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Abstract: In regions with cool temperate climates, tomatoes are grown on an industrial scale in large greenhouses. 
There the crops are susceptible to infection by powdery mildew, the fungus Erysiphe neolycopersici, which is introduced 
largely as fungal spores from outside the greenhouses and spread by wind within them. We have monitored the spread 
of the disease and mapped its distribution in four commercial greenhouses throughout the growing season to understand 
its aetiology. We modelled the patterns of infection geostatistically, each comprising a deterministic long-range trend 
plus a short-range spatially correlated random residual. We identified three main kinds of pattern; one consisted of a 
constant plus a spatially correlated residual, second comprised a linear trend throughout the greenhouse plus a correlated 
random residual, and third, the trend had the form of a bell akin to a Gaussian surface plus, again, a correlated random 
residual. Here, we show three examples of these distributions and the detail of their geostatistical analysis using both the 
traditional method of moments (MoM) estimation of variograms and residual maximum likelihood (REML) to separate 
the deterministic and random components. The analytical modelling is followed by ordinary punctual kriging in the first 
case, by universal kriging in the second, and by regression kriging in the third case to display the infection as isarithmic 
(‘contour’) maps. We interpret the first form of distribution as arising from numerous foci as spores landed on the leaves 
from various sources spread by air currents and the movement of workers along the paths through the greenhouse. In 
the second case, the disease seemed to have spread from an infection introduced through the main door in one corner 
of the greenhouse and spread from there by the workers and air currents. The third infection arose near the centre of 
the greenhouse by the main path and spread outwards from there. In all three examples, the main pathways seemed 
important routes along which the fungus spread. 
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1. Introduction
Tomatoes are an important crop in many countries and are grown commercially on an industrial scale. In regions 

with cool temperate climates, such as the United Kingdom (UK), outdoor production is limited to a short summer 
season. To extend the season, the tomatoes are instead grown in polytunnels and greenhouses. The greenhouses are 
huge, typically 1 hectare (ha) in extent, and in many instances are built into larger blocks separated by plastic or glass 
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barriers to make effectively 1 ha individual houses. In the UK, the season begins when the tomatoes are placed in the 
greenhouses as seedlings from a nursery. 

As the plants grow, they become susceptible to infection by the fungus, Erysiphe neolycopersici, due to the 
increase in leaf and stem area. The initial symptoms of the disease appear as small white spots on the leaves. These spots 
later develop into larger patches covered with the fungus’s spores, which give them a white powdery appearance. Figure 
1 is a typical example of the fungus on tomato leaves. If the plants are left untreated, the leaves eventually turn yellow 
and die, and the fruit is of poor quality with a smaller yield [1]. The disease tends to be most prevalent in summer when 
the plants are at their peak of growth. The disease can be halted by treatment with fungicides. Growers consider that 
prevention is better than cure, however, and with this aim they spray their crops with fungicides as prophylactics at 
regular intervals.

                                                          
Figure 1. Powdery mildew on tomato

Infection by E. neolycopersici begins when spores land on the plants. Fungal hyphae grow from each spore into 
the plants. The fungus then colonizes the surface of the leaf whilst producing its fruiting bodies, conidiophores, bearing 
more conidia, which are readily detached by wind or mechanical disturbance when they are mature; and the cycle begins 
again from many more foci when the spores land on the plants. It takes only about 10 days from the initial infection to 
the first visible signs of the disease [1]. Infection within any one greenhouse seems to be introduced from elsewhere by 
wind through vents and doors. Workers can introduce the disease as they move along pathways, most frequently during 
the peak season to tend and harvest the crop. 

There have been many investigations of the distributions of weeds, plant parasites and crop diseases in the field 
with attempts to model them statistically and map them with a view to identifying the processes that have brought them 
about. Recent examples in which the most up-to-date methods of spatial analysis have been applied include bacterial 
blight in rice [2], virus disease in tomatoes [3], rust in coffee [4], crown atrophy in coconut [5] and weed infestation 
in cereal crops [6, 7]. The most relevant recent example in the context of our investigation is that by Liu et al. [8] 
on microclimatic conditions combined with theoretical disease spread in greenhouses. Earlier, Boulard et al. [9, 10] 
investigated the role of airflow in greenhouses and the exchange of air from outside of them on the spread of a fungal 
disease of roses, and they combined it with the fluid dynamics of the airflow and the movements of spores within the air. 

Combining these dynamics of infection and the complexity of the spatial distribution of the evident symptoms has 
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proved problematic. We are investigating powdery mildew, E. neolycopersici, in large commercial greenhouses. Our 
aim is to assess its severity, map its distributions within the greenhouses and understand the origins of infection and its 
spread. As far as we know, this has not been done before. Only the investigators mentioned in references [2, 8, 9] seem 
to have approached the problem, though with other diseases. Here, we describe quantitatively the spatial distribution of 
the disease at particular times, taking into account its evident spatial correlation, and map it in individual greenhouses. 
We describe the geostatistical techniques we are using to model the spatial correlation and then to interpolate by kriging 
to produce maps.

2. Methods
2.1 Monitoring

We monitored the fungus, E. neolycopersici, in four commercial greenhouses, each of ≈ 1 ha, on the Isle of Wight 
from June to the end of the crop in November. To show the nature of the spatial variation in the disease, we selected the 
observations from two of the greenhouses, namely H11 and H13, on three occasions only in 2021, which were 22 July 
(occasion 2, OB2), 19 August (occasion 4, OB4) and 2 September (occasion 5, OB5). The severity of the disease was 
scored from 0 to 9 in accordance with International Plant Genetic Resources Institute (IPGRI) [11], the principal points 
on which are as follows:

0: Very low (no visible signs of infection);
3: Low (small patches < 2 cm across, little sporulation and mycelium);
5: Medium (approximately 50% of the leaves have visible symptoms of disease);
7: High (large patches affecting ≈ 70% of the leaves and abundant mycelium).

Severities between these points were scored with intermediate values. The disease was scored along rows every 4.5 
m. The distance between rows was 1.5 m and every 8th row was assessed. The greenhouses have paths through their 
middles, approximately 4 m wide, for the movement of heavy machinery and produce. The pathway is denoted in Figure 
2 with a blue dashed line going through the greenhouse at 42 m on the eastings axis. The tomato varieties differed 
in the two greenhouses. In greenhouse H13, the sole variety was Piccolo, which is highly susceptible to the fungus. 
Greenhouse H11 grew five varieties, only one of which, Graziano, has any resistance to the disease. Tomato plants were 
planted at a density of 1 m apart.

                                                    
Figure 2. The sampling grid of disease in the greenhouses H13 and H11 (the short diagonal line at the bottom of the greenhouse indicates the door)

Eastings (m)

N
or

th
in

gs
 (m

)

0 20 40 60 80 100

100

80

60

40

20

0



Volume 1 Issue 1|2023| 21 Biostatistics Research

3. Implementations and results
3.1 Data summary

Figures 3a, 4a and 5a show the scores, the data, as ‘bubble plots’; they are respectively for greenhouse H13 on 
OB2, greenhouse H13 on OB5 and greenhouse H11 on OB4. The diameters of the ‘bubbles’ are proportional to the 
scores. We mention here that the two upper rows of bubbles in Figure 5a are the scores on the somewhat resistant 
variety Graziano. The dashed blue lines running from top to bottom of the bubble plots mark the 4 m wide paths. 

The small bubbles outnumber the large ones by far; there are large proportions of zeros, i.e. no infection, and 
progressively fewer sampling points as scores increased from 1 to maxima in the range 5 to 8; the distributions of the 
scores are strongly positively skewed - see Table 1. To stabilise the variances for statistical analysis we transformed the 
scores to common logarithms as log10(score + 1). These values thus became the data for all subsequent analyses. Table 1 
summarises them.

Table 1. Data summaries

Scores Log10transforms

Greenhouse Mean Maximum Skew Mean Maximum Skew

H13 OB2 0.657 6 2.10 0.168 0.04042 0.77

H13 OB5
H13 OB5 residuals

1.68 8 0.95 0.357
0

0.06481
0.02844

−0.17
0.16

H11 OB4
H11 OB4 residuals

0.556 5 1.97 0.132
0

0.04387
0.01300

1.26
0.96

Figure 3. (a) Bubble plot of infection in greenhouse H13 on OB2; (b) Experimental variogram and fitted functions
*Note: MoM = method of moments; REML =  residual maximum likelihood
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Figure 4. (a) Bubble plot of infection in greenhouse H13 on OB5; (b) Experimental variogram of MoM residuals and fitted function

*Note: MoM = method of moments; REML =  residual maximum likelihood

  
Figure 5. (a) Bubble plot of infection in greenhouse H11 on OB4; (b) Experimental variogram of MoM residuals and fitted function and REML 

estimate of the variogram
*Note: MoM = method of moments; REML =  residual maximum likelihood

3.2 Geostatistical modelling

Figures 3a, 4a and 5a show general patterns of infection in the greenhouses, including much point-to-point 
fluctuation. Following Cressie [12] we can express this combination as shown in Equation (1):

                                               Z(x) = long-range variation + short-range variation,                                                   (1)

in which x ≡{x1, x2} denotes the spatial coordinates of any position in a greenhouse in two dimensions and Z(x), a 
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random variable, is the score there. To understand the aetiology of the infection we need to consider both terms on the 
right-hand side of Equation (1). Figure 3a shows a fairly uniform spread of the disease about which the scores fluctuate 
over short distances. In that equation, the long-range variation would be represented by a constant. Figure 4a shows a 
trend extending from one corner of the greenhouse, bottom right in the figure, into the rest of the greenhouse. Figure 5a 
has a maximum near the centre of the greenhouse from which the infection appears to have spread and which diminishes 
with increasing distance from the maximum. In both of these, there is a long-range component of the variation that 
is clearly not constant. The scores displayed in Figure 3a are evidently correlated spatially. So too is the short-range 
variation in Figures 4a and 5a once the long-range variation has been filtered out. 

To display the infections simply, we wanted isarithmic (‘contour’) maps showing the main patterns, taking into 
account the short-range correlation in the data. For this, we interpolated logarithms of the scores on fine grids by 
punctual kriging and threaded isarithms through the grids. We, therefore, needed formal models of Equation (1) from 
which to formulate and estimate the variograms. We treated the long-range component of variation as deterministic, 
a fixed effect, and the short-range component as an autocorrelated random residual from the trend. By modelling the 
variation in this way, we should be able both to map the variation and to understand the way infection spreads. 

The example of H13 on OB2 illustrated in Figure 3a, is the simplest to model. As above, we treat the trend as 
constant and the residual as a spatially correlated intrinsically stationary random process as shown in Equation (2):

                                                                           Z(x) = μ + ε (x).                                                                               (2)

Here µ is the mean of the process, and ε is a spatially correlated random variable with mean zero and variance σ2. The 
variogram is then a sufficient expression of the correlation between all places x and x + h separated by the vector h, the 
lag, in distance and direction. It is defined as shown in Equation (3):
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for all h,                                                          (3)

in which E denotes the expected value (of the squared difference).
Where there is an evident trend in fungal infection within the crops the means, µ, can no longer be treated as 

constant; the trend depends on x, so that the underlying model of Equation (2) must be elaborated to Equation (4):

                                                                        Z(x) = μ (x) + ε (x).                                                                            (4)

The combination of linear trend with correlated residuals in Figure 4a for H13 on OB5 can be expressed as shown 
in Equation (5):

                                                                   Z(x) = β0 + β1x1 + β2x2 ε(x).                                                                      (5)

It is a standard model of regression in which β1 and β2 are coefficients of the spatial coordinates x1 and x2, β0 is a 
constant, and ε(x) is the residual. It is a mixed-effects model of the variation comprising the fixed effects of the βi, i = 0, 1, 
2, and the random ε with variogram
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for all h,                                                       (6)

The trend in Figure 5a with its peak near the centre of the greenhouse has a bell shape akin to a two-dimensional 
Gaussian surface. We modelled it as shown in Equation (7):
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in which u1 and u2 represent the position of the peak of the surface in the two dimensions and α1 and α2 are the distances 
between the peak and the points of inflexion in those dimensions, β0 is a constant and β1 is a coefficient.

3.2.1 Estimating the variogram

Traditional practice has been to estimate the variogram from observed values, z(xi), i = 1, 2, ..., by the method of 
moments (MoM). The formula is as shown in Equation (8):

                                                                 
{ }

( ) 2

1

1ˆ( ) ( ) ( ) ,
2 ( )

m

j j
j

z z
m

γ
=

= − +∑
h

h x x h
h                                                              

(8)

where m is the number of paired comparisons at lag h. By incrementing h in steps, one obtains an ordered set of 
semivariances which constitute the experimental or sample variogram. To this one fits a plausible valid function, usually 
nowadays by non-linear least-squares approximation – non-linear because the most suitable functions such as the 
spherical and exponential are non-linear in their parameters. 

An alternative means of estimation that has gained some popularity in recent years is residual maximum likelihood 
(REML). It takes into account all possible paired comparisons, whereas the MoM procedure tends to disregard 
comparisons at the largest lag distances because they are unreliable. Neither method is necessarily better than the other.

Where there is a trend the observed values in Equation (8) must be replaced by the residuals, ε(x). Early 
practitioners obtained them by trend-surface analysis, i.e. ordinary least-squares regression on the spatial coordinates, 
and disregarded the bias in the variograms, which increased with increasing lag distances [12]. The estimated trend 
surface itself was no longer a minimum-variance estimate because of the failure to take into account the spatial 
correlation in the residuals. The introduction of REML has made good these shortcomings; it enables one to estimate 
both the coefficients of the trend and the parameters of the variogram of the residuals simultaneously and without bias [13, 
14]. It is now best practice.

Unfortunately, REML can take into account only fixed effects that are linear combinations of the spatial 
coordinates; it cannot cope with non-linear ones such as the bell-shaped surface of Equation (7). We have therefore 
had to fall back on the earlier technique of separating the trend from the residuals and estimating their coefficients and 
parameters independently thereafter. We spell out the procedure below.

3.2.2 Kriging

Where data z(xi), i = 1, 2, ..., appear to be drawn from a stationary random process as represented by Equation (2) 
an ordinary kriged prediction Ẑ(x0) at any new point x0 is a weighted average, as shown in Equation (9):

                                                                                
0

0

ˆ ( ) ( ).
n

i i
i

Z zλ
=

= ∑x x
                                                                            

(9)

The weights, λi, i = 1, 2, ..., n sum to 1 to avoid bias and are chosen to minimize the kriging error variance by 
solution of equations that incorporate the semi-variances from the variogram. The mathematics are well documented 
in the example by Webster & Oliver [14]. The number of points, n, in the summation may embrace all the data, but in 
practice, only a few data closest to the target carry sufficient weight to influence the result. The solution of the kriging 
system also provides the prediction error variance.

Where there is a trend, as represented by Equation (5), for example, kriging is somewhat more complex. Matheron 
[15] augmented the kriging system with coefficients of the trend in what he called ‘universal kriging’. The semi-
variances in the system are still drawn from the variogram of the random process, but that variogram is now that of the 
residuals from the trend, i.e. the ε(xi), i = 1, 2, ..., not that of the original data. What Matheron did not do was provide 
the means of estimating that variogram. Thanks to REML, we can now do that and incorporate semi-variances from it in 
the universal kriging systems.

For our third example with the Gaussian trend surface of Equation (7) we proceeded in stages as follows:
a. Fit a trend surface to the data by ordinary least-squares regression on the spatial coordinates as predictors;
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b. Compute an experimental variogram of the residuals from the trend, and fit a plausible function to that 
variogram;

c. Interpolate values of the residuals on a fine grid by ordinary punctual kriging with semi-variances drawn from 
the variogram function;

d. Add to those kriged residuals predicted values from the trend-surface regression equation.
The whole process became known as regression kriging. The kriged predictions are unbiased, but the calculated 
prediction error variances underestimate the true error variances, often seriously, as Lark & Webster [16] discovered 
when re-analysing the data of Moffat et al. [17], who used regression kriging to map the depths of geological strata. 
The technique has come in for a lot of criticism on this account. Part of the reason is that the variogram itself is biased. 
Perhaps equally serious for our investigation is that the trend function might not be the best fit to the data because of the 
spatial correlation in the residuals. The situation is not necessarily as bad in practice as it might seem, however, because 
as Cressie [12] points out, the biases approach zero with increasing numbers of data. Further, by suitably weighting the 
ˆ( )γ h  of Equation (8) when modelling the experimental variogram one can diminish the bias in the fitted function. Also, 

differences between the variograms computed from the residuals as described above and those from REML at short 
lag distances are small, and the semi-variances at these short distances are typically the only ones that enter the kriging 
equations.

With these considerations in mind and with 216 scores on each occasion, we have adopted the above procedure 
where the trend appeared bell-shaped.

3.3 Direct application of the geostatistical models

We shall report the results of our investigation in full elsewhere. Here we present the selection mentioned above 
to show the main forms of spatial variation in the fungal infection, how we modelled them geostatistically and the 
inferences we can draw from the modelling. Table 1 summarizes the data.

3.3.1 Constant trend

The bubble plot of the scores in greenhouse H13 on OB2 (Figure 3a) shows little evidence of a trend, and we 
have treated data as deriving from a stationary process represented by Equation (2). Table 1 summarises the data. The 
experimental variogram computed by the MoM, Equation (8), is shown by the red discs in Figure 3b. We fitted both 
exponential and spherical functions to the experimental variogram using the directive FITNONLINEAR in GenStat [12]; 
both fit well, accounting for 89% of the variance. Their equations are shown in Equation (10) and (11):

                                       Exponential                                                                  for 0 < h

                                                                        

0 1( ) 1 exp

= 0 for  = 0,

hh c c
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h
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+ ≥

=                                                                   (11)

The parameters are c0 the nugget variance, c1 the sill variance of the correlated variance, and r and a are the distance 
parameters of the functions. Their values are listed in Table 2. 

We show in addition the functions fitted by REML for comparison, and Table 3 lists the conventional leave-one-out 
cross-validation statistics of the differences between the true values and the kriged predictions when the points where 
the true values are omitted from the kriging systems:
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In these equations N is the total number of observations, ME, the mean error, is the mean the difference between the 
observed values and the predicted ones, mean squared error (MSE) is the mean of the squared differences, and MSDR 
is the mean squared deviation ratio in which the squared differences are divided by the ordinary kriging error variances, 

2
OKσ̂ .

The two functions for the MoM procedure have remarkably similar statistics; both have mean square deviation 
ratios, MSDRs, close to the ideal of 1. The models fitted by REML are not quite so good in that respect but would be 
acceptable in the absence of other information.

Figure 6a maps were made by ordinary punctual kriging of the data with the MoM variogram model. The kriging 
interval was 2.5 m, and the results were passed to MATLAB for the final display.

 
Figure 6. (a) Kriged map of infection in greenhouse H13 on OB2; (b) Kriged map of infection in greenhouse H13 on OB5; (c) Kriged map of 

infection in greenhouse H11 on OB4

Table 2. Variogram parameters

Parameters

Greenhouse Model Nugget Sill Distance (m)

H13 OB2 MoM exponential 0.01125 0.03174 18.77

H13 OB2 MoM spherical 0.01847 0.02308 52.73

H13 OB2 REML exponential 0.00739 0.02717 11.87

H13 OB2 REML spherical 0.01015 0.01979 23.44

H13 OB5 MoM residuals Exponential 0.00415 0.02443 7.63

H13 OB5 REML residuals Exponential 0.01354 0.008457 9.13

H11 OB4 MoM residuals Spherical 0.00977 0.004964 28.18
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Table 3. Cross-validation statistics

Greenhouse Model Mean Mean
deviation

Mean squared
deviation MSDR

H13 OB2 MoM exponential 0.168 −0.000108 0.023988 1.066

H13 OB2 MoM spherical 0.168 −0.000319 0.02577 0.984

H13 OB2 REML exponential 0.168 −0.000048 0.02371 1.176

H13 OB2 REML spherical 0.168 0.000351 0.02358 1.198

H13 OB5 MoM residuals Exponential 0.357 0.001204 0.02138 1.149

H13 OB5 REML residuals Exponential 0.357 0.001385 0.021254 1.169

H11 OB4 MoM residuals Spherical 0.132 0.000644 0.01295 1.028

3.3.2 Linear trend

The scores in greenhouse H13 on OB5 showed a strong trend from north to south (Figure 4a). As above, we have 
two options for analysing the data geostatistically: the earlier technique of separating the trend from the residuals 
and analysing them separately and the current best procedure by REML. We have done both for comparison; first an 
ordinary least-squares (OLS) regression, Equation (5), and second REML. The coefficients were as follows:

			        OLS 		 β0 = 0.510     β1 = 0.00215     β2 = −0.00565,
			        REML 	 β0 = 0.368     β1 = 0.00301     β2 = −0.00471.

Figure 4b shows the experimental variogram computed by the MoM as the red discs to which we fitted an isotropic 
exponential function by non-linear least-squares approximation using the directive FITNONLINEAR in GenStat [18]. 
The function is the dashed line obtained by REML. Table 2 lists the parameter values and Table 3 the cross-validation 
statistics.

Figure 6b is the map made by universal punctual kriging of the data with the REML variogram of the residuals and 
the spatial coordinates. The kriging interval was again 2.5 m, and the results were transferred to MATLAB for the final 
display.

3.3.3 Gaussian trend

The scores in greenhouse H11 on OB4 (Figure 5a) exemplify the Gaussian trend with the form defined by Equation 
(7). We fitted the surface with non-linear least-squares approximation of the transformed scores again using the directive 
FITNONLINEAR in GenStat. The trend surface accounted for 70.4% of the variance with the following values:

                                             

Peak positions                    u1 = 48.9 m                 u2 = 54.0 m
Distances to inflexions       α1 = 19.3 m                 α2 = 16.2 m
Coefficients                        β0 = 0.00922               β1 = 1450

We subtracted the trend from the data and analysed the residuals. We computed the experimental variogram of the 
residuals by the MoM, Equation (8), to which we fitted an isotropic spherical function. Figure 5b shows the resulting 
experimental variogram as red discs and the fitted function. Table 2 lists the estimates of the parameters, and Table 3 
lists the cross-validation statistics. As expected, the ME is close to zero because kriging is unbiased. The MSE seems 
modest, and the MSDR is very close to 1.

Figure 6c shows the map made by regression kriging following the steps in Section 3.3. The Gaussian surface was 
first subtracted from the data. The experimental variogram of the residuals was computed by the MoM and modelled 
with a spherical function to give the parameter values listed in Table 2. The residuals were kriged at intervals of 2.5 m, 
the Gaussian surface was added to the kriged predictions, and the results were then passed to MATLAB for the final 
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display.

4. Discussion and inference
The three examples of spatial variation in E. neolycopersici in the two greenhouses provide insight into the 

behaviour of the disease: its origins, its establishment and its spread. 
The trend evident in Figure 6b is perhaps most readily explained. The infection is most serious in one corner of 

the greenhouse, bottom right in the figure, and declines in an apparently linear fashion from there. The doorway to 
the greenhouse is at that corner, and it seems most likely that currents of air, bearing spores, entered there to infect 
the plants, and that the disease then spread from those infected plants. The pattern of disease displayed in Figure 6b is 
dominated by the trend. But we must bear in mind that kriging smooths; it loses fine detail. The bubble plot, Figure 3b, 
shows individual monitoring positions where the infection exceeds the general trend. They are isolated exceptionally 
large scores by the side of the main pathway and along the rows, and it seems likely that the disease was spread to these 
sites by workers as they travelled along these routes. 

Figure 6c has near the centre of the greenhouse a single dominant peak, away from which the infection declines 
in a bell-shaped fashion. Almost certainly the disease initially infected one or more plants close to that peak and then 
spread from there in all directions. We note, however, that the decline is most marked towards the top of the figure, 
and we believe the reason is that the top two rows that were scored were of, Graziano, a cultivar that is more resistant 
to E. neolycopersici than the other varieties. As with the previous example, there are several isolated scores evident 
in the bubble plot, Figure 3c, that stand out from the trend, notably alongside the main path from south to north. The 
combination of the Gaussian trend surface, which accounts for 70.4% of the variance, and the kriged smoothing obscure 
these exceptional scores.

Figures 3a and 6a show more varied patterns of disease with several foci. There are several points of infection 
along the main pathway leading from the door to the middle of the greenhouse. These suggest that the disease was 
spread mainly along the pathway by air currents from the door and perhaps by the workers. One of the main foci is 
immediately to right of the doorway which would have admitted air currents bearing spores and then spread them along 
the rows. Other foci at the edge of the greenhouse could have resulted from convection currents rising from the centre of 
the greenhouse and falling at the walls. 

It remains for us to interpret the correlation among the residuals, the ε(x) of Equation (4). The residuals comprise 
the short-range variation, and the correlation among them, which extends for ≈ 20 to 60 m, almost certainly arises as the 
infection spreads between neighbouring plants.

5. Conclusions
The patterns of the disease differ in the two greenhouses and from time to time in one greenhouse. All, however, 

seem to comprise two components, namely a deterministic trend or constant and a spatially correlated residual that can 
be treated as random. We modelled the distributions of the observed scores of the diseases severity geostatistically. 
In particular, we characterised quantitatively and located the trends, and we could relate them to plausible sources 
of infection. In the case of the linear trend (OB5), the infection seems to have spread from the spores entering the 
greenhouse from the corner, bottom right in Figure 4. The Gaussian trend (OB2) seems to have arisen from the spread 
of spores from infected plants near the centre of the greenhouse close to the central gangway (Figure 5). The most likely 
explanation is that it was introduced along that gangway by the workers as they moved their equipment to attend to the 
crop. The pattern displayed in Figure 3 is more complex. We could not separate a trend analytically. What is apparent, 
however, is the greater severity of the disease close to the central gangway from which the disease has spread along the 
rows. It seems that this gangway, the principal pathway through the greenhouse, plays an important role in the spread 
of infection. Greenhouse managers and crop workers need to be aware of this and take precautions as best they can to 
prevent the spread of disease by that route.
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