a) k < 0. (b) k > 0.

We first consider the case k < 0; thus, we shall consider the path shown in Figure A2a
and create a path such that ∫

C
G(s)estds = 0.

Under the assumption that ρ→ 0,∫
C1+C2

= 0. (A9)
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Now, C3 and C4 s vary from
√

k− ρ to −
√

k + ρ, and then we have∫
C2+C3

est
√

s2 − k
= −i

∫ √k−ρ

−
√

k+ρ

est
√

k− s2
+ i

∫ −√k+ρ

√
k−ρ

est
√

k− s2
= −2i

∫ √k−ρ

−
√

k+ρ

est
√

k− s2
. (A10)

Since ρ→ 0,

y(t) =
1

2πi

∫
Br

G(s)estds =
1
π

∫ √k

−
√

k

est
√

k− s2
. (A11)

Then, making s = a cos(u), the integral becomes

1
π

∫ π

0
ekt cos(u)du = I0(

√
kt). (A12)

We can express the modified first Bessel function in terms of the first Bessel function if
−π < arg(

√
kt) ≤ π

2 :
Jα(i
√

kt) = eα π
2 Iα(
√

kt)

with α = 0:
J0(i
√

kt) = I0(
√

kt).

Now, we consider the case where k > 0. The inverse Laplace transform of G(s) can be
written in two different forms (see for instance [27]):

y(t) =
2
π

∫ ∞
√

k
sin(st)

1√
s2 − k

ds, (A13)

y(t) =
2
π

∫ √k

0
cos(st)

1√
k− s2

ds. (A14)

The first Bessel function is given as

J0(x) =
1
π

∫ π

0
cos(−x sin(τ))dτ.

Thus, by taking s =
√

k sin(θ) in (A14), with θ ∈ (0, π
2 ) we have

y(t) =
2
π

∫ π
2

0
cos
Ä√

kt sin(θ)
ä

dθ =
2
π

π

2
J0(
√

kt). (A15)
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