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Abstract
Gabion weirs are environment-friendly structures widely used for irrigation and drainage network purposes. These structures' 
hydraulic performance is fundamentally different from solid weirs' due to their porosity and the existence of a through-flow 
discharge. This paper investigates the reliability and suitability of a number of Machine learning models for estimation of 
hydraulic performance of gabion weirs.  Generally, three different Boosting ensemble models, including Gradient Boosting, 
XGBoost, and CatBoost, are compared to the well-known Random Forest and a Stacked Regression model, with respect 
to their accuracy in prediction of the discharge coefficient and through-flow discharge ratio of gabion weirs in free flow 
conditions. The Bayesian optimization approach is used to fine-tune model hyper-parameters automatically. Recursive fea-
ture elimination analysis is also performed to find optimum combination of features for each model. Results indicate that 
the CatBoost model has outperformed other models in terms of estimating the through flow discharge ratio (Qin/Qt) with 
R2 = 0.982, while both XGBoost and CatBoost models have shown close performance in terms of estimating the discharge 
coefficient (Cd) with R2 of CatBoost equal to 0.994 and R2 of XGBoost equal to 0.992. Weakest results were also produced 
by Decision tree regressor with R2 = 0.821 and 0.865 for estimation of Cd and Qin/Qt values.
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Introduction

Gabion weirs are porous structures made of boulders with 
minimal construction cost and negative environmental 
effects (Yue et al. 2021, Zhang et al. 2019a,b). Generally, 
these structures benefit from higher stability, durability, and 
proper hydraulic performance (Zhang et al. 2019a,b, Fang 
et al. 2021, Liu et al. 2022). Besides, physical particles such 

as sediments and chemical substances can pass through the 
porous body of these structures, which reduces sedimenta-
tion and increases flow aeration by increasing the down-
stream flow turbulence (Mohamed 2010; Fathi-moghaddam 
et al. 2018; Rahmanshahi and Bejestan 2020). The hydraulic 
performance of porous and solid broad-crested weirs has 
been studied experimentally (Azimi et al. 2013; Wüthrich 
and Chanson 2014; Zhang and Chanson 2016; Pirzad et al. 
2021; Salmasi et al. 2021) and numerically (Jiang et al. 
2018; Safarzadeh and Mohajeri 2018; Nourani et al. 2021, 
Yin et al. 2022a, b).

Even though solid and gabion weirs have similar geometri-
cal shapes, the presence of the through flow highly affects 
their hydraulic performance (Shen et al. 2017, Chen et al. 
2022). The relative diameter of filling particles is a dominant 
factor controlling their hydraulic performance by affecting 
the through flow discharge (Fathi-moghaddam et al. 2018). 
As a result, some researchers have concentrated on inves-
tigating how through and overflow interact under various 
submerged and free flow situations, and even some (Fathi-
moghaddam et al. 2018; Shariq et al. 2020) have offered 
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formulae to calculate through flow discharge. The effect of 
the broad-crested weir's geometrical shape is also extensively 
studied. Sargison and Percy (2009) state that Solid weirs' dis-
charge coefficient decreases as the upstream slope increases. 
Madadi et al. (2014) experimentally investigated the effect of 
upstream slope on the discharge coefficient of broad crested 
weirs. They concluded that by increasing the slope of the 
upstream ramp, the separation zone dimensions increase, 
which reduces the discharge coefficient. According to (Fathi-
moghaddam et al. 2018) the material size significantly affects 
the weir behaviour. For larger filling particles, decreasing the 
slope of side ramps increases the upstream water head and 
subsequently lowers the discharge coefficient of gabion weirs, 
whereas, for smaller filling particles, a downstream slope 
enhances weir performance. The use of soft computing tech-
niques in the field of hydraulic engineering has expanded to 
include a number of issues in recent years including estima-
tion of sediment scour in streams (Pandey et al. 2020, 2022; 
Tao et al. 2021), hydraulic performance of solid weirs such as 
piano-key weirs (Olyaie et al. 2019; Zounemat-Kermani and 
Mahdavi-Meymand 2019), side-weirs (Dursun et al. 2012), 
labyrinth weirs (Norouzi et al. 2019; Wang et al. 2022), 
cylindrical weirs (Ismael et al. 2021), solid broad crested 
weirs (Hameed et al. 2021) and the hydraulic performance 
and energy dissipation of gabion weirs (Salmasi and Sattari 
2017). However, two of the most utilized methods seem to 
be support vector machines (Azimi et al. 2019) and Feedfor-
ward neural networks (Khatibi et al. 2014). Utilizing an auto-
mated evolutionary hyperparameter optimization approach, 
Tao et al. (Tao et al. 2021) investigates the accuracy of pro-
posed XGBoost-Ga method against some machine learning 
methods such as decision trees, support vector machines and 
linear regression and concludes that the proposed XGBoost-
Ga method is the superior. Azimi et al. (Azimi et al. 2019) 
studied the ability of six different support vector machines 
to predict the discharge coefficient of side weirs. They sug-
gested that the superior model is a function of the Froude 
number. Norouzi et al. (Norouzi et al. 2019) compared the 
performance of multilayer perceptron (MLP), support vector 
machines (SVM), and radial basis networks for estimation of 
the discharge coefficient of labyrinth weirs. They concluded 
that the MLP model outperforms other models.

Considering that the standalone models usually face the 
problem of overfitting, ensemble learning models have become 
widely used in different applications to reduce overfitting and 
increase the accuracy by combining diverse base learners (Yin 
et al. 2022a, b, Dai et al. 2022). Osman et al. (2021) compared 
the performance of artificial neural networks, SVMs and the 
XGBoost algorithm in terms of their accuracy for estimating 
the groundwater level in Malaysia. Their results indicated that 
for every considered combination of input models, the XGBoost 
outperforms other models. Jiajai et al. (Wu et al. 2022) evalu-
ated the performance of ANNs and XGBoost in terms of their 

accuracy in identifying leakages in water distribution networks. 
They concluded that the XGBoost outperforms the ANN by 
5.54% in the estimation of leakage zone and by 2.7% in pre-
dicting the leakage level. Pham et al. (2021) evaluated the 
performance of different Boosting methods including Adap-
tive Boosting (AdaBost), Boosted Generalized Linear Models 
(BGLM), Extreme Gradient Boosting (XGB) ensemble models, 
and the Deep Boosting (DB) model in terms of their accuracy 
in estimating the flood hazard susceptibility of areas and sug-
gested that DB model outperforms other model by 2%. More 
recent CatBoost ensemble model is also utilized in some stud-
ies including (Huang et al. 2019; Zhang et al. 2020; Guo et al. 
2022) however it seems to be still unknown to the majority of 
hydraulic community. Zhang et al. (2020) evaluated the accu-
racy of CatBoost, Random forest, and the generalized regression 
neural network (GRNN) for estimation of daily evapotranspira-
tion in arid regions and reported that CatBoost outperformed 
other models. On the other hand, Guo et al. (2022) compared the 
accuracy of CatBoost, XGBoost, and Neural networks with the 
genetic algorithm-based automated machine learning algorithm 
(Auto-ML) and reports that the Auto-ML model outperforms 
other model in terms of the accuracy in estimation of water log-
ging depth and location in urban areas.

So far, different machine learning models have been utilized 
as surrogate models for estimation of the discharge coefficient 
of different solid weirs, yet only a few studies have focused on 
gabion weirs and no studies has considered the through flow of 
porous weirs due to the practical problems with their calcula-
tion and measurement resulted in the lack of a reliable dataset 
for such measurements. Besides, the application of ensemble 
models and specifically more recent and advanced models 
such as XGBoost and CatBoost models are also limited to few 
studies. Hence, this paper utilizes some base models including 
SVM, and Decision trees, along with some ensemble mod-
els such as Random Forest as a bagging ensemble, a Stack-
ing ensemble model, and three different Boosting ensembles 
including Gradient Boosting Decision trees (GBDT), Extreme 
gradient Boosting model (XGB), and the more recent CatBoost 
model. Recursive feature elimination analysis is performed to 
find the optimal combination of features for each model. All 
models are then fine-tuned using the Bayesian hyper-parameter 
optimization method in order to improve their performance in 
estimation of the discharge coefficient and the through flow 
discharge of broad-crested gabion weirs.

Materials and method

Experimental data

In this study, experimental data of broad crested gabion weirs 
(Moradi and Fathi-Moghaddam 2014) and Salmasi et al. 
(2017) in free flow conditions are used to provide sufficient 
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data to train and test the models. The specifications of the 
experimental models are presented in Table 1 and Fig. 1. 
Experimental conditions include square weirs with 15 × 15 
dimensions with different combinations of upstream and 
downstream slopes filled with particles with median diameters 
of 5–31 mm and a porosity of 39–51%. The discharge coef-
ficients for the abovementioned models are presented in Fig. 2.

To calculate the discharge ratio through the porous body of 
gabion weirs, the multivariate regression equation suggested 
by Fathi-moghaddam et al. (2018) is utilized as follows:

(1)Qin∕Qtotal
= 1.26 + 0.79Log(Re) − 4.82

(
H

Lcrest

)0.149

+ 0.417

(
dm

p

)

− 0.043 tan (�) + 0.013tan (�)

Calculated through flow ratio (Qin/Qt) of the abovemen-
tioned data using Eq. (1) is presented in Fig. 3.

Dimensional analysis

In free-flow conditions, discharge and discharge coefficient 
could be related as in Eq. (2). Hence, the effects of other 
hydraulic factors (i.e., weir geometry and fluid characteristics) 
must be taken into account in the calculation of Cd.

where g is the gravitational acceleration, H is the total 
upstream head ( H = h + v2∕2g ), h is the head over the weir, 
and v is the approach velocity.

For a PE weir, the discharge coefficient, Cd , can be 
expressed by the following functional relationship:

in which f is a functional symbol, P is the weir height, ρ is 
water density, μ is water viscosity, and � is surface tension.

(2)Q =
2

3
CdB

√
2gH1.5

(3)f (Cd, h, Lc,P, Q, g, �, �, �, d50, �, �, n) = 0

Table 1   Geometrical and hydraulic characteristics of gabion weirs from experimental studies

Data source Lc(m) P(m) Q(l/s) n (%) dm (mm) upstream slope (α) Downstream slope (β)

Salmasi et al. (2017) 0.15 0.15 – 39,41,45,50 5,10,15,30 90 90
Moradi and Fathi-

moghaddam (2014)
0.15 0.15 3–30 43,44,46,47,50,51 7,11,14,17,22,31 30,45,60,90 30,45,60,90

Fig. 1   Schematic view of the gabion weir parameters

Fig. 2   Experimental Cd extracted from (Moradi and Fathi-
Moghaddam 2014) and Salmasi et al. (2017)

Fig. 3   Calculated through-flow discharge ratio
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Using the Π theorem of dimensional analysis (Barenblatt 
1987) for the parameters in Eq. (2), the discharge coefficient 
for the free-flow condition can be expressed by the following 
dimensionless groups;

where Re is the Reynolds number; and W represents the 
Weber number.

Dataset preparation

In this paper, values of H lower than 4 cm over the weir are 
neglected to eliminate the effect of surface tension and hence the 
weber number. Values of H/Lc are also neglected as they are equiv-
alent to H/P values. Consequently, the training dataset includes 6 
features as input, including Re, H/P, dm/P, n, tan(a), and tan(b), 
with all values Standardized using mean and standard deviation 
of values. Discharge coefficient data extracted from (Moradi and 
Fathi-Moghaddam 2014) includes 324 values for trapezoidal weirs, 
and those from Salmasi et al. (2017) include 44 data for rectangular 
weirs without upstream and downstream slopes. Hence, the whole 
dataset used to train and evaluate models includes 368 data points, 
of which 70% are used as training and 30% are used to evaluate 
the model performance. Correlation coefficients between different 
input and output features are presented in Fig. 4. It is clear that H/P 
values are highly correlated with the Cd and Qin values. In addition, 
dm/P, porosity (n), and upstream slope show a moderate correlation 
with the Qin values.

Single and ensemble learning algorithms

Support vector machines (SVM)

SVMs (Cortes and Vapnik 1995) are a type of supervised 
machine learning algorithms with both applications in 
classification and regression which guarantees obtaining 
a global optimum solution. The core idea behind SVM is 

(4)Cd = f
(
H

P
,
H

Lc
,
dm

P
, Re,W, n, tan (a), tan (b)

)

that it assigns training samples to spatial coordinates in 
order to maximize the distance between the two catego-
ries. Then, depending on which side of the gap they fall, 
new samples are projected into that same area and pre-
dicted to belong to a category. Real-world issues are often 
more complicated, necessitating more accurate hypotheses 
than those offered by existing linear learning machines, 
which also have certain computing drawbacks. Thus, using 
different kernels (Aizerman and Control 1964) available 
such as Radial Basis Function (Azimi et al. 2019) and 
polynomial kernels would be useful in examining cor-
relations among real-world situations in order to create 
a specific model. Support vector regression (SVR) is a 
supervised-learning technique that trains using a loss func-
tion that penalizes both high and low misestimates equally. 
Vapnik's -insensitive approach ignores absolute values of 
errors above and below the estimate that are fewer than a 
predefined threshold by constructing a flexible tube with 
a small radius symmetrically around the estimated func-
tion. In this fashion, although points outside the tube are 
penalized, points within the tube that are above or below 
the function are not. One of the main advantages of SVR 
is that its computational cost is independent of the size 
of the input space. Additionally, it has a significant gen-
eralization ability and decent prediction accuracy (Awad 
and Khanna 2015). This research evaluates RBF and poly-
nomial Kernels in terms of their accuracy for predicting 
discharge coefficient and through flow discharge.

Decision Trees (DT)

A class of supervised learning techniques known as decision 
trees (Breiman et al. 1983) are a good example of a universal 
function approximator, despite the difficulty of achieving 
this universality in their fundamental structure. Classifica-
tion and regression are both possible applications for them. 
A Decision Tree is a collection of branches that are linked 
by decision nodes and finish in leaf nodes (DT). The deci-
sion node of the tree includes several alternative leaf nodes 
that reflect the model output, with each branch represent-
ing an algorithmic option. As a label or a continuous value, 
this may be used in classification and regression. Decision 
nodes make up a large portion of the DT's structure. Using 
the smallest possible tree to minimize overfitting is a funda-
mental aim for machine learning models when it comes to 
correctly representing the relationships between input and 
output. An ensemble DT model (EDT) is often employed, 
in which a number of trees are utilized to generate a final 
model at once (i.e., bootstrap aggregation or bagging) or 
sequentially (i.e., boost) (Jain et al. 2020).

Fig. 4   Correlation Matrix for Different features in the Dataset
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Random forest regression (RFR)

An RFR method is a regression technique based on machine 
learning. Using bagging and random subspace as a foun-
dation, RFR is a stable foundation upon which to develop. 
Hence, a number of learner trees are generated, which are 
then merged to get an overall prediction. To train the learn-
ing trees, original training data are used to generate boot-
strap samples. Each bootstrap sample (Db) is created by ran-
domly picking n instances from the original training data 
(D), which comprises N instances. It is possible to replace 
the bootstrap samples with fresh instances. Db is about two-
thirds the size of D and contains no duplicate instances. 
Using the vector of input data, x, k distinct regression trees 
are constructed for each bootstrap sample. Low bias and 
high variance are characteristics of regression trees. Random 
forest predictions are generated by averaging the predictions 
of K regression trees, hk (x) (N. et al. 2021) as follows:

Stacked regression

Stacking regressions first presented by (Breiman 1996) is a 
technique for combining many predictors linearly to enhance 
prediction accuracy. The algorithm mainly consists of 2 
steps, including (1) specifying a list of base learners and 
training each on the dataset and (2) using the predictions 
of the base learners as input to train the value of the meta-
learner and predict new values with the meta-learner. This 
study's defined structure of the stacked regression includes 
support vector machines with polynomial and RBF kernel 
along with Ridge regression as level-1 models and the Deci-
sion Tree Regressor as the Meta model, as depicted in Fig. 5.

(5)RFRprediction =
1

k

k∑

k=1

hk(x)

Gradient boosting

Gradient Boosted Decision Trees (GBDT) (Friedman 2001) 
a supervised learning technique first introduced by Jerome 
H. Friedman starts with a set of {xi,yi} values where xi repre-
sent the input values and yi are corresponding target values. 
The Gradient Boosting technique then involves iteratively 
creating a set of functions of F0,F1,……Ft,…Fm which are 
then used to form the corresponding loss function L(yi,Ft) 
that estimates yi. to improve the estimations, another func-
tion of Ft+1 = Ft + ht+1(x) is created so that ht+1 is as follows:

where H Where H is the collection of candidate Decision 
Trees being considered for inclusion in the ensemble. Hence, 
the expected loss function could be defined as (Hancock and 
Khoshgoftaar 2020):

XGBoost

First introduced by Chen et al. (Chen and Guestrin 2016), 
extreme gradient boosting (XGB) is a variant of gradient 
boosting decision trees in which each base learner learns 
from the previous one to reduce its error. In general, the 
XGBoost technique builds a more robust aggregated model 
by combining many base learners (decision trees). Trees' 
weights are used in an XGBoost algorithm to approximate 
the final outcome. For each dataset with m characteristics, 
Eq. (8) is being used to forecast the outcome:

(6)ht+1 = argminh∈HEL
(
y,Ft

)

(7)EL
(
y,Ft+1

)
= EL

(
y,Ft + ht+1

)

(8)

⌢
yi =

K∑

k=1

fk
(
xi
)
, fk ∈

{
f (x) = 𝜔q(x)

}(
q ∶ Rm

→ T ,𝜔 ∈ RT
)

Fig. 5   Determined structure for 
the Stacked Regression model
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Incorrectly defining the parameters of decision trees, such 
as their depth or number of iterations, may lead to over-
fitting. The XGBoost algorithm's excellent regularisation 
capabilities are what make it adequate. XGBoost penal-
izes models for overfitting by including and regularising 
approaches. XGBoost model optimization needs the tweak-
ing of many hyperparameters. As the XGBoost method is a 
sort of ensemble and gradient boosting technique, its hyper-
parameters may be divided into four categories: ensemble 
hyper-parameters, tree hyper-parameters, sub-sampling 
hyper-parameters, and regularisation hyper-parameters (Tao 
et al. 2021).

CatBoost

Propsed by Prokhorenkova et al. (2018) is an improved ver-
sion of the GBDTs. First, CatBoost handles high-cardinality 
categorical data better than Gradient Boosting. CatBoost 
employs one-hot encoding for low-cardinality categories. 
Besides, CatBoost benefits from the Ordered Boosting 
method. By assuming D as the set of all available data for 
training the GBDT model, and having in mind that the deci-
sion tree ht+1 is the tree that minimizes the loss function 
(L), Ordered Boosting could be expressed as using the same 
examples used for computation of Ordered Target Statistics 
for computation of ht+1. Oblivious Decision Trees (ODTs) 
are a crucial component in CatBoost's method for construct-
ing Decision Trees. CatBoost builds a collection of ODTs. 
ODTs are complete binary trees, hence if there are n levels, 
there will be 2n nodes. In addition, all non-leaf nodes in 
the ODT will use the same criterion for splitting. CatBoost 
extends GBDT's abilities so that it could account for fea-
ture interactions so that believe CatBoost will pick the most 
effective feature combinations throughout training (Prok-
horenkova et al. 2018; Hancock and Khoshgoftaar 2020). 
CatBoost is highly sensitive to the definition of hyperpa-
rameters so a proper tuning of hyper-parameters would be 
essential.

Hyperparameter optimization

Optimization of hyper-parameters is an important task when 
it comes to automated machine learning (AutoML). AutoML 
automates complex operations, including model parameter 
optimization, without the need for human knowledge and so 
plays a crucial role in improving the performance of machine 
learning models (Tao et al. 2021). Bayesian optimization is 
a powerful method for figuring out the extreme values of 
computationally challenging functions. (Brochu et al. 2016). 
Additionally, it may be used to compute difficult-to-calculate, 
difficult-to-analyze derivatives, or nonconvex functions. By 
integrating the prior distribution of the function f(x) with the 
sample data, Bayesian optimization makes the assumption 

that it can utilize prior knowledge to determine where the 
function f(x)' is minimized in terms of a given criterion. The 
function u, also known as the acquisition function and serv-
ing as the criteria, is used to choose the next sample point 
in order to maximize predicted utility. It is necessary to take 
into account both seeking regions with high values (exploita-
tion) and areas with high uncertainty (exploration) in order 
to decrease the number of samplings, which also increases 
accuracy (Wu et al. 2019). The prior distribution of the func-
tion f, which is mainly dependent on Bayesian optimization, 
is not always determined by objective criteria but may be 
partially or entirely determined by subjective judgements. 
Most people believe that the prior distribution used in Bayes-
ian optimization matches the Gaussian process rather well. 
Bayesian optimization employs the Gaussian process to fit 
data and update the posterior distribution because it is flex-
ible and easy to use (Wu et al. 2019).

In this study, Bayesian optimization is utilized to auto-
matically tune the hyper-parameters of all models to estimate 
the discharge coefficient and through flow discharge. Best 
models are then reconstructed and used to calculate accuracy 
metrics. Figure 6 visualizes the relationship between hyper-
parameters and the obtained accuracy for the XGBoost 
regression model during the performed optimization pro-
cess. The hyper-parameters obtained from the optimization 
process for each model are presented in Tables 2 and 3.

Model development and accuracy assessment

All models are developed and implemented using Scikit-
learn (DT, AdaB,RF) (Pedregosa et  al. 2011), Mlxtend 
(Stacked reg.) (Raschka 2018), XGBoost library (Chen 
2016–2022), and the CatBoost (LLC 2017–2022) library. 
Three accuracy measures are used to evaluate the accuracy 
of the utilized ensemble models, including Mean absolute 
error, Mean squared error and the correlation coefficient 
which are frequently used in similar research for regression 
tasks, i.e. see (Azimi et al. 2019) (Hameed et al. 2021).

Mean Absolute error (MAE):

Mean-squared error (MSE):

and the correlation coefficient (R2):

(9)MAE =

∑n

i=1
��yi − ŷi

��
n

(10)MSE =

∑n

i=1

�
yi − ŷi

�2

n

(11)R2 = 1 −

∑n

i=1

�
yi − ŷi

�2

∑n

i=1

�
yi − yi

�2
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The target value from experimental data ŷi is the model 
predictions and y represents the mean values. Figure 7 pre-
sents the general workflow of the current paper.

Results and discussion

Feature importance and recursive feature 
elimination

Considering the sensitivity of models to the input data 
and features, the relative importance of input features for 
different algorithms to estimate the discharge coefficient 
Cd and the through-flow discharge ratio Qin/Qt are pre-
sented in Figs. 8 and 9, respectively. It could be concluded 
that the porosity (n) with the weak correlation of (− 0.26) 
with the Cd, had a higher correlation than upstream and 
downstream slopes. Yet, its relative importance for all 

Fig. 6   Visualization of the hyper parameter optimization for the XGBoost regressor

Table 2   Utilized Hyper-parameters for base models

Model SVR SVP DT

Hyper parameters Kernel = RBF
Coef0 = 0.44
tol = 0.01
ε = 0.028
C = 9

Kernel = poly
Degree = 3
Coef0 = 0.51
tol = 0.051
ε = 0.025
C = 1

Splitter = best
Max_depth = 25
Loss = MAE
Min_leaf = 2
Min split = 2
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Table 3   Utilized Hyper-parameters for ensembles

Model GBDT XGB CatB RF

Hyper parameters Loss = Huber
Criterion = MSE
learning_rate = 0.1
subsample = 0.35
min split = 2
min _leaf = 1
weight_fraction = 0.001
max_depth = 4
N_estimators = 300

n_estimators = 1200
max_depth = 2
subsample = 0.8759
colsample_bytree = 0.5094
alpha = .029
tree_method = approx
booster = 'gbtree'
min_child_weight = 6
lambda = 1.0794
learning_rate = 0.2

Nestimators = 2000
learning_rate = 0.042
depth = 5
l2_leaf_reg = 0.0045
loss = RMSE
max_bin = 353
min_data_in_leaf = 223

Splitter = best
Max_depth = 25
Loss = MAE
Min_leaf = 2
Min split = 2
Nestimators = 2300

Fig. 7   model training workflow

Fig. 8   Feature relative importance for estimation of Cd
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regression models is the lowest among all the features. 
Besides, the relative flow head (H/P) and the relative par-
ticle size (dm/P) have the highest relative importance for 
estimating Cd in all models except the CatBoost, in which 
the importance if downstream and upstream slopes are 
higher than that of dm/P. Regarding models trained for 
estimation of Qin/Qt, the lowest importance of features 
belongs to the downstream slope tan(b) while the impor-
tance of porosity (n) is increased especially for CatBoost 
and GBDT models. Yet the most important feature is the 

relative flow head (H/P). In order to investigate the effect 
of different feature combination on the models accuracy, 
a recursive feature elimination (RFE) test is performed for 
all models. Generally results indicate that models perform 
best when all features are included yet the only excep-
tion is GBDT which had higher accuracy with the 4 best 
features. Results of the RFE test for XGB are depicted in 
Fig. 10. Best models are then recreated and fitted on the 
training dataset combining the results of hyper parameter 
optimization and RFE test.

Fig. 9   Feature relative importance for estimation of Qin/Qt

Fig. 10   Recursive Feature elimination analysis for XGB model for a Cd and b Qin/Qt
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Estimation of the discharge coefficient (Cd)

Based on the optimization results, the best models were then 
rebuilt and trained over the train-test dataset.

The results obtained from single and ensemble models 
in terms of their accuracy in predicting the dischargecoef-
ficient are presented in Table 4 and Fig. 11. It is indicated 
that the base DT model performs poorly in estimation of 
the discharge coefficient. Standalone support vector machine 
with RBF kernel (SVR) and the support vector model with 
a third degree polynomial kernel (SVP) models have shown 
proper performance of R2 = 0.96 and 0.931, respectively. 
Among ensemble models, the well-known Random forest 
(RF) model as a representative of bagging techniques has 
improved the accuracy of the based DT model by 9% show-
ing an accuracy of R2 = 0.921 and RMSE and MSE equal 
to 0.0245 and 0.00171, respectively, while it is still lower 
than that of support vector machines. The stacking regres-
sion method composed of SVMs and the DT as meta-model 
however shows a higher R2 = 0.964 with MAE = 0.175 and 
MSE = 0.00061 compared to the optimized GBDT model 
with R2 = 0.962 and MAE = 0.161, and MSE = 0.0061. 
Consequently, the variance and the standard deviation of 
the residuals in the stacked model is higher than that of 
GBDT model despite its higher R-squared value. XGB and 
CatBoost offer higher accuracy among other models with 
R2 = 0.974 and 0.982, respectively. CatBoost outperforming 
the XGB in terms of all accuracy measures by 0.8% margin 
in R2 value. Consequently, it could be concluded that even 
though the XGB model outperformed all other models, Cat-
Boost has outperformed XGB considerably by increasing 
1.2% the R2 value and reducing MSE value for almost 31%.

Estimation of the through‑flow discharge ratio (Qin)

The results obtained from single and ensemble models in 
terms of their accuracy in predicting the Qin/Qt ratio are 
presented in Table 5 and Fig. 12. Clearly, the poorest results 
obtained from Decision Tree model with R2 = 0.865 and 

Random Forest with and R2 = 0.947 and MAE = 0.0219. 
The SVP and SVR models have shown proper accuracy of 
R2 = 0.968 and R2 = 0.976, respectively, while the Stacking 
regression ensemble model has resulted in an accuracy of 
R2 = 0.978 which could be considered a slight improve-
ment of the performance of the base SVR model. GBDT 
model shows a significant performance improvement com-
pared to other models with R2 = 0.989, MAE = 0.0087 and 
MSE = 0.00012. Utilizing the XGBoost and CatBoost algo-
rithms, which produced MAE = 0.0079 and 0.0071 and MSE 
of 0.000093 and 0.000094, respectively, and may be deemed 
to have almost comparable performance, model accuracy is 
improved up to R2 = 0.992.

Residuals and feature importance analysis

Residuals are the difference between the observed value of 
the dependent variable (y) and the expected value (ŷ). The 
residuals plot depicts the difference between residuals on 
the vertical axis and the dependent variable on the hori-
zontal axis, aiding in the identification of error-prone areas 
of the target. The residuals of the different algorithms by 
means of estimation of the discharge coefficient Cd and the 
through-flow discharge ratio Qin/Qt are presented in Figs. 13 
and 14, respectively. A comparison of the residuals shows 
that the distribution of residuals around the centreline for 
all models is fairly random, suggesting that the models have 
generalized well, yet the CatBoost model shows almost zero 
residual for the training phase, which could be considered 
as overfitting. It is also worth noting that the majority of 
errors arise from Cd values close or above 1 which rep-
resents the experiments with lower discharge and limited 
training data.

Model sensitivity analysis

Considering that the sensitivity analysis is an important 
step in each ML project, this paper studies the sensitivity 

Table 4   Accuracy metrics of different algorithms in estimation of Cd

Model Train Test

R2 R2 MAE MSE

SVR 0.977 0.962 0.0188 0.00067
SVP 0.968 0.931 0.0221 0.00122
DT 0.921 0.821 0.0432 0.00373
RF 0.940 0.912 0.0245 0.00171
Stacked 0.993 0.9643 0.0175 0.00062
GBDT 0.996 0.962 0.0187 0.00069
XGB 0.999 0.974 0.0147 0.00048
CatB 0.993 0.982 0.126 0.00033

Table 5   Accuracy metrics of different algorithms in the estimation of 
Qin/Qt ratio

Model Train Test

R2 R2 MAE MSE

SVR 0.977 0.976 0.0141 0.00028
SVP 0.971 0.968 0.0154 0.00036
DT 0.983 0.865 0.0321 0.00159
RF 0.991 0.947 0.0219 0.00074
Stacked 0.997 0.978 0.0132 0.00025
GBDT 0.996 0.989 0.0087 0.00012
XGB 0.999 0.992 0.0079 0.000091
CatB 0.998 0.992 0.0071 0.000094
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Fig. 11   Scatter plot of observed vs estimated values of Cd for different methods
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Fig. 12   Scatter plot of observed vs estimated values of Qin/Qt for different methods
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of the top two models against the elimination of different 
features. Hence, at each step, one feature is eliminated and 
models are trained on the rest of the features. Obtained 
values of R2 score are presented in Table 6. Results indicate 
that the most important features affecting the results are 
H/P, upstream slope and downstream slope. It should be 
noted that elimination of Reynolds number has increased 
the accuracy of CatB model to R2 = 0.994 while it has 
reduced Cd values.

Conclusion

The current study makes use of some the well-known 
machine learning techniques such as Support vector 
machines, Decision trees(DT) and Random Forest (RF) 
models, as well as the stacking ensemble technique and three 
different Boosting ensemble models, including Gradient 
Boosting Decision Trees (GBDT), Extreme gradient Boost-
ing model (XGB), and the more recent CatBoost model in 
order to evaluate the effectiveness of these models in estima-
tion of the discharge coefficient (Cd) and the through-flow 
discharge ratio( Qin/Qt) of broad-crested gabion weirs. A 

total of 368 data points from literature were extracted and 
used to train and evaluate the model's accuracy. The Bayes-
ian optimization framework as well as the recursive feature 
elimination analysis are combined in order to improve the 
accuracy of the utilized ML models. Results indicate that the 
weakest performance with R2 = 0.82 and 0.865 was obtained 
using the DT model to estimate the discharge coefficient 
and through flow discharge. The use of the stacking model 
improved the accuracy of base models to R2 = 0.9643 and 
0.978 for estimation of Cd and Qin/Qt, respectively. The 
maximum accuracy for estimating the discharge coefficient 
was achieved from the CatBoost model with R2 = 0.982, 
MAE = 0.0126, and MSE = 0.00033. All boosting strategies 
produced accuracies higher than R2 = 0.962 in terms of both 
the Cd and Qin/Qt estimation. Utilizing a sensitivity analysis 
for the top two models of XGBoost and CatBoost, a slight 
increase in performance of models was identified in terms 
of estimation of Qin/Qt ratio. While estimating the Qin/Qt 
values, CatBoost has outperformed other models including 
XGBOOst slightly with R2 = 0.994 against 0.922 of XGboost 
model. Yet, the distribution of error residuals obtained from 
XGBoost is slightly better distributed, showing a slightly 
better performance in the model's generalisation.

Fig. 13   Models residuals for estimation of Cd
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Table 6   R2 values resulted from 
sensitivity analysis of model 
results to features

Eliminated 
feature

Tan(α) Tan(β) d50/p n H/P Re d50/p & n

Cd CatB 0.781 0.707 0.981 0.975 0.652 0.980 0.764
XGB 0.805 0.659 0.976 0.971 0.776 0.964 0.791

Q CatB 0.702 0.938 0.992 0.990 0.702 0.994 0.761
XGB 0.756 0.934 0.989 0.989 0.756 0.992 0.745
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