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Abstract: The pathogenesis of Parkinson’s disease (PD) is complex, multilayered, and not fully
understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurode-
generative condition. Symptoms of PD are heterogenous, including motor impairment as well as
non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and
stress are important risk factors for PD, leading us to explore pathways that may either accelerate or
protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone
that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which
are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho
protein, considered a general aging-suppressor, has a similarly wide range of actions but in the
opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress
and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin
resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an
increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead
to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite
actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and diver-
gent mechanisms that may go on to influence PD-related symptoms. Better understanding of these
hormones in PD would facilitate the design of effective interventions that can simultaneously impact
the multiple systems involved in the pathogenesis of PD.
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1. Introduction

Parkinson’s disease (PD) is the fastest growing neurological disorder globally [1,2].
Fueled by aging, the number of people with PD is expected to exceed 12 million by 2040 [1].
PD is characterized as a movement disorder, resultant from progressive neurodegeneration
of dopamine neurons in the substantia nigra pars compacta and its projections. However,
it is increasingly apparent that other brain regions are affected, e.g., decreased metabolism
in the prefrontal, occipital, and parietal cortices as well as changes in the lentiform nucleus,
thalamus, pons and cerebellum [3]. Dopaminergic and non-dopaminergic pathology
contribute to a wide range of non-motor symptoms (NMS), including cognitive impairment,
mood disorder, circadian disruption, autonomic dysfunction, fatigue, and apathy [4–6].
Despite the heterogeneity in pathogenesis and symptomatology, aging remains the single
most important risk factor for development of PD and of NMSs that disrupt the quality of
life [7–9].

Mechanisms of aging and neurodegeneration are thought to be interrelated with
chronic stress. Both aging and chronic stress are pertinent to the pathogenesis of PD
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and impact mitochondrial dysfunction, oxidative stress, inflammation, and changes in
metabolism [10]. These pathways result in changes in cellular function such as decreased
ATP synthesis, increase production of reactive oxygen species (ROS) and Ca+ accumulation,
microglia response, and increased proinflammatory cytokines and infiltrating immune
cells, all contributing to cell apoptosis. These processes occur in vulnerable brain regions
and interplay with genetic and environmental risk factors to contribute to the development
and progression of PD [8,10,11]. Here, we review the actions of two hormones known
to be implicated in the aging and stress processes and discuss their potential roles in PD
pathophysiology. Cortisol is a critical hormone involved in normal stress responsivity,
physiological homeostasis, and circadian function. Excess secretion is associated with a
wide range of maladaptive correlates of aging and chronic stress [12–15]. Relatively newly
discovered, klotho is a longevity hormone that delays aging and enhances cognition [16–18].
In this review, we highlight the yin-yang roles of cortisol and klotho in key aging and stress
pathways and how this may associate with progression and symptoms of PD.

2. Function of Cortisol and Klotho
2.1. Cortisol

Cortisol secretion is the product of hypothalamic-pituitary-adrenal (HPA) axis activa-
tion. It is a powerful steroid hormone that can pass into every cell of the body, with genomic
and non-genomic actions affecting mitochondrial, immune, and metabolic function [19].
The brain is a prominent target for cortisol and thus a central structure for adaptation to
stress. A wide brain network involving the hippocampus, amygdala, prefrontal cortex
and brainstem nuclei are involved in HPA axis activation in response to acute or chronic
stress [20]. The underlying basal secretory activity of the HPA axis is regulated by the
hypothalamic central pacemaker: the suprachiasmatic nucleus (SCN). The SCN transmits
its circadian signal to peripheral clock genes via neural and hormonal mechanisms, with
cortisol secretion playing a significant role, synchronizing circadian oscillations throughout
the body [21].

Cortisol has pleiotropic effects on the brain, affecting mood, behavior, cognition, and
programming of the stress response [22]. Cortisol is necessary for neuronal differentiation,
integrity, and growth, as well as synaptic and dendritic plasticity [23,24]. These processes in
turn support brain functions such as decision-making, reward-based behavior, motor con-
trol, visual information processing, learning and memory, and energy regulation. Cortisol
actions are mediated by the glucocorticoid receptors (GRs) and mineralocorticoid receptors
(MRs). In addition to rapid non-genomic mechanisms, cortisol influences brain func-
tions by activating GR-mediated gene transcription [25]. Some of these target genes code
for neurotrophic factors and their receptors, anti- and pro-inflammatory markers, signal
transduction, neurotransmitter catabolism, energy metabolism, and cell adhesion [25–27].
Stress-induced shifts in cortisol associate with time- and region-dependent changes in neu-
ronal activity to promote the brain’s adaptation to the continuously changing environment
in the short and long-term [28]. A dysfunctional HPA axis is thought to occur in PD, leading
to GR desensitization and high circulating cortisol concentrations [29].

2.2. Klotho

KLOTHO (KL) is a serendipitously discovered gene on chromosome 13 found to have
profound effects on lifespan [30]. Deficiency of klotho protein in mice severely shortens
lifespan and prompts signs of premature aging while overexpression of klotho increases
lifespan by ~30%. Since its initial discovery, increased levels of klotho have been associated
with longevity in several populations and decreased levels of klotho have been associated
with aging-related diseases including cancer, cardiovascular disease, kidney disease, and
recently neurodegenerative diseases [31–37].

Klotho is expressed primarily in the kidneys and choroid plexus [30,38,39]. Klotho
mRNA is also detectible in many other brain regions, including cortex, hippocampus, cere-
bellum, striatum, substantia nigra, olfactory bulb, and medulla [38–41]. Klotho’s actions
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are complex and multidimensional—it suppresses insulin and Wnt signaling [42,43], regu-
lates ion channel clustering and transport [44], modulates N-methyl-D-aspartate receptor
(NMDAR) signaling [18] and promotes fibroblast growth factor (FGF) function [45]. Klotho,
linked with FGF23, is important for regulation of calcium, phosphate, and vitamin D
homeostasis [46–51]. Klotho linked with FGF21 is involved in stimulation of the starvation
response, activating the HPA axis and sympathetic nervous system, as well as increasing
intracellular klotho expression in the SCN within the hypothalamus [52].

3. Cortisol and Klotho in Neurodegenerative Disease

Cortisol and klotho have relevance to various neuropsychiatric and neurodegenerative
disorders. Cortisol levels are increased in individuals with depression, sleep disturbances,
and neurodegenerative diseases like AD and PD [53–58]. Conversely, lower circulating
klotho levels are reported in bipolar disorder, depression, multiple sclerosis, temporal lobe
epilepsy, AD and recently, PD [36,37,59–62].

Accumulating evidence suggests that the HPA axis is dysregulated in PD. Cortisol
levels are found to be increased in toxin animal models of PD [63]. Elevated cortisol
levels also induce impairment of motor function and accelerate nigral neuronal loss in rats
exposed to chronic stress and subsequent increase in cortisol [64]. Individuals with PD
have elevated cortisol secretion in blood and saliva, especially in the morning [58,65,66].
More recently, glucocorticoid concentrations measured in the hair of PD patients showed
an excess of cortisone, the main cortisol metabolite, but not cortisol itself [67].

Klotho was initially linked to neurodegenerative diseases in studies of AD. Klotho is
decreased in the CSF of AD patients [36]. Higher klotho is also associated with reduced
amyloid-beta (Aβ) burden and improved cognition in populations at risk for AD [68].
Emerging studies are now connecting klotho with PD. Klotho-insufficient mice develop
neurodegeneration of mesencephalic dopaminergic neurons in substantia nigra and ven-
tral tegmentum area, while klotho overexpression protects dopaminergic neurons against
oxidative injury [40,69,70]. Exogenous klotho administration demonstrates neuroprotec-
tive potential in toxin rat models of PD through alleviation of astrogliosis, apoptosis, and
oxidative stress [71]. One study reported that while plasma klotho levels were not signifi-
cantly different between people with PD and healthy controls, klotho levels were lower
in men compared to women with PD [72]. This is interesting since sex is an important
biological factor in development and phenotype of PD as well as hormonal regulation
in general. Another study looking at two independent cohorts of people with PD found
that CSF levels of klotho were lower in people with PD compared to healthy controls [37].
A recent perspective by Grillo et al. (2022) also points out that enteric cells express klotho,
and both blood and enteric levels of klotho are altered in the setting of gut disease or
inflammation [73]. The authors go on to suggest that since PD pathology is hypothesized
to start in the enteric nervous system, this poses an important need to assess klotho in the
gastrointestinal tract of people with PD and evaluate whether modulation of klotho in the
gut may serve as a disease-modifying strategy.

Lastly, it is important to note how the main PD symptomatic treatment, levodopa,
is associated with cortisol and klotho. Administration of levodopa decreases HPA axis
activity, thereby decreasing cortisol levels [74,75]. It is currently unclear if levodopa affects
klotho levels or vice versa and future studies should take this into account.

4. Factors Modulating Cortisol and Klotho Regulation
4.1. Aging

Aging is the most critical risk factor for PD [7,76], yet the relationship between molec-
ular/cellular processes of healthy aging and those of PD pathogenesis remain unclear. It
can be hypothesized that specific regions of the PD brain (e.g., dopaminergic neurons in
substantia nigra pars compacta) undergo localized, accelerated aging [77]. Aging links
together several pathological mechanisms known to play a significant role in PD—from in-
creased inflammation and oxidative stress to mitochondrial dysfunction and dysregulation
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of lysosomal, proteasomal and autophagic functions– and all likely to contribute to neurode-
generation. The concept of “inflammaging” has been proposed as a principal mechanism
in PD [78] and describes the sustained systemic inflammatory state that develops with
advanced age [79]. This chronic inflammation is thought to result from exposure to chronic
stressors and/or imbalance between inflammatory and anti-inflammatory networks.

The convergence of cortisol and klotho along the pathways of aging has notable impli-
cations for PD. Cortisol levels decrease in decades 20s–30s, are relatively stable in 40-50s,
and increase after age 60 [80]. Elevated cortisol has been reported in age-related illnesses
such as cardiovascular disease, type II diabetes mellitus, osteoporosis, and cognitive impair-
ment [81–84]. In contrast, klotho levels are highest at birth in humans, with levels 7-fold
higher than adulthood levels, and decline after age 40 [85,86]. Several studies link klotho to
increased lifespan and better health outcomes, including decreased risk for cardiovascular
disease and stroke, decreased macrovascular complications in patients with type 2 diabetes,
and improved grip strength [33,86,87]. Klotho has also recently been included in a panel of
biomarkers that may predict frailty in the elderly [88].

4.2. Stress

The notion that chronic stress, in addition to aging, may play a role in the pathogen-
esis of PD has been controversial over the years but, despite some inconsistencies in the
literature, is now generally recognized [29]. In one population-based cohort study of over
2 million males, higher job demands and expectations increased PD risk [89]. In another
study, the risk of PD significantly increased with the number of exposures to stressful
events [90]. Post-traumatic stress disorder and adjustment disorder, both indicating oc-
currence of significant stressors, also associated with increased risk of PD, independent of
comorbid depression or anxiety [91,92].

Stress is known to affect functions of the limbic system such as learning, memory and
emotions [93]. The hippocampus has extensive distribution of GRs and plays a crucial role
in the biological effects of chronic stress [94,95]. Stress and hypercortisolemia also disrupt
sleep [96], which exerts powerful effects on the hippocampus and affects initial learning and
memory consolidation [97]. Recent evidence shows that stress also modulates motor system
function [98]. Since most parts of the motor system express GRs, their circuits are susceptible
to the influence of cortisol. Stress can modulate movement through activation of the HPA
axis and via stress-associated emotional changes. In PD mouse models, chronic stress
exposure worsens motor deficits, aggravates the neurodegeneration of the nigrostriatal
system, and completely blocks compensatory recovery of motor tasks [64]. A recent
viewpoint by van der Heide et al. (2020) proposes a model of how chronic stress in
patients with PD, resulting in higher cortisol levels, can lead to both higher susceptibility
for depressive and anxiety disorders and a more rapid progression of the disease [99]. The
authors review evidence on how chronic stress reduces levels of brain derived neurotrophic
factor (BDNF), inducing atrophy in key brain regions of mood and behavior, and creates a
proinflammatory environment that increases nigrostriatal cell loss.

Given klotho’s role in healthy aging, it is no wonder that it too has been linked to
stress. Klotho levels are reported to be lower in caregivers with chronic high stress and
show an age-related decline [60]. Klotho genetic variations that alter klotho levels influence
the effects of stress on cellular aging, as evidenced by changes in multiple biomarkers
of aging, including telomere length, CRP levels, metabolic dysfunction and white matter
microstructural integrity [100]. Mice with chronic stress demonstrate downregulation of
klotho in the nucleus accumbens (NAc) and depressive-like behavior [101], responses
modulated by Klotho regulation of NMDARs.

4.3. Genetics

PD pathogenesis is mediated by an interaction between multiple environmental and
genetic factors. The role of cortisol and klotho in PD may also be dependent on genetic
variations that dictate levels or function of these two hormones.
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As discussed previously, cortisol functions by binding to GRs and MRs. Genetic
variation in GR has been postulated to play a role in the physiological response to endoge-
nous cortisol. Over 3000 single nucleotide polymorphisms (SNPs) in the GR gene have
been documented. Most studies show that BclI and N363S gene variants are associated
with clinical measures of increased glucocorticoid sensitivity, while the ER22/23EK and
GR-9β are associated with decreased glucocorticoid sensitivity [102]. The ER22/23EK
polymorphism links with improved survival and lower levels of the inflammatory marker
C-reactive protein (CRP) [103]. BclI has consistently been shown to be associated with a
higher susceptibility to major depression [104]. It is currently unclear if and how these
genotypes impact PD. Lastly, polymorphisms in the catechol-O-methyl-transferase (COMT)
gene have also been associated with glucocorticoid responsivity and cortisol levels. In
particular, individuals with the Met/Met COMT homozygote polymorphisms are more
sensitive to stressful events and have higher cortisol responses [105]. Interestingly in people
with PD, Met/Met COMT homozygote polymorphism associates with lower IQ score and
greater motor severity of disease [106].

Genetic variations in the KL gene may influence systemic klotho levels or its func-
tion. KL variant rs9315202 downregulates klotho mRNA expression and associates with
advanced epigenetic age and elevated aging markers such as CRP [100,107]. There is also
a well-studied protective variant, termed KL-VS, that contains two SNPs, rs95536314 and
rs9527025, in complete linkage disequilibrium. Carrying one copy of KL-VS increases
klotho levels [18,108], while carrying two copies, decreases it [108]. KL-VS heterozygosity
is associated with longer lifespan [31], slowed epigenetic age [100], and higher cognitive
function [18,108] in most but not all populations. In a population at risk for dementia,
KL-VS allele attenuates Aβ burden and associates with reduced risk of conversion to mild
cognitive impairment or AD [68]. In PD, KL-VS heterozygotes have higher CSF klotho
levels; however, the haplotype itself is associated with shorter interval between onset of
PD and progression to MCI and worse motor phenotype [37]. Therefore, it remains to be
clarified how genetic variations in KL gene may affect function of the klotho protein and
affect individuals with PD.

It is unknown whether there are direct correlations between cortisol or klotho and
the genes linked to PD. However, as both hormones are involved in mechanisms that
become aberrant in PD, there may be undiscovered connections. For example, both cortisol
and klotho influence mitochondrial function in opposite ways and may interact with
genetic variations in genes linked to mitochondrial dysfunction in PD (i.e., Parkin, PINK1,
DJ-1, LRRK2).

4.4. Physical Exercise

Just as cortisol and klotho are sensitive to aging and psychological stress, they are also
responsive (in the opposite direction) to external stimuli that promote healthy aging, such
as physical activity. The past decade has produced much evidence to support that physical
exercise is potentially neuroprotective in PD.

Physical exercise can improve dysregulated cortisol levels in healthy individuals
and those with major depressive disorder [109]. High intensity exercise (>90% heart
rate reserve) decreases fluctuations in salivary cortisol [110]. Another study showed that
exercising intensely (70% heart rate reserve) suppresses the subsequent cortisol response to
a psychosocial stressor [111]. Smyth et al. have shown that high intensity treadmill exercise
in individuals with PD reduces cortisol secretion during the post-awakening period after
nocturnal sleep [112]. Yoga and dance movement therapy also lead to decreased cortisol
levels [113,114].

Contrarily, klotho levels are amplified by treadmill exercise in both young and aged
mice [115,116]. In humans, higher levels of klotho are associated with superior lower
extremity strength and functioning [117,118] Klotho levels also tend to be higher in exercise-
trained individuals compared to their untrained counter-partners [119]. In healthy adults,
various exercise programs (endurance, resistance, high intensity interval training) boost
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plasma klotho levels either acutely or after a 12–16-week training period [120–124]. Recent
study also finds that yoga, consisting of deep breathing exercises, meditation, and postures,
upregulates expression of the KL gene [125].

5. Candidate Mechanisms of Cortisol and Klotho Interactions in PD

Together cortisol and klotho represent powerful yet complementary mechanisms by
which life stress can be internalized and aging can be regulated. We go on to highlight
4 candidate mechanisms where klotho and cortisol may be competing in the life course
of PD.

5.1. Mitochondrial Dysfunction and Oxidative Stress

Mitochondrial dysfunction (altered morphology, turnover and transport) plays a
fundamental role in the pathogenesis of PD by chronic production of reactive oxygen
species and induction of α-synuclein misfolding, promoting neurodegeneration in the
substantia nigra [126]. The causes of mitochondrial dysfunction are complex and multipart,
including damage to mitochondrial DNA, environmental neurotoxins, and mutations of
the PINK1, DJ-1, and Parkin genes linked to PD [127,128]. In addition, mitochondrial
function is intimately interlinked with other cell processes including iron, copper, and
glutathione metabolism [129]. Dysfunction in any one process impacts the others, leading
to a disruptive vicious cycle driving neuronal cell death and pathology. Mitochondrial
dysfunction also occurs as a consequence of aging [130] and chronic stress [131,132] with
changes linked to increased inflammatory responses. This is because, in addition to their
other roles, mitochondria are now considered central hubs in regulating innate immunity
and inflammatory responses [133].

The hormone cortisol is intricately coupled with mitochondrial function. Once the
HPA axis is activated, it is synthesized within the mitochondria of the zona fasciculata of
the adrenal cortex and has potent reciprocal effects on mitochondrial function throughout
the body [134]. In this way, mitochondria are both mediators and targets of the main stress
axis, with cortisol as a liaison for whole body mitochondria-to-mitochondria communi-
cation to regulate energy metabolism. Aging and stress-associated increase in cortisol
can reduce the activity of specific mitochondrial electron transport chain complexes and
increase mitochondrial oxidative stress [134]. In mouse models of PD, psychological stress
diminishes up to 50% of mitochondrial respiration and glycolysis and links to cell death
and exacerbation of motor symptoms [135].

Age-related declines in klotho can drive dysfunctional mitochondrial bioenergetics
in skeletal muscle and kidney whilst systemic delivery of exogenous klotho rejuvenates
and enhances function [136,137]. Mitochondria not only regulate the normal ROS level, but
excessive ROS can also directly damage mitochondria and lead to apoptosis and cell death.
Klotho induces the expression of the manganese superoxide dismutase (MnSOD) protein, a
mitochondrial antioxidant enzyme that detoxifies superoxides, and thus reduces ROS [138].
A study in human stem cells shows that klotho attenuates cellular damage and cell apopto-
sis induced by oxidative stress by protecting mitochondrial structure [139]. Klotho is also
known to play a significant role in brain metabolism as an antioxidant [140,141]. Reduction
at these levels result in the inability of astrocytes to rapidly modify their metabolic activity
to support adjacent neurons, making them more vulnerable to neurodegeneration [142].

5.2. Neuroinflammation

Several lines of evidence from humans and animal models support the involvement
of inflammation in the onset and progression of PD. While inflammation may be a conse-
quence of neuronal loss in PD, the chronic inflammatory response may also contribute to the
progression of PD. Neuroinflammation stems from crosstalk between neurons, microglia,
astroglia and endothelial cells [133], which are susceptible to α-synuclein aggregates and
mitochondrial dysfunction. Under disease conditions, the homeostatic functions of the
microglia and astroglia are disrupted, leading to reduced secretion of neurotrophic fac-
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tors, increased secretion of proinflammatory cytokines (interleukin (IL)-6, IL1β, Tumor
Necrosis Factor α (TNFα), interferon (IFN)-γ, etc.)) and chemokines (CCL2, CXCL1, etc.)
and increased receptor expression for proinflammatory markers and major histocompat-
ibility complex (MHC-I) in microglial cells [143]. Additionally, peripheral immune cells
(such as CD4+ T cells) are recruited to the brain parenchyma, further augmenting the
proinflammatory environment.

Cortisol plays a significant and beneficial role in regulation of inflammation, but old
age and chronic stress are associated with dysregulation of the HPA axis and cortisol
secretion [144]. Cortisol and pro-inflammatory cytokines interact on multiple levels. Under
normal conditions, cortisol inhibits the immune system cells that produce peripheral cy-
tokines. It also inhibits transcription and action of many of the pro-inflammatory cytokines
including IL-1β, IL-6, and TNFα [145–147]. In a reciprocal relationship, cytokines can also
influence glucocorticoid secretion, availability, and signaling. IL-1β and IL-6 can activate
the HPA axis directly, while IL-1 and TNFα can impair cortisol signaling by interfering
with GR phosphorylation [148,149]. In settings of chronic stress, excessive cortisol secretion
leads to compensatory down-regulation or resistance of the GR and its anti-inflammatory
actions, resulting instead in a pro-inflammatory milieu facilitating a wide range of disease
risks including neurotoxicity [12,13]. In this scenario, increased levels of cortisol are associ-
ated with an increase in pro-inflammatory cytokines such as IL-6 [150]. Therefore, cortisol
can have dual effects—it can limit inflammation under normal conditions but promote
inflammation under conditions of chronic stress.

Recent studies suggest that klotho could also play a role in mediating the interface
between the brain and immune system in the choroid plexus. Selectively reducing klotho
within the choroid plexus of mice triggers inflammation and enhances activation of innate
immune cells [151]. As a separate pathway, klotho suppresses activation of macrophages by
enhancing FGF23 signaling [151]. Klotho also decreases activation of NF-κB and influences
expression of the pro-inflammatory cytokines, IFNγ and TNFα [152,153], the latter being a
‘master regulator’ of production of pro-inflammatory cytokines. To counter inflammation,
klotho increases production of IL-10, which is responsible for inhibiting the expression of
pro-inflammatory cytokines such as TNFα [154].

A key event in the neuroinflammatory processes is the activation of inflammasomes,
multiprotein complexes that mediate pro-inflammatory cytokine secretion and maturation.
The inflammasome component NLRP3 is strongly linked to neuroinflammation. Klotho
overexpression inhibits the NLRP3/caspase signaling pathways and enhances cognition
in animal models of neurodegenerative disease [155]. In contrast, high cortisol levels
activate NLRP1 and NLRP3 inflammasomes and promote neuroinflammation and neuronal
injury [156,157].

5.3. Insulin Resistance

Insulin and insulin-like growth factor 1 (IGF-1) signaling represent an evolutionary
conserved pathway of longevity. Oxidative stress is implicated in the onset and progression
of insulin resistance and type 2 diabetes [158], which is a prominent feature of normal
aging and a preclinical indicator in many neurodegenerative disorders [159]. Peripheral
insulin resistance is related to impairment of central insulin signaling and reported to be
an early etiological factor in development of PD [160,161]. It is also associated with more
rapid progression of PD disease and related cognitive impairment and dementia [162].
Functional brain imaging in PD further shows hypometabolism in the inferior parietal cor-
tex and the caudate nucleus, which correlate with cognitive deficits and motor symptoms,
respectively [163]. In PD, insulin resistance is proposed to lead to a state of bioenergetic
failure and hypometabolism in the brain that may promote neurotoxicity [164].

Elevated cortisol is a major causal candidate for the development of insulin resistance
with aging. It is well-known that while insulin exerts anabolic actions, cortisol exerts
catabolic actions and the two hormones counteract each other in many metabolic func-
tions, from glucose utilization to lipid storage [165]. On the other hand, klotho deficiency
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decreases insulin production and increases insulin sensitivity [141,166]. While the mech-
anisms of this are not entirely clear, it is known that klotho suppresses the downstream
signaling pathway of the IGF-1 reception and insulin receptor substrate without directly
binding to these receptors. Insulin also increases shedding of klotho, thereby increasing
circulating klotho [167].

5.4. Vitamin D Metabolism

Another route by which cortisol and klotho may contribute to the multifactorial toxic
cycle implicated in PD is via their actions on the neuroprotective hormone vitamin D.
Vitamin D is a fat-soluble hormone that can pass the blood–brain barrier, supporting its
significance in the central nervous system. Vitamin D insufficiency is associated with an
increased risk of several CNS diseases including PD [168,169]. Vitamin D is reported to
regulate more than 200 genes, influencing a variety of cellular processes such as neurotrans-
mission neuroprotection, and downregulation of inflammation and oxidative stress [170].
It stimulates expression of many neurotrophic factors including neurotrophin 3 (NT-3),
BDNF, glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF),
and neuroprotective cytokine IL-34 [171].

The vitamin D receptor is found throughout the human brain but crucially, is abun-
dant in the substantia nigra pars compacta, the primary target of neurodegeneration in
PD [172]. Additionally, 1α-hydroxylase—the enzyme that converts vitamin D to its active
form,1,25(OH)2D3—is highly expressed in the substantia nigra, suggesting that vitamin
D may be directly or indirectly related to the pathogenesis of PD via loss of protection
for vulnerable dopaminergic neurons in this brain region [173]. In the past two decades,
a high prevalence of vitamin D deficiency has been noted in individuals with PD [174].
Vitamin D concentrations also negatively correlate with PD risk and disease severity [175].
A small but significant association between vitamin D status at baseline and disease motor
severity at 36 months has been reported [176]. Higher vitamin D concentrations link to
better cognitive function and mood in individuals with PD [170,177]. Unfortunately, a
(somewhat limited) trial of Vitamin D supplementation did not appear to improve PD
symptoms [178].

Vitamin D is now suggested to be a biomarker of healthy aging with a strong associ-
ation between low levels and higher all-cause mortality with large and significant effect
sizes in multiple studies [179]. Cortisol has an antagonist relationship with vitamin D.
Higher cortisol levels correlate with lower vitamin D levels [180]. Several studies also
suggest that vitamin D may regulate the HPA axis. In hippocampal cell cultures, vitamin
D suppresses glucocorticoid-induced transcription and cytotoxicity [181]. In the CNS,
the most intense staining for vitamin D receptor and activating enzyme is described to
be in the hypothalamus, including in the paraventricular nucleus (PVN) containing the
corticotrophin releasing hormone (CRH)-positive neurons [173]. These neurons also stain
positive for vitamin D 24-hydroxylase, and therefore are likely vitamin D responsive [182].

The anti-aging protein klotho plays a key role in regulating vitamin D metabolism.
Membrane bound klotho is a cofactor for FGF23. Together, they form the receptor complex
instrumental in Vitamin D production [183]. The biological functions of Vitamin D and
klotho are highly intertwined because vitamin D induces the expression of klotho, and
klotho keeps vitamin D levels in check. Klotho inhibits 1α-hydroxylase to decrease the
active form of vitamin D—1-25(OH)2 D3, and increases activity of 24-hydroxylase, which
converts both vitamin D and 1-25(OH)2 D3 into 24-hydroxylated products targeted for
excretion. Lastly, low vitamin D levels are associated with depression and chronic stress,
both conditions also linked to decreased klotho and elevated cortisol [60,184,185].

6. Cortisol and Klotho Associations with PD Symptomatology
6.1. Mood and Cognition

Initial studies revealed that cortisol and klotho may influence non-motor symptoms of
PD. Cortisol levels have most commonly been correlated with neuropsychiatric symptoms.
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A large number of people with Major Depressive Disorder (MDD) show abnormalities in
the HPA axis functioning, with coinciding increased plasma levels of cortisol [185]. MDD
patients also show neurochemical changes in CRH in the PVN, a structure now known
to contain inclusions of α-synuclein, hallmark of PD pathology [186]. In individuals with
PD, cortisol has been shown to correlate with the severity of depression [187] and with
prevalence of anxiety and anhedonia [67]. In PD patients with impulse control disorders,
increased cortisol is associated with more risk-taking behavior [188].

There is a growing body of evidence that increased cortisol is associated with late-life
cognitive decline in normal aging in people with pre-clinical or clinical AD [57,189,190].
In non-demented patients, high cortisol correlates with decreased total brain volume,
particularly in grey matter, and poorer cognitive function [191,192]. Elevated cortisol has
also been linked to hippocampal atrophy, correlating with memory dysfunction [193].
Studies are needed to evaluate the link between cortisol and cognition in PD.

While klotho levels have not been related to psychiatric symptoms in PD itself, low
klotho levels have been associated with depression [60]. Interestingly, a small exploratory
study also found that CSF klotho levels are increased by electroconvulsive treatment for
depression [194]. Lastly, KL gene polymorphisms can influence responsiveness to selective
serotonin reuptake inhibitors (SSRIs) in people with depression [195].

Klotho has been shown to confer cognitive resilience in healthy aging and neurodegen-
erative disease. In animal models, klotho overexpression increases long-term potentiation
and enhances spatial learning and memory [17]. In normal aging individuals, carrying
the KL genetic variant (KL-VS), resulting in higher system klotho protein levels, links to
enhanced cognition and enhanced functional brain connectivity [18,108]. Higher klotho
levels also associate with enhanced volume of dorsolateral prefrontal cortex, an area that
drives executive function [196]. Clinical studies studying klotho in relation to cognition
in PD are lacking but initial studies reveal that acute elevation of klotho by peripheral
delivery is sufficient to restore cognition in transgenic mouse models of PD [71].

6.2. Circadian Rhythm

In recent years, it has become increasingly apparent that the circadian rhythm in-
fluences PD, with patients experiencing diurnal fluctuations in motor and non-motor
symptoms, despite stable pharmacokinetics of dopaminergic medications [197]. While
mechanisms behind this remain unclear, it is known that neurodegeneration affects the
central structures responsible for sleep and wakefulness, which may in turn affect input to
the hypothalamic SCN, housing the molecular clock of the circadian system. This molecular
clock consists of core clock genes, and disruption in their function in the pathogenesis of
PD has recently gained attention [198]. In people with PD, degeneration of the dopamine
containing cells in the retina may further affect input needed for alignment of dark/light
cycles [199]. Lastly, dopaminergic therapy has a bidirectional relationship with circadian
rhythm—responsiveness of motor symptoms to medication declines later in the day and
medication leads to uncoupling of circadian and sleep regulation [200–202].

The circadian pattern of cortisol secretion provides a key signal from the SCN to
peripheral clock genes. PD-associated changes in HPA axis function leads to a flatter
circadian profile for cortisol and signaling to peripheral clock genes is compromised with
resultant circadian disorder [65,198]. It is interesting to note that chronic kidney disease is
associated with dysregulation of the SCN [203], and kidney disease is a risk factor for PD.

Unlike the hormone cortisol, there is not much written about klotho and circadian
function. An early report in healthy humans found that serum klotho showed a circadian
rhythm with falling levels in the evening, a marked nadir at midnight and levels rising
again by the morning [204]. No such circadian variation in klotho has been found in human
CSF [36] or in the serum of healthy rats [205]. However, a relationship between klotho and
sleep appears more robust with subjective sleep quality being positively associated with
klotho in sedentary middle-aged adults [206]. Lower levels of klotho are also reported
in people with obstructive sleep apnea and associated with overnight markers of hypox-
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emia [207]. Klotho levels are also decreased with excessive sleep duration [208], which is
known to increase the risk of inflammatory diseases.

6.3. Motor Symptoms

When looking at healthy aging populations, cortisol negatively correlates with grip
strength [209] while lower levels of klotho associate with decreased grip strength and
knee strength [87,117]. In people newly diagnosed with PD, higher cortisol levels correlate
with greater motor burden of disease, measured using the-Unified Parkinson’s Disease
Rating Scale (UPDRS) part III [210]. Thus far, only one study reports that lower CSF
levels of klotho link to increased UPDRS III scores and higher Hoehn and Yahr disease
stage [37]. When mice deficient in klotho were initially described, a parkinsonian phenotype
was noted, with development of hypokinesis and decreased stride length along with
midbrain dopaminergic neuronal loss at 5 weeks of age [30]. Later studies demonstrated
that treatment with klotho, either via intracerebroventricular injection in toxin mouse
model of PD or administered intraperitoneally in α-synuclein transgenic mouse model of
PD, ameliorates motor deficits [71]. More studies are needed in humans to confirm that
changes in cortisol and klotho affect PD motor symptoms.

7. Proposed Model

Evidently there exists a complex interplay between aging and chronic stress in the
pathogenesis of PD through mechanisms involving mitochondrial dysfunction and oxida-
tive stress, neuroinflammation, insulin resistance, and vitamin D. It is difficult to extract
precise cause and effect in the vicious circle resulting in neurodegeneration; however, there
is a case that the hormones cortisol and klotho can contribute to the disease process in a
yin-yang manner. Moreover, given their broad effects, these hormones may be key players
in both idiopathic and familial PD. Our model proposed in Figure 1 suggests that in PD,
there is accelerated aging and increased stress, leading to decrease in circulating klotho
and increase in cortisol. As the balanced dualism of these hormones becomes dysregulated,
there is resultant pro-inflammatory environment and mitochondrial dysfunction facilitat-
ing a wide range of pathways leading to neurotoxicity. Vitamin D metabolism may also
be shifted along with increase in insulin resistance, further facilitating disease processes.
Interestingly, both cortisol and klotho levels may be amenable to change, with physical
activity increasing klotho and decreasing cortisol, and psychological stress/depression
decreasing klotho and increasing cortisol.
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klotho levels decrease. Exercise decreases cortisol levels and increases klotho levels. Certain genetic
variations may further dampen cortisol sensitivity and cellular response to stress or increase klotho
levels or change its function. Chronic elevation of cortisol with aging or stress leads to increase
in mitochondrial dysfunction, oxidative stress and activation of inflammatory cytokines, while
promoting insulin resistance and correlating with lower vitamin D levels. Klotho normally protects
mitochondrial structure and function, decreases oxidative stress, decreases inflammatory states,
suppresses the downstream signaling pathway that leads to insulin resistance, and downregulates
vitamin D metabolizing enzymes to control active vitamin D levels. This dysregulation of cortisol and
reduction in klotho with aging and stress, important risk factors for PD, are hypothesized to affect
the course of PD. Changes in cortisol and klotho in disease conditions may affects signs, symptoms,
or progression of PD.

8. Conclusions

In summary, we have highlighted the multifactorial actions of cortisol and klotho in
the pathogenesis of PD. Downstream effects of cortisol and klotho may influence non-motor
and motor symptoms of PD. Given that PD is a heterogenous disorder with multiple path-
ways involved in neurodegeneration, identifying strategies with a broad neuroprotective
potential, e.g., via exercise-induced modifications of cortisol and klotho secretion, offers the
potential of increasing the brain’s overall resilience. Future studies on how these hormones
of aging and stress play a role in PD will lend evidence to whether these can be potential
biomarkers or novel targets for interventional strategies.
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