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Synopsis

Background
Pulmonary arterial hypertension (PAH) is a serious disease of the heart and lungs. Its
impact on patients can be severe, including limitation of day-to-day activities and high
mortality. The diagnosis, treatment and monitoring of PAH are challenging and there is a
need for tools that can aid clinical decision-making to optimise patient outcomes.
Cardiac MRI (CMR) provides both qualitative and quantitative information about cardiac
function and is an important method for evaluating the severity of PAH. The application
of machine learning (ML) tools is of growing interest in medical imaging. ML has the
potential to automate complex and repetitive tasks, including the rapid segmentation of
anatomical structures on images and extraction of clinically useful information.

Aims
This thesis proposes the combination of CMR with two different ML tools to predict
prognosis and treatment response in PAH. The first ML tool involves the automated mea-
surement of different cardiac parameters and assesses their utility in predicting prognosis
and treatment response. The second ML tool involves the extraction of imaging features
directly without the need for segmentation to predict the risk of mortality.

My Contribution
The ML models in this thesis were developed at the University of Sheffield in collaboration
with Leiden University. Sheffield is a centre of excellence in PAH treatment thanks to
the Sheffield Pulmonary Vascular Disease Unit, which is one of the largest internationally.
Each year, more than 700 PAH patients undergo CMR for diagnosis and monitoring.
Additionally, each newly diagnosed patient has accompanying in-depth clinical phenotypic
data, including right heart catheterisation, exercise and pulmonary function tests, and
quality of life assessment. During my research, I created and curated a dataset combining
imaging and time-matched clinical data. I identified eligible CMR scans, landmarked and
contoured cardiac chambers on multiple sequences and organised the collaboration with
computer scientists at Leiden and Sheffield. I arranged image anonymisation, storage
and transfer and advised computer scientists on the clinical relevance of CMR images. I
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performed quality control on ML analyses, collated their results, and analysed the data
within clinical context. I have written all chapters in this thesis and clarified the roles of
my co-authors at the end of each chapter.

Thesis Outline
Chapter 1 provided an overview of the growing role of CMR in the diagnosis and evaluation
of PAH. Chapter 2 summarised the prognostic value of CMR measurements in the prediction
of clinical worsening and mortality in PAH patients. Chapter 3 illustrated the rapid
expansion of research using AI approaches to automate CMR measurements. The quality
of the existing literature was reviewed, significant shortcomings in the transparency of
studies were identified and solutions were recommended. Chapter 4 showed our experience
in developing, validating and testing a fully automatic CMR segmentation tool. Our tool
was developed in one of the largest multi-vendor, multi-centre and multi-pathology reported
datasets, and included a large group of patients with right heart disease. We implemented
the lessons learned in Chapter 3 and provided extensive descriptions of our datasets, ML
model and performance. Our model showed excellent reliability, generalisability, agreement
with CMR experts and correlation with invasive haemodynamics. Chapter 5 demonstrated
that the automatic CMR measurements allowed assessment of patient-orientated outcomes
and prediction of mortality. Thresholds of changes in CMR metrics were identified that
could inform clinical decisions in the monitoring of PAH patients. Chapter 6 showed
promising results of an ML tool to extrapolate prognostic CMR features with incremental
value compared to clinical risk scores and volumetric CMR measurements. Finally, Chapter
7 showed that myocardial T1 mapping could potentially add diagnostic and prognostic
value in PAH.

Impact and Future Direction
In addition to the known advantages of ML for providing rapid results with minimal human
involvement, the ML tools developed in this thesis allow visualisation of outcomes and
are transparent to the human assessor. ML applications to automate the measurement of
CMR metrics and extract prognostic imaging features have potential to add clinical value
by (i) streamlining prognostication, (ii) informing treatment selection, (iii) assisting the
monitoring of treatment response and (iv) ultimately improving clinical decision-making
and patient outcomes. Additionally, these tools could point to new CMR end-points for
clinical trials, accelerating the development of new treatments for PAH. ML will likely
elevate the role of CMR as a powerful prognostic modality in the years to come. Looking
ahead, I hope to combine multi-source clinical, imaging and patient-orientated data from
several ML tools into a single package to facilitate the assessment of cardiovascular disease.
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Introduction to background of the thesis

Radiology is transforming, and Artificial Intelligence (AI) will play a significant role in

all aspects of medical imaging [1], and the vanguard of this change is cardiac imaging.

The advanced technical requirements in capturing the beating heart and cardiac blood

flow are pushing the boundaries for AI advancement. However, before the start of my

research, the thought of AI in medical imaging filled me with unease. On the one hand,

rapid advancements in technology and constant reports of AI outperforming radiologists

raised concerns about the future of my profession and its eventual “replacement” by AI.

After all, radiology is a highly specialised medical field that took me years of training

and involved sitting one of the most challenging post-graduate medical exams. On the

other hand, radiology is the fastest-changing and most technologically advanced medical

specialty. The detailed images of human anatomy and pathology revealed by constantly

evolving imaging techniques are truly fascinating. Radiologists have always adopted and

adapted new technologies in their favour to maximise their benefit to patients. As my

passion for cardiac imaging grew, I could not help but wonder, could AI be the key to

unlocking new levels of accuracy and efficiency? And could it lead to the early detection

of abnormalities that might otherwise go unnoticed by the human eye? These questions

sparked my curiosity and desire to understand the potential impact of AI in cardiac

imaging. The thought of contributing to the development and clinical implementation of

AI tools with the ultimate goal of improving patient care motivated me to embark on a

PhD journey.

My thesis assesses the role of AI in cardiac MRI in predicting the prognosis of car-

diopulmonary disease, mainly pulmonary hypertension (PH) and the first chapter is an

overview of the existing cardiac MRI applications in PH. Chapters 2 to 5 assess cardiac

MRI volumetric measurements, while chapters 6 and 7 look at the role of myocardial
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tissue characterisation and direct imaging features identified by AI. The outline of the

chapters of this thesis is shown in (Figure 1).

Sheffield has a strong track record in cardiothoracic imaging in pulmonary hypertension

(PH), led by Dr Andy Swift (my supervisor) and by Professor David Kiely and Professor

Jim Wild. The Sheffield Pulmonary Vascular Disease Unit (SPVDU) is one of the largest

PH centres in the world and one of the pioneers of cardiac MRI in PH. My PhD starts

with a scoping literature review on the role of different cardiac MRI techniques in assessing

PH [2]. This review, combined with previous experiences at Sheffield, highlighted the

promising role of cardiac MRI in the prognostic assessment of PH.

Science should begin and end with up-to-date systematic reviews [3], and so does my

thesis. My hypothesis is that cardiac MRI could predict mortality and clinical adverse

events based on the volumetric assessment of the cardiac chambers, including the right

ventricle (RV). I performed a comprehensive systematic review and meta-analysis that

identified all studies assessing the prognostic utility of cardiac MRI in pulmonary arterial

hypertension (PAH) [4]. I contacted the authors of all identified studies to obtain volumetric

cardiac MRI data in order to create exhaustive evidence. In a notable collaborative

spirit, 14 PH centres around the world responded with additional unpublished data and

highlighted the PH community’s interest in better defining the role of cardiac MRI for the

prognostication purposes in PH. The systematic review confirmed the significant role of

cardiac MRI measurements in predicting clinical worsening and mortality in PAH and is

now cited in the European guidelines for managing PH.

The systematic review generated further questions. Firstly, what is the role of AI in

obtaining cardiac MRI volumetric measurements? Secondly, what has been achieved

and what is still to be done in AI measurements? And thirdly, how effective are AI

measurements in predicting prognosis in PH? To answer the first two questions and to

help plan a study to answer the third question, I conducted a further systematic review

that aimed to identify all studies using AI to segment cardiac MRI images [5]. Systematic

reviews are essential tools for designing studies that identify gaps in the existing evidence

and provide a basis for informing new research [6]. My systematic review has shown that
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although more than 200 AI studies in cardiac MRI segmentation have been conducted,

more progress has yet to be made in evaluating the RV or showing a clinical impact

of AI measurements. Surprisingly, right ventricular disease was ignored from inclusion

in training or testing datasets, and the clinical characteristics of patients were poorly

reported. External validation of performance and failure assessment was only performed

in a minority of studies. For the AI research community, my systematic review promotes

improvement in the quality of reports and provides a reference to help avoid wasted

resources in AI health research. The results of the review set the context of a study to

automate cardiac MRI ventricular and atrial segmentation in right heart abnormalities.

While most AI cardiac MRI segmentation studies focused on the left ventricle, there

remained uncertainty in the automatic assessment of the RV, particularly in right ventric-

ular diseases such as PH. In addition, most algorithms for the RV only segment the inner

surface, the endocardium. As such, no AI algorithm to date has managed to measure the

RV muscle mass which is an important measurement in suspected PH. In a research collab-

oration with computer scientists at the University of Leiden (led by Dr Rob van der Geest)

we aimed to develop an AI segmentation tool to assess the four chambers of the heart on

short-axis, long-axis (two-chamber) and four-chamber imaging. Our research was driven

by lessons learnt from the AI segmentation systematic review that revealed shortcomings

of other cardiac MRI AI research. We aimed to address the important uncertainties of

AI segmentation, including assessment of accuracy against invasive haemodynamics, the

robustness of findings in scan-rescan repeat imaging and external validation in multi-centre

and multi-vendor datasets [7]. In addition, our study included one of the largest AI

cardiac MRI segmentation datasets (> 5600 scans and > 200, 000 images). The results

showed that AI segmentation is more accurate and repeatable than manual assessment.

Additionally, we have shown that cardiac MRI measurements from AI contours can predict

mortality in PAH.

Cardiac MRI in PH is typically used to monitor progression and treatment response

[2, 8]. While Chapters 2 and 4 show that cardiac MRI measurements could predict

clinical worsening and mortality, the threshold of important change was poorly defined.
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The change in cardiac volumes indicating a change in PH disease state effect needed to

be addressed. I chose a patient-centred approach to identify the minimally important

differences in cardiac volumes using quality of life and exercise tests as anchors. I identified

treatment response thresholds that can be applied in everyday clinical practice from paired

follow-up data and those can guide radiologists and clinicians in assessing change based

on cardiac MRI. The novelty of my approach is to benchmark changes in cardiac MRI

measurements to changes in health-related quality of life so as to link how a patient feels

to the imaging findings.

I have also explored the prognostic utilities of cardiac MRI beyond AI segmentation

in Chapters 6 and 7. A tensor-based machine learning framework is applied in the

prognostic assessment of PAH in chapter 6. This approach deals with MRI images as multi-

dimensional data blocks called tensors allowing for better data structure preservation than

traditional linear machine learning models [9]. The novelty of this approach is in extracting

prognostic features from cardiac MRI images directly without prior segmentation while

allowing the visualisation of these prognostic features. Thus, achieving a transparent way

of implementing AI in cardiac MRI prognostication.

My scoping literature review in Chapter 1 identified cardiac MRI techniques that may

play a role in PH assessment, such as tissue characterisation with (T1) mapping and

extracellular volume assessment. I performed a systematic review and meta-analysis of all

existing studies using cardiac MRI myocardial tissue characterisation techniques in the

diagnostic and prognostic assessment of PAH [10]. While (T1) mapping was significantly

elevated in PAH, only one study assessed the prognostic impact and found no strong

correlation with mortality. My plan was to develop an AI method to automatically extract

(T1) mapping values. An initial model was developed, and early promising findings were

presented at the European Congress of Radiology 2021 [11]. However, due to the onset of

the Covid-19 pandemic and the poor prognostic signal identified in my systematic review,

I had to prioritise other research, and the development of the AI (T1) mapping tool was

put on hold. In the future, the AI (T1) mapping tool will be incorporated into a fully

automated cardiac MRI assessment package. However, further development and validation

are first required.
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Abstract

Purpose of Review

This article reviews advances in cardiac magnetic resonance (CMR) imaging

in pulmonary hypertension (PH). We aim to bring the reader up-to-date with

CMR applications in diagnosis, prognosis, 4D flow, strain analysis, T1 mapping,

machine learning and ongoing research.

Recent Findings

CMR volumetric and functional metrics are now established as valuable prog-

nostic markers in PH. This imaging modality is increasingly used to assess

treatment response and improves risk stratification when incorporated into PH

risk scores. Emerging techniques such as myocardial T1-mapping may play a

role in the follow-up of selected patients. Myocardial strain may be used as

an early marker for right and left ventricular dysfunction and a predictor for

mortality. Machine learning has offered a glimpse into future possibilities.

Summary

Several recent studies have shown the diagnostic and prognostic value of CMR in

patients with PH and clinical trials of PH therapies are increasingly considering

it as an endpoint. Machine learning approaches to improve automation and

accuracy of CMR metrics and identify imaging features of PH is an area of

active research area with promising clinical utility.
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1.1 Introduction

1.1.1 Definition

P ulmonary hypertension (PH) is a heterogeneous group of diseases that cause an

elevated pulmonary artery pressure [12, 13]. Until recently PH was defined by an

increase in the mean pulmonary artery pressure (mPAP) ≥ 25 mmHg measured during

right heart catheterisation (RHC), however a consensus in the PH community has reduce

the threshold to ≥ 20 mmHg to facilitate earlier detection and therefore treatment of the

disease. Chronic heart and lung diseases are the underlying causes of most PH cases in

the Western world [14] such as systemic hypertension and chronic obstructive pulmonary

disease (COPD). Since chronic comorbid cardiac and pulmonary diseases are increasingly

common in an ageing population [15–17], the prevalence of PH has als increased by almost

30% over the last 30 years [14]. PH is now estimated to have a prevalence of 1% of the

world’s population and might be the fourth most prevalent cardiovascular disease [16, 18].

In resource-limited countries, however, living at high-altitude and schistosomiasis infection

are more still the most common cause of PH [19]. Treatable causes of PH include chronic

thromboembolic disease (CTEPH) and pulmonary arterial hypertension (PAH) [20].

1.1.2 History of PH

PH is a relatively young diagnosis. The diagnostic test RHC was first performed in 1944

by Cournand and Richards [21]. Hypertensive pulmonary vascular disease cases were

first described by Donald Heath in 1956, a University of Sheffield graduate [22, 23], and

the disease of PH was formally acknowledged by the World Health Organisation (WHO)

in 1973 [24] after a surge of cases in the 1960s secondary to the use of Aminorex, an

appetite suppressant [25]. PH was historically considered as a rare and difficult disease

to diagnose and until the advancement of lung transplantation in the 1980s, PH was

considered untreatable [18, 26]. However, our understanding of the epidemiology, diagnosis

and treatment of PH has changed over the past two decades. Particularly the management

of a subtype of PH, pulmonary arterial hypertension (PAH), has revolutionised. While

untreated PAH had a mortality rate close to lung cancer, advancement in therapy options

over the past two decades have led to a dramatic improvement in survival [14, 27]. In

1985 CMR imaging was first used in the diagnosis of PH [28] and in 1998, the WHO
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recognised the importance of PH as a global burden of disease and categorised PH into

five groups (Table 1.1). In 2001, the Sheffield Pulmonary Vascular Disease Unit (SPVDU)

was established and has rapidly become one of the largest PH centres in the world and by

far the largest in the UK. The SPVDU currently manages one in four of the active PH

patients in the UK and covers a referral population of 15 million [29]. The SPVDU since

its establishment has been continuously growing and the number of patients managed has

more than doubled over the last decade from just less than a 1,000 in 2010 to almost 2,200

in 2019.

Table 1.1: World Health Organisation classification of pulmonary hypertension

Group WHO pulmonary hypertension (PH) classification 

I Pulmonary arterial hypertension (PAH)

II PH secondary to chronic heart disease

II PH secondary to chronic lung disease

IV PH secondary to chronic thromboembolic disease (CTEPH)

V PH secondary to multifactorial mechanisms

1.1.3 Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is one form of PH that is a primary vasculopathy

of the small pulmonary arterioles, characterised by progressive vascular remodelling that

starts with vascular wall hypertrophy and leads to plexiform fibrotic lesions [26, 30]. PAH

gradually leads to stiffening and narrowing in the small pulmonary arteries resulting

in restricted blood flow and increased pulmonary vascular resistance and pressure [31].

Over the course of its disease the elevated pulmonary arterial pressure causes the RV to

dilate and hypertrophy, eventually leading to increased RV pressure and subsequent right

heart failure; the main cause of death in PAH [26, 30]. In addition to a raised mPAP,

PAH diagnostic criteria also include a pulmonary vascular resistance (PVR) of ≥ 3 Wood

units and a pulmonary artery wedge pressure (PAWP) of ≤ 15 mmHg [20]. PAH can be

idiopathic (IPAH), familial, associated with exposure to drugs and toxins or associated

with underlying conditions such connective tissue disease (CTD), congenital heart disease

(CHD), HIV infection or portal hypertension [20]. PAH affects on average 15 per million
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people and every year up to 8 in a million people are newly diagnosed with PAH [14, 17,

32]. The mean age at diagnosis ranges between 50-65 and middle-aged women account for

60-80% of the PAH population, however, it can develop in any age group [14, 17, 32].

1.1.4 Clinical Pathway

PAH often presents with non-specific symptoms including shortness of breath, fatigue,

chest pain, and dizziness, which can be seen in various other respiratory and cardiovascular

conditions. In addition, the presentation can vary, with some patients having very mild

symptoms that are easy to overlook. In contrast, others may have severe symptoms

that lead to rapid deterioration. Because of the combination of non-specific symptoms

and the heterogeneity in presentation, PAH may not be suspected initially. As a result,

misdiagnosis or delayed diagnosis are common and lead to delays in the referral process. In

patients with a higher risk of PAH, such as a background of connective tissue or congenital

heart diseases, signs and symptoms of PH might be evaluated earlier, leading to earlier

detection and treatment. Once PAH is suspected by a general practitioner, cardiologist

or respiratory physician, the PH referral pathway is initiated. Typically, patients would

have had initial tests such as chest X-ray, ECG, echocardiogram, or pulmonary function

tests by this point. At the PH referral centre further management is based on ascertaining

the diagnosis of PAH, discerning the underlying cause, assessing disease severity and

monitoring response to treatment [12, 13]. Patients are examined during the first visit

with blood tests, functional tests (exercise capacity and pulmonary function tests) and

imaging (chest x-ray and echocardiogram). If PH is suspected, patients are admitted on a

second visit for further investigations including RHC, computed tomography (CT), CMR

and baseline quality of life assessment. The results of all these examinations are reviewed

at a multidisciplinary meeting where management options are reviewed. Finally, targeted

PH therapy is initiated where required and regular follow-up is planned with repeated

investigations to assess treatment response (Figure 1.1).

This chapter reviews the current developments in CMR applications in PH including

diagnosis, prognosis, 4D flow, strain analysis, T1 mapping, machine learning and interesting

ongoing research.
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Figure 1.1: Clinical pathway of pulmonary hypertension

1.2 Diagnosis

PH is diagnosed by right heart catheter (RHC). The haemodynamic criteria for a diagnosis

of PH from international guidelines are an elevated mean pulmonary artery pressure

(mPAP) of ≥ 25 mmHg and pulmonary vascular resistance (PVR) of ≥ 3 Wood units [20].

A new mPAP threshold of > 20 mmHg has recently been proposed as a more accurate

criterion, being two standard deviations above the normal threshold [20]. In a breathless

patient, PH is increasingly suggested on common investigations such as chest radiography,

echocardiogram or computer tomography [12, 30]. New advances in noninvasive cardiac

imaging techniques such as cardiac MRI (CMR) have helped to establish the diagnosis of

PH sooner in the course of the disease [33, 34]. CMR has a spatial and temporal resolution

that allows detailed visualisation of the heart and surrounding structures without exposure

to radiation or invasive heart catheterisation. A wealth of quantitative information on

the function and structure of the heart can be obtained after post-processing images by

contouring the endo- and epicardial surfaces. This has made CMR the gold standard for

quantifying cardiac chamber sizes, ventricular function and mass (Figure 1.2) [12, 35] .

CMR also allows visualisation of wall motion abnormalities and myocardial tissue char-

acterization using myocardial T1 or T2 mapping and late-gadolinium contrast enhancement.

It allows accurate detection of myocardial abnormalities that insult cardiac myocytes

such as fibrosis by detecting accumulation of gadolinium contrast in the extracellular
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Figure 1.2: CMR images labelled with findings of PH.
Top row: Normal CMR. RV; right ventricle, LV; left ventricle, IVS; interven-
tricular septum, RA; right atrium, LA; left atrium
Bottom row: Pulmonary arterial hypertension features including a hypertro-
phied RV myocardium (blue), dilated RV chamber (yellow), IVS straightening
(green), RA enlargement (orange) and tricuspid regurgitation jet (arrow).
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space. Velocity information through the vessels or valves can also be assessed on CMR

using either black blood or phase-contrast imaging. In addition, the high reproducibility

of CMR findings and measurements makes it an ideal tool for follow-up imaging and

disease monitoring. Cardiac MRI has been used to estimate mPAP to provide diagnosis

through noninvasive means. A recent study developed regression models to predict mPAP

based on cardiac MRI [36]. A cohort of 600 patients who had both CMR and RHC

was retrospectively included. The cohort was divided in half, the first half to derive

the regression model and the second half to validate its performance. CMR parameters

included in the linear regression model were the interventricular septum angle (IVS),

ventricular mass index (VMI) and black blood slow flow. The model had a sensitivity of

93% and specificity 79% of detecting PH, allowing for an accurate non-invasive diagnosis.

The model highly correlated with mPAP and had good interobserver reproducibility. The

authors also recently updated their model in line with the new suggested mPAP threshold

of > 20 mmHg [37]. The same group also developed a diagnostic and prognostic CMR

model for patients with PH secondary to COPD [38]. Pulmonary artery (PA) indices of

the diastolic area and relative area change in addition to the IVS and VMI were included

in the COPD model. This model had a 92% sensitivity and 80% specificity in detecting

PH in COPD patients. PA systolic and diastolic areas also had a high diagnostic accuracy

in detecting PH in patients with interstitial lung disease [39]. CMR can be used as a

one-stop study to provide functional, aetiological and prognostic information [40]. CMR

showed a good correlation with RHC parameters and had high sensitivity and specificity

in identifying the underlying causes of PH [40]. CMR-guided RHC is a recent technique

that allows performing RHC in a CMR suite. It combines the benefits of radiation-free

CMR information to haemodynamics in a single sitting. CMR-guided RHC has a rare

failure rate and an acceptable procedure time that is comparable to a standard CMR

study [41–43].

1.3 Prognosis and therapy response

PH is a chronic, progressive and mostly incurable disease with high morbidity and mortality.

A new diagnosis of PH increases the risk of death at one year by sevenfold [14]. Mortality

is attributed to right heart failure resulting from the increased afterload secondary to



1.3 Prognosis and therapy response 15

elevated pulmonary arterial pressures [13]. PAH prognosis, has significantly improved

with the advancement of treatment and the median survival has increased from three

to seven years over the last 20 years [32, 44]. Despite this, the annual mortality rate of

PAH remains high at 12 - 15% [14, 27]. Predicting worsening of disease and response to

treatment at diagnosis is a key part of the clinical assessment in particular when discussing

treatment options with patients or referring to lung transplantation. However, determining

prognosis remains a major challenge and is far from straightforward [45].

The ESC/ERS guidelines describe the prognostic factors including imaging parameters

in PAH [13]. Large right atrial size and the presence of pericardial effusion on echocar-

diogram or CMR imaging feature as prognostic markers in the ESC/ERS traffic light

system representing low, intermediate and high risk. There is a wider range of prognostic

factors, including the right ventricular metrics that are considered crucially important in

prognostication. The prognostic role of CMR in PAH in the guidelines is undervalued

and has been extensively studied over the last decade and is increasingly established in

clinical practice. The ability of CMR to accurately, reproducibly and non-invasively detect

changes in ventricular function and volumetric measurements, even over long periods of

follow-up, makes it an ideal prognostic marker [46–48]. Further work to determine the

most potent CMR prognostic factors and their incremental value in prognostic equations

is required.

The most recent statement on imaging and PH from the Pulmonary Vascular Research

Institute recommends CMR to monitor right ventricular (RV) function [12]. CMR can

be used at follow-up to assess disease progression and treatment response and provide

prognostic information. A recent systematic review, including 1,938 patients, has shown

that CMR is a powerful predictor of clinical worsening and mortality in PH [4]. In

particular, worse RV function and larger RV volume are associated with a worse outcome.

A large study in 2017 assessed CMR prognostic features in 576 patients [46]. The study

has shown that RV end-systolic volume and pulmonary artery (PA) relative area change

have incremental prognostic value over clinical parameters. Pulmonary artery stiffness

assessed by a low relative area change and distensibility is associated with a more severe

PH and a higher risk of mortality [46, 49, 50]. The prognostic features in patients with

connective tissue disease (CTD) were shown to be different to other PAH subgroups. In
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CTD patients, metrics such as ventricular-vascular coupling (Ees/Ea) and RV mass appear

to be more significant than function and volume [46, 51–53]. New therapies have shown

to improve RV contractility and reduce RV mass in CTD PAH, and CMR can play an

important role in assessing their treatment response [54, 55].

Cardiac MRI assessment of the interventricular septal (IVS) angle helps to differentiate

pre- and postcapillary PH from isolated postcapillary PH. An increased angle of ≥ 160° is

associated with pre- and postcapillary PH and with a poorer prognosis [56]. In addition,

increased trabeculation at the marginal IVS is associated with severe PH, reduced RV

ejection fraction (RVEF) and exercise tolerance [57, 58].

A large study has set the prognostic thresholds for CMR indices [59]. This study

assessed the added value of CMR to the validated prognostic calculators such as the

Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL) and the

modified French Pulmonary Hypertension Registry (FPHR). The age- and sex-adjusted

RV end-systolic volume index improved prognostication when combined with a risk score.

The prognostic thresholds will serve as an important guide for CMR risk stratification in

PAH. Notably, one of the most significant predictors for a worse outcome in IPAH was a

background of even minor or mild parenchymal lung abnormality. A background of mild

fibrosis or emphysema was associated with a 5-year survival of 22% compared to 78%

in IPAH without any lung disease [38, 60]. IPAH with lung disease has, therefore, been

suggested to be a separate phenotype of PAH [61].

1.4 Other cardiac MRI applications in PH

Myocardial strain analysis

Strain analysis is an established CMR technique for the quantification of myocardial

deformation and assessment of wall motion [62]. Feature tracking is one method of

strain analysis which follows cardiac borders throughout the cardiac cycle on cine images

(Figure 1.3). Strain analysis in CMR uses similar assumptions to speckle tracking on

echocardiogram with good agreement between the two modalities [63, 64]. Biventricular

strain is significantly impaired in PH and could assist in the early detection of right and

left heart dysfunction [65–67]. Besides, feature tracking technology has been used to
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predict outcome in patients with PH. A reduced RV circumferential and longitudinal strain

rates were associated with an impaired RVEF and a significant predictor of mortality [68].

The same holds true for the left ventricle (LV) where reduced LV circumferential and

longitudinal strain rates in precapillary PH are associated with severely impaired RVEF

and a higher risk of death [69]. Impaired right atrial (RA) strain and phasic function are

a marker of disease severity. Reduced RA strain is associated with decompensated RV

function and stiffness [70, 71]. The advancement of fully automated myocardial strain

analysis is likely to push its role in future research in the diagnosis and prognosis of PH

[72].

Figure 1.3: Right ventricular myocardial strain analysis in a patient with PH.

Myocardial late gadolinium enhancement

Late gadolinium enhancement (LGE) is a CMR technique to identify the areas of myocardial

fibrosis. Gadolinium has paramagnetic properties that shorten the myocardial T1 times.

The T1 shortening is proportional to the concentration of gadolinium in the extracellular

space. Gadolinium enhancement in the normal myocardium clears out early. However, its

clearance is restricted in necrotic tissue due to the expansion of the extracellular space

and damage to the cellular membranes of the myocytes [73]. LGE is associated with poor

outcome and increased mortality in cardiomyopathies [74]. However, a study assessing
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LGE in 124 PH patients found that LGE did not predict mortality [75]. This finding

confirms the results of two previous studies that suggested no added prognostic information

from LGE in PH when added to other CMR parameters [76, 77]. Therefore, LGE in

PH and particularly at the RV insertion points or IVS appears to be a consequence of

increased mechanical stress and RV remodelling and not a sign of RV decompensation.

Myocardial T1 and extracellular volume mapping

Native myocardial T1 and extracellular volume (ECV) mapping are novel biomarkers

used in several cardiovascular disorders to aid diagnostic, prognostic and therapeutic

decision-making [78]. Myocardial T1 mapping is a pixel-by-pixel representation of the

longitudinal relaxation times (T1) within a tissue [79]. T1 values provide surrogate tissue

characterisation data that are measured on a standardised scale [80]. Assessing T1 post-

gadolinium can be used to estimate ECV [78, 81]. The ECV is calculated by subtracting

the T1 values of the myocardium and blood pool pre- and post-contrast, corrected for the

haematocrit level [78]. Elevated T1 mapping values and ECV can indicate areas of oedema

and fibrosis in the myocardium [82, 83]. Several recent studies have looked into the clinical

application of T1 mapping and ECV in PH [84–89]. T1-times are elevated in PH and in

particular at the RV insertion points and are associated with an increased intraventricular

septal angle and LV eccentricity [84, 87]. Increased T1 values are therefore thought to

be related to RV dilatation and the resultant shift of the septum towards the LV. The

diagnostic application in PH, however, remains limited. Although T1 looked promising

for differentiating between healthy volunteers and PH, the differences were much smaller

in patients without a PH diagnosis in a clinical setting [84]. A raised T1-value in PH is

weakly correlated to RVEF [84, 86, 90]. However, T1-times did not predict mortality in

a large cohort of PH patients [84]. An elevated ECV in PH patients with heart failure

and preserved ejection fraction was associated with RV dilatation, stiffness and reduced

RV strain and therefore might play a role as a marker for RV remodelling [89]. CMR

also plays a role in CTEPH treatment response assessment [91, 92]. Septal myocardial T1

mapping is elevated in CTEPH patients [85] and reduces after treatment with balloon

pulmonary angioplasty [85, 93]. T1 mapping may, therefore, be utilised in CTEPH therapy

monitoring.
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Pulmonary MR angiography and perfusion

MR angiography (MRA) has a high spatial and low temporal resolution that allows for

the assessment of the pulmonary vasculature. Perfusion MRI, on the other hand, has

a low spatial and a high temporal resolution that enables evaluation of the capillary

level tissue perfusion which makes it suitable in the clinical assessment of CTEPH [94].

The diagnostic accuracy of dynamic contrast-enhanced perfusion MRI in the diagnosis of

CTEPH was shown to be comparable to computed tomography pulmonary angiography

(CTPA) and perfusion single-photon emission tomography (SPECT) [95]. Perfusion MRI

identified all cases of CTEPH and had comparable sensitivity and specificity to the other

modalities. Recent studies have shown that ventilation and perfusion changes in CTEPH

can be interrogated using phase-resolved functional lung MRI without the need for contrast

agents [96]. Perfusion MRI is likely to play an essential role in the diagnostic pathway in

centres that already perform CMR for CTEPH patients.

4D flow

Four-dimensional flow (4D flow) is an emerging MRI technology that offers to circumvent

issues with standard ultrasound imaging in PH. 4D flow not only allows 3D visualisation

of vascular flow, it also enables an accurate assessment of transvalvular or intra-cavity flow

[97]. In the setting of PH, 4D flow has been used to assess the haemodynamic changes

in the pulmonary circulation. Abnormal flow patterns in the main pulmonary artery

(MPA), namely vortex formation, have been associated with PH [98, 99]. The presence and

’persistence time’ of the vortex in the MPA are linearly associated with mPAP [100, 101]

and can be used to estimate mPAP. Another physiological vascular parameter characterised

with 4D flow is MPA wall shear stress (WSS), which has an impact on vascular remodelling

[102]. 4D flow-derived MPA WSS appears to be reduced in patients with PH [102, 103].

Also, in patients with PH who have poor acoustic windows for echocardiography, 4D flow

can provide reliable quantification of tricuspid regurgitation [104, 105]. 4D flow could also

provide clinically relevant RV diastolic assessment in PH [106, 107]. To summarise, 4D

flow MRI can provide several complementary diagnostic information in the assessment of

patients presenting with suspected PH. Future studies need to evaluate the incremental

role of 4D flow MRI assessment in patients with PH.
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1.5 Machine learning

The driver of innovation in cardiac imaging technology has primarily focussed on enhancing

imaging acquisition by developing faster scanning techniques, larger fields of view, stronger

magnetic fields and new imaging sequences to overcome the challenges of cardiac motion

and breathing during acquisition. However, the advancement of machine learning (ML)

into cardiac imaging has opened up new directions of innovation, in all aspects of cardiac

imaging, including image acquisition, image preprocessing, image analysis and clinical

decision making.

ML uses algorithms to recognise patterns in example data to make predictive decisions

in unprecedented data [108]. ML can classify the data based on the differentiating patterns

it has learnt [1, 109]. Deep learning is a subset of ML, where the algorithm automatically

learns multiple features in the image, for example, edges, simple shapes such as circles or

lines, the arrangement of the shape in the image and its spatial relationship with other

objects. The learnt data are stored in different layers of the algorithm. Each layer of these

networks learns features from other layers in a complex way that resembles the neural

circuits and are hence called convolutional neural networks (CNN) [110, 111]. The CNN

decides which combination of features in the image most resembles the output in the

example data to allow it to make decisions in future unseen data. While deep learning

is effective in learning the shapes of anatomical structures and has shown to be able to

detect abnormal findings on imaging, it has limitation. Humans can only see the input

and output of the deep learning process but not the layers in between, an issue sometimes

labelled as “black box”. The CNN does not label the layers and the connections it has

learnt and because of the large number of connections in each CNN, it is not always

possible to explain the relationship between the input and outcome, particularly when the

output is not meaningful or expected [1].

ML is likely to play an important role in PH [33]. Recent approaches include automated

segmentation [112, 113], biventricular 3D model creation [114], computational models

and decision tree analysis [115], diagnosis [9] and prognostication [116, 117]. ML has

been used to analyse cardiac motion and predict mortality based on reduced ventricular

contraction [116]. The ML model was shown to improve outcome prediction compared to
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conventional CMR measurements alone. ML was used to identify diagnostic features on

CMR classify them into PH or no PH [9]. The discriminating features were mapped onto

CMR voxel space and were shown as a visual overlay on the 4 chamber and short-axis

images (Figure 1.4). Interestingly, this approach does not require segmentation of the

cardiac chambers, allowing for faster processing and reduced segmentation induced error.

This study gives a glimpse into the future of PH assessment that allows for rapid and

accurate CMR diagnoses. An exciting development would be to utilise ML methods in

predicting prognosis and treatment response in PH.

Figure 1.4: Machine learning feature map. Features compatible with PH are
in red and non PH features are in green.

1.6 Ongoing research

Repeatability of CMR measurements

The RESPIRE study aims to assess the reproducibility of CMR measurements at follow-up.

It will also compare the repeatability of CMR to other endpoints such as walking and
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blood tests. This study would help establish the evidence of the usefulness of CMR as a

monitoring tool and its sensitivity to change [118].

CMR as clinical trials endpoint

The REPAIR study is the first study to have MRI as a co-primary endpoint [119]. Four

ongoing randomised controlled trials, assessing beta-blockers, spironolactone, CXA-10

and dehydroepiandrosterone, have defined CMR parameters as an endpoint to evaluate

treatment response [120–123]. A single-arm study of treprostinil in PH has defined the

change in RV structure and function, on CMR compared to an echocardiogram, as the

primary treatment response outcome [124].

Follow-up CMR assessment

A prospective study is aiming to recruit 180 incident cases of PAH. Participants will have

CMR and RHC at baseline and 6- and 24-month follow-up. The aim is to determine poor

prognostic markers before decompensation occurs. This research would be valuable in

early risk stratification as current studies include patients with more advanced stages of

the disease [125].

CTEPH diagnosis and screening

CHANGE-MRI is a large European multicentre study that aims to compare dynamic

contrast-enhanced MRI compared to VQ-SPECT in people with suspected CTEPH. This

study is anticipated to set the standard for MRI in the diagnostic algorithm for CTEPH

[126].

1.7 Conclusions

The last three years have seen several large studies examining the clinical utility of CMR

in patients with PH. Evidence confirms the potential for CMR to provide diagnostic and

prognostic information that can guide clinical practice. CMR has been utilised in clinical

trials to detect the impact of PH therapies and is increasingly proposed as a trial endpoint.

Machine learning approaches to improve automation and accuracy of CMR metrics and

identify imaging features of PH shows potential and is likely to improve the clinical utility

of CMR imaging.
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Abstract

Objectives This meta-analysis evaluates assessment of pulmonary arterial

hypertension (PAH), with a focus on clinical worsening and mortality.

Background Cardiac magnetic resonance (CMR) imaging has prognostic

value in the assessment of patients with PAH. However, there are limited data

on the prediction of clinical worsening, an important composite end-point used

in PAH therapy trials.

Methods The Cochrane Central Register of Controlled Trials, MEDLINE,

EMBASE, and Web of Science databases were searched in May 2020. All

CMR studies assessing clinical worsening and the prognosis of patients with

PAH were included. Pooled hazard ratios of univariate regression analyses for

CMR measurements, for prediction of clinical worsening and mortality, were

calculated.

Results Twenty-two studies with 1,938 participants were included in the

meta-analysis. There were 18 clinical worsening events and 8 deaths per 100

patient-years. The pooled hazard ratios show that every 1% decrease in right

ventricular (RV) ejection fraction is associated with a 4.9% increase in the risk

of clinical worsening over 22 months of follow-up and a 2.1% increase in the

risk of death over 54 months. For every 1 ml/m2 increase in RV end-systolic

volume index or RV end-diastolic volume index, the risk of clinical worsening

increases by 1.3% and 1%, respectively, and the risk of mortality increases by

0.9% and 0.6%. Every 1 ml/m2 decrease in left ventricular (LV) stroke volume

index or LV end-diastolic volume index increased the risk of death by 2.5%

and 1.8%. LV parameters were not associated with clinical worsening.

Conclusion This review confirms CMR as a powerful prognostic marker

in PAH in a large cohort of patients. In addition to confirming previous

observations that RV function and RV and LV volumes predict mortality, RV

function and volumes also predict clinical worsening. This study provides a

strong rationale for considering CMR as a clinically relevant endpoint for trials

of PAH therapies.
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2.1 Introduction

P ulmonary arterial hypertension (PAH) is characterised by remodelling of the distal

pulmonary arteries, leading to an increase in pulmonary vasculature resistance,

reduced compliance, and elevated pulmonary artery pressure [12, 13, 30]. Untreated, PAH

has high morbidity and mortality that are closely linked to right ventricular dysfunction

[30]. A new diagnosis of PAH increases the risk of death at one year fivefold [14]. However,

over the last 20 years, treatment advancements have led to an increase in median survival

from three to seven years [14, 32, 44], although development of new therapies is still

needed.

Recently, clinical studies of PAH therapies have moved from assessing exercise capacity

and pulmonary haemodynamics to using composite end-points. One such approach uses

the time to clinical worsening. Clinical worsening events include hospitalisation, disease

progression, and unsatisfactory longterm clinical response, in addition to mortality [127].

However, given the large number of patients required and the expense of conducting such

event-driven studies, cardiac magnetic resonance (CMR) has recently been explored as a

primary endpoint to evaluate PAH therapies [119].

CMR is the gold standard method of measuring right ventricular (RV) function, volumes,

and mass, and it is an established prognostic and therapy response tool [12, 128, 129]. In

2015, a meta-analysis assessed the prognostic value of CMR measurements in five studies

with 332 participants [128]; however, no data were reported on clinical worsening. Since

then, multiple new studies assessing clinical worsening in addition to mortality have been

published in PAH. The current meta–analysis also includes unpublished supplemental

data on CMR metrics from 16 previously published studies, which allowed us to provide

new data on the utility of CMR to predict clinical worsening in addition to mortality.

The goal of the current study therefore was to review the evidence for CMR metrics to

predict clinical worsening and mortality in patients with PAH.
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2.2 Methods

The review was prospectively registered with The International Prospective Register of

Systematic Reviews (PROSPERO) on 12/12/19 (ID: CRD42019160296). The Preferred

Reporting Items for Systematic reviews and Meta-Analysis guidelines (PRISMA) were

followed [130]. Ethical approval was not required for this meta-analysis because it was

based on published literature and did not recruit patients.

2.2.1 Criteria for considering studies for this review

Studies of all forms of PAH (including idiopathic (IPAH), heritable, drug- and toxin-induced

PAH, and PAH associated with connective tissue disease (CTD); congenital heart disease;

HIV infection; and portal hypertension) were considered for inclusion in the meta-analysis.

For studies including patients with different forms of pulmonary hypertension (PH), data

from these studies were incorporated only if the PAH cohort was separately described

or the PAH participants formed at least one-half of the study population. To obtain

additional data on patients with PAH, which may have been collected but not published,

authors were contacted and supplemental data requested. Case reports or small cases

series of <10 participants were excluded. Data collected included any clinically relevant

outcomes such as hospitalisation due to heart failure, disease progression, unsatisfactory

long-term clinical response, and death. To allow for analysis, only studies that reported

Cox regression hazard ratios expressed per unit of measurement were included. One study

reporting dichotomised hazard ratios was excluded because raw hazard ratios could not

be obtained after contacting the study author.

2.2.2 Search methods for identification of studies

The following databases were systematically searched for relevant studies on 13/05/2020:

Cochrane Central Register of Controlled Trials (Central) (Issue 1, May 2020), MEDLINE

(ProQuest, 1946 to 6 May 2020), EMBASE (Ovid, 1974 to 2020 Week 20), Web of Science

(to 13 May 2020). The reference lists of all relevant articles identified during the full-text

screening were scrutinised for relevant studies.

The following search strategy was used:
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1. exp ”PULMONARY HYPERTENSION”/

2. exp ”PULMONARY VASCULAR DISEASE”/

3. exp ”PULMONARY HEART DISEASE”/

4. (pulmonary ADJ2 hypertensi*)

5. (1 OR 2 OR 3 OR 4)

6. exp ”CARDIOVASCULAR MAGNETIC RESONANCE”/

7. exp MAGNETIC RESONANCE IMAGING/

8. exp CARDIAC IMAGING/

9. (MRI* OR CMR*)

10. (MR ADJ3 (imag* OR scan*))

11. (prognos* OR predict* OR clinical* OR outcome* OR associa* OR risk* OR death

OR mortal* OR surviv* OR follow-up OR course OR progress* OR deteriorat*)

12. exp MORTALITY/

13. exp PROGNOSIS/

14. (11 OR 12 OR 13)

15. (5 AND 10 AND 14)

2.2.3 Data collection and analysis

Selection of studies

One author (S.A.) screened titles and abstracts and retrieved the full texts of all potentially

eligible studies. The full texts were reviewed and studies meeting the inclusion criteria

were included after discussion with another author (A.J.S.). The selection process was

recorded in a PRISMA flow diagram.

Data extraction and management

Data extraction and risk of bias analysis were performed independently by two review

authors (S.A. and F.A.), and disagreements were discussed with (A.J.S.). Data were

extracted and collated data using a standardised extraction form. The methodological

quality of the included studies was assessed using a modified Quality In Prognosis Studies

tool (QUIPS) [131]. The corresponding authors of all included studies in the meta-

analysis were contacted for hazard ratios (HRs) of unpublished CMR measurements. The

unadjusted HRs were thought when bivariate, multivariate or adjusted % predicted HRs



30 Chapter 2. Cardiac MRI for prognosis prediction in PAH - A meta-analysis

were reported. For the meta-analysis, steps were taken to present data only for patients

with PAH; where clarification was required, study authors were contacted directly.

Statistical analysis and data synthesis

HRs with 95% confidence intervals (CIs) of unadjusted univariate event-free survival

regression analyses for CMR measurements including right and left ventricular ejection

fraction (RVEF and LVEF), RV and LV mass index (RVMI and LVMI), RV and LV

end-diastolic volume index (RVEDVI and LVEDVI), RV and LV end-systolic volume index

(RVESVI and LVESVI) and RV and LV stroke volume index (RV SVI and LV SVI), were

pooled. Published and unpublished data were included in all meta-analyses. Meta-analyses

of HRs were conducted using Review Manager 5.4 (The Cochrane Collaboration, 2020)

using a random-effect model with 95% CI. Forest plots of the baseline CMR measurements

were presented using GraphPad Prism version 8.3 (GraphPad Software, La Jolla CA,

USA). All tests were performed at .05 level.

Participant characteristics were presented as mean ± standard deviation (SD). If the

median and ranges were reported for demographics and baseline CMR metrics, data were

expressed as mean ± SD, using standard approaches [132]. Means and SDs were pooled

using the formula provided in Table 7.7.a in the Cochrane Handbook [133]. Between-study

heterogeneity was measured using the I2 statistic. An I2 >50 was considered as high, and an

I2 >30 as moderate heterogeneity. Meta-regression analyses were performed to investigate

age, gender, 6-minute walking test and RHC parameters as study-level covariates on CMR

measurements that had a moderate or high statistical heterogeneity. Meta-regression was

performed using SPSS Statistics 26, (IBM Corp., Armonk, N.Y., USA). Publication bias

was assessed graphically using funnel plots where at least ten studies were included in a

meta-analysis.

2.3 Results

2.3.1 Results of the search

The comprehensive systematic literature search identified 10,939 citations (Figure 2.1).

Deduplication left 8,119 citations; the majority of studies were excluded from the title

and abstract screening because they (i) did not meet the inclusion criteria, primarily due
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to the absence of prognostic data, (ii) did not include patients with pulmonary arterial

hypertension (PAH) or (iii) were based on echocardiographic or right heart catheter (RHC)

metrics and did not report magnetic resonance imaging (MRI) metrics. The full texts

of 105 articles were retrieved for more detailed evaluation, of which a further 83 were

excluded because they were conference abstracts, MRI findings were not described, included

children, pulmonary hypertension (PH) other than PAH or did not perform univariate

Cox regression analysis. A total of 22 studies that were included in the meta-analysis [46,

47, 51–53, 68, 70, 77, 117, 134–146].
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Figure 2.1: PRISMA flow diagram of the literature search.

2.3.2 Description of included studies

Study design

The review includes 14 case series and 8 case-control studies. Prospective recruitment was

performed in 12 studies and consecutive inclusion was reported in 10 studies. Apart from

Leng 2019 [70], all studies were single tertiary centre studies. The studies were published
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between 2007 and 2020, with 16 studies including 1,606 participants published since the

previous meta-analysis in 2015. Most studies (18 studies) had a small sample size of <100

patients, with the largest study by Swift 2017 [46] including 576 participants.

Population

The 22 studies were conducted in 10 different countries and included 2,149 participants.

A total of 1,938 participants were included in the meta-analysis of whom 97% had PAH

and 3% had other types of PH. IPAH comprised 51% and CTD-PAH 26% of the PAH

population. Dawes 2018 [117], de Siqueira 2016 [68] and Jose 2019 [138] kindly provided

additional data that allowed identification of patients with PAH from a mixed PH cohort.

Participants were aged 52 ± 15 years, with a female predominance (68%) and a pooled

average mean pulmonary artery pressure (mPAP) of 49 ± 15 mm Hg, and RV ejection

fraction (RVEF) of 37 ± 14%. Details of the included studies are presented in (Table 2.1).

The pooled baseline CMR measurements are shown in (Figure 2.2).

2.3.3 Methodological quality of included studies

One-half of the studies had a prospective design, consecutive recruitment of participants,

and reported blinding of CMR readers to patient clinical data. The main concern for

bias is the small sample size of <100 participants in 18 of the 22 included studies. All

studies were performed at PH referral centres and are therefore at risk for referral bias

(Figure 2.3).

The detailed results of the quality assessment are described below:

Study participation

Seven studies were rated as a low risk of bias as they had a prospective design and recruited

more than 50 consecutive patients. The remainder of the studies were assessed to have

some concerns as they were retrospective studies or had a small study size of fewer than

50 patients. In retrospective studies, it is not possible to control the way data is collected

and may include missing data, confounding and selective outcome reporting [147]. Jose

2019 was rated to have a high risk of bias as less than 20 participants had pulmonary

arterial hypertension (PAH).
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Figure 1: Baseline CMR measurements of included studiesFigure 2.2: Pooled baseline CMR characteristics.

The included studies had homogenous mean baseline CMR measurements as
shown by the overlapping confidence intervals, with relatively more heterogene-
ity in RV mass and volumes. The overall pooled mean CMR measurements
show moderately impaired RV function and volumes at baseline and indicate a
relatively advanced disease.
RVEF, right ventricle ejection fraction; RV, right ventricle; LV, left ventricle;
EDVI, end-diastolic volume index; ESVI, end-systolic volume index; MI, mass
index; SVI, stroke volume index
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Study attrition

Twenty-two studies reported no loss to follow-up. Seven studies reported a loss of follow-up

and explained the reason for it. Loss of follow-up of more than 10% was judged to represent

some concerns for bias (Freed 2012; Kang 2013; van de Veerdonk 2011). No study had

more than 20% attrition which was judged as a high risk of bias.

Prognostic factor measurement

Nine studies were judged to have a low risk of bias as they reported blinding of the cardiac

MRI (CMR) assessor to clinical and outcome data. In these studies, intra-observer and

interobserver variability were also analysed by having a random sample of CMRs read by

a second CMR assessor. Thirteen studies did not report blinding of the CMR assessor

and were judged to have some concerns for bias.

Outcome measurement

Twelve studies were judged to have a low risk of bias for outcome measurement if they

either reported mortality only as the study end-point or reported blinding of the outcome

assessor if they included other clinical outcomes in addition to death. Ten studies were

rated to have some concern for bias as they included clinical worsening outcomes in

addition but not blind the outcome assessor to patient data.

Study confounding

All included studies reported important patient characteristics and clinical measurements

including age, sex, disease subtype, RHC findings and 6-min walk distance (6MWD).

Nineteen studies also assessed the effects of confounding factors on the prognostic factors

using multivariate regression analysis and were rated as having a low risk of bias. One

study did not perform a multivariate analysis and was rated to have some concerns for

confounding bias.

Statistical analysis

The statistical methods were adequately explained in all studies. In the studies included in

the meta-analysis, Abe 2019 was rated as having some concerns for bias as they excluded

patients from the univariate and multivariate analysis if they did not have a clinical event.

All studies included in the meta-analysis presented univariate Cox proportional hazards
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ratios (HR) for CMR measurements. The results of Dawes 2018, Knight 2015 and van

Wolferen 2007 had extremely wide confidence intervals and very large effect sizes which

are at odds with the remainder of the included studies. We rated this discrepancy to be

some concern for bias in the statistical analysis of these studies.

2.3.4 Meta-analyses of CMR indices

Clinical worsening was analysed separately to mortality in a subgroup analysis. In 10

studies, providing data exclusively on mortality, 459 deaths (36%) in 1,282 participants

occurred over a mean follow-up of 54 ± 5 months (8 deaths per 100 patient-years). The

hazard ratios of the meta-analysis are presented in Table 2.2. A drop of 1% in RVEF

increased the risk of death by 2.1%. A decrease of 1 ml/m2 in left ventricular (LV) stroke

volume index or LV end-diastolic volume index (LVEDVI) increased the risk of death by

2.5% and 1.8% respectively. An increase in RV volumes, right ventricular end-systolic

volume index (RVESVI) or right ventricular end-diastolic volume index (RVEDVI), by 1

ml/m2 increased the risk of mortality by 0.9% and 0.6%, respectively. The forest plots for

RV and LV function and mass are shown in Figure 2.4 and forests plots for RV and LV

volume measurements in Figure 2.5.

Table 2.2: Results of meta-analyses of hazard ratios for CMR measurements

 

CMR  
measurement 

Overall meta-analysis Mortality outcome Clinical worsening 

HR (95% CI) studies (n) HR (95% CI) studies (n) HR (95% CI) studies (n) 

RVEF 0.965 (0.954-0.976) 20 (1804) 0.979 (0.969-0.990) 8 (1148) 0.951 (0.939-0.964) 12 (656) 

RVEDVI 1.007 (1.005-1.010) 18 (1744) 1.006 (1.003-1.008) 7 (1118) 1.010 (1.006-1.013) 11 (626) 

RVESVI 1.010 (1.008-1.013) 17 (1676) 1.009 (1.005-1.012) 7 (1118) 1.013 (1.008-1.018) 10 (558) 

RVSVI 0.989 (0.978-1.001) 13 (1328) 0.984 (0.965-1.004) 5 (944) 0.992 (0.979-1.004) 8 (384) 

LVEF 0.992 (0.984-1.000) 15 (1561) 0.994 (0.986-1.003) 7 (1118) 0.980 (0.963-0.998) 8 (443) 

LVEDVI 0.985 (0.974-0.995) 15 (1561) 0.982 (0.968-0.996) 7 (1118) 0.986 (0.969-1.004) 8 (443) 

LVESVI 0.991 (0.979-1.003) 14 (1421) 0.985 (0.967-1.003) 6 (978) 0.997 (0.979-1.014) 8 (443) 

LVSVI 0.976 (0.960-0.993) 11 (1344) 0.975 (0.956-0.995) 7 (1118) 0.976 (0.940-1.012) 4 (226) 

RVMI 1.008 (1.001-1.016) 10 (1220) 1.006 (1.000-1.012) 5 (943) 1.018 (0.994-1.041) 5 (277) 

LVMI 1.009 (0.997-1.020) 11 (1357) 1.005 (0.995-1.016) 6 (1030) 1.022 (0.991-1.053) 5 (327) 

HR, hazard ratio; CI, confidence intervals, RVEF, right ventricle ejection fraction; RV, right ventricle; LV, left
ventricle; EDVI, end-diastolic volume index; ESVI, end-systolic volume index; MI, mass index; SVI, stroke volume
index

In 12 studies, providing data on clinical worsening, 218 (33%) events occurred in 656

participants over a mean follow-up of 22 ± 4 months (18 clinical worsening events per 100

patient-years). The composite outcome of clinical worsening included hospitalisation for
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RVEF (per 1%)

Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Brewis 2016
Dawes 2018
Grapsa 2020 
Simpson 2019
Swift 2017
Van de Veerdonk 2011  
Subtotal (95% CI) 
Heterogeneity: I² = 30%
Overall effect: P = 0.0003

Clinical worsening 
Badagliacca 2016
de Siqueira 2016
Freed 2012
Jose 2019
Kang 2013
Knight 2015
Leng 2019
Li 2017
Mouratoglou 2018
Sato 2015
Wang 2020
Yamada 2012
Subtotal (95% CI) 
Heterogeneity: I² = 0%
Overall effect: P < 0.00001

Total (95% CI) 

0.99 [0.93, 1.06]
0.98 [0.95, 1.00]
0.98 [0.96, 1.00]
0.98 [0.95, 1.01]
1.04 [0.98, 1.11]
0.98 [0.95, 1.01]
0.99 [0.98, 0.99]
0.94 [0.90, 0.98]
0.98 [0.97, 0.99]

0.85 [0.79, 0.92]
0.97 [0.93, 1.00]
0.95 [0.92, 0.98]
0.93 [0.85, 1.00]
0.96 [0.91, 1.01]
0.93 [0.87, 0.99]
0.95 [0.91, 0.99]
0.91 [0.79, 1.04]
0.96 [0.91, 1.01]
0.95 [0.91, 0.99]
0.96 [0.93, 0.98]
0.97 [0.92, 1.02]
0.95 [0.94, 0.96]

0.97 [0.95, 0.98]

Hazard Ratio
Random Effect, 95% CI

Heterogeneity: I² = 49%
Overall effect: P = < 0.00001

0.85 0.9 1 1.1 1.2
Lower increases event Higher increases event

RV MI (per 1g/m2)

Study or Subgroup
Mortality
Bredfelt 2018 
Brewis 2016 
Dawes 2018 
Simpson 2019 
Swift 2017
Subtotal (95% CI) 
Heterogeneity: I² = 15%
Overall effect:  P = 0.06

Clinical worsening
Badagliacca 2016 
Freed 2012 
Mouratoglou 2018
Sato 2015
Yamada 2012
Subtotal (95% CI)

1.01 [0.97, 1.05]
1.00 [0.99, 1.01]
1.00 [0.99, 1.02]
1.02 [1.01, 1.04]
1.00 [1.00, 1.01]
1.01 [1.00, 1.01]

0.99 [0.97, 1.02]
1.03 [1.00, 1.06]
1.03 [0.99, 1.08]
1.04 [1.00, 1.08]
0.96 [0.88, 1.05]
1.02 [0.99, 1.04]

1.01 [1.00, 1.02]

Hazard Ratio Random 
Effect, 95% CI

Heterogeneity: I² = 46%
Overall effect:  P = 0.14

Total (95% CI) 
Heterogeneity: I² = 33%
Overall effect: P = 0.03 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

LVEF 

Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Brewis 2016
Dawes 2018 
Simpson 2019
Swift 2017
Van de Veerdonk 2011  
Subtotal (95% CI) 
Heterogeneity: I² = 0%
Overall effect: P = 0.22

Clinical worsening 
de Siqueira 2016
Freed 2012
Jose 2019
Knight 2015
Leng 2019
Mouratoglou 2018 
Wang 2020
Yamada 2012
Subtotal (95% CI)

0.99 [0.92, 1.07]
1.00 [0.97, 1.03]
0.99 [0.97, 1.01]
1.00 [0.97, 1.03]
1.01 [0.96, 1.06]
0.99 [0.98, 1.01]
1.00 [0.96, 1.04]
0.99 [0.99, 1.00]

0.99 [0.95, 1.03]
0.99 [0.95, 1.03]
0.91 [0.82, 1.01]
0.97 [0.90, 1.05]
0.96 [0.91, 1.01]
0.97 [0.90, 1.05]
0.99 [0.96, 1.03]
0.95 [0.88, 1.02]
0.98 [0.96, 1.00]

0.99 [0.98, 1.00]

Hazard Ratio 
Random Effect, 95% CI

Heterogeneity: I² = 0%
Overall effect: P = 0.03

Total (95% CI) 
Heterogeneity: I² = 0%
Overall effect: P = 0.05 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

LV MI (per 1g/m2)

Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Brewis 2016 
Simpson 2019
Swift 2017
Van de Veerdonk 2011  
Subtotal (95% CI) 
Heterogeneity: I² = 29%
Overall effect: P = 0.37

Clinical worsening
de Siqueira 2016
Leng 2019
Mouratoglou 2018
Wang 2020
Yamada 2012
Subtotal (95% CI)

1.01 [0.97, 1.05]
0.99 [0.97, 1.01]
0.99 [0.97, 1.01]
1.02 [1.00, 1.04]
1.01 [1.00, 1.02]
1.03 [0.97, 1.09]
1.01 [0.99, 1.02]

1.03 [0.99, 1.06]
1.00 [0.96, 1.04]
1.05 [1.00, 1.10]
0.99 [0.97, 1.00]
1.07 [1.02, 1.12]
1.02 [0.99, 1.05]

1.01 [1.00, 1.02]

Hazard Ratio 
Random Effect, 95% CI

Heterogeneity: I² =75% 
Overall effect: P = 0.17
Total (95% CI) 
Heterogeneity: I² = 56%
Overall effect: P = 0.15 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

(per 1%)
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Figure 2.4: Meta-analyses of RV and LV function and mass

The meta-analyses of RV and LV function and mass showed that RVEF and
RVMI are significant prognostic marker. RVEF could predict clinical worsening
separate from mortality, while RVMI is a non-specific prognostic marker.
For abbreviation list see legend for Figure 2.2.
Unpublished data is indicated by (+).
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Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Brewis 2016
Dawes 2018 
Simpson 2019
Swift 2017
Van de Veerdonk 2011 

Subtotal (95% CI)
Heterogeneity: I² = 0%
Overall effect: P = 0.002

Clinical worsening 
Badagliacca 2016
de Siqueira 2016
Freed 2012
Jose 2019
Knight 2015
Leng 2019
Li 2017
Mouratoglou 2018
Sato 2015
Wang 2020
Yamada 2012
Subtotal (95% CI)

1.01 [1.00, 1.02]
1.01 [1.00, 1.02]
1.01 [1.00, 1.02]
1.01 [1.00, 1.01]
1.01 [0.99, 1.03]
1.00 [1.00, 1.01]
1.01 [1.00, 1.03]
1.01 [1.00, 1.01]

1.02 [1.01, 1.04]
1.00 [1.00, 1.01]
1.01 [1.00, 1.02]
1.02 [0.99, 1.05]
1.02 [0.99, 1.05]
1.01 [1.00, 1.02]
1.01 [0.99, 1.03]
1.01 [1.00, 1.02]
1.01 [1.00, 1.02]
1.01 [1.00, 1.01]
1.02 [1.00, 1.04]
1.01 [1.01, 1.01]

1.01 [1.01, 1.01]

Hazard Ratio
 Random Effect, 95% CI

Heterogeneity: I² = 21%
Overall effect: P < 0.00001

Total (95% CI) 
Heterogeneity: I² = 5%
Overall effect:  P < 0.00001 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

RVEDVI (per 1 ml/m2)

Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Brewis 2016
Dawes 2018 
Simpson 2019
Swift 2017
Van de Veerdonk 2011 
Subtotal (95% CI)
Heterogeneity: I² = 0%
Overall effect: P < 0.00001

Clinical worsening 
Badagliacca 2016
de Siqueira 2016
Freed 2012
Jose 2019
Knight 2015
Leng 2019
Li 2017
Mouratoglou 2018 
Wang 2020
Yamada 2012
Subtotal (95% CI)

1.02 [1.00, 1.03]
1.01 [1.00, 1.02]
1.01 [1.00, 1.02]
1.01 [1.00, 1.02]
1.01 [1.00, 1.02]
1.01 [1.00, 1.01]
1.01 [1.00, 1.03]
1.01 [1.01, 1.01]

1.03 [1.02, 1.04]
1.01 [1.00, 1.01]
1.01 [1.00, 1.02]
1.02 [1.00, 1.05]
1.02 [0.99, 1.05]
1.01 [1.00, 1.02]
1.02 [0.99, 1.04]
1.02 [1.00, 1.04]
1.01 [1.00, 1.01]
1.02 [1.00, 1.04]
1.01 [1.01, 1.02]

1.01 [1.01, 1.01]

Heterogeneity: I² = 38%
Overall effect: P < 0.00001

Total (95% CI) 
Heterogeneity: I² = 12%
Overall effect: P < 0.00001 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

RVESVI (per 1 ml/m2)
Hazard Ratio

 Random Effect, 95% CI

Study or Subgroup
Mortality
Abe 2019 
Bredfelt 2018 
Brewis 2016 
Dawes 2018 
Swift 2017 
Subtotal (95% CI)
Heterogeneity: I² = 74%
Overall effect: P = 0.13

Clinical worsening 
de Siqueira 2016
Freed 2012
Jose 2019
Knight 2015
Leng 2019
Li 2017
Mouratoglou 2018 
Yamada 2012
Subtotal (95% CI)

0.92 [0.86, 0.98]
1.00 [0.96, 1.03]
0.95 [0.92, 0.98]
1.01 [0.99, 1.03]
1.00 [0.99, 1.00]
0.98 [0.96, 1.00]

1.00 [0.97, 1.02]
0.98 [0.96, 1.00]
0.95 [0.87, 1.04]
0.94 [0.86, 1.03]
0.99 [0.95, 1.03]
0.96 [0.86, 1.07]
1.02 [0.99, 1.04]
1.01 [0.97, 1.05]
0.99 [0.98, 1.00]

0.99 [0.98, 1.00]

Heterogeneity: I² = 2%
Overall effect: P = 0.20

Total (95% CI) 
Heterogeneity: I² = 46%
Overall effect: P = 0.07 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

RVSVI (per 1 ml/m2)
Hazard Ratio

 Random Effect, 95% CI

Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Brewis 2016
Dawes 2018 
Simpson 2019
Swift 2017
Van de Veerdonk 2011 

Subtotal (95% CI)
Heterogeneity: I² = 76%
Overall effect: P = 0.01

Clinical worsening 
de Siqueira 2016
Freed 2012
Jose 2019
Knight 2015
Leng 2019
Mouratoglou 2018 
Wang 2020
Yamada 2012
Subtotal (95% CI)
Heterogeneity: I² = 66%
Overall effect: P = 0.13

Total (95% CI) 

0.98 [0.92, 1.03]
0.99 [0.96, 1.01]
0.97 [0.95, 0.99]
1.01 [1.00, 1.02]
0.98 [0.96, 1.00]
0.98 [0.97, 0.99]
0.96 [0.93, 0.99]
0.98 [0.97, 1.00]

1.00 [0.98, 1.02]
0.96 [0.93, 0.99]
0.94 [0.87, 1.01]
0.91 [0.84, 0.99]
0.99 [0.97, 1.01]
1.00 [0.97, 1.03]
0.98 [0.96, 0.99]
1.03 [1.00, 1.06]
0.99 [0.97, 1.00]

0.98 [0.97, 0.99]
Heterogeneity: I² = 69%
Overall effect: P = 0.003 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

LVEDVI (per 1 ml/m2)
Hazard Ratio

 Random Effect, 95% CI

Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Dawes 2018 
Simpson 2019
Swift 2017
Van de Veerdonk 2011 
Subtotal (95% CI)
Heterogeneity: I² = 45%
Overall effect: P = 0.11

Clinical worsening 
de Siqueira 2016
Freed 2012
Jose 2019
Knight 2015
Leng 2019
Mouratoglou 2018  
Wang 2020
Yamada 2012
Subtotal (95% CI)

0.98 [0.89, 1.07]
0.99 [0.96, 1.02]
1.01 [0.99, 1.04]
0.96 [0.91, 1.01]
0.98 [0.96, 1.00]
0.94 [0.89, 1.00]
0.99 [0.97, 1.00]

1.01 [0.98, 1.04]
0.98 [0.94, 1.02]
1.01 [0.92, 1.10]
0.95 [0.86, 1.05]
1.00 [0.96, 1.04]
1.00 [0.97, 1.03]
0.97 [0.95, 1.00]
1.04 [1.00, 1.08]
1.00 [0.98, 1.01]

0.99 [0.98, 1.00]

Hazard Ratio
 Random Effect, 95% CI

Heterogeneity: I² = 35%
Overall effect: P = 0.70

Total (95% CI) 
Heterogeneity: I² = 37%
Overall effect: P = 0.15 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event

LVESVI (per 1 ml/m2)

LVSVI (per 1 ml/m2)

Study or Subgroup
Mortality
Abe 2019
Bredfelt 2018
Brewis 2016
Dawes 2018 
Simpson 2019
Swift 2017
Van de Veerdonk 2011 
Subtotal (95% CI)
Heterogeneity: I² = 75%
Overall effect: P = 0.02

Clinical worsening
de Siqueira 2016 
Knight 2015
Leng 2019
Mouratoglou 2018 
Subtotal (95% CI)

0.97 [0.89, 1.05]
0.98 [0.94, 1.01]
0.96 [0.93, 0.98]
1.01 [1.00, 1.03]
0.97 [0.94, 1.00]
0.98 [0.96, 0.99]
0.94 [0.90, 0.99]
0.98 [0.96, 1.00]

1.00 [0.97, 1.03]
0.87 [0.77, 0.98]
0.97 [0.92, 1.02]
0.99 [0.92, 1.06]
0.98 [0.94, 1.01]

0.98 [0.96, 0.99]

Hazard Ratio
 Random Effect, 95% CI

Heterogeneity: I² = 40%
Overall effect: P = 0.19

Total (95% CI) 
Heterogeneity: I² = 65%
Overall effect: P = 0.005 0.85 0.9 1 1.1 1.2

Lower increases event Higher increases event
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Figure 2.5: Meta-analyses of RV and LV volume measurements

RV and LV volumes are significant prognostic markers. A decrease in RV
volumes can predict mortality and clinical worsening, while an increase in LV
volumes indicates an increased risk for death only.
For abbreviation list see legend for Figure 2.2.
Unpublished data is indicated by (+).
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heart failure (42%), escalation to prostacyclin treatment (18%), deterioration in World

Health Organization (WHO) functional class (3%), a reduction in exercise capacity (2%),

need for lung transplantation (2%), nonspecified aforementioned nonfatal event (14%) and

all-cause death (19%). RV but not LV volumetric and functional measurements predicted

clinical worsening. A 1% deterioration in RVEF was associated with a 4.9% increase in the

risk of clinical worsening whilst a 1 ml/m2 increase in RVESVI or RVEDVI was associated

with an increase of clinical worsening of 1.3% and 1%, respectively.

Additional meta-analyses

Right atrial measurements

Right atrial (RA) volume is not a significant prognostic marker (HR 1.01, 95% CI 1.00 to

1.02; P = 0.09; participants = 201; studies = 3). RA area index is a significant prognostic

marker (HR 1.08, 95% CI 1.04 to 1.12; P < 0.001; participants = 106; studies = 2).

Pulmonary artery measurements

Surrogate markers for pulmonary artery (PA) stiffness such as relative area change (RAC)

and PA distensibility were reported in two studies only [46, 136]. The meta-analysis

showed that PA distensibility was prognostically significant but PA RAC did not reach

statistical significance. Although PA RAC was significant in each study individually, their

pooled result was imprecise and had wide confidence intervals.The PA RAC meta-analysis

result was HR 0.92, 95% CI 0.85 to 1.00; P = 0.05; participants = 646; studies = 2.

Stroke volume / RV end-systolic volume

In CTD-PAH, PA RAC and load-independent measurements such as RV-PA coupling

measurements were significantly prognostic [46, 51, 148]. Four studies, including 845

participants, reported the stroke volume divided by RV end-systolic volume to estimate

RV elastance (Ees) divided by PA elastance (Ea). The pooled CMR Ees / Ea ratio is a

significant prognostic marker (HR 0.47, 95% CI 0.33 to 0.68; P < 0.001).

Heterogeneity

There was high statistical heterogeneity in the overall result of LV mass index, LVSVI

and LVEDVI, and moderate heterogeneity in LV endsystolic volume index, RVEF, and

RV stroke volume index. A meta-regression model of the logHR of these variables showed

no evidence of a linear relationship with age, male sex, 6-min walking test, or right heart
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catheterisation parameters (cardiac index, mean right atrial pressure and pulmonary

vascular resistance) (Table 2.3). There was not enough data to perform a meta-regression

for functional class, disease stage or treatment status. There may, however, be sources of

heterogeneity that could not be assessed in a meta-regression analysis where not enough

data were available. There were differences in the types of clinical worsening events used

as endpoints, length of follow-up, and the subgroups of PAH studied. Other causes of

heterogeneity may include variation in baseline CMR measurements (Figure 2.2), disease

severity and treatment status. There is also geographical variation; eleven studies were

from European centres, four from the USA and seven from Japan, South Korea, China

and Singapore.

Table 2.3: Meta-regression of CMR measurements with moderate to high
statistical heterogeneity

CMR measurement 
Covariate coefficient (P value) 

Age Male gender 6MWD CI mRAP PVR 

RVEF 0.40 (0.08) -0.11 (0.64) -0.45 (0.10) 0.13 (0.64) 0.44 (0.09) 0.52 (0.10) 

RVEDVI -0.04 (0.88) -0.18 (0.46) 0.01 (0.98) -0.17 (0.56) -0.29 (0.29) -0.42 (0.20) 

RVSVI -0.02 (0.95) 0.23 (0.44) insufficient data 0.39 (0.27) 0.29 (0.41) insufficient data 

LVEDVI -0.24 (0.40) -0.13 (0.63) 0.06 (0.86) 0.07 (0.82) -0.25 (0.43) insufficient data 

LVESVI -0.206 (0.50) -0.32 (0.26) -0.39 (0.27) -0.20 (0.58) -0.41 (0.24) insufficient data 

LVMI 0.28 (0.39) -0.49 (0.11) insufficient data 0.35 (0.36) 0.27 (0.48) insufficient data 
 6MWD, 6-minute walking distance; mRAP, mean right atrial pressure; CI, cardiac index; PVR, pulmonary vascular

resistance (Wood units)

Publication bias

Most studies included in the meta-analysis were contacted for unpublished data to reduce

the risk of publication bias. The study authors of 13 included studies kindly replied

to our requests for additional data where they published results for a mixed PH cohort

(Dawes 2018 [117], de Siqueira 2016 [68], Jose 2019 [138]), bivariate or multivariate hazard

ratios (HRs) (Brewis 2016), adjusted % predict HRs (Swift 2017), non-indexed volumetric

measurements (Badagliacca 2016) or reported a subset of CMR indices (Abe 2019 [51],

Bredfelt 2018 [135], Knight 2015 [140], Simpson 2019 [52], Leng 2019 [70], Mouratoglou

2018 [142], Van de Verdonk 2011 [47]). The authors provided us with PAH results only,

univariate and non-adjusted HRs, indexed volumetric measurements and the results for

additional CMR metrics. Five studies published prior to 2015 reporting only a few CMR
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metrics did not respond to our requests for additional information. The results of Van

Wolferen 2007 ([145]) had very large effect sizes and standard errors, following discussion

with the co-authors we understand this is due to scaling of the CMR measurements to

the standard deviation rather than the unit of measurement. We therefore decided not to

pool the results of Van Wolferen 2007 with the rest of the studies due to the different unit

of scaling used.

Publication bias was assessed graphically using funnel plots where at least ten studies

were included in a meta-analysis (Figure 2.6). The funnel plots of RVEF, LVEF, RVMI and

LVEDVI showed minor asymmetry which may indicate that a small study with extreme

effect sizes was not published.

2.4 Discussion

To the best of our knowledge, this study is the largest meta-analysis of CMR imaging in

patients with PAH and the first to report on clinical worsening in addition to mortality.

We have confirmed that CMR imaging is a powerful prognostic marker in a large cohort of

patients from multiple institutions, across several continents and using different imaging

platforms. In addition, we have shown that CMR imaging predicts clinical worsening

in patients with PAH. Our findings highlight the clinical utility of CMR imaging and

support further evaluation of this modality as a clinically meaningful trial endpoint for

the assessment of new therapies for PAH (Table 2.4).

Clinical worsening as a composite endpoint has been shown to predict mortality [149]

and has established itself as a primary efficacy endpoint in trials of PAH therapies [127,

150]. Although heart failure and all-cause mortality are included in all PAH trials using a

composite clinical worsening endpoint, these trials vary in their inclusion and definition of

progression markers, such as change in exercise tolerance or functional capacity [151], and

they may use different thresholds to define a meaningful change [152]. Nonetheless, study

designs using time to clinical worsening have been increasingly adopted to evaluate PAH

therapies. However, such studies require large numbers of participants and a prolonged

period of follow-up, usually lasting for several years. As a consequence and given recent

events such as the coronavirus disease 2019 pandemic, there has been a focus on considering
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Figure 2.6: Funnel plots of the meta-analyses of CMR measurements
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Table 2.4: Summary of findings table

Review 
question 

What are the CMR predictors for clinical worsening and mortality in 
patients with PAH? 

Population 
1,938 participants, including 68% females, aged 52 ± 15 years. 
Participants had more advanced disease and intermediate to high risk 
for one-year mortality.  

Follow-up 22 ± 4 months for clinical worsening and 54 ± 5 months for mortality 

Setting Tertiary pulmonary hypertension referral centres 

Studies Case series and case-control studies 

Quality of 
evidence 

Some concerns for bias due to small sample sizes, retrospective design, 
lack of blinding in most studies and non-consecutive inclusion in half of 
the studies. 

Results Increment 
Clinical worsening Mortality risk 
(over 22 months) (over 54 months) 

RVEF per 1% decrease 4.9% increase 2.1% increase 

RVESVI per 1 ml/m2 increase 1.3% increase 0.9% increase 

RVEDVI per 1 ml/m2  increase 1% increase 0.6% increase

LVSVI Not significant 2.5% increase 

LVEDVI per 1 ml/m2  decrease Not significant 1.8% increase 

per 1 ml/m2  decrease

CMR, Cardiac MRI; PAH, pulmonary arterial hypertension; RVEF, right ventricle ejection fraction; RV, right
ventricle; LV, left ventricle; EDVI, end-diastolic volume index; ESVI, end-systolic volume index; SVI, stroke volume
index
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clinical trial endpoints, which allow the impact of candidate therapies to be assessed over

a shorter period and using an endpoint that correlates with clinically meaningful events.

In this meta-analysis, we have shown for the first time in a large cohort of patients that

CMR-derived RV volumetric and functional metrics but not LV measurements predict

clinical worsening. This information should be helpful to regulatory authorities who are

keen to ensure that proposed trial endpoints have clinical relevance. In addition, this

meta-analysis confirms the prognostic value of CMR metrics in a substantial cohort of

patients, which has allowed an assessment of the impact of change on specific metrics

concerning clinical worsening, including mortality. A 1% decrease in RVEF is associated

with a 4.9% increase in the risk of clinical worsening and a 2.1% increase in the risk

of death. In addition a 1 ml/m2 increase in indexed RV volumes is associated with a

0.6% to 0.9% increase in the risk of mortality and 1% to 1.3% increase in the risk of

clinical worsening. Although this incremental change in RV volumes is smaller than

the 1.8% to 2.5% associated with a 1 ml/m2 decrease in LV volume, the overall risk of

mortality is more linked to RV volume, previously highlighted in large cohort studies [46,

59]. Specifically, the increase in RV volume due to dilation in response to an increase in

afterload is substantially larger than the change in LV volume, occurring as a consequence

of ventricular interaction [48]. Particularly, in advanced disease in PAH when uncoupling

of the RV and its load occurs [153].

This meta-analysis has shown that an increased RV mass has prognostic value but does

not predict clinical worsening. In PAH, an increase in RV mass and RV hypertrophy is likely

to represent an appropriate adaptive response to an increase in afterload [154]. In a CMR

study in which patients were monitored over five years, RV wall thickness was not associated

with increased mortality in patients who were judged to be clinically stable [48]. Moreover,

a disproportionate increase in right ventricular mass index (RVMI) compared with RVEDV

indicates concentric hypertrophy and is associated with a favourable outcome in IPAH

[134]. Eccentric hypertrophy with a disproportionate increase in RVEDV compared to

RVMI is considered a maladaptive response to increased afterload and is associated with a

poor outcome [134, 154]. In IPAH, therefore, caution should be exercised when using mass
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measurements in isolation because they give incomplete information on RV adaptation.

Further study of the relationship between RV mass and volume would be helpful. In

CTD-PAH, in which the natural history of the disease is different, RVMI and ventricular

mass index (VMI) appear to have greater prognostic value than RV function or volumes

[77, 117, 138, 148]. A 10% increase in RVMI and VMI was associated with an increased

risk of death of 10% - 15% [52]. A VMI ≥ 0.7 was associated with 35% mortality at one

year and 67% mortality at two years [148]. RV hypertrophy in CTD-PAH may be an early

prognostic marker for mortality rather than just an adaptive response to PH [52]. This

finding emphasises the importance of considering the clinical context when using tools to

assess prognosis.

Several additional CMR measurements have been shown in small studies to have

prognostic value mentioned in the ”Additional meta-analyses”. These analyses include

right atrial (RA) volume and area, pulmonary artery relative area change (RAC) and

distensibility and the ratio of stroke volume / RV end-systolic volume (CMR Ees /

Ea). Although the European Society of Cardiologists and European Respiratory Society

guidelines include RA size and the presence of pericardial effusion on echocardiogram as

prognostic factors in PAH, there is only limited data on these metrics as a prognostic

marker using CMR [13]. RA volume on CMR has been evaluated in two studies only. The

meta-analysis of their results did not reach statistical significance; however, the direction

of effect suggests that an increased RA volume is associated with a poor outcome. Further

studies assessing CMR RA volume and its relation to clinical worsening and prognosis in

PAH prognosis are needed. Two additional RA CMR markers that have been reported to

be prognostically significant but could not be studied in the meta-analysis as only one

study reported each metric; these were RA emptying fraction and RA strain [70, 155].

RA emptying fraction is the difference in the RA max - RA min volume divided by RA

max volume and RA strain was calculated as the distance between the posterior RA wall

and the atrioventricular junction on the 4-chamber view. It is worth noting that each

study assessing RA area and volume used different measuring methods. RA was measured

either on short-axis stacks, 4-chamber views or axial cine images covering the whole heart.

Measuring the RA on short-axis images can be misleading and the most accurate way of
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capturing the entire atria would be to assess the axial images. Despite these difference in

the RA area and volume measurements between studies, they all agreed that RA size is a

marker of poor prognosis in PAH.

Additional CMR prognostic markers that were not assessed in the meta-analysis include

myocardial strain analysis, myocardial T1 mapping and late gadolinium enhancement. The

small number of studies reporting these markers or the absence of Cox regression analysis

prevented a meaningful pooling of their results. Strain analysis using feature tracking

seems to be a promising prognostic marker [68–70]; however, it needs to be evaluated

further in a more extensive survival study. Late gadolinium enhancement [75–77] and

T1-mapping [84] have an unclear additive prognostic value in PAH.

The meta-analysis is based on a population likely to have disease at the more severe

end of the spectrum. The results may therefore not be generalisable to patients with

more modest disease, in which age and comorbidity may have more of an impact on

prognosis. A recently published, large well-designed study has shown that CMR could

be used to establish thresholds for mortality risk in PAH [59]. This study showed that

CMR metrics can be used to improve risk stratification when incorporated into the French

Registry approach or REVEAL (Registry to Evaluate Early and Long-Term Pulmonary

Arterial Hypertension Disease Management) risk scores [156, 157]. In the study by Lewis

et al. [59], an RVEF <37%, an RVESVI of >54 ml/m2 and LVEDVI of <52 ml/m2 were

associated with a high risk of mortality. In this meta-analysis, the pooled RVEF was

37%, RVESVI 63 ml/m2 and LVEDVI 57 ml/m2. All included studies used the current

guideline criteria of an mPAP threshold of ≥ 25 mmHg. A new threshold of > 20 mm

Hg with a pulmonary vascular resistance ≥ 3 Wood units has recently been proposed as

a haemodynamic definition for PAH, being two standard deviations above the normal

threshold [20]. There remains a lack of evidence therefore regarding the prognostic value

of CMR in patients who have modest PAH and those with mPAP > 20mm Hg, in whom

other factors may be more of a driver to clinical worsening and mortality.
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2.4.1 Limitations

An extensive systematic literature search was performed and a pre-published protocol was

followed. However, a potential limitation of this study is that inclusion was assessed by a

single investigator. Any doubt regarding study selection was discussed with another inves-

tigator, however. This meta-analysis contains previously unpublished data for participants

included in previously published studies. However, this approach has allowed improved

data completeness and additional analysis. The included studies including supplemental

data are indicated by (+) in Figure 2.4 and Figure 2.5. Patients in this study included a

cohort with a predominantly intermediate and high risk of one-year mortality and likely

represent a cohort with more severe disease. Although the results of the meta-analysis

suggest that CMR imaging, as performed in expert centres, strongly associates with

outcomes, some caution is warranted in its application in less-experienced centres given

the limited existence of multicentre studies. In some instances, heterogeneity is high, and

greater caution in interpretation is therefore indicated. Finally, only limited data provided

on the potential of CMR metrics such as myocardial strain analysis, RA size, PA wall

stiffness and four-dimensional flow parameters and the application of artificial intelligence

approaches to large imaging data sets, which may add clinical value.

2.5 Conclusion

Clinical worsening is an important composite endpoint used in therapy trials in PAH. This

meta-analysis is the first to study the role of CMR in the prediction of clinical worsening

in PAH. In a meta-analysis of a large cohort with PAH, we showed that CMR predicts

clinical worsening in addition to confirming its prognostic value. In a metaregression,

we have also shown that CMR predicts clinical worsening and mortality independent of

age, sex, pulmonary hemodynamics, and walking distance. This study provides further

data supporting the clinical utility of CMR in patients with PAH. The findings of this

meta-analysis provide a strong rationale for future research to consider CMR as a clinically

relevant endpoint for therapy trials in PAH.
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Abstract

Objectives This systematic review aimed to evaluate the quality of reporting

in Artificial Intelligence (AI) studies of cardiac MRI (CMR) segmentation.

Background There has been a rapid increase in the number of AI studies of

CMR segmentation aiming to automate image analysis. However, advancement

and clinical translation in this field depend on researchers presenting their

work in a transparent and reproducible manner.

Methods MEDLINE and EMBASE were searched for AI CMR segmentation

studies in April 2022. Any fully automated AI method for segmentation of

cardiac chambers, myocardium or scar on CMR was considered for inclusion.

For each study, compliance with the Checklist for Artificial Intelligence in

Medical Imaging (CLAIM) was assessed. The CLAIM criteria were grouped

into study, dataset, model and performance description domains.

Results 209 studies published between 2012 and 2022 were included in the

analysis. Studies were mainly published in technical journals (58%), with the

majority (57%) published since 2019. Studies were from 37 different countries,

with most from China (26%), the United States (18%) and the United Kingdom

(11%). Short axis CMR images were most frequently used (70%), with the

left ventricle the most commonly segmented cardiac structure (49%). Median

compliance of studies with CLAIM was 67% (IQR 59 − 73%). Median compli-

ance was highest for the model description domain (100%, IQR 80 − 100%)

and lower for the study (71%, IQR 63 − 86%), dataset (63%, IQR 50 − 67%)

and performance (60%, IQR 50 − 70%) description domains.

Conclusion This systematic review highlights important gaps in the literature

of CMR studies using AI. We identified key items missing - notably poor

description of patients included in the training and validation of AI models and

inadequate model failure analysis - that limit the transparency, reproducibility

and hence validity of published AI studies. This review may support closer

adherence to established frameworks for reporting standards and presents

recommendations for improving the quality of reporting in this field.



3.1 Introduction 53

3.1 Introduction

C ardiac MRI (CMR) is the gold standard for non-invasive assessment of cardiac

structures. Quantitative measurement of cardiac volumes can be achieved with CMR

and relies on accurate segmentation of structures on CMR images. Manual segmentation

is routinely performed by cardiac imaging experts but suffers from a number of drawbacks.

In addition to being laborious and time-intensive, manual segmentation is operator-

dependent, potentially impacting interobserver agreement. As the demand for cardiac

imaging continues to grow and outpaces the supply of trained readers, there is an increasing

need for automation [1, 158].

Artificial intelligence (AI) is changing medical imaging through the automation of

complex and repetitive tasks, including the segmentation of anatomical structures [159].

Machine learning is a subfield of AI that is commonly used for image analysis and processing

in medical applications. Machine learning algorithms learn by experience, typically in a

supervised manner: the algorithm is trained on labelled data, such as a set of manually

segmented CMR images, where the manual segmentation provides the reference standard

or ground truth. The algorithm identifies discriminative features and patterns in this

image data, which are incorporated to generate a model that can perform the task - such

as segmentation of the cardiac chambers - on new unlabelled data without the need for

explicit programming. Machine learning itself encompasses a diverse range of techniques,

including deep learning, which can be applied to the segmentation of structures in imaging

[160].

A growing number of studies have reported the use of AI methods for segmentation

in CMR. The manner in which these studies are reported is important. Transparent

reporting of methods and results facilitates reproducibility and allows proper evaluation

of validity. Equally, a consistent standard of reporting aids comparison between studies

and may improve accessibility of the literature, which may be of particular benefit in a

rapidly expanding field such as AI. The need for consistency in reporting medical research
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is well recognised and reflected in various guidelines and checklists for different study

types. The Checklist for Artificial Intelligence in Medical Imaging (CLAIM), [161] has

adopted the validated and widely used Standards for Reporting of Diagnostic Accuracy

Studies (STARD) guidelines and incorporated domains specific to AI studies, including

detailed descriptions of data sources, model design and performance evaluation. This

systematic review aimed to evaluate the quality of reporting of studies involving AI CMR

segmentation by assessing compliance with CLAIM.

3.2 Methods

The study protocol was registered with The International Prospective Register of System-

atic Reviews (PROSPERO; registry number CRD42022279214). The study was undertaken

and is presented in accordance with the Preferred Reporting Items for Systematic reviews

and Meta-Analyses (PRISMA) guidelines [162]. No ethical approval was required.

3.2.1 Inclusion and exclusion criteria

Studies reporting the use of AI for segmentation of structures in CMR were considered for

inclusion. Studies were deemed eligible if they reported: (1) any type of fully automated AI

method (including machine learning, deep learning and neural networks), (2) segmentation

of cardiac chambers, myocardium or scar tissue and (3) use of adult human CMR images,

regardless of acquisition methods (such as use of intravenous contrast), parameters,

post-processing methods and software. Exclusion criteria were as follows: absence of a

newly developed segmentation model (e.g. studies assessing existing methods), use of

semi-automated AI methods (where the segmentation process required manual input),

multiorgan segmentation, combined segmentation of multiple imaging modalities (e.g. CMR

and CT), segmentation of cardiac vessels (e.g. aorta, pulmonary artery, coronary arteries)

or pericardial tissue, use of non-human or ex-vivo images, and conference publications. Non-

English language publications were excluded. Figure 3.1 shows an example of automatic

biventricular [7] (Figure 3.1A) and four-chamber [163] (Figure 3.1B) segmentation on

CMR.
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Figure 3.1: Examples of AI cardiac MRI segmentation. A: biventricular and
B: four-chamber segmentation. The coloured contours in green and red show
the left ventricular epi- and endocardium, respectively. The contours in dark
blue and yellow show the right ventricular epi- and endo- cardium, respectively.
The pink and turquoise contours outline the left and right atria, respectively.
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3.2.2 Search method

The MEDLINE and EMBASE databases were searched for relevant studies on April 20 2022.

The following search strategy was used:

1. automat*

2. exp ARTIFICIAL INTELLIGENCE/

3. exp MACHINE LEARNING/

4. exp DEEP LEARNING/

5. exp DEEP NEURAL NETWORK/

6. exp CONVOLUTION ALGORITHM/

7. ((deep or supervised or unsupervised or machine) and learning)

8. 1 or 2 or 3 or 4 or 5 or 6 or 7

9. exp MAGNETIC RESONANCE IMAGING/

10. exp CARDIOVASCULAR MAGNETIC RESONANCE/

11. (Cine or MRI or MRA or (Magnetic and resonance))

12. 9 or 10 or 11

13. (heart or cardi* or myocard* or coronar* or ventric* or LV or RV or atri*)

14. (segment* or conto* or annotat* or label*)

15. exp IMAGE SEGMENTATION/

16. exp SEGMENTATION ALGORITHM/

17. 14 or 15 or 16

18. 8 and 12 and 13 and 17

3.2.3 Study selection

Figure 2 indicates the flow of study identification and inclusion. Duplicate studies were

removed following the initial database search. The titles and abstracts of the remaining

studies were screened for relevance. The full texts of all potentially relevant studies were

retrieved and assessed for eligibility against the inclusion and exclusion criteria. Conference

abstracts and studies lacking sufficient information for evaluation were excluded at this

point. Screening was performed independently by (S.A.) and by (S.D., A.M.2., M.S.2.)
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and full texts were assessed for eligibility by (S.A., A.M.1 and M.S.), with (S.A.) acting as

an arbitrator.

3.2.4 Data extraction

Three authors extracted data from the included studies (S.A., A.M1., M.S.1.) according

to a standardised checklist. Half of the included studies were also evaluated independently

by an additional five authors (S.D., A.M.2., S.J., M.G., H.A.) for the purpose of quality

control. All discrepancies were resolved with discussion, with S.A. acting as an arbitrator,

and the final extracted data confirmed. Descriptive information about each study was

recorded, including publication details (type, source, country, year), data used (type

of data set, type of CMR image, segmented structures) and AI model (validation and

performance evaluation methods). The studies were assessed for compliance against the 42

criteria of CLAIM, which were grouped into four domains: study description (9 criteria),

dataset description (17 criteria), model description (6 criteria) and model performance (10

criteria). For each criterion, compliance was marked as yes, no or not applicable (N/A).

Studies deemed N/A were excluded when evaluating the proportion of studies compliant

with CLAIM criteria. For studies using solely public datasets, the following criteria were

marked as N/A, as they can be considered implicit in the use of publicly available data

sources: retrospective or prospective study, source of ground truth annotations, annotation

tools, de-identification methods and inter- and intra-rater variability. Additionally, the

following criteria were marked as N/A for all studies: rationale for choosing the reference

standard (as manual expert contouring is the standard in the field) and registration number

and name of registry. Descriptive data and the number of studies compliant with CLAIM

criteria are presented as proportional values (%).

3.3 Results

3.3.1 Search results

The database search yielded 2855 hits from which the title and abstract screening identified

364 relevant studies of which 155 were excluded because they were conference reports,

non-CMR, animal studies, extra-cardiac, semi-automated or non-AI segmentation. The

subsequent full-text assessment deemed 209 eligible for inclusion in the analysis (Figure 3.2).
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Figure 3.2: The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses flow chart of literature search.
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3.3.2 Included studies

Descriptive information for all of the 209 included studies are provided in Supplementary

Table 1. Selected metrics are highlighted in Figure 3.3. The majority of studies (57%)

were published since 2019 (Figure 3.3A). Most studies were published in technical journals

(58%), with a minority published in medical (31%) or hybrid (11%) journals. The studies

were undertaken in 37 different countries (Figure 3.3B), with just over half coming from

China (26%), the USA (18%) and the UK (11%).

Publicly available datasets were used in 49% of studies, and single or multicentre non-

public datasets used in 61%, 17% of studies used multiple or combined datasets (including

multiple public datasets and a combination of public and non-public datasets). A minority

of studies (6%) did not report their data source (Figure 3.3C). Of the public datasets

used, the majority (86%) had been made available through Medical Image Computing and

Computer-Assisted Intervention (MICCAI) challenges or the Cardiac Atlas Project [164]

(Figure 3.3D). Most studies reported the number of cases used (95%), with a range of 3

to 12984 and a median of 78. Short axis CMR images were most frequently used (70%),

while 14% of studies did not report the specific type of CMR image used for segmentation

(Figure 3.3E). The left ventricle was the most commonly segmented structure, either alone

or in combination (49%, Figure 3.3F). Segmentation of multiple structures was reported

in 23% of studies.

Model validation was mostly reported using internal holdout methods (78%), such as

cross-validation. A minority reported testing on external and mainly public datasets (22%,

Figure 3.3G). The Dice similarity coefficient (DSC) was used to assess model performance

in 79% of studies, either alone or in combination with other metrics such as the Hausdorff

distance or the Jaccard index (Figure 3.3H). Few studies (10%) provided working links to

publicly available code, with a further 1% indicating that code was available on request.

3.3.3 Compliance with CLAIM

Results for compliance with the domains and selected individual criteria of CLAIM are

summarised in Figure 3.4. The complete results are presented in Table 3.1. The median
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Figure 3.3: Descriptive information for the 209 included studies. A: publi-
cation dates; five studies (2.4%) were included from early 2022 and are not
indicated here. B: location of origin of studies. C: data sources; the proportion
of studies which used public and non-public datasets is shown, with some
studies having used multiple or combined datasets. D: public datasets used by
studies, where relevant. E: type of CMR images used. F: cardiac structures
segmented; some studies performed segmentation on multiple structures. G:
method of model validation. H: method of model performance evaluation.
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compliance of all studies with all 42 criteria of CLAIM was 67% (IQR 59 − 73%). Notable

results excluding non-applicable criteria are as follows.
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Table 3.1: Compliance with CLAIM checklist.

 

 

 

  No. Criteria Domain Yes No 

Title & abstract 

Title 1 
Identification as a study of AI methodology, specifying the category of 

technology used (e.g., deep learning) 
Study 

description 
90.9% 9.1% 

Abstract 2 Structured summary of study design, methods, results, and conclusions 
Study 

description 
52.6% 47.4% 

Introduction 

Introduction 

3 
Scientific and clinical background, including the intended use and clinical 

role of the AI approach 
Study 

description 
92.3% 7.7% 

4 Study objectives and hypotheses 
Study 

description 
94.3% 5.7% 

Methods 

Study design 

5 Prospective or retrospective study 
Study 

description 
36.0% 64.0% 

6 
Study goal, such as model creation, exploratory study, feasibility study, 

non-inferiority trial 
Study 

description 
95.2% 4.8% 

Data sources 

7 Data sources 
Dataset 

description 
93.8% 6.2% 

8 
Eligibility criteria: how, where, and when potentially eligible participants 

or studies were identified (e.g., symptoms, results from previous tests, 
inclusion in registry, patient-care setting, location, dates) 

Dataset 
description 

74.2% 25.8% 

9 Data pre-processing steps 
Dataset 

description 
93.8% 5.7% 

10 Selection of data subsets, if applicable 
Dataset 

description 
92.8% 6.7% 

11 Definitions of data elements, with references to Common Data Elements 
Dataset 

description 
99.5% 0.5% 

12 De-identification methods 
Dataset 

description 
11.2% 88.8% 

13 How missing data were handled 
Dataset 

description 
8.6% 91.4% 

Ground truth 
reference standard 

14 
Definition of ground truth reference standard, in sufficient detail to allow 

replication 
Dataset 

description 
67.6% 32.4% 

15 Rationale for choosing the reference standard (if alternatives exist) 
Dataset 

description 
N/A N/A 

16 
Source of ground-truth annotations; qualifications and preparation of 

annotators 
Dataset 

description 
54.8% 45.2% 

17 Annotation tools 
Dataset 

description 
30.6% 69.4% 

18 
Measurement of inter- and intrarater variability; methods to mitigate 

variability and/or resolve discrepancies 
Dataset 

description 
41.9% 58.1% 

Data Partitions 19 Intended sample size and how it was determined 
Dataset 

description 
4.3% 95.7% 
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Compliance with CLAIM checklist. (cont.)

20 How data were assigned to partitions; specify proportions 
Dataset 

description 
89.4% 10.6% 

21 
Level at which partitions are disjoint (e.g., image, study, patient, 

institution) 
Dataset 

description 
87.0% 13.0% 

Model 

22 
Detailed description of model, including inputs, outputs, all intermediate 

layers and connections 
Model 

description 
94.7% 5.3% 

23 Software libraries, frameworks, and packages 
Model 

description 
74.2% 25.4% 

24 Initialization of model parameters (e.g., randomization, transfer learning) 
Model 

description 
91.7% 8.3% 

Training 

25 
Details of training approach, including data augmentation, 

hyperparameters, number of models trained 
Model 

description 
78.3% 21.7% 

26 Method of selecting the final model 
Model 

description 
91.6% 8.4% 

27 Ensembling techniques, if applicable 
Model 

description 
50.0% 50.0% 

Evaluation 

28 Metrics of model performance 
Model 

performance 
99.5% 0.5% 

29 
Statistical measures of significance and uncertainty (e.g., confidence 

intervals) 
Model 

performance 
77.5% 22.5% 

30 Robustness or sensitivity analysis 
Model 

performance 
60.8% 39.2% 

31 
Methods for explainability or interpretability (e.g., saliency maps), and 

how they were validated 
Model 

performance 
64.1% 35.9% 

32 Validation or testing on external data 
Model 

performance 
21.5% 78.5% 

Results 

Data 

33 
Flow of participants or cases, using a diagram to indicate inclusion and 

exclusion 
Dataset 

description 
10.0% 90.0% 

34 Demographic and clinical characteristics of cases in each partition 
Dataset 

description 
18.2% 81.8% 

Model 
performance 

35 Performance metrics for optimal model(s) on all data partitions 
Model 

performance 
88.9% 11.1% 

36 
Estimates of diagnostic accuracy and their precision (such as 95% 

confidence intervals) 
Model 

performance 
20.7% 79.3% 

37 Failure analysis of incorrectly classified cases 
Model 

performance 
32.1% 67.9% 

Discussion 

Discussion 

38 
Study limitations, including potential bias, statistical uncertainty, and 

generalizability 
Model 

performance 
76.1% 23.9% 

39 Implications for practice, including the intended use and/or clinical role 
Model 

performance 
75.6% 24.4% 

Other information 

Other information 

40 Registration number and name of registry 
Study 

description 
N/A N/A 

41 Where the full study protocol can be accessed 
Study 

description 
0.0% 100.0% 

42 Sources of funding and other support; role of funders 
Study 

description 
82.3% 17.7% 

N/A = not applicable. Checklist adapted from Mongan et al. 2020 [161].
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• Study description

Median compliance with the study description domain was 71% (IQR 63 − 86%).

Almost all studies clearly indicated the use of AI methods (91%) and their objectives

(94%). Where non-public datasets were used, only a minority of studies (36%)

indicated whether these were prospective or retrospective. No studies provided

access to a full study protocol. Sources of funding were declared in 82% of studies.

• Dataset description

Median compliance with the dataset description domain was 63% (IQR 50 − 67%),

the lowest of the four domains. The source of the dataset was reported in most

studies (94%). While most studies provided eligibility criteria for included cases

(74%), few studies reported their demographic and clinical characteristics (18%) or

indicated the flow of these cases (10%) in sufficient detail. Details regarding the

calculation of the intended sample size (4%) and how missing data were handled

(9%) were also infrequently reported. The definition of the ground truth reference

standard was provided in 68% of studies. Where non-public datasets were used, the

source of ground truth annotations and annotation tools were stated in 55% and

31% of studies respectively, with inter- and intra-rater variability reported in 42%.

The majority of studies reported data preprocessing steps (94%), definitions of data

elements (99.5%), how data were assigned to partitions (89%) and the level at which

partitions were disjoint (87%).

• Model description

Median compliance with the model description domain was 100% (IQR 80 − 100%),

the highest of the four domains. The majority of studies provided details about the

model used (95%), initialisation of model parameters (92%), training approach (78%)

and method of selecting the final model (92%). The software libraries, frameworks

and packages used were reported in 74%.

• Model performance

Median compliance with the performance description domain was 60% (IQR 50−70%).

A minority of studies reported testing on external data (22%) Almost all studies

provided metrics of model performance (99.5%). Most studies provided statistical

measures of significance and uncertainty when reporting results (78%). Many
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studies provided forms of robustness or sensitivity analysis (61%) and methods for

explainability and interpretability (64%). A minority of studies reported failure

analysis for incorrectly classified cases (32%). Most studies discussed their limitations

(76%) and implications for practice (76%).

3.4 Discussion

Poor reporting is a major source of research waste [165, 166] and ultimately may hinder

advancement of AI research in the medical field. This systematic review evaluated the

quality of reporting in AI studies involving automatic segmentation of structures on cardiac

MRI. 209 studies were included from 2012 to early 2022. Each study was assessed for

compliance with CLAIM, a checklist that attempts to provide a ‘best practice’ framework

for the reporting and publication of AI research in medical imaging [161]. We identified

major gaps in reporting and make a number of recommendations in order for this to be

addressed (Table 3.1).

Table 3.1: Main recommendations for AI study reporting are based on the
gaps in the literature identified in this systematic review.

Recommendation Importance

Utilise a reporting framework (e.g., CLAIM). Comparability of studies.General Use of consistent and descriptive terminology. Accessibility and comparability of studies.
Describe the source of data, including patients’
eligibility criteria, their numbers and demographic
and clinical characteristics.

Contextualising model performance and
generalisability.

Clarify the number of scans and the flow of both
patients and scans into different datasets (e.g.
training, validation, and testing).

Understanding model performance and
generalisability.

Data sources
Use publicly available datasets. Comparability of models against a common

benchmark.
Describe the neural network, software packages
and libraries in sufficient detail. Study reproducibility.

Define how the reference contours were
generated, the experience of the annotator and
annotation tools used.

Understanding model performance and
generalisability.

Explain the method of model training and
performance.

Understanding model performance and
generalisability.

Test the model performance on external data
with different characteristics to the training data.

Study and model reliability.
Understanding model generalisability.
Implementation in clinical practice.

Perform failure analysis and report the limitations
of the model.

Understanding model performance and
generalisability.

Model training
and evaluation

Publication of open-source code. Understanding model performance and
generalisability.
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Figure 3.4: A: violin plot showing compliance of the 209 included studies
with the CLAIM criteria, grouped into domains of study, dataset, model and
performance description. Median (solid line) and 1st and 3rd quartile (dashed
lines) values are indicated. B: proportion of studies compliant with selected
CLAIM criteria, grouped by domain (the titles of the individual criteria have
been shortened for ease of reading).
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Accurate and sufficiently detailed descriptions of study materials and methods are

of particular importance for AI studies in medical imaging to allow the assessment of

reproducibility and reliability of results. Overall compliance with CLAIM was highest for

the model description domain, with most studies providing a description of the model

and details of training approaches. However, this was lowest for the dataset description

domain, which indicated variable reporting of the data sources used to train and evaluate

models.

A good understanding of data sources is a prerequisite for evaluating the validity of

AI models. Although most studies identified their data sources, this was a significant

omission in the studies that did not and one which greatly limits their interpretability.

Public datasets were used in almost half of the studies, with the majority of these made

available through segmentation challenges hosted by MICCAI (Table 3.2).

Table 3.2: Public datasets.

Dataset Year
No.
of
patients

Cardiac
chamber Source

York [167] 2008 33 LV Hospital for Sick Children, Canada
LVSC [168] 2009 45 LV Sunnybrook Health Sciences Centre, Canada.
LVSC II [169] 2011 200 LV Multicentre
LVIC [170] 2012 30 LV Multicentre
RVSC [171] 2012 48 RV Rouen University Hospital, France
cDEMRIS [172] 2012 60 LA Multicentre
LASC [173] 2013 30 LA King’s College London, UK
SLAWT [174] 2016 10 LA Single centre not specified
HVSMR-I [175] 2016 20 Whole heart Boston Children’s Hospital, USA
MM-WHS [176] 2017 60 Whole heart Single centre not specified
ACDC [177] 2017 150 LV, RV University Hospital of Dijon, France
LASC II [178] 2018 154 LA The University of Utah, USA
LVQuan’18 [179] 2018 175 LV London HealthCare, Ontario Canada
LVQuan’19 [180] 2019 85 LV Not specified.
MS-CMRS [181] 2019 45 LV, RV Not specified
OCMR [182] 2020 286 Whole heart Multicentre
EMIDEC [183] 2020 150 LV University Hospital of Dijon, France
M&MS [184] 2020 350 Whole heart Multicentre
HVSMR-II [185] 2021 90 Whole heart Boston Children’s Hospital, USA
M&Ms-2 [184] 2021 360 Whole heart Multicentre, Spain
LAScarQS [186] 2022 194 LA (LGE) Multicentre
ACDC; Automatic Cardiac Diagnosis Challenge, cDEMRIS; Cardiac Delayed Enhancement Segmentation Challenge, EMIDEC;

automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI, HVSMR; Whole-Heart and Great
Vessel Segmentation; LA; Left Atrium, LAScarQS, Left Atrial and Scar Quantification & Segmentation Challenge, LASC;
Left Atrial Segmentation Challenge, LGE; Late Gadolinium Enhancement, LV; Left Ventricle, LVIC; Left Ventricle Infarct
Challenge, LVQuan; Left Ventricle Full Quantification, LVSC; Left Ventricle Segmentation Challenge, MM-WHS; Multi-Modality
Whole Heart Segmentation, M&MS; Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI,
MS-CMRS; Multi-Sequence Cardiac MR Segmentation, RV; Right Ventricle, RVSC; Right Ventricle Segmentation Challenge,
SLAWT; Segmentation of Left Atrial Wall for Thickness
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Public datasets contain previously de-identified and expertly contoured images, making

them attractive to researchers. The proportion of studies using datasets from MICCAI

challenges underlines its role as a driver for advancing the field. Importantly, the use

of public datasets facilitates reproducibility and aids comparison between segmentation

methods. However, public sources are not without their limitations. Public datasets consist

of entirely retrospective data, which may place constraints on study design and model

training. They are often small in size with limited demographic and clinical diversity, and

therefore have inherent selection bias. Systematic biases affecting patient demographics

are of serious concern in the application of AI methods to clinical practice. For example,

a previous analysis of AI-based segmentation in CMR using a large-scale database found

systematic bias for both sex and race [187] and similar biases have been reported for

AI in radiographic imaging [188]. The use of diverse datasets when training, validating

and testing models is essential for generalisability and translation to clinical practice. A

model trained on a dataset from one population does not guarantee equal performance on

another. Multiple data sets, such as both retrospective and prospective, could be used in

combination to improve the generalisability of AI models being trained. Even accounting

for the use of public datasets, we found that few studies reported the intended sample size

(which influences statistical power and reliability of results) or the demographic and clinical

characteristics of the cases in each partition, (which indicates selection bias, confounders

and generalisability). Providing summary information about the age and sex of cases is

important, but may be insufficient in isolation. We noted that studies often lacked details

about the proportions of cases with different pathologies, and the demographics for these

groups. Furthermore, studies should not assume that readers are familiar with public

datasets, and if these are used then detailed demographics and clinical characteristics

should still be reported. The performance and validity of any model depend on the data on

which it is trained and the data sources, including the rationale behind their choice and the

intended sample size, should be clearly indicated. Study methodology must be reported

in sufficient detail to enable accurate reproduction of results. Notably, the definition of

the ground truth reference standard, the source of ground truth annotations and the

annotation tools used were absent in a substantial number of studies. Understanding the

structures included in the ground truth contours and the expertise of the annotator is



3.4 Discussion 69

essential in evaluating the training process and ultimately contextualising the model’s

performance. The proportions of studies that provided sufficiently detailed descriptions

of the ground truth and its source were lower than expected for the field. For example,

judging from the figures present in the included studies, ventricular trabeculations were

usually included in the blood pool contours, although few studies described this process.

Similarly, many studies failed to report the specific type of image used for ground truth

annotation and model training and testing. While this could be inferred from figures, it

remains essential information for understanding models and their generalisability. Finally,

only a handful of studies indicated how missing data were handled and no studies indicated

where a full study protocol could be accessed.

Detailed description of model training and performance is expected in this field. Testing

model performance on external data was performed in less than a quarter of all studies.

Model generalisability can only be fully evaluated when performance is assessed in demo-

graphic and clinical populations different from the original training cohort. The reported

external datasets were small and captured only limited variations in imaging appearances.

This represents a major hurdle to overcome before AI models can be implemented in clinical

practice. We also noted subjectively that many publications used the terms ‘validation’

and ‘test’ interchangeably, or failed to distinguish these methods clearly. Regarding the use

of data in AI studies, a validation set is used to optimise hyperparameters and performance

between training epochs, while a testing set is used to assess the performance of the final

model. The lack of consistent terminology in studies can limit the interpretability of their

models and blur the distinction between internal holdout and external testing methods.

Additionally, few studies reported failure analysis of incorrectly classified cases, suggesting

that most did not explore the reasons for model underperformance. Furthermore, the

vast majority of studies did not discuss the limitations of their methods, limiting their

transparency. Open publishing of source code is a contentious topic in AI research and was

only provided in one in ten of all studies. The public availability of code aids transparency,

assists peer review and facilitates the development of new models, but bears important

implications for ownership and rights.
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The use of reporting frameworks, such as CLAIM, can be beneficial. For example, they

may help to inform study design and highlight areas that may require rectification prior

to dissemination of results. Frameworks assist standardisation in reporting, improving

comparability and interpretability by the wider scientific community. Study accessibility

is also an important consideration in advancing the field. Regardless of journal type, AI

studies in medical imaging need to cater for a broad potential readership, from clinicians to

computer scientists. More standardised reporting and the use of consistent and accessible

terminology are important in this regard.

3.4.1 Limitations

We acknowledge limitations in this systematic review. Firstly, this review focused solely on

AI segmentation in CMR studies. However, these findings are likely to apply to AI studies

in other cardiac imaging modalities, such as echocardiogram, CT coronary angiography or

nuclear myocardial perfusion studies. Furthermore, given that AI studies in chest imaging

have shown similar shortcomings in reporting quality [189], our findings may be more

broadly relevant to AI studies in medical imaging. Secondly, while our systematic search

aimed to identify all published AI CMR segmentation studies, the body of unpublished,

pre-print or technical conference literature is vast. A Github or arxiv.org search reveals

numerous segmentation attempts of varying levels of reporting quality and beyond the

scope of this review to capture. Thirdly, even despite the use of structured tools such as

CLAIM, there remains an element of subjectivity in determining report quality, such as

the amount of information required for a study to be deemed reproducible.

3.5 Conclusion

This systematic review highlights the variability in reporting and identifies gaps in the

existing literature of studies using AI segmentation of CMR images. We identified several

key items that are missing in publications - most strikingly poor description of patients

included in the training and validation of AI models and inadequate model failure analysis

- which may limit study transparency, reproducibility and validity. This review supports

closer adherence to established frameworks for reporting standards, such as CLAIM. In

light of these findings, we have presented a number of recommendations for improving the

arxiv.org
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quality of reporting of AI studies in both CMR and the wider field of cardiac imaging.
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Abstract

Objectives To develop and evaluate a deep learning tool for quantitative

evaluation of cardiac MRI functional studies and assess its use for prognosis in

patients suspected of having pulmonary hypertension.

Background Cardiac MRI measurements have diagnostic and prognostic

value in the evaluation of cardiopulmonary disease. Artificial intelligence

approaches to automate cardiac MRI segmentation are emerging but require

clinical testing.

Methods A retrospective multicentre and multivendor data set was used to

develop a deep learning–based cardiac MRI contouring model using a cohort of

patients suspected of having cardiopulmonary disease from multiple pathologic

causes. Correlation with same-day right heart catheterisation (RHC) and

scan-rescan repeatability was assessed in prospectively recruited participants.

Prognostic impact was assessed using Cox proportional hazard regression anal-

ysis of 3487 patients from the ASPIRE (Assessing the Severity of Pulmonary

Hypertension In a Pulmonary Hypertension Referral Centre) registry, including

a subset of 920 patients with pulmonary arterial hypertension. The generalis-

ability of the automatic assessment was evaluated in 40 multivendor studies

from 32 centres.

Results The training data set included 539 patients (mean age, 54 years

± 20 [SD]; 315 women). Automatic cardiac MRI measurements were better

correlated with RHC parameters than were manual measurements, including

left ventricular stroke volume (r = 0.72 vs 0.68; P = .03). Interstudy repeata-

bility of cardiac MRI measurements was high for all automatic measurements

(intraclass correlation coefficient range, 0.79 − 0.99) and similarly repeatable to

manual measurements (all paired t test P > .05). Automated right ventricle

and left ventricle cardiac MRI measurements were associated with mortality

in patients suspected of having pulmonary hypertension.

Conclusion An automatic cardiac MRI measurement approach was developed

and tested in a large cohort of patients, including a broad spectrum of right
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ventricular and left ventricular conditions, with internal and external testing.

Fully automatic cardiac MRI assessment correlated strongly with invasive

haemodynamics, had prognostic value, were highly repeatable, and showed

excellent generalisability. (Clinical trial registration no. NCT03841344)

Summary

An Artificial intelligence cardiac MRI segmentation model was developed to automate

cardiac MRI measurements and subsequently tested against invasive right heart catheteri-

sation parameters and prediction of patient mortality.

Key Results

• A retrospective training data set of 539 patients with left and right heart disease was

used to train an artificial intelligence (AI) model for cardiac MRI measurements.

• Same-day cardiac MRI and right heart catheterisation demonstrated strong correla-

tion that was higher with AI measurements than with manual measurements for left

ventricular stroke volume (r = 0.74 vs. 0.68; P = .03; n = 178).

• AI-measured right ventricular end-systolic volume, ejection fraction, and mass all

predicted mortality in patients with pulmonary arterial hypertension (hazard ratios,

1.40, 0.76, and 1.15, respectively; P = .001; n = 920).
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4.1 Introduction

C ardiac MRI is the reference standard for measuring cardiac chambers and has an

important role in the diagnosis and prognosis of cardiovascular disease. Manual

measurements are obtained by tracing the cardiac chambers in end-diastole and end-

systole, a time–consuming process that requires a specialized workforce. Efforts to

automate cardiac MRI measurements have evolved over recent years [159] and have

achieved comparable results to manual assessments in assessing the left ventricle (LV)

[190]. However, greater internal and external testing and clinical benchmarks for automatic

cardiac MRI quantification are required.

Automatic assessment in the right ventricle (RV) is a challenge because of the variation

in the shape, thickness, and complex anatomy, particularly at the base and outflow tract

[159, 171]. Additionally, the RV shape can undergo extreme morphologic changes in

conditions such as pulmonary hypertension [30]. Automating RV assessments has the

potential to improve reproducibility of RV analysis. To date, artificial intelligence (AI)

biventricular segmentation studies are based on small single–centre and single–vendor data

sets, include limited numbers of patients with conditions affecting the RV, and do not

assess RV mass [159].

The aim of our study was to develop and comprehensively evaluate an automated deep

learning quantitative analysis of LV and RV cardiac MRI measurements. We also sought

to assess the hypothesis that an AI cardiac MRI biventricular analysis correlates with

invasive haemodynamics, predicts mortality in pulmonary hypertension, and is repeatable

and generalisable.

4.2 Materials and Methods

4.2.1 Study Sample

Our study involved a retrospective training data set and a testing data set (Figure 4.1).

The training data set included 611 studies performed at two university teaching hospitals

(Sheffield Teaching Hospitals, Sheffield; and Heart and Vascular centre of Semmelweis

University, Budapest) in 539 participants with various cardiac abnormalities. The cardiac
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abnormalities included LV diseases such as ischaemic and non-ischaemic cardiomyopathies,

valvular heart disease, systolic and diastolic dysfunction and RV disease such as pulmonary

hypertension. The Budapest data set included 192 patients with 211 MRI studies randomly

chosen in patients referred for investigation of suspected or confirmed LV disease. Nineteen

patients had repeat imaging. Overall, the data set included 180 MRI studies with LV

disease and 32 normal MRI studies. The Budapest studies were performed with a Philips

MRI system and was used to train the initial LV and RV segmentation model. For the

Sheffield data set, consecutive patients suspected of having pulmonary hypertension who

underwent cardiac MRI were identified from the Assessing the Severity of Pulmonary

Hypertension In a Pulmonary Hypertension Referral Centre (known as ASPIRE) registry

between 2007 and 2021 [191]. The ASPIRE registry includes all patients with suspected

pulmonary hypertension (PH) referred to The Sheffield Pulmonary Vascular Disease Unit

(SPVDU) at the Royal Hallamshire Hospital (Sheffield, UK). The ASPIRE cardiac MRI

subcohort is a well described patient population that has been analysed in multiple studies;

list of studies shown at the end of this chapter.

Patients with incomplete, unavailable, or unretrievable short–axis stack were excluded.

An off–line human–in–the–loop approach (HITL) was used, wherein the initial segmentation

model trained with the MRI scans acquired at Budapest was tested in the Sheffield data

set and a random sample of cases that had suboptimal or failed segmentations were

included for further training (Figure 4.2, Figure 4.3). The first round of training included

220 MRI studies and the second round included 180 studies that were again identified

from suboptimal segmentations resulting from the refined segmentation model. The first,

second, and final training rounds were performed with Philips, GE, and Siemens MRI

systems, respectively.

For the clinical testing, four data sets were included: a prospective same–day repeata-

bility cohort (n = 46); a prospective same–day right heart catheterisation (RHC) cohort

(n = 179); an external test cohort (n = 40) from 32 centres across England, Wales, and

Scotland; and MRI studies not included in the training from the ASPIRE registry used

for the assessment of mortality prediction (n = 3782).
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Participants were recruited prospectively for our reproducibility analysis as part of the

Repeatability and Sensitivity to Change of Noninvasive End Points in Pulmonary Arterial

Hypertension, or RESPIRE, study [192] (ClinicalTrials.gov Identifier: NCT03841344).

Ethical approval for the study was granted by the local ethics committee and institutional

review board (ASPIRE, reference c06/Q2308/8; REC 17/Y H/0016; and RESPIRE, REC

15/YH/0269). All prospectively recruited participants gave written informed consent. All

data were strictly anonymized before analysis. We followed the Checklist for Artificial

Intelligence in Medical Imaging (known as CLAIM) for reporting AI studies [161].

4.2.2 Imaging Procedures

MRI Protocol

Cardiac MRI was performed with 1.5−T MRI systems from three vendors (Signa HDx,

GE Healthcare; Avanto, Siemens Solutions; and Achieva, Philips Healthcare). Multisec-

tion short–axis cine images were obtained by using a standard cardiac–gated balanced

steady–state free precession sequence of 8−mm section thickness and 20 phases per cardiac

cycle (Signa HDx; GE Healthcare), 6−mm section thickness and 25 phases per cardiac

cycle (Avanto; Siemens Solutions), and 8−mm section thickness and 25 phases per cycle

(Achieva; Philips Healthcare). The parameters (repetition time msec/echo time msec)

were 3.7/1.6 (Signa HDx; GE Healthcare), 38.92/1.13 (Avanto; Siemens Solutions), and

2.72/1.36 (Achieva; Philips Healthcare). Two–dimensional phase–contrast sequences were

acquired perpendicular to the long axis of the aortic lumen by using through–plane velocity

encoding. All phase–contrast sequences were performed with GE MRI systems with the

following imaging parameters: 5.6/2.7; section thickness, 10mm; 20 phases; and velocity

encoding, 150 cm per second in the section direction. For the scan-rescan acquisitions,

patients had their first scan in the morning and the repeat scan in the afternoon.

Image Analysis

Manual segmentations of biventricular epicardial and endocardial contours on short–axis

stack images for the training and testing data sets were performed by seven observers

(A.T., D.C., K.K., A.J.S., S.S., F.A.A., and S.A., with 19, 17, 13, 11, 4, 3, and 3 years of

specialist cardiac MRI experience, respectively). All manual contours were reviewed by one

author (A.J.S., a level 3 accredited cardiac MRI radiologist). Trabeculations were included
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Figure 4.1: Study participant flow chart for the training and testing cohorts.
ASPIRE = Assessing the Severity of Pulmonary Hypertension In a Pulmonary
Hypertension Referral Centre, RESPIRE = Repeatability and Sensitivity to
Change of Noninvasive End Points in Pulmonary Arterial Hypertension, RHC
5 right heart catheter.
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Figure 4.2: Example of improvement following additional training. This
example demonstrates improvement of the right ventricular base after additional
training. The first model missed the right ventricular outflow tract and included
the right atrium instead (top image: yellow annotation showing right ventricular
endocardial border), whereas the final model correctly included the right
ventricular outflow tract and excluded the right atrium (bottom image).
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Figure 4.3: Improvement of automated Segmentation - with additional RV
training (pre-Sheffield training on the left and post-training on the right)

in the blood pool, and the outflow tract was included for both the RV and LV. In the

ASPIRE cohort, trabeculations were excluded from the blood pool (performed by D.C.).

Manual segmentation for the Dice accuracy analysis was performed independently (by

K.K. and A.J.S.), and for the external cohort testing (by S.A. and A.J.S). The scan–rescan

segmentations were performed by a senior cardiac MRI radiographer with 3 years of

experience who was not involved in the model training. All manual contouring was

performed blinded to the clinical data and RHC results. Software was used for manual

contouring (MASS, research version 2020; Leiden University Medical centre). A visual

quality review for all segmentation was performed together by two authors (S.A. and

A.J.S.) to identify the failure rate of the final segmentation model. Failed segmentations

were those that resulted in visually unacceptable contours and would lead to incorrect

measurement. Contours with minimal errors that were deemed to not affect cardiac MRI

measurements were labelled suboptimal segmentations.

Image Storage

All Sheffield CMR scans were stored in POLARIS XNAT , which is a secure online platform

hosted at the servers of the Academic Unit of Radiology at the University of Sheffield.

Polaris XNAT stores pseudonymised medical imaging data and is only accessible from

on-campus or via a virtual private network (VPN) or through a secure externally-accessible

XNAT server that can be shared with collaborators. Every added CMR scan is anonymised

and uploaded in Digital Imaging and Communications in Medicine (DICOM) format. Each
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patient in the XNAT database has a unique identifier that is linked to a Sheffield Teaching

Hospitals (STH) identifier number. The document linking both identifiers are stored on

an encrypted and password protected departmental computer and on the University of

Sheffield password protected and encrypted network storage system.

AI Model Development

The convolutional neural network (CNN) used for the experiments had a UNET–like

architecture [193] that in turn, is based on a deep learning framework for medical image

analysis called NiftyNet [194]. The model implementation was similar to ResUNet∗ with

16 convolutional layers, including residual learning units, and was implemented by using

Python (version 3.6.9; Python Software Foundation) and TensorFlow (version 1.12) [195].

Input images were resampled to a fixed pixel spacing of 1 mm and cropped to a 256 × 256

matrix size and zero–filled when required. For training, the Adam optimizer method

was used, the learning rate was selected as 0.001, and cross–entropy was used as the loss

function. Data augmentation was performed by creating new training samples by randomly

rotating, flipping, shifting, and modifying the image intensities of the original images. Each

training batch included a random selection of 20 images. The fixed number of epochs was

set at 30, with all images used once during every epoch. The raw output of the CNN is a

per–section 2D binary mask for every anatomical structure. Postprocessing of the raw CNN

output is performed using the VTK Visualization Toolkit [196]. First, taking into account

the known section positioning, connected component analysis is used to extract the largest

three–dimensional (3D) component for every structure. The marching cubes algorithm is

then applied to convert the extracted object into a 3D surface mesh. Irregularities in the

surface mesh are reduced by applying a mesh smoothing operation. Finally, per–section

contours are generated by computing the intersection of every image section with the 3D

mesh. No correction for section misalignment was performed. Single–centre, mixed LV

pathology data of a cohort of 211 patients from Budapest were used to train an initial

biventricular segmentation network. In our study, cohort LV and RV endocardial and

epicardial contours were defined in the end–diastolic and end–systolic phases by a cardiac

radiologist with > 19 years of experience (A.T.). As this model is based on cardiac MRI

∗ https://github.com/dmolony3/ResUNet
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data from a single MRI system (Philips), the initial AI model was further developed in an

offline HITL approach with the aim of creating a CNN free from vendor, centre and patient

pathology bias. Two steps of interactive training (200 scans per step) were completed

in a 347−patient multipathology cohort with 400 multivendor (250 GE/150 Siemens)

studies (Figure 4.2). Automatic contours were checked after each iteration of training,

and subsequent training was targeted on refining suboptimal or failed segmentations. To

optimally benefit from the available imaging data, in the incremental model improvement

process, the segmented images of all cardiac phases were included in the training set. This

resulted in a large number (113, 192) of images in the training dataset. All experiments

were executed on a standard PC with an Intel Core i7 CPU with 64 GB of internal

RAM memory equipped with an Nvidia GTX 1080 TI GPU with 12 GB of memory. The

time needed to train the final model was 33 hours, while the time needed for automated

segmentation of all cardiac phases and sections of a single scan, including extraction of

quantitative results, was less than 30 seconds.

Statistical Analysis

Continuous variables are presented as proportions, means ± SDs, or medians with in-

terquartile ranges for data with asymmetric distributions. Variable standardization was

performed to allow comparison of the different continuous variables on the same scale by

subtracting the mean for each variable and dividing it by its SD. Cardiac MRI volumetric

measurements were indexed for body surface area. Measurements were corrected for age

and sex by calculating the percentage predicted values per published reference data [197,

198]. The interstudy repeatability was assessed with interclass correlation coefficient (ICC)

and Bland–Altman analysis to compare the scan–rescan variation in the automated and

manual cardiac MRI measurements. The paired t test was calculated to compare the

differences in scan–rescan measurements between AI and manual assessment. Spearman

correlation coefficient was used to compare the LV stroke volume to the stroke volume

derived from RHC and the aortic forward flow volume at the LV outflow tract measured

by phase–contrast imaging. RHC stroke volume was derived by dividing cardiac output

by heart rate. RV ejection fraction and ventricular mass index were correlated to RHC

pulmonary vascular resistance and mean pulmonary artery pressure. Ventricular mass
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index was calculated as the RV end–diastolic mass–to–LV end–diastolic mass ratio (RV

mass–to–LV mass ratio). The z test using the method by Steiger [199] was performed to

test for differences between manual and AI correlations with RHC and phase–contrast

imaging. Uni– and multivariable Cox proportional hazard regression hazard ratios were

calculated for both the age– and sex–adjusted cardiac MRI parameters. Collinearity

was tested by using Spearman correlation test. A correlation of r greater than 0.8 was

considered to be closely related. All patients were followed up until the all–cause mortality

or administrative censoring date (June 20, 2021). No patient was lost to follow–up. The

interstudy repeatability was assessed with ICC and Bland–Altman analysis to compare

the scan–rescan variation in the automated and manual cardiac MRI measurements. The

paired t test was calculated to compare the differences in the scan–rescan measurements

between AI and manual assessment. The agreement between the AI and manual cardiac

MRI measurements in the external test data set was analysed with ICC and Bland–Altman

plots. The accuracy of the AI contours relative to the manual contours was estimated

by calculating the Dice similarity coefficient in 30 studies from an internal test data

set randomly chosen from the cohort and in the 40 studies from the external test data

set. The Dice score measured the ratio of overlap and distance between the manual and

automatically segmented areas; a higher value indicated better accuracy of the contouring

model relative to the manual segmentation. Statistical analyses were performed by using

the Pingouin (version 0.5) [200] and Lifelines (version 0.26) [201] Python libraries, and

graphs were produced by using the Matplotlib library (version 3.5) [202]. A P value of .05

or less indicated statistical significance.

4.3 Results

4.3.1 Study Sample Characteristics

The total study included 4289 patients and 5630 cardiac MRI studies, after excluding 244

patients because of either incomplete or unretrievable imaging (Figure 4.4). The median

age in the training data set was 58 years (IQR, 34 years), 66 years (IQR, 21 years) in the

ASPIRE cohort, 67 years (IQR, 19 years) in the patients with same–day RHC, and 48

years (IQR, 22 years) in the scan–rescan patients. The ratios of women were as follows:
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training data set, 315 of 539 (58%); ASPIRE cohort, 2158 of 3487 (61%); patients with

same–day RHC, 131 of 178 (56%); and scan–rescan patients, 35 of 46 (78%) (Table 4.1

and Table 4.2).

Table 4.1: Baseline characteristics of the training set.

Parameter Training 1
N = 192

Training 2
N = 170

Training 3
N = 177

Centre Budapest Sheffield University Sheffield Hospitals
MRI Vendor Philips GE Siemens and GE
No. MRI scans 211 220 180
Age (years) 32 (23-55) 66 (51-77) 67 (54-75)
Sex (female) 83 (43%) 120 (70%) 112 (63%)
BSA (m2) 1.89 ± 0.28 1.83 ± 0.21 1.83 ± 0.23
Diagnosis

Left Heart Disease 138 (72%) 32 (19%) 21 (12%)
Lung Disease NA 26 (15%) 13 (7%)
PAH NA 48 (28%) 89 (50%)
CTEPH NA 34 (20%) 10 (6%)
Other PH NA 1 (0%) 7 (4%)
Other (not PH) 54 (28%) 29 (17%) 37 (21%)

Cardiac MRI
RVEF (%) 55 ± 11 41 ± 12 42 ± 14
RVESVi (ml/m2) 45 ± 24 65 ± 32 66 ± 38
RVEDVi (ml/m2) 95 ± 31 107 ± 40 109 ± 45
RVEDMi (g/m2) 24 ± 7 25 ± 9 26 ± 10
LVEF (%) 53 ± 13 52 ± 10 53 ± 11
LVESVi (ml/m2) 49 ± 32 38 ± 17 37 ± 23
LVEDVi (ml/m2) 99 ± 32 80 ± 26 76 ± 30
LVSVi (ml/m2) 50 ± 11 42 ± 15 39 ± 13
VMI (ratio) 0.35 ± 0.12 0.51 ± 0.21 0.46 ± 0.19

Note.—Unless otherwise indicated, data are numbers of patients; data in parentheses are percentages.
Mean data are ± standard deviation.
Abbreviations in Table Table 4.1 and Table 4.2: BSA = body surface area, CO = cardiac output,
CTEPH = chronic thromboembolic pulmonary hypertension, EDMi = end-diastolic mass index, EDVi
= end-diastolic volume index, EF = ejection fraction, ESVi = end-systolic volume index, ISWT =
incremental shuttle walking test, LV = left ventricle, mPAP = mean pulmonary artery pressure,
NA, not applicable; PAH = pulmonary arterial hypertension, PAWP = pulmonary arterial wedge
pressure, PH = pulmonary hypertension, PVR = pulmonary vascular resistance, RHC = right heart
catheterisation, RV = right ventricle, SvO2 = mixed venous oxygen saturation, VMI = ventricular
mass index, WHO = World Health Organization.

4.3.2 Quality Control

An example of the AI segmentation of the short-axis stack throughout the cardiac cycle

is shown in Figure 4.5. The overall failure rate of the automatic segmentation was 1.0%

(53 of 5316), almost exclusively caused by congenital heart diseases such as a ventricular

septal defect (Figure 4.6A) or artifacts and technical issues affecting image quality. In 91
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Table 4.2: Baseline characteristics of the testing set

ASPIRE
n = 3487

Same-day RHC
n = 178

Repeatability
n = 46

Age (years) 66 (53-74) 67 (56-75) 48 (40-62)
Sex (female) 2158 (61%) 131 (56%) 35 (76%)
BSA (m2) 1.88 ± 0.24 1.92 ± 0.29 1.89 ± 0.20
Diagnosis

Left Heart Disease* 741 (21%) 28 (12%) NA
Lung Disease* 480 (13%) 29 (12%) NA
PAH 920 (26%) 49 (21%) 36 (77%)
CTEPH 623 (19%) 77 (33%) NA
Other PH 88 (3%) 7 (3%) NA
Other (not PH) 635 (18%) 49 (21%) 10 (33%)

WHO functional class
I 42 (1%) 5 (2%) NA
II 403 (11%) 30 (13%) 2 (6%)
III 2501 (71%) 182 (77%) 30 (83%)
IV 314 (9%) 15 (6%) 4 (11%)

ISWT distance (m) 225 (193) 249 (212) 518 (321)
RHC

mPAP (mmHg) 42 (21) 36 (22) 54 (16)
PVR (dyns.s.cm-5) 460 (562) 429 (587) NA
PAWP (mmHg) 12 (6) 10 (6) NA
SV (ml) 62 (31) 61 (34) 64 (34)
CO (L/min) 4.95 (1.89) 4.70 (1.59) 4.51 (1.66)
SvO2 (%) 66 (12) 68 (12) 64 (14)

Cardiac MRI
RVEF (%) 40 ± 13 41 ± 13 43 ± 9
RVESVi (ml/m2) 64 ± 35 62 ± 46 60 ± 27
RVEDVi (ml/m2) 104 ± 41 102 ± 70 104 ± 34
RVEDMi (g/m2) 25 ± 9 25 ± 14 26 ± 7
LVEF (%) 53 ± 10 54 ± 9 59 ± 7
LVESVi (ml/m2) 35 ± 14 36 ± 20 32 ± 10
LVEDVi (ml/m2) 74 ± 21 77 ± 40 77 ± 16
LVSVi (ml/m2) 39 ± 12 41 ± 22 45 ± 10
LVEDMi (g/m2) 50 ± 13 51 ± 25 45 ± 8
VMI (ratio) 0.51 ± 0.17 0.50 ± 0.16 0.58 ± 0.19
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Figure 4.4: Summary of datasets and main results.

of 5316 studies (1.7%), there were segmentation errors mainly affecting the heart apex

(Figure 4.6).

4.3.3 Correlations with Invasive haemodynamics and Phase Contrast Flow

The mean for cardiac MRI–estimated LV stroke volume were 78 mL ± 24 (SD) and 79 mL

± 26 for AI and manual assessments, respectively. The RHC–derived LV stroke volume

was 66 mL ± 23 and the phase–contrast mean aortic forward flow volume was 68 mL ±

21. The correlation between RHC and cardiac MRI LV stroke volume (Figure 4.7) was

higher for AI than for manual measurements (r = 0.74 vs 0.68, respectively; P = .03)

(Figure 4.7A, Table 4.3).

Both AI and manually derived LV stroke volume showed similar correlation with the

aortic forward flow volume (r = 0.73 and 0.70, respectively; P = .29; n = 118), although

variability is evident between the methods of stroke volume calculation, which may in

part be due to technical factors, intracardiac shunts or valvular abnormalities such as

mitral or aortic regurgitation (Figure 4.7B). The AI–measured ventricular mass index

(RV mass–to–LV mass ratio) had a higher correlation with pulmonary vascular resis-

tance (Figure 4.7D) and mean pulmonary artery pressure (Figure 4.7F) than the manual

measurements (r = 0.64 vs 0.44 [P < .001] and 0.56 vs 0.37 [P < .001], respectively).
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Figure 4.5: Example of an automatically segmented cardiac MRI with RV
dysfunction and RV dilatation. The AI model was particularly accurate at
segmenting the RV base, which is the area typically most challenging for manual
assessors.

Table 4.3: The relationship between cardiac MRI, right heart catheterisation parameters and phase
encoding aortic forward flow volume in the same-day RHC cohort

RHC Cardiac MRI AI (r Value) Human (r Value) P Value No.

SV (ml) LVSV (ml) 0.74 0.68 .03 178
PVR (dyns.s.cm-5) VMI 0.62 0.41 <.001 178
PVR (dyns.s.cm-5) RVEF (%) -0.70 -0.69 .75 178
mPAP (mmhg) VMI 0.56 0.37 <.001 178
mPAP (mmhg) RVEF (%) -0.66 -0.67 .76 178
Aortic flow (ml) LVSV (ml) 0.73 0.70 .29 117
Note.—Human evaluation was performed by a senior cardiac MRI radiographer with 17 years of experience.

AI = artificial intelligence, EF = ejection fraction, LVSV = left ventricle stroke volume, mPAP = mean pulmonary artery
pressure, NA = not applicable, PVR = pulmonary vascular resistance, RHC = right heart catheterisation, RV = right ventricle,
VMI = ventricular mass index.



4.3 Results 89

Figure 4.6: Examples of failed and suboptimal artificial intelligence (AI)
segmentations. (A) Major failure because of congenital heart disease causing
the left ventricular (LV) contours to extend into the right ventricle (RV; red
box). (B) Minor failure at the apex where the RV was incorrectly labelled as LV
(red box). The red, green, blue, and yellow circles indicate the LV endocardial,
LV epicardial, RV endocardial, and RV epicardial contours, respectively.
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Figure 4.7: Graphs show the relationship between automatic cardiac MRI
measurements, right heart catheterisation (RHC) and phase-contrast aortic
flow. Automatic cardiac MRI measurements were compared to (A) RHC stroke
volume (SV) and (B) phase-contrast aortic flow in 178 patients of the same-day
RHC cohort. (C) Mean pulmonary artery pressure (mPAP) was compared
with right ventricle ejection fraction (RVEF) and (D) ventricular mass index
(VMI; RV mass–to–). (E) Pulmonary vascular resistance (PVR) was compared
to RVEF and (F) VMI.
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There were good correlations between RV ejection fraction and mean pulmonary artery

pressure (Figure 4.7C) and pulmonary vascular resistance (Figure 4.7E), with no evidence

of a difference between AI and manual readings. Pulmonary vascular resistance and

mean pulmonary artery pressure correlated similarly with AI and manual RV ejection

fraction (P = .75 and .76, respectively). The correlation between AI–based cardiac MRI

measurements and RHC was confirmed in 2051 patients in the ASPIRE cohort (Table 4.4,

Figure 4.8).

Table 4.4: The Relationship Between Automatic Cardiac MRI Measurements
and Right Heart Catheterisation In the ASPIRE Registry Cohort

RHC Cardiac MRI AI (r Value) P Value No.

SV (ml) LVSV (ml) 0.72 <.001 2044
PVR (dyns.s.cm-5) VMI 0.70 <.001 1941
PVR (dyns.s.cm-5) RVEF (%) -0.65 <.001 1941
mPAP (mmhg) VMI 0.65 <.001 2051
mPAP (mmhg) RVEF (%) -0.60 <.001 2051
Note.— Right heart catheterisation was performed on the same day of the cardiac MRI (in 80%

of patients) or within 24 hours. RHC, right heart catheterisation; mPAP, mean pulmonary artery
pressure; PVR, pulmonary vascular resistance; SV, stroke volume; LVSV, left ventricle stroke
volume; RVEF, right ventricle ejection fraction; VMI, ventricular mass index

4.3.4 Mortality Prediction

Automatic cardiac MRI measurements were assessed in 3487 patients from the ASPIRE

registry. The study population included patients with multiple pathologic diseases, pre-

dominantly pulmonary arterial hypertension (920 of 3487; 26%), left heart disease (741

of 3487; 21%), lung diseases (480 of 3487; 13%), chronic thromboembolic pulmonary

hypertension (623 of 3487; 19%), and without pulmonary hypertension (635 of 3487; 18%).

During the mean follow–up period (3.8 years) 1604 of 3487 (46%) patients died. Other

than RV stroke volume, all cardiac MRI parameters predicted mortality (Table 4.5). RV

parameters including RV mass were prognostic markers in the subgroup with pulmonary

arterial hypertension (n = 920) (Table 4.5). RV ejection fraction remained a significant

prognostic marker in a multivariable analysis including age, World Health Organization

function class, incremental shuttle walking test, RHC parameters (mean pulmonary artery

pressure, pulmonary arterial wedge pressure, cardiac output, and mixed venous oxygen

saturation) and cardiac MRI variables (age– and sex–corrected RV and LV ejection fraction

and mass index) (Table 4.5).
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Figure 4.8: The relationship between automatic cardiac MRI measurements
and right heart catheterisation in the ASPIRE cohort. Right heart catheterisa-
tion was performed 2,051 patients within the same day of cardiac MRI (80% of
patients) or within 24 hours.
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Table 4.5: Uni– and multivariable Cox regression hazard ratios for AI cardiac MRI measurements

ASPIRE Cohort
(n= 3487)

PAH Subgroup
(n=920)

Parameter Hazard Ratio P Value Hazard Ratio P Value

Univariable Cox regression

Age (years) 1.04 (1.03, 1.04) <.001 1.04 (1.04, 1.05) <.001
Sex 1.38 (1.26, 1.51) <.001 1.16 (0.96, 1.41) .13
WHO functional class 1.60 (1.52, 1.68) <.001 1.35 (1.23, 1.47) <.001
ISWT distance (m) 0.46 (0.42, 0.51) <.001 0.49 (0.42, 0.57) <.001
mPAP (mmHg) 1.25 (1.18, 1.32) <.001 0.87 (0.77, 0.98) .02
PVR (dyns.s.cm-5) 1.23 (1.17, 1.30) <.001 0.99 (0.88, 1.12) .89
PAWP (mmHg) 1.13 (1.06, 1.19) <.001 0.97 (0.85, 1.10) .62
SV (ml) 0.75 (0.71, 0.80) <.001 0.82 (0.72, 0.94) <.001
CO (L/min) 0.75 (0.70, 0.81) <.001 0.84 (0.74, 0.96) .01
SvO2 (%) 0.75 (0.71, 0.79) <.001 0.82 (0.73, 0.93) <.001
RVEF (%predict) 0.656 (0.63, 0.69) <.001 0.76 (0.69, 0.84) <.001
RVESVi (%predict) 1.493 (1.44, 1.55) <.001 1.40 (1.28, 1.52) <.001
RVEDVi (%predict) 1.360 (1.31, 1.40) <.001 1.19 (1.09, 1.29) <.001
RVSVi (%predict) 0.963 (0.92, 1.01) .131 0.95 (0.87, 1.03) .199
RVEDMi (%predict) 1.393 (1.34, 1.45) <.001 1.15 (1.06, 1.26) .001
LVEF (%predict) 0.795 (0.76, 0.83) <.001 0.94 (0.85, 1.04) .231
LVEDVi (%predict) 0.943 (0.90, 0.99) .019 1.00 (0.91, 1.10) .564
LVESVi (%predict) 1.113 (1.07, 1.16) <.001 1.07 (0.98, 1.18) .115
LVSVi (%predict) 0.811 (0.77, 0.85) <.001 0.95 (0.86, 1.05) .881
LVEDMi (%predict) 1.080 (1.03, 1.13) .001 1.06 (0.96, 1.17) .238
VMI (%predict) 1.364 (1.31, 1.43) <.001 1.12 (1.03, 1.24) .010

Multivariable Cox regression

Age (years) 1.04 (1.03, 1.04) <.001 1.04 (1.04, 1.06) <.001
WHO functional class 1.50 (1.21, 1.85) <.001 0.87 (0.54, 1.41) .58
ISWT distance (m) 0.58 (0.51, 0.67) <.001 0.62 (0.49, 0.79) <.001
mPAP (mmHg) 1.07 (0.95, 1.21) .27 0.80 (0.62, 1.04) .09
PAWP (mmHg) 0.97 (0.89, 1.06) .54 1.02 (0.86, 1.20) .85
CO (L/min) 0.99 (0.90, 1.09) .87 1.01 (0.80, 1.29) .91
SvO2 (%) 0.94 (0.85, 1.04) .24 0.90 (0.72, 1.12) .35
RVEF (%predict) 0.80 (0.70, 0.92) <.001 0.70 (0.53, 0.92) .01
RVEDMi (%predict) 1.03 (0.90, 1.18) .65 0.97 (0.71, 1.31) .83
LVEF (%predict) 0.99 (0.90, 1.09) .83 1.11 (0.92, 1.35) .27
LVEDMi (%predict) 1.21 (1.04, 1.41) .01 1.10 (0.77, 1.58) .59

Note.—Data in parentheses are 95% CIs. The total number of deaths in the ASPIRE cohort and the subgroup of the
ASPIRE cohort with pulmonary artery hypertension were 1604 of 3487 (46%) and 459 of 920 (50%), respectively. The
combinations of end-diastolic, endsystolic, and stroke volume correlated highly with each other and with the ejection
fraction for both the right ventricular and left ventricular measurements. Therefore, only ejection fraction was included
in the multivariable Cox regression analysis. Cardiac MRI parameters were analysed as the percentage of predicted
values for an age- and sex-matched healthy population.
CO = cardiac output, EF = ejection fraction, EDMi = end-diastolic mass index, EDVi = end-diastolic volume index,
ESVi = end-systolic volume index, ISWT = incremental shuttle walking test, LV = left ventricle, mPAP = mean
pulmonary artery pressure, PAH = pulmonary arterial hypertension, PAWP = pulmonary arterial wedge pressure, PVR
= pulmonary vascular resistance, RV = right ventricle, SvO2 = mixed venous oxygen saturation, VMI = ventricular
mass index, WHO = World Health Organization.
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The uni– and multivariable Cox regression results for the available manual cardiac

MRI measurements are provided in (Table 4.6).

Table 4.6: Uni– and multivariable Cox regression hazard ratios for manual cardiac MRI measure-
ments

ASPIRE Cohort
(n= 2633)

PAH Subgroup
(n=746)

Parameter Hazard Ratio P Value Hazard Ratio P Value

Univariable Cox regression

RVEF (%predict) 0.63 (0.59, 0.67) <.001 0.70 (0.62, 0.79) <.001
RVESVi (%predict) 1.35 (1.31, 1.39) <.001 1.43 (1.28, 1.59) <.001
RVEDVi (%predict) 1.20 (1.16, 1.23) <.001 1.18 (1.08, 1.28) <.001
RVSVi (%predict) 0.94 (0.87, 1.00) .07 0.95 (0.84, 1.07) .42
RVEDMi (%predict) 1.11 (1.06, 1.15) <.001 1.05 (0.90, 1.23) .52
LVEF (%predict) 0.84 (0.80, 0.89) <.001 0.90 (0.80, 1.01) .07
LVEDVi (%predict) 0.85 (0.78, 0.91) .019 0.92 (0.79, 1.07) .29
LVESVi (%predict) 1.04 (0.98, 1.11) .16 1.02 (0.89, 1.18) .74
LVSVi (%predict) 0.76 (0.71, 0.82) <.001 0.87 (0.75, 1.01) .08
LVEDMi (%predict) 1.03 (0.98, 1.10) .26 1.28 (1.00, 1.64) .05
VMI (%predict) 1.19 (1.12, 1.26) <.001 1.01 (0.89, 1.14) .91
Multivariable Cox regression

Age (years) 1.04 (1.03, 1.05) <.001 1.04 (1.02, 1.06) <.001
WHO functional class 1.50 (1.17, 1.92) <.001 0.79 (0.41, 1.52) .58
ISWT distance (m) 0.56 (0.47, 0.66) <.001 0.65 (0.48, 0.89) <.001
mPAP (mmHg) 1.12 (0.99, 1.27) .08 0.81 (0.61, 1.08) .08
PAWP (mmHg) 0.95 (0.86, 1.06) .35 0.90 (0.74, 1.10) .35
CO (L/min) 0.96 (0.85, 1.08) .49 0.90 (0.66, 1.23) .49
SvO2 (%) 0.94 (0.83, 1.06) .33 0.77 (0.56, 1.06) .33
RVEF (%predict) 0.75 (0.65, 0.85) <.001 0.83 (0.64, 1.07) .01
RVEDMi (%predict) 0.81 (0.67, 0.98) .03 0.82 (0.57, 1.19) .03
LVEF (%predict) 1.07 (0.96, 1.18) .21 1.16 (0.92, 1.48) .21
LVEDMi (%predict) 1.40 (1.15, 1.70) <.001 1.80 (1.10, 2.96) .59
Note.—Manual cardiac MRI measurements were available for 2633/3487 (76%) patients of the ASPIRE cohort and

746/920 (81%) patients of the PAH subgroup. The total number of deaths in the ASPIRE cohort with manual
measurements available were 1044/2633 (40%) and 281/746 (38%) in the PAH subgroup. The results are not directly
comparable to the automated segmentation results because manual segmentations were not available for a large
number of patients and because of the differences in handling of the trabeculation. Trabeculations were excluded
from the blood pool in the ASPIRE manual segmentation. The combinations of end-diastolic, end-systolic and stroke
volume correlated highly with each other and with the ejection fraction for both the RV and LV measurements,
therefore only ejection fraction was included in the multivariable Cox regression analysis. All cardiac MRI parameters
were analysed as the percentage of predicted values for an age- and sex-matched normal population.

4.3.5 Repeatability Assessment

The interstudy repeatability of cardiac MRI measurements was high for both AI and

manual measurements. The automatic LV and RV volumetric and mass measurements

ICC were 0.92 and 0.99, respectively. The ICC for LV and RV ejection fraction was
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0.80 and 0.90, respectively (Table 4.7). The differences in the scan–rescan measurements

were not different between AI and manual (t test P = .73 for RV ejection fraction and

.8 for LV ejection fraction) (Table 4.8). Bland–Altman plots showed strong agreement

between manual and automatic measurements, with small mean absolute differences

ranging between 0 mL and 4 mL in the scan–rescan measurements (Figure 4.9). Examples

of MRI scans with higher differences are shown in Figure 4.10.

Table 4.7: Interstudy repeatability for automatic and manual cardiac MRI
parameters.

Cardiac MRI AI Manual

RVESV (ml) 0.99 (0.98, 0.99) 0.98 (0.96, 0.99)
RVEDV (ml) 0.98 (0.97, 0.99) 0.97 (0.95, 0.98)
RVSV (ml) 0.92 (0.85, 0.96) 0.84 (0.70, 0.91)
RVEF (%) 0.89 (0.80, 0.94) 0.78 (0.60, 0.88)
RVEDM (g) 0.98 (0.96, 0.99) 0.90 (0.81, 0.94)
LVESV (ml) 0.96 (0.92, 0.98) 0.96 (0.92, 0.98)
LVEDV (ml) 0.98 (0.97, 0.99) 0.96 (0.93, 0.98)
LVSV (ml) 0.95 (0.91, 0.97) 0.93 (0.88, 0.96)
LVEF (%) 0.79 (0.61, 0.88) 0.88 (0.78, 0.93)
LVEDM (g) 0.99 (0.98, 0.99) 0.94 (0.89, 0.97)

Note.—Data are interclass correlation coefficients; data in parentheses
are 95% CIs. Interstudy repeatability assessment for the automatic and
manual cardiac MRI measurement was performed in 46 participants in the
RESPIRE cohort who had same-day repeat scans.
EDM = end-diastolic mass, EDV = end-diastolic volume, EF = ejection
fraction, ESV = end-systolic volume, LV = left ventricle, RV = right
ventricle.

4.3.6 External Testing

The external dataset included 40 patients from 32 different centres in the UK (Figure 4.11).

The sample included 20 Siemens scans (Avanto 13, Aera 6, Symphony 1), 15 Philips scans

(Achieva 11, Ingenia 4) and 5 GE scans (HDxt 3, Excite 1, Artist 1). Bland–Altman plots

showed strong agreement between manual and automatic measurements, with small mean

absolute differences ranging between 0 mL and 4 mL in the scan–rescan measurements

(Figure 4.9). Examples of MRI scans with higher differences are shown in (Table 4.10).

The ICC was 0.93 for LV ejection fraction and 0.94 for RV ejection fraction, and the ICCs

for LV and RV mass were 0.95 and 0.92, respectively. Bland–Altman plots showed small

absolute mean differences (Figure 4.12 and Figure 4.13).
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Figure 4.9: Bland–Altman plots of scan–rescan repeatability for the automatic
compared to the manual right ventricular parameters. Same day scan–rescan
cardiac MRIs were performed in 46 participants to compare the repeatability
of the (A, C, D) automatic and (B, D, F) manual measurements. RVEDV
= right ventricular end-diastolic volume, RVEF = right ventricular ejection
fraction, RVESV = right ventricular end-systolic volume.
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Figure 4.10: Examples of scan-rescan images highlighting the differences in
the automatic vs manual segmentation The examples show cases where the
manual reader has incompletely contoured the base explaining some of the
volume difference between AI and manual measurements.
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Table 4.8: Comparison between the automatic and manual cardiac MRI
measurements in the scan-rescan repeatability cohort

Cardiac MRI
Parameter AI 1 AI 2 AI1

- AI2 Man 1 Man 2 Man 1
- Man 2 P Value

RVEDV (ml) 193 ± 69 189 ± 72 4 187 ± 66 181 ± 70 6 .63
RVESV (ml) 108 ± 53 105 ± 53 3 113 ± 50 109 ± 52 4 .84
RVSV (ml) 85 ± 26 84 ± 27 1 74 ± 26 71 ± 29 3 .7
RVEF (%) 45 ± 9 46 ± 9 1 41 ± 10 40 ± 11 1 .73
RVEDM (g) 47 ± 15 46 ± 15 1 29 ± 12 29 ± 11 0 .52
RVCO (l/min) 6 ± 2 6 ± 2 0 5 ± 2 5 ± 2 0 .79
LVEDV (ml) 157 ± 43 156 ± 45 1 142 ± 41 140 ± 45 2 .9
LVESV (ml) 66 ± 26 67 ± 24 1 52 ± 23 51 ± 24 1 .8
LVSV (ml) 91 ± 21 89 ± 25 2 90 ± 24 89 ± 27 1 .94
LVEF (%) 59 ± 7 58 ± 7 1 65 ± 9 64± 9 1 .8
LVEDM (g) 90 ± 21 90 ± 23 0 70 ± 20 72 ± 24 2 .19
LVCO (l/min) 6 ± 1 6 ± 2 0 6 ± 2 6 ± 2 0 .57

Note.—Table shows the mean and standard deviation for the AI and Manual cardiac MRI measurements with the absolute
mean difference ± SD between the first and second MRI study for the AI and manual assessment in 46 patients of the
RESPIRE cohort. The paired t test compares the scan-rescan variation between the automatic and manual measurements
and shows no difference in the repeatability of the AI model and manual assessor.
Man, manual; RV, right ventricle; LV, left ventricle; ESV, end-systolic volume; EDV, end-diastolic volume; ESV, end-systolic
volume; SV, stroke volume; EF, ejection fraction; EDM, end-diastolic mass; CO, cardiac output

Table 4.9: DICE scores in the internal and external test cohorts.

DICE score Internal Test
(n=30)

External Test
(n=40)

LV ENDO ED 0.96 0.95
LV ENDO ES 0.93 0.89

LV EPI ED 0.96 0.95
LV EPI ES 0.95 0.94

RV ENDO ED 0.95 0.91
RV ENDO ES 0.93 0.88

RV EPI ED 0.95 0.92
RV EPI ES 0.93 0.89

The internal test DICE was randomly chosen from the ASPIRE
cohort (n= 30). The DICE score measures the ratio of overlap and
distance between the manual and automatically segmented areas.
A higher DICE value indicates a better accuracy of the contouring
model and stronger agreement with the manual segmentation. The
DICE analysis showed excellent agreement in the AI and manual LV
and RV epi- and endocardial end-systolic and end-diastolic contours
in both the internal and external test cohorts.
RV, right ventricle; LV, left ventricle; ED, end-diastolic; ES, end-
systolic; ENDO, endocardial contours; EPI, epicardial contours.
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Figure 4.11: External dataset map. The external dataset was imaged at
different centers in the UK using different MRI vendors and systems.
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Figure 4.12: Bland–Altman plots showing the absolute mean difference
between AI and manual right ventricular (RV) measurements in the external
cohort (n = 40).



4.3 Results 101

Figure 4.13: Bland–Altman plots showing the absolute mean difference
between AI and manual left ventricular measurements in the external cohort
(n = 40). LV, left ventricle; EDV, end-diastolic volume; ESV, end-systolic
volume; EDM, end-diastolic mass.
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4.3.7 Segmentation accuracy

Dice analysis showed excellent agreement in the AI and manual LV and RV epi– and

endocardial end–systolic and end–diastolic contours in both the internal and external

test cohorts (Table 4.9). The Dice values in the internal data sets ranged between 93%

and 96% for the LV and 93%−95% in the RV. The Dice values were slightly lower in the

external cohort and ranged from 89% to 95% in the LV and 88% to 92% in the RV.

Table 4.10: Comparison of automatic and manual cardiac MRI measurements
in the external cohort (n = 40)

AI Manual P Value ICC

RVEDV (ml) 216 ± 88 217 ± 87 .95 0.99 (0.98, 0.99)
RVESV (ml) 127 ± 69 135 ± 69 .64 0.99 (0.97, 0.99)
RVSV (ml) 89 ± 38 83 ± 40 .50 0.94 (0.88, 0.97)
RVEF (%) 44 ± 13 40 ± 13 .23 0.94 (0.81, 0.97)
RVEDM (g) 46 ± 18 51 ± 21 .28 0.92 (0.82, 0.96)
LVEDV (ml) 163 ± 53 155 ± 51 .50 0.99 (0.92, 1.00)
LVESV (ml) 77 ± 33 69 ± 35 .31 0.96 (0.85, 0.99)
LVSV (ml) 86 ± 29 86 ± 29 .99 0.97 (0.95, 0.98)
LVEF (%) 54 ± 10 57 ± 13 .25 0.93 (0.82, 0.97)
LVEDM (g) 110 ± 27 107 ± 27 .61 0.95 (0.91, 0.97)

4.4 Discussion

Our study developed and comprehensively analysed the performance of a fully automated

biventricular cardiac MRI assessment in a large cohort of patients. We demonstrated that

fully automated left ventricular (LV) stroke volume and ventricular mass index assessment

had a correlation that was stronger than manual assessment with invasive haemodynamics

parameters such as LV stroke volume (r = 0.74 vs 0.68; P = .03), pulmonary vascular

resistance (r = 0.62 vs 0.41; P < .001), and mean pulmonary artery pressure (r = 0.56 vs

0.37; P < .001). Additionally, we showed excellent scan–rescan repeatability of artificial

intelligence (AI) measurements for assessing LV and right ventricular (RV) measurements,

including the more challenging RV mass (interclass correlation coefficient, 0.98; 95% CI:

0.96, 0.99). At a population level, we evaluated the prognostic value of AI–based cardiac

MRI measurements and showed its ability to predict mortality in a cohort with multiple

pathologic diseases, and further evaluated RV parameters in a subgroup of patients with
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pulmonary arterial hypertension. Finally, we have shown excellent generalisability of AI

contours in an external cohort.

We included varying types and severities of conditions affecting the RV to improve the

reliability of our model for automatically measuring RV function and volume. We also

trained our model to recognize the RV epicardial contours to capture a variety of RV

appearances, such as RV dilatation and hypertrophy, in addition to normal variations.

Previous studies that assessed biventricular or focused RV short–axis segmentation used

small public data sets and included no or only a limited number of patients with abnormal-

ities of RV function [159]. The largest biventricular segmentation studies were reported

by Bai et al. [113] and Budai et al. [203] and each study included approximately 5000

participants. Bai et al. [113] included healthy volunteers from the UK Biobank study,

whereas Budai et al. [203] included a cohort with mainly LV pathologic disease and limited

RV pathologic disease because of conditions such as arrhythmogenic ventricular disease.

Both studies were single–centre and single vendor. Our study differs in two main aspects:

the AI segmentation model included large training data sets from multiple vendors (GE,

Philips, and Siemens), multiple centres (Budapest and Sheffield), and multiple pathologic

causes (LV and RV conditions); and automated cardiac MRI results were assessed by

testing their correlation with invasive haemodynamics, prognostic ability, repeatability,

and comparison to manual measurements in an external cohort. Our external test data

set included patients referred to a specialist for a second opinion for complex pathologic

causes.

We validated AI–derived cardiac MRI measurements against invasive haemodynamics

performed on the same day. Cardiac MRI has diagnostic accuracy for pulmonary hyper-

tension when compared to reference standard haemodynamics [204–206]. The correlation

between RV ejection fraction and pulmonary vascular resistance has been reported to range

between −0.32 and −0.55, and the correlation with mean pulmonary artery pressure ranges

between −0.28 and −0.66 [207–210]. Ventricular mass index (RV mass–to–LV mass ratio)

also correlates with RHC parameters ranging between 0.11 and 0.74 for pulmonary vascular

resistance and from 0.53 to 0.87 for mean pulmonary artery pressure [207, 209, 210]. Our
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study showed that AI–based cardiac MRI measurements correlate with RHC parameters.

Particularly ventricular mass index, which is a known diagnostic and prognostic marker in

pulmonary arterial hypertension, showed stronger correlation with RHC when measured

automatically, indicating improved accuracy over manually measured ventricular mass

index. Although some values showed a high level of disagreement, this is expected in a

heterogeneous population including patients with congenital heart disease and considering

the significant technical variability between the modalities compared.

The prognostic value of cardiac MRI measurements has been established in several car-

diopulmonary diseases, including ischaemic heart disease, cardiomyopathies, heart failure,

and pulmonary arterial hypertension [46, 211–213]. In patients with pulmonary arterial

hypertension, RV ejection fraction, RV end–systolic volume index, and RV end–diastolic

volume index were shown to predict mortality and clinical worsening in a meta–analysis of

almost 2000 patients [4]. Our study confirmed the prognostic ability of automatic cardiac

MRI measurements in a large cohort of 3417 patients with multiple pathologic diseases,

including 920 patients with pulmonary arterial hypertension. RV ejection fraction, RV

end–systolic volume index, RV end–diastolic volume index and RV end–diastolic mass

index predicted death in pulmonary arterial hypertension when corrected for age and

sex. RV end–diastolic mass index is not assessed in commercial software packages but

can provide useful prognostic information, particularly in pulmonary hypertension. Ad-

ditionally, we showed that automatically measured RV ejection fraction is a statistically

significant prognostic marker in pulmonary arterial hypertension when added to functional

assessment (World Health Organization functional class and walking test) and right heart

catheterisation parameters.

Although our analysis showed that differences between the automatic and manual

measurements were not statistically significant, these differences can be relatively large

(e.g., 6% difference in ejection fraction). Therefore, we believe that establishing normal

ranges of AI segmentation is important. Additionally, despite similar repeatability between

the automatic and manual segmentation, consistent differences were noted in the manual

segmentation of the scan–rescan cohort, such as excluding portions of the right ventricular
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outflow tract. Whereas this consistency maintained excellent repeatability, the manual

segmentation was less accurate. The scan–rescan segmentation was performed by a cardiac

MRI practitioner not involved in the AI model training, highlighting the existence of

subjective differences in the interpretation of the base of the heart even within the same

institution. Furthermore, the AI segmentation fails in some patients, showing the need for

further training. Failed AI segmentation will be continuously identified and incorporated

in future training rounds to improve the accuracy of the model.

4.4.1 Limitations

Our study had limitations. First, the validation, including comparison with heart catheter-

isation and prediction of mortality, was performed in a single centre with two MRI systems

and limited cohort description. Second, direct comparison between AI and manual mea-

surements in the large ASPIRE cohort for RHC correlation and mortality prediction could

not be performed because of differences in handling trabeculations. Excluding trabecula-

tions from the blood pool and counting them towards myocardial mass might improve

prognostic assessment. Right ventricular mass was not a statistically significant predictor

of mortality in the multivariable Cox regression when trabeculations were included in

the blood pool, while it remained prognostic when trabeculations were excluded from

the blood pool. Experimental versions of the AI tool are able to identify trabeculations,

however require further development and validation. Third, the segmentation algorithm

cannot be made publicly available because the deep learning code would require extensive

documentation and compatibility scripts to enable the application by external parties.

However, we encourage readers to contact the corresponding author for research access to

the Mass software and the AI segmentation tool.

4.5 Conclusion

In conclusion, we described a human–in–the–loop artificial intelligence (AI) approach

to develop a biventricular cardiac MRI assessment tool. We provided a comprehensive

evaluation of AI–based cardiac MRI measurements in a large cohort of patients with a

wide spectrum of right and left ventricular pathologic abnormalities and normal variants.

Fully automatic cardiac MRI assessment correlates with invasive haemodynamics and has
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prognostic value. Training to target apex errors and more extreme pathologic abnormalities

could advance the AI method further. Future research that uses cardiac MRI as a clinical

end point can benefit from the high repeatability and generalisability of AI measurements.
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Abstract

Objectives To identify minimally important differences (MIDs) for cardiac

MRI (CMR) metrics based on Food and Drug Administration (FDA) recom-

mendations for a surrogate endpoint that should reflect how a patient feels,

functions and survives.

Background CMR is the gold standard technique to assess bi-ventricular

volumes and function and is increasingly being considered as an endpoint in

clinical studies. Currently, with the exception of right ventricle (RV) stroke

volume, there are no MIDs reported for CMR metrics.

Methods Consecutive treatment-naive patients with PAH between 2010 and

2021 who had two CMR scans (at baseline prior to treatment and at 12 months

following treatment) were identified from the ASPIRE registry. All patients

were followed up for one additional year after the second scan. For both scans,

cardiac measurements were obtained from a validated fully automated segmen-

tation tool. The MID in CMR metrics was determined using two methods;

(i) an anchor-based method combining how a patient “feels” (emPHasis-10

questionnaire) and “functions” (incremental shuttle walking test) and (ii) for

“survives” a distribution-based method for one-year mortality. RV ejection

fraction (RVEF) and RV and left ventricle (LV) end-diastolic volume, RV end-

systolic volume and LV stroke volume were measured at baseline and follow-up.

For each metric, the absolute difference (change from baseline to follow-up)

and relative difference (ratio of absolute difference to baseline measurement)

were compared in a Cox proportional hazard regression and Kaplan-Meier

survival analysis.

Results 239 patients were included. The MIDs (P < 0.05), for metrics for how

a patient “feels and functions” for (i) improvement, were a relative increase in

RVEF, LVSV or LVEDV of 5% and a decrease in RVESV or RVEDV of 7%

and 5%, respectively and for (ii) clinical worsening, were a relative reduction in

RVEF of 10%, reduction of LVSV or LVEDV of 5% or an increase in RVESV of

14%. For “survives” the MID associated with (i) a reduced one-year mortality
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was an 8% relative reduction in RVESV and a 12% relative increase in LVEDV

and (ii) increased one-year mortality were a 10% relative decrease in RVEF, a

22% increase in RVESV, a 6% increase in RVEDV, a 20% reduction in LVEDV

and a 12% reduction in LVEDV.

Conclusion This study establishes clinically relevant CMR MIDs for how a

patient feels, functions and survives in response to PAH treatment. These

findings provide further support for the use of CMR as a clinically relevant

surrogate endpoint and will aid trial-size calculations for studies using CMR.
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5.1 Introduction

I n patients with pulmonary arterial hypertension (PAH) symptoms and survival are

determined primarily by right ventricular function. PAH, a progressive pulmonary

vasculopathy results in elevation of mean pulmonary arterial pressure (mPAP) and an

increase in right ventricle (RV) afterload [30]. With disease progression and chronically

elevated mPAP, the RV undergoes remodelling, resulting in either adaptation and main-

tenance of output [214] or maladaptation, RV failure and consequently reduced survival

[215]. Cardiac MRI (CMR) is the gold standard for assessing the RV and shows potential

in the assessment of PAH [12]. Impairments of RV function and associated increases

in RV volumes can be detected and quantified by CMR, enabling prediction of clinical

worsening and mortality [4] and aids risk stratification [59]. In addition, CMR is sensitive

to improvements in RV function following PAH therapy [55, 216–218] and detects a larger

treatment effect than the 6-minute-walk [192]. In this context, CMR is an important tool

for risk stratification and monitoring of disease and treatment response in PAH [12].

Phase four clinical studies of PAH therapies have recently utilised CMR as a primary

endpoint in addition to other composite outcomes [217, 218]. Assessing treatment response

with CMR necessitates clinically relevant thresholds in order to determine improvement or

worsening. However, only RV stroke volume measured on pulmonary artery phase-contrast

flow imaging has established thresholds [219], while those for volumetric CMR measure-

ments on cine imaging remain unvalidated. The introduction of automatic volumetric

CMR measurements assessing RV changes over time has several advantages. It offers

excellent repeatability in scan-rescan assessment and has higher accuracy than manual

assessment [7]. In addition, results are generalisable across different centres and MRI

systems, allowing standardised comparisons independent of the location of scan [7, 163,

220].

The Federal Drug Administration (FDA) has highlighted the need to identify surro-

gate endpoints for PAH therapy trials that reflect how a patient “feels, functions and

survives” [150]. To reflect this, we have aimed to identify clinically relevant thresholds for

change in automatically derived CMR RV and LV measurements, benchmarking against
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patient-centred clinical parameters (“feels”), exercise testing (“functions”) and mortality

(“survives”).

5.2 Materials and Methods

5.2.1 Study Sample

Adult PAH patients were identified from the “Assessing the Spectrum of Pulmonary

hypertension Identified at a REferral centre” (ASPIRE) registry [191] between January

2010 and February 2021. Diagnosis of PAH was based on mPAP ≥ 25 mmHg and

PAWP ≤ 15 mmHg and PVR ≥ 3 Wood Units, measured by right heart catheterisation

(RHC). Patients were eligible for inclusion if they had: (1) baseline CMR prior to starting

treatment and within 48 hours of PAH diagnosis, (2) follow-up CMR at 12-24 months and

(3) at least one-year follow-up after the follow-up scan. Patients were excluded if they

did not have complete short axis stack imaging for both baseline and repeat scans. The

local ethics committee and institutional review board approved this study (ASPIRE, ref:

c06/Q2308/8).

5.2.2 Imaging Procedures

MRI Protocol

CMR was performed with 1.5 Tesla MRI systems from GE (Signa HDx, General Electrics

Healthcare). Short-axis cine images were acquired using a cardiac-gated multislice balanced

steady-state free precession sequence (20 frames per cardiac cycle, section thickness 10mm,

0mm inter-section gap, field of view 480mm, acquisition matrix 256 × 200, flip angle 60°,

BW125KHz/pixel, TR/TE3.7/1.6ms). A stack of images in the short-axis plane was

acquired, fully covering both ventricles from base to apex. End-systole was considered to

be the smallest cavity area. End-diastole was defined as the first cine phase of the R-wave

triggered acquisition or largest volume. Patients were supine with a surface coil and with

retrospective ECG gating.

Image Analysis

RV function was assessed visually on four-chamber and short-axis cine and short-axis

stacks. The magnitude of change in RV function between baseline and follow-up scans
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was graded as improved, stable or worsened. Visual assessment was performed by expert

radiologists (C.H., S.T., A.J.S., S.R.) with 17, 16, 12, 11 years of experience who were

blinded to automatic but not manual measurements. Manual CMR measurements were

obtained from contouring the biventricular endo- and epi-cardial borders at end-diastole

and end-systole on short-axis stack images and by excluding trabeculations from the

blood pool. Manual contouring was performed by an MRI radiographer with 19 years of

experience using Medis (Medis Medical Imaging Systems, Leiden, the Netherlands). An

in-house deep learning cardiac MRI segmentation tool was used to obtain fully automatic

measurements [7]. The segmentation tool was trained in a multi-centre, multi-vendor

and multi-pathology dataset and was previously validated by assessing: (i) Accuracy

against same-day invasive pulmonary haemodynamics and phase contrast flow imaging.

(ii) Repeatability in a same-day scan-rescan cohort. (iii) Generalisability in an external

testing cohort. (iv) Mortality prediction in a large cohort with multiple cardiac and lung

pathologies. The automatic contours included trabeculations in the blood pool and were

obtained using MASS software (MASS, research version 2020; Leiden University Medical

Center).

Clinical Parameters

The emPHasis-10 questionnaire (E-10) to assess health-related quality of life reported by

patients with PAH was completed at baseline and at the time of the follow-up scan from

2014 onwards. Each patient completed ten questions ranked on a scale of 0 to 5, with a

lower score indicating a better quality of life [221]. The incremental shuttle walking test

(ISWT) was performed as part of routine patient evaluation according to the standard

method [222]. The REVEAL score was calculated from composite clinical parameters

[223] and modified to include the incremental shuttle walk test instead of the 6 minute

walking test [59, 224]. Mortality data were collected from the electronic records of the

National Health Service (NHS) Personal Demographics Service. The NHS automatically

updates the mortality records once a death is registered in the United Kingdom. All

patients were followed up as part of the national service specification for patients with

pulmonary hypertension for a minimum of 12 months.
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Statistical Analysis

Baseline characteristics are presented as proportions, means standard deviations (SD), or

medians and interquartile ranges (IQR). Two thresholds for minimal important difference

(MID) were assessed as follows, with a significance threshold of 0.05. Firstly, MIDs for how

a patient “feels and functions” were determined using a combination of a patient-reported

outcome measure and assessment of exercise capacity. An anchor-based method was

utilised using the E-10 in combination with the ISWT. Patients that had either E-10 or

ISWT completed at the time of baseline and follow-up scans were considered to have

improved, remained stable or worsened, based on a change of 6 points in E-10 [225,

226] or 47.5m in ISWT [227, 228]. If a patient had both tests and were discordant for

improvement or worsening the patient was considered to have worsened. To calculate the

MID, the mean changes in CMR measurements between baseline and follow-up in the

improved and worsened groups were compared to the mean CMR changes in the overall

sample used in the E-10 and ISWT assessment [229]. The Wilcoxon test was performed

to test for differences between baseline and follow-up parameters. Statistical analyses

were carried out using the lifelines and pingouin Python libraries [200, 201] and graphs

were produced using the Matplotlib library [202] and Prism 9 (GraphPad Software, La

Jolla CA, USA). Secondly, MIDs for how a “patient survives” were based on one-year

mortality for CMR metrics encompassing those shown to be prognostic in PAH [4] and

including right ventricular ejection fraction (RVEF), right ventricular end-systolic volume

(RVESV), right ventricular end-diastolic volume (RVEDV), left ventricular stroke volume

(LVSV) and left ventricular end-diastolic volume (LVEDV) were estimated through a

distribution method using SD. Threshold values were defined at 0.25, 0.5 and 0.75SD

of the baseline measurements for absolute change and of the % change from baseline

to follow-up for relative change [230, 231]. For each metric, the absolute (follow-up

minus baseline measurement) and relative differences (ratio of the absolute difference to

baseline measurement) were used to categorise patients as improved, stable or worsened.

To assess the prediction of worsening, patients who improved or remained stable were

compared against patients that worsened using Cox proportional hazard regression for

one-year mortality. Similarly, to assess prediction of improvement, patients who worsened
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or remained stable were compared to patients that improved. Thirdly, the prognostic

accuracy of predicting mortality compared to the visual assessment of the expert CMR

reader was compared using (1) the receiver-operating characteristic curve (ROC) and the

area under the curve (AUC) for one-year mortality and (2) Kaplan-Meier survival analysis

for five years. DeLong’s test was used to compare the AUC of RV change classification and

visual assessment [232]. Between-group comparisons in the Kaplan-Meier analyses were

made using the log-rank test. Agreement between the classification using RV thresholds

and the visual assessment was tested using Cohen’s Kappa statistic (k) (< 0.2 slight,

0.2 − 0.39 fair, 0.4 − 0.59 moderate, 0.6 − 0.8 substantial and > 0.80 excellent agreement).

5.3 Results

5.3.1
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Figure 5.1: Study participant flow chart. E-10 and ISWT were performed on
the same day as CMR. 1st CMR at baseline >>> 2nd CMR at 12±6 months
>>> One-year follow-up.
E-10; emPHasis-10 health-related quality of life questionnaire, ISWT; incre-
mental shuttle walking test
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Abstract

Objectives Pulmonary arterial hypertension (PAH) is a rare but serious

disease associated with high mortality if left untreated. This study aims to

assess the prognostic cardiac magnetic resonance (CMR) features in PAH using

machine learning.

Methods Seven hundred and twenty-three consecutive treatment-naive PAH

patients were identified from the ASPIRE registry; 516 were included in the

training, and 207 in the validation cohort. A multilinear principal component

analysis (MPCA)-based machine learning approach was used to extract mor-

tality and survival features throughout the cardiac cycle. The features were

overlaid on the original imaging using thresholding and clustering of high- and

low-risk of mortality prediction values.

Results The 1-year mortality rate in the validation cohort was 10%. Uni-

variable Cox regression analysis of the combined short-axis and four-chamber

MPCA-based predictions was statistically significant (hazard ratios: 2.1, 95%

CI: 1.3, 3.4, c − index = 0.70, P = 0.002). The MPCA features improved

the 1-year mortality prediction of REVEAL from c − index = 0.71 to 0.76

(P < 0.001). Abnormalities in the end-systolic interventricular septum and

end-diastolic left ventricle indicated the highest risk of mortality.

Conclusion The MPCA-based machine learning is an explainable time-resolved

approach that allows visualisation of prognostic cardiac features throughout

the cardiac cycle at population level, making this approach transparent and

clinically interpretable. In addition, the added prognostic value over the RE-

VEAL risk score and CMR volumetric measurements allows for a more accurate

prediction of 1-year mortality risk in PAH.
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6.1 Introduction

C ardiac MRI (CMR) is a powerful prognostic tool owing to its ability to assess cardio-

physiological parameters such as the volume and function of the cardiac chambers,

tissue characterisation and anatomical structure. Machine learning methods harnessing

CMR’s prognostic abilities remain rare and mainly focus on segmenting cardiac chambers

to automate CMR measurements [240]. The process of automating CMR measurements

has matured over recent years, proving to be accurate and comparable with results obtained

from manual segmentation [159, 190, 241]. However, there is a wealth of data available

in CMR studies other than those based on volumetric measurements. A recent machine

learning model based on the motion of segmented right ventricle predicted mortality in a

mixed cohort of pulmonary hypertension patients [116]. This study linked impaired basal

longitudinal shortening and transverse contraction at the interventricular septum and free

wall with an increased risk of mortality [116]. Another recent machine learning model based

on CMR disease features extracted by multilinear principal component analysis (MPCA)

has been used to predict the presence or absence of pulmonary arterial hypertension (PAH)

[9] without the need for segmentation.

The MPCA-based model is interpretable because MPCA is a linear and transparent

feature extraction method, thus a particularly promising machine learning approach for

CMR imaging. Each CMR image sequence is a three-dimensional array (e.g. 512×512pixels

×6mm slice thickness ×20 images throughout the cardiac cycle), with each element being a

voxel capturing different tissue characteristics, anatomical location, and temporal variation

in the cardiac cycle. Such a multidimensional array can be naturally represented as

a mathematical object called a tensor. MPCA extracts features directly from such

multidimensional tensor representation which preserves the multidimensional structure of

the original CMR data more accurately than reshaping it into one-dimensional, vector

representation [242]. The extracted MPCA features can then be weighted in classification

or regression models to optimise the prediction of the desired outcome. MPCA is robust

and has been successfully applied to brain imaging and more recently to CMR [9, 242].
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Pulmonary arterial hypertension is a rare but serious disease that is associated with

high mortality if left untreated [30]. This study aims to assess the prognostic accuracy of

the above MPCA-based model to predict 1-year mortality in PAH. Therefore, evaluating

prognosis is key to identifying high-risk patients and optimising their management strategies

as recommended by the European Society of Cardiology guidelines [12, 13]. Multiple

clinical parameters are routinely obtained to evaluate PAH disease progression, including

pulmonary haemodynamics from right heart catheterization (RHC), functional data from

exercise tolerance and pulmonary function tests, biochemistry including N-terminal pro-B-

type natriuretic peptide (NT-proBNP) and imaging including echocardiogram and CMR.

The REVEAL score is a composite clinical risk score for mortality that combines these

clinical parameters to predict 1-year mortality [223]. In addition, CMR measurements such

as right ventricular volumes and function have been shown to predict mortality in PAH [4].

Thus, the availability of detailed patient phenotyping and prediction scores allows setting

a clinical benchmark for the performance of machine learning prognostic models in PAH.

This study assesses the additive value of the MPCA-based model to predict mortality

compared with established prognostic parameters such as the REVEAL risk score and

CMR measurements.

6.2 Materials and Methods

The Transparent reporting of a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) checklist for reporting prediction model development and validation

was followed [243] and is available in the supplemental material.

6.2.1 Study Sample

Study population All consecutive treatment-näıve patients with PAH referred for a baseline

CMR between 2008 and 2019 were identified from the ASPIRE registry[191]. Eligibility

criteria included: (i) a baseline CMR study performed within 14 days of a PAH diagnosis,

confirmed by RHC, and before the commencement of PAH treatment. (ii) Minimum 12

months follow-up or death within 12 months post-CMR study. The study population was

divided into two cohorts: (i) a training cohort whose CMR images were used to develop

and optimise the prognostic algorithm and (ii) a validation cohort that was left out of
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training and used to validate the performance of the prognostic model. The cohort was

split 70 : 30 into the model development and model validation cohort.

Ethical approval was obtained from the local ethics committee and written consent

was waived for this retrospective study (ref c06/Q2308/8).

6.2.2 MR imaging protocol

Cardiac magnetic resonance was performed with a 1.5 Tesla GE HDx (GE Healthcare,

Milwaukee, USA) system using an eight-channel cardiac coil. Four-chamber (4Ch) and

short-axis (SA) cine images were acquired using a cardiac-gated multislice balanced

steady-state free precession sequence (20 frames per cardiac cycle, slice thickness 10mm,

0mm inter-slice gap, field of view 480mm, acquisition matrix 256 × 200, flip angle 60°,

BW 125KHz/pixel, TR/TE 3.7/1.6ms). A stack of images in the SA plane were acquired

fully covering both ventricles from base to apex. End-systole was considered to be the

smallest cavity area. End-diastole was defined as the first cine phase of the R-wave

triggered acquisition or largest volume. Patients were in the supine position with a surface

coil and with retrospective ECG gating.

Volumetric and ventricular function analysis was performed with a fully automated and

validated segmentation tool ([7]) that contoured the ventricular endocardial borders at

end-diastole and end-systole on the SA images using MASS software (MASS, 2020; Leiden

University Medical Center, Leiden, the Netherlands). Papillary muscles and trabecula

were included in the blood volume.

6.2.3 Image preprocessing

Mid-chamber SA and 4Ch cine images were used in this study. Images were processed

following methods in a previous study [244]. In brief, images were preprocessed by (I)

standardising CMR voxel units between subjects, (II) registering to each other using three

anatomical landmarks, (III) masking surrounding tissues, and (IV) downscaling image

size (Figure 6.1 and Figure 6.2).
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Figure 6.1: Model development flow chart.
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Figure 6.2: Model pipeline.
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Standardisation and inhomogeneity bias correction

Cardiac MRI voxel units were standardised between subjects by z-scores to allow compari-

son between the different scans.

Landmarking and Registration

Rigid image registration was used based on three predefined fixed anatomic landmarks

aligning the hearts on different scans to the same image space. The landmarks were

manually placed on SA (superior insertion point; right ventricular free wall inflexion; mid-

left ventricular lateral wall) and 4Ch (left ventricle apex; lateral mitral annulus; lateral

tricuspid annulus) (Figure 6.3). Cardiac MRI images were landmarked by a single reader

(S.A.) using MIM software (MIM Software Inc., Cleveland, Ohio, United States) with a

customised workflow developed by a University of Sheffield clinical scientist (M.S) that

facilitated storing the coordinates of the landmarks in an online spreadsheet. Independent

visual quality assurance checks were performed (S.A.; J.U.).

Figure 6.3: Landmarks on 4-chamber and short-axis view

Image masking

To focus on spatially relevant features, an ellipsoidal mask was fitted around the heart

which blurred and smoothed out the image outside the heart. The smoothing increased

incrementally with increased distance away from the heart by dilating the edges of the

mask towards the image boundaries.
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Scaling

The spatial resolution of the CMR images had to be reduced to increase the signal to

noise ratio. A low level of signal to noise ratio can impair the ML model by learning

features that are part of the noise (e.g. overfitting the model) rather than actual prognostic

features. The resolution of the CMR in preprocessing has therefore been downsampled

from 512 × 512 to four smaller scales: 32 × 32, 64 × 64, 128 × 128 and 256 × 256 to identify

the best resolution for prediction.

6.2.4 Multilinear principal component analysis pipeline

The machine learning (ML) model includes three main steps: (i) feature extraction (ii)

feature selection and (iii) decision function [244].

Feature extraction

In the feature extraction step, the ML model learns a low-dimensional representation from a

high-dimensional input. The dimensional reduction in ML is necessary for high dimensional

data analysis to achieve meaningful and efficient machine learning. Principal component

analysis (PCA) is one of the most common methods of linear dimension reduction. The

MPCA method extends the utility of PCA from linear data to multilinear data including

tensors. MCPA converts the tensor to a low dimensional space while retaining most of

the data variation of the original data [245]. For example in a CMR sequence with a

three dimensional tensor including spatial dimensions of an image (A × B) and a time

dimension defined by the number of frames in the sequence (C). MCPA converts the CMR

sequence tensor (A×B ×C) into three matrices (A×P, B ×Q and C ×R) for each sample

of the CMR sequence. These three matrices are optimised during training and capture

the variation from each sample of the CMR sequence. The MCPA uses the optimised

three matrices to map a new tensor (P × Q × R) which, in effect, is a low dimensional

representation of the original tensor (A × B × C) (Figure 6.4).

Feature selection

In the feature selection step, the ML model focuses on a small sample of extracted features

and rank them based on the highest discrimination performance by performing Fisher’s

discriminant analysis.
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Figure 6.4: Multilinear principal component analysis.

Feature classification

The final step involves training the model to classify newly observed features into categories

of survival and non-survival based on the top-ranked features extracted and selected in

the previous steps. A simple linear method is chosen in the decision function as it is

more transparent and interpretable and less prone to overfitting than complex, non-linear

methods. The linear classifier model determines voxel-wise weighting for the learnt features,

which then can be mapped back onto the original CMR images. The linear prognostic

prediction was achieved by training support vector machines (SVMs) on MPCA features

extracted from CMR studies [9, 242]. The methodology followed the MPCA-based pipeline

in previous studies [9, 244]. This pipeline was trained through 10 rounds of 10-fold

cross-validation on the development cohort (n = 516). For each fold during training,

MPCA features were extracted and ranked for prognostic capability and selected using

a step-wise feature inclusion method. This was performed using a random tuning-set

(n = 50) of cases. The feature set with the highest tuning-set performance was used

to train an SVM and tested on the left-out fold. The feature set with the highest fold-

performance was used to train the final development SVM. This MPCA-based machine

learning model was then applied to the completely left-out validation cohort (n = 207).

On a standard computer, the time it takes to process each image and perform inference

is much < 0.1 second. A Jupyter notebook tutorial of the open-source pipeline code
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is available at: https://colab.research.google.com/github/pykale/pykale/blob/

main/examples/cmri_mpca/tutorial.ipynb

6.2.5 Visualisation of tensor features

Trained features were visualised by using MPCA reconstruction to obtain spatially relevant

feature maps. To visually inspect the impact of specific regions on high- and low-risk of

mortality prediction, a two-step procedure of thresholding and clustering was implemented.

Voxels containing high absolute values (high positive = high-risk, high negative = low-risk)

of MPCA features were thresholded. Morphological dilation-erosion using a spherical

structural element (r = 2) was performed and clusters of visually significant size were

overlaid on individual patients’ original CMR scans.

6.2.6 Clinical and mortality data

Clinical data including intermittent shuttle walking test, pulmonary function test (PFT),

estimated glomerular filtration rate (eGFR) and serum level of NT-proBNP were collected

before treatment was commenced. Data was collected from the electronic clinical database

(Infoflex), laboratory results and radiological information system at Sheffield Teaching

Hospitals (STH). Demographic data, WHO functional status, PAH subgroup diagnosis, and

outcome were collected from the electronic medical system. Mortality data were collected

from the electronic records of the National Health Service (NHS) Personal Demographics

Service. The NHS automatically updates the mortality records once a death is registered

in the United Kingdom. All patients were followed up as part of the national service

specification for patients with pulmonary hypertension for a minimum of 12 months. No

patients were lost to follow-up.

REVEAL score

The Registry to Evaluate Early and Long-term Pulmonary Arterial Hypertension Disease

Management (REVEAL Registry) is the largest multicentre registry of a PAH population

in the USA [27]. The REVEAL data is acquired from 55 centres and includes both

consecutive incident and prevalent PAH cases. Based on the observational data from the

REVEAL registry, a mortality risk equation was developed on the incident cases and

validated on the prevalent cases [223]. The REVEAL combines several prognostic variables

https://colab.research.google.com/github/pykale/pykale/blob/main/examples/cmri_mpca/tutorial.ipynb
https://colab.research.google.com/github/pykale/pykale/blob/main/examples/cmri_mpca/tutorial.ipynb
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including demographics, PAH subcategory, RHC, PFT, WHO class, walking distance,

pericardial effusion and eFGR (Figure 6.5). The REVEAL score has become a commonly

used assessment tool in clinical practice and gives a good indication of the mortality risk

at baseline.

-2 -1 Mortality risk variable 1 2

PAH subgroup CTD POPH or familial

Demographics Males Age>60yrs

Comorbidities Renal Insufficiency

I II WHO Functional Class IV

Vital signs SBP<110 mm Hg or 
HR>92 BPM

>440 m 6-Minute Walk Test <165 m

<50 pg/ml BNP >180 pg/ml

Echocardiogram Pericardial Effusion

% pred. Dlco >80 Pulmonary Function Test % pred. Dlco <32

Right Heart Catheterization mRAP>20 mm
Hg PVR>32 Wood units

Figure 6.5: REVEAL PAH mortality risk score
CTD: connective tissue disease; PoPH: portal hypertension; WHO: World Health Organi-
sation; BNP: brain natriuretic peptide; SBP: systolic blood pressure; HR: heart rate; Dlco:
diffusing capacity of the lung for carbon monoxide; % pred: % predicted; mRAP: mean right
atrial pressure; PVR: pulmonary vascular resistance.

Patients with PAH and particularly idiopathic PAH (IPAH) have an impaired TLCO

due to pulmonary artery vasculopathy resulting in increased pulmonary vascular resistance

[246, 247]. A reduction in TLCO is a significant independent prognostic marker in PAH

that increases the risk of death in 5-years by four times [248]. Pulmonary function tests

were adjusted for age, sex and ethnicity to calculate the per cent predicted PFTs using the

online calculators provided by the Global Lung Function Initiative (GLI) [249, 250]. The

values calculated were the %predicted forced expiratory volume (FEV1); the amount of

air exhaled during the first second of forced breath, the %predicted forced vital capacity

(FVC); the total amount of air exhaled during the FEV1 test and the %predicted transfer

factor of the lung for carbon monoxide (TLCO) which measures the alveolar gas exchange

with the pulmonary capillaries.

Pericardial effusion is described as a significant prognostic marker in current guidelines

[13]. It has the highest prognostic value compared to other echocardiogram markers and
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can indicate a doubled risk of mortality over five years [251, 252]. Presence of pericardiacl

effusion was elicited from time matched (within 30-days) echocardiogram reports, chest

computed tomography (CT) and CMR reports.

Exercise limitation is a common presenting symptom in PAH and is strongly associated

with poor prognosis [253, 254]. Several exercise tests exist, but the most common test

is the 6-minute walking test (6MWT) which is also incorporated in the REVEAL score.

The 6MWT measures the distance covered by walking for six minutes on a level and flat

surface. A distance of fewer than 165m is an indicator or poor function and prognosis

while a distance exceeding 440m is a marker of good prognosis. A main limitation of

the 6MWT functional test is that the maximal exercise capacity is limited by time and

distance, rather than the functional ability of patients. This artificial ceiling of effect has

led to concerns about the sensitivity to change in functional capacity in younger patients

and those with less severe disease [255]. A more complex functional exercise that avoids

this ceiling effect is the incremental shuttle walking test (ISWT) that is performed at the

Sheffield Pulmonary Vascular Disease Unit (SPVDU). During the ISWT patients walk

back and forth on a 10m walking course while increasing their pace every minute until

the other end of the track can not be reached within one minute. The ISWT allows for

assessing higher levels of exercise capacity measured by distance and speed achieved by

the patient.

6.2.7 Statistical analysis

Continuous variables are presented as proportions, means ± standard deviations, or median

and interquartile range for data not following a normal distribution. The sample size for

developing the prediction model was calculated using a 1-year mortality prevalence of

10% and seven predictor parameters and required 420 patients to develop the mortality

prediction model [256]. The REVEAL score was calculated from composite clinical

parameters [223] and modified to include the incremental shuttle walk test instead of the

6 minute walking test[59, 224] using the following thresholds: a distance of 0 − 40m = +2;

40 − 180m = +1; 181 − 339m = 0, 340 − 420m = −1 and a distance > 420m = −2

REVEAL points [59, 224]. The CMR volumetric measurements were indexed for body

surface area and corrected for age and sex by calculating the percentage predicted values
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as per published reference data [197, 198]. The outcome of the MPCA-based pipeline was

calculated as the SA and 4Ch probabilities based on the SVM prediction. A combined

probability was calculated by further training a dual-scan SVM from the selected features

of both individual models - SA and 4Ch. All variables were standardised by subtracting

the mean for each variable and dividing it by its standard deviation (SD) to allow for more

meaningful comparisons. A univariable Cox proportional hazards regression was performed

to estimate the 1-year mortality prediction of the REVEAL score, CMR measurements, and

the MPCA probabilities. For the multivariable analysis, we planned to include the CMR

measurements that were identified in previous prognostic studies, namely right ventricular

ejection fraction (RVEF), right ventricular end-systolic volume index (RVESVi), right

ventricular end-diastolic volume index (RVEDVi), left ventricular end-diastolic volume

index (LVEDVi), left ventricular stroke volume index (LVSVi) and pulmonary artery

relative area change (PA RAC) [4, 46]. Owing to the high correlation between RVESVi

and RVEDVi (r = 0.89), we only included RVESVi as the stronger predictor in the

multivariable analysis. The proportional hazards assumption was confirmed using scaled

Schoenfeld residuals. The c-index was used to measure the relative goodness of fit between

the different regression models. The c-index indicates the rate of correct predictions of

survival the model makes. We also computed the Akaike information criterion (AIC) for

each model. The AIC estimates the rate of incorrect prediction and compares the quality

of different models relative to each other while penalising the models with more variables.

While a higher c-index indicates a better model fit, a lower AIC value indicates fewer

prediction errors [257].

In addition, the likelihood ratio test was performed to assess if there is a statistically

significant difference between the different models and to determine the additive predictive

value of the MPCA probabilities. The models compared were the univariable REVEAL

score, the REVEAL score combined with prognostic CMR measurements, and finally a

multiple variable model including the REVEAL score, CMR measurement and the MPCA

probabilities. Kaplan-Meier curves were analysed to demonstrate the prognostic value of

MPCA predictions dividing patients based on the median MPCA value as the threshold.

The high and low mortality risk groups were compared using the log-rank (Mantel-Cox)

test. The receiver-operating characteristic curve (ROC) and the area under the curve
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(AUC) were used to estimate the prognostic accuracy of the different MPCA features.

All tests were performed at .05 level.

6.3 Results

6.3.1 Study Sample Characteristics

A total of 737 consecutive incident patients with PAH were identified. Incomplete scans

because of claustrophobia or patient intolerance were excluded, leaving 723 scans for

the analysis. The training cohort included 516 and the validation cohort 207 patients

(Figure 6.6).

The baseline characteristics of both cohorts are presented in Table 6.1. In summary,

the study population were 74% females aged 59 ± 16 years and included PAH secondary

to connective tissue disease (CTD) (46%), idiopathic PAH (IPAH) (27%), congenital heart

disease (CHD) (16%), secondary to portal hypertension (7%) and other PAH subtypes

(4%).

6.3.2 Mortality prediction

Survival analysis

The 1-year mortality rate in the validation cohort was 10% with an overall mortality rate

over the total follow-up period of 29%. Kaplan-Meier survival analysis demonstrated

a significant difference in survival in patients with high and low mortality risk in the

validation cohort (log − rank test P < 0.001) (Figure 6.7). The ROC curve for each model

is shown in Figure 6.8. The AUC was 0.73 for the SA model, 0.64 for 4Ch, and 0.70 for

the combined MPCA-based features to predict 1-year mortality in the validation cohort.

Univariable Cox regression analysis confirmed a strong prognostic utility of the SA and

combined SA and 4Ch MPCA-based predictions (Table 6.2). However, the 4Ch features

alone were not significant predictors of mortality. The univariable Cox regression hazard

ratios for the demographics, RHC and CMR measurements, functional tests and clinical

parameters are shown in Table 6.2. The REVEAL score and, PA RAC and age and

sex-adjusted RVESVi were significant predictors of 1-year mortality.
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Figure 6.6: Study participants flow chart.



148 Chapter 6. Machine learning cardiac MRI features predict mortality in PAH

Table 6.1: Baseline characteristics.

Training
N = 516

Validation
N = 207 P Value

Age (years) 62 (49 to 71) 62 (48 to 72) .67
Sex (female) 376 (72%) 166 (80%) .04
BSA (m2) 1.82 ± 0.2 1.83 ± 0.2 .93
Diagnosis

CHD 71 (13%) 34 (16%)
CTD 242 (46%) 96 (46%)
IPAH 137 (26%) 55 (26%)
Portal hypertension 35 (6%) 17 (8%)
other PAH 31 (6%) 5 (2%)

WHO functional class .33
I 2 (0%) 0 (0%)
II 37 (7%) 11 (5%)
III 409 (79%) 170 (82%)
IV 58 (11%) 26 (12%)

RHC
mPAP (mmHg) 46 (34 to 56) 48 (38 to 56) .16
PVR (dyns.s.cm-5) 608 (330 to 883) 825 (455 to 1253) <.001
PAWP (mmHg) 11 (8 to 13) 10 (8 to 12) <.001
RA mean (mmHg) 9 (6 to 14) 9 (6 to 14) .55
CO (L/min) 5 (4 to 6) 4 (3 to 5) <.001
SvO2 (%) 66 (58 to 71) 66 (58 to 73) 0.63

CMR
RVEF (%) 37 ± 13 36 ± 11 .54
RVESVi (ml/m2) 74 ± 35 76 ± 31 .12
RVEDVi (ml/m2) 113 ± 41 115 ± 39 .16
RVEDMi (g/m2) 27 ± 8 28 ± 8 .02
LVEF (%) 53 ± 10 53 ± 9 .97
LVESVi (ml/m2) 31 ± 11 31 ± 16 .21
LVEDVi (ml/m2) 67 ± 19 64 ± 21 .08
LVSVi (ml/m2) 36 ± 12 34 ± 9 .13
VMI (ratio) 0.58 ± 0.2 0.62 ± 0.2 .01

Note.—Data presented as mean ± standard deviation or median (range). BSA, body surface area;
CHD, congenital heart disease; CO, cardiac output; CTD, connective tissue disease; CTEPH, chronic
thromboembolic pulmonary hypertension; EDVi, end-diastolic volume index; ESVi, end-systolic volume
index; IPAH, idiopathic pulmonary arterial hypertension; LV, left ventricle; mPAP, mean pulmonary
artery pressure; PAH, pulmonary arterial hypertension; PAWP, pulmonary arterial wedge pressure; PH,
pulmonary hypertension; PVR, pulmonary vascular resistance; RA, right atrium; RHC, right heart
catheterization; RV, right ventricle; RVEF, right ventricle ejection fraction; RVEDMi, right ventricular
end-diastolic mass index; SV, stroke volume; SvO2 = mixed venous oxygen saturation; VMI, ventricular
mass index; WHO, World Health Organisation
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Figure 6.7: Kaplan–Meier curve. The Kaplan–Meier curve shows the survival
of high- and low-risk patients based on the combined short-axis and four-
chamber model predictions. The risk threshold was determined based on the
median value of the MPCA predictions. The Kaplan–Meier analysis shows a
significant difference in survival between the high and low risk of mortality
patient groups (log − rank P < 0.001).
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Figure 6.8: Receiver-operating characteristic curves for 1-year mortality
prediction. The prognostic accuracy of the different machine learning models
were compared (A) combined model, (B) short-axis model and (C) four-chamber
model. The highest area under the curve was achieved with the short-axis
model (AUC = 0.73).
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Table 6.2: Univariable Cox proportional hazard regression ratios
for 1-year mortality.

Hazard Ratio P Value
Age (years) 1.04 [1.01, 1.08] .03
Sex 1.04 [0.35, 3.10] .95
WHO class 2.03 [0.78, 5.29] .15
REVEAL 1.34 [1.11, 1.62] .002
RHC

mPAP (mmHg) 0.98 [0.95, 1.02] .31
PVR (dyns.s.cm-5) 1.00 [0.99, 1.00] .62
PAWP (mmHg) 1.01 [0.87, 1.18] .88
RA mean (mmHg) 1.08 [1.02, 1.15] .01
CO (L/min) 0.84 [0.60, 1.19] .32
SvO2 (%) 0.97 [0.93, 1.01] .13

CMR
RVEF (% pred) 0.76 [0.45, 1.31] .33
RVESVi (% pred) 1.70 [1.10, 2.63] .02
RVEDVi (% pred) 1.44 [0.97, 2.14] .07
RVEDMi (% pred) 1.11 [0.78, 1.59] .55
LVEF (% pred) 1.28 [0.79, 2.06] .32
LVESVi (% pred) 1.04 [0.65, 1.65] .88
LVEDVi (% pred) 0.92 [0.56, 1.51] .74
LVSVi (% pred) 0.93 [0.59, 1.47] .77
VMI (ratio) 0.96 [0.53, 1.75] .90
PA RAC (%) 0.91 [0.84, 0.99] .03
Septal angle systole 0.99 [0.97, 1.03] .94
Septal angle diastole 0.98 [0.94, 1.04] .64

MPCA-based features
SA features 2.40 [1.46, 3.95] .001
4-chamber features 1.47 [0.98, 2.22] .06
Combined features 1.97 [1.28, 3.03] .002

Note.—CMR parameters are corrected for age and sex (%pred). For abbrevi-
ations see Table 6.1
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Additive prognostic value

Several multivariable prognostic models were compared in Table 6.3 to compare the predic-

tive value of the REVEAL score alone, REVEAL score combined with CMR measurements

or MPCA features and finally REVEAL score combined with CMR measurements and

MPCA features. The prognostic models were compared using the c-index and AIC test for

goodness of fit and the log-rank test to assess the statistical significance of the difference

between the models. The univariable REVEAL model allows the assessment of the 1-year

risk of mortality based on available composite clinical data alone. Adding the MPCA-based

predictions allows evaluating the added incremental value in predicting death compared

with REVEAL and segmentation-based CMR parameters. The REVEAL score alone

had a c − index of 0.71 and AIC of 203. Adding CMR measurements improved the

model statistically significantly, to 0.78 and AIC of 205 (log − rank test P = 0.003). The

model including MPCA prediction, REVEAL score and CMR measurements, showed the

strongest prognostic utility (c − index : 0.83 and AIC 193, log − rank test P < 0.001).

The MPCA model alone had similar accuracy to the REVEAL score with a c − index of

0.71 and AIC of 204.

Table 6.3: C-index and Akaike information criterion (AIC) for the univariable and multiple
variable Cox regression analysis for the REVEAL score, CMR measurements and the MPCA
machine learning model.

C index AIC P Value
CMR measurements* 0.70 [0.60-0.80] 211
MPCA** 0.70 [0.59-0.81] 204
REVEAL score 0.71 [0.61-0.81] 203
REVEAL + MPCA 0.76 [0.67-0.85] 197 .003
REVEAL+ CMR measurements 0.78 [0.70-0.86] 205 .003
REVEAL + CMR measurements + MPCA 0.83 [0.76-0.90] 193 <.001

Note.— A higher c-index indicates a better model fit and a lower AIC indicates a relative lower prediction
error. The log-rank test indicates that the combination of MPCA, CMR measurements and REVEAL is
statistically significantly more predictive than REVEAL score alone (c − index 0.83 vs. 0.72, P < 0.001).
∗ CMR measurements included age and sex corrected right ventricular ejection fraction, right ventricular
end-systolic volume index, left ventricular end-diastolic volume index, left ventricular stroke volume index and
pulmonary artery relative area change.
∗∗ MPCA combined short-axis and four-chamber features.

Temporal prognostic dynamics

The MPCA-based features were assessed throughout the cardiac cycle and grouped

according to the anatomical region into the right ventricle (RV), left ventricle (LV) and

septum. For visualisation purposes, we manually segmented the averaged SA and 4Ch slice



6.4 Discussion 153

to group the MPCA features into anatomical regions. The features were divided into low

and high-risk features based on the median MPCA feature values used in the Kaplan-Meier

analysis (Figure 6.9, Figure 6.10). On the SA views, abnormal interventricular septum

during systole and particularly at end-systole and the LV chamber during diastole and

particularly at end-diastole indicated a higher risk of mortality. On 4Ch views, the features

with the highest impact on predicting mortality were at the RV at early systole. A normal

LV and interventricular septum in diastole on SA and 4Ch imaging were the strongest

predictors of survival, whereas the RV was a poor indicator of survival (Figure 6.9).

6.4 Discussion

This study assessed the prognostic utility of an MPCA-based machine learning model in

CMR in patients with treatment-näıve PAH. This is the first study to localise prognostic

PAH features with an explainable AI approach dynamically over the cardiac cycle. In

addition, we have shown the incremental prognostic value of the MPCA model compared to

known prognostic markers such as the REVEAL score and CMR volumetric measurements

(Figure 6.11).

The advantage of using MPCA is its interpretability. The ability to directly relate

prognostic features identified in the machine learning process helps understand and

explain the machine learning model’s findings. Diagnostic and prognostic models based

on deep learning methods have been criticised for creating a ‘black-box’ situation where

the predictions are often difficult to comprehend and retrace [258]. Visualising the

MPCA features throughout the cardiac cycle allowed discerning the most significant

discriminatory predictors of death on CMR in PAH. The known prognostic features

identified in pulmonary hypertension of diastolic interventricular septal flattening [251],

reduced LV size and increased RV size [4] can all be visually assessed on SA images. The

most significant features identified in non-survivors on SA imaging were located at the

septum at end-systole and LV at end-diastole. Changes in the interventricular septum at

end-systole are the result of RV pressure overload. The altered pressure gradient between

the LV and RV results in flattening of the septum giving a characteristic D-shaped LV

and eventually results in impaired LV diastolic function and reduced LV filling [153, 259].
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Figure 6.9: Time-resolved prognostic cardiac features. Features of poor
prognosis and also protective features were examined throughout the cardiac
cycle on the short-axis and four-chamber views. The most significant cardiac
features were the end-systolic and early diastolic septum on both the short-axis
and four-chamber views. The RV during systole and LV during diastole also
were predictive of 1-year mortality. In contrast, the most important features of
survival were the end-diastolic septum on short-axis and four-chamber views
and the LV at systole.
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Figure 6.10: Visualisation of prognostic mortality and survival features learnt
from the training data, overlaid on three example short-axis / four-chamber
images from three different patients with PAH to interpret the corresponding
anatomical regions. Left: Septum and LV features of high risk of mortality
at end-systole. Middle image: Features of survival visualised at the septum
at end-diastole. Right: four-chamber view showing high-risk features in the
septum and LV in diastole.

723

Training

Validation 

PAH patients 
newly diagnosed

12 months
follow-upMPCA feature extraction

70% accuracy predicting mortality

Survivors

Non survivors

Figure 6.11: Prognostic features on CMR can be extracted using multilinear
principal component analysis (MPCA) machine learning to predict outcome in
pulmonary arterial hypertension (PAH).
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Survivors showed the opposite with features in the septum at end-diastole and LV at

end-systole. We found fewer overall features on SA images at the RV. However, on 4Ch

imaging the most significant features were identified in RV systole. Whereas the septal

and LV features were less important on 4Ch imaging. The 4Ch view allows assessing

the longitudinal RV contractility which for example can be inferred on echocardiogram

by assessing the tricuspid annular plane systolic excursion (TAPSE). Right ventricle

longitudinal contraction is known to be the larger component of RV contraction and a key

prognostic indicator [68, 70, 260] which explains its prognostic importance in PAH.

The MPCA-based model was developed and validated on CMR imaging performed

at diagnosis and in treatment-naive PAH patients. Disease severity assessed at baseline

assessment is important for planning an optimal treatment strategy. Almost all published

prognostic CMR studies in PAH are based on disease prevalent PAH patients in later

stages of the disease process [4]. A meta-analysis of 22 studies and almost 2000 patients

with PAH showed that RVEF, RVESVi, RVEDVi, LVEDVi and LVSVi were significant

predictors of mortality [4]. Right ventricle ejection fraction, RVEDVi, LVEDVi and LVSVi

did not predict mortality in our baseline PAH cohort. The MPCA pipeline can therefore

elicit cardiac changes before they affect RV function and size and adds prognostic value at

baseline evaluation. In addition, comparing the MPCA to the REVEAL score allowed

us to evaluate the incremental value benchmarked against a clinically validated baseline

prognostic tool. The MPCA-based predictions significantly improved the 1-year mortality

prediction of the REVEAL score. The prognostic model accuracy (c − index) using

REVEAL improved from 71% to 83%(log − ranktestP < 0.001) when it was combined

with CMR data including MPCA predictions and CMR measurements. However, even

without REVEAL data, mortality can still be accurately predicted based on MPCA

features alone with an accuracy (c − index) of 70%.

The application of step-wise cardiac features extraction using CMR has further potential

that can be evaluated in future developments. Comparing prognostic features at follow-up

with baseline features might provide a better understanding of disease progression on CMR

and might offer a standardised disease monitoring tool. In addition, technical improvements
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would allow to fully automate the prognostic model, which currently requires manual

image registration. Deep learning automated landmarking for image registration would

reduce the manual processing of CMR images and reduce the time and cost associated

with it [261, 262].

6.4.1 Limitations

This was an exploratory retrospective single centre study on patients with PAH. Findings

will need to be confirmed in a prospective trial with an external validation cohort. In

addition, applying the model to other diseases and MRI systems would further validate

its generalisability. The MPCA method was applied on cine images of the mid-chamber

slice throughout the cardiac cycle. Stack imaging of the whole heart can currently not be

included in the MPCA model training. However, because of the strong prognostic signal

from the SA and 4Ch cine images we envisage that future developments including 3D data

of the heart will further improve prognosis prediction.

6.5 Conclusion

Patient outcome prediction in PAH can be enhanced by adding MPCA-based machine

learning to CMR volumetric data and clinical risk scores. The MPCA analysis gives a

population insight into the prognostic cardiac features in PAH in an explainable and

visualisable approach.
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Abstract

Introduction Elevated myocardial T1-mapping and extracellular volume

(ECV) measured on cardiac MR (CMR) imaging is associated with myocardial

abnormalities such as oedema or fibrosis. This meta-analysis aims to provide a

summary of T1-mapping and ECV values in pulmonary arterial hypertension

(PAH) and compare their values with controls.

Methods We searched CENTRAL, MEDLINE, Embase, and Web of Science

in August 2020. We included CMR studies reporting T1-mapping or ECV

values in adults with any type of PAH. We calculated the mean difference of

T1-values and ECV between PAH and controls.

Results We included 12 studies with 674 participants. T1-values were signifi-

cantly higher in PAH with the highest mean difference (MD) recorded at the

RV insertion points (RVIP) (108 milliseconds (ms), 95% confidence intervals

(CI) 89 to 128) , followed by the RV free wall (MD 91 ms, 95% CI 56 to 126).

The pooled mean T1-value in PAH at the RVIP was 1,084, 95% CI (1,071 to

1,097) measured using 1.5 Tesla Siemens systems. ECV was also higher in

PAH with an MD of 7.5%, 95% CI (5.9 to 9.1) at the RV free wall.

Conclusion T1-mapping values in PAH patients are on average 9% higher

than healthy controls when assessed under the same conditions including the

same MRI system, magnetic field strength or sequence used for acquisition.

The highest T1 and ECV values are at the RVIP. T1 mapping and ECV val-

ues in PH are higher than the values reported in cardiomyopathies and were

associated with poor RV function and RV dilatation.
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7.1 Introduction

N ative myocardial T1 and extracellular volume (ECV) mapping have shown promise

as novel biomarkers to support diagnostic, therapeutic and prognostic decision

making in several cardiovascular disorders [78]. T1 mapping produces a pixel-by-pixel

representation of the longitudinal relaxation times (T1) within a tissue [79]. This relaxation

time can be measured on a MRI system and sequence-specific standardised scale to provide

surrogate tissue characterisation data [80]. In the myocardium, T1 times are affected

by two main factors; oedema and collagen in the interstitial space [81]. Oedema can

be secondary to inflammation or infarction, whereas increased collagen is associated

with fibrosis or infiltrative processes [82, 263–265]. An elevated T1 value is, therefore,

a non-specific tissue composition marker for conditions such as myocardial infarction,

myocarditis, cardiomyopathies and diastolic heart failure [83, 263, 266–272]. A low T1

is being used as a diagnostic tool and follow-up biomarker in Anderson-Fabry disease

[273–277] and can be used as a complementary sequence to T2* in thalassemia [278, 279].

Performing T1 mapping after contrast administration enables the assessment of the

extracellular space [78, 81]. As gadolinium collects in the extracellular fluid, its paramag-

netic effect causes shortening of the T1 values of the myocardium. The T1 shortening is

proportional to the concentration of the gadolinium in the extracellular fluid. Therefore,

combining pre- and post-contrast T1 values of the myocardium and blood pool with the

haematocrit allows estimation of the extracellular volume (ECV) [78]. Elevated ECV

is seen with myocardial fibrosis or oedema and is associated with an increased risk for

mortality[280–282]. Native T1 and ECV can provide prognostic information in coronary

artery disease and nonischemic cardiomyopathies [81, 283, 284] and might play a role in

disease risk stratification, early diagnosis and monitoring progression [79, 269, 270].

In pulmonary arterial hypertension (PAH), elevated pulmonary artery pressure causes

significant afterload on the right ventricle (RV). Eventually, the RV hypertrophies and

dilates triggering a fibrogenic process [285]. T1 mapping and ECV might, therefore, play

a role in evaluating the changes in the RV [12] and the degree of fibrosis in PH [285].

Previous reviews have assessed normal T1 mapping and ECV values in healthy people

[286] and pathological values in cardiomyopathies [287–289]. Several studies report T1
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values in PAH, but there is currently no meta-analysis to summarise their results. This

meta-analysis aims to compare the range of T1 values and ECV in PAH patients to control

participants and identify the regions of the myocardium with the highest T1 values.

7.2 Methods

The review was prospectively registered with The International Prospective Register of

Systematic Reviews (PROSPERO) on 10/02/2020 (ID: CRD42020166392).

Criteria for considering studies for this review

We considered any study comparing T1 values or ECV rates in adult patients with PAH

and controls; such as controlled trials, cohort studies or case-control studies. Studies

with less than 10 participants and case reports were excluded. Inclusion was considered

irrespective of prospective or retrospective recruitment, publication date, publication

status or language.

Outcomes

1. The pooled mean difference of T1 value between PAH and controls

2. Identifying the myocardial region with the largest T1 values and ECV in PAH

3. Comparing the T1 values in the subgroups of PAH

Search methods for identification of studies

Electronic searches

The following databases were systematically searched for relevant studies on 08/08/2020:

(i) Cochrane Central Register of Controlled Trials (CENTRAL) (ii) MEDLINE (ProQuest,

1946 to Aug 2020) (iii) Embase (Ovid, 1974 to 2020 Week 32) and Web of Science. The

reference lists of all relevant articles identified during the full-text screening were scrutinised

for relevant studies.

The following search strategy was used:

1. exp ”HYPERTENSION, PULMONARY”/

2. exp ”PULMONARY HEART DISEASE”/

3. exp ”PULMONARY VASCULAR DISEASE”/
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4. (pulmonary ADJ2 hypertensi*)

5. (1 OR 2 OR 3 OR 4)

6. (T1 ADJ3 (map* OR value OR time* OR native OR contrast))

7. (SASHA OR MOLLI)

8. (recovery AND ((shot AND saturation) OR (modified AND look)))

9. (ECV OR (extracellular ADJ1 volume))

10. 6 OR 7 OR 8 OR 9

11. (5 AND 10)

Statistical analysis and data synthesis

We used Review Manager 5.4 (The Cochrane Collaboration, 2020) to perform a meta-

analysis of the mean differences (MD) and produce the forest-plot. A random-effect model

with 95% confidence intervals (CI) was used in the analyses. The available data allowed

us to calculate the mean difference for 1.5 T field strength only. We pooled the means

and standard deviations (SD) of T1 values for the PAH and control groups when they

were measured using the same MRI system and field strength, which was only possible

for 1.5 T Siemens systems. The non-weighted means of T1 values with their 95% CI

for PAH patients and controls were presented on a forest plot using GraphPad Prism

version 8.3 (GraphPad Software, La Jolla CA, USA). If the T1 and ECV values for the

RV insertion points were measured both at the superior and inferior insertion points, data

for the inferior insertion points were chosen, as this was the case with the majority of

the studies. A funnel plot to assess publication bias was not performed as the number of

included studies in each meta-analysis were too low to identify real asymmetry [290].

7.3 Results

7.3.1 Results of the search

Our comprehensive search identified a total of 12 studies that were included in the meta-

analysis. Nine studies reported T1 mapping values in PAH [67, 84, 86–90, 291, 292]

including one conference abstract [293] and five studies reported ECV values [58, 67, 89,

90, 294]. The details of the literature search are presented in the PRISMA flow diagram

Figure 7.1.
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Figure 7.1: PRISMA Flow Chart

7.3.2 Description of included studies

Study Design

The review includes nine case-control studies published and three case-series. The studies

were published between 2015 and 2020. Prospective recruitment was performed in seven

studies and retrospective recruitment in five studies. Only three studies had a sample size

>60. The largest study was Saunders 2018 with 223 PAH patients and 24 controls.

Population

The studies were conducted in 8 different countries; 6 studies were conducted in Europe, 2

in the USA and 4 in Japan and China. The studies included 554 PH patients of which 513

(93%) had PAH, 32 (6%) had chronic thromboembolic pulmonary hypertension (CTEPH)

and 9 (1%) had PH secondary to lung disease. The control group included 120 people, of

whom 97 were healthy and 23 were non-PH patients. The age of patients with PAH was

53 ± 15 years and 64% were women with a pooled average mPAP of 48 ± 15 mmHg, and

RVEF of 42 ± 14%. The control group had a pooled average age of 49 ± 7 years and 52%

were women. The pooled average of RVEF was 55 ± 5%. Details of included studies are
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presented in Table 7.1.

MRI systems and T1 techniques

The majority of studies were performed using 1.5 Tesla field-strength MRI systems. A 3

Tesla system was used in Asano 2018, Dong 2018 and Reiter 2017 [58, 87, 293]. Siemens

MRI scanners were used in most studies apart from Saunders 2018 and Homsi 2017 who

used a GE and Philips MRI system, respectively [67, 84]. A modified look-locker inversion

recovery (MOLLI) sequence was used in all studies apart from Mehta 2015 who used

accelerated and navigator-gated look-locker imaging for cardiac T1 estimation (ANGIE)

[90]. T1 mapping values were measured on short-axis images on a single mid-chamber

slice [58, 84, 88, 291, 294], single basal slice [292], average of two mid-chamber slices [90],

average of a basal and a mid-chamber slice [86, 89] or averaged over basal, mid-chamber

and apical slices [67, 87]. T1 values were measured in end-diastole, apart from Mehta

2015 and Reiter 2017 who measured T1 values in systole [87, 90]. None of the included

studies used stress MRI to assess T1 values. Details of the MRI systems, techniques and

sequences used are provided in Table 2.

7.3.3 Results of the Meta-analysis of T1 values and ECV

The mean difference of T1 value in PAH and controls

Seven studies compared myocardial T1 values at 1.5 Tesla between 375 PAH patients and

87 healthy controls. The T1 values in PAH are significantly larger than the T1 values of

the control group. The largest difference was reported at the RVIP (MD 108 ms, 95%

CI 89 to 128), followed by the RV free wall (MD 91 ms, 95% CI 56 to 126). The mean

difference at the mid septum and LV lateral wall were relatively smaller (MD 56 ms, 95%

CI 41 to 72) and (MD 36 ms, 95% CI 14 to 58), respectively. The forest plot of the

meta-analysis of mean differences is presented in Figure 7.2.

Two studies reported myocardial T1 values at 3 Tesla; Reiter 2017 and Asano 2018 [87,

293]. However, their results could not be pooled as they reported T1 values at different

regions of the myocardium. In addition, Reiter 2017 included non-PH patients as the

control group, whereas Asano 2018 included healthy people. The highest calculated mean

difference of the T1 values in Reiter 2017 was 105 ms, 95% CI (76 to 133) at the RVIP.

The mean difference at the septum and LV lateral wall were smaller 63 ms, 95% CI (40 to
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Myocardial T1-Mapping (1.5 Tesla) [ms]

Study or Subgroup
RV Insertion Points
Chen 2017
Homsi 2017
Roller 2017
Saunders 2018
Spruijt 2016
Wang 2018
Subtotal (95% CI)
Heterogeneity: I² = 49%
Test for overall effect: P < 0.00001
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Mehta 2015 
Patel 2020 
Wang 2018 
Subtotal (95% CI)
Heterogeneity: I² = 0%
Test for overall effect: P < 0.00001
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Figure 7.2: The mean difference of T1 values in PH and controls.
CI, confidence intervals; ECV, extracellular volume; ms, millisecond; LV, left ventricle; PH,
pulmonary hypertension; RV, right ventricle; SD, standard deviation
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86) and 40 ms, 95% CI (20 to 60), respectively. In Asano 2018 the calculated MD at the

RV free wall was 178 ms, 95% CI (134 to 222).

T1 values in different myocardial regions

Comparing the mean difference in the T1 values in different myocardial regions measured

within PAH patients showed that the T1 values at the RVIP is on average 6% higher than

the septum (MD 62 ms, 95% CI 49 to 74) and 9% higher than the LV lateral wall (MD

102 ms, 95% CI 82 to 121). The pooled mean value of T1 with a 1.5 T Siemens system for

PAH patients and healthy controls are shown in Table 3 and their ranges are illustrated in

(Figure 7.3). The T1 values for PAH were pooled including values reported in the case

series Tello 2019 and Habert 2020. Excluding the results of Mehta 2015, who used ANGIE

sequences, did not significantly change the pooled values.
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Figure 7.3: Pooled T1 values in PAH.
For abbreviation list see legend for Figure 7.2.
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T1 values in different PAH subgroups

Three studies compared T1 values in 140 patients with idiopathic PAH to T1 values in

118 patients with PAH associated with CTD or CHD [67, 84, 291]. These studies showed

no significant differences in the T1 mapping values between the different PAH subgroups

(MD 4 ms, 95% CI -18 to 26).

ECV mean difference

Five studies reported ECV values in PAH. Three used a 1.5 T Siemens and one a 1.5 [89,

90, 294], one a 1.5 T Philips system [67] and one a 3 T Siemens scanner [58]. Three studies

compared the value of myocardial ECV at 1.5 T between PAH and healthy controls [67,

89, 90]. Due to the limited data pooling the mean differences of ECV values was only

possible for the RV free wall and LV lateral wall and was significantly higher in PAH

compared to the control group at both sites with a mean difference of 7.5%, 95% CI (5.9

to 9.1) at the RV free wall and 4.8%, 95% CI (1.6 to 8.1) at the LV free wall. The mean

difference at the RVIP was reported in Homsi 2017 as 5.8%, 95% CI (2.2 to 9.4) and at

the septum as 5.7%, 95% CI (3 to 8.4).The forest plot of the meta-analysis of ECV mean

differences is presented in Figure 7.4.

ECV values in different myocardial regions

Limited data reporting ECV values was available and only ECV values measured at the RV

and LV free walls using a 1.5 T Siemens scanner could be pooled (Table 3 and (Figure 7.3)).

Dong 2018 evaluated ECV values with a 3 T Siemens system and reported a value of

29.3% ± 4.9 at the septum and 38.5% ± 3.9 at the RVIP.

7.4 Discussion

In this systematic review and meta-analysis, we demonstrate a significant rise in myocardial

T1 values in patients with PAH when compared to healthy controls scanned under the

same conditions, confirming potential diagnostic value in measuring T1 mapping in PAH.

The myocardial region with the largest difference between PAH and healthy controls was

the RVIP with a mean difference of 108 ms, 95% (CI 89 to 128). The mean difference at

the septum was 63 ms, 95% CI (40 to 86) and at the LV free wall 40 ms, 95% CI (20 to 60).

The pooled T1 value at the RVIP on 1.5 Tesla Siemens system and MOLLI sequence was
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Extracellular volume (ECV)  [%]

Study or Subgroup
RV Insertion Points 
Homsi 2017
Roller 2017 
Subtotal (95% CI)
Heterogeneity: I² = 44%
Test for overall effect: P < 0.00001
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Test for overall effect: P < 0.00001
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Mean 
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Figure 7.4: The mean difference of ECV in PAH and controls.
CI, confidence intervals; ECV, extracellular volume; ms, millisecond; LV, left ventricle; PH,
pulmonary hypertension; RV, right ventricle; SD, standard deviation

1,084 ms, 95% CI (1,071 to 1,097), which is on average 9% higher than in healthy people.

Therefore the RVIP should be used to measure T1 mapping values in suspected PAH. The

pooled normal T1 values at the septum on 1.5T Siemens scanners in our meta-analysis

were 988 ms, 95% CI (978 to 998) which are similar to the values reported in a large

meta-analysis of normal T1 values of 977 ms, 95% CI (969 to 985) [286]. Limited data

exists on ECV values in PAH. The highest mean difference of ECV in PAH compared to

healthy people was at the RV free wall and measured 7.5%, 95% CI (5.9 to 9.1) on 1.5

Tesla Siemens systems.

The T1 values in PAH and the mean difference in T1 values between PH and healthy

controls is higher than what is reported in cardiomyopathies [288, 289]. The mean

difference in septal T1 values were 45 ms, 95% CI (31 to 60) in dilated cardiomyopathies

and 47 ms, 95% CI (33 to 62) in hypertrophic cardiomyopathies compared to healthy

controls [288]. Reiter 2017 assessed the difference between PH patients and patients with

cardiomyopathies which is more realistically seen in a clinical setting [87]. They found

that at 3T there remained a significant difference between the patient groups (105 ms) at
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the insertion points. Saunders 2018 found the differences smaller on a 1.5T scanner. The

T1 values at the RVIP were 1065 ± 86 ms in PH patients compared to 1017 ± 69 ms in

non-PH patients and 943 ± 52 ms in healthy volunteers [84]. Myocardial T1 mapping might

therefore not be able to differentiate between PAH and other cardiac abnormalities at 1.5T

but it would indicate an underlying pathological process increasing the mechanical strain

on the RV. The elevated T1 values at the insertion point in particular might represent

engorgement of extracellular spaces in the early phases [281] or fibrosis in more advanced

stages of PAH [76].

We pooled the results of different subtypes of PAH including idiopathic PAH, PAH

secondary to connective tissue disease (CTD) and congenital heart disease (CHD). CTD

and CHD are known to generate fibrosis in the RV and septum the current studies [295–298]

and particularly CTD has shown elevated T1 values [299]. However, three included studies

reporting different subtypes of PAH showed no significant differences with the T1 mapping

values seen in idiopathic PAH compared to PAH secondary to CTD or CHD [67, 84, 291].

Therefore, pooling the results of the subgroups of PAH was considered appropriate.

T1 values [84, 86] and ECV [90, 294] significantly correlated to RV function and volumes.

This is in agreement with similar findings in nonischaemic cardiomyopathies, which showed

an association between elevated T1 at the RVIP and RV dysfunction [300]. Deterioration

in RV function is associated with a poor prognosis in PAH [4, 46]. However, Saunders 2018

found that myocardial T1 mapping did not predict mortality. During a median follow-up

of 27 months, they reported 59 deaths from 369 included patients. Their univariate Cox

regression showed that RV ejection fraction, end-diastolic and end-systolic RV volumes,

RV mass index and the septal angle were prognostic markers, but not T1 values [84].

Areas with late gadolinium enhancement (LGE) showed a high T1 value and ECV in

Homsi 2017 and were associated with a significantly impaired RV function [67]. LGE at

the RVIP is linked to focal fibrosis and more severe disease [76, 77, 296, 301–303]. T1

values and ECV remained significantly higher in PAH compared to controls even in the

absence of LGE, which may indicate that myocardial T1 mapping is more sensitive than

LGE and could serve as an early marker for fibrosis [67]. This observation is in keeping
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with findings in patients with PH secondary to CTEPH [85] and findings of a porcine

model of chronic PH, where T1 values and ECV were elevated in areas of fibrosis before

the onset of LGE [304].

Almost all included studies used the MOLLI myocardial T1 mapping sequences, while

Mehta 2015 used ANGIE sequences [90]. However, even within MOLLI sequences there

are a multitude of sequence parameters. The accuracy and precision of MOLLI sequences

are highly dependent on several factors including flip angle, inversion times, recovery times,

numbers of inversions, off-resonance, heart rate, spatial resolution, parallel imaging and

field strength to mention some [305]. The primary meta-analysis compared PAH patients

with controls imaged under the same conditions and therefore any differences in image

acquisition does not affect the result of the meta-analysis. However, patients with PAH

are more likely to have a higher heart rate than controls. When stroke volume decreases

cardiac output is compensated by increased heart rate. The MOLLI sequence is heart

rate sensitive owing to the time between inversion and the influence of the readout during

each inversion recovery. The effect is that when ’normal heart rate’ MOLLI is used in

a high heart rate situation the T1-values can be expected to be falsely lower. Many of

the studies pooled in the meta-analysis have T1-values within the higher limit of normal

range, even in the insertion point area. These values could be falsely normal if ’normal

heart rate’ MOLLI sequences were used.

Repeatability of T1-values was high in Saunders 2018 and Chen 2017 and was highest

at the septum followed by the RVIP. Intraobserver T1-values varied by up to 20 ms in

Chen 2017. The high agreement between readers, confirms that there is good repeatability

of T1 measurement when the same system, parameters and sequences are used [305, 306].

A standardised method of measuring T1 values might support the myocardial T1 mapping

technique becoming more reliable in the assessment of PH [307]. Deep learning methods

for the automated quantification of T1 mapping and ECV are being developed and have

shown good performance compared to manual assessment [308]. However, the repeatability

of T1 mapping between different scanners can vary considerably even when using the

same sequences and field strength [309] which can limit its utility as a follow-up tool.
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MRI Harmonisation techniques have been proposed to reduce inter-scan and inter-site

variability by adjusting MRI data to a correction factor [310]. Several methods have been

suggested for estimating correction factors such as using data from matched controls or

travelling subjects between sites [311]. The correction covariate applied at a voxel level

can bring T1 values from different sequences into a unified space for a more accurate

quantitative comparison of percent differences in T1 and ECV values between normal and

PAH subjects.

RV free wall T1 mapping was assessed in five studies [88–90, 291, 293]. T1 mapping at

the RV free was significantly higher compared to the LV lateral wall in the same patient

and compared to the RV free wall in healthy control. The increase of T1 values in a

thickened RV free wall compared to the LV free wall may reflect the increased pressure

and afterload on the RV in PH [300]. However, despite this, assessing the T1 value at

the RV free wall remains challenging. The partial volume effects from the adjacent blood

pool or epicardial fat is truly an issue particularly as image slices are currently thicker

than the RV wall itself. Sequences with higher spatial resolution might allow better

assessment of the thin RV free wall such as the ANGIE sequences used by Mehta 2015

employed [90]. However, technical problems eliciting T1 values can also be caused by the

relative asymmetrical shape of the RV with its curved wall at midventricular level and its

myocardial trabeculation [300]. Mehta 2015 tried to overcome this by measuring T1 values

of the RV free wall in end-systole when the RV is at its thickest. While this might facilitate

obtaining a T1 value reading, it is not as accurate or reliable as diastolic T1 maps and

more likely to cause false values. In systole the likelihood of including RV trabeculations

and hence blood is increased when the borders of trabeculations/compact myocardium

are less distinguishable. Assessing the T1 value in a thin RV free wall in healthy people is

particularly difficult [84, 291]. In Spruijt 2016 it was not feasible to draw regions of interest

in the RV free wall in the majority of PAH patients and the healthy controls because the

RV free wall was too thin and the partial volume effects too substantial, emphasising the

concerns and limited benefit of measuring T1 values at the RV free wall.
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Limitations

The strength of the meta-analysis is the extensive literature search that identified all

reported myocardial T1 mapping and ECV values reported in PAH. The main limitation

is that the analysis is based on mainly small retrospective studies. The variation in

MRI systems and field strength limited the number of meta-analyses possible. The main

analysis pooled the differences between T1 mapping values in PAH and healthy volunteers

measured under the same condition to reduce the effect of variations between T1 mapping

estimation methods across studies. However, pooling the actual T1 mapping values across

studies is prone to heterogeneity from several sources including imaging sites, MRI systems,

sequences, techniques and slice selection. ECV was only reported in five studies using

different techniques and a mean ECV value could not be calculated. PH is a group of

very diverse diseases that vary in the mechanisms of affecting pulmonary artery pressure,

resistance and morphology and have different RV remodeling responses. We included

studies reporting T1 mapping mainly in PAH and excluding other PH groups to limit

disease heterogeneity. However, the included studies included 6% of patients with CTEPH

and 1% of other types of PH which might have introduced some heterogeneity.

7.5 Conclusion

T1 mapping values in PAH patients are on average 9% higher than healthy controls when

assessed under the same conditions including the same MRI system, magnetic field strength

or sequence used for acquisition. The highest T1 and ECV values are at the RV insertion

points. T1 values and ECV in PH are higher than the values reported in cardiomyopathies

and were associated with poor RV function and RV dilatation.
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7.7 Knowledge Dissemination and Impact of Thesis

A total of 17 articles and 15 abstracts related to this thesis have been published in

peer-reviewed journals and cited over 90 times in the past two years (Appendix A1).

The most cited aspect is the meta-analysis of cardiac MRI measurements predicting

prognosis in PAH described in Chapter 2, which was included in the European Society of

Cardiology (ESC) and the European Respiratory Society (ERS) guidelines for the diagnosis

and treatment of pulmonary hypertension [312]. Word underlying this thesis has been

presented at 13 international and six national conferences, including the major cardiac

imaging and radiology conferences (Appendix A2 and A3). At the Radiological Society of

North America (RSNA) and the Royal College of Radiologists (RCR) Global conference,

the research was featured in oral presentations and received the prestigious RSNA Trainee

Research and the RCR Global Oral Abstract awards, respectively. Additionally, the AI

cardiac MRI segmentation tool developed and validated in this research received the

Medipex NHS Innovation, the Yorkshire & Humber School of Radiology and the Professor

Ronald Grainger awards. The tool has also been featured in national and regional media,

such as The Daily Mail, The Star, and the largest medical imaging forum AuntMinnie

[313–315]. The research was also invited to be presented on the RSNA Radiology podcast,

”Validation of AI Cardiac MRI Measurements.” [316]. Finally, work presented in this thesis

(Chapter 5) was awarded the British Thoracic Society 2022 Conference Award.

7.8 Future Research Directions

Additional cardiac MRI measurements

Based on the developed segmentation algorithms of the short-axis, four-chamber and long-

axis views, there are a multitude of measurements that can be obtained, including cardiac

chamber lengths, diameters, areas and myocardial thickness. From these measurements,
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parameters such as linear myocardial strain and atrial volumes can be obtained. Linear

strain is the length of the chamber in diastole minus its length in systole [317]. Atrial

volumes are calculated from the biplanar area-length formula (0.85 x atrial area / atrial

length) [318]. Where the area and length are obtained from the four-chamber and two-

chamber views. Manual estimates of these measurements have shown prognostic impact

in the ability to detect impaired longitudinal shortening post-myocardial infarction [317]

and the identification of raised left ventricular filling pressure [319]. A potential research

study is to assess the prognostic impact of left and right atrial longitudinal strain in a

large cohort of PAH patients.

Right ventricle (RV) myocardial thickness assessment is difficult due to the thin configu-

ration of the normal RV. Chapter 3 has identified no study that has reported automated

RV myocardial thickness assessment. Despite the challenges of measuring the RV thickness,

it has a role in identifying RV hypertrophy in PAH, which is an important marker of

remodelling and prognosis [214, 215]. Our current short-axis segmentation model (Chapter

4) can automatically assess RV thickness throughout the cardiac cycle (Figure 7.5). A

study to identify clinically significant thresholds of RV thickness to monitor remodelling

in PAH would be of interest.

Figure 7.5: RV myocardial thickness assessment (left panel) with measure-
ments performed throughout the cardiac cycle (right panel)

While RV mass is another potential measurement of RV hypertrophy, it is more

challenging to perform due to the presence of ventricular papillary muscles. Our current

segmentation analysis does not separate these papillary muscles, also called trabeculations,
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from the blood pool. While this is an acceptable method of calculating the mass and blood

volumes [320], trabecular mass itself might have diagnostic and prognostic implications

in pulmonary hypertension [321]. We are currently developing and testing an automated

method to detect trabeculations using signal thresholding (Figure 7.6). My aim is to

examine the added prognostic value from including trabecular mass to RV mass in patients

with PAH. This could be integrated with the automated RV thickness to identify a

combined marker of RV hypertrophy.

Figure 7.6: Automated segmentation excluding trabeculation from the high-
lighted right ventricular (yellow) and left ventricular (red) blood pool.
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Automation of native myocardial T1-mapping assessment

Chapter 7 discusses the value of myocardial T1 mapping in PH. One of the main challenges

with T1 mapping is the high interobserver variability and artefact from the blood pool. In

addition, the RV wall remains difficult to assess clinically but is significantly elevated in

PH [10]. An automated, standardised and reproducible method that minimises blood pool

artefact could improve the utility of T1-mapping in clinical practice and add value to the

risk stratification of patients with PH. Future research developing a model to automatically

measure the RV myocardial T1-values might provide diagnostic and prognostic value.

Tensor machine learning applications The multilinear principal component analysis (MPCA)

machine learning approach has demonstrated its effectiveness in both diagnostic [9] and

prognostic [322] applications in PAH. One of the key advantages of this tensor-based

method is its ability to provide clear explanations of the underlying linear machine-learning

processes, without the need for segmentation. Future applications of the MPCA machine

learning include follow-up and treatment response assessment. For example, in a baseline-

follow-up cohort, an MPCA-based mortality prediction algorithm can be used to identify

changes in prognostic features after treatment, which may provide valuable insights into

which areas of the heart are most responsive to treatment and how this impacts overall

outcome.

Other applications that would benefit from the strong classification ability of the MPCA

method are predicting haemodynamics on short-axis and four-chamber cine imaging and

altered pulmonary artery flow on phase contrast flow images. In a large cohort of PH

patients with same or next-day right heart catheterisation (RHC), the MPCA model will

be trained to predict normal and elevated pulmonary capillary wedge pressure (PCWP).

The added value of the MPCA method can be compared to using validated equations for

non-invasive heart pressure prediction [319].

Prospective assessment of AI cardiac MRI measurements

Following retrospective validation, AI interventions must be assessed in prospective clinical

studies [323]. Our large retrospective multi-centre and multi-vendor validation of the

short-axis [7] and four-chamber [324] cardiac MRI segmentation has shown the accuracy,
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repeatability and prognostic impact of automatic measurements. I plan to perform a phase

II study using a prospective single (or multi-centre) assessment of the AI segmentation

tool in a clinical setting to confirm the performance in real-world scenarios [325]. This

pilot data will be used to plan a randomised multi-centre and multi-vendor study. In this

phase III study, the diagnostic impact of a battery of automated measurements will be

assessed. Currently, a diagnosis of pulmonary hypertension (PH) relies on right heart

catheterisation (RHC) and multi-disciplinary team opinion. Cardiac MRI has shown good

accuracy in predicting the presence of PH [207] and estimating cardiac haemodynamics

[319, 326]. The phase III study will aim to assess whether automated cardiac MRI

measurements can replace the need for invasive diagnosis. Patients will be randomised

to cardiac MRI assessment with and without AI [327]. Randomisation will be performed

in cluster time periods in which scan analysis is performed in alternating turns with and

without AI assistance [327]. Previous studies of MRI diagnostic accuracy and confidence

have shown an impact on patient outcome and management [328]. Patients with suspected

PH will have their cardiac MRI analysed with or without AI measurement and will have a

subsequent RHC and MDT. Cardiac MRI readers will rate their diagnostic confidence of

a PH diagnosis on five points likert scale, ranging from unsure to confident. The outcome

reference diagnosis (ORD) will be made by clinicians blinded to the MRI assessment and

based on RHC performed within 24 hours and MDT discussion. Diagnostic accuracy,

including sensitivity, specificity, area under the receiver operating characteristic curve

and negative and positive predictive values of the cardiac MRI will be compared to the

outcome reference diagnosis. The cardiac MRI parameters assessed will include routine

volumetric and mass measurements, septal deviation, and pulmonary artery flow [35]. In

addition, patient convenience and overall costs will be compared.

Natural language processing creation of radiology reports based on AI measurements

Medical imaging analysis through machine learning can generate a vast amount of data

from segmentation alone, including measurements such as length, area, volume, angle,

mass, and density for every segmented structure. These numbers can be overwhelming

for radiologists and clinicians to process. My proposal is to develop a natural language

processing (NLP) algorithm that can analyse combinations of these measurements and
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provide a more meaningful interpretation. For example, instead of presenting numerical

values, the NLP algorithm would report a cardiac chamber as ”dilated.” To evaluate the

performance of the algorithm, scans will be analysed by both a radiologist with NLP

support and by a radiologist alone. The NLP algorithm will be randomly assigned to each

scan to minimise performance bias. The outcomes of the study will include time savings

for radiologists, increased accuracy of diagnosis, and improved report clarity, as evaluated

by blinded referring clinicians.

Natural language processing summarising serial radiology reports of multiple modalities.

Reviewing previous imaging is crucial for radiologists to understand a patient’s background

and changes in their condition. However, with the increasing demand for imaging, including

cardiac MRI (Figure 7.7), patients often have multiple serial imaging studies from various

modalities. While this trend provides more information for radiologists, it also increases

the workload of reviewing prior investigation reports.
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Figure 7.7: The rise in the number of patients requiring cardiac MRI between
2006 and 2022.

Natural language processing (NLP) can be used to analyse large amounts of text

and provide summaries in tabular or graphical format. My goal is to develop and

validate an NLP algorithm that summarises longitudinal health data from imaging reports.
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The algorithm will highlight any previously identified abnormalities and suggest disease

diagnoses based on a constellation of findings or commonly associated findings with

the previously identified abnormalities. For example, when a patient undergoes a CT

pulmonary angiogram, the NLP algorithm can gather important findings from previous

radiographs, ultrasound, CT, and MRI scans and create a summary. The NLP program

could highlight the presence of previously identified lung nodules and pulmonary emboli,

which would alert the radiologist to scrutinise these findings and comment on any changes.

The NLP algorithm could also suggest looking for cardiac or vascular changes commonly

associated with previous findings, such as chronic pulmonary embolism and right heart

abnormalities as a sequela of acute pulmonary embolism. Similar to the previous NLP

application, the algorithm will be assessed by two radiologists assessing the scan, one

with the help of the NLP algorithm and one without. An additional outcome will be the

number of additional findings detected.

In summary, cardiac MRI is becoming increasingly important in pulmonary hypertension

diagnosis and prognosis, and AI segmentation can streamline the process by providing

multiple measurements at once. Future research will focus on using these measurements

to automate imaging reports through natural language processing.
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